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Abstract. The density of states of an electron in a binary alloy in the tight binding 
model is calculated in the single site coherent potential approximation (CPA) as 
a function of  the concentration ano the site energy difference. The fluctuations in 
the site energies due to the random environment is taken into account approximately 
by giving width to the site energy probability distribution function, which is 
normally a sum of two delta functions with proper weight factor. 
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1.  Introduction 

Understanding the properties of alloys has become a topic of considerable interest 
in solid state physics in recent times. The first two approximations used in the 
study of electronic properties of alloys are rigid band and virtual crystal 
approximations. Because of the unsatisfactory nature of these approximations 
in explaining the observed properties, attempts were made to approach the problem 
differently. Recently the averaged T-matrix approximation (ATA) introduced 
by Korringa (1958) and Beeby (1964) and the coherent potential approximation 
(CPA) introduced by Soven (1967) and Taylor (1967) have proved to be reason- 
ably successful models. Both the ATA and (3PA are based on multiple scattering 
theory formalism originally introduced by Foldy (1945) and Lax (1952). These 
two methods have been employed to study both model and realistic systems. 

In the single site description of CPA one regards the total scattered wave to 
be composed of contributions from each atom while the effective wave incident 
on a given atom excludes the contribution of that atom. This contribution is 
obtained as a product of the atomic t-matrix and the effective wave. Velicky 
et al (1968) have put the CPA on a more formal footing and have established 
that CPA is the best single site description available. The CPA is the simplest 
self-consistent approximation which gives the first several moments of the density 
of states correctly (Schwartz and Siggia 1972). (3PA and ATA become exact 
in the calculation of the average single particle Green function of the electron in 
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the Anderson model when the site energy is distributed randomly with Cauchy- 
Lorentzian distribution. This result was obtained by Prasanna Kumar and 
Baskaran (1973)for both ATA and CPA and independently by Bishop (1973) for 
the CPA case. The CPA has been investigated extensively by several authors 
and the comprehensive reviews by  Elliot et al (1974), Ehrertreich and Schwartz 
(1976) and Yonezawa and Morigaki (1973) contain details of-the numerous appli- 
cation of GPA and ATA which exist in the literature. 

In this paper we present a detailed CPA calculation for the density of states 
of a modified binary alloy model in which the site energy associated with each 
component, is itself a random variable~ with ,a (3auehy-Lorentzian distribution. 
The site energy distribution is thus a sum of two Clauchy-Lorentzian distributions 
weighted by tile concentrations rather than a, sum of two 3-functions as usually 
assumed. It is suggested that this modification accounts phenomenologically 
for the fluctuations in the environment ot" a given site which must occur in any 
real system. 

2. The model for binary alloy 
We consider the 2-component alloy to be described in the tight binding represen- 
tation. The one-electron Hamiltonian in the tight binding representation is given. 
by. 

H = Z %C + C,, .4- 2 V,,,.C+C. 

r + Ho (l)  

where C + and C. are the creation and annihilation operators for the electron 
in the Wannier orbital centred at the site n. V is the diagonal part and Ho is, 
the non-diagonal part of the Hamiltonian. The diagonal elements E. are the 
random atomic energy levels which assume values ct ° and E2° and with respective 
probabilities at and a2, depending on whether an atom of type 1 or 2 occupies 
the site n. Since we are essentially dealing with a one body problem, in the 
absence o f  any magnetic interaction and magnetic field we omit the spin index 
in eq. (1). The random variables E should be characterised by a suitable proba- 
bility distribution P (c). V,,, is the interaction or the hopping matrix element 
between sites n and rn. The hopping matrix elements are assumed to be inde- 
pendent of the alloy configuration. The operator H0 may be interpreted as tko 
Hamiltonian of the pure crystal for which 

~10 = ~o = 0. (2) 

We also assume that 1I.,. is non-zero only for the nearest neighbours and tllat 
V.~, is non-random. The distribution of the constituent atoms of the alloy is 
assumed to be statistically independent so that the probability of finding any one 
of the types of atoms 1, 2 on an arbitrary chosen site n is al, as respectively. 
The joint probability distribution P ({E.}) is given by 

