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Effect of Buoyancy on the Free Surface Flow Past a 
Permeable Bed 
N. R u d r a i a h  and  R.  V e e r a b h a d r a i a h ,  B a n g a l o r e  ( Ind ia )  

Abstract. Laminar steady free surface flow having one permeable bounding wall is investigated in the presence 
of buoyancy force. The experimental results of Rajasekhara [I] were found to be in good agreement with our 
theoretical results based on a model which admits slip-velocity at the porous material. The effect of buoyancy 
force is to increase the velocity distribution in the ease of greater heat addition (No > 0) and to decrease it 
by a greater cooling (No < 0). As a result, the mass flow rate increases and the friction factor decreases for 
No > 0 and the opposite is true for No < 0. We further find that the effect of buoyancy force on the tempera- 
ture distribution is to increase its magnitude. In particular, we find that the rate of heat transfer at its no- 
minal surface is increased in the case of heating (No > 0) of flow. 

Auftrieb und W/irmeiibertragung an laminar parallel angestrSmten Oberflgchen por6ser K6rper 

Zusammenfassung. Die laminare StrSmung entlang por6ser Grenzfl/ichen wird in Anwesenheit yon Auftriebs- 
kr$iften theoretisch untersucht. Die Ubereinstimmung zwischen Theorie und Experimenten von Rajasekhara [I ] 
ist dann gut, wenn Str6mungsgleitung an der por6sen Oberflgiche vorausgesetzt wird. Die Auftriebskr/ifte erh6- 
hen die Geschwindigkeitsverteilung bei Wirmezufuhr (No > 0) und verringern sie bei Kiihlung (No < 0). Im 
ersten Fall erh6ht sich der MassenfluB bei abnehmenden Widerstandsbeiwert (No > 0). Umgekehrte Verhglt- 
nisse liegen fdr No < 0 vor. Insbesondere stellt sich heraus, dab der W~rmeiibergang mit steigender Erw~ir- 
mung der Str6mung zunimmt. 

Symbo.l,s N o 
k 

u = the  v e l o c i t y  <r 
T = the entrance temperature c~ 
T ~ = the temperature of fluid ~1 
Q = the Darcy velocity x, y 
p = the density of fluid h 

= the viscosity of fluid Re 

= Buoyancy parameter 
= the permeability of porous media 

h/'~ 
= the slip parameter 
= y/h 
= cartesian coordinates 
= the depth of flow above the bed 
= 2uh/v the Reynolds number 

I Introduction 

A common technique in chemical industry for obtain- 

ing extended solid-fluid interfacial areas or good fluid 

mixing is to pass the fluid through and past a bed of 

solid particles. Such systems as pebble type of heat 

exchangers, packed filters, packed absorption and 

distillation towers depend on this technique. The de- 

sign of these units is based upon the mechanisms of heat 

and mass transfer, fluid flow, and pressure drop of 

a fluid perculating through a porous bed. In these 

cases the heat transfer is very sensitive to the bound- 

ary layer that develops just at the nominal surface 

[2]. The available literature [3] shows that much 

attention has not been given to the theoretical devel- 

opment of the boundary layer that exists either at the 

nominal surface or at the rigid surfaces bounding a 

porous bed. The purpose for this study is to develop, 

using the no-slip boundary condition of Beavers and 

Joseph [2] (here after called B J) a theoretical model 

for obtaining the rate of heat transfer between the 

fluid and the nominal surface. The required boundary 

layer equation for flow is discussed in section 2 be- 

low. 

Recently Rajasekhara [I] has investigated, both 

theoretically and experimentally, the flow past a po- 

rous bed with free upper surface neglecting the buo- 

yancy effect. The work of Rajasekhara [I] is con- 

nected only with the measurements of flow (see sec- 

tion 3 below) and not on the determination of rate of 

heat transfer between the fluid and the nominal sur- 

face. He found a deviation between his experimental 

and theoretical results in the mass flow rate. This 

deviation may be due to assuming the free surface, 
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in the analytical evaluation of mass flow rate, as ho- 

rizontal and neglecting the effect of buoyancy. Spar- 

row et. al [4] and Gill and Casol [53 have shown, in 

the absence of porous bed, that even in the case of 

parallel flows the buoyancy force significantly affects 

the flow field. To demonstrate whether this is true 

also in the case of porous beds we consider in this pa- 

per the effect of buoyancy force. Further, since we 

are dealing with free surface flow, the fluid has to be 

treated as having an unknown upper boundary as free 

surface. This free surface makes the problem much 

more intractable and progress is often be made under 

certain approximations. In this paper we try to find 

exact solutions under the approximation that the slope 

of the free surface is everywhere small compared with 

unity. We find that our theoretical results are in good 

agreement with the experimental results of Rajasek- 

hara [I] and thus valididates the assumptions made 

above. 

2 M a t h e m a t i c a l  F o r m u l a t i o n  of t h e  P r o b l e m  

A physical model is shown in Fig. I which consists of 

an infinitely long channel one of whose bounding walls 

is a naturally permeable bed while the other boundary 

is a free surface y = h(x) which varies smoothly. 

