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Abstract  23 

Microplastics are ubiquitous pollutants in aquatic habitats and commonly found in the gut 24 

contents of fish yet relatively little is known about the retention of these particles by fish. In this 25 

study, goldfish were fed a commercial fish food pellet amended with 50 particles of one of two 26 

microplastics types, microbeads and microfibers. Microbeads were obtained from a commercial 27 

facial cleanser while microfibers were obtained from washed synthetic textile. Following 28 

consumption of the amended pellet, fish were allowed to feed to satiation on non-amended food 29 

followed by fasting for periods ranging from 1.5 h to 6 days.  Fish sacrificed at different time 30 

points were dissected to remove gut contents and the digesta contents retention and microplastic 31 

retention was determined.  Although a small number of microplastic particles were retained in 32 

fish GI-tracts after 6 days (0-3 particles/50), the retention of microplastics was generally similar 33 

to the retention of bulk digesta contents. According to a breakpoint regression model fitted to 34 

digesta contents and microplastic particles, the 50% and 90% evacuation times were 10 h and 35 

33.4 h, respectively. The results of this study indicate that neither microbeads nor microfibers are 36 

likely to accumulate within the gut contents of fish over successive meals. 37 

Keywords: microplastics, bioaccumulation, gut retention, microbeads, microfibers 38 

 39 

1.0 Introduction 40 

 Microplastics are a diverse array of synthetic polymer particles that vary in chemical 41 

composition, size (from low micrometre scale to an upper size range variously defined between 1 42 

nm and 5 mm), density and shape (Andrady, 2011). They have been observed in most freshwater 43 

and marine environments (Eriksen et al., 2014; Corcoran, 2015; Eerkes-Medrano et al., 2015) to 44 

such an extent that they were included as sedimentary geochemical markers of the Anthropocene 45 
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(Waters et al., 2016). Microplastics are often distinguished between those that are synthesized at 46 

the defined sizes for an intended application (primary microplastics) relative to particles derived 47 

from the breakdown of macroplastics (secondary microplastics). Microbeads are defined as 48 

primary microplastics that range in size between 0.1 µm to <5 mm (Environment Canada, 2015) 49 

and are used in a wide variety of industrial and consumer applications including personal care 50 

products (PCPs). Legislation banning the production of microbeads in PCPs comes into effect in 51 

2017 as passed by the U.S. federal government and similar legislation is under review in Canada. 52 

While much of the legislative focus has been on microbeads used in PCPs, other common 53 

sources of microplastics to municipal wastewaters include abraded particles from synthetic 54 

textiles such as nylon and acrylics, henceforth referred to as microfibers, used in clothing 55 

(Browne, 2011). 56 

 Concerns have been raised about the ecotoxicology of microplastics in the environment, 57 

including their potential to bioaccumulate in organisms and subsequent transfer through food 58 

webs (Sánchez et al., 2014). Zooplankton are capable of ingesting microplastics, potentially 59 

mistaking them for food, and can further transfer these to tertiary consumers (Frias et al., 2014; 60 

Browne et al., 2013; Setala et al., 2014; Rehse et al., 2016). Mussels have been shown to 61 

accumulate microplastics and transfer them to higher trophic levels (Browne et al., 2013; von 62 

Moos et al., 2012; Collignon et al., 2012). In a study examining 504 fish from the English 63 

Channel that included benthic and pelagic species, 36.5% of specimens had microplastics in their 64 

gastrointestinal (GI-) tracts (Lusher et al., 2013). Microplastics in the gut contents of field 65 

collected fish have subsequently been widely reported in coastal and freshwaters (Sanchez et al., 66 

2014; Neves et al., 2015; Avio et al, 2015; Phillips and Bonner, 2015; Biginagwa et al., 2016; 67 
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Bellas et al., 2016). Considering microplastics are being found in fish, there are relatively few 68 

studies focussing on the potential of microplastics to bioaccumulate.  69 

 Exposure to microplastics in water and food can interfere with normal digestive processes 70 

due to intestinal blockage, causing reductions in animal feeding rates and energy assimilation 71 

