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Abstract

In recent years, stricter emissions regulations have been applied to reduce effects on the

environment. Car manufacturers have to comply with these rules in order to sell cars on

the market.

Different solutions are researched to reduce fuel consumed; in this project a downsized

engine has been considered. Effects of different EGR rate and ACT and their impact on

the cooling system are analyzed.

Having a higher amount of exhaust gas recirculated at a low temperature is affecting

the power request on the cooling system, directly coupled to the engine. The latter should

be operated at a higher load burning consequently more fuel.

In this project, through engine dyno tests and 1D simulations, the increase in fuel

consumption will be calculated and a procedure to reduce it will be developed.

Final results showed an improvement in fuel economy up to 5% for certain conditions,

without changing anything in the hardware.
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Chapter 1

Introduction

In the last years, the automotive companies have tried to develop strategies to reduce the

amount of fuel consumed by cars as much as possible. This trend is not related only to an

increase in fuel cost, which, in contrast, has shown a decreasing behavior since the mid of

2013, as reported in Figure 1.1.

Figure 1.1: USA average and crude oil price trend in the past 10 years [1].

More than a decade ago, the attention to fuel efficiency was mainly for an economic
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reason; however, now the constraints are set by more stringent government regulations.

One of the exhaust components on which companies are dedicated is CO2 since it repre-

sents one of the data considered also by some customers. However, together with CO2 emis-

sions there are other pollutants to look at when considering the emissions, especially with

the EURO 5 and EURO 6 standards which have introduced new limits to non-previously

regulated pollutants, such as NMHC (Non-Methane Hydrocarbons), NOX (nitrogen oxides)

and PM (Particulate Matter), the latter has been introduced for gasoline engines, while it

was already present for Diesel engines. Car manufacturers need to strictly respect the limits

set by the legislations in order to sell and gain market share.

In order to comply with these set of rules, many solutions on various fields are consid-

ered. They include lightweight materials and more aerodynamic designs for the chassis and

more efficient powertrains. The first step to move further in this field, however, could be

individuated in downsizing the engine.

Downsizing, as will be explained in the first part of this thesis, has been highlighted

as one of the most promising technique in the near future to reduce fuel consumption and

emissions. However, with its usage there are some drawbacks that should be taken into

account.

In this project a reduced displacement engine has been considered together with its

interaction with the cooling system.

1.1 Objective Statement

The main objective of this project is to evaluate the fuel consumption increment due to

the presence of the cooling system and find the best position for the different actuators to

minimize this parameter.

In literature and in previous studies, when the engine is tested on the dynamometer, the

effects of the engine cooling system are not accounted for since it is not physically present.

Data on the fuel consumption are collected without taking into consideration the additional

frictional loss caused by additional components (i.e. cooling fan, etc.). If the engine power

output required at the wheels is set to a certain value, the engine must provide additional
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power to operate the added cooling system.

Following this concept, the key idea behind this project is to account for the additional

load and convert it to additional fuel consumption. The main inputs that will be considered

to evaluate the minimum fuel consumption are the Exhaust Gas Recirculation (EGR) rate

and the Air Charge Temperature (ACT ). These two are strictly related to the positions of

the different actuators in the cooling system and so, a direct correspondence between them

could be found and used to operate the actuators to obtain the lowest fuel consumption.

1.2 Procedure

This project was performed in three separate phases:

1. Tests on the engine dynamometer are performed varying EGR rate, manifold temper-

ature, and load working point. The data collected in this phase have been used as

inputs for the next ones.

2. Simulations on the cooling system are performed using a 1D thermo-fluid software.

In this phase, data from various components of the cooling system are collected and

used for the final calculations on the fuel consumption.

3. The data collected in the previous phases are analyzed, and a strategy has been

developed to calculate and find the minimum fuel consumption point. The final output

is the best actuators configuration to achieve the lowest fuel consumption at every

speed and load condition.

1.3 Thesis organization

• In Chapter 2 the useful background to better understand the scope of the project as

well as some information from previous studies found in literature are presented. In

this part, the main concepts, advantages and disadvantages of downsizing, and the

additional components needed for the application of this technique are reported.

• In Chapter 3 the methodology used during the test on the engine, the simulations,

and the data analysis are explained in detail.
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• In Chapter 4 the results obtained during the development of this project are reported.

This chapter is fundamentally divided into two parts. The first one discusses data

analysis of the engine experiment. The second part explains the final results, which

are based on the model simulations using the engine test data.

• In Chapter 5 final conclusions are drawn and presented.

• In Chapter 6 suggestion for future work and possible improvements are reported.
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Chapter 2

Background and Literature Review

2.1 Engine Downsizing

Engine downsizing is a very promising technique in reducing fuel consumption and CO2

emissions. It is mainly based on the reduction of the engine displacement, while maintaining

the desired engine output. With this technique smaller and lighter engines can be produced.

However, it is necessary to increase the torque at a given engine speed in order to produce

the same power as that of non-downsized engines. In Figure 2.1 it is shown the basic concept

of downsizing: the reduction of the displacement, in this case followed also by a reduction

in number of cylinders, but obtaining the same power output. In the smaller engine, on the

right, it is possible to notice the addition of the turbocharger to recover the loss in power.

In the following a deeper explanation of the working principle, the main additional

components needed, the benefits and drawbacks of this technology will be addressed.

2.1.1 Working Principle

The concept behind engine downsizing, as stated before, is reducing the swept volume of

the cylinders maintaining the same power output. In doing so the smaller engine is forced

to work at higher mean effective pressure with a consequent higher efficiency, as it is shown
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in Figure 2.2, where the BSFC, which can be directly related to efficiency, are plotted.

Figure 2.1: Example of a downsized engine [2].

Figure 2.2: Engine speed load map with iso-BSFC curves [3].

In everyday driving conditions an engine is most of the times operated partially throttled

at low speed and low loads, lowering the efficiency and consequently increasing the fuel

consumption. Thus the key factor of downsized engines is to have a very high power

density: defined as Pe/Vc, and there are two possible ways to increase its value:

• increasing engine speed n

• increasing engine effective pressure pme

These parameters are related each other through the following formula:

Pe
Vc

= i · n · pme = 2π · n · τ
Vc

(2.1.1)

6



2. BACKGROUND AND LITERATURE REVIEW

Where i is the number of cylinders, τ is the torque and Vc is the piston displacement. It

is clear how the engine speed and the effective pressure could positively influence the power

density [4].

High speed could help in increasing the power density, but it has the drawback, as

described by Chen-Flynn empirical correlation, of increasing the frictional loss in a great

extent. The correlation found by the two shows that speed is affecting more the friction mean

effective pressure rather than load [5]. Consequently a significant increase in fuel economy,

then, can only be achieved employing the so called high-load concept (i.e. higher mean

effective pressure). In this case possible drawbacks could be related to engine packaging,

due to complex charging systems and additional components that need to be developed and

added to the engine system; however, the overall improvement in fuel efficiency is still very

promising.

2.1.2 Downsizing benefits

The main benefits achievable with the downsizing technique can be easily summarized in

the following:

• Fuel consumption reduction: this is the greatest benefit resulting from this tech-

nology. It is the results of the operating range at higher pressure and consequently

higher efficiency. It is beneficial for future car manufacturers to comply with the

stringent emissions standards. Police et al.[6] have showed, for example, a reduction

in fuel consumption ranging 11% − 20%.

• Warm-up time reduction: having a smaller engine means also a reduced time to

reach its operating temperature. The coolant, the oil and all engine fluids reach their

nominal working temperature faster, reducing transient operations which impair the

fuel economy. In fact the viscosity of coolant and oil, which is related to friction, is

a function of temperature; the lower the temperature, the higher the losses due to

increased friction, and consequently the fuel consumption will be higher.

• Mass reduction: the choice of a smaller engine assures also that the weight of this

component is reduced. It is true that the mechanical stress on the engine components
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will increase to whistand higher load. However, with the usage of lighter and stronger

materials, a downsized engine can help in recovering some weight which is beneficial for

a further fuel consumption reduction. It is also true that the additional components

employed such as the charge air cooler, the turbocharger and the EGR cooler could

hinder the positive effects of having a lighter engine.

• Losses reduction: additional benefits of a smaller engine can be found looking at the

reduced sliding surfaces and the smaller friction generated by their relative motion.

In a standard engine, friction losses become preponderant, especially at low loads; so

the benefits of increasing the mean effective pressure can also be correlated to that

point [6]. It is widely demonstrated that, in normal driving conditions, only the 30%

of the fuel energy is converted to effective power, the remaining part (70%) is lost and

redistributed as follow: 30% to the coolant, 30% to the exhaust gases, 10% in friction

and parasitic losses, as shown in Figure 2.3. Most of the engine friction is caused by

three components: piston-assembly, bearings and the valve train [7].

Figure 2.3: Heat losses distribution in ICE.

Moreover, another characteristic of downsized engines is that they are operated at less

throttled conditions. This unthrottled operation, together with the increased usage

of exhaust gas recirculation (EGR) technology, helps in reducing pumping losses.

• Emissions reduction: a last benefit of downsizing is related to the reduction in
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emissions. It represents the direct result of the fuel economy achievable with the

usage of smaller engines and it is one of the most important parameter searched by

car manufacturers.

2.1.3 Downsizing disadvantages

Although the benefits coming from the engine downsizing concept look very attractive, there

are some drawbacks and problems to be considered.

First of all, in order to maintain the same power output, the engine should be able

to produce higher torque. This increased torque can be achieved using a forced induction

device, such as turbocharger. The application of a turbocharger is particularly helpful since

it increases air mass flow rate, and fuel flow rate, consequently. The greater the amount

of air, the greater the fuel injected and the higher the available power. A schematic of

the concept is show in Figure 2.4. The dashed curve represents a naturally aspirated,

with a lower available torque, the continuous curve instead represents the same engine, but

boosted.

Torque

Engine Speed

Boost to recover 
lower torque

Figure 2.4: Torque curve comparison between naturally aspirated and turbocharged engine.

