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Abstract 

Nonlinear study cellular convection in a sparsely packed fluid saturated porous medium is 
investigated, considering the Brinkman model, using the technique of spectral analysis. It is 
established how the Brinkman model with free-free boundaries generalizes the study of 
convection in a porous medium in the sense that it yields the results tending to those of 
viscous and Darcy flows respectively for very small and very large values of the permeabil- 
ity parameter o 2. It also provides results for the transition zone (i.e. 102 < o 2 < 103). The 
cross-interaction of the linear modes caused by non-linear effects are considered through 
the modal Rayleigh number  R r. The possibility of the existence of steady solution with two 
self-excited modes in certain regions is predicted. The similarities of present analysis with 
and advantages over that of the power integral technique are brought out. A detailed 
discussion of the heat transport, with the effect of permeability thereon, is made. The 
theoretical values of the Nusselt number  are found to be in good agreement with 
experimental results. 

1. Introduction 

In recent years, considerable interest has been evinced in the study of 
thermal convection in fluid saturated horizontal porous layer because of 
its intrinsic importance and its relevance in nature as well as in technol- 
ogy. This problem is usually studied [6,7,10,13,14,16,21,24] using the 
Darcy model which results in a fourth-order differential equation to 
govern the onset of instability. Using physical arguments, however, six 
boundary conditions based on no-slip can be specified (see [20,21]). In a 
mathematical  sense the problem is therefore ill-posed and we have an 
overspecified system. From a physical point of view, the no-slip condi- 
tion [12] is as much valid as the other two conditions and there appears a 
priori no reason to reject it. Therefore, the applicability of Darcy's  Law 
to free convective studies in a porous medium appears to be questionable 
and a fresh approach to this problem is warranted. A suitable statistical 
approach is needed to resolve this problem. If a porous medium, how- 
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ever, is made up of sparse distribution of solid particles, Tam [22], 
Brenner [2], Taylor [23], and Rudraiah and Veerabhadraiah [17,18,19] 
have shown that the Brinkman [3] model comprising both viscous shear 
and Darcy resistance is valid to a first approximation. This Brinkman 
model is of boundary layer type and gives rise to a sixth-order differen- 
tial equation with six boundary conditions for the study of convection in 
a porous medium. Care must be taken in using these no-slip boundary 
conditions in the case of a porous medium. If it is bounded by rigid 
impermeable plates, one has to apply correction to the no-slip condition 
analogous to the slip condition postulated by Beavers and Joseph [1]. 
Such difficulties, however, will not arise in the case of a porous medium 
bounded by free-free boundaries where slip is allowed. Therefore, in this 
paper the nonlinear convection in a fluid saturated porous medium is 
studied using the Brinkman model with free-free boundaries. The novelty 
of using this model lies in: (i) overcoming the mathematical difficulty 
posed by Darcy's model as explained above, (ii) generalizing the problem 
in the sense that for small and large values of the permeability parameter 
o 2 the results tend respectively to those of the viscous and the Darcy 
flows in addition to providing results in the transition zone [15] for finite 
values of o 2, and (iii) predicting the magnitude of heat transfer after the 
onset of convection in a fluid saturated porous layer as accurately as 
possible. 

The study of finite amplitude convection in a porous layer is usually 
based on using the power integral technique which is pivoted on the 
linear theory. This is an iterative technique which combines the best 
features of the Galerkin method and Stuart's shape assumption, first 
employed by Malkus and Veronis [11]. This power integral technique is 
mathematically cumbersome and the built-in orthogonality process to 
overcome the resonance and the secural terms takes into account only the 
even modes. In the process, some of the interesting results, obtained by 
considering cross-interactions of modes, are missed. In the case of Darcy 
flow, recently Rudraiah and Balachandra Rao [14] have overcome this 
deficiency using the method of spectral analysis as adopted by Kuo and 
Platzman [9]. In the present paper, we therefore use this spectral analysis 
to study the onset of convection in a fluid saturated porous medium 
using the Brinkman model. 

The interesting results obtained in this paper using the Brinkman 
model are delineated by comparing these with the existing results for 
purely viscous flow [9] and for the Darcy flow [14]. 

2. Mathematical formulation 

The physical configuration considered in this paper (see Fig. 1) consists 
of a thin horizontal porous layer, of thickness d, of infinite extent in the 
horizontal directions heated uniformly from below and cooled from 
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above. The temperature difference across the layer is AT = T 1 - T2(> 0), 
the lower boundary being at temperature T I and the upper one at T 2. 

