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a b s t r a c t

In any bipartition of a quantum state, it is proved that the negative values of the conditional
version of sandwiched Tsallis relative entropy necessarily imply quantum entanglement.
For any N , the separability ranges in the 1 : N − 1 partition of symmetric one parame-
ter families of noisy N-qubit W - , GHZ-, WW̄ states are determined using the conditional
quantum relative Tsallis entropy approach. The 1 : N − 1 separability range matches ex-
actly with the range obtained through positive partial transpose criterion, for all N . The
advantages of using non-commuting version of q-conditional relative Tsallis entropy are
brought out through this and other one-parameter families of states.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It iswell known that entropic characterization of separability captures the local versus global disorder ofmixed composite
states and serves as a convenient tool in identifying bipartite separability range in several one-parameter families of states
ρ(x) [1–10]. The quantum versions of more generalized entropies such as Rényi and Tsallis entropies are found to yield
better separability range than those obtained through von-Neumann entropy [3–8]. In fact, positivity of Tsallis conditional
entropy is found to capture global vs local disorder inmixed statesmuch better than that through von-Neumann conditional
entropy leading to stricter range of separability [3–9].

Making use of the quantum generalization of Rényi relative entropy to the situationwhen the pair of densitymatrices are
noncommuting [11–13], an analogous generalization to Tsallis relative entropy and its conditional version are obtained in
Ref. [10]. This generalization was done in anticipation of the fact that the conditional version of generalized Tsallis relative
entropy is more effective in identifying entangled states than its traditional commuting version.

The so-called ‘sandwiched’ Tsallis relative entropy [10] is given by

D̃T
q (ρ ∥ σ) =

Tr


σ
1−q
2q ρ σ

1−q
2q

q


− 1

q − 1
(1)
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quite on the same lines of the definition of generalized version of quantum relative Rényi entropy [11–13]. It reduces to the
traditional relative Tsallis entropy

DT
q (ρ ∥ σ) =

Tr

ρqσ 1−q


− 1

q − 1
, (2)

when σ and ρ commute with each other. It is useful here to note the Lieb–Thirring inequality D̃T
q (ρ ∥ σ) ≤ DT

q (ρ ∥ σ).
The conditional version of D̃T

q (ρ ∥ σ) is defined as [10]

D̃T
q (ρAB ∥ ρB) =

Q̃q(ρAB ∥ ρB) − 1
1 − q

(3)

where

Q̃q(ρAB ∥ ρB) = Tr


(IA ⊗ ρB)
1−q
2q ρAB(IA ⊗ ρB)

1−q
2q

q


. (4)

In fact, D̃T
q (ρAB ∥ ρB) reduces to the Abe–Rajagopal (AR) q-conditional Tsallis entropy [3]

STq (A|B) =
1

1 − q


Trρq

AB

Trρq
B

− 1


(5)

when the subsystem density matrix ρB is a maximally mixed state, thus commuting with ρAB. The AR q-conditional entropy
STq (A|B) is known to reduce to the von-Neumann conditional entropy in the limit q → 1 [3]. Making use of the fact that
STq (A|B) < 0 for entangled states, STq (A|B) is found to be more efficient than von-Neumann conditional entropy in detecting
entangled states in the limit q → ∞ [3]. The AR criterion has been employed to examine separability of several classes of
composite states [3–9]. Though the AR criterion provides a better separability criterion than the one using von-Neumann
conditional entropy [3,5,8], in some cases [8] the separability range obtained through AR criterion is found to be larger
than that obtained through Peres’ PPT criterion [14], thus making AR-criterion weaker in comparison with PPT criterion.
A closer examination revealed that [10] such cases correspond to the situations where the subsystem density matrix ρB is
not maximally mixed thereby not commuting with its original density matrix ρAB. An entropic criterion which takes into
account the aspect of non-commutativity of subsystem densitymatrices with their original densitymatrices was thus found
necessary. This aspect has been addressed in Ref. [10] using the non-commuting version of Tsallis relative entropy and its
conditional version.

The criterion which makes use of the Conditional version of Sandwiched Tsallis Relative Entropy (CSTRE), the so-called
CSTRE criterion, detects entanglement in a state using negative values of the quantity D̃T

q (ρAB ∥ ρB) =
Q̃q(ρAB∥ρB)−1

1−q in the

limit q → ∞, quite similar to AR-criterion. As D̃T
q (ρAB ∥ ρB) reduces to AR q-conditional entropy in situations where ρB is

maximally mixed and hence commuting with ρAB, the results of AR- and CSTRE-criterion match with each other whenever
ρB corresponds to a maximally mixed state. The CSTRE criterion has been employed to identify the separability range in
the 3-, 4- qubit one parameter families of noisy W-, GHZ- states in Ref. [10]. Stricter separability range than that obtained
through AR q-conditional entropy [3] is seen to be achievable, in the case of one-parameter family of noisy W states [10],
using the CSTRE criterion. Also, in the 1 : 2 and 1 : 3 partitions of 3-, 4- qubit one-parameter families of W-, GHZ- states,
the separability range is seen to match exactly [10] with that through Peres’ PPT criterion [14]. Our aim here is to identify
the 1 : N − 1 separability ranges in the symmetric one-parameter families of N-qubit noisy mixed states using the CSTRE
criterion and examinewhether itmatcheswith the results of PPT criterion.We also examine several different one-parameter
families of states and illustrate the utility of CSTRE criterion in identifying bipartite entangled states.