The general trend, as stated above, is to increase the brake mean effective pressure as

much as possible without increasing the engine friction significantly. Some main drawbacks

can be summarized in the following:

• Pressure and temperature increase: these are two direct effects of boosting the

engine. Since the air, at the outlet of the turbocharger, is compressed, it increases

in density but also in temperature. The higher charge temperature will result in

increased tendency of abnormal combustion, such as engine knock. This can cause

engine components failure. Many strategies have been developed to overcome this
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problem. They include additional fuel injection for cooling purposes, charged air

cooler (CAC, and exhaust gas recirculation, which will be better discussed along the

project.

• Mechanical stresses increase: the increased stresses on the engine components is

another side effect of turbocharging. As mentioned above, the combustion is carried

out at higher pressure and temperature, imposing higher mechanical and thermal

loads on the structure. The application of stronger and more resistant materials is

mandatory, always looking at their weight and costs.

• Cost and number of components increase: this point is mainly related to the

innovative technologies and materials that are present behind the development of

powerful smaller engine. To assure a good downsizing result, a new generation engine

can easily have many additional components depending on the solutions applied. For

example, direct injection, CAC, and both high pressure and low pressure EGR circuits

can easily increase the cost of the engine as a whole and great attention must be paid

in order to minimize their economical impact.

As an overall consideration, engine downsizing, despite the disadvantages highlighted

above, can be considered as a powerful technique for the reduction of fuel consumption

and consequently in the emissions. As a matter of fact, more and more car companies are

developing smaller engines, meaning that the research on this field is going on at a fast

pace. With the increase of knowledge, the main problems are being faced and overcome.

In the following sections the main components that are added to a downsized engine are

analyzed, considering also some advantages and problems related to their implementation.

2.2 Turbocharger

The maximum power a given engine can deliver is limited by the amount of fuel that can

be burned efficiently inside the engine cylinder. This is limited by the amount of air that

is introduced in every cycle. If the inducted air is compressed to a higher density prior to

enter in the combustion chamber, the maximum power an engine of fixed dimensions can
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Figure 2.5: Schematic of turbocharger circuit.

deliver will be increased. This is the primary purpose of turbocharging [7].

Supercharging Vs Turbocharging It is worth to mention that, before the extensive

usage of turbochargers, the first improvement in the increase of air density was made using

superchargers.

The base principle is the same. The main difference is that superchargers are directly

coupled to the engine’s crank shaft, while turbochargers utilize enthalpy in the exhaust

gas. They show a faster response in transient conditions (turbo lag, characteristic of tur-

bochargers, is not present), but worse behavior at low engine speeds. The superchargers

impose additional friction loss on the engine. On the other hand turbochargers are capable

of recovering part of the waste exhaust energy, although they place exhaust back pressure

on engines, increasing pumping losses.

2.2.1 Operating principle

The turbocharger comprises a centrifugal compressor powered by a turbine that is driven

by the engine’s exhaust gas. Hot exhaust gas flows through the turbine’s wheel blades,

accelerating it and driving the compressor. These turbines are generally made from high-

temperature resistant nickel alloys, and can withstand very high temperatures (in the range

of 1000°C) and speeds (up to 280,000 rpm). The compressor itself comprises an impeller

and a diffuser. The impeller draws in air, accelerating it to a high velocity before forcing

it towards the diffuser. The diffuser slows the fast-moving air, raising the pressure and

temperature in the compressor housing, compressing the air before it is directed to the
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engine. In this way, more air can be injected into the combustion chamber, ready to burn the

additional fuel needed to maintain stoichiometric conditions and obtain so that more engine

power. To prevent the turbocharger from overcharging at high engine speeds, and also to

maintain torque at lower engine speeds, the flow of exhaust gases through the turbine and

compressor is carefully controlled. At high engine speeds or low load conditions, a wastegate

is opened to divert part of the exhaust gas flow away from the turbine, decreasing pressure

in the compressor housing. Meanwhile at low engine speeds, the wastegate will close so that

the entire exhaust flow can drive the turbine and the compressor [8].

Figure 2.6: Turbocharger working schematic, with waste gate valve [9].

2.2.2 Turbocharger schemes

Dealing with turbocharger there are many different types that can be employed. They

mainly differ one from the other in construction method or layout. A wide description of

all of them is out of the scope of the project, but few words are worth to be spent on this

argument [10]. The main advanced schemes which are used are:

• twin-turbochargers

• twin-scroll turbochargers

• variable geometry turbochargers (VGT)
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• electric turbochargers

Twin-turbochargers: It is based on the application of two different turbochargers,

and there is further distinction to be done in this family depending on the layout: a) parallel

twin-turbo b) sequential turbocharging c) staged turbocharging.

Paralleled twin-turbo is the configuration in which two identical turbochargers are

used at the same time, each sharing half of the engine’s exhaust gases. Commonly used in

a V-shaped engine, one turbo feeds off the left bank of cylinders, and the other feeds off the

right bank.

Sequential turbocharging is the set-up in which the engine uses one turbocharger for

lower engine speeds, and a second or both turbochargers at higher engine speeds. Clearly

the two turbochargers have different dimensions: the smaller of the two operates at low

speeds and the larger turbo starts working at high speeds. Sequential twin turbos are often

called “two-stage turbo” because the smaller turbo will actually continue to run and feed

the larger turbo when it activates.

Staged turbocharging can be used when the output pressure must be greater than

the one which can be provided by a single turbo. In this case, multiple similarly sized

turbochargers are used in sequence, but both operate constantly. The first turbo boosts

pressure as much as possible and feeds the second one to increase it even more.

Twin-scroll turbochargers: it is a system design developed to overcome some problems

of single-scroll turbo systems by separating those cylinders whose exhaust gas pulses inter-

fere with each other. In this way the kinetic energy from the exhaust gases is recovered

more efficiently by the turbine. For example, if a four-cylinder engine’s firing sequence is

1-3-4-2, cylinder 1 is ending its expansion stroke and opening its exhaust valves while cylin-

der 2 still has its exhaust valves open. In a single-scroll or undivided manifold, the exhaust

gas pressure pulse from cylinder 1 is therefore going to interfere with cylinder 2’s ability

to expel its exhaust gases, rather than delivering it undisturbed to the turbo’s turbine. In
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such a way a better pressure distribution in the exhaust ports is obtained and as well as a

more efficient delivery of exhaust gas energy to the turbine. The main result in the intake

is that an improved quality and quantity of the air charge is entering each cylinder [11].

Figure 2.7: Twin-scroll turbocharger configuration [12].

Variable geometry turbochargers (VGT): this solution was developed to overcome

the need of different size turbochargers at different engine speeds. An oversized turbocharger

would be ineffective at low speeds since it would not be able to create a sufficient pressure

rise for proper operations. At the same time an undersized one will choke the engine at

high speeds, creating high exhaust manifold pressure and higher pumping losses.

The concept behind this component is changing aspect ratio depending on engine speed

and the functioning elements capable of achieving the result are moveable vanes which

adjust the air-flow to the turbine. The vanes are placed just in front of the turbine like

a set of slightly overlapping walls. As rpm rise and exhaust pressure increases, the vanes

open, so as to allow all exhaust gasses to the turbine. An example of VGT turbocharger is

reported in Figure 2.8.

Electric turbochargers: it is a new developing technology that is spreading at a slow

pace starting from luxury and sport cars. The concept behind this technology is the usage

of an electric motor coupled to the compressor shaft, as shown in Figure 2.9. The turbo lag

can be completely eliminated, due to the fast response of the electric motor.
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Figure 2.8: Variable geometry turbine schematic [13].

Figure 2.9: Electric turbocharger schematic [14].

2.2.3 Turbocharger advantages

It is important to recall that, in the past, the concept of increasing the pressure or density

of the intake was present but with the objective of increasing the power output keeping the

same engine size. Nowadays, the basic idea is still present, but it is applied on smaller en-

gines and, as extensively stated above, turbocharging has been found as a key technological

improvement to meet the stricter requirements in terms of fuel consumption and emissions

production.

It is worth to stress that in this project, when talking about turbochargers, it is im-

possible to separate them from the concept of downsizing. Bearing in mind this synergy, a
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brief summary of the advantages coming from its usage are presented below [15]:

• Power output: generally speaking the power obtained from a turbocharger engine

is higher than that from a naturally aspirated one, if the displacement is the same.

In downsized engine this effect is exploited in order to have the same power output

with a smaller engine. This fact implies lower frictional and thermal losses.

• Efficiency increase: to run the compressor exhaust gases are expanded in the tur-

bine, this will lead to an increase in the engine efficiency because part of the wasted

energy is recovered.

• Fuel consumption reduction: it has been proved that turbocharging is effective

in reducing fuel consumption, up to 20% [16], mainly due to the smaller and more

efficient engine.

• Emissions reduction: this is a direct consequence of burning less fuel and having

a greater efficiency. It represent one of the reasons why most car manufacturers are

moving toward turbocharging/downsizing techniques.

2.2.4 Turbocharger disadvantages

So far only the advantages of the turbochargers have been highlighted, but this solution is

not free of possible drawbacks. In this section the main disadvantages will be adressed and

presented in a schematic way, so that they can be easily understood. The same consider-

ations made above will be applied now: it would be impossible to completely separate the

turbocharging effect from the downsizing concept.

Here are the main disadvantages needed to overcome:

• Turbo lag: it is the time spent between the change in power output after a change

in the pedal/throttle position. It is perceived as a moment of hesitation in obtaining

the required power, and it is related to the dynamics of the turbine and the exhaust

gas expanding in it.

• Boost threshold: traditional turbochargers are often sized for a certain rpm range

where the exhaust gas flow is adequate to provide additional boost for the engine.
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The lower limit of this range is related to the kinetic energy of exhaust gases, if it

is too low, especially at low rpm, the compressor is not able to produce a sufficient

amount of work.

• Material requirement: turbochargers in contact with exhaust gas need to with-

stand high temperature for the duration of the engine life. Together with a good

cooling system also high temperature resistant materials should be used, leading to

an increased capability of exploiting higher temperature gas.

• Knock: this phenomenon is very important and is related to the high pressure and

temperature, a deeper discussion on it will be given in the following.

