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Abstract. In a brief survey of the previous work the limitations of the modified Darcy equation and of the 
vectorial form of the Ergun equation are discussed. To include the effect of wall friction on the flows the 
viscous resistance term is added to the vectorial form of the Ergun equation. Using the generalized Ergun 
equation a one-dimensional formulation is presented for flow of fluids through packed beds taking into ac- 
count the variation of porosity along the radial direction. It is found that there is a reasonable agreement 
between the numerical and the experimental results and it is observed that the variation of porosity with 
radial position has greater influence on channeling of velocity near the walls. For the assumption of con- 
stant porosity the velocity profiles exhibit similar nature as the plug flow profiles with a thin boundary 
layer near the wall. 

Modell der Geschwindigkeitsverteilung in einem isotherm durchstr6mten Festbett 

Zusammenfassung. In der vorliegenden Arbeit werden eingangs die Anwendbarkeitsgrenzen der modifizier- 
ten Darcy-Gleichung und der in vektorieller Form geschriebenen Ergun-Gleichung diskutiert. Um Einfltisse 
der Wandreibung auf eine StrSmung nit in der Ergun-Gleichung beriicksiehtigen zu k6nnen, wird ein Rei- 
bungsterm hinzugefilgt. Die so generalisierte Gleichung kann benutzt werden, um die eindimensional ge- 
richtete StrSmung durch eine KugelscMittung zu berechnen. Eine radiale Ver~nderung der Schiittungsporo- 
sitar ist dabei nit in die Betrachtung eingeschlossen. Das nichtlineare Grenzwertproblem wird numerisch 
gelSst und nit experimentellen Daten aus der Literatur vergliohen. Die nit Me~werten zufriedenstellend 
iibereinstimmenden Rechenergebnisse zeigen, da~ die radiale Porosit~tsverteilung in einem Festbett einen 
erheblichen Einflul3 auf die DurchstrSmungsgeschwindigkeit in Wandn~he ausiibt; die Berechnungen geben 
die StrSmungsrandg~ngigkeit wieder. Wird die Bettporosit~t als unver~nderlich angenommen, erh~it man 
pfropfenstr(Smungs~hnliche Geschwindigkeitsprofile nit einer diinnen Wandgrenzschicht, in welcher die 
Geschwindigkeit auf den Wert null abf~illt. 

Nomenclature 

A 
a = 

d = 
P 

f l  = 

f2 = 

m 

f l  = 

f2 = 

G = 

k = 

L = 
P = 

r = 

R = 
P 

~, V = 
Z 

VIz = 

V = 

Tridiagonal matrix defined in Eq. (20) v 0 = 
Bed radius X = 
Particle diameter r* = 

150~(I- r Darcy resistance p* z 

term 
1,75(l-~)p/(r Parameter of V*z = 

resistance due to 
inertial effects v* = 

1 5 0 ( 1 - e ) 2 /  3 

1 , 7 5 ( 1 - ~ ) /  3 
Z @ 

Column vector defined in Eq. (20) Greek letters 
Permeability, ~s/f 1 

Length of the bed 

Pressure 

Radial co-ordinate r 
Reynolds number based on particle ~0 
diameter, V0dp/V 

Superficial velocity vector, axial v 
component  p 
Average superficial velocity defined { 
in Eq.  (20) 

Absolute magnitude of velocity 
The average velocity 
The velocity at the centre of the tube 

Column vector defined in Eq. ( 20 ) 
Dimensionless radial co-ordinate, r/a 

Dimensionless pressure, p/p v 2 

Dimensionless axial component of 
velocity, Vz/V 0 

Dimensionless average velocity de- 
fined in Eq. (20) 
Dimensionless axial co-ordinate, z/L 

= Ratio of tube radius to particle dia- 
meter, a / d p  

= P o r o s i t y  o r  void  f r ac t i on  
= Porosity at the axis of the container 

= Dynamical viscosity 
= Kinematic viscosity 
= Density 
= Distance from the wall of the contain- 

er, defined in Eq. (16) 
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I Previous Work 

The study of flow through porous media is usually 

carried out using Darcy's law [I] given by the Equa- 

tion 

vP : -b/k~ . (I) 

The above equation is valid in the regions away from 

the surface of the boundary and hence applied to large 

systems. In small systems the effect of wall friction 

is important and is responsible for skewing of the 

velocity profiles. It was Brinkman [23 who first in- 

corporated the effect of boundaries into the equations 

of motion for flows through porous media by adding 

Darey ' s resistance term to Stokes ' equation. The 

equations of motion for Stokes-Darcy flow afterBrink- 

man [23 are given by: 

Continuity equation V - ~ : 0 . (2) 

Momentum equation 

2-* -vP + ~V V - ~/k~ = 0 (3) 

where ~ means an effective viscosity. 