The equations governing convection in a porous layer, following 
Rudraiah et al. [20], are 

+ (q. v ) q  = - L v p  + ~gr~  + ~v2q - ~ q  (2.1) 
bt Oo 

OT 
( p c ) ' 5 7  + (pc ) j (q .  v ) r =  x * v 2 r  (2.2) 

v .q  = o (2.3) 

p = P0[1 - a ( T -  T')]  (2.4) 

where 

(pc)* = ~(pc) j+ (1 - d(pC)s ,  
K* is the effective thermal conductivity of the porous medium, p is the 
pressure in excess of the hydrostatic value, P is the fluid density and P0 is 
that at the ambient temperature T', T is the fluid temperature, q = 
(u, v, w) is the mean filter velocity,/~ is the unit-vector in the z-direction, 
(pC)* is the relative heat capacity of the porous medium while (pC)f and 
(pC), are those of fluid and solid respectively, e is the porosity and k is 
the permeability, having the dimension of length squared, for the porous 
medium, a is the thermal expansivity of the fluid, g is the acceleration 
due to gravity and p is the kinematic viscosity of the fluid. 

Recently, Rudraiah and Srimani [16] have shown, considering the 
Darcy model, that two-dimensional rolls are the preferred cell pattern in 
the case of convection in a porous medium. Hence, in the present paper  
cellular convection consisting of two-dimensional rolls is considered. The 
marginal state is assumed to be valid since there is no external constraint 
like rotation, magnetic field or salinity gradient to make the velocity and 
temperature out of phase. Therefore, a steady solution of the nonlinear 
stability of a quiescent state will be obtained by superposing a symmetric 
perturbation such that 3/8y = 0 and 8/Ot = O. 

T2 l -- Z : d  

d 

d~f Z=D 
P a r t i c u l a t e  

Figure 1. Schematic illustration of a porous layer 
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Using the total non-dimensional temperature T, given by 

T =  ( T t -  Rz)+O, (2.5) 

the stream function ~b such that 

O~p 3~k (2.6) 
u =  - 0-?-' v = G - ~ '  

eliminating the pressure in Eqn. (2.1) and making the resulting equations 
dimensionless using 

d/~r, d 2/'v 2~¢ * , vr•*/d and vr2K*v/agd 3 
as the units of length, time, velocity and temperature respectively, we 
obtain the following steady state vorticity equation 

30 1 
( V 2 - ° z ) v 2 ~ q  ~ x - P r  B (2.7) 

where B- - [3 (+ ,  V2+)]/[3(x,  z)] is the vorticity advection Jacobian, Pr 
= p/x* is the Prandtl number, o( = d2/TrZk is the modified permeability 
parameter. In fact, o2 = ~2/~r2 where o 2 = dZ/k is the usual permeability 
parameter, Note that ~r appears in all these terms because of our choice 
of the length scale. 

The non-dimensional steady state energy equation is 
3 +  

V2O q- a G = H (2.8) 

where H = [3(q,, O)/3(x, z)] is the thermal advection jacobian and R = 
e~gATd3/cr3v~ * is the Rayleigh number. This differs from the Lapwood 
[10] Rayleigh number, R L = agATdk/v~*rr, by a factor 1 /o  2, i.e. R c = 
R/o~. 

The use of no-slip boundary condition poses a problem in the case of 
a porous medium bounded by rigid impermeable plates. In that case one 
has to apply a correction to the no-slip condition analogous to the one 
given by Beavers and Joseph [1]. However, such difficulties will not arise 
in the case of a porous medium bounded by free-free boundaries where, 
of course, slip is allowed and there is no need to apply a correction for 
no-slip. Thus, the required boundary condition, since we consider the 
stress-free isothermal boundaries, are 

= x 7 2 ~ = 0 = 0  at z = O ,  1 (2.9) 

3. Spectral representation 

We represent ~b and 0 satisfying the boundary and symmetric conditions 
as infinite double series of orthogonal space functions in the form 

q~= ~ ~ ~,,,sin(lax) sin(nz) (3.1) 
/=0 n=l 
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0 = Y'. L 0,.n cos( lax ) sin( nz ) (3.2) 
/ - - 0 n = l  

where l and n are integers, a is the horizontal wave number of the first 
mode (l = n = 1) and the coefficients J//., and t~l.,, are functions of R. The 
representations (3.1) and (3.2) transform the governing differential equa- 
tions into the spectral domain of the spectra of the linear case. 

Equations (3.1) and (3.2) can be written as 

¢ = Z %s~,, s,  = -Exp  i(/ax + nz) (3.3) 
3' 

0 = E0vCv, C v = - i  Exp i ( lax + nz) (3.4) 
Y 

where ~ means summation over all integral lattice points in the ln-plane 
Y 

and ,/is a vector with components (1, n). The orthogonality of C v and S v 
may be expressed in the form 

f s;so dS=fsG* G dS = 3p,~ (3.5) 

where S is the surface 0 <~ x ~ 2Tr/a, -~r <~ z <~ ~r, d S  is the elementary 
area divided by the total area 4¢rZ/a of the region, S~ and C¢* are the 
complex conjugates of S~ and C a. 