For concreteness, the flow regime is divided into two 

zones. The region above the porous bed is called 

"zone I" and is governed by the Navier-Stokes equa- 

tion. Below the nominal surface, inthe permeable 

bed, the region is called "zone 2" and the flow is 

governed by the Darcy law which is the statistical 

average of the modified Navier-stokes equation. The 

axial and transverse coordinates are, respectively 

x and y, the latter being measured vertically up- 

wards from the porous bed. The free surface is re- 

presented by the curve y : h(x) where h(x) is con- 

tinuous and positive for all x. 

2.1 Basic Equations 

To obtain the basic equations, we make the following 

approximations : 

(i) The flow in the zones is steady and is driven 

by a common pressure gradient -~x and the buoyancy 

bT' 
force b-~-- " 

Free surface / ---------___ 
- biT' I 
bx I 

-u L 
Op h(x) 

bx I 

: ' - . . , ~ . .  -'. . P O R O U S  B E D - - "  , ,  , ' : , ' : " ' .  

%'<.;:/:i: <; }. 5 ;.: .4 ; .:. 7: }!; .-. :. :.. :- :..: i,} 

Fig. I. Physical model 

(ii) The fluid is viscous and satisfies the Bous- 

sinesq approximation which means that fluctuations 

in density occur principally as a result of thermal 

rather than pressure variations which is valid in the 

case of fluid considered in this paper. 

(iii) Since we consider creeping flow, the inertia 

terms are negligible. 

(iv) The porous medium is homogeneous and iso- 

tropic so that its permeability k is assumed to be 

constant. We also assume that the viscosity of the 

fluid is constant although density varies with temper- 

ature. This is because we consider Boussinesq fluids. 

Under these approximations, the basic equations 

of flow are: 

For Zone I: 

bu bv 
+ ~__ : 0 (2.1) 

oy 

v2u _ i ~p : o (2.2) 
bx 

vZv 1 - ~ ~y - ~ g  = o (2 .3)  

p : Poll - 8(T' - T)] (2.4) 

bT' bT' ] 
P0Cp u ~ + v-~- : KV2T ' + ~ (2.5) 

where u and v are the x and y components of velo- 

city, T is the entrance temperature i.e. at x = 0, 

T' the temperature of fluid, p thedensity, p thepres- 

sure, ~ the viscosity, K the thermal conductivity, 

C the specific heat at constant temperature, ~ the 
P 

thermal expansion coefficient, P0 the density at 
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T' =T, 

2 

= 2~ ,-~! 

For Zone 2: 

v2 b 2 b 2 
= ~ + -- and 

bx 2 by 2 

1 + . 

k 
Qx = - (2 .6)  bx 

k (~p  + pg) (2.7) 
Qy:-E by . 

where Q and Q are the x and y components of 
x y 

Darcy velocity. They are the components of mean fil- 

ter velocity rather than the components of true velo- 

city. 

It is of interest to know that the velocity compo- 

nents given by (2.6) and (2.7) are irrational under 

homogeneous conditions and hence valid only in the 

potential flow region away from the nominal surface. 

However, very near to it there should be a thin bound- 

ary layer for the existence of the slip velocity at the 

nominal surface as postulated by BJ. In this region, 

the velocity should be of the form 

7 q = - v ~  + Vx 

whe re  the  f i r s t  t e r m  on the r igh t  hand s ide  r e p r e -  

s e n t s  the usual Darcy term and the second term re- 

presents the rotational velocity. The expression for 

this rotational part can be obtained by considering 

the effect of drag due to solid material of the porous 

media on the flow (see Tam [6], Lundgren [7]). In 

that case the momentum equations for the flow through 

porous media are 

V2U _ h u + ! ~P = 0 ( 2 . 8 )  
~ bx 

V2 v _ k v + ! bp - p_g : 0 (2.9) 

and the energy equation is 

KV2T , ooC p u-~-§ Zy- : "  ( 2 . 1 0 )  

Where the viscous d i s s i p a t i o n  terms are neglected. 

As stated in the introduction we consider here the 

solutions of the above equations under the approxi- 

mation that the slope of the free surface is every- 

where negligible. This means that if h(x) represents 

the free surface then h' (x) is everywhere small 

compared with unity. 

In this approximation, Eqs.(2.1) to (2.10) re- 

duce, at each value of x, approximately to the Eqs. : 

Zone I : 

b2u 1 b_9_ 
by2 ~ bx 

(2.11) 

~ P  = - ~ g  ( 2 . 1 2 )  
by 

p = PO[1 - ~ ( T ' - T ) ]  ( 2 . 1 3 )  

bT ' b 2T ' bu 2 
PoCpU-~- =K-- + ~(-~)by2 ( 2 . 1 4 )  

