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On Love waves in a stratified hypoelastic solid with material
boundary
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Abstract. Transverse surface waves in a half-space covered with a stratum of a
different material are investigated in the context of hypoelasticity of grade zero, taking
into account the surface stress effects on the boundary. It is found that the wave
motion is possible and that unlike in the corresponding problem with classical boundary,
the variation of amplitude in the stratum may be either periodic or exponential. When
the amplitude in the stratum is periodic, the motion is similar to that in a stratum
bounded on both sides by very deep layers of different elastic or hypoelastic materials.
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1. Introduction

The theory of hypoelasticity proposed and developed by Truesdell (1955a,b, 1956)
has aroused much interest due to its more realistic approach in studying the elasticity
theory, compared to the classical (Hookean) approach. This theory is non-linear
in nature and is based on the hypothesis that the components of the stress rate are
homogeneous linear functions of the components of the rate of deformation. If we
restrict our attention to the neighbourhood of the stress-free state and linearize the
constitutive equations of the hypoelasticity theory, we obtain the classical elasticity
theory. Several problems revealing interesting phenomena which characterize the
hypoelasticity theory have been considered by Noll (1955), Green (1956a,b), Thomas
(1957), Erickson (1958), Verma (1956a,b 1958), Paria (1958), Grioli (1962), Noli
and Truesdell (1964) and Chandrasekharaiah (1976).

In this paper, we consider one more interesting problem of hypo-elasticity. We
investigate here transverse surface waves (Love waves) in a half-space covered with a
stratum of uniform thickness of a different material, taking into account the surface
stress effects on the boundary.* This is precisely a reinvestigation of the problem
considered by Paria (1958) and is of considerable geophysical interest. We find that
the wave motion of the desired type is possible and that there exist two different
ranges for the phase velocity; for one of these ranges the variation of amplitude in
the stratum is exponential and for the other it is periodic. This is in contrast to
the result of Paria (1958) that the variation of amplitude in the stratum is necessarily
periodic for the waves to exist. We also find that when the variation of amplitude

*The corresponding problem in pure elasticity has been considered by the author in a separate
paper which is under publication.
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in the stratum js periodic, the motion is similar to the one in an infinite body consist-
ing of a stratum bounded on both sides by half-spaces of different material, and con-

clude that the effect of surface stresses on the boundary is equivalent to replacing the
free-space on the other side of the stratum by an appropriate haif-space.

2. Phase velocity equation

The equations governing the deformation of an isotropic hypo-elastic body of grade
zero, in the notation of cartesian tensors, are (Truesdell 1955a)
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In these equations v, is the velocity vector, 2us,; is the stress tensor with p as the
shear modulus of classical elasticity, v is the Poisson’s ratio, p is the mass per unit
volume and ¢ is time. We have assumed that the body forces are absent.

For transverse waves which propagate with wave length 2x/y and phase velocity ¥
in the positive x-direction, with displacement u, in the positive y-direction, we assume

u; =8,y F(z) exp [iy (x — V1) ] C))

The corresponding velocity vector is given by
4] Z%t;' + oy u = — iyVu,. &)

Equation (3) is now satisfied for p = constant. Also, eq. (1) yields

Sy =813 =853 =0 ©6)
Sia =% iy Fexp [iy (x—Vi) ] Y
Spp = — F[Y2F® — (F')*] exp [2iy (x—V1)] (8

Sp3 = % F'exp [iy (x—V1) ] ®
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Equation (2) yields with the help of egs. (4) to (9), the general solution for the
amplitude function F(z) in the form

F(z) = A exp (pz) + B exp (—p2)

23 10
where p='y(1 ——?2) , S2=ypfp (10)

and A, B are arbitrary constants; S represents the speed of solenoidal waves in the
body.

We assume that the half-space occupies the region z>0 and the stratum occupies
the space —T<z<<0. We denote these two bodics by L, and L, respectively and
suffix all quantities associated with the body L, with @, a =1, 2. Then for waves
whose intensity falls off at a large distance from the stratum, we take the general
solution for F(z) in L, in the form (vide, eqs (10))

Fi(2) = B exp (—p12) inL
F(z) — S 1 1 1 i 1
(2) = { Fy(z) = Ay exp (ps2) + By exp (—py?) in L, (D
where
122
P :y(l _S_2) with py>0 (12)

and B,, 4, and B, are arbitrary constants.

With the expressions for F (z) given by (11), eqs (4) to (9) determine the displace-
ments, velocities and stresses developed in the bodies L,, when B,, A, and B, are
known.

We assume that there is welded contact between the bodies along the interface
z=0 and that z= — T is a °material boundary’ — boundary which supports
surface stresses (Gurtin and Murdoch 1975; Murdoch 1976). Then the appropriate
boundary conditions for the problem are:

(i) F(z) and 2 us,4 are continuous on z =0, and

G) 2 psig + 24, =po [%—? + Vi "J] onz=—T

where p, is the mass per unit area and X,, are the surface stresses on z = —T;
2,. are given by (Murdoch 1976)

Z.p = 8.p [c + (Ao+°) “:,:] + pot, s + (l"o'""’) Ug,a
Zgs =0 Uz (13)

where o is the ‘ residual surface tension’ and Ay, u, are the Lame’ moduli of the
material boundary at z = — T,
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In the absence of X;, and p, our problem reduces to that considered by Paria
(1958).