The article is organized as under: Section 1 gives a brief reviewof the entropic separability criteria, defines the conditional
version of sandwiched relative Tsallis entropy as the non-commuting generalization of AR-q conditional entropy criterion
and details themotivation for the presentwork. In Section 2we prove an important theorem authenticating the use of CSTRE
in detecting quantum entanglement in any bipartite quantum state. In Section 3, divided into three subsections, we obtain
the separability range in the 1 : N − 1 partition of symmetric N-qubit noisy states using the CSTRE criterion and show that they
match exactly with that through PPT criterion (Sections 3.1 and 3.2). Section 3.3 discusses the use of conditional version of
Renyi relative entropy in identifying entangled states and contains an account of other types of states that can be dealt with
using CSTRE criterion. Section 4 gives a summary of the work as well as future problems of interest in this framework.

2. Sufficient condition for quantum entanglement in terms of conditional version of sandwiched Tsallis relative
entropy

Before proceeding to make use of the non-commuting version of Tsallis relative entropy D̃T
q (ρAB ∥ ρB) for N-qubit states,

we wish to establish that ‘negative values of D̃T
q (ρAB ∥ ρB) in any bipartition of a composite state ρAB indicates entanglement in

that bipartition’. Our use of the conditional version of ‘sandwiched’ (non-commuting) Tsallis relative entropy, in identifying
entanglement in bipartite quantum states, is thus best exemplified through the following theorem.
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Theorem. Negative values of the conditional version of the sandwiched Tsallis relative entropy (CSTRE) D̃T
q (ρAB ∥ ρB)with q > 1

necessarily imply entanglement in the state ρAB.

Proof. We know that for any two positive semi-definite operators ρ and σ , the trace functional [15] Q̃q(ρ ∥ σ) =

Tr


σ
1−q
2q ρσ

1−q
2q

q

satisfies the inequality [15]

Q̃q(ρ ∥ σ) ≤ Q̃q(ρ ∥ ρ) for q > 1 whenever ρ ≤ σ . (6)

Notice that when ρ is a density matrix, Q̃q(ρ ∥ ρ) = Tr ρ = 1 implying that

Q̃q(ρ ∥ σ) ≤ 1 when ρ ≤ σ and q > 1. (7)

With ρ = ρAB, σ = IA ⊗ ρB and Q̃q(ρAB ∥ IA ⊗ ρB) ≡ Q̃q(ρAB ∥ ρB), Eq. (7) gives

Q̃q(ρAB ∥ ρB) = Tr


(IA ⊗ ρB)
1−q
2q ρAB(IA ⊗ ρB)

1−q
2q

q


≤ 1 when ρAB ≤ IA ⊗ ρB and q > 1. (8)

We now recall that, for all separable states ρAB,

ρAB − (IA ⊗ ρB) ≤ 0 (9)

according to reduction criterion [16]. Thus, as ρAB ≤ IA ⊗ ρB for all separable states ρAB, we have

Q̃q(ρAB ∥ ρB) ≤ 1 whenever q > 1. (10)

It can now be readily seen that D̃T
q (ρAB ∥ ρB) =

Q̃q(ρAB∥ρB)−1
1−q with q > 1 is non-negative for all separable states. In other

words, negative values of the conditional version of sandwiched Tsallis relative entropy (CSTRE) D̃T
q (ρAB ∥ ρB) (q > 1)

indicate entanglement in the state ρAB thus proving the theorem.

Through Theorem, we have established that ‘negativity’ of CSTRE (D̃T
q (ρAB ∥ ρB) (q > 1)) is a ‘sufficient criterion’ for the

bipartite state ρAB to be entangled. Wemake use of this fact and in one-parameter family of symmetric states we identify the
value of the parameter x at which D̃T

q (ρAB ∥ ρB) (q > 1) changes from positive to negative or vice versa in the limit q → ∞.
In other words, we identify the ‘zero(s)’ of D̃T

q (ρAB ∥ ρB) when q → ∞ and separability range(s) of the state ρAB correspond
to the range(s) of the parameter x in which D̃T

q (ρAB ∥ ρB) ≥ 0 in the limit q → ∞.

3. One parameter families of symmetric N-qubit mixed states

The symmetric one parameter family of noisy N-qubit mixed states is given by

ρN(x) =


1 − x
N + 1


PN + x|ΦN⟩⟨ΦN | (11)

with PN =
 N

2
M=−

N
2

N
2 , M

 N
2 , M

 is the projector onto the N + 1 dimensional maximal multiplicity subspace of the

collective angular momentum of N-qubits, |N2 , M⟩ being the basis states of this subspace. |ΦN⟩ is any pure state belonging
to this symmetric subspace. Notice that x is a parameter lying in the range [0, 1] andwhen x = 0 the stateρN(x) ismaximally
mixed (in the symmetric subspace) whereas it is a pure state |ΦN⟩ when x = 1. The separability range of one parameter
family ofmixed states refers to the range of values x in which the state ρN(x) is separable, in a chosen bipartition of the state.
The separability ranges differ for each bipartition and in this work we analyze the 1 : N − 1 bipartition of the state ρN(x).