In order to determine the coefficients +~ and 0v, we substitute (3.3) 
and (3.4) into (2.7) and (2.8) and obtain the following system of spectral 
equations 

02 2 ~ _ laOv _ a ( c ~ +  ,a t}  prBv (3.6) 

o~Oy - laR ;v  = - a t t v  (3.7) 

where c~ = 12a 2 + n 2, B v and H v are respectively the vorticity and ther- 
mal advection spectra given by 

Bv = - Z E (l ,n2 - 12n, )a2+,~Pv~ (3.8) 
YI T2 

Hv = Z E ( l , n 2 -  12n,)~kv,Ov~ (3.9) 
TI T2 

where the pairs y~ and "/2 satisfy the selection rule 

Y=Y~+Y2, i.e. l=11+12,  n =  n] + n 2. 

The nonlinear contributions can be more significantly expressed in 
terms of "coupling coefficients" defined by 

-al O( C,,3( x ,  C i ) Lv,B. ~ -- fcv* de. (3.10) 

Evaluation of these coupling coefficients by direct integration in (3.10) 
yields 

L;,~ = (l,~o - l o ~ )  3,.,+o (3.11) 
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where 6~.~+~ is the Kronecker delta. The coupling coefficient vanishes 
unless the selection rule 

y = fl + O/ (3.12) 

holds; written in terms of the components, this means 

I v = 1B + I s, n v = nl~ + n~ 

To find the solutions of (3.6) and (3.7), the temperature field O(x, z)  
may be split into a mean temperature field t~(z) and a deviation ®(x,  z): 

O(x,  z )  = O ( z )  + O ( x ,  z )  (3.13) 

where the mean temperature field t~(z) is defined as the horizontal 
average over a full wave-length 

a fo2~r/ao(x, z ) d x .  ~ ( z )  = ~  

This enables us to split (3.6) and (3.7) into the following set of equations 
for convenience: 

Or = f i r~  n2 for 1= 0 (3.14) 

O/~O v - a l R  +v = - a l l y  ] 
2 2 a t forl=*=0. (3.15) 

( O/ 4 -b O l O~v ) ~ v = a l  O.~ --  -~rr B,,, 

These equations are useful to obtain an expression for the modal 
Rayleigh number and in turn to study the interaction of different 
convective modes as explained in the next section. 

4. Modal Rayleigh number 

Elimination of 0 v in (3.15) leads to 

O/2 
1 (4.1) 

( R -  R r ) + "  = T H "  al Pr 

where 
6 2 4 

O/y a I O/y 

R v - 12a~ + 12a2 (4.2) 

is called the Modal Rayleigh number. We note that as o 2 ~ 0, this modal 
Rayleigh number R v tends to the one given by Kuo and Platzman [9] for 
the case of pure viscous flow. On the other hand, as aa--+ oz (Darcy 
flow), R v tends to the one given by Rudraiah and Balachandra Rao [14] 
for the case of Darcy flow. In the linear theory ( H  v = 0, B v = 0) a 
non-trivial solution of (4.1) requires R = R v. We write (3.9) in the form 
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recognising the fact that  lp = 0 in the first summat ion  while l B =~ 0 in the 
second one. 

For  a given mode  ~, = (l, n), Rv is a cont inuous funct ion of a 2 and in 
fact it is hyperbol ic  profile. The  critical moda l  Rayleigh number  (Rv)  c 
and the corresponding critical wave number  a C, are given by 

32n 2 

× [ 3 n 2 +  o 2 + ,  (/~ol 2 + n2)(o 2 + 9 n 2 ) J  (4.4) 

2 1 a c = ~ [ - ( o 2 + n Z ) + ~ / ( O a l  + n 2 ) ( o ~ + 9 n 2 ) ] .  (4.5) 

These are true for any  mode  consistant  with our selection rule ex- 
plained in Sec. 3. The  m i n i m u m  critical R r and a C are obta ined for the 
fundamenta l  mode  (1, 1) in the form 

a 2 = ~ 2 [  ( ~ 1 2 +  1 ) ( o 2 - 9 ) - o 2 - 1 1 .  (4.6) 

When  o 2 ~  0, (4.6) gives R c = 6.75 and a 2 = 0.5 which are the known 
values for the viscous flow given by  Kuo  and Pla tzman [9]. (Note  that 
their R C differs f rom our Rc. by  a factor  ~r 4 because of our  choice of the 
length scale.) Similarly, when o 2= 105, (4.6) gives Ro = 402 and a C = 1 
which are the known values given by Lapwood  [10]. To  obtain the more  
general  results, (Rll)c ,  ( R u / o  2) and a~., given by (4.6) and (4.7), are 
numerical ly  computed  for different values of  o 2 and the results are given 
in Table  1. 