With the help of egs (4) to (9), (11) and (13), the above boundary conditions yield
the following three equations.

B]. = Az + Bz (14)
paP1By + pope (4y — By) =0 135

[72 (o —poV ®)—paDs] Ag €T + [y (ug—poV' D) +p2p,] B eP2T = 0. (16)

These equations determine the required constants B;, 4, and B,, provided these
are consistent. The condition for consistency simplifies to

__ Bapofppy + Y (to—po¥?)] a7

tanh p,T = 5
[a®Pe® + 1Py (po—po V2]

This equation determines ¥ when the expressions for p, and p, are substituted from
eq. (12).

We have assumed that p,>0 or equivalently, ¥'<S, which is necessary for the
waves of the desired type to exist. Equation (12) suggests that the following cases
are to be considered: (i) p, =0 which corresponds to ¥V = S,, (ii) p,>0 which
corresponds to ¥V'<S,, and (iii) p, is purely imaginary, which corresponds to ¥> S,.
It follows from eq. (11) that the amplitude in the stratum is constant in case (i),
exponential in case (ii) and periodic in case (iii), provided the waves exist.

We readily verify that p, = 0 is a root of eq. (17) and corresponding to this root
we get from egs (14) and (15), B, =0. It follows therefore that in case (i) the waves
can exist only in the stratum and can propagate with uniform amplitude and phase
velocity.

We consider the cases (ii) and (iii) separately in the following sections.

3. Waves with exponential amplitude in the stratum

We first consider the case p, > 0. In this case the waves, if they exist, propagate
with exponential amplitude in the stratum.

In the problem with classical boundary we have (Murdoch 1976) py = py =0
and our problem reduces to that considered by Paria (1958). We readily verify that
in this case eq. (17) yields no relevant solution for V. Accordingly, the Love waves
with exponential amplitude in the stratum cannot exist under the classical boundary
condition.

We now assume that u, # 0 and p, # 0 and rewrite eq. (17) in the form

2 —0. V)= _’szz[nu'lpl + P2p2 tanh‘ (pzT)] 18)
Y to=r?) papy tanh (peT) + pope (

We easily see that this equation admifs a real root for V that is greater than S,
where S, =(/J..,/p,,)ir which may be called the ‘speed of solenoidal waves on a
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material boundary’, in view of its similarity with S. Accordingly, the waves with
exponential amplitude in the stratum can exist whenever S, is less than both S, and
S;. We may therefore write down the range for phase velocity in the present case in
the form

S, < V < min (Sy, Sy) (19)

It may be noted that S, can be greater than S; in the present case which is in con-
trast to the Paria’s (1958) case where S, is to be less than S, for the waves to exist.

From eq. (18) we also note that ¥ depends on y in general and therefore there is
dispersion.

We now consider some limiting cases.

(i) When the wave length is very small compared to the thickness T of the stratum,
we have y T— co. Equation (18) then tends to

vho(1 = 22) + s ( —Kz)&=o @0)

2
0 S2

which yields exactly one root in the range S,<V'<S,. Accordingly in this particu-
lar case the wave motion can take place only if S3<CS;.

(i) When the wave length is very large compared to the thickness of the stratum,
we have y T— 0. Equation (18) then tends to

e R R ) FL

This equation yields two roots ; one of these is equal to S, and the other lies in the
range S,<V<S,. Accordingly in this particular case the wave motion can take
place in two modes; one of these propagates with phase velocity tending to Sy,
provided S, < S, and the other propagates with phase velocity greater than S,
provided S; < S;. Both these modes can exist only when §; = S,.

(iii) When the stratum and the half-space are of the same material, we have y, =,
and p,=p, and the entire body reduces to a single half-space in the region z > —T.
Equation (18) then reduces to

2\ pe
91(1 “"S—]—z) + ‘)’F'o(l "‘S—.("z) =0 22)

which admits a root for ¥ in the range S, < § < S, and therefore the wave motion
is possible in this case also. This is analogous to the result obtained by Murdoch
(1976) on the existence of Love waves in a pure elastic half-space.

4, Waves with periodic amplitude in the stratum

We now consider the case of imaginary p, and put p, = iq, where

y2 )
q2=y(§_2—-1) >0 @3

2
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In this case the waves, if they exist, propagate with periodic amplitude in the

stratum.
Equation (17) now reduces to

Bedz [Py + 72 (kg — ppV?) ] (24)

tang, T =
[pePqe® — papy ¥? (g — PV ]

In the case of classical boundary condition (u, = p, = 0) this reduces to the phase
velocity equation obtained by Paria (1958), viz.,

gqs tan g =y py %)
which yields a real root for ¥ in the range

Sy <V <S8, (26)

showing that the wave motion is possible only when S, < ;.
We now assume that p, # 0, pp # 0 and rewrite eq. (24) in the form