(Besseling et al., 2012), lead to histopathological alteration to intestinal and hepatic tissues of 72 

fish (Pedà et al. 2016; Lu et al., 2016) and lower hatching success of fish eggs (Lönnstedt and 73 

Eklöv, 2016). Translocation of microplastics from gut to the circulatory system has been 74 

demonstrated in mussels (Browne et al., 2008; von Moos et al., 2012; Avio et al. 2015a) 75 

implying that retention of microplastics beyond entrainment in the GI-tract may be possible in 76 

some animals. Avio et al., (2015b) and Lu et al., (2016) confirmed microplastics accumulation in 77 

hepatic tissues of fish exposed to microplastics at elevated concentrations in water. 78 

Although microplastics are commonly detected in the intestinal tracts of fish, there is 79 

limited information characterizing the retention of microplastics by fish. Particle size and shape 80 

are likely to influence factors such as GI-retention but limited information is available comparing 81 

microplastic types. Neves et al. (2015) observed a higher frequency of fibers in commercial fish 82 

gut contents compared to plastic fragments.  The above study further reported differences in 83 

plastic types in benthic fish, which tended to accumulate a greater proportion of fibers, compared 84 

to pelagic fish which contained more fragments. It is not known whether these differences are 85 

related to emission patterns and fate of different particle types or whether particle shape might 86 

influence the gut retention characteristics of these microplastic types. In this study, the GI-tract 87 

retention of two microplastic types, microbeads and microfibers, was determined in goldfish with 88 

the objective to determine if i) retention of microplastics by fish exceeds that of food digesta, i.e. 89 
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exhibits net accumulation in the GI-tract of fish, and ii) to determine if microfibers are retained 90 

to a greater or lesser degree than PCP derived microbeads.  91 

 92 

2.0 Methods 93 

 94 

2.1. Microplastic source 95 

 Microfibers were extracted from clothing (35cm x 12cm cut out of a commercial 96 

polyester fleece scarf) by mechanical agitation in hot water. Following agitation, the water was 97 

sieved through stacked 500 µm, 250 µm and 63 µm sieves.  Fibers retained on the 63µm sieve 98 

were removed by tweezer under magnification and size graded to between 50-500 µm fiber 99 

lengths under a dissecting microscope. Microplastic beads were extracted from a commercial 100 

cosmetic product (facial cleanser labelled with polyethylene). The contents of the product was 101 

poured onto a 63 sieve and the soluble matrix associated with the product washed with water 102 

until only microplastics remained. Microbeads were removed from the sieve under 103 

magnification. Figure 1 provides images of isolated microbeads and microfibers under 5x 104 

magnification. 105 

2.2 Experimental 106 

Goldfish were selected as a model fish species because they have been routinely used in 107 

many bioaccumulation/toxicokinetic studies owing to the ease of husbandry, tolerance to 108 

handling and willingness to accept artificial diets.  In their wild state, goldfish are benthic feeders 109 

and thus might be expected to accumulate microplastics similar to those reported for other 110 

benthic feeders. Fish were exposed to microplastics via food. Commercial fish pellets (0.18-111 

0.21g, ~3 mm size) were placed in warm water to soften them. Treatment pellets were amended 112 
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with 50 microbeads or 50 microfibers per pellet by manual insertion of macroplastic particles 113 

into each pellet under microscope. Pellets were air dried after manipulation. Control pellets were 114 

wetted and dried in an identical manner but not amended with microplastics. The food was 115 

prepared in this manner to ensure that every experimental fish consumed exactly 50 microplastic 116 

particles to increase precision of gut retention characterization. 117 

 Fifty three sexually mature goldfish were fasted for 48 h prior to exposing them to 118 

prepared food in order to ensure complete evacuation of gut contents from previous meals and to 119 

increase the likelihood that they would accept the microplastic amended pellet provided to them. 120 

After fasting, fish were removed from their communal tank and placed in individual fish bowls. 121 