From Eqs.(2.11), using Eqs.(2.12) to (2.13), we 

get 

d3u _ ~I hi' (2.15) 
dy3 ? bx 

where 7 = ~-- is the kinematic viscosity. This Equa- 
Pc 

tion describes the fully developed flow only when the 

left hand-side is independent of x. To satisfy this 

condition, we assume that the temperature varies 

linearly in the direction of flow. Physically this 

means that the heat flux is constant in the direction 

of flow. Mathematically, this can be expressed as 

T ' ( x , y )  = Ax + T(y)  (2 .16)  

where A is the axial constant temperature gradient 

with A < 0 for favourable thermal gradient and 

A > 0 for adverse temperature gradient. Eqs. (2.14) 

and (2.15), using (2.16), give the momentum and 

energy Equations respectively in the form 

d3u = A ~g = G 

dy 3 

P0CpAU =Kd2T----~' (du) 2 
dy2 § ~-~ 

Eq. (2.17) may be written in the form 

d2~ =-G 

dy 2 

(2.17) 

(2 .18)  
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du w h e r e  ~ = - ~-~ = v o r t i c i t y  v e c t o r  in  t h e  d i r e c t i o n  of  

z - a x i s .  This  s h o w s  tha t  t he  p o t e n t i a l  e n e r g y  b a l a n c e s  

w i th  t he  d i s s i p a t i o n  of  v o r t i c i t y .  G m a y  be  p o s i t i v e ,  

z e r o  o r  n e g a t i v e  d e p e n d i n g  on t h e  e n t r a n c e  t e m p e r a -  

t u r e  of the  f l u id .  If T '  - T < O, t h e n  the  t e m p e r a t u r e  

of  the  f lu id  ( f o r  x > O) in  t he  c h a n n e l  i s  l e s s  t h a n  t h e  

e n t r a n c e  t e m p e r a t u r e  and  t h e  f r e e  c o n v e c t i o n  c u r r e n t  

f l o w s  in to  t he  c h a n n e l .  H e n c e  G < O, c o r r e s p o n d s  to 

t he  e x t e r n a l  h e a t i n g  of  f low.  S i m i l a r l y ,  G > O, c o r r e -  

s p o n d s  to t h e  a b s e n c e  of  f r e e  c o n v e c t i o n  c u r r e n t s .  

For Zone 2: 

The basic Equations away from the nominal surface 

are 

Q = _ k  bp ( 2 . 1 9 )  
bx 

bp + Pg = 0 . ( 2 . 2 0 )  
by 

The momentum Equation very near to the nominal 

surface now becomes 

~2u 1 1 ~p 
by2 - E u = ~ bx " 

(2.21) 

This Equation is useful to determine the boundary 

layer thickness postulated by BJ in their slip bound- 

ary condition at the nominal surface. Eq. (2.11) us- 

i n g E q s . ( 2 . 2 0 ) ,  ( 2 . 1 3 )  and  ( 2 . 1 6 ) ,  t a k e s  t he  f o r m  

d3u _ ~ d__/u = G 
3 k dy 

dy 
(2 .22 )  

o r  

d2{ - ~ = - G  . 
2 k 

d y  

Although this Equation is independent of temperature, 

to know the variation of density, we should determine 

the temperature distribution by solving the energy 

equation. For unidirectional steady flow, Eq. (2.18) 

takes the form 

d2T ' = P 0 C p A U  

dy2 K 
( 2 . 2 3 )  

where P0Cp is the heat capacity per unit volume of 

the fluid. 

2 . 2  The B o u n d a r y  C o n d i t i o n s  

For Zone 1: 

Eqs.(2.17), (2.18), (2.22) and (2.23) have to be 

solved using proper boundary conditions. Until re- 

cently, it was generally assumed that the conventio- 

nal no-slip velocity boundary condition is valid at 

the porous walls which leads to the parabolic velocity 

profile in the channel. However, recent experiments 

of BJ and Beavers et al. [8] involving laminar flow 

of water or oil in flat rectangular ducts having one 

porous wall demonstrated the existence of a stream- 

wise slip-velocity at the permeable bounding surface 

and proposed that the boundary conditions at the no- 

minal surface of the porous medium can be expressed 

as 

d__/u = ~(UB - Q) (2.24) 
dy 

where c~ is a dimensionless constant which depends 

on the structure of the porous material and not on the 

geometry of flow (see Taylor [9]) and u B is the 

slip-velocity. The existence of this slip-velocity is 

connected with the presence of a very thin layer of 

streamwise moving fluid just beneath the surface of 

the porous material. The fluid in this layer is pulled 

along by the flow in the channel. The effect of this 

velocity slip is to cause a skewing of the main flow 

velocity profile in the channel. When k -~ 0 (solid 

wall ), Eq. (2.24) tends to the no-slip boundary con- 

dition u = 0. 

The second boundary condition to be valid at the 

free surface, in the absence of deformation, is that 

no tangential stress acts at the free surface. This 

leads to 

u = u s at y = h . (2.25) 

For the third boundary condition, we impose that 

the pressure gradients in the channel and in the po- 

rous bed must have the same value at the interface 

i.e. 

d2u Q 

dY 2 - -~- at y = 0 . 