3.1. One-parameter family of noisy W states

We have the symmetric one-parameter family of noisyW states

ρ
(W )
N (x) =


1 − x
N + 1


PN + x|WN⟩⟨WN | (12)

where |WN⟩ ≡
N
2 , N

2 − 1

is one among the basis states of the N + 1 dimensional symmetric subspace of collective angular

momentum. We recall here that using the Abe–Rajagopal q-conditional entropy [3], the separability range of the 3-qubit
state ρ

(W )
3 (x), in its 1 : 2 partition, is found to be [0, 0.2] while the PPT criterion gives the stricter separability range

[0, 0.1547] [8,10]. In the 1 : 3 partition of the 4-qubit state ρ
(W )
4 (x) also, the AR criterion leads to the weaker separability
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Table 1

The non-zero eigenvalues λi of the sandwiched matrix (IA ⊗ ρB)
1−q
2q ρ

(W )
N (x)(IA ⊗ ρB)

1−q
2q for N = 3–6.

Number of
qubits (N)

λ1 (N − 2) fold
degenerate

λ2 λ3 λ4

N = 3
 1−x

4

  1−x
3

 1−q
q

 1−x
4

  1
3

 1−q
q

 1−x
4

  1
3

 1
q


(1 − x)

1−q
q + 2(1 + x)

1−q
q

  1+3x
4

  1
3

 1
q


1 + 2(1 + x)

1−q
q


N = 4

 1−x
5

  1−x
4

 1−q
q

 1−x
5

  1
4

 1−q
q

 1−x
5

  1
4

 1
q


2(1 − x)

1−q
q + 2(1 + 2x)

1−q
q

  1+4x
5

  1
4

 1
q


1 + 3(1 + 2x)

1−q
q


N = 5

 1−x
6

  1−x
5

 1−q
q

 1−x
6

  1
5

 1−q
q

 1−x
6

  1
5

 1
q


3(1 − x)

1−q
q + 2(1 + 3x)

1−q
q

  1+5x
6

  1
5

 1
q


1 + 4(1 + 3x)

1−q
q


N = 6

 1−x
7

  1−x
6

 1−q
q

 1−x
7

  1
6

 1−q
q

 1−x
7

  1
6

 1
q


4(1 − x)

1−q
q + 2(1 + 4x)

1−q
q

  1+6x
7

  1
6

 1
q


1 + 5(1 + 4x)

1−q
q



range [0, 0.1666] compared to the range [0, 0.1123] obtained through PPT criterion. An observation of the fact that the
single qubit density matrix of ρ(W )

N (x) is not maximally mixed led Rajagopal et al., [10] to make use of the non-commuting
version of the Tsallis relative entropy [11,12] to obtain a better separability range for the case under examination. They
proposed the conditional version of the sandwiched Tsallis relative entropy [10] (CSTRE) D̃T

q (ρAB ∥ ρB) and examined the
range in which it is negative in the limit q → ∞. Quite in accordance with the expectations, the CSTRE criterion resulted in
a better separability range [10] than that through AR criterion and it even matched with the 1 : 2, 1 : 3 separability ranges
of ρ(W )

3 (x), ρ(W )
4 (x) obtained through PPT criterion.

Continuing further with the use of AR criterion, the 1 : N − 1 separability range of the one-parameter family of noisy W
states has been obtained in Ref. [8] and it is found to be

0 ≤ x <
1

N + 2
(13)

for anyN ≥ 3 [8]. This has been a generalization of their result for ρ(W )
3 (x), ρ(W )

4 (x), in their respective 1 : N−1 partitions, to
ρ

(W )
N (x). As we have seen that [10] for 3- and 4-qubit noisy W states the CSTRE criterion yields a stricter separability range

than that obtained through AR criterion, our immediate interest is to generalize the CSTRE separability range to N-qubit
states ρ

(W )
N (x), in their 1 : N − 1 partition, for any N ≥ 3. We carry that out in the following.

In order to find the 1 : N − 1 separability range of the state ρ
(W )
N (x), we need to evaluate the eigenvalues λi of the

‘sandwiched’matrix (IA⊗ρB)
1−q
2q ρ

(W )
N (x)(IA⊗ρB)

1−q
2q , (ρB = TrA ρAB being the subsystemdensitymatrix ofρAB corresponding

to N − 1 qubits) so that (See Eq. (4)) Q̃q(ρ
(W )
N (x) ∥ ρB) =

N+1
i=1 λ

q
i and

D̃T
q (ρ

(W )
N (x) ∥ ρB) =

N+1
i=1

λ
q
i − 1

1 − q
. (14)

Here, as our interest is to find out the 1 : N − 1 separability range we have taken the subsystems A, B to correspond
respectively to a single qubit and the remaining N − 1 qubits (the state ρ

(W )
N (x) is symmetric and it does not matter which

qubit we take as subsystem A). According to CSTRE criterion, the 1 : N − 1 separability range of ρ
(W )
N (x) is the range in which

the parameter x gives non-negative values for D̃T
q (ρ

(W )
N (x) ∥ ρB), in the limit q → ∞.