Some interesting conclusions can be drawn f rom Table  1. For  very 
small  values of 02, the values of  ( R , ) c  and a C tend to those given by  Kuo  
and P la tzman [9] for the viscous flow whereas the values of ( R u ) c / o  2 for  
those values of o 2 are unrealistic. For  large values of o 2 ( >  103), the 
values of R u / a  2 and a c tend to those given by  Lapwood  [10]. Recently,  

Table 1. 
Critical modal Rayleigh numbers and wave numbers for the fundamental mode 

o 2 a¢ ( R . L / o  ~ (1~.) ~ 

l0 ° 0.71844 71.095907 
101 0.78686 11.000781 
102 0.93028 4.761219 
103 0.99054 4.078581 
104 0.99900 4.007891 
105 0.99962 4.000789 

7.2035218 × 10 ° 
1.1146122 × 10 l 
4.8241236 × 10 ~ 
4.1324671 × 102 
4.0608431 × 103 
4.0536469 × 104 
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Figure 2. Modal Rayleigh number R v as a function of a 2 

Rudraiah and Masuoka [15] have shown, using the method of matched 
asymptotic technique, that a transition zone (viz. transition from the 
Brinkman model to the Darcy model) exists for values of o 2 in the range 
10  2 <: o 2 < 10 3. The values of (RH) c and a c in this range are realistic and 
also predict the values in the transition zone. Therefore, for values of o 2 
up to 10 3 w e  should use the usual definition of the Rayleigh number 
whereas for values of o 2 > 10 3, the Lapwood Rayleight number R u / o  ~ is 
more suitable. This aspect, emerging from the nonlinear theory, corrobo- 
rates the results of Rudraiah and Masuoka [15] obtained from the linear 
theory. Thus, we can conclude that the Brinkman modei, with a proper 
limiting process, gives the results of the viscous, transition and the Darcy 
flow regimes. The transition zone lies between the viscous and the Darcy 
flows as shown in Fig. 3. 
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The variation of R v against a 2, for different modes y, are computed  
and the results are shown in Fig. 2. This figure depicts the interactions of 
different modes for different values of o 2 . For  instance, the curve 
representing the mode  (3,1) intersects that of  the fundamenta l  mode  (1,1) 
at a 2 = 0.279 for o 2 = 102. Therefore, the fundamenta l  mode  is no longer 
a self-excited mode for the values of a 2 < 0.279 and hence rule out the 
possibility of the existence of steady solution in that region. In  other 
words, subcritical instabilities are not possible in that region. Further, it 
is interesting to note that in the regions marked II  and I I I  in the 
ne ighbourhood of the line a 2 = 0.279 there are two self-excited modes for 
o 2 = 102. Thus, a double-mode steady solution can exist in these regions 
in addit ion to the usual single-mode solution in which only the funda- 
mental  mode  is the self-excited mode. In region I, a single-mode solution 
exists. A similar pat tern of interaction repeats for higher values of cr 2. 
For  example, for 02 = 103, the modes (3,1) and (1,1) intersect at a 2 = 0.325 
(see Fig. 2). In other words, for values of 0 2 >  102 , the point  of 
intersection of the two modes (3,1) and (1,1) shift to the right of 
a 2 =  0.279, eventually approaching the Darcy  result, a 2 = 0.33 (see [14]). 
In general, for a given 02, the point  of intersection of  the curves of  the 

10 3 

- - - - - -  Darcy f l o w  

Viscous / 10 2 

Rl l  

10 

F i g u r e  3. V a r i a t i o n  o f  R u a g a i n s t  a 2 f o r  v i s c o u s ,  D a r c y  a n d  B r i n k m a n  f l o w s  

1 i I i I ~ I 
lC) 2 10 -t a2 1 10 
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(3,1) and (1,1) modes is given by the solution of the cubic equation 

720x 2 + (72Ol 2 + 216)x 2 -  8(o12 + 1 ) = 0  

where x = a 2, In fact, this tends to the Darcy result, x = 1/3 given by 
Rudraiah and Balachandra Rao [14] in the limit for large values of o 2. 
The curves correspoading to the higher modes, ~, = (2,2) and "~ = (3,1), 
however, intersect at a :  = 1.3 for O 2 = 102 with R 2 2  = R3j = 314.63. For 
any o 2, the point of intersection of the (2,2) and (3,1) modes is given by 

585x 3 + (45012- 189)x 2 -  (54o2 + 405)x-(35o12 + 143)=0 .  