The boundary condition on temperature is 

( 2 . 2 6 )  
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T'  = T 1 at y = h ( 2 . 2 7 )  

which means that the free surface is maintained at 

a constant temperature T 1. The other boundary con- 

dition on temperature is obtained from the basic phy- 

sical consideration of heat balance for an element at 

the nominal surface. The heat conducted away from 

channel through the nominal surface must be equal 

to the heat absorbed from the porous medium and 

hence 

bT' = he(T B _ TO ) K-~-- 

o r  

bT' H(TB - TO) 
~y (2.2s) 

where 6 is the boundary layer thickness just below 

the bed and we assume that this 5 is the same for 

both velocity and temperature distributions. Since we 

are dealing with the velocity of flow much less than 

the sonic velocity, the error introduced by this ap- 

proximation is not much. The boundary condition (2.29) 

will enable us to match the velocity distribution at the 

interface. 

3 Velocity D i s t r i b u t i o n  and  M a s s  F l o w  Ra te  

In this section, we determine the velocity and the 

mass flow rate for zones 1 and 2, and the value of 

the boundary layer thickness 6. 

he~ 
where H = ~ is the Biot number, h e is the heat 

transfer coefficient from the porous medium into the 

channel, T B is the temperature at the interface and 

T O is the ambient temperature of the porous me- 

dium. Physically, H represents the rate of heat loss 

through the channel relative to the conductors in the u 

porous media. If H is large, then the interface must u 

be a nominal surface in order to supply the heat lost 

from the porous media. If H is small, then the heat 

losses are small and the interface is really the free 

boundary. In other words, H is the controlling para- 

meter because of its relation to the over all thermal 

balance. Since the boundary condition (2.24) is based 

on the assumption of the nominal boundary (see BJ ), where 

H has to be large in our analysis. 

For Zone 2: 

The corresponding boundary conditions are: 

u = u B at y = 0 ( 2 . 2 9 )  

u = Q at y = -5  ( 2 . 3 0 )  

(2.317 
d2u -Q 
dy2 k at y = 0 

T'  =T B at y = 0 (2.32) 

T'  = T O at y = -5  (2.33) 

3.1 Velocity Distribution 

The velocity distribution in zone I, solving the mo- 

mentum Eq. (2.17) subject to the boundary conditions 

( 2 . 2 4 )  to ( 2 . 2 6 )  i s  

4 1 3 t ( l + f 0 ) ( l + ~ ) - - ~ ( 1 - ~ ) 2 } + ( 3 + 3 ~ r  

= [ 4 1 1 + ( 2 + 3 f 0 ) ( 1 + ~ ) ~ +  ( 1 2 + 5 ~ ) N  0 ]  

6(~+f0)(1-~) 
1+3f 0 + NoFI(,) + UoF2(~) (3.1) 

2(1 -~) F l(~)=g0(l+3f0) {(1+--L~+~+~2)(1+3%)- 

- 3fl(n + f0)l, 

I 1 + ~ ~  - ( 1 - ~ ) g 1 ( , ) )  F2(~) = 6 (l+~r 

go = I + 3f 0 + N0f I , 

[-~ ( i +--~ + "n+~2) (l+3f0) +g0 (~+f0) ] f2 

gl(~) = g0 (I + 3f0) (go + U0f2) 

U0 _ 3+2~3ae NO + 
2 2u 

2(~ +~) +~ _ s 

2 ~e Qo "2 
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~ + 2 ~  3 + e e  3(2+cr162 
f0 = ~ ' f l  = ~ '  f2 = 1+0lr  ' 

h y 
~- , "q = , 

~ h 

G h  3 ~Gh 
NO - - Qcr2 - bp 

bx 

= Average velocity in the channel. 

h j h 2 
= 1 u d y  = bp_ (1 + 3 f  0 + N0f  I + U0f 2) h 12~ bx 

0 (3.2) 

The r i g h t - h a n d  s i d e  of  ( 3 . 2 )  i s  e x a c t l y  t h e  s a m e  

a s  R a j a s e k h a r a  [ 1 ]  w h e n  N O = 0 .  The s l i p - v e l o c i t y  

u B i s  g i v e n  by  

u B 12[l(l+fo,)(l+c~ )-olv} + N  O ] 
- -  = 

[ 4 t 1 +  ( 2 + 3 f 0 ) ( l + v c c r )  ~ + ( 1 2 + 5 o t e ) N  0 ]  ( 3 . 3 )  

The s l i p - v e l o c i t y  r a t i o  ( 3 . 3 )  v a r i e s  w i th  t h e  c h a n -  

ne l  h e i g h t  h ,  i n c r e a s i n g  a s  h d e c r e a s e s ,  i . e .  i n -  

c r e a s i n g  w i th  d e c r e a s i n g  v a l u e s  of  ~. It  i s  of  i n t e r -  

e s t  to n o t e  t h a t  w h e n  N O i s  n e g a t i v e ,  t h e  s t a g n a t i o n  

p o i n t s  o c c u r  in  t h e  c h a n n e l  f o r  v a r i o u s  v a l u e s  of  N O 

as shown in Table 1. 

No stagnation point occurs for positive values of 

N O (i. e. heating of nominal surface with favourable 

temperature gradient ). 

The velocity distribution in zone 2, solving Eq. 

