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On Love waves in a stratified hypoelastic solid with material 
boundary 
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Abstract. Transverse surface waves in a half-space covered with a stratum of a 
different material ate inves•igated in the context of hypor of grade zero, taking 
into account the surface stress effects on the boundary. It is found that the wave 
motion is possible and that unlikr in the corresponding problem with classical boundary, 
the variation ofamplitude in the stratum may be either periodic or exponential. When 
the amplitude in the stratum is periodic, the motion is similar to that in a stratum 
boundr on both sides by vr der layers of different clastic or hypoelastic materials. 

Keywords. Love waves; hypor material boundary; wave motion; amplitude 
variation. 

1. Introduction 

The theory of  hypoelasticity proposed and developed by Truesdell (1955a,b, 1956) 
has aroused much interest due to its more realistic approach in studying the elasticity 
theory, compared to the classical (Hookean) approach. This theory is non-linear 
in nature and is based on the hypothesis that the components of  the stress tate ate 
homogeneous linear functions of  the components of  the tate of  deformation. Ir  we 
restrict our attention to the neighbourhood of  the stress-free state and lineatize the 
constitutive equations of  the hypoelasticity theory, we obtain the classical elasticity 
theory. Several problems revealing interesting phenomena which characterize the 
hypoelasticity theory have been considered by Noll (1955), Green (1956a,b), Thomas 
(1957), E¡ (1958), Verma (1956a,b 1958), Paria (1958), Grioli (1962), Noll 
and Truesdell (1964) and Chandrasekharaiah (1976). 

In this paper, we consider one more interesting problem of  hypo-elasticity. We 
investigate here transverse surface waves (Love waves) in a half-space covered with a 
stratum of  uniform thickness of  a different material, taking into account the surface 
stress effects on the boundary.* This is precisely a reinvestigation of  the problem 
considered by Paria (1958) and is of  considerable geophysical intcrest. We iind tkat 
tke wave motion of  the desired type is possible and that there exist two different 
ranges for the phase velocity; for one of  these ranges the variation of  amplitude in 
the stratum is exponential and for the other ir is periodic. This is in contrast to 
the result of ParŸ191 (1958) that the vaxiation of  amplitude in the stratum is necessaxily 
periodic for the waves to exist. We also find that when the vaxiation of  �91 

*The corresponding problem in pure elasticity has b~en considered by the author in a separate 
paper which is under publication. 
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in the stratum is periodic, the motion is similar to the one in an infinite body consist- 
ing of a stratum bounded on both sides by haff-spaces of different material, and cora- 
dude that the effect of surface stresses on the boundary is equiv,alent "to replacing the 
free-space on the other side of  the stratum by ah appropriate half-space. 

2. Phase velocity equation 

Tlle equations governing the deformation of ala isotropic hypo-elastie body of  grade 
zero, in the notation of  cartesian tensors, are (Truesdell 1955a) 

OSl'-"-~J -~ •k Slj,k - -  "~lk Vj,k - -  "~kj Vl,k -~ SIJ Vk,k 
Ot 

V 

"1--2v �91 Vk,~ + �89 (V,,S + VSa) (1) 

(2) 

In these equations vt is the velocity vector, 2/zs~~ is the stress tensor with # as the 
shear modulus of  classical elasticity, v is  the Poisson's ratio, p i s  the mass per unir 
volume and t is time. We have assumed that the body forces ate �91162 

For transverse waves which propagate with wave length 2~r/y and phase velocity V 
in the positive x-direction, with displacement u~ in the positive y-direction, we assume 

u~ : 81~ F(z)  exp [i~ (x - -  Vt )  ] 

The corrr velocity rector is given by 

v~ : Ou__.~ + ui,j uj : - -  iyVu~. 
Dt 

Equation (3) is now satisfied for p = constant. 

sll - :  slz : san : 0 

s12 -~- �89 iy Fexp  [iy ( x - - V t )  ] 

s,~ = --  �89 [~,~F * -- (F') ~] exp [2iV ( x - - V t )  ] 

S2a = �89 F '  exp [ir ( x - -  Vt)  ] 

(4) 

Also, eq. (1) yields 

(5) 

(6) 

(7) 

(8) 

(9) 

~P + ( .  v~),k = 0 (3) 
0 t  
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Equat[on (2) yields with the help of eqs. (4) to (9), the general solution for the 
amplitude funetion F(z) in the forro 

where 

F(z) = A exp (pz) + B exp ( - - p z ) )  

( -- V~1�89 Se r=~ '  1 ~ 1 '  =~h, 
0o) 

and A, B are arbitrary eonstants; S represents the speed of solenoidal waves in the 
body. 

