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MECHANOCALORIC EFFECT ON MAGNETOTHERMOELASTIC
INTERACTIONS IN A CYLINDRICAL CONDUCTOR

CARRYING AN ELECTRIC CURRENT

D. S. Chandrasekharaiah
Department of Mathematics

Bangalore University
Bangalore 560001, 1ndia

The mechanocaloric effect on magnetothermoelastostatic interactions in a
cylindrical conductor carrying a uniform electric current is investigated. It is
found that this effect reduces the Joule heating effect and induces non­
linearity into the behavior of stresses. A condition under which the mechano­
caloric effect nullifies the Joule effect is also obtained.

INTRODUCTION

In a recent paper Roetman (1) developed a theory for the basic equations of
thermoelasticity, taking into account the mechanocaloric coupling effect. In this
theory, unlike the coupled theory [2) and the generalized theory [3), a term involving
the body force enters into the equation of heat conduction, and the displacement and
thermal fields remain coupled together, even in static deformations. Our purpose in
this paper is to utilize the heat equation obtained in [I] to study the interaction
between the mechanical field and the thermal field produced in an electrically
conducting thermoelastic cylinder permeated by a uniform axial current, assuming that
the cylinder undergoes a plane static deformation. This problem was considered earlier
by Yuan [4], using the classical form of the heat equation. Our analysis here shows
that the inclusion of the mechanocaloric coupling reduces the Joule heating effect and
introduces nonlinearity into the behavior of stresses. When the electrical conductivity,
the magnetic permeability, the Poisson ratio, and the mechanocaloric coupling constant
of the cylinder are connected by a particular relation [Eq. (17) below), the
mechanocaloric effect nullifies the Joule effect, and the cylinder temperature does not
change. When the mechanocaloric effect is neglected, our results reduce to those
obtained in [4).

This work was carried out while the author was visiting the mathematics department of the
Cranfield Institute of Technology, Cranfield, England, under the Younger Scientists Exchange
Scheme between India and the United Kingdom.
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194 D. S. CHANDRASEKHARAIAH

BASIC EQUATIONS

Consider a static plane deformation parallel to the xy plane of an electrically
conducting thermoelastic solid, due to the presence of an electric current 1. The
stresses associated with such a deformation are given by [4]

T33 == V(TII + T22) - EaT TI3 == T23 == 0
(I)

where E == Young's modulus
v = Poisson's ratio
a = coefficient of linear thermal expansion

T = T(x, y) = temperature associated with the deformation
If> = If> (x, y) and IjJ = ljJ(x, y) are governed by the equations

where /le is the magnetic permeability of the body, and

(2)

E* == E
I - v2

V* _ _ v_
I-v

a* = (I + v)a (3)

ln the presence of the rnechanocaloric effect, the equation governing T in the
static case is given by [I]

(4)

where e = dilatation
F = external force per unit volume
Q = strength of internal heat sources
k = thermal conductivity

m(> 0) = mechanocaloric coupling constant
In the absence of mechanocaloric coupling (m = 0), we readily see from Eq. (4) that
the thermal field does not interact with F and e, and Eq. (4) reduces to the classical
heat equation considered in [4].

The dilatation e is related to Til, T22, and T through the relation (see [4])
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MAGNETOTHERMOELASTIC INTERACTIONS 195

This relation yields, with the help of Eqs. (I) and (2),

(5)

If there is no external force other than that due to magnetomechanical interaction, and
if there is no heat distribution other than Joule heating, we may take

F=lle(JXH) Q = !,J2
a

(6)

where a = electrical conductivity of the body
H = magnetic field associated with J

Using Maxwell's electromagnetic equations and Ohm's law, we may readily verify that

div F = Ile div (J X H) = _f.LeJ2

With the aid of Eqs. (5)-(7), Eq. (4) may now be simplified to

where 1) is the magnetic viscosity of the body; that is, 1) = (Ileoft.
By eliminating \72 T from the second of Eqs. (2) and Eq. (8), we get

where

(7)

(8)

(9)

M =!. mE*Ol*
3 k

E* *
o=~

k
(10)

When J is known, the first of Eqs. (2) and Eqs. (8) and (9) may be solved under
appropriate boundary conditions to determine </>, T, and 1JJ. The stresses then follow
from Eqs. (I).