Twenty four fish were allocated to the microbead and microfiber treatments, respectively. Five 122 

fish were allocated as controls and fed non-amended pellets.  Each fish was presented with a 123 

single treatment pellet and observed until it was verified that the fish consumed the pellet. After 124 

the fish consumed the treatment pellet, non-amended fish pellets were added to the bowl and the 125 

fish was allowed to consume to satiation for up to 60 minutes. Any remaining fish food in the 126 

bowl was subsequently removed.  Fish were fasted for the remainder of the experimental period.  127 

Control fish were sacrificed after 1.5 h from feeding the control pellets. Triplicate animals from 128 

each treatment were sacrificed after 1.5, 4, 8, 16, 32, 48, 96, and 144 h.  The mean ± SE of water 129 

temperatures was 14.2 ± 0.21 oC and exhibited no changes over the fasting duration.  The mean ± 130 

SE body weights of fish from the microbead and microfiber treatments were 24.80 ± 2.77 g and 131 

27.07 ± 3.40 g and were not significantly different from one another (p>0.4; ANOVA). On 132 

sacrifice, fish were euthanized by immersion in a solution of MS-222 (100 mg/L) and stored 133 

frozen until subsequent analysis. This research was performed under ethics approval from the 134 

University of Windsor's Animal Care Committee. 135 
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 136 

2.3 Microplastic analysis 137 

 On analysis, the gut tract of each fish was dissected and removed. The gut contents were 138 

pushed thought the intestine using tweezers and a probe onto a pre-weighed aluminum weight 139 

boat and the gut tract tissues were retained for further analysis.  The weigh boat was dried at 140 

110oC for 1 h and reweighed to determine dry food digesta weight.  Subsequently, the dried 141 

digesta and gut tissues were re-combined and placed into a 10% KOH solution on a hot plate set 142 

at its lowest setting for 1 hour. The solution was taken off of the hot plate and after 2 additional 143 

hours, 5mL of 30% H2O2 was added to the solution. The solution was poured through a vacuum 144 

filtered Buchner funnel using WhatmanTM (55mm) filter papers (1 µm glass fiber filters). Fish 145 

carcass samples were also digested in a similar manner. Filter papers from each digestion were 146 

analyzed under a stereomicroscope to quantify the number of microplastics remaining in the GI-147 

tract/contents, fish carcass or digested food pellets.  Quality control of the method was 148 

established by measuring and verifying microbeads and microfibers in 5 amended pellets.  The 149 

mean ± standard deviation of recoveries of microplastic particles for the digested pellets was 150 

98.8±1.8%.  151 

 152 

2.4 Data analysis 153 

 Digesta contents weights were standardized to the mean body weight according to: 154 

    𝑋𝐷𝐺(𝑠𝑠) = 𝑋𝐷𝐺(𝑠) ·
𝐵𝑊(𝑚𝑒𝑎𝑛)

𝐵𝑊(𝑠)
     (1) 155 

where XDG(ss) is the size standardized digesta weight (g), XDG(s) is the digesta weight measured in 156 

an individual fish, BW(mean) is the mean body weight of fish from the treatment and BW(s) is the 157 

body weight of the individual fish. The % remaining of digesta contents was calculating by 158 
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dividing XDG(ss) by the mean XDG(ss) generated for fish sampled at the first time point (1.5h) and 159 

multiplying by 100. For microbeads and microfibers, %remaining was calculated by dividing the 160 

number of microplastics measured in a fish's digestive tract by 50 and multiplying by 100. 161 

 Statistical analysis was performed using a general linear model (GLM) according to: 162 

 Model = Time + Group + Time * Group + Constant     (1) 163 

Where time is the time since feeding (h), group represents a categorical variable specified as 164 

digesta retention treatment 1, digesta retention treatment 2, microfibers and microbeads.  Under 165 

cases where the interaction term (Time * Group) was non-significant, analysis of covariance 166 

(ANCOVA) was performed to adjust for time as a covariate and increase the statistical power of 167 

the group comparison test.  Where the interaction term was found to be significant, GLMs were 168 

performed on subsets of the data to test for differences between selected group comparisons.  169 

GLM(1) tested for differences in digesta retention time between treatment 1 and treatment 2.  170 