This also tends to the Darcy result x = 5 /3  for large values of o2. It is 
interesting to note that the modes (2,2) and (I,1) do not interact with one 
another, for the corresponding curves do not intersect. As one considers 
still higher modes, the intersection of these modes can be seen to be of an 
intricate cascade sort. 

5. Method of solution of the spectral equations 

The contribution of the nonlinear advection terms for the onset of 
convection is considered in this section. For this we need the solution of 
(4.1). 

The method for solving (4.1) lies in developing each spectral element 
as an infinite series of the powers of a suitable parameter 

~ : ( R -  R,1 (5.1) 

which is a deviation from the critical Rayleigh number and usually 
measures the amplitude of the disturbance. 

As in the Darcy model of Rudraiah and Balachandra Rao [14], we 
expand the spectral element ~v in the form 

= ~ a, N + I +  ~ ~y,,A + ~.y.y+l ""  

where r is the order of magnitude of an element ~ being the lowest 
power of A in the expansion. For example, since @u is, by definition, a 
first order element we can expand it in the form 

@u = ~ m A + @ n 3  A3+ . . . .  

The exclusion of the odd-parity elements implies that the series 
expansion of a spectral element is in terms of only odd powers or only 
even powers of A according as the order of magnitude r of the spectral 
element is odd or even. In the series representation of a spectral element 
@v, the coefficients of the type @tne are all constants where @l~p denotes 
the coefficients of A p in the expansion of 6t, (i.e. @v). 

Now, expressing the spectral elements ~ ,  Hy and By in (4. i) as power 
series in A using 

( R - R y ) = - { ( R - R n )  -A2} 
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and equating the coefficients of N, we get 

O~ 2 
1 ~ B  

( R v - R l l ) ~ r , r = + r , r - 2 + f H v , r  + a l 2 P r  v,r (5.2) 

where Hv, r and By, r are expressed in terms of the flow spectrum using 
(3.8) and (3.9). In fact, as in the viscous case of Kuo and Platzman [9], 
(5.2) works as a recursion formula. 

We obtain the following expressions for some of the important coeffi- 
cients of the flow spectrum: 

1 
@m ~-(1  + a 2) 

a2(83 + 22a 2 + 3a 4) 
@113 = 

1 6 f 2 ( a  2 + 1)3A 

a 2 

~/J 133 - 
8v/2(a 2 + 1)3A 

2a3 (Vr - ' ( a  2 + 1) + (a 2 + 5)) 
l ] J224  = 

3(a 2 + 1)4(5a 2 + 5 + o 2 ) A  

4,244 = - [a3((a  2 + 5) + p r - ' ( a  2 + 4 ) ) ]  

× [(a  2 + 1)2A{1023 + 765a 2 + 189a 4 + 15a 6 

+3o2(a  4 + 10a 2 + 2 1 ) ) ] - '  

where 

A = 9 1  + 10o 2 + 2 ( 1 5 + o 2 ) a 2 +  3a 4. 

Although the solution can be developed for arbitrary values of the 
cell-scale a, we use the critical wave number a,. of the linear theory which 
varies with o 2 Further, it is evident that the effect of the Prandtl number 
is seen in the fourth-order terms. The spectral coefficients, evaluated at 
a = a C for different values of o 2 and Pr, corresponding to mercury 
(Pr = 0.025), air (Pr = 0.687) and water (Pr = 8) are shown in Table 2, 
which confirms the following: 
(i) The value of ~b m and ~Pn3, both of which contribute to the funda- 

mental mode and hence to the spectral element 4'i~, decrease with 
the increase of 0 . 2  but are independent of Pr. A comparison of these 
with the values for the Darcy flow [14] reveals that ~n, in the 
Brinkman model differs from that of the Darcy flow whereas ~bu3 
has the same qualitative behaviour in the two models. 

(ii) The other third-order coefficient ~13s which contributes to the 
7 = (1,3) made also decreases with the increasing 02 and is also 
independent of Pr. 
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(iii) The contribution of Pr is seen only in the fourth order coefficients 
~224 and ~244 which decrease numerically with increasing 0 2 and Pr. 
For example, ~b244 for water is nearly half of that for air for a given 
0 2. A similar behaviour was observed in the case of the Darcy flow. 

(iv) The effect of 02 is to decrease the spectral elements, for a given Pr, 
thus damping the convective system. 

(v) The effect of Pr on the fields is not so significant even as in the 
Darcy case discussed by Rudraiah and Srimani [16] and Rudraiah 
and Balachandra Rao [14]. 