ANALYSIS

We now turn our attention to the main problem. Let R be the radius of the cylinder,
and Jo the magnitude of the axial uniform current that the cylinder carries. If we
choose the z axis along the axis of the cylinder, we may write J =(0, 0, Jo) in
cylindrical coordinates (r, B, z) and assume that all field variables depend on r only,
because of the axial symmetry.
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196 D. S. CHANDRASEKHARAIAH

The first of Eqs. (2) and Eq. (8) may now be integrated directly to give

T = I [(I + 2v*)M - N) PnO, 2 + C24E*a*(I + 2M)

where C, and C2 are constants of integration, and

E* *N = ---..!!....!J.
k

(II)

(12)

(13)

When the mechanocaloric effect is not taken into account, the solution (12) reduces to

(14)

which agrees with the solution given in (4).
By comparing Eqs. (12) and (14), we may conclude that the mechanocaloric effect

makes a significant contribution to the thermal distribution in the cylinder. In the
special case of infinite conductivity (i.e., when a --> 00), Eqs. (12) and (14) reduce,
respectively, to

(15)

We readily see that a thermal distribution of the Fourier type, equivalent to that
due to a source of strength

Q = _ (I + 2v*)M < 0
(I + 2M)E*a* (16)

occurs when the mechanocaloric effect is taken into account, and no thermal
distribution occurs otherwise. The mechanocaloric effect thus represents a "heat sink"
within the cylinder.

In view of the above analysis, we may conclude that if the cylinder is a good
conductor of electricity, the presence of mechanocaloric coupling decreases the Joule
heating. In fact, we may verify from Eqs. (10) and (13) that if a, v, Ile, and mare
connected by the relation

a = _3,.:-(_1.,.,.-_v,.:-)--,
Ilem(l + v)

(17)
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MAGNETOTHERMOELASTIC INTERACTIONS 197

Eq. (12) yields T = C2 • Therefore, no thermal distribution occurs in the cylinder. This
leads us to conclude that when relation (17) holds, the mechanocaloric effect nullifies
the Joule effect.

We now take up the solution of Eq. (9). Because of the axial symmetry, this
equation reduces to

1. s. ~, ~ [!~ f, dljl\ll = [v* + Ii - (I + 3M)] lleJJ
, dr I dr , dr \ d'/J \ 1 + 2M

By integrating this and noting that ljI is to be finite for , = 0, we get the following
solution for ljI:

ljI +
2 + [v* + Ii - (I + 3M)] lleJJ,4=a a,

1 2 64(1 + 2M)
(18)

If the boundary of the cylinder is stress free, we have Trr = 0 on , = R. Equations
(11) and (18), together with this boundary condition, yield the following expressions
for stresses:

T
r r

=! aaljl + ¢ = v* + 3 + Ii + 5M (I _-.C) J2R2
, , 16(1 + 2M) R2 Ileo

T =a2lj1+A.=_V*+3+1i+5M~_1+3(V*+Ii)-M ,2J J2 2 (19)
00 a,2 'I' 16(1 + 2M) L v*+1i+3+SM R2 Ile oR

TrO = 0

By examining these expressions we see that, unlike the classical situation [4], the
stresses developed by the Lorentz force cannot be separated from those caused by the
thermal distribution, because of the presence of 1 + 2M in the common denominators.
Hence we may infer that the mechanocaloric coupling introduces nonlinearity into the
behavior of stresses in the cylinder. However, this disappears when the mechanocaloric
coupling effect tends to vanish, and expressions (19) then reduce to those obtained in
[4] .

We further verify from Eq. (19) that Trr is compressive everywhere and that TOO may
be compressive, tensile, or zero as in the classical case. The expression for TOO on the
boundary, = R is given by

( *)T - - I 1 _ Ii + v - M J2 R2
OOlr=R -"8 1 + 2M Ile 0 (20)

In the special case when a, Ile, v, and m are connected by relation (17), the
expressions for Trr and TOO given by (19) reduce to

Trr =
v* + 3

16
(21 )
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198 D. S. CHANDRASEKHARAIAH

v* + 3
---

16 (
I _ 1 + 3v* r

2
) PR2

v* + 3 R2 Jle 0
(22)

It is readily seen that these stresses are due to the action of the Lorentz force
only and are independent of the thermal field. This conforms with our earlier
observation that when relation (17) holds, the mechanocaloric coupling effect and the
Joule effect cancel each other and the cylinder experiences no change in temperature.
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