The non-zero eigenvalues λi, i = 1, 2, . . . ,N + 1 being crucial in the evaluation of D̃T
q (ρ

(W )
N (x) ∥ ρB), we examine the

form of these eigenvalues when N = 3, 4, 5, 6 to analyze whether a generalization to the case of any N is possible. We

explicitly evaluate the eigenvalues λi of the sandwiched matrix (IA ⊗ ρB)
1−q
2q ρ

(W )
N (x)(IA ⊗ ρB)

1−q
2q when N = 3, 4, 5, 6 and

the following table (Table 1) provides the non-zero eigenvalues.
An explicit evaluation of the four eigenvalues for arbitrary N is tedious and so we notice the trends of each eigenvalue

presented in the columns of Table 1 with increasing N = 3, 4, 5, 6. This clearly suggests the nature of eigenvalues for any
N and they are given below.

λ1 =


1 − x
N + 1

 
1 − x
N

 1−q
q

, (N − 2) fold degenerate;

λ2 =


1 − x
N + 1

 
1
N

 1−q
q

,

λ3 =


1 − x
N + 1

 
1
N

 1
q 

(N − 2)(1 − x)
1−q
q + 2(1 + (N − 2)x)

1−q
q


, (15)
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Fig. 1. (Color Online) The conditional form of sandwiched Tsallis relative entropy D̃T
q (ρ

(W )
8 (x) ∥ ρB) for one-parameter family of 8-qubit W-states as a

function of x for different values of q. It can be seen that D̃T
q (ρ

(W )
8 (x) ∥ ρB) is negative for x > 0.4246when q = 1 (separability range through von-Neumann

conditional entropy), whereas it is negative for x > 0.0538 in the limit q → ∞ (separability range through CSTRE criterion). Observe that the range of
values of x for which D̃T

q (ρ
(W )
8 (x) ∥ ρB) is non-negative becomes smaller as q > 1 becomes larger and is the smallest when q → ∞. All the quantities are

dimensionless.

λ4 =


1 + Nx
N + 1

 
1
N

 1
q 

1 + (N − 1) (1 + (N − 2)x)
1−q
q


.

On making use of the values of λi, i = 1, 2, 3, 4, we identify the zero(s) of CSTRE D̃T
q (ρ

(W )
N (x) ∥ ρB) (See Eq. (14)) for any

N in the limit q → ∞. It can be seen that D̃T
q (ρ

(W )
N (x) ∥ ρB) is a monotonically decreasing function for all values of N and

q > 1. In the limit q → ∞, the only zero of D̃T
q (ρ

(W )
N (x) ∥ ρB) occurs at the value x =

−N+
√
2N(N−1)

N(N−2) . Thus, the separability

range obtained through CSTRE, in the 1 : N − 1 partition, of the state ρ
(W )
N (x) (N ≥ 3) is found to be

0 ≤ x ≤
−N +

√
2N(N − 1)

N(N − 2)
. (16)

Note that Eq. (16) is different from the AR result in Eq. (13). We assert here that it is the non-commutativity of the single
qubit marginal given by ρ1 = ρ2 = · · · ρN = diag


N+(N−2)x

2N , N−(N−2)x
2N


with ρ

(W )
N (x) that results in a stricter separability

range through CSTRE criterion compared to its commuting version, the AR criterion. Also one can immediately recover the range
(0, 0.1547), (0, 0.1123) respectively for the states ρ

(W )
3 (x), ρ(W )

4 (x) using the relation Eq. (16) and this is in accordancewith
the range obtained using the CSTRE criterion directly for the 3-, 4- qubit states ρ

(W )
3 (x), ρ(W )

4 (x) in Ref. [10]. We also obtain
the separability ranges (0, 0.0883), (0, 0.07275) in the 1 : 4, 1 : 5 partitions respectively for the 5- and 6- qubit states of
the family of noisyW states. We have verified that these separability ranges (forN = 3, 4, 5, 6)matchwith those obtained
through PPT criterion. We can thus conjecture that the CSTRE separability range in Eq. (16) for the 1 : N − 1 partition of the
states ρ

(W )
N (x) is also the PPT separability range.

In Fig. 1 we have illustrated the nature of variation of D̃T
q (ρ

(W )
8 (x) ∥ ρB) with q as well as x and the identification of the

1 : 7 separability range for the one-parameter family of 8-qubit noisy W state ρ
(W )
8 (x). It is worth observing that the range

of x in which D̃T
q (ρ

(W )
8 (x) ∥ ρB) is non-negative becomes smaller as q increases. In fact, at q = 1, we get the separability

range through von-Neumann conditional entropy, which ismuch larger than the separability range obtained through CSTRE
criterion in the limit q → ∞. Fig. 2 compares the separability range obtained through AR criterion with the one through
CSTRE criterion.

From Eq. (16) and the discussion following it, it can be readily seen that the 1 : N − 1 separability range of ρ
(W )
N (x)

reduces considerably with the increase in N . Thus, for large N (macroscopic limit), one can expect that a single qubit and its
remaining N − 1 qubits are entangled for the whole range 0 ≤ x ≤ 1 in the state ρ

(W )
N (x).

3.2. One-parameter family of noisy GHZ states

We now examine the one-parameter family of noisy GHZ states

ρ
(GHZ)
N (x) =


1 − x
N + 1


PN + x|GHZ⟩N⟨GHZ | (17)

in order to find their 1 : N − 1 separability range, using CSTRE criterion. In fact, in Ref. [10] it has been shown that for 3-
and 4-qubit states ρ

(GHZ)
N (x), their respective 1 : N − 1 separability ranges obtained using CSTRE criterion matched exactly
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Fig. 2. (Color Online) Implicit plot of D̃T
q (ρ

(W )
8 ∥ ρB) = 0 as a function of q (solid line) indicating that x → 0.0538 as q → ∞. In contrast, the implicit plot

of Abe–Rajagopal q-conditional entropy STq (A|B) = 0 (dashed line) leads to x → 0.1 as q → ∞. The quantities plotted are dimensionless.