P ({E.}) = H p  (e.) (3) 
n 

where P(e , )  is expressed as 

2 

P (~.) ---- .S' a,b (e, - -  eft) (4) 
$ = I  
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with 

ax + ai= 1, 

where ax is the concentration of type 1 atom and a2 (=  1 -  a,) is the concen- 
tration of type 2 atom. So far it has been generally assumed that the energy 
of the orbital can take any one of the energies of the constituent atoms. But, 
in reality, due to the random environment there will be a spread in the orbital 
energies. So, in general, the distribution function P (~) will not be a sum of 
8-functions but will be a sum of functions peaked around ,,°'s. Thus it takes into 
account the spread in the energies around the mean values ~,o. This approach, 
to a certain extent, effectively takes into account the fluctuations in the environ- 
ment of a given site as well as some other perturbations which gives rise to 
energy spread. For mathematical convenience we assume that P (c) is the sum 
of (3auchy-Lorentzian distributions PL (c) given by, 

p , ( 0  = 1 (  F ) 
# ,5 + _r'~ • (5) 

The expression for P ( 0  becomes 
It 

p (,) = 1 S a.p. 
~r ( , _  ,0)2 + F.~' (6) 

B = I  

,where F~ and /'~ are the half width of the distributions. 
The density of states of the binary alloy can in principle be calculated by 

using the (3PA. 
The electronic properties of the binary alloy can be discussed most simply 

in terms of the single particle Green function <nlG(E)]m) which is the 
configuration space representation of the operator 

G (E) = ( E - -  H) -1 = ( E -  no - -  V) -x (7) 

G (E) depends on the occupancies of all sites of the alloy. This dependence of 
G (E) is removed by performing an ensemble average. We also define, 

G O (E) ----- ( e -  Ho) -x (8) 

G (E) may be used to define the self-energy U (E), 

(G (E)) = (E --  H - -  U (E)) -x (a) 

U(E) is in general complex and non-Hermitian. Here " ( . . . ) "  denotes the 
averaging with respect to the random site energies. Our main task then is to 
calculate (G (E)) which is done here by employing the self-consistent CPA. 

3. Density of states of the two component (binary) alloy: CPA model 

For convenience we choose Ej ° ~ C/2 and c~ ° ~- - -  C/2. The two distributions 
are centred at energies C]2 and - -  C]2 from the origin as shown in figure 1. 
In this model, the variation in C corresponds to the variation in site energy and 
the variation in the height of the distribution corresponds to the change in the 
concentration. By varying C the overlap of the two distributions can be altered. 
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F i g u r ~  1. Two-component (binary) alloy. 

Thus we specify the alloy completely by P, a and C. These are our input 
variables. What we need is (G) and it is calculated self-consistently in the CPA 
as follows. Consider the Dyson equation, 

G ---- O + GT(~ (10) 

where T is the total scattering matrix (T-matrix)defined as 

T =  Z T=, T , =  t ,(1 + (~ ,S' Tin). (11) 
tl n ~ - m  

Here 

t= ~-- - - ' (¢ , - -  U) d 

i s the T-matrix corresponding to the nth site. 
tently such that ( T ) =  0 (which implies that (G)= t~). 
we write, 

it. 2 T, )~ (t.) 2 (Tin). (13) 

Therefore 

(T) = ~' (Tin)~ X it.)(1 + (a) ~' (Tin)). (14) 
Ill M=~zn 

In the CPA the density of states of the binary alloy model is calculated by 
expliciting the condition ( t . ) =  0. We therefore have, 

o o  

f - -  v e (,) de = 0. (15) it.) 1 - -  (. ~ u) (G) 

The explicit dependence of U and G on .E is omitted for brevity. In the case 
of the binary alloy we consider P(~) to be given by, 

p(,) : 1 atF~ + (,__ (16) 

where al and a2 are the concentrations of the two species and C is the separation 
between the two sites energies. Substituting for P(E) eq. (15), we get, 

+00 

f - - I - - ( . - - U ) ( G )  ( ( C )  ( a ~ F '  ) 
(t.) = 1 (,  U) a, P= + = 

, +  2 +  r: , - - 2 )  + r: 
7/" 