We assume that the half-space occupies the region z>  0 and the stratum ocr 
the spar --T~z<~O. We denote these two bodies by L 1 and L~ respeetively and 
sut¡ all quantities associated with the body L,  with a, a = 1, 2. Then for waves 
whose intensity falls off at a large distante from the stratum, we take the general 
solution for F(z)  in L, in the form (vide, eqs (10)) 

F (z) = t Fl(z) = B 1 exp (--plz) in L1 
(Fa(z) = A~ exp (PAZ) + B~. exp (--p2z) in L a 

(I1) 

where 

( VZ/�89 
P- = 9 '  1 - - ~ l  with pa>0  (12) 

and B 1, A, and Bz are arbitrary eonstants. 
With the expressions for F (z) given by (11), eqs (4) to (9) determine the displace- 

ments, velocities and stresses developed in the bodies L , ,  when B~, Az and B a are 
known. 

We assume that there is welded contact between the bodies along the interface 
z = 0 �91 that z = --  T is a ' material boundary '  - -  boundary which supports 
surfaee stresses (Gurfin and Murdoch 1975; Murdoch 1976). Then the appropriate 
boundary eondŸ for the problem are: 

O) F(z) and 2/zsta are continuous on z : :  0, and 

r~v, ] (ii) 2/zst3 + z,~.,. ___ po L ~-  + vl,~, vj on z = - T 

where Po is the mass per unir area and 27l. are the surface stresses on z ---- - -T ;  
27~, ate given by (Murdoch 1976) 

, ~ ,  = 8.p [~ + (ao+~) u,..] + go u..B + (t~0--) up.. 

2~sp = cr ua,# (13) 

where ~ is the ' residual surface tension ' and )t 0, g0 are the Lame' moduli of  the 
material boundary at z = -- T. 
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In the absence of 2~~, and Po our problem reduces to that considered by Paria 
(1958). 

With the help of eqs (4) to (9), (11) and (13), the above boundary eonditions yield 
the following three equations. 

B~ = A~ + B~ (14) 

mplB1 + p2p~ (,4~ - B~) = o (15) 

[78 (po--PoVa)--pap2] A a e-P2T -q- [73 Q.�91 B 2 eP~T -_~ O. (16) 

These equations determine the required constants B 1, A~ and B~, provided these 
are consistent. The condition for consistency simplifies to 

tanh p~T = --  P2P2[I~tPx + 78 (q176176 (17) 
[t~2P22 + PzPx (Po--Po V2)] 

This equation determines V when the expressions for Px and ps are substituted from 
eq. (12). 

We have assumed that p i > 0  or equivalently, V < S  1 whieh is necessary for the 
waves of the desired type to exist. Equation (12) suggests that the following casos 
are to be considered: (i)p~ = 0  which corresponds to V = S 2 ,  (ii) p2>0 whJch 
corresponds to V < S  2, and (iii) p~. is purely imaginary, whieh corresponds to V> S~. 
It follows from eq. (11) that the amplitude in the stratum is eonstant in case (i), 
exponential in case (ii) and periodic in case (iii), provided the waves exist. 

We readily verify that p~ = 0 is a root of eq. (17) and eorresponding to this root 
we get from eqs (14) and (15), B t = 0. It follows therefore that in case (i) the waves 
can exist only in the stratum and can propagate with uniform amplitude and phasc 
velocity. 

We consider the tases (ii) and (iii) separately in the following sections. 

3. Waves with exponential amplitude in the stratum 

We first consider the case P2 > 0. In this case the waves, if they exist, propagate 
with exponential amplitude in the stratum. 

In the problem with classical boundary we lmve (Murdoch 1976) q o = Po = 0 
and our problem reduces to that considered by Paria (1958). We readily verify that 
in ttª case eq. (17) yields no relevant solution for V. Accordingly, the Love waves 
with exponential amplitude in the stratum eannot exist under the classieal boundary 
condition. 