(2.22) using the b o u n d a r y  conditions (2.29) to (2.31) 

is 

u =  (u B + Q ) - Q C o s h ~ +  S i n h ~ r  [u B - Q C o s h 6 ~  - 
S inh  6~r 

- Q N 0  6~] + Q N 0 ~  ( 3 . 4 )  

5 w h e r e  6 ~ = ~ i s  t h e  r e l a t i v e  b o u n d a r y - l a y e r  t h i c k -  

n e s s .  We k n o w  t h a t  a t  t h e  e d g e  of  t h e  b o u n d a r y  l a y e r ,  

t h e  s h e a r  h a s  to  b e  z e r o  i . e .  a t  y = - 5 ,  t h e  v e l o c i t y  

t e n d s  to t h e  f r e e  s t r e a m  v e l o c i t y  Q .  U s i n g  t h i s  a n d  

c o n d i t i o n  ( 2 . 2 4 ) ,  we  o b t a i n  t h e  e q u a t i o n  f o r  6 in  t h e  

f o r m  

- Q  C o s h  6~r - Q N 0 6 ~ -  [oi(u B - Q)  - U B 
l ( 3 . 5 )  

QN0 ] 
~- Sinh 6~c~ = 0 . 
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T a b l e  1. S t a g n a t i o n  p o i n t s ,  u = 0 f o r  v a l u e s  of  N O 

r 5 . 0  1 0 . 0  
,q 

0.I 0.01 0.1 0.01 

N O 

- 2 . 0 4  - 0 . 5 8  - 2 . 0 2  - 2 . 0 0 2  0 . 0  
- 2 . 0 2  - 0 . 5 7  - 1 . 9 9  - 1 . 9 9 8  0 . 2  
- 2 . 0 3  - 0 . 5 7  - 1 . 9 3  - 1 . 9 9 1  0 . 4  
- 1 . 9 5  - 0 . 5 5  - 1 . 8 7  - 1 . 9 8 1  0 . 6  
- 1 . 9 2  - 0 . 5 5  - 1 . 8 3  - 1 . 9 7 4  0 . 8  
- 1 . 9 1  - 0 . 5 3  - 1 . 8 1  - 1 . 9 7 1  1 , 0  

t.s 

o ( = 0 . 1 ,  NO=I 

0 6  

02  

-0.2 

- 0 6  

- 1 0  

~ =t00 

F i g .  2. V e l o c i t y  d i s t r i b u t i o n  

T h i s  E q u a t i o n  f o r  6 i s  a t r a n s c e n d e n t a l  e q u a t i o n  a n d  

i s  d i f f i c u l t  to  o b t a i n  a n  a n a l y t i c  s o l u t i o n .  S i n c e  t he  

b o u n d a r y  l a y e r  t h i c k n e s s  6 i s  v e r y  s m a l l  c o m p a r e d  

to t h e  w i d t h  h of  S o w ,  n e g l e c t i n g  s q u a r e s  a n d  h i g h e r  

p o w e r s  of  5" ,  we o b t a i n  

8 1 (3 6)  ~ * = ~ =  37" 

F r o m  t h i s ,  i t  i s  c l e a r  t h a t  a s  ~ -* | ( i . e .  s o l i d  w a l l ) ,  

6 -* 0 a s  r e q u i r e d .  The  e x p r e s s i o n  f o r  v e l o c i t y  d i s t r i -  

b u t i o n  f o r  f low t h r o u g h  p o r o u s  bed ,  f r o m  E q .  ( 3 . 4 )  

u s i n g  ( 3 . 6 )  a n d  ( 3 . 2 )  i s  

u UB 12(1  - C o s h ~ v  - S i n h ~ r  +NoR ) 

~ 2 
r go 

_ 12u0f2 (1  - C o s h ~ r  - S i n h ~  + N0"q) ( 3 . 7 )  

r  0 + Uof 2) 

To f ind  q u a l i t a t i v e l y ,  t h e  e f f e c t  of  b u o y a n c y  f o r c e  on  

t h e  f low,  E q s . ( 3 . 1 )  a n d  ( 3 . 7 )  a r e  n u m e r i c a l l y  e v a l -  

u a t e d  f o r  d i f f e r e n t  v a l u e s  of  ~ a n d  ~, a n d  i s  s h o w n  in  

F i g .  2. 
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3.2 Mass Flow Rate 

To find the quantitative effect of slip-velocity and buo- 

yancy force, it is useful to calculate the mass flow 

rate in the channel with and without the porous bed. 