Knock

It is considered one of the main drawbacks of having highly boosted engine, and it is the

limiting factor to the maximum BMEP that the engine can produce.

The phenomenon behind this problem is related to abnormal combustion inside the

cylinder. Knock is the name given to the noise which is transmitted through the engine

structure and it is the result of spontaneous ignition of the end-gases, composed of fuel

and air. It is characterized by an extremely fast release of chemical energy in the end-gas,

resulting in very high local pressures propagating all across the combustion chamber. Knock

is governed mainly by pressure and temperature in the combustion chamber, it is clear then

why turbocharging is so critical for the onset of this problem.

Generally speaking, the term knock is referred to an abnormal combustion which lead

to the audible metallic sound, but there is a further characterization that could be made:

• Spark knock: is recurrent and repeatable but it is controllable by the spark advance:

advancing the spark increases the knock intensity and retarding reduces the intensity

• Surface ignition: is ignition of the fuel-air charge by any hot surface other than the

spark discharge prior to the arrival of the normal flame front.

The onset of knock is not completely well understood, there are a huge amount of

possible factors affecting its presence; the fuel characteristic for example is a factor to take
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into consideration.

Knock represents also a problem for downsized engines since it primarily occurs under

wide-open-throttle operating conditions, typical conditions that could be found in these

types of engines. It is thus a strong constraint since it limits temperature and pressure during

the combustion phase and the compression ratio, reducing the possible thermodynamic

efficiency gain coming from a higher compression ratio engine [7].

Figure 2.10: Cylinder pressure versus crank angle traces of cycles with (a) normal combustion,

(b) light knock and (c) heavy knock. 4000 rev/min, wide open throttle, 381 cm3 displacement single-

cylinder engine [7].

Since knock is potentially harmful for the engine a good detection strategy should be

implemented, in such a way it is possible to act properly to overcome this phenomenon. In

Figure 2.10 different combustion pressure characteristic are showed, (a) represents a normal

combustion; observing (b) it is possible to note some pressure variations, they represent the

onset of knock. (c) instead is an intense knock and the pressure variations are very high.

Once it is detected, boosting pressure as well as spark timing should be changed to meet

proper combustion characteristics.

18



2. BACKGROUND AND LITERATURE REVIEW

Knock reduction strategies

In the following possible strategies to reduce knock are presented, some of them will be

discussed more in detail along the project.

• Fuel characteristics: as previously stated a premium gasoline could influence engine

knocking behavior. The octane number as well as longer chain hydrocarbons positively

reduce knock presence and intensity. Also fuels with higher latent heat of evaporation

like Ethanols, which have also higher octane number, could be seen as a good solution

in reducing knock tendency.

• Air/Fuel ratio: it is known that knock is at its maximum when the excess air facto

(λ), defined as follow, is around

λ =
( mair
mfuel

)

( mair
mfuel

)stoich
= 0.9

and it decreases both in enrichment and lean conditions [6]. Mixture enrichment is

a technique that has beed used for a long time. It consists in injecting extra fuel so

that, when it enters in the combustion chamber, its evaporation reduces temperature

and consequently possibility of knocking. This solution worsens fuel economy because

the additional fuel injected is not used to produce useful energy. Both conditions, rich

and lean mixtures, show the main drawback of impairing catalytic converter efficiency,

in fact, to operate at its best efficiency the three-way catalytic converter needs the

mixture to be in stoichiometric conditions, as shown in Figure 2.11.

• Direct injection (DI): it is widely considered as the key technology in downsized

boosted engines. It allows to operate engines at higher compression ratios, it reduces

in-cylinder temperature due to the latent heat of evaporation of the fuel that com-

pletely evaporates in the chamber and not in the intake, like port injected engines

[17]. Advanced and more precise fuel injection strategies can be implemented such

as multiple injection, stratified mixture or additional injections during cold starts to

reduce the warm up time [6].

• Variable compression ratio: this technology is based on the fact that higher com-

pression ratio directly increase engine efficiency, but the limiting factor, most of the
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Figure 2.11: Effects of Air Fuel ratio on catalytic conversion efficiency [20].

times, and especially in boosted engines, is set by knock. The concept behind vari-

able compression ratio is to use an high compression ratio for light to medium load

and, as soon as the load is starting to increase and knock start to appear, reduce

the compression ratio in order to limit the side effect of abnormal combustion. This

technology is still too expensive to be implemented in commercial vehicle and it is

used on laboratory engines.

• Combustion phasing: as stated before, a way to reduce knock is to change the

spark timing. As soon as the knock is detected spark should be retarded, in such a

way its effect is mitigated but the thermodynamic efficiency of the engine decreases

[7]. It is a strategy commonly used to a certain extent; combining spark timing with

other technologies as direct injection, exhaust gas recirculation and charge air cooling

leads to the possibility of eliminating spark retard improving combustion characteristic

while reducing fuel consumption [18, 19].

• Intake air cooling: this method consists in reducing the temperature of the charge

entering the cylinder, it will be discussed more in detailed in the following.

• Exhaust gas recirculation: a part of the exhaust can be drawn and injected in the

intake manifold, also for this technology an extensive discussion will be done in the

following.
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The methods highlighted represent some of the most used solutions to reduce knocking,

other systems can be implemented, but their description is out of the scope of this project.

2.3 Charge Air Cooler - CAC

The charge air cooler, also known as intercooler, is one of the fundamental components

needed together with the turbocharger. The term intercooler is more correct when dealing

with two stage compressors since it refers to the cooling action on the air between the first

and second compressor, a more correct name should be aftercooler, but the term intercooler

nowadays is widely spread and accepted. In downsized engines, it represents one of the first

way to reduce many of the disadvantages coming from the usage of high boosting pressure.

Intake

Exhaust

Compressor

Turbine

CAC

Figure 2.12: Turbocharger schematic with charge air cooler component

As it is shown in Figure 2.12, the charge air cooler is placed after the turbocharger,

right before the cylinders intake. Its function is to reduce the temperature of air entering

the combustion chamber, giving rise to beneficial effects as the increase in air density, the

reduction of knock and other effects.

The thermal duty of charge air cooler is very strong, in fact it needs to subtract enough

heat to reduce the temperature from around 100 - 200°C down to 60 - 50 and sometimes also

40°C, depending on the working conditions considered. Air charge temperature is therefore

a parameter which could affect in a great extent combustion stability and fuel consumption.

Generally speaking, having a colder mixture entering the combustion chamber is considered

favorable for a volumetric efficiency point of view. In a simplistic way it could be defined

as mass of air entering the cylinder over the mass of air which could be drawn in the
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cylinder ηV = ṁair actual
ṁair ideal

, where ṁair actual is the air mass flow rate actually drawn in the

cylinder and ṁair ideal is the air mass flow rate theoretically admissible in the cylinder if

all the volume would be occupied by air. Considering this relation, it is easy to understand

that increasing the density (higher mass for the same volume) of air entering the cylinder is

directly affecting the volumetric efficiency. Turbocharging is thus increasing the density, but

it also increases the temperature, which is inversely proportional to density, so the effect

is not fully exploited; CAC is adding a further improvement lowering the temperature.

For this reason the usage of charging technique in general should be always followed by a

reduction in temperature, especially at high loads where the possibilities of having knock

are much more increased.

2.3.1 CAC: Heat transfer modes

A brief summary on the heat transfer modes that are present in an engine and in heat

exchangers in particular will be useful to better understand the functioning of the different

types of charge air cooler which will be analyzed in the following.

Conduction

Conduction is the mode in which heat is transferred by molecular motion, through solids

and through fluids at rest, due to a temperature gradient. The heat transfer per unit area

per unit time in a steady situation is given by Fourier’s law. Considering one-dimensional

temperature variation along the x direction, it can be written as follows:

q̇CD =
Q̇

A
= −kdT

dx
(2.3.1)

Where Q̇ is the heat transfer, A is the surface area through which the heat is transferred,

k is the thermal conductivity of the material, and dT
dx is the variation of temperature along

the length of the element.

Heat is transferred by conduction through the cylinder head, cylinder walls, and piston;

through the piston rings to the cylinder wall; through the engine block and manifolds; in

the metal parts of the heat exchangers [22].
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Figure 2.13: Conduction heat transfer in a solid.

Convection

Convection is the mode in which heat is transferred through fluids in motion and between

a fluid and a solid surface in relative motion. If the fluids are in motion under the effect

buoyancy force it is called natural convection, if the reason of the motion is an external

source the heat transfer mode is known as forced convection. In steady-state condition, the

heat flux transferred by convection from the moving stream of gases to the cylinder walls

can be written using Newton’s law of cooling as follows:

q̇CV =
Q̇

A
= h(Thot − Tcold) (2.3.2)

Where h is the convective coefficient of the fluid considered, Thot and Tcold are respec-

tively the temperature of the hot and cold gases facing the heat exchanger.

Heat is transferred by convection through the in-cylinder gases and the solid parts

surrounding the combustion chamber; from the cylinder head and walls to the coolant and

from the piston to the lubricant oil; from the hot air to the metal parts of heat exchangers

and from metal parts to the cooling fluid. Heat by convection is also directly transferred

from the engine to the environment [22].

Radiation

Radiation is the mode in which heat is transferred by emissions and absorptions of electro-

magnetic waves. Radiation occurs from hot temperature in-cylinder gases to the cylinder

walls and from the hot external surfaces of the engine to the environment. The heat flux

from one “black body” at temperature T1 to another at temperature T2 across a space that

does not contain absorbing material is written as follows:
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Figure 2.14: Example of (a) natural and (b) forced convection. In (a) the driving force is repre-

sented by buoyancy force, while in (b) is the stirring action [21].

q̇R =
Q̇

A
= σSB(T 4

1 − T 4
2 ) (2.3.3)

Where σSB is the Stefan-Boltzmann constant. Actually gases are not a “black body”.

This difference from black-body behavior is usually taken into account by applying an

emissivity factor ε (reduction factor lower than 1).

The radiation term is lower with respect to conduction and convection and is generally

negligible for SI engines, even more in heat exchangers [22].