Later Tam [3] and Lundgren [4] derived Eq. (3) 

by rigorous mathematical approach using the ideas 

of statistical mechanics. In particular it was Lund- 

gren who established that the effective viscosity is 

identical with the dynamical viscosity of the flow. 

The modified Darcy equation derived by Lundgren 

[4] has the form 

bV2~ - ~/k~ : vP (4) 

where ~ is the dynamical viscosity and k the per- 

meability of the medium. The term bv2~ is known 

as the viscous resistance term and the term ~/k is 

referred to as the Darcy resistance term. The vis- 

cous resistance term is effective in a scale length of 

6 = ~ where the viscous resistance term and the 

Darcy resistance term have the same order of mag- 

nitude. In other words the boundary layer thickness 

in a porous medium is of order ~-. 

Equation (4) together with the continuity Eq. (2) 

describes the low velocity flow field in a porous me- 

dium. For the flow calculation in fixed beds with higher 

flow rates usually the linear Darcy law is replaced 

by the scalar non-linear Ergun [53 equation 

2 
-bP/bz : flVlz + f2Vlz (5) 

where Vlz is the average superficial velocity and 

bP/bz is the axial pressure gradient. Radestock and 

Jeschar [63 have performed flow calculation in fixed 

beds using the above scalar Eq. (5). Later Eq. (5) 

was written in vectorial form by Staneck and Szekely 

[73 as: 

-vP = r I + f2v) (6) 

where V represents the point superficial velocity 

vector. 

With the help of Eqs. (6) and (7) Szekely et al. 

[8, 93 have studied flow maldistribution which arises 

due to composite beds made of particles of various 

sizes, and non-uniform flows which result when the 

flows are introduced in a non-uniform manner. 

However, Eq. (6) is not valid at the boundaries 

where the wall friction effect is important. To incor- 

porate wall friction effects into the equations of mo- 

tion we have introduced the viscous resistance term 

~v2V to the Ergun Eq, (6) as was done by Brinkman 

with Darcy equation. Hence the equations of motion 

which govern the fluid motion in fixed porous beds are 

~V2~ - vP : ~(fl + f2 V) (7) 

.-) 

v.v :o (8) 

where fl : b/k. Equation (7) is the generalized vec- 

torial form of Ergun equation which reduces to modi- 

fied Darcy Eq. (4) when velocities involved are small, 

and describes low as well as high velocity flow fields 

in fixed beds. 

2 Formulation of the Problem 

The present work is confined to the study of one di- 

mensional flow in isothermal fixed beds with a motive 

to explain the channeling of velocity profiles near the 

walls. The channeling of velocity profiles has impor- 

tant bearing on the better understanding of heat trans- 

fer problems as shown by Hennecke [103. In the sim- 

ple model of one dimensional flows considered only 
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axial velocity v z is important and is assumed to be 

a function of the radial co-ordinate r. One dimensio- 

nal flows can be achieved in practise by making the 

bed sufficiently long and in which case all the radial 

velocities are assumed to vanish. The governing equa- 

tions of motion for one dimensional flows, using Eqs. 

(7) and (8) are: 

/ ~2Vz I ~Vz I + f2Vz 2 bp = flVz ~ * r % 7 - / -  ~z ( 9 )  

~V z 
= o .  ( l o )  bz 

Equation (I0) is satisfied since the axial velocity is 

a function of r, only. The valid boundary conditions 

are : 

The no-slip condition v = 0 at 
Z 

d v  z 
The symmetry condi t ion  ~ = 0 at 

r = a ( l i )  

r = o . ( 1 2 )  

Introducing the non-dimensional quantities v*, p*, 

r*, z*, Eq. (9) is written as: 

d 2v * dv * 
1 z ~ ~ R a - "2"7,~--"~2Rp 82" Z + r~ dr* dz* E ~ + fl v* 82+ 

dr .2 P 

(13) 

The transformed boundary conditions are: 

v* = 0 at r*= I (14) 
Z 

dv * 
Z 

dr* 
- 0 at r*= 0 . (15) 

3 Solution for Beds of Uniform Porosity 

First an analytical solution of Eq. (13) without the 

non-linear term, satisfying the boundary conditions 

(14) and (15) was obtained. Later a numerical solu- 

tion of Eq. (13) in the presence of the non-linear term 

was also obtained. 