GLM(2) tested for differences in digesta retention time and microfiber retention from 171 

measurements taken in treatment 1.  GLM(3) tested for differences in digesta retention time and 172 

microbead retention from measurements taken in treatment 2.  Finally, GLM(4) tested for 173 

differences in microfiber and microbead retention. Data transformation was necessary owing to 174 

failure of normality of the % retention data on the combined data (digesta, microbeads and 175 

microfibers). However, when the fist time point (1.5 h) was removed, transformation of % 176 

retention data by natural log transformation yielded a normal data set (p>0.05; Lillefor's test).  177 

Thus, statistical comparisons by GLM were performed with the 1.5 h time point removed and 178 

applying a ln transformation. Non-transformed digesta retention data (inclusive of the 1.5 h time 179 

point) for individual fish were subsequently fit to an exponential model using non-linear least 180 

squares regression according to: 181 
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    %𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 = 100 · 𝑒−𝐵·𝑡𝑖𝑚𝑒   (2) 182 

Where 100 is constant forcing 100% of gut contents retention at time 0, b is the fitted coefficient 183 

and time is time since feeding (h).  The ability of Eq. 2 calibrated independently to gut contents 184 

to predict microplastic retention was evaluated using goodness of fit tests by performing a linear 185 

regression on observed (microplastic) vs model (Eq. 2) predicted digesta retention.  The 186 

goodness of fit result was evaluated by determining if the slope was significantly different from 187 

1, the constant was significantly different from 0 and by evaluating the magnitude of the 188 

coefficient of determination.  All statistics were performed using Systat 13 statistical software. 189 

Except where otherwise noted, measures of central tendency and variation are expressed as mean 190 

and standard error (SE).  191 

3.0 Results and Discussion 192 

3.1 Digesta retention 193 

 During experimental trials, all fish were observed to consume the microplastic amended 194 

treatment pellet. No fish mortalities occurred nor were there apparent signs of distress following 195 

exposure to the amended food pellet.  Fish sacrificed at the 1.5 h time point had a mean XDG(ss) 196 

weight of 0.60±0.04 g.  This corresponds to a food consumption of 2.32% body weight across 197 

the treatments and is consistent with expected food consumption rates in fasted fish.  198 

 A general linear model (GLM(1) as described in methods) was performed to compare % 199 

retention of digesta between the two treatments.  The GLM and ANCOVA revealed a non-200 

significant (F1,39 = 0.92; p>0.3; ANCOVA) difference in digesta retention between the 201 

treatments after adjusting for time as a covariate. Given that digesta retention did not 202 

significantly differ between the two treatments, the data were combined and fit to the exponential 203 

model yielding the following solution: 204 
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   %𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 = 100 · 𝑒−0.069·𝑡𝑖𝑚𝑒; R2 = 0.69    (3) 205 

Based on Eq. 3, the time to evacuate 50% and 90% of digesta was 10.0 and 33.4 h, respectively. 206 

Overall, the exponential model fit described the temporal trends of digesta contents well during 207 

the first 24 h but tended to underestimate observed digesta contents at longer time points (Figure 208 

2).  This may be related to the method of separating gut contents from the intestinal tissues which 209 

could have included residual gut secretions and/or sloughed cells/tissues generated from the GI-210 

tract processing method itself.  However, the fitted model produced retention estimates that were 211 

generally consistent with other studies on digesta retention in fish of similar size and 212 

temperature. Stehlik et al., (2014) reported full clearance of gut contents from clearnose skate 213 

(Raja eglanteria) by 48 h when held at 15oC. Yellow perch held at 17.1oC exhibited a gut 214 

evacuation coefficient of 0.035·time (h-1) based on a log linear model which implies a 50% 215 

digest retention of 19.8 h and 90% retention of 65 h (Gringas and Boisclair, 2000).  216 

 217 

3.2 Microplastic retention in GI-tracts 218 

 Control fish sacrificed after 1.5 h were examined for evidence of microplastics in gut 219 

contents and carcass samples. No microplastics were found in control fish or within their gut 220 

contents.  In addition, 10 control fish pellets were examined for presence of microplastics. 221 

Similar to control fish, microplastics were not observed in non-ammended food pellets.    222 