Table 2

The eigenvalues µi of the sandwiched matrix (IA ⊗ ρB)
1−q
2q ρ

(GHZ)
N (x)(IA ⊗ ρB)

1−q
2q for N = 3, 4, 5, 6.

Number of qubits (N) µ1 (N − 3)-fold degenerate µ2 µ3 µ42-fold degenerate

N = 3 –
 1−x

4

  2+x
6

 1−q
q

 1+3x
4

  2+x
6

 1−q
q

 1−x
4

  1
3

 1
q


2(1 − x)

1−q
q + (1 + x/2)

1−q
q


N = 4

 1−x
5

  1−x
4

 1−q
q

 1−x
5

  1+x
4

 1−q
q

 1+4x
5

  1+x
4

 1−q
q

 1−x
5

  1
4

 1
q


3(1 − x)

1−q
q + (1 + x)

1−q
q


N = 5

 1−x
6

  1−x
5

 1−q
q

 1−x
6

  2+3x
10

 1−q
q

 1+5x
6

  2+3x
10

 1−q
q

 1−x
6

  1
5

 1
q


4(1 − x)

1−q
q + (1 + 3x/2)

1−q
q


N = 6

 1−x
7

  1−x
6

 1−q
q

 1−x
7

  1+2x
6

 1−q
q

 1+6x
7

  1+2x
6

 1−q
q

 1−x
7

  1
6

 1
q


5(1 − x)

1−q
q + (1 + 2x)

1−q
q



with that through AR and PPT criteria. We now wish to generalize this result to N-qubit states ρ
(GHZ)
N (x) and our method is

similar to the one adopted for one parameter family of noisyW states in the previous section.

The eigenvaluesµi of the sandwichedmatrix (IA⊗ρB)
1−q
2q ρ

(GHZ)
N (x)(IA⊗ρB)

1−q
2q forN = 3–6 are given in Table 2. Here too,

there are only four distinct non-zero eigenvalues of the sandwichedmatrix, two ofwhich haveN−3 and 2-fold degeneracies
respectively. As in the case of ρ(W )

N (x), here too the calculation of the eigenvalues for general N is obtained by observing the
trends of each column in Table 2 for N = 3, 4, 5, 6. This leads to the four non-zero eigenvalues for all N and they are given
below;

µ1 =


1 − x
N + 1

 
1 − x
N

 1−q
q

, (N − 3)-fold degenerate;

µ2 =


1 − x
N + 1

 
2 + x(N − 2)

2N

 1−q
q

,

µ3 =


1 + Nx
N + 1

 
2 + x(N − 2)

2N

 1−q
q

, (18)

µ4 =


1 − x
N + 1

 
1
N

 1
q

(N − 1) (1 − x)

1−q
q +


1 +


N
2

− 1

x
 1−q

q


2-fold degenerate.

The eigenvalues µi in Eq. (18) allow us to find the value of D̃T
q (ρ

(GHZ)
N ∥ ρB) =

N+1
i=1 µ

q
i −1

1−q and the zero of the monotonically

decreasing function D̃T
q (ρ

(GHZ)
N ∥ ρB) is found to be at x =

2
N2+N+2

when q → ∞. We thus have the 1 : N − 1 separability

range of the state ρ
(GHZ)
N (x) using CSTRE criterion as

0 ≤ x ≤
2

N2 + N + 2
(19)

for any N ≥ 3. We recall here that, in Ref. [8], the separability range in the 1 : N −1 partition of the one parameter family of
GHZ states was found using AR q-conditional entropy criterion and itmatches exactly with Eq. (19). This is to be expected as,
the CSTRE criterion and AR criterion give the same results when the single qubit reduced density matrix turns out be a maximally
mixed state thus commuting with its original density matrix [10]. Such a situation occurs in the case of one parameter family
of noisy GHZ states [10] as the single qubit density matrix turns out to be IA/2, IA being the 2 × 2 identity matrix. Thus the
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Fig. 3. (Color Online) Implicit plots of D̃T
q (ρ

(GHZ)
6 ∥ ρB) = 0 as a function of q (solid line) and Abe–Rajagopal q-conditional entropy STq (A|B) = 0 (dashed

line) for ρ
(GHZ)
6 (x) in its 1 : 5 partition. The relatively slow convergence of the parameter x to 0.04545 with the increase of q in the case of CSTRE criterion

is readily seen. The quantities plotted are dimensionless.

results of CSTRE criterion match exactly with that of AR criterion in the case of one parameter family of noisy GHZ states.
But the difference between the CSTRE and AR criteria even in this case lies in the different modes of convergence of the parameter
x with the increase of q. In fact, x converges slowly to the limit 2/(N2

+ N + 2) when CSTRE criterion is used whereas the
convergence of x is relatively fast for AR criterion. We have illustrated this feature for ρ

(GHZ)
6 (x) in Fig. 3.