The results of both these cases are presented in 

Fig. i. It is observed that in both cases the nondimen- 

sional axial velocity is flat except for a thin boundary 

layer near the wall, where the wall friction effects 

2.0 - - - w i t h  nonlinear term 
l - - w i t h o u t  nonlinear term 

R~ 84 
a = 5cm 
d== =0.635cm 

1.5 13'= 7.874 
>~ s 0.40 
~" Vo= 30.78 cm/s 
>~1.0 

0.5 

i I 

0 0.2 0.4 0[6 0'.8 1.0 
r* -- 

Fig. 1. Velocity Vs Radial position for constant poro- 
sity 

represented by the term ~v2V ~ become dominant. 

Further it is observed that the non-linear term in 

Eq. (13) increases the boundary layer thickness 

slightly. The overall nature of the velocity profile is 

that of a plug flow with a thin boundary layer. For 

reasons given below beds of uniform porosity have: 

limited applications and do not represent a practi- 

cal situation. 

4 Radial Porosity Variation in a Fixed Bed 

For constant porosity the axial velocity profiles are 

flat with a thin boundary layer near the walls. But 

the axial velocity measurements reported in litera- 

ture [II, 12, 13] indicate that the axial velocity pro- 

files exhibit channeling near the walls, that is, the 

velocity near the wall is maximum and approaches a 

constant value at the axis of the bed (Figs.2-6). Many 

workers who have measured the axial velocity have 

attributed the channeling of velocity near the walls to 

the variation of porosity along the radial distance. 

Hence in what follows a brief discussion on the varia- 

tion of porosity is made. 

Studies relating to void space distribution in ran- 

domly packed beds have been made by several authors. 

Notable among them are the measurements of Furnas 

[14], Thierney et al. [15], Schwartz and Smith [12] 

and Benenati and Brosilow [16 ]. Schwartz and Smith 

[12] have developed an equation which relates the po- 

rosity with velocity gradient, pressure gradient, void 

fraction at the centre of the bed and radial co-ordi- 

nates. The determination of porosity at any point in 
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the bed involves a numerical stepwise integration. 

They have presented their numerical results corre- 

sponding to different particle sizes and different bed 

sizes in curves which are drawn to a void fraction of 

0, 32 at the center of the bed which they assume to be 

valid for all cases. 

Further, they have calculated the void fraction on- 

ly up to 2 sphere diameters from the wall of the con- 

tainer. Benenati and Brosilow E16 ~ have established 

a graphical relationship between the spatial depend- 

ence of void fraction and radial position of the con- 

tainer in terms of particle diameter for different ~. 

Use is made of Benenati's and Brosilow's results to 

establish an empirical relation between void fraction 

and the radial position r, which is useful for numeri- 

cal computation. The results of integrated void frac- 

tion after Benenati and Brosilow exhibit an exponential 

variation with distance barring small oscillations. 

Hence the porosity can be represente~l by 
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8 = 80(1- + be -c{/dp) (16) 

where 60 is the porosity at the centre of the bed, { 

is the distance from the wall and b and c are cons- 

tant. Replacing { by the relation ~ = a - r, where 

a is the bed radius and r the radial co-ordinate, Eq. 

(16) is written in the form 

r = 60(1 + b e C ( r / d p  - a / d p ) )  

= 80(1 + b e  c l 3 ( r * - l ) )  (17) 
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where B = a/dp. By curve fitting the constants b and 

c are found to be b = I and e = 3 for [~ = 7.0 and 

= I0.5. However suitable values of b and c are 

to be chosen for other values of 8- Equation (17) is 

presented in Figs. 7-8 along with the experimental 

results of Benenati and Brosilow and the theoretical 

results of Schwartz and Smith. It can be seen from 

Fig. 7 that the theoretical results of Schwartz and 

Smith deviate much from the experimental results of 

Benenati and Brosilow as the centre of the container 

is approached. 
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Fig.8. Voidage Vs Distance from the container wall 
(sphere diameters ) 

5 Assumption on Porosity Value Near the Wall 

It is observed from Figs. 7 and 8 that the porosity or 

void fraction increases sharply between the wall and 

a distance of 1/4 sphere diameter from the wall. If 

the porosity relation as given by Eq. (17) is used for 

numerical solution it is found that the velocity pro- 

files exhibit a sharp peak at the wall. The magnitude 

of the velocity is 3 to 4 times higher than the maxi- 

mum experimental value and suddenly falls to zero at 

the wall. Also due to the sharp increase in porosity 

at the wall, the wall friction has no noticeable effect 

in reducing the velocity near the wall. On the contra- 

ry experimental profiles to exhibit a decrease in 

magnitude of velocity at the wall due to wall friction. 