If M denotes the mass flow rate per unit channel 
P 

width with porous bed, then 

M = 
P 

h 

~ p u d y  = puh 

0 

- 12~ ph3 ~-~bx (1 * 3f 0 + N0f  1 + U 0 f 2 )  . ( 3 . 8 )  

On the other hand, for a channel bounded by imper- 

meable walls, the mass flow rate Mi, is given by 

M i ph3 ~P 1 + + 3 U 0 = - 12~ bx ~ " ( 3 . 9 )  

Therefore, we have 

Mp = 2 (1  + 3f 0 + N0f  I + U0f2)  

M i 2 + N O + 6U 0 ( 3 . 1 0 )  

W h e n  N O = 0,  t h e n  

M 
P = 1 + 3(~  + o') 

M, 2 
1 Of O' 

which is the result of Rajasekhara. From Eq. ( 3 . 1 0 ) ,  

we observe that the mass flow rate can be stopped 

for values of N O given by 

1 + 3f 0 + U0f 2 
NO = - f l  ( 3 . 1 1 )  

F o r  e x a m p l e ,  w h e n  ~ = 10, ~ = 0 . 1 ,  E q . ( 3 . 1 1 )  g i v e s  

N O = - 1 . 9 0 .  

The fractional increase in mass flow rate through 

the channel with a permeable lower wall over what it 

would be if the wall were impermeable is 

3 ( r  + 2o l )  (~ + 6 ~ ) N 0  + 1 2 ( r  3 ~ ) U 0  

= r162 - " ~ ' ( I + ~ g ) ( 2 + N 0 + 6 U 0 )  

From this it follows that ~ takes the value 

2(3 + N O + 3U 0) ] / 2 

2 + N O + 6U 0 when r : V NO 
1 + --~- + U 0 

independent of cr and this occurs when u B = Q i.e. 

when the slip-velocity balances with Darcy velocity 

within the permeable material, and hence the veloci- 

ty profile in the channel has a zero gradient at the 

permeable wall. In this particular case, there is no 

boundary-layer thickness just beneath the permeable 

bed. In most applications, h will be considerably 

2k . It is possible therefore, greater than NO 

1 + --~-- + U 0 

t h a t  f o r  v a l u e s  of cr g r e a t e r  t h a n  NO , t h e  

+-~- + U 0 

average size of the individual pores within the mate- 

rial is at least equal to the height of the channel, and 

the assumption of rectilinear flow in the channel breaks 

down. 
M 

The ratio ~ gives the effect of porous bed. How- 
I 

ever, to find the effect of buoyancy on the flow, we 

define t h e  ratio 

Mp = 1 + f l N 0  

M p 0  1 + 3f 0 + U0f  2 " 

Where 

: ph3 ~P (1 + 3f 0 U0f 2) 
Mp0  - 12~ bx + 

is the mass flow rate, in the absence of buoyancy 

force (i.e. N O = 0). This shows that the presence of 

buoyancy, increases the mass flow rate for positive 

values of N O and tends to a constant value for large 

values of r and decreases for negative values of N 0. 

In particular, this will be zero (i.e. mass flow rate 

can be stopped) for the values of N O given by Eq. 

(3.11). This value of N O is different for different 

values of c~ and ~, as shown in Table 2. 

T a b l e  2. 
M 

P 
M 

Pc 
= 0,  f o r  d i f f e r e n t  v a l u e s  of  No 

5 .0  1 0 . 0  

0 . 1  0 . 0 1  0 . 1  0 . 0 1  

N O - 1 . 8 9 1  - 1 . 9 9  - 1 . 9 0  - 1 . 9 8  
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3.3 Friction Factor 

The above theory is applicable only for laminar flow. 

Therefore, it is of interest to find the Critical Rey- 

nolds number at which transition from laminar to 

turbulent flow occurs. To identify the breakdown of 

the laminar region for a fixed slip-velocity ratio 

characterised by a fixed value of r we use the fric- 

tion factor Cf defined by 

cf 1 -2 (3.12) 
-~u 

where D = 2h. This, using (3.2), becomes 

96 ( 3 . 1 3 )  
( C f R e ) p  = 1 + 3f 0 + N0f  I + U0f  2 

uD 
where Re = -- is the Reynolds number for the flow. 

? 
This shows that (CfRe)p decreases for positive val- 

ues of N O and increases for negative values of N O 

and becomes infinite for the value of N O given by 

Eq.(3.11). Also (CfRe)p is constant (independent 

of Reynolds number) for a channel of fixed height, 

fixed N O for a given porous bounding wall. However, 

the friction factor for a solid walled channel is given 

by 

96 (3 .14)  
( C f R e )  i : NO 

1 +  --'~- + 3U 0 

Thus 

N o 
( C ~ e ) p  1 + -~ + 3U 0 

] - r  : 1 + 3f  0 + N 0 f  I + U0f  2 " 
( 3 . 1 5 )  

If N O = 0, then 

( % R e ) p  _ 1 

- 1 + 3(0/ + r  
2 

0l(y 

which is the result of Rajasekhara Eli. 

Form Eq. (3.15), we observe that this ratio in- 

creases with an increase in c~ and ~. It is of interest 

to note that although this ratio is independent of the 

Reynolds number, it depends on the nature of the 

buoyancy parameter N 0. The ratio given by Eq. (3.13) 

becomes zero for the values of 

N O : -(1 + 3U0)2 

and infinite for the values of N O given by Eq. (3.11). 