Heat transfer in heat exchangers

The charge air cooler is an heat exchanger in which a cold fluid, which can be either air or

a liquid (most of the times water), is forced to pass along the metallic surface which in turn

are in contact with the hot gases which must be cooled.

The modes which regulate the heat transfer in steady state conditions are:

• Convection on hot side: between hot gas (from the compressor) and heat exchanger

metal surface

q̇CV = hair(Tair − Twall,air) (2.3.4)

• Conduction: inside the metal elements of the heat exchanger

q̇CD =
k

L
(Twall,air − Twall,cool) (2.3.5)

• Convection on coolant side: between the heat exchanger metal surface and the
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coolant (independently on the type)

q̇CV = hcool(Twall,cool − Tcool) (2.3.6)

Figure 2.15: Heat transfer modes in a heat exchanger

It is possible to observe, as stated before, that no radiation term is present since its

contribution is very low and can be neglected. For what concern the convective term it is

enhanced if the flow is turbulent and the heat exchange area is wide enough, with these

considerations the design of these components is fairly important.

As a general discussion charge air cooler can be analyzed, with electric circuit similarities,

considering the whole system as a series of thermal resistances, as shown in Figure 2.16.

The values of the resistances can be retrieved as follow:

• Air side

Tair − Twall,air =
1

ha
q̇ (2.3.7)

• Metal side

Twall,air − Twall,cool =
L

k
q̇ (2.3.8)

• Coolant side

Twall,cool − Tcool =
1

hc
q̇ (2.3.9)
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Air
side

Metal
side

Coolant
side

Tair Twall,air Twall,cool Tcool

1/ha 1/hc
1/
hc
L/k

Figure 2.16: Thermal circuit similarity

And considering the total temperature difference:

Tair − Tcool =

(
1

ha
+
L

k
+

1

hc

)
q̇ (2.3.10)

As a final result, remembering that q̇ = Q̇C
A the total heat transferred is:

Q̇C =
1

1
ha

+ L
k + 1

hc

A(Tair − Tcool) = KrA(Tair − Tcool) (2.3.11)

Where Kr is the global heat transfer coefficient of the heat exchanger and, since all the

heat exchangers are more complex than a simple metal plate, its value is not theoretically

calculated, but evaluated experimentally.

In the process of reducing the charge temperature there is an additional parameter

to take into consideration: the charge air cooler effectiveness. Generally speaking CAC

effectiveness could be defined as:

ε =
Actual heat transfer

Maximum possible heat transfer

Actual heat transfer can be evaluated using the difference in enthalpies of one of the

fluids, as the heat rejected is equal to the heat absorbed. The maximum possible heat

transfer instead is the energy transferred when one of the fluids undergoes the maximum

possible temperature change, for example, the hot charge leaves the CAC at the same en-

trance temperature of the cooling medium or the cooling medium leaves the heat exchanger

at the same entrance temperature of the hot charge. Clearly this is not possible in reality
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and gives just an idea of the maximum cooling capacity of the CAC. Following the previous

considerations and the so called ε-NTU method, the effectiveness can be evaluated as follow

[23].

Find which is the maximum possible heat transfer; it will be the minimum of the two

equations:

q̇air = (ṁcp)air (Tair,in − Tcool,in)

q̇cool = (ṁcp)cool (Tair,in − Tcool,in)

If the limiting factor is the hot gas side, the effectiveness can be written as:

ε =
(ṁcp)air (Tair,in − Tair,out)

(ṁcp)air (Tair,in − Tcool,in)
=
Tair,in − Tair,out
Tair,in − Tcool,in

(2.3.12)

Same reasoning could be done if the limiting factor is the coolant side and the final

result will be:

ε =
Tcool,out − Tcool,in
Tair,in − Tcool,in

(2.3.13)

What analyzed so far is related to the thermal behavior of the CAC, which represent

one of the most important parameters together with the pressure drop. In fact a good

charge air cooler not only should reduce the temperature of the air as much as possible,

but it must apply a very low resistance to the fluids in motion, otherwise it would spoil

the effect obtained by the usage of the turbocharger. Looking at these constraints it is

easy to understand that the charge air cooler represents a very important component, and

its design must be analyzed carefully. The two main typologies of CAC present different

thermal and pressure characteristics and will be analyzed in the following.

2.3.2 CAC typologies

Beside the working principle that is the same for both configurations, a distinction on the

types of charge air cooler can be done considering the phase of the cooling fluid:

• Air-to-Air CAC, in which the cooling fluid is the external air

• Air-to-Water CAC, in which the cooling fluid is water.
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Air-to-Air CAC

This is the simplest and most spread type of cooler. It is characterized by a very simple

configuration and low cost. It doesn’t need additional components other than the heat

exchanger and the piping system. There are two possible configurations for the cooling

module: full face and brick type. The former is usually placed in front of the radiator and

before the A/C condenser, constituting the radiator pack. It is characterized by a width

much smaller than the other two dimensions. The latter instead is characterized by a width

comparable with one of the other sizes and since it has a more compact design it could

be placed in the wheelhouse or in front of the cooling module, allowing more freedom in

packaging.

a) b)

Figure 2.17: Air-to-Air CAC types. a) Full face b) Brick type [24]

The thermal performance of this solution is not as effective as the Air-to-Water one; since

the cooling medium is a gas, with a lower specific heat capacity, a larger mass flow rate is

needed and consequently bigger core dimensions are used to obtain acceptable performances.

In this component the pressure loss can become a preponderant factor and needs to be

eliminated. For this reasons the trend is moving towards Air-to-Water charge air coolers.

Air-to-Water CAC

These types of charge air cooler are becoming more and more popular among automotive

manufacturers due to their increased performance potential. The cooling fluid, as the name

suggests, is mainly water, with some small quantity of ethylene glycol to overcome possible

freezing problems. The advantage of having water directly influences the cooling capacity,

which is increased due to the higher specific heat capacity but also to the possibility of having

higher mass flow rates. The solution is not free from drawbacks, which are mainly related to

costs and additional components installation; in fact there is the need of a dedicated water
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circuit which means also an additional pump and heat exchanger for the coolant and for

the air, increasing weight. The advantage of this configuration however is not only related

to improved performance but also to the increased flexibility in packaging. Both the heat

exchangers used in this configuration are smaller in dimensions and, especially the air one

can be put right in between the turbocharger and the intake; in doing so ducting and piping

are decreased with a consequent reduction in pressure losses, which are thus mainly linked

to the pressure drop in the charge cooler itself [22].
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Figure 2.18: Water charge air cooler with high and low temperature cooling circuits [25].

The performances of this solution can be further enhanced if an integrated cooling

module is implemented. It consists of putting the CAC directly on the engine intake so

that the charge is cooled right before entering the combustion chamber, the pipes length

is drastically reduced and the overall dimensions are decreased. This solution is the one

implemented in the engine tested in this project. An example of possible integrated CAC

is shown in Figure 2.19.

The benefits coming from the implementation of this system are related also to advance

cooling strategies coming from the implementation of a high temperature radiator, used

for cooling the engine, and a low temperature radiator, used for cooling the charge and

also in the A/C circuit. At the occurrence a dual level high temperature radiator can be

implemented, meaning that it has two sections that can operate independently of each other.

Therefore, it is possible in partial load and low vehicle speed to operate one part of the high
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Figure 2.19: Example of intake module with integrated charge air cooler [28].

temperature radiator in low temperature mode, and the other part in high temperature

mode, improving the A/C system operation. In this way the radiator pack dimensions can

be reduced. An exhaustive description of this solution is beyond the scope of this project,

but additional information can be found in Malvicino et al. [26] and Stehlig et al. [27].

For all these reasons and even though the complexity and cost of this technology are

still high, there is a trend in implementing this solution on an increasing number of cars.

2.4 Exhaust Gas Recirculation - EGR

Charge cooling, and its synergy with turbocharging, has been shown as fundamental tech-

nique to reduce the possibility of knocking and increasing combustion stability and fuel

economy. Another solution that has been studied in the last years, to further reduce fuel

consumption and improve combustion, is exhaust gas recirculation.

2.4.1 EGR working principle and implementation

The concept behind EGR, as the name suggest, is to draw a part of the exhaust gases

after the combustion and inject them back in the intake so that they could participate

again in the combustion process giving rise to many advantages as knock reduction, fuel

consumption reduction, pumping loss reduction, etc.

EGR was firstly implemented in diesel engines to perform an effective NOx emission

reduction, but in the last years more and more research has been conducted on its im-

plementation in gasoline engine, and it has been found as a very promising technique in
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reducing some drawbacks coming from high boosting pressure.

The reduction in NOx is one of the preponderant reasons why EGR is used. NOx

gases are some of the most difficult pollutants to reduce and this system is able to achieve

the target values. However, attention must be kept in increasing too much the EGR rate

because of side effects: unburned hydrocarbon and carbon monoxide could be increased and

combustion stability can be worsened impairing the positive effects.

The percentage of exhaust gas recirculation can be defined in different ways [29, 30]:

• Mass based

EGR rate (%)mass =
mEGR

mfresh air +mfuel +mEGR
· 100 (2.4.1)

• Volumetric based

EGR rate (%)vol =
VEGR

Vfresh air + Vfuel + VEGR
· 100 (2.4.2)

or, considering the exhaust emissions, that is also the system used in commercial

engines:

EGR rate (%) =
V olume fraction of CO2 in intake

V olume fraction of CO2 in exhaust
· 100 (2.4.3)

For what concern the implementation, exhaust gases can be recirculated in two complete

different ways:

• Internal EGR: if a suitable valve phasing is chosen to trap a part of burnt gases

inside the combustion chamber.

• External EGR: if a dedicated piping system is used to draw exhaust gases after

exiting the combustion chamber.

For what concern external EGR a further distinction can be done depending mainly

whether if gases are drawn before or after the expansion in the turbocharger turbine. These

two configurations are called:

• High pressure EGR (HP): if the exhaust gases are drawn before the expansion in

the turbine and are sent back into the intake after the compressor.
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Figure 2.20: EGR loops comparison. High pressure loop on top, Low pressure loop on bottom

• Low pressure EGR (LP): if the exhaust gases have undergone the expansion in

the turbine and the pickup point is generally placed after the catalytic converter.