We now assume that Po # 0 and Po # 0 and rewrite eq. (17) in the forro 

72(1%_po V~) __ _ t~P~[PxPx + PeP2 tanh (paT)] 
q x tanh (pzT) + PaP2 

(18) 

We easily see that this equation admits a real root for V that is greater than So, 

where S O = (~[p0) �89 wkich may be called the 'speed of solenoidal waves on a 
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material boundary', in view of Rs similarity with S. Aceordingly, the waves with 
exponential amplitude in the stratum can exist whenever So is less than both S 1 and 
Sv We may therefore write down the range for phase velocity in the present case in 
the forro 

so < v < ruin (s~, s ,)  (19) 

It may be noted that $2 can be greater than S 1 in the present case which is in con. 
trast to the Paria's (1958) case where $2 is to be less ttmn $1 for the waves to exist. 

From eq. (18) we also note tlmt V depends on ~y in general and therefore there is 
dispersion. 

We now consider some limiting cases. 
(i) When the wave length is very small compared to the thickness T of the stratum, 

we llave y T-~ oo. Equation (18) then tends to 

(~1--~002 + 1 = 0  (20) /~0 

wkich yields exactly che root in the range So< V<Sa. Accordingly in this particu- 
lar caso the wave mofion can take place only ir S2~Sx. 

(ii) When the wave length is very large compared to the tkickness of the stratum, 
we bayo y T-~ 0. Equation (18) then tends to 

(1 --  V2~�89 [q --  V2~ � 8 9  ~ 1  + ~, q --~o2)] = 0 V 2  (21) 

This equation yields two roots ; one of these is equal to $2 and the other lies in the 
range S o < V < S  t. Acoordingly in this particular case the wave motion can take 
place in two modes; che of these propagates with phase velocity tending to S~, 
provided S~ ~ S t and tl'te other propagates with phase velocity greater than S O 
provided S, ~ S~. Both these ruedes can exist only when St ----- Se 

(iii) When the stratum and the half-space are of the same material, we have Va-----/~~ 
and px=pa and the entire body reduces to a single half-space in the region z >1 --T. 
Equation (18) then reduces to 

which admits a root for V in the range S o < S < Sx and therefore the wave motion 
is possible in this case also. This is analogous to the result obtained by Murdooh 
(1976) on the existence of Leve waves in a pure elastic half-space. 

4. Waves with periodie amplitude in the stratum 

We now eonsider the case of imaginary p~ and put p~ = iq~ where 

q~ = y  - - I  > 0 (23) 
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In this case t¡ waves, if they exist, propagate with periodie amplitude in the 
stratum. 

Equation (I7) now reduces to 

tan q2 T = q [/~lP~ + ~,2 (/% _ poV~) ] (24) 
[q -- q t V~ ( ~  -- p V ~) ] 

In the case of classical boundary condition (q 0 = Po = O) this reduces to the phase 
velocity equation obtained by Paria (1958), viz., 

~~q2 tan q2T : ~�91 (25) 

which yields a real root for V in the range 

S~ < V < S x (26) 

showing that the wave motion is possible only when Sz < Sv 
We now assume that/% ~ 0, Po ~ 0 and rewrite eq. (24) in the forro 

tan (q,T)  : ,  p~q~S~~ [plplSz ~ + poPoSo ~] (27) 
[Pa2q~ S~. 4 - -  -PoP1 PoPt So~ SI~I 

where 

so~/ �9 Po ~, 1 sov (28) 

Equation (27) is strikingly similar to the equation 

tan (q2T) = P2qzS2Z [PxPtSI~ + PaPzS•2] (29) 
[Pg,~q~,2 S ~  - -  P I P a  PlP3Sl~ Sa 21 

obtained by Stoneley (1924) in the pure elastic case aud by the present author (1976) 
in the hypoelastic case, apart from a change in notations, for the phase velocity of 
transverse surface waves in ah infinite body witk three layers in z > 0, -- T ~< z ~< 0 
and z < - -T;  in this equation Ps denotes the mass density of the half-sp�91 L a which 
occupies the space z <7 -- T, Su denotes the speed of solenoidal waves i n / ~ ,  Pa is 
given by 

[ v~~~~ (3o) 
Pa : Y ~1 --  Su 21 

and other symbols ate us defined in the earlier paragraphs. The assoeiated displaee- 
ment in La is given by 

u, : 8t3 Fa(z) exp [i r (x - -Vt )]~  (31) 
where Fa(z) = As exp (p3z) ) 

As being a constant. 
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Ir has been shown (Stoneley 1924) that the waves governed by eq. (29) can exist 
when V satisfies the inequality 

S~ < V < ruin (S 1, Sa). 