In other words, the minimum or maximum value of 

Eq. (3.13) occurs only for negative values of N O but 

it becomes uniform for positive values of N O �9 

3.4 Mass flow rate curve: Comparison of theory and 

experiment 

Rajasekhara [I] has evaluated experimentelly the ef- 

fect of the slip at the nominal surface on the free flow 

past a porous bed. His experiments consists of a rect- 

angular duct bounded on the two sides and below by 

the rigid plates and is free above. This model is ex- 

actly the same as the one used by Rajasekhara [I0] 

in the investigation of plane Couette flow past a po- 

rous bed except that the upper moving plate is re- 

placed by a free surface. The porous medium em- 

ployed in his experiments consists of a natural sand 

which passes through 14 but retained on 18 B.S. 

sieves for which the calculation of permeability is 

k = 1.48 • 10-7cm 2 with scatter of -+ 5 percent. 

He has measured only the mass flow rate and not the 

heat flow rate and found that the effect of the slip at 

the porous bed is to increase the mass flow rate and 

to decrease the friction factor. 

In particular he has shown, in the absence of buo- 

yancy force, that the ratio Mp/M i is independent of 

the Reynolds number and found, by introducing ex- 

perimentally determined values of Mp/M i, the value 

of c~ to be 0,01. When the experimental results are 

drawn on the theoretical values of Mp/M i Rajasek- 

hara [I ] has found some deviations between them. 

This deviation may be due to the neglection of buo- 

yancy force on the flow. To bridge the gap between 

theoretical experimental results, we have calculated, 

in section 3, the mass flow rate with the buoyancy 

force. The Mp/M i ratio given by Eq. (3.10) in the 

presence of buoyancy force is numerically evaluated 

for different values of c~, ~ and NO, and are com- 

pared with the experimental values of Rajasekhara 

[l]in Fig.3, for ~ = 0.01. Fromthis it is clear that 

the theoretical results are in excellent agreement 

with the experimental results for values of N O = + 0.5 
M 

and we find that M ~ increases with increasing N O �9 
1 
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2,0 

Mp 
Mi 

1,15 

1.10 

1.05 

NoPe  2 3 3 5) (4.2) 
+ ~  (c 0 + Cl~ + c2~ + c3~ - 

hU 
P e  = T ts  the P e c l e t  n u m b e r ,  

1 +  4f 0 f l  27 + 7 c ~  

a0 = I + ~ H  ' b0 = I + H r  ' Co = - ( l + c ~ c ) ( l + ~ H )  

a I : crHa0, b 1 = c r ib0 ,  c I : c H c  0 

3 30 
a2 : 6f0' b2- 1 + ~  ' c2- l+ar 

1.o I i 1 1 1 
2-0 4.0o_x10 -z 6.0 80  a 3 : 2 ( 1 - f 0  ) ,  b 3 : ~ c~ob 2 ,  c 3 : ~ a'Gc 2 . 

Fig. 3. Mass flow rate comparison with experimental 
results 

The crux of the present analysis is the assumption of 

the boundary condition (2.26). It is satisfying to note 

that this assumption gets valididated in view of the 

close agreement between the theoretical and experi- 

mental results. 

4 T e m p e r a t u r e  Distribution 

Although the momentum Eq. (2.17) is independent of 

temperature, for completeness, we present the tem- 

perature distribution for zones I and 2. 

The temperature distribution for zone I, neglect- 

ing viscous dissipation terms, solving (2.18), using 

the boundary conditions (2.27) and (2.28) is 

e' (~, -~) : a~ + | 

where 

(4.1) 

T ' - T O AL 
| T I _ T  0 , a -  T I _ T  0 , L is  the  l eng th  of the  

c h a n n e l .  

X {=E 

| : I + r 
I + ~ H  + 

Pe 2 3 
+'~'4- (a 0 + a l  ~ + a2 ~ + a3~ _ 4 )  

PeU0 + 
+ ~ (b 0 + bl~ + b2~2 b3 q3) 

The first term in Eq. (4.2) represents the heat 

transport due to diffusion and the remaining terms 

represent the transport of heat due to convection. 

When Pe = 0 i.e. in the absence of convection, Eq. 

(4.2) becomes 

|  = 1 + cH~ ( 4 . 3 )  
1 + o H  

This shows that as H -~ ~ i.e. for a perfegtly conduct- 

ing permeable interface, 

e ( - ~ )  : ~ . 

However, when H = 0, i . e .  for insulating permeable  

interface 

| : ~. 

The temperature distribution for zone 2, solving 

Eq.(2.23), using the boundary conditions (2.32) and 

(2.33) is 

Pe  
9 ( ~ )  = (1 * o ~ )  |  + --~'-X 

O" 

x 

whe re  

l l - Cosh(~] - SinhG~] 2 1  
2 + a~ + a~ 

G 

( 4 . 5 )  

N o P e  ~ [ b { ~  b ~ l  2 1 3 U0Pe  , . . g.~ ] . ~ ( c { n  + c~'n 2) 
G 0- 

| - I+~H1 + ~Pe  ( 1 5 a  0 + C0No + 60b0U0 ) 

a l  ~ 2 o §  1 
= --r + 4 o t ( l + a r  + - ~ ' ~  ' b{ =z~a-2(l+zz), 
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 ,of/ 
0.6 