It is to be noticed that PPT criterion also gives the same 1 : N−1 separability range forN = 3, 4, 5, 6 for one-parameter
family of GHZ states. Therefore, we can conjecture that Eq. (19) gives the PPT separability range in the 1 : N − 1 partition of
the one parameter family of noisy GHZ states ρ

(GHZ)
N (x). We have also observed that for large N (macroscopic limit), x ≈

2
N2

for ρ
(GHZ)
N (x) and x ≈

√
2−1
N for ρ

(W )
N (x). Thus with the increase of N , the 1 : N − 1 separability range decreases much faster

for one parameter family of GHZ states than for one parameter family of W states.
It would be of interest to examine the state ρN(x) (See Eq, (11)) when |ΦN⟩ corresponds to the equal superposition ofW

and its obverse counterpart W̄ : We have ρ
(W+W̄ )
N (x) to be

ρ
(W+W̄ )
N (x) =


1 − x
N + 1


PN + x|WW̄ ⟩N⟨WW̄ |, (20)

|WW̄N⟩ =
1

√
2


|WN⟩ + |W̄N⟩


,

with |W̄N⟩ =
1

√
N

(|111 · · · 0⟩ + |111 · · · 01⟩ + · · · + |011 · · · 1⟩) being the obverse counterpart of the W state |WN⟩ =

1
√
N

(|000 · · · 1⟩ + |000 · · · 10⟩ + · · · + |100 · · · 0⟩). In fact, the 3-qubit GHZ state |GHZ3⟩ and |WW̄3⟩ are convertible into
one another through Stochastic Local Operations and Classical Communications (SLOCC). Both these states belong to the
family of three distinct Majorana spinors whereas the W-state |W3⟩ belongs to the family of two distinct Majorana spinors
[17]. In spite of belonging to the same SLOCC family, the entanglement features of |GHZ3⟩ and |WW̄3⟩ are shown to be quite
different in Ref. [17]. Such a feature is also reflected in the symmetric noisy states containing these states. While the single
qubit marginal of ρ(GHZ)

3 (x) is maximally mixed thereby yielding the strictest 1 : 2 separability range through AR-criterion

itself, the corresponding ρ1× I4 does not commutewith ρ
(W+W̄ )
3 (x) hence requiring CSTRE criterion for proper identification

of its 1 : 2 separability range. In fact, we have

ρ1 =
1
6


3 2x
2x 3


H⇒ ρ1 × I4 does not commute with ρ

(W+W̄ )
3 (x).

On identifying the 1 : 2 separability range of the symmetric state ρ
(W+W̄ )
3 (x) through AR-criterion, we find that it is given

by (0, 0.3333) which is evidently weaker compared to (0, 0.1896), the separability range obtained through CSTRE- as well
as PPT criteria. But the 1 : N − 1 separability range of the N-qubit state ρ

(W+W̄ )
N (x) where N ≥ 4, carried out through a similar

analysis as that for ρ
(W )
N (x), ρ(GHZ)

N (x) is found to be 0 ≤ x ≤
2

N2+N+2
for N ≥ 4. It can be readily seen that this is identical to

the 1 : N − 1 separability range for the state ρ
(GHZ)
N (x) (See Eq. (19)). The AR-criterion is also found to give the same 1 : N − 1

separability range 0 ≤ x ≤
2

N2+N+2
(N ≥ 4) forρ(W+W̄ )

N (x).Wehave verified that the equivalence of the 1 : N−1 separability

ranges for ρ
(W+W̄ )
N (x) through CSTRE- and AR-criteria when N ≥ 4 is due to the maximally mixed (hence commuting)

nature of single qubit density matrix of ρ(W+W̄ )
N (x) for N ≥ 4. Thus we can conclude that the 3-qubit symmetric noisy state

ρ
(W+W̄ )
3 (x) stands out in showing different entanglement features than its higher qubit counterparts ρ

(W+W̄ )
N (x),N ≥ 4.
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While the 1 : N −1 separability range of one parameter families of N-qubit states using CSTRE criterionmatched exactly
with that obtained through PPT criterion, similar conclusion cannot be drawn about separability ranges of other bipartitions
such as 2 : N − 2. For instance, the 2 : 2 separability range of ρ(W )

4 (x) using CSTRE criterion is found to be [10](0, 0.2105)
but PPT criterion yielded (0, 0.0808) as the 2 : 2 separability range of ρ(W )

4 (x). Similarly, for ρ
(GHZ)
4 (x) the 2 : 2 separability

ranges obtained through CSTRE and PPT criterion are found to be (0, 0.2105), (0, 0.0625) respectively. But an investigation
into bipartitions such as 3 : N−3 and so onmay yield results which are either identical, weaker or stricter than that through
PPT criterion. It is also to be noted here that PPT and CSTRE separability criteria are of entirely different origins and there
is no reason to expect that the separability ranges obtained through them match with each other in all bipartitions of an
N-qubit state. It is indeed surprising that the 1 : N − 1 separability ranges of one parameter families of states that we
have investigated here, obtained using PPT and CSTRE criterion, matched exactly with each other whereas the separability
ranges in other bipartitions may not do so. It is worth recalling here that CSTRE criterion is non-spectral in nature and is
able to distinguish between isospectral states [10]. In view of the fact that no spectral criteria can detect entangled states
with positive partial transpose [18], the so-called bound entangled states, it is worth examining whether CSTRE criterion
can detect bound entangled states by providing a separability range stricter than the PPT criterion. Having seen that CSTRE
criterion provides separability ranges either identical or weaker in comparison with PPT criterion, whether it can provide
a separability range stricter than that through PPT criterion in atleastsome bipartitions of the N-qubit state still remains an
open question.