The two circuits presented in Figure 2.20 are the very basic configurations, but it is

quite common to find both of them mounted together on vehicles. The reason is related to

the different behavior of the two systems at different working conditions. It is important to

observe that, to properly work, EGR circuit needs to have a sufficient amount of EGR flow

rate and a sufficient amount of differential pressure between the exhaust and intake must

exist. For example the HP circuit is better suited for low loads operating range since a high

boosting is not required and thus the exhaust pressure is higher than the intake pressure.

On the contrary at high loads, the boost level should be increased leading a differential

pressure between exhaust and intake not suitable to drive the HP loop, and so in this case

the LP loop is used. To overcome this pressure gradient problem an effective solution is the

usage of a variable geometry turbocharger to build sufficient backpressure.

Observing Figure 2.20, it is noticed that in both circuits the EGR flow is cooled. The
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cooler is similar to the charge air cooler, and sometimes it utilizes the same cooling fluid,

while other times, for the same purpose is used the engine coolant. The important fact is

that cooling the EGR flow will enhance the EGR positive effects, and all along this project

only cooled EGR will be considered.

2.4.2 EGR Benefits

EGR has been proven to be one of the most effective techniques for reducing NOx emissions

but it has also shown a very good behavior in improving combustion and reducing fuel

consumption in gasoline engines. In the following a brief summary of the main advantages

coming from the implementation of cooled EGR will be given.

• NOx reduction: as extensively stated, one of the main effect of EGR implementation

is its ability of reducing NOx in a great extent, this is due to the reduction in both

combustion temperature and oxygen concentration. It is well known that the favorable

conditions for NOx formation are the presence of high oxygen concentration at high

pressure and temperature, and thus turbocharged engines could produce very high

levels of these pollutants. The effect of EGR has been found to operate mainly in two

ways:

– Thermal effect: the average specific heat (cp) of exhaust gases, since they consist

mostly in CO2 and H2O, is higher than the one of the intake air and thus can

absorb more heat in the combustion chamber lowering furthermore the temper-

ature.

– Dilution effect: For a given fuel quantity, a fixed amount of oxygen is required

for complete combustion no matter what the EGR level is. Since the oxygen

fraction is lower with EGR, it will be more difficult for the flame to encounter

fresh air and non-oxygen molecules absorbs heat lowering the temperature.

• Reduced heat rejection: the reduction in combustion temperature is not only ben-

eficial for NOx reduction, but it also reduces the loss of thermal energy to combustion

chamber surfaces, leaving more available for conversion to mechanical work during

the expansion stroke, improving consequently the thermal efficiency [32, 33].
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• Reduced throttling losses: this is one of the fundamental benefits, in fact to

maintain constant the power output of an engine adding inert gas (EGR) the throttle

valve must be opened more, resulting in an increased inlet manifold pressure which

will consequently reduce the lower area in Figure 2.21

• Advancing combustion phasing: Without the usage of EGR the ignition time

is set depending on knock, closer to the TDC or even after it, while with the usage

of EGR the combustion phasing can be improved, ignition time can be advanced in

respect to the TDC allowing thus more time for the combustion to be completed, in

fact also the CA50 is improved [31]. The peak pressure is then moved to the TDC

increasing the combustion efficiency [32]. The autoignition tendency is reduced too.

• Reduced need of enrichment: one of the best strategies to reduce knock was to

inject more fuel, which when evaporates it subtracts heat to the combustion chamber,

but the usage of EGR is eliminating the need of enrichment because of its effect in

lowering the temperature, thus fuel economy is improved as well.

All these benefits taken as a whole will sensibly reduce engine knock tendency, fuel

consumption and NOx, easily justifying the great interest behind the research on the EGR

system.

2.4.3 EGR Drawbacks

Together with the benefits explained above there are some disadvantages that have to be

considered when implementing EGR systems

• Combustion worsening: adding EGR beyond a certain limit can worsen the com-

bustion process, increasing in time and sometimes there could be the possibility of

misfire [31, 33]. This could lead, in certain conditions, in an increase in some of the

emissions as HC and CO [34].

• Components fouling: recirculated gases are not clean as the fresh air entering the

intake, but they present particles that are the residuals of the combustion process.

These particles can be trapped especially in the EGR coolers giving rise to additional
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pressure losses. Furthermore, for certain EGR circuit configurations, they could im-

pact with the blades of the compressor giving rise to mechanical damages and possible

failures.

• Additional components and control strategies: to better exploit the beneficial

effects of the EGR, additional components as coolers or EGR valve should be intro-

duced, giving rise to an increase in complexity and cost as well as more stringent

packaging constraints. The different behavior of the LP and HP circuit at different

speed and load conditions need also a dedicated control scheme that must be carefully

designed and implemented.

Looking at the drawbacks highlighted above it is clear that the implementation of the

system, despite the increased costs, represent one of the best available solution to respect

the more stringent emission regulations.

2.5 Results from other authors

In the literature many authors have analyzed the beneficial effects of the components de-

scribed so far. They all showed that great improvements in terms of increased output power,

fuel consumption reduction and emissions reduction can be achieved. Analyzing their re-

sults, however, is impossible to describe which is the effect of each solution (turbocharger,

EGR, etc.) because all of them were considered together as a unique system; so, i.e., in the

investigation of the effects of cooled EGR also the turbocharger will be considered. With

this consideration is thus impossible to separate and present the advantages of each single

component.

Despite these considerations, most of the papers analyzed show common trends. Most of

the times turbocharged gasoline engine with direct injection system and cooled EGR (both

high and low pressure) are considered. It is important to state that different authors have

analyzed different engine in different speed/load conditions. In doing so the results are not

very aligned because strongly dependent on the condition considered, this means also that

certain results could show dissimilar and even opposite trends.
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In the following the main results are presented, only considering the common findings; for

further information, the papers used for this project can be retrieved from the bibliography.

• Combustion phasing: the CA50 value can be advanced up to a certain extent,

increasing thus the combustion time and consequently leading to a complete fuel burn

[31, 32, 35, 36], Francqueville at al. [18] stated that CA50 can be reduced by 1° crank

angle every 4-5% EGR.

• Reduction of exhaust temperature: as a general effect the addition of EGR

in these type of engines lead to a reduction in exhaust gas temperature with the

consequent improvement of thermal efficiency. Potteau at Al. [31] show a reduction

of up to 100°C; a same result is obtained by Galloni et al. [37].

• BSFC reduction: the possible reductions discovered range between 4% to 14%

[18, 31, 35, 37]. However these data are very sensible to engine speed and load.

• Knock suppression: many authors have described the effect of EGR in reducing

knock [32]; the consequences of the implementation of this solution are positively

affecting also fuel consumption because there is no more need of fuel enrichment

(λ = 1 even at high loads) [31, 18, 38].

• Pumping work reduction: the usage of turbocharger in addition of EGR can help

in drastically reduce pumping work. This positive effect has been also recognized by

Wei et al. [32] and Su et al. [33]. Also other authors however have claimed the

benefits obtained in pumping losses reduction.

• Emissions reduction: all authors agree on the fact that NOx are reduced in a great

extent, Lattimore and Al. [38] stated a reduction of this pollutant up to 43%. There

is also a certain reduction in the CO production, while for the HC there are some

contrasting results: Alger et al. [35] showed an increase in HC production due to

the reduced combustion stability at high EGR rate, while Potteau et al. [31] instead

found an HC reduction with the implementation of EGR. However these results are

subjective to the type of engine used and load considered and furthermore, as far as

the engine is operated in stoichiometric condition the three-way catalytic is converting
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Figure 2.21: Pumping Loss reduction due to increased intake pressure

HC and CO with a great efficiency, so the main benefit to look for is the reduction in

NOx which is actually found in all the papers.
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Chapter 3

Methodology

In this part the methodology followed during the development of the project will be de-

scribed. Two different procedures have been applied to obtain two different outcomes: the

first one is related to tests performed on an engine dynamometer; the second one, instead,

is performed using a 1D simulation software. The results obtained, however, are not inde-

pendent one of the other, but are used in a complimentary manner to reach the final goal

proposed.

The final objective, in fact, is to find the optimal configuration for certain actuators in

the cooling system, minimizing the additional power required to perform the task and the

fuel consumption as well. Components considered in the optimization are for example the

fan (controlling its speed), the thermostat and others. The complete list of all components

however cannot be written since the procedure is a company trade secret.

Before explaining the procedure followed during the project, a brief schematic of the

engine configuration is presented. The EGR circuits, as well as the EGR coolers and CAC

are showed in Figure 3.1.

The blue circuit represents the intake part, while the red one is the exhaust side. It is

possible to notice the presence of two EGR loops: high pressure and low pressure. Both

circuits shows also that EGR coolers are used to cool down the gas before entering in
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Figure 3.1: EGR circuits and heat exchangers schematic

the intake flow. The main temperature monitored during the dyno test are highlighted

in the same figure. It is important to remark that Manifold temperature and Air Charge

Temperature (ACT) are formerly the same parameters. The only conceptual difference is

that ACT can be seen as the desired temperature at the outlet of the CAC, while manifold

temperature is the measured one. However, except this difference on the names, which is

only related to technical language, the values of the two measured temperatures are the

same.

3.1 Engine dynamometer tests

The dyno configuration used for testing the engine is the same one applied also for emission

testing cycle. The engine, a 4 cylinder turbocharged spark ignition engine, is mounted on

an electric motor/generator dynamometer and the test were run, for every speed/load, at

a constant power output. Moreover the working point chosen for the project are all steady

state conditions at constant engine speed. The selection of these is based on analysis made

over the FTP cycle. The points chosen are all placed at 1500 rpm at different loads:

• 1500 rpm , BMEP − 2 bar
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• 1500 rpm , BMEP − 4 bar

• 1500 rpm , BMEP − 6.5 bar

• 1500 rpm , BMEP − 10 bar

• 1500 rpm , BMEP − 15 bar

In addition to these points, a high load condition is added:

• 1997 rpm , BMEP − 17.34 bar

While the tests at 1500 rpm were all run at an ambient temperature of 27°C, the last

point instead was performed at an ambient temperature of 36°C, and represents a very

severe working condition.