 During the first sampling point (1.5 h), there was good recovery of microplastics within 223 

the gut contents of treatment fish.  For microfibers, 2 fish had 50 microfibers recovered (100% 224 

recovery) and the third fish had 48 fibers recovered in the GI-tract.  For the microbeads, 40 to 44 225 

particles (80-84% recovery) were recovered from fish during the first time point.  Small numbers 226 
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of microplastics were recovered at the 144 h time point (1 to 3 microfibers in replicate 144h 227 

sampled fish and 0 to 3 microbeads in triplicate fish).  228 

 A general linear model (GLM) was applied to test percent retention of all treatments 229 

(digesta from each treatment, microbeads and microfibers) within the study. Both Time (F1,76 = 230 

88.1; p<0.001) and the Group x Time (F3,76=3.09; p<0.05) interaction terms were significant but 231 

group was not significant (F3,76 =0.212; p>0.8) in the overall GLM.  Due to the significant 232 

interaction terms, additional GLMs were applied to subsets of the data to evaluate for differences 233 

in retention on selected measurements.  GLM(2) and the ANCOVA revealed no significant 234 

differences (F1,39=0.959; p>0.5; ANCOVA) in microfiber and digesta retention. Similarly, 235 

GLM(3) and ANCOVA revealed non-significant (F1,39=4.00; p>0.05; ANCOVA) differences in 236 

microbead retention from gut digesta retention. Finally, a comparison of microfiber and 237 

microbead retention yielded non-significant differences (F1,39=0.678; p>0.4; ANCOVA) from 238 

one another.  Microplastic and microfiber retention with time along with digesta contents trends 239 

are presented in Figure 2.   240 

 For microfibers, the linear regression between %microfiber retention and gut digesta 241 

model (Eq. 3) prediction yielded a slope of 0.96±0.09, constant of (7.33±4.07) and coefficient of 242 

determination (R2) of 0.85. The above slope was not significantly different from unity 243 

(t1,22=0.042; p>0.5; t-test) and the constant was not different from zero (t1,22=1.80; p>0.05; t-244 

test). For microbeads, the goodness of fit test produced a similar slope (0.94±0.04) that was not 245 

significantly different from unity (t1,22 = 1.44; p>0.1; t-test) and constant (3.67±2.06) not 246 

significantly different from zero (t1,22=1.79; p>0.05; t-test) with an R2 of 0.95.  It is perhaps 247 

notable that the digesta retention model (Eq. 3) which was calibrated only to digesta retention 248 

data explained even more variation in microplastic retention than digesta contents itself.  This 249 
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was mainly related to the better fit of model predictions to microplastic retention at the later time 250 

points (Figure 2).  The reason for the differences in model fit across measurements is attributed 251 

to the fact that microplastic exposure was controlled with a high degree of precision compared to 252 

gut contents.  Although each fish was given exactly 50 microplastic particles, they were provided 253 

with food ad libitum after verifying their consumption of the microplastic amended pellet. Thus, 254 

digesta contents would have varied to a greater extent between fish compared to microplastic 255 

exposures.   Overall the goodness of fit tests indicates that the gut digesta retention model 256 

adequately described the retention of both microplastic types. 257 

 Similar observations were generated for the marine isopod Idotea emerginata fed a diet 258 

spiked with microplastic particles and fibers (Hämer et al,. 2014).  In the study by Hämer et al., 259 

(2014), microplastic particles appeared in the stomach and gut contents of isopods but were also 260 

readily egested with the feces. Mazurais et al. (2015) examined microplastic retention in 261 

European sea bass (Dicentrarchus labrax) larvae when exposed to microplastics added to food.  262 

The above authors observed a correlation between microbeads in the gut of larvae with 263 

concentration of microbeads added to the diet.  However, the authors noted that microbeads were 264 

fully cleared from the gut of larvae after 2 days post exposure and could be identified in feces 265 

suggesting passive retention in the gut contents of fish. 266 

 Microplastics were also examined in carcass samples of treatment fish but were not 267 

observed apart from the gut tissue and gut contents analyzed separately and discussed above. 268 