It would be of interest to examine completely randommulti-qubit states and analyze the separability ranges in different
bipartitions, obtained through CSTRE and PPT criteria.While a numerical investigation on the set of all bipartitemixed states
has revealed [7] that PPT criterion is superior to AR criterion, a comprehensive numerical survey on the PPT as well as CSTRE
separability ranges in different bipartitions of random states is warranted in order to identify the hierarchy between CSTRE
and PPT criteria. Such a numerical survey, on the same lines as in Ref. [7], will also help in strengthening the results of the
present article.

3.3. Further illustrations and future directions

Having used the conditional version of sandwiched relative Tsallis entropy to find the separability range in symmetric one
parameter family of noisyW -, GHZ andWW̄ states, we have also examined the utility of conditional version of sandwiched
Rényi relative entropy in finding whether a bipartite state is entangled or not. We have found that both Tsallis and Rényi
entropies play the same role in the detection of bipartite entanglement in a quantum state.

The conditional version of sandwiched Rényi relative entropy is given by

D̃R
q(ρAB ∥ ρB) =

log

Q̃q(ρAB ∥ ρB)


1 − q

(21)

where Q̃q(ρAB ∥ ρB) is as shown in Eq. (4).We have evaluated the range of the parameter xwhere D̃R
q(ρAB ∥ ρB) is greater than

zero and observe that the same result as obtained through CSTRE is obtained for both ρ
(W )
N (x), ρ(GHZ)

N (x). This implies that
Rényi entropywhich is additive plays the same role as the non-additive Tsallis entropy in the identification of entanglement
in the symmetric one-parameter families of N-qubit states. One can expect that this feature remains true for all bipartite
states and one can either choose D̃R

q(ρAB ∥ ρB) (Eq. (21)) or D̃T
q (ρAB ∥ ρB) (Eqs. (3), (4)) for detecting bipartite entanglement.

At this juncture, we notice that in Ref. [13], a conditional version of Rényi relative entropy is defined by maximizing
over the marginal state ρB. While the results obtainable through such a maximization over ρB are of interest, in view of
the fact that it is operationally difficult to identify ρB that maximizes the conditional entropy (either Rényi or Tsallis), our
analysis here is restricted to the case of the actual marginal ρB of the bipartite state ρAB. It would be interesting to examine
the consequences of maximization over marginals in the detection of entanglement using conditional generalized entropies
(Rényi or Tsallis) and at present it remains an open problem.

We wish to mention here that the applicability of CSTRE is not restricted to the symmetric one-parameter family of noisy
W-, GHZ, WW̄ states. In fact, the CSTRE criterion is applicable for identifying any bipartite entangled state and one can use
it for obtaining the separability ranges in chosen bipartitions of several one-parameter, two-parameter families of states
including X states, cluster/graph states. An example of the use of CSTRE in identifying entanglement in an isospectral family
of 2-qubit X states is illustrated in Ref. [10]. Also the applicability of CSTRE is not restricted to composite quantum stateswith
two level systems (qubits) alone and it encompasses mixed composite states with qudits also. For instance, let us consider
the one parameter family of 3 × 3 isotropic state given by [19]

ρab(x) =


1 − x
8


I9 +


9x − 1

8


|Φ⟩⟨Φ|, |Φ⟩ =

1
√
3

(|00⟩ + |11⟩ + |22⟩) ,

with 0 ≤ x ≤ 1, I9 is 32
× 32 identity matrix, |0⟩ = (1, 0, 0), |1⟩ = (0, 1, 0), |2⟩ = (0, 0, 1) are the basis states in

the qutrit space. The single qutrit reduced subsystems ρa, ρb turn out to be I3/3 thereby commuting with ρab. The CSTRE
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criterion thus reduces to AR-criterion and on evaluating D̃T
q (ρab(x) ∥ ρa) (≡ D̃T

q (ρab(x) ∥ ρb)) we obtain the separability
range of the state to be (0, 1/3) which matches exactly with that obtained through PPT criterion.

The CSTRE criterion is also useful in identifying entanglement in d1 × d2 dimensional states as can be seen through the
example of a qubit–qutrit (2 × 3) X state [19,20]. The state ρab is given by [19,20]

ρX
ab(x) =

1
8


2 0 0 0 0 8x
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
8x 0 0 0 0 2

 , 0 ≤ x ≤ 1/4

and its subsystem ρb = Tra ρab corresponding to the qutrit is found to be 1
8diag (3, 2, 3). On evaluating D̃T

q (ρ
X
ab(x) ∥ ρb), the

separability range for the state ρX
ab(x) is obtained to be (0, 1/8) quite in agreement with the range obtained through PPT

criterion. Observe that the othermarginal, the single qubit densitymatrixρa turns out to bemaximallymixedwithρa = I2/2
thus implying the equivalence of CSTRE with AR-criterion when worked with this marginal. But D̃T

q (ρ
X
ab(x) ∥ ρa) ≥ 0 for all

values of x ∈ (0, 1/4) thus failing to capture the entanglement in the state. This example illustrates the need for suitable
choice of marginals in making effective use of CSTRE criterion.