The engine mounted on the dyno does not have the cooling system that is commonly

equipped in vehicles. Instead, it uses the test cell’s cooling system for the coolant tem-

perature control. In most of research studies the engine is tested without the additional

components constituting the cooling module, in doing so, their effect is not accounted when

testing the engine.

The cooling system for the CAC is substituted by a separate cooling system of the test

cell. Thanks to this solution the desired temperature of engine fluids (engine coolant, engine

oil, etc.) is set and it is kept constant for each working condition. The advantage is that

variations in the fluids temperature during the engine analysis are not influencing the final

results, but from a power and fuel calculation point of view, the results, once the engine is

mounted on the complete vehicle, are impaired.

Many sensors are mounted on the engine in order to control a wide variety of parameters,

the output of the sensors is then read and stored in a computer from which it is possible

also to operate on some of them.

In the tests performed during this project, as already mentioned, the engine speed was

kept at a constant value, as well as the power output. Once the engine is fully warmed up

and it has reached a steady state operating condition the measurements can be performed.

Since the working points (speed/load pair) are considered as steady state, the outputs from

the different sensors are averaged over 500 cycles.
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The main focus of this project is to highlight the effects of EGR rate and Air Charge

Temperature (ACT) on the fuel consumption and for the purpose an ACT and EGR sweep

was done; the procedure is briefly described in the following:

1. Set air charge temperature: the air charge temperature is the temperature mea-

sured at the outlet of the charge air cooler; it directly influences combustion temper-

ature. It is the first parameter to be set since it needs a longer time to move from

one value to another due to the fact that the external cooling system needs to adjust

the flow rate and temperature to assure the desired ACT. The value chosen for the

temperature sweep are: 30 to 90°C with an increment of 10°C. Once the engine speed

and desired load are achieved, and the manifold temperature has reached a steady

state condition, the test could start and the other parameter to adjust will be:

2. EGR rate: the EGR rate is calculated using the Equation 2.4.3, the exhaust flow

is analyzed and the EGR valve is opened to achieve the desired EGR amount. The

response of this parameter is faster than that of the ACT and the effects of the opening

and closing of the EGR valve are almost instantaneous. For these considerations the

EGR sweep was made at a constant ACT. The value chosen for the EGR, especially for

the maximum one, greatly depend on the manifold temperature and load considered,

as will be shown in the discussion of the results. The lower values, however, are varied

from 0% EGR (valve completely closed) with an increment of 5% (i.e. 0% - 5% - 10%

- 15% and so on until COV of IMEP reaches 3%).

A consideration has to be made on the minimum value: it never happened to have

0% EGR even if the EGR valve was completely closed due to the presence of internal

EGR coming out into the intake manifold during the intake valve opening.

The next step will describe how the maximum value of EGR rate was obtained.

3. Set the maximum EGR rate: during the tests, as explained above, the EGR rate

is varied until the maximum allowable limit. This limit can be reached in different

conditions:

• Coefficient of Variation (COV) of Indicated Mean Effective Pressure
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(IMEP): as commonly done in literature and in other tests, the COV of IMEP

is defined as:

COV of IMEP =
σ(IMEP )

µ(IMEP )
(3.1.1)

where σ is the standard deviation and µ the mean value calculated over a con-

secutive number of tests.

The COV of IMEP signifies the cyclic variation of the IMEP and thus the stability

of the combustion process. It helps in determining if it can be considered stable or

not. Further more high variations can produce a degradation in vehicle drivability

directly perceived by the diver.

During the tests, when the COV of IMEP reaches the maximum set limit (3%),

the maximum EGR rate for that point is reached and the test is ended.

• Insufficient exhaust back pressure: it could happen that, for certain condi-

tions, the maximum EGR rate allowable is limited by the amount of backpressure

(pressure difference between exhaust and intake) instead of the COV of IMEP. In

this case the test is ended while the combustion stability is still assured. To over-

come this problem of limited backpressure a different EGR loop configuration or

other technique to increase the pressure in the exhaust should be applied.

• Knock limitations: at high load and temperature it is possible to encounter

limitations on the maximum EGR rate due to the presence of knock. These

working points should be avoided in order not to damage the engine. Solutions to

this particular limitation can be implemented reducing the manifold temperature

or enriching the mixture; however the scope of the project is to analyze also the

effects of high manifold temperature at high loads keeping the air fuel ratio

constant.

4. Repeat the procedure for higher ACT: once the maximum EGR limit is reached

for a particular manifold temperature the test is ended, all the results are stored

and the air charge temperature is increased to the next point: then the procedure

described above is repeated until a complete ACT and EGR sweep is performed.

In addition to the procedure described so far, it is important to state that some other
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parameters have to be check all along the testing phase, in order to obtain the optimal

combustion process. The following parameters have to be always checked:

• CA50: it represents the crank angle degree at which the 50% of total heat release

due to the combustion occur and it directly influences the maximum brake torque

obtainable by the engine. A common value set for the CA50 in normal testing condi-

tions is around 7 to 10 degree after the Top Dead Center (TDC), while for very severe

conditions this value can be retarded more to avoid the problem of knocking.

The CA50 is directly controlled by the spark timing; in fact, advancing the ignition

event (typically before the TDC) the CA50 is moved closer to the TDC and so, closer

to the desired position. From this consideration it is easy to understand why in some

severe conditions (at high loads) it is difficult to stay in the prescribed CA50 range.

When knocking could appear, the spark event should be retarded to move the peak

pressure far from the TDC. Having high EGR percentages it is possible to further

advance the spark angle, with a positive effect on combustion phasing.

• No significant variation in engine parameters: the tests are all run in steady

state conditions and for this reason, before taking the data for each EGR rate there

is the need to wait a certain amount time in order to let the engine stabilize. When

something is varied, for example the EGR valve opening position to admit more EGR

flow, a transient behavior is starting to appear; in order to have accurate results no

significant variation should be noticed in parameters, such as EGR rate, COV of IMEP,

and CA50. When everything is stabilized then it is possible to start collecting the

data for the 500 cycles and then average them to obtain one value for each parameter

evaluated.

• Knock presence: at higher loads knock, which is detrimental to the engine, can

occur and could impair the tests or even worse, damage the engine. Bearing in mind

these possible problems, thus, the in-cylinder pressure is always monitored in order

to promptly act against the onset of knock by manually adjusting properly the spark

timing (retarding it when some spikes start appearing on the trace). This problem

was found in particular during the severe test condition.
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One additional step to do for running the tests at high load and ambient temperature is

to increase the latter prior the beginning of the test and let it stabilize around the desired

value.

Once all the tests have been run, among the parameters collected, one of the most

important results is the Brake Specific Fuel Consumption (BSFC). It allows the comparison

of different working condition since the quantity of fuel burn is divided by engine power

output, obtaining so a result in g/kWh. Since the tests were ran at constant torque and rpm

the power output was constant, and with a simple multiplication it is possible to calculate

also the fuel consumed measured in g/s as follow:

FC [g/s] = BSFC · Torque · rpm · 2π

1000 · 60 · 3600
(3.1.2)

where Torque is measured in Nm.

The calculation of the fuel consumption in grams per second will be useful in the second

part of the project when it will be compared with the results from the simulation on the

cooling system. From the engine dyno tests performed a 4-dimension map is built in order

to retrieve, from the 3 inputs: EGR rate, ACT and load, the corresponding BSFC value.

In doing so the effect of the manifold temperature and of the EGR rate is analyzed and the

configuration which leads to lowest fuel consumption can be found. However it is important

to notice that, for intermediated load values (i.e., 5 bar) the BSFC is obtained using an

interpolation technique, thus the results could be less accurate than a complete analysis at

the specified load.

As it is explained in the procedure above, the tests represent a critical part of the project

development and it is essential to pay close attention to have good results to be used in the

second and final part.

3.2 Cooling system simulation

Recalling that the scope of the project is to analyze the influence of the EGR rate and air

charge temperature on the fuel consumption, there is the need to consider also the power
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required to cool both the EGR cooler and the CAC. During the dyno tests this fact was not

a big concern since the cooling cart can assure “unlimited” cooling capacity and it is not

subtracting power to the engine. Analyzing instead a real engine, mounted on a vehicle,

to obtain the same temperatures there is the need to use the cooling system, in doing so

additional power is required and it is drawn directly from the it.

Considering a common cooling system used on the engine there are additional components

that were not mounted on the dyno cell, these include the cooling fan, the air conditioning

system, the frontal radiator, etc. These components are mounted on the engine mainly

through belts connections and they are directly drawing the power from the engine. Bearing

in mind this last statement it is clear that, to obtain the same power available at the wheels,

the engine, with all the additional components mounted, should produce a higher power.

A simple formula to have clearer in mind the concept could be the following one:

Power outputtotal = Powerwheels + Powercooling system (3.2.1)

So, for example, if the power requested to travel is 90 kW and the cooling system is

requiring 2 kW to cool down the engine, the total power request to the engine will be 92

kW. The calculation done is very rough and it gives only an explanation of what there is

behind the project. For more reasonable results, the connection efficiency and power losses

in the whole process need to be considered, however the main idea is that this additional

power is translated in additional fuel injected and so higher fuel consumption.

From the tests described in the previous section the best manifold temperature and

EGR rate to minimize the consumption were found, but once the cooling system is added

as a variable however the lowest fuel consumption point could be different.

Generally speaking, from a point of view of BSFC, higher load conditions result in lower

fuel consumption, but in the case considered, the additional load is “wasting” a part of the

fuel only to cool the engine. It is important to say that the fuel is not really wasted, since

cooling is fundamental for the proper functioning, however the goal is to minimize the power

request for this purpose. There is a common belief, from the point of view of combustion,

that the colder the air/fuel mixture the better the process and fuel consumption. From
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a point of view of cooling power, instead, having colder and colder fluids (EGR or air) is

translated in higher power request.

After all of these considerations the final scope is to analyze then if the possible improve-

ment in fuel economy coming from a colder mixture entering in the combustion chamber

are impaired by the additional power required by the cooling system, or if it is better to

burn an hotter charge reducing the cooling effect.