Hence to obtain physically realistic velocity on the 

value of porosity at the wall is made. The maximum 

value of porosity is taken to be the value, given by 

Benenati and Brosilow's results, at a distance equal 

to slightly more than 1/4 sphere diameter from the 

wall and is assumed to have the same value up to the 

wall. Though this restriction on porosity appears to 

be a limitation of the present model yet the results 

based on this assumption agree with the experimen- 

tally observed axial velocity distribution indicating 

that the measurement of porosity near the wall needs 

careful consideration. The variation of porosity up to 

about 1/4 sphere diameter distance from the wall is 

given by 

c1~(r*-r ~) 
G = 80(I + ble ) (18) 

where r~ is the non-dimensional radial distance cor- 

responding to I/4 sphere diameter from the wall. In 

the present study the numerical solution of Eq. (13) 

is compared with the experimental works of Schertz 

and Bischoff and Schwartz and Smith. The non-dimen- 

sional distance corresponding to I/4 sphere diame- 

ter distance from the wall is r = 0,96 for [ = 6,578 

(Schertz and Bischoff) and r = 0,9684 for ~ = 7.874 

(Schwartz andSmith) with 80 = 0,42 and 0,4 re- 

spectively. To facilitate numerical computation Eq. 

(18) is written as 

c1~(r*-O, 95) )  . (19)  
= 60(1 + b l e  



110 W i r m e -  und  S t o f f f i b e r t r a g u n g  12 ( 1 9 7 9 )  

The value of porosity at r = 0,95 is taken from Be- 

nenati and Brosilow results and they are equal to 

0,588 and 0,56 for B = 6,578 and 8 = 7,874 respec- 

tively. The constants b I and c I in Eq. (19) have the 

values 0,4 and 0,931 respectively. It is to be noted 

that Szekely et al. [83 in their study have limited the 

porosity value adjacent to the wall to a maximum of 

0,49 and do not mention at what distance from the 

wall the porosity has the above value. 

6 Method of Solution 

If porosity variation is included in Eq. (13) than it be- 

comes a second order non-linear boundary value prob- 

lem with variable coefficients. Since Eq. (13) cannot 

be solved analytically only numerical methods are to 

be tried. In the present study the method of quasi- 

linearization Eq. (13) is transformed to the form 

v* z ,n+l+l/r*v ,n+ 1 ( 82+ Rp~2v~,n) Vz~, 

_~2R p 82v 2, n+l= ~ n+d (20) 

where v z*, n + i is the unknown value of V*z inapar- 

ticular iteration step and v* n is the known value of 
z' 

v* which should be prescribed initially when the iter- 
z 

ation is started and bp*/bz* 8Rpa/L = d. Equation 

(20) is then cast into finite difference form and writ- 

ten as 

AX = G (21 )  

w h e r e  A i s  a t r i d i a g o n a l  m a t r i x ,  X a n d  G a r e  c o -  

l u m n  vectors. To handle boundary conditions (14) 

and (15) grid points shifted from the boundaries are 

considered. To study the behaviour of the numerical 

solutions close to the wall 50 grid points are used 

and Eq. (21) is solved by Thomas algorithm. To start 

the iteration the value of v* n was taken to be zero 
z ~ 

in most of the cases. To see whether the initial non 

zero value of Vz~,n has any effect on the final values 

of v~,n+l, Vz~,n was given initial values v~,n=l, 2 

and 3 and the iteration was performed. It was found 

that even when v~,n/0 the final values of iteration 

converged to the same values as in the case v~,n=O, 

establishing the stability of numerical results. The 

iteration was continued till there was sixth decimal 

place agreement between the final iterated values and 

the previous iterated values. 

7 Comparison of Numerical Results with the Experi- 

mental Work of other Authors 

The results of numerical solution of Eq. (13) are pre- 

sented in Figs. 2-6. For purposes of comparison with 

experimental results the results of Schertz and Bischoff 

and Schwartz and Smith obtained under isothermal con- 

ditions are used. Since the experiments were conducted 

at room temperature, the value of kinematic viscosity 

v = 0,151 at 293~ is used to calculate the particle 

Reynolds number. To obtain numerical solution of Eq. 