One can also use the CSTRE criterion to examine separability in non-symmetric analogues of the family of states ρN(x)
(See Eq. (11)). The states ρN(x) considered in Eq. (11) are noisy states belonging to the symmetric subspace because the white

noise represented by PN =
 N

2
M=−

N
2

N
2 , M

 N
2 , M

 is the identity operator in the N + 1 dimensional symmetric subspace

of collective angular momentum j = N/2. Their non-symmetric counterparts are given by

ρns
N (x) =


1 − x
2N


I2N + x|ΨN⟩⟨ΨN |, I2N ≡ 2N

× 2N identity matrix (22)

with I2N representing the white noise in 2N dimensional space and |ΨN⟩ are either symmetric or non-symmetric N-qubit
states. The N-qudit noisy states

ρ
(d)
N (x) =


1 − x
dN


IdN + x|Ψ (d)

N ⟩⟨Ψ
(d)
N |; IdN ≡ dN × dN identity matrix (23)

can also be examined using CSTRE criterion. The applicability of AR-criterion to ρ
(d)
N (x) when |Ψ

(d)
N ⟩ corresponds to the

d-dimensional analogue of GHZ state has been carried in Ref. [5] and it was shown that the AR-criterion yields the strictest
possible 1 : N − 1 separability range that matches with the range obtained through PPT criterion [5]. It would be of interest
to analyze the bipartite separability range in ρ

(d)
N (x) when |Ψ

(d)
N ⟩ is the d-dimensional analogue of W state and examine

whether CSTRE criterion fares better thanAR-criterion. In fact, one parameter family of noisy states (symmetric or otherwise)
involvingW states yield better 1 : N−1 separability range through CSTRE as their single-qubit reduced densitymatrices are
not maximally mixed, thus making them suitable for an analysis through CSTRE criterion, a non-commuting generalization
of the AR-criterion. For instance, our preliminary investigations on the 3-qubit noisy state ρns

3 (x) (See Eq. (22)) with |Ψ3⟩

being the 3-qubitW state yields a 1 : 2 separability range (0, 0.2096) using CSTRE criterionwhich is stronger in comparison
with (0, 0.2727) obtained throughAR-criterion. The generalization of this result toN-qubit/qudit noisy statesρns

N (x)/ρ(d)
N (x)

both involving W states/generalized W states will be presented in a forthcoming work.

4. Conclusion

In this work, we have shown that negative values of the conditional version of sandwiched Tsallis relative entropy
necessarily imply quantum entanglement in a bipartite state. Using this result and considering the limit q → ∞ in Tsallis
entropy, we have obtained the separability range of the symmetric one-parameter family of noisy N-qubit W , GHZ, WW̄
states in their 1 : N − 1 partition. For the one-parameter family of noisy W-states we have shown that the CSTRE criterion
provides a stricter 1 : N−1 separability rangewhen compared to that obtained through AR q-conditional entropy approach.
The non-commutativity of the single qubit marginal density matrix with the original density matrix of the noisy N-qubit W
states is seen to be the reason behind the supremacy of CSTRE criterion over AR criterion. The 1 : N − 1 separability range,
obtained using CSTRE criterion, for the one-parameter family of noisy GHZ states matches with that through AR criterion.
This is due to the maximally mixed, thereby commuting nature of the single qubit density matrix with the original density
matrix in the symmetric one parameter family of noisy N-qubit GHZ states. We have thus illustrated CSTRE criterion as a
non-commuting generalization of the AR criterion and its equivalence with the results of AR criterion in the commuting
cases, wherein the marginals are maximally mixed. In view of the fact that the 1 : N − 1 separability ranges through CSTRE
and PPT criterion match with each other, our work has provided the PPT separability range also for the one-parameter
families of states considered here, in their 1 : N − 1 partition. We have also indicated that CSTRE separability ranges in
bipartitions other than 1 : N − 1 may not match with that through PPT criterion. Our analysis, using AR- and CSTRE criteria,
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of the one parameter family of noisy state involving the state |WW̄N⟩, an equal superposition of W , obverse W states, has
revealed an interesting feature that the 3-qubit state of this family shows a different entanglement feature than its higher
qubit counterparts.

We have given further illustrations on the applicability of CSTRE criterion to d×d as well as d1 ×d2 states by considering
a two qutrit isotropic state and a qubit–qutrit X state. We have quoted the results of our preliminary investigation on the
separability ranges in the non-symmetric one-parameter family of noisyN-qubitW states and indicated the need for further
exploration through the CSTRE criterion.

It would be of interest to explore the separability ranges of one parameter families of mixed N-qubit states in their
different bipartitions using CSTRE criterion and explore how non-commutativity aspect plays a role in finding stricter
separability ranges compared to the existing separability criteria. In view of the non-spectral nature of CSTRE criterion [10],
whether it can fare better than the PPT criterion and can detect bound entangled states remains an open problem as of now.

The usefulness of CSTRE criterion in finding the separability ranges in one-parameter, two-parameter families of
symmetric/non-symmetric N-qubit/qudit quantum states will be the content of our forthcoming work. A numerical
investigation of separability ranges using CSTRE and PPT criteria in different bipartitions of a randommixed state is another
work that we wish to take up in the future.
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