Just to fix the ideas, for example, there could be a working point in which the lowest

fuel consumption is obtained with a high EGR rate and low manifold temperature, but the

cooling system will require the engine to burn 15% more additional fuel to cool down that

high flow rate at the desired low temperature. For the same working point, a higher manifold

temperature could be accepted; the effect of the higher temperature on fuel consumption

could result in an increase of 2% for example, but at the same time the cooling system is

requiring only 5% more fuel to be burn. For this particular working point is then found that

is better to have an hotter mixture, but reducing the load on the engine. This reasoning

however is not always straightforward and cannot be applied as a general rule; in fact, each

point has to be analyzed carefully.

The final outcome will be thus the evaluation of whether if it is better to increase the

cooling capacity ti have a lower fuel consumption or increasing the manifold temperature

to have, consequently a lower power drawn from the engine. Most of the times a trade off

between these two objectives must be found.

3.2.1 Simulation procedure

The procedure followed in this second part is schematically described in the following, while

some points will be discussed more in detail.

1. Modifications on 1D cooling system model

2. Creation of a Design of Experiment (DOE) matrix

3. Final setup of the simulation
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4. Collection and analysis of the results

This procedure is then followed for each working point and will finally give the results

required.

Modifications on 1D cooling system model

To simulate the influence of the cooling system on the engine and on the fuel consumption,

Flowmaster, a 1D Computational Fluid Dynamics (CFD) software able to simulate also the

thermal behavior has been used. The analysis carried on during the simulations is steady

state, for certain particular conditions it could be a drawback, but in the case of this project

the main focus is on driving conditions where are not present steep velocity gradients or

acceleration, moreover the tests on the dyno are done at constant load and speed conditions.

The model used for the simulations is based on the real components of cooling system

used on the vehicle, and was already created for previous studies. It represents only the

components present in the cooling system itself. Every component is modeled based on real

dimensions and real data for heat transmission. These data are obtained from suppliers or

previous studies. The combustion is not modeled in every simulation, but what is important

is the combustion heat rejection to the coolant for every rpm and load. It is, though,

obtained through look-up tables based on previous engine dyno tests. The same procedure

was applied for certain parameters such as the EGR heat addition to the coolant. However,

after the collection of data from the dyno tests, the model has been changed. An EGR cooler

is implemented using a heat exchanger with the same dimensions and cooling capacities of

the real one mounted on the vehicle. The flow is modeled, as well, taking into account

the actual amount of mass flow rate [kg/s] and the actual temperature measured on the

previous tests. The same procedure is done also for the CAC.

Many parameters of different components, mainly pressures, temperature and flow rates

are collected as results from these simulations and are used for further calculations in the

next steps.
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Creation of a Design of Experiment (DOE) matrix

The creation of a strong and reliable design of experiments plan it is very important to

better analyze all the possible interactions between the different components of the cooling

system. For each component furthermore there are many different possible positions. For

example, considering the cooling fan, its speed could be varied from 0 rpm (completely shut

off) to its maximum speed, and it could also assume intermediate values, for example with

an increment of 500 rpm. Only considering the fan it is clear how many simulations have

to be made to tests all the possible speeds. Extending the reasoning for more components,

the process is incremented to reach an extreme number of possible interactions. For this

reason a good predefined simulation plan must be implemented.

To have a good understanding of what is written in the next page, it could be useful to

define what parameter/factor and levels mean:

• A factor or parameter is one of the element studied in the process. In this case,

for example, the cooling fan, together with other cooling system components, is the

parameter analyzed

• The levels represent the number of a parameter possible different values. In the case

of computer bits which could only be 0 and 1, the levels are just 2, while, for example,

the cooling fan rotational speed can vary from 0 to its maximum speed. In this case

the values are not discrete, but vary in a continuous way, so the easiest thing to do is

to pick only some discrete values. In this way, imaging that the speed is ranging from

0 to 2000 rpm and an increment of 200 rpm is chosen, the levels would be 11.

The idea behind a good procedure plan is trying to highlight, among all the possible

parameters, which is the effect of one on the others together with the magnitude of this

interaction. The design of experiment is thus a technique used more and more in companies

to face this problem when dealing with a great amount of factors.

One possible way of finding interactions is to vary one parameter at time, keeping all

the others constant (One Factor at Time – OFAT). This approach could be good when

dealing with few elements with two or three levels. In OFAT, the first factor is fixed as
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a “good” value, the next factor is examined, and on and on to the last factor. Because

each experimental run considers only one factor, many runs are needed to get sufficient

information about the set of conditions contributing to the problem. Another limitation is

that when factors change, they generally change together, so it is impossible to understand

the best solution by pointing to a single, isolated factor.

DOE, on the other side, provides information about the interaction of factors and the

way the total system works, something not obtainable through testing one factor at a time

while holding other factors constant. Another advantage of DOE is that it shows how

interconnected factors respond over a wide range of values, without requiring the testing of

all possible values directly.

When talking about DOE there are mainly two different ways of building the plan map:

• Full factorial plan

• Partial factorial plan

The full factorial plan consists in analyzing all the interactions between the different

parameters, so every factor at every level is considered. It is certainly the most complete

test that is possible to plan since all the interaction are analyzed, but it will require longer

time; it is feasible only when considering few parameters with few levels. The reason of

that statement is easily explained when looking at the following formula to calculate the

amount of interaction needed to investigate all the levels:

N◦ interactions =
∏

(lf )nf (3.2.2)

Where lf is the number of levels of factor f and nf is the number of factors which show

a number of levels lf . For example, having A = [1, 2, 3], B = [4, 5, 6] and C = [7, 8] the

number of iterations required is:

N◦ interactions = 2 · 32 = 18 (3.2.3)

It is now clear how much the computation time is increased when dealing with many

factors at many levels. So this procedure is quite time consuming and it was found to be

not feasible in the development of the project and a partial factorial plan is used.
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A partial factorial plan experimental design consists of a carefully chosen subset (frac-

tion) of the experimental runs of a full factorial design. In this case some levels are not taken

into considerations and so some interactions are not evaluated, however this technique leads

to good results when the amount of time available is not sufficient to perform a complete

design. There are many different techniques when dealing with this type of design, but the

main concept behind all of them is the fact that population should be as widespread as

possible. In this project an Optimal Latin Hypercube strategy is used to build the design

matrix, and a good spread of the factor is assured.

Two more important reasons, related to the cooling system itself, should be mentioned

on the choice of using an optimal latin hypercube rather than a full factorial plan:

• The number of factors considered to build the DOE is rather high due to the high

number of components over which is possible to act to obtain different cooling system

configurations. Considering that there are 6 components (factors) that are varied

within 5 to 10 possible positions (levels) it is easy to understand that, in the best case

possible (all 6 factors with 5 levels), the required number of iteration would have been

56 = 15625.

• If the above concern is not enough to promote the usage of a reduced plan, it must be

noticed that in real conditions some actuators positions are not allowed because they

would cause the engine not to run at the proper temperature or they would cause

the cooling system malfunctioning. Considering that, using a partial plan will reduce

in a great extent the possibility of picking these points together with the required

computational time.

For the purpose of the project, Isight, a software which, after setting up all the parame-

ters and their levels, automatically generates the design matrix has been used, and for each

working point 600 runs have been performed, assuring a good distribution of all possible

actuators positions.
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Final setup of the simulation

After implementing the 1D system model and the design of experiment matrix, to finally

perform the simulation some additional information are still needed: in particular, for what

concern the vehicle speed. This parameter is important since it will be needed in the 1D

model to calculate the amount of air flowing through the radiator pack, and different speeds

would result in different cooling capabilities.

For what concern the engine, it is not important if the vehicle is traveling at a certain speed

rather than another. From the moment it could assure a determined torque and angular

speed the test on the dyno are performed properly. But when considering the cooling system

and its integration on the engine, the speed is becoming a parameter rather important. At

fixed torque and rotational speed, the vehicle speed can be different depending for example

on the gear inserted, the slope of the street and the aerodynamic resistance. The vehicle

speed, in the case of this project, has been extrapolated from the FTP cycles, adding

additional variables to the already complex matrix. In fact for each working condition

2 different speeds were considered: one for the city cycle and the other for the highway;

exceptions were made for the 10 and 15 bar cases where the speeds were found to be the

same in both conditions. As it is shown in Figure 3.2 during the tests the speed behavior

is very transient, and it is not easy to determine a proper steady state speed. To achieve

these results, however, a weighted averaging technique has been applied.

Figure 3.2: Vehicle speed characteristics during FTP cycles: City on the left, Highway on the right

The weighting factor considered is the percentage of usage of each gear in each cycle.

It is clear that, in city driving, lower gears would be used most, resulting in lower speed,
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while, in highway, most of the times the last gear is engaged. With this operation, and

considering a sufficient large range of engine rotational speed near the loads required, an

almost constant speed has been found. These speeds tend to stabilize to a certain value as

the ranges are increased.

After calculating the speeds for every working point the 1D software is setup in such a

way to communicate with the DOE one. Information are then flowing both as inputs and

output from one software to the other and the final results are stored for further analysis.

3.2.2 Collection and analysis of the results

After all the runs in the DOE are performed the final results can be retrieved and processed

for the final analysis.

The results from the simulations are firstly processed to sort out the conditions which

could lead to an improper use of the cooling system. Some constraints are applied to

filter the results, so, for example, the engine coolant temperature, as well as the engine oil

temperature and other parameters must be in certain ranges. It is fundamental to highlight

that these constraints are set depending on engine durability tests and are chosen to assure

a sufficient engine life. This assumption is very important and, together with the fact that

during dyno test the combustion stability was always maintained, they assure a possible

satisfaction on the customer point of view. The engine in fact will be durable and fuel

efficient.

After all the data have been sorted and filtered, interactions between the different com-

ponents of the cooling system and the fuel consumption can be discovered, finally the

development of a strategy to increase the fuel economy for every working condition could

be found.