6. Spectral representation of the heat transport 

One of the objectives of the study of nonlinear convection is to determine 
the heat transport which depends on the imposed temperature difference 
between the boundaries. This is usually expressed as a functional relation 
between the Nusselt Number  Nu, and the Rayleigh number R. The 
Nusselt number is the ratio of the actual heat transport rate to the rate at 
which heat would be transported by conduction alone. Thus, 

Nu ~ z  z=0 1 

Using (2.5) and (3.2), this takes the form 

1 
Nu = 1 - ~ E n v6v (6.2) 

v 

where y = (0, nv) and n v ranges over positive and negative even integers. 
To determine Nu, we expand the spectral elements in (6.2) in powers 

of the parameter A in the form 

~ 2  = ~22 A2 -~ ~24  A4 "~- 0026 A6 -t- . . .  

004 = 0044 A4 -['- ~46  A6 "l- . . .  

where ffonp is a constant being the coefficient of AP in the power series 
expansion of the mean temperature spectral element 0o~. Since 0v appear 
in even powers of A, it is more convenient to use a new parameter  e 
defined by 

e = A2/R,, = ( R -  RI I ) /R , ,  (6.3) 

so that 

R = (1 + e)R u (6.4) 

Now, the Nusselt number may be arranged as a power series in ~: 

Yu = N O + U2e + S 4 e  2 + . . .  (6.5) 
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where 

N 0 = l ,  

N 2 = -46o22 ,  (6.6) 

U 4 = - U  2 - 4Rll (t~024 + 20044). 

To obtain (6.6), we have substituted (6.4) for R in (6.2) and expanded 
(1 + e) -1 as a power series in e. In other words, (6.6) is valid only for 
e < l .  

6.1. Determination of the Nusselt number 

The spectrum 6 v corresponding to the disturbed horizontal  mean temper- 
ature field is determined using (3.14). The expressions for some of these 
spectral coefficients are 

~ 2 2  = --  1 / 2  

a 2 

ff024 16A 

0044 = - a2(a4 + 10a2 + 41) 
16(a 2 + 1)2A 

Substituting these in (6.6), we get 

3a 6 + a 4 - 135a 2 - 645 + 3 o 2 ( a  2 + 1) 2 
N ° = l '  N 2 = 2 '  N 4 =  4A 

Expressing Nu  through terms of different orders, we can write 

N u  (°) = N O = 1 

Nu  <2) = N o + N2e (6.7) 

NU (4) = N O + N2e + N4 e2. 

The variation of  Nu  with respect to the Rayleigh number  is shown in 
Fig. 4. In  this figure, we have also compared  our results with the 
experimental data of  Combarnous  and LeFur  [4] and a good agreement is 
found for o 2 = 10 4. 

We know that the Nusselt  number  is function of the cell-scale a as well 
as R. To the second order in A we have 

Nu  = N u  (2) + 0 ( E  2 ) 

N u  (2) = 1 + 2e. 

Substituting e f rom (6.3), this becomes 

2Ra 2 
N u  (2) = 1. (6.8) 

(a  2 +  1)2(a  2 +  1 + o  2 ) 



o - Combarnous and LeFur (1969) 

Darcy flow 

, O- 2 : 1 0 4  

Nu 

2 

1.0 1.5 2.0 2.5 3 0 
R / R e  

Figure 4. Variation of Nusselt number Nu with R / R  c 
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Table 3. 
Marginal slope of heat transport for different values of o 2 

02 Marginalslope 

]04 0.49901 
103 0.49036 
l02 0.42005 

Thus N u  (2) computed  for R = 1.6 R c and 2R C and for different values 
of  o 2 are represented in Fig. 5 as a function of  a 2. In  this figure, for the 
sake of comparison,  the Darcy  and viscous flow results are also shown. 
We observe that the second-order Nusselt  number  in the case of Darcy  
and viscous flows attains its maximum value for any fixed R when a 2 = 1 
and a 2 =  0.5 respectively whereas in the case of Brinkman flow the 
max imum value of  N u  (2) varies with 0 2. For  example, N u  (2) is maximum 
at a c = 0.98118 for O 2 : 1 0  3, a C = 0.86543 for 02= 10 2 and a c =  0.61915 
for 0 2 =  10. We see that for large values of o 2 the results of Brinkman 
model  tend to those of Darcy  flow and for small values of o 2 to those of 
the viscous flow. A similar behaviour is true also for N u  (4). This proves 
that  the results of the Brinkman model are more general and the other 
two extreme cases can be obtained with a proper  limiting process. 

The marginal slope of the heat transport  function, using (6.5) is 

d N u  (2) = ( d N u  (4) 1 - N2 

d R  )R=I~ k (Rl l )  
(6.9) 

In  contrast  to the marginal slope of  value 1 /2  in the Darcy  case, this 
marginal  slope varies with o 2. The marginal slope is computed  for 
various values of o 2 and the results are shown in Table 3. 