0.2 

,7 

-0.2 

-0,6 

-1.[ 

,,<3 ~ ~, 

/ o-=1oo 
~=o.1 
P e = l  
H=I 

( ' 
2 3.0 

F i g .  4.  T e m p e r a t u r e  d i s t r i b u t i o n  

[ 
-20 

8 

I I l 
- 15  -10 - 5  

- 2  

- 4  

- 6  

~ 1 I I r , ~  1o ~5 20 

F i g .  5. R a t e  of  hea t  t r a n s f e r  

c~ = 4a '( l+o~o')  

2 2 2 
, 2 + 4 c ~ + r  ~ 

In t he  a b s e n c e  of  c o n v e c t i o n  ( i . e .  P e  = 0 ) ,  t h e  

t e m p e r a t u r e  d i s t r i b u t i o n  i s  l i n e a r  in  ~ a s  in  t he  c a s e  

of  f low in t h e  c h a n n e l  and  i s  g i v e n  by ( 4 . 3 ) .  C o m p a r -  

ing  the  d e r i v a t i v e  of  t h i s ,  wi th  t he  b o u n d a r y  c o n d i t i o n  

( 2 . 2 8 ) ,  we f ind  tha t  ~ = H. This  m e a n s  tha t  w h e n  

h e a t  i s  t r a n s p o r t e d  on ly  by d i f f u s i o n ,  t h e  v a l u e s  of  

wil l  d e p e n d  on  the  v a l u e s  of  H. S i n c e  H d e p e n d s  on ly  

on the  s t r u c t u r e  of t he  p o r o u s  m e d i a ,  we  c o n c l u d e  

tha t  ~ d e p e n d s  on ly  on t h e  s t r u c t u r e  of  t he  p o r o u s  

m a t e r i a l  and  not  on t h e  g e o m e t r i c a l  c o n f i g u r a t i o n .  

E q .  ( 4 . 1 )  t o g e t h e r  w i th  E q .  ( 4 . 5 ) ,  r e p r e s e n t  t h e  

t e m p e r a t u r e  d i s t r i b u t i o n  and  i s  n u m e r i c a l l y  e v a l u a t e d  

f o r  d i f f e r e n t  v a l u e s  of  a ,  ~ and  NO, f o r  f i xed  ~ and  

v,  and  a r e  s h o w n  in  F i g . 4 .  F o r  f a v o u r a b l e  t e m p e r a -  

t u r e  g r a d i e n t  ( i . e .  bT - ~  = A < 0 ) ,  a > 0, c o r r e s p o n d s  

to  t he  h e a t i n g  of  t he  f r e e  s u r f a c e  ( i . e .  T 1 - T O < 0) 

b e c a u s e  h e a t  f l ows  f r o m  t h e  bed  t o w a r d s  t h e  f r e e  s u r -  

f a c e .  S i m i l a r l y  a < 0,  c o r r e s p o n d s  to t h e  c o o l i n g  of  

t h e  s u r f a c e  b e c a u s e  h e a t  f l o w s  f r o m  t h e  f r e e  s u r f a c e  

t o w a r d s  t h e  b e d -  But  a = 0 ( i . e .  bT _- 0) c o r r e s p o n d s  

to  t h e  a b s e n c e  of  b u o y a n c y  f o r c e  in w h i c h  no h e a t  i s  

t r a n s p o r t e d  by c o n v e c t i o n  and  t h e  h e a t  i s  t r a n s p o r t e d  

on ly  by d i f f u s i o n .  F r o m  F i g . 4 ,  i t  i s  c l e a r  t ha t  w h e n  

a = 0, t h e r e  e x i s t s  a t h in  t h e r m a l  b o u n d a r y  l a y e r  j u s t  

b e n e a t h  t h e  n o m i n a l  s u r f a c e  wi th  h i g h e r  t e m p e r a t u r e  

in  t he  f r e e  f low c o m p a r e d  to t ha t  in  t h e  D a r c y  f l o w .  

However, when a / 0, with N O > 0, heat is trans- 

ported both by convection and diffusion and Fig. 4 

shows that the effect of convection is to increase the 

magnitude of the temperature in the free flow. Simi- 

lar conclusions are true for N O < 0. 

From the technological point of view, it is of in- 

terest to know that the rate of heat transfer q be- 

tween t he  f lu id  and  t h e  n o m i n a l  s u r f a c e  and  we  ge t  

q = - ~  '~=0 

~H I Pe N o P e  27 + 7 cr 
='I'Tr l--2T(l+4f0)- 36-----6-- l + ~ -  

UoPe ~ 1 
" - - - ~  11 . ( 4 . 6 )  

This  q i s  s h o w n  in  F i g .  5, f o r  p o s i t i v e  a n d  n e g a t i v e  

v a l u e s  of  N 0.  We o b s e r v e  tha t  q d e c r e a s e s  l i n e a r l y  

f o r  p o s i t i v e  v a l u e s  of  N O and  i n c r e a s e s  f o r  n e g a t i v e  

v a l u e s  of  N O . 
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