92557 [p1015:2 + poPoSy’]
tan (¢, T) = 2 - (27)
! [p22q22S5" — pop1 PoP1S*S1
where
ya\d Vat
Po‘:'}’(l"‘s—oz) ~P0=Po'}’(1—'§;§) (28)

Equation (27) is strikingly similar to the equation

P?.q2S22 [Plplsl2 + P3p3S32] (29)
[02?2,%S;* — p1ps P1P3S1%S5%)

tan (¢,T) =

obtained by Stoneley (1924) in the pure elastic case and by the present author (1976)
in the hypoelastic case, apart from a change in notations, for the phase velocity of
transverse surface waves in an infinite body with three layersin z> 0, — T <z <0
and z < —T; in this equation p, denotes the mass density of the half-space L; which
occupies the space z < — T, S5 denotes the speed of solenoidal waves in Lg, p; is
given by

yz\}
P3:)’(1"§—2) (30
3

and other symbols are as defined in the earlier paragraphs. The associated displace-
ment in L, is given by

Uy = By Fy(z) exp [iv (x— Vt)]% 3
where Fy(z) = 45 exp (p32)

A, being a constant.
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It has been shown (Stoneley 1924) that the waves governed by eq. (29) can exist
when V satisfies the inequality

Sy < V < min (S}, Sg).

The similarity between eqs (27) and (29) enables us to conclude that the waves
considered by us can exist when V satisfies the inequality

S, < V < min (Sp, Sy). (32)

This, however, may also be proved directly.

Thus the wave motion in our problem with periodic amplitude in the stratum is
possible whenever S, is less than both S; and S;. Further, the waves are dispersive
as in the previous case. Comparing the inequality (32) with (26) which holds in the
case of classical boundary condition, we may conclude that the surface stresses on
the boundary have their effect in reducing the upper bound of ¥ when §; < S;.

When the wave motion is possible, we have from (28) and (32), p, and p> 0. If
we define Fy(z) by the relation

Fy(z) = Ay exp (pyz) (33)
where 4, is a constant, we readily verify that
u; = 83 Fy(z) exp [iy (x—V1)] (34

satisfies eq. (2), provided p =g, Where [y =p, [1 —(V2/SP]t and § =S,
Accordingly eqs (33) and (34) determine a solution of the form (31) in the fictitious
halfspace(elastic or hypo-elastic) of shear modulus p, and mass density p, and occupy-
ing the region z < —T.

It follows therefore that when the amplitude in the stratum is periodic the wave
propagation considered by us through the half-space L, and the stratum L, with
material boundary is identical with that considered by Stoneley (1924) in an infinite
body consisting of the layers Ly, L, and L,, provided the half-space L, is replaced by
the fictitious half-space L,. In other words, the effect of having a material
boundary z = --T is equivalent to having the classical boundary at z = —T
together with a half-space occupying the other side of the stratum, viz., z < —T,
when the amplitude in the stratum is periodic.

We now consider some limiting cases.

(i) For waves of wavelength which is very small compared to the thickness of the

stratum (yT— o0), €q. (24) tends to

pr\d | & vy
Hll‘o')’(l’“g;g) (1_‘3“2)+ p® (1—3?2) =0

0

In the problem with classical boundary ¥ = S, is a root of this equation, while in
the present problem the root will be greater than S,. Accordingly in this particular
case the waves travel with greater phase velocity than their counterparts in the classical

problem.

P. (A)y—4
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(ii) For waves of wave length which is very large compared to the thickness of the
stratum (y T->0), eq. (24) tends to

ve\b p2
m(1=g) (i) =0

1 0

This equation does not yield a relevant root for ¥V except in the special case S, = S.
Accordingly in this particular case the wave motion is not possible in general.
This is in contrast to the corresponding classical case where waves can propagate
with speed tending to S,.

(iii) If the two bodies L, and L, are of the same material, we easily verify that
eq. (24) has no relevant solution and therefore the wave motion of the desired type is
not possible.

5. Computation of normal stresses

From eqs (6) we have the two normal stresses, viz., 2us,; and 2us,q identically zero.
The other normal stress, viz., 2us,, is given, with the help of eqgs (8), (11) and (14) to

(16), by

2u Sg = [(Fy')* — o F,?] exp {2iy (x—Vt)} in Lg (35)
where
245 ps Py
= exp [— (2p.T + p,2)] (36)
U Pt ¥ (to—pe VD v
—Y*(te—po V)
and F,=A4 [exp (pyz)+ 2PV WP ) oy £ b (z4+-2T) ] 37
: 2 : a Pa+ 2 (e —poV?) { ? }

We easily verify that the normal stress 2us,, is not zero identically in any of the
twobodies. This is in contrast to the corresponding pure elastic problem where all
the normal stresses vanish identically.

In the case of classical boundary, egs. (35) to (37) reduce to

2890 = [(F5')? — 2 F?] exp {21")/ (x-—Vt)} inLg
where F, =24, exp [—(2p,T + p,2)]
and Fy = Ay [exp (py2) -+ exp {—p, (z + 27)}]

These are meaningful only when p, is imaginary and are identical with the
expressions obtained by Paria (1958), apart from a change in the notation.
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