F rom Table 3 it is clear that as 0 2 increases, the marginal slope of the 
heat  t ransport  tends to the well-known value of 1 /2  for the Darcy  flow. 

7. Streamlines and mean temperature profiles 

In  this section the streamlines and the mean temperature profiles are 
determined using the spectral coefficients for velocity and temperature 
discussed in See. 3. 

7.1. Streamline geometry 

The stream function ~b, given by (3.1), being a sine series in x is 
ant isymmetr ic  with respect to the line x = ~/a  and hence it is sufficient 
to consider only a half-cell. We, therefore, confine at tention only to the 
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region 0 <~ x <~ ~r /a ,  0 <~ z <.% ~r. For a given o 2, the cell-scale a is fixed and 
hence we get a rectangular region D: 

D = {(x, z ) l O  <.% x <-% ¢ r / a ,  0 <-% z <~ ~r}. (7.1) 

In this rectangle, consider an arbitrary point A ( x ,  z )  and let B [ ~ r / a  - x ,  
Tr - z] be the "image" of A. According to (3.3), we have 

~b(A) = - ~ + v  exp i ( l a x  + n z )  
Y 

where "y = (l, n). Similarly, 

~ ( B ) = - Y ' ~ v e x p i { l a ( ~ - x ) + n ( T r - z ) }  
¥ 

= - Y ~ y ( - l )  '+" e x p { - i ( l a x  + n z ) } .  
v 

Since we consider only the even-parity components (l, n), (l + n) is even 
so that 

+ ( B ) = - ~ q'v e x p {  - i ( l ax  + nz  ) ) .  
3' 

Since ~ b  = +v, we have 

~b(B) = ~b(A). (7.2) 

This means that the streamline pattern is radially symmetric with respect 
to the centre of the region D. 

Expanding ~b, given by (3.4), in terms of powers of A, we get 

~b = 4(~bll sin z + ~b13 sin 3z) sin a x  

+ 4(~b22 sin 2z + ~b24 sin 4z) sin 2 a x  + . . . .  (7.3) 

The streamlines corresponding to A = 1 are computed for different values 
of 02 and are plotted in Fig. 6. For the sake of comparison, the viscous 
(02--* 0) and the Darcy (o 2---, oc) cases are also shown in this figure. 
From this it is clear that the streamline pattern ~ = 1 is circular in the 
case of the Darcy flow and highly elliptical in the viscous case while it 
gets deformed into slightly elliptical pattern in the transition region given 
by the Brinkman flow. When the temperature difference is further 
increased to dx = 2, the streamline pattern ~b = 1 tends to a rectangle as 
shown in Fig. 7, thus pushing the volume transport closer to the 
boundaries of the cell. 

7.2. M e a n  t e m p e r a t u r e  d i s t r ibu t ion  

Besides the heat transport reported in Sec. 6.1, the next important 
quantity obtainable from the nonlinear solution is the modified mean 
temperature distribution which is discussed in this section. 
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// ~ 5 C O U 5  
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P , I J I , I 
I 2 3 

X 
Figure 6. Streamline + = 1 for A = 1 

N o w ,  c o n s i d e r i n g  the h o r i z o n t a l l y  a v e r a g e d  t e m p e r a t u r e  us ing  (2.5), 
(3.2) a n d  (3.13), we get  

2 
O= - - Z - t - ~ [ ( ~ 2 2  A2 +/~o24A4) s i n 2 q r z +  ( /~44A4) s i n 4 7 r z ] .  (7 .4)  

T h e  m e a n  t e m p e r a t u r e  p ro f i l e s  for  d i f f e r en t  va lues  of  o 2 are  s h o w n  in 
Fig .  8 for  A ----- 1 to  d e p i c t  the  ef fec t  of  p e r m e a b i l i t y .  F u r t h e r ,  to k n o w  the 

n ~ f l ow  3 -  ~,arcy 

/ V~scous 

//'/ \',,%0, ' 

, I J I , I , I 
0 1 2 3 z, X 

Figure 7. Streamline g, = 1 for A = 1 
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5 