This differs from the results of Avio et al., (2015b) who observed translocation of polyethylene 269 

and polystyrene microplastics to liver of laboratory held mullet (Mugil cephalus) exposed to 270 

microplastics in water (nominal microplastic dose was 2.5x103 particles/L of polyethylene or 271 

polystyrene particles sized from 100 to 1000 µm) for 7 days. Between 1-2 microplastic particles 272 
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per individual were detected in liver of exposed fish, although the presence of microplastics in 273 

liver was two orders of magnitude lower than what was observed in gut contents of fish. 274 

Similarly, Lu et al. (2016) exposed zebrafish (Danio rerio) to solutions containing 5 or 20 µm 275 

diameter polystyrene microplastics at concentrations of between 4.5 x 106 to 2.9 x108 particles/L 276 

for 7 days.  The above authors reported that 5 µm microplastics accumulated in fish gills, liver 277 

and gut, whereas larger microplastics (20 µm in diameter) accumulated only in fish gills and gut 278 

but not in liver. Time to steady state of microplastics in zebra fish was reported to be 48 h, 279 

implying rapid clearance from animals consistent with the gut retention data presented here (Lu 280 

et al., 2016). While the present study failed to identify microplastic translocation in fish tissues 281 

apart from their detection in the GI tract, this could be a function of exposures to different 282 

microplastic types, different dosing strategies, levels of exposures and differences in the method 283 

of detection of microplastics in exposed animals.  The lack of translocation of larger (20 µm 284 

plus) sized microbeads to liver in zebra fish as reported by Lu et al., (2016) is consistent with the 285 

present work given that particles greater than 63 µm were utilized but is not consistent with Avio 286 

et al. (2015b) who exposed fish to microplastics of comparable size to this research. Avio et al., 287 

(2015b) and Lu et al., (2016) provided continuous exposures of fish to microplastic contaminated 288 

water for up to 7 d days compared to a single dose from a microplastic amended meal applied in 289 

the present study.  The above authors also used nominal microplastic concentrations in water that 290 

were considerably higher than what is present in natural waters.  Avio et al., (2015b) used a more 291 

sensitive microplastic extraction/detection technique that employed a combination of density 292 

gradient separation and oxidant treatment which was shown to yield higher recoveries of 293 

microplastics from animal tissues then the oxidation treatment alone. Lu et al., (2016) utilized 294 

microplastic particles with encapsulated fluorescent dies to facilitate their detection in tissues 295 
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which potentially yielded much lower detection limits then the visual method employed here.  296 

Thus, even though microplastics had very good recovery in pellets and gut contents of early time 297 

point sacrificed fish from the present work, translocation of smaller microplastic particles when 298 

exposed at higher concentrations or under long term exposures cannot be ruled out based on the 299 

results of this study. 300 

 301 

4.0 Conclusions 302 

 Microplastics of two distinct particle shapes (microbeads and microfibers) exhibited 303 

similar retention in the GI-tract of goldfish compared to bulk food and digesta.  Although a small 304 

number of particles were retained in fish after 6 days of fasting, there was no evidence for net 305 

bioaccumulation of microplastics in the GI-tract or internal translocation to tissues of fish post 306 

exposure. This implies that the potential for long term entrainment and retention of textile 307 

derived microfibers or PCP-derived microbeads in fish is relatively low and the detection of 308 

microplastics in fish gut contents in the environment most likely represents recent exposures to 309 

microplastics in the diet as opposed to cumulative retention across multiple meals. However, this 310 

study was limited to evaluation of only two microplastic types and one species of fish. As such, 311 

further research to characterize microplastic retention by fish species over different plastic types, 312 

shapes and dietary concentrations may be warranted.  313 

 314 
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Figure 1.  Image of microbeads (left) and microfibers (right) used for feeding trials (5 x 

magnification). 

 

  



 
Figure 2. Gut retention of digesta and microplastics in gold fish post feeding. Left graphic 

presents mean microfiber (■) retention compared to digesta (O). Right graphic presents mean 

microbeads (■) retention compared to digesta (O).  Dashed line is the exponential fit to the 

combined digesta retention data (Eq. 3). Error bars are standard error. 
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