(17) 

(12) 

We want to find o" self-consis- 
In the single site CPA 
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The above integral can be performed by the contour integration method (Lloyd 
1969). Using the general analytic properties of U and G, we get 

U 2 (G) -I- U (1 - -  i r  z (G) - -  iF~ (G)) ~ i (/'zaz - -  -,r' z - -  r~a~) 

+ ( c _  ca~-- r~r~ (c) ic:(c> [ r ~ -  r=] c ~ > )  = 0. (18) 

This is a quadratic equation which can easily be solved for U. We consider the 
semicircular band case, for which 

co = 2/~ ~ (E-- V ~ - ~ ) .  

Now U is also given by (Browers 1971) 

U = E - - - - 1  (G) B ~ (19) 
(G) 4 ' 

where 2B is the band width. 

Using (18) and (19) we can get an expression for G. 

(G> 3 ~ -t- (G)~ B z ( irx -F iI'~ - -  22) 

(C) [4B 2 - -  42 (irz -~ ir=) - 4rzr~ ~ 2c i  ( Ix  - -  r=) d- B 2 - -  C 2] 

d- (4i_r'= - -  4iafl" z d-  ia2r= - -  4 2  d-  4Ca2 - -  2C) ---- 0. (20)  

The density of states is given by, 

p (E) = 1_~ ~m (G (E -F io)). (21) 
7r  

Figures (3), (4), (5) give the density of states of the binary alloy computed 
from (20). For comparison we have reproduced the curves of Schwartz et al (1971) 
(figure 2) where they have calculated the density of states in the CPA and ATA. The 

x :.15 I Tp(E) 
$ = . 4 0 / / ~ ~ ~ ,  ( o ) 

-I 0 I 

t -p rE) 
x=.15 ~.--~2 i,t 
a ,t.0~, ~ ,  (b) 

- 2  - !  0 1 

X = ' I 5  ~ '=rptE) 

- 2  -1 0 t 

Energy/Half bandwidth 
Figure 2. Comparison of the density of states calculated in the coherent potential 
approximation and the averaged T-matrix approximations (from Schwa]tz et al 
1971). 
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Figures 3-5. Density of states of the binary alloy in the CPA, 
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curves of Schwartz et al  display the extended region of the density of states well 
but fail to produce the tails where the states are localized. Our model gives 
the profile of the density of states better as indicated by the figures. The long 
tails might be associated with the nature of the distribution chosen ((3auchy- 
Lorentzian). The band edges display the tails irt our model and hence we can 
say that the model approaches the real system more closely at least with regard 
to the density of states. The model thus displays the features of tb.e Mott-t3FO 
model better. We cannot however say that the present model has incorporated 
all the important and relevant features of the alloy, since the tails in real alloys 
arise from cluster effects which lie beyond (3PA proper. 

In figures 3-5 we have plotted the density of states of the binary alloy in 
the (3PA. In figure 3 -r'x and /2, the widths of the distributions are kept con- 
stant (but different) and the concentrations are allowed to vary. As a, changes 
from 0.2 to 0.8 the shape of the density of states curve changes (curve 1.1 goes 
over to curve 4-4). The curves demonstrate that our model predicts the expected 
variation in the density of states profile when the concentration changes. 

In figure 4 _r' 1 and I'3 are different but held constant. The concentrations of ax 
and a z also do not change. The parameter that changes is the separation of the two 
distributions. When the two distributions are far apart (compared to the width) 
there is a dip in the centre of the band. This is because the distributions are far 
apart and do not overlap very much. As the overlap increases the nature of 
the dip in the centre of the band changes and there will now be more states in 
the centre of the band. Also the peak begins to shift towards the centre. 

In figure 5, we have considered a special case. The widths as well as the 
concentrations of the species are maintained constant and equal (curves 1 and 2). 
As the width of the distribution increases the overlap becomes more and the curve 
gets flattened. If the separation is also not too much the dip in the centre of 
the band becomes less as displayed by curve 3. Our model of the binary alloy 
accounts phenomenologically for the fluctuations in the environment of a given 
site which will occur in a real system. 
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