The similarity between eqs (27) and (29) enables us to conclude that the waves 
considered by us can exist when V satisfies the inequality 

S~ < V < min (So, Sa). (32) 

This, kowever, may also be proved directly. 
Tttus the wave motion in our problem with periodic amplitude in the stratum is 

possible whenever S 2 is less than both S O and St. Further, the waves are dispersive 
as in the previous case. Comparing the inequality (32) with (26) which holds in the 
case of classical boundary condition, we may conelude tkat the surface stresses on 
the boundary have their effect in reducing the upper bound of V when S O < S r 

When the wave motion is possible, we have from (28) and (32), Po and Yo > 0. If 
we define Fo(z ) by the relation 

Fo(z ) = A o exp (poz) (33) 

where A 0 is a eonstant, we readily verify that 

u, = �91 Fo(z) exp [iv (x--Vt)] (34) 

satisfies eq. (2), provided /~=q where ~o-~tzo[1--(Va/So~)]�89 and S = S  o. 
Accordingly eqs (33) and (34) determine a solution of the form (31) in the fictitious 
halfspace(elastic or hypo-elastic) of shear modulus ~o and mass density Po and occupy- 
ing the region z < --T. 

It follows therefore that when the amplitude in the stratum is periodic the wave 
propagation considered by us through the half-space La and the stratum L~ with 
material boundary is identical with that considered by Stoneley (1924) in ah infinito 
body consisting of the layers L 1, Lz and L a, provided the half-space L a is replaced by 
the fictitious half-space L o. In other words, the effect of having a material 
boundary z - ~ - - T  is equivalent to having the classical boundary at z = - - T  
together with a half-space occupying the other side of the stratum, viz., z < --T, 
when the amplitude in the stratum is periodic. 

We now consider some limiting tases. 
(i) For waves of wavelength wkich is very small compared to the thŸ of the 

stratum (rT-~ ~),  eq. (24) tends to 

(1-~/=o tzl/z~ Y (1--S~2)�89 (l--S~e) § tz~~" , S~'/ 

Ir~ the problem with classical boundary V = S~ is a root of this equation, while in 
the present problem the root will be greater than S~. Accordingly in this particular 
case the waves travel with greater phase velocity than their counterparts in the classical 
problem. 

e. (A)--4 



390 D S Chandrasekharaiah 

(ii) For waves of  wave length which is very large compared to the thickness oft l le 
stratum (7 T-+0), eq. (24) tends to 

(~~/~ ( ;00 lz 1 1 $1 ~1 + y /zo 1--  = 0  

This equation does not yield a relevant root for Vexcept in the special case S O = S t. 
Accordingly in this particular case the wave motion is not possible in general. 
This is in contrast to the corresponding classical case where waves can propagate 
with speed tending to S 1. 

(iii) Ir the two bodies L t and L 2 are of  the same material, we easily verify that 
eq. (24) has no relevant solution and therefore the wave motion of  the desired type is 
not possible. 

5. Computation of normal stresses 

From eqs (6) we have the two normal stresses, viz., 2~s~1 and 2/.�91 identieally zero. 
The other normal stress, viz., 2/~s22 is given, with the help of  eqs (8), (11) and (14) to 
(16), by 

2/, s=~ = [(F=') ~ - -  y2 F=I exp {2iy (x--Vt)} in L,, (35) 

where 

F1 _ 2Aa b�91 pz exp [--  (2p2T + piz)] (36) 
q p~ + 7 ~ (q o--po V~) 

and F~:-A2 [exp (p2z)+ I~~P2--~~(tz~176 {--pz(z+2T))] (37) 
/~~ P2 + Y~ (/%--Po V2) 

We easily verify that the normal stress 2/~szz is not zero identically in any of  the 
twobodies. This is in contrast to the corresponding pure elastie problem where aU 
the normal stresses vanish identically. 

In the case of  classical boundary, eqs. (35) to (37) reduce to 

where 

and 

2/zs2a = [(Fa') ~ --  V ~ Fa ~] exp (2 i r  (x--Vt)} 

F 1 = 2A2 exp [--(2paT + plz)] 

F, = A a [exp (p2 z) + exp {--P2 (z + 2T)}] 

in La 

These are meaningful only wken p~ is imaginary and ate identical with the 
expressions obtained by Paria (1958), apart from a ehange in the notation. 
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