(13) the value of the pressure gradient is required. For 

this purpose the pressure gradient required to pro- 

duce the velocity v 0 at the centre of the container 

is calculated in each case from the scalar equation 

of Ergun without the ~V2~ term and is used for nu- 

merical calculation. 

If v 0 is not known apriori then the following meth- 

od can be adopted to calculate v 0. Generally -~, the 

average superficial velocity is known from the de- 

sign data. v 0 is always less than "r Assuming v 0 to 

be 0,6v (say) to start with the pressure gradient 

required to produce 0,6 v 0 is calculated from the 

scalar Ergun equation. Using this pressure ~radient 

the velocity profile is obtained from the numerical 

solution. To ensure that the velocity profile so ob- 

tained is correct the average velocity v is calculated 

from the mass balance equation 

1 

Cz* = ~ 2v~r*dr* (22) 

0 

where -r = /r 0 . 

If the "~ calculated from Eq. (22) agrees with 7r 

which is known then the velocity profile obtained from 

the numerical solution is correct. If not, the value 

of v 0 is either increased or decreased and the pro- 

cess is repeated till v, calculated from Eq. (22) 

agrees with v which is known to begin with. This pro- 

cess involves a number of trials to get at the correct 

v 0. However the computation time is about 1, 5 sec- 

onds on CDC Cyber 175 for each trial and a number 

of trials can be made without involving excessive 

computation time to arrive at the correct v 0. 

The results of numerical solution and experimen- 

tal values of velocity measurements made by Schertz 

and Bischoff (Figs. 2-3) agree reasonably well. How- 
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ever, the results of Schwartz and Smith (Figs.4-5) 

exhibit a peak in velocity away from the wall whereas 

the numerical solution indicates that the peak in velo- 

city exists near the wall. Even physical considera- 

tions also point to the existence of the peak near the 

wall rather than away from the wall since the wall 

friction effects, which are the cause for the decrease 

of velocity, are dominant only near the wall. The re- 

sults of Szekely et al. [8 ~ and of Schertz and Bischoff 

support the above argument and the results of numeri- 

cal solution of the present study. 

The average velocity v using Eq. (22) was also 

calculated from the numerical solution and is com- 

pared with the results of Schwartz and Smith. Fig- 

ure 4 represents the velocity profile for the aver- 

age velocity v = 30,78 cm/see. The numerical so- 

lution gives v = 26,7 cm/sec. Figure 5 represents 

the velocity profile for the average velocity 

= 65.227 cm/sec. The numerical solution gives 

= 59.76 cm/sec. 

It is seen from Fig. 6 that the effect of nonlinear 

term in Eq. (13) is to smooth the velocity profiles 

by reducing the peak near the wall. This effect is 

large for high particle Reynolds numbers and small 

for low particle Reynolds numbers. Comparing Fig. 

I and 2 we find that the variation of porosity has 

greater influence on channeling of velocity profiles 

near the walls than the inertial effects represented 

by the non-linear term in Eq. (13), Further, it is 

found that the ratio Vz/V 0 is independent of total 

flow rate which is in confirmity with the results of 

Schwartz and Smith. 

8 C o n c l u s i o n s  

2"* W i t h  t h e  ~V V - t e r m  a d d e d  to t h e  v e c t o r i a l  f o r m  of  

t h e  E r g u n  e q u a t i o n  m a k e s  t h e  E r g u n  e q u a t i o n  to a 

g e n e r a l i z e d  e q u a t i o n  w h i c h  r e d u c e s  to  t h e  m o d i f i e d  

D a r c y  e q u a t i o n  w h e n  t h e  v e l o c i t i e s  i n v o l v e d  a r e  s m a l l  

a n d  t h e  m e d i u m  i s  i n f i n i t e  i n  e x t e n t .  U s i n g  t h e  g e n -  

e r a l i z e d  E r g u n  e q u a t i o n  t h e  v e l o c i t y  d i s t r i b u t i o n  i n  

a n  i s o t h e r m a l  f i x e d  b e d  c a n  b e  p r e d i c t e d  up to 1 / 4  

s p h e r e  d i a m e t e r  f r o m  t h e  wa l l  i n c o r p o r a t i n g  t h e  v a r -  

i a t i o n  of p o r o s i t y  up  to t h a t  d i s t a n c e .  

A c k n o w l e d G e m e n t  

The  a u t h o r s  r e c o r d  t h e i r  a p p r e c i a t i o n  f o r  t h e  v a l u -  
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