1.0 o - D a r e 7  c a s e  

- - -  V i s c o u s  c a s e  

241 

0.8 ~ 1 0 2  

0 . 6  
z 

o.z, 

0 . 2  

0 , l , I I , i , 
-1 .0  0 -8  - 0 - 6  - 0 4  - 0 2  0 

Figure  8. Compar i son  of the mean  t empe ra tu r e  dis t r ibut ion 0 for different  a 2 for A = I 

d i s tor t ion  in the mean  t empera tu re  prof i le  due to the increase in the 
t empera tu re  difference,  it is c o m p u t e d  for di f ferent  values of A and the 
results  are shown in Fig. 9 for o 2 = 10 2 and in Fig. 10 for o 2 = 10 3. Each 

of  these profi les  has a po in t  of  inf lexion at z = 0.5, m i d w a y  be tween the 
boundar ies .  In  par t icu lar ,  we note  that  a l though there exists on ly  one 
po in t  of inf lexion z = 0.5, c o m m o n  to all the profiles,  for smaller  values 
of  A viz., A = 0.5 and 0.8 there exist two more  po in ts  of  inf lexion for 
higher  values of  A at  the poin ts  given by  the solut ion of  

~ 2  cos 2~rz = - - -  (7.5) 
8~o4 " 

These  curves also show clearly the effects of convect ive heat  t ransfer  and  
pe rmeab i l i t y  of  the med ium on the mean  t empera tu re  d is t r ibut ion .  The  
most  s tr iking feature  of these effects is that  a round  A = 1 a region of 
i so thermal  s t ra t i f ica t ion  is p roduced  by  convect ion  in the midd le  of the 
layer.  In  o ther  words,  there  is a reversal  in the mean  t empera tu re  prof i le  
at  the midd le  of the layer.  W e  note  that  as A increases,  say for A > 2, the 
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Figure 9. Mean temperature distribution 0 for 0 2 = 102 
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mean temperature profiles get distorted, possibly due to the limitation of 
our solution. 

8. Discussion and conclusion 

One of the most striking features of the results presented in the earlier 
sections is that the Brinkman model generalizes the study of convection 
in a porous medium in the sense that for small and large values of the 
permeability parameter  o 2 the results approach respectively to those of 
the viscous and the Darcy flows in addition to providing results in the 
transition zone (i.e. 102 < o 2 < 103). The Brinkman model considered in 
this paper  also overcomes the mathematical difficulty inherent in the 
Darcy model. 

The results obtained here using the spectral analysis technique agree 
well, for large values of o 2, with those of Rudraiah and Srimani [16] 
obtained using the power integral technique. The novelty of using the 
spectral analysis technique is that it is elegant and takes care of cross-in- 
teractions of higher convective modes. The possibility of the existence of 
steady solution with two self-excited modes in certain regions is predicted 
in Fig. 2, which fact could not be obtained by the power integral 
technique. The results on temperature modes, shown in Figs. 8-10, reveal 
that there is a reversal in the horizontally averaged temperature profiles 
at the middle of the layer with an isothermal stratification around A = 1. 
However, for A > 2, distortions occur which are possibly due to the 
limitation of the solution obtained here. 

A comparison of our results with those of the viscous flow [9] shows 
that the solution of the heat transport converges must faster in the case of 
porous medium. In fact, the percentage of deviation of the second-order 
Nusselt number is only 2.55 percent for a 2 = 10 3 at A = 2. In contrast to 
the degeneracy of N u  (4) of the viscous flow, in the present porous case 
N u  (4) has a summative effect. Our results on heat transport are in good 
agreement with the experimental data of Combarnous and Le Fur [4]. 
The marginal slope of Nu-R relation increases with o 2 and tends to 0.5, 
which is the exact value for the Darcy flow. In particular, it is shown in 
Fig. 5, that Nu attains the maximum at the critical wave number  
obtained from the linear theory corresponding to different values of o 2. 

The stream function given by (3.1) is evaluated for different values of 
o 2 when iX = 1 and the profiles are shown in Fig. 6. The streamline 
shrinks from a highly elliptical pattern of the viscous case to a circular 
pattern for the Darcy flow through a transitional pattern which is slightly 
elliptical for o 2=  102. When iX = 2, the streamline pattern which is a 
square for the Darcy flow tends to be rectangular, shown in Fig. 7, as o 2 
decreases thus pushing the volume transport closer to the boundary of 
the cell. 
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Finally, we conclude that the inductive procedure adopted in the 
recursion formula (5.2) to evaluate the spectral coefficients fails to yield 
the solution when Rr = R H for certain values of a 2. This results in the 
degeneracy of the solution. Using the definition of Rr  given in (4.2), we 
find that the values of a 2 which result in the degeneracy of the solution of 
(5.2) are given, for different modes 3' = (l, n), by the solution of the cubic 
equation 

(12x + n2) 3 -  t (x + 1) 3 + o?((t2x + n2) 2 -  12(x + 1) 2) = 0 

where x = a 2. Corresponding to these points of degeneracy, a steady 
solution may exist in which there are two self-excited modes. At such 
exceptional points the method developed for the solution of (5.2) breaks 
down. 
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