The main outcomes to look at are the EGR rate, the ACT and their influence on

fuel consumption at different loads. From these three inputs, using Matlab, a surface

BSFC = f(EGR,ACT, load) has been built, allowing the calculation of the brake specific

fuel consumption for loads which were not directly investigated.

The major drawback of this technique is that, if some points are placed too far, a
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linear interpolation is sometimes too rough to give accurate results. For some other points

(points at the extremes of the ranges) there could be also the need of extrapolating their

value, reducing even more the accuracy. However, the points considered in the tests were

almost evenly distributed and the results considering the objective of the project could be

considered very satisfactory.

Before moving to the analysis of the results it is worth to stress again the importance of

the two separate studies: the dyno tests and the 1D simulation. Considering only one effect

at the time you could focus your attention on two opposite sides:

• Focus only on the engine: In this case the greatest result possible is the one at the

lowest fuel consumption point, no matter which is the manifold temperature or the

EGR rate. The cooling system is not taken into consideration and its thermal duty

and power request are not entering in the calculation. The best point is thought to

be the one at the highest EGR rate at the lowest temperature possible, clearly this is

an extreme condition the cooling system has to whistand.

• Focus only on the cooling system: This is the opposite condition. The ideal

point would be at 0 power request from the cooling system, but this is not clearly

acceptable, since it would lead to combustion and materials problems. To reduce the

power request to cool, the temperature should be risen, but a too big increase could

produce the opposite effect.

The solution to the problem is to look at the engine and cooling system as a whole.

In doing so, a tradeoff between the two points of view, and the effects of one component

should not hinder the effects of the other.

Choosing whether if it is better to cool more or if it is better to let the engine run with

no additional loads on it, would not probably be straightforward and the advantages and

drawback of both concepts must be analyzed properly.

An extensive explanation of the results found will be provided in the following.
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Results and Discussion

In this chapter the main results obtained during the project are presented and discussed. As

with the dyno-simulation methodology, the results are accordingly presented in two different

sections.

First, the data obtained from the dyno tests is presented. Combustion stability, gas

temperatures and fuel consumption are discussed in terms of EGR rate and ACT.

Secondly, after considering the combustion process, the results from the simulations on

the cooling system will be provided. The best actuators configurations for the different

loads are located and their effect on the fuel consumption are evaluated.

4.1 Engine dyno tests results

The output data collected during the engine tests are presented divided in the different load

conditions.

It is important to remember that the tests were all conducted at 1500 rpm and an

ambient temperature of 27°C, except the severe condition at 1997 rpm and 36°C. For each

load, the air charge temperature is set to the required one and EGR sweeps are made.

54



4. RESULTS AND DISCUSSION

4.1.1 Results at BMEP = 2 bar

Effects of EGR on COV of IMEP

This condition does not represent a stressful test for the engine, in fact all tests were run

without problems regarding knock and the maximum admissible EGR rate is found, for

each temperature, when the COV of IMEP was higher than 3, as shown in Figure 4.1

Figure 4.1: COV of IMEP at different EGR rate and ACT - BMEP = 2 bar

It is evident the effects of high EGR rates on the instability of the combustion pro-

cess since the amount of fresh mixture available to be burnt is reduced in a great extent.

Another consideration could be done observing the lines representing the different mani-

fold temperatures, they are overlapped, meaning that, changing the temperature has not a

major influence on the COV of IMEP.

It is important to note that the sensors are measuring always a certain amount of EGR

even if the EGR valve is completely closed (there are no data at 0% EGR). This is due

to the fact that a certain amount of exhaust gases is flowing back into the intake due to

pressure difference.

Effects on gas temperature

For the low load condition considered the exhaust gases are leaving the combustion chamber

at a fairly low temperature, as shown in Figure 4.2. It is observed, that the different
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manifold temperatures are not influencing the exhaust temperature, which is only related

to the different load condition considered.

Figure 4.2: Exhaust gas temperature entering the EGR cooler - BMEP = 2 bar

The EGR was cooled in the EGR cooler, which is connected, as well as the CAC, to the

external cooler of the test cell. In doing so, the temperature of the exhaust gas out of the

EGR cooler is greatly reduced; the final outlet temperature if shown in Figure 4.3.

Figure 4.3: EGR temperature out of the EGR cooler - BMEP = 2 bar

Looking at the graph, the effect of the connection of the EGR cooler to the cooling cart
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is demonstrated; in fact, to obtain low manifold temperature the cooling cart is flowing high

amount of coolant at a low temperature. This flow is not affecting only the CAC, but also

the EGR cooler; the temperature of the recirculated gases is already well below the desired

manifold temperature.

An interesting behavior, shown in Figure 4.4, is found when considering the temperature

of the flow entering the charge air cooler. The fresh air, after being compressed, and the

EGR flow, which, as previously described, is cooled in the EGR cooler, are mixed together

and are cooled prior entering the combustion chamber. This cooling is necessary to increase

the available power especially at high loads when boosting is required and the air leaving

the compressor is at a very high temperature and low density.

Figure 4.4: Temperature of the mix of fresh air and EGR before entering the charge air cooler -

BMEP = 2 bar

Looking at the temperature trend it is possible to observe that the charge air cooler

is acting as a cooler only when a manifold temperature of 30°C or 40°C is required. In

these two tests the charge temperature is decreased to reach the desired target, even if the

difference between the inlet is not very high: maximum 12°C for both cases. For the 50°C

test the charge is already entering at the desired temperature, so in this case the CAC is

not either cooling or heating. For tests at temperatures equal or higher than 60°C, the
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CAC was used as a heater. For example, for the 90°C manifold temperature, the mixture

is entering at a temperature around 65°C and the increase is then around 25°C. The reason

of this effect can be explained considering that:

• the load condition is not requiring the application of high boost, so the air is not

compressed at high pressures and the temperature is only slightly increased. The

temperature rise along the compressor is only in the range of 13°C, from ambient

temperature of 27°C to an average temperature of 40°C

• the EGR gas is cooled in a great extent in the EGR cooler before being mixed with the

air out of the compressor, furthermore the exhaust mass flow rate is small compared

to the one of the fresh air. Therefore even if the EGR temperature is higher than the

40°C of the air, the temperature increase is small.

All these results on the fluid temperatures before entering the different coolers are used to

build the maps implemented in the 1D cooling system model. These data are fundamental

to assure that the simulations reflect the actual behavior found during the tests.

Effects of EGR on BSFC

The effects of the different ACT and EGR rate on the brake specific fuel consumption rep-

resent one of the major results of this project. The collection of these data is of paramount

importance in building the maps for the final analysis on the evaluation of the fuel consumed

by the cooling system.

It is important to recall that the brake specific fuel consumption is obtained by dividing

the fuel mass flow rate by the engine power and it is measured in [g/kWh], so, if the output

power is maintained constant, the lower the value of the BSFC, the higher the fuel economy.

In Figure 4.5 the trend of the BSFC for the different test points is presented. From

the graph it is clear that the EGR rate has a great impact in reducing the BSFC, thus the

general trend is to have the maximum EGR rate admissible while having at the same time

a stable combustion. As highlighted in Table 4.1 an increase of 15% in EGR rate, leads

to a reduction in the BSFC around 3.32%. These numbers are not obtained for a specific
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Figure 4.5: Effects of EGR rate and ACT on the BSFC - BMEP = 2 bar

temperature, but are considering an average BSFC value for the chosen EGR rate. For

example, at 5% EGR, the BSFC value was obtained considering an average value of 362

g/kWh, which is not coming from a particular manifold temperature but it is just chosen as

a general reference to quantitatively quantify the reduction in BSFC. The same reasoning

is applied for Table 4.2, and Table 4.3.

Table 4.1: Reduction in BSFC due to EGR rate - BMEP = 2 bar

EGR 5% 20%

BSFC [g/kWh] 362 350

∆BSFC [%] -3.32

Looking more in detail Figure 4.5 it is possible to see that the lines are not straight

and it is impossible to highlight an effect of intake manifold temperature on BSFC. This

scattering in the data is believed to be caused by inaccuracy of fuel flow measurements as

such a low flow rate condition.

Some considerations could be made observing the trend on the 30°C manifold tempera-

ture. It shows the highest BSFC values in respect to the other temperatures, meaning that
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the fuel consumption is reduced for higher charge temperatures. This could be explained

considering the fact that, for light load operations, the combustion is promoted at higher

temperature.

Effects of EGR on spark advance

The positive effects of EGR and ACT on the combustion phasing are showed in Figure 4.6,

where the spark advance, in crank angle degrees, is plotted over the EGR rate at the different

manifold temperatures.

Figure 4.6: Effects of EGR and ACT on the crank angle spark advance - BMEP = 2 bar

As expected from previous studies in literature the influence of the EGR on this param-

eter is very prominent, 10% increase in the EGR rate required 10 degrees of spark advance

to maintain the CA50 constant. Considering this parameter, it is possible to note a certain

trend for what concern the manifold temperatures, at lower values the spark could be ad-

vanced more. When the temperature in the combustion chamber is low, the burning rate is

reduced due to a lower flame speed and there is the need to ignite the mixture well before

the TDC, thus the highest values of spark advance are found for high EGR rates at lower

temperature. This effect will be of fundamental importance for high load conditions.
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4.1.2 Results at BMEP = 4 bar

Effects of EGR on COV of IMEP

Also in this working point the effect of knock is not present, even at high manifold tempera-

tures, meaning that, as shown in Figure 4.7, the tests were concluded when the combustion

started to become unstable.

Figure 4.7: COV of IMEP at different EGR rate and ACT - BMEP = 4 bar

It is difficult to highlight a trend due to the continuous overlapping of the curves, but

the effect that could be noticed is that, a higher temperature could allow the usage of higher

EGR rates and at the same time it tends to stabilize more the combustion in this region.

Considering for example the curves at 30°C and 90°C, the same value of COV ofIMEP =

2.5 is obtained respectively at 22% and 27% EGR. This effect of increasing the maximum

limit of EGR rate will be highlighted better when considering the BSFC curves.

Effects on gas temperature

As previously stated, the temperatures of the exhaust gas do not depend on the value of

the manifold temperature considered in the test, but are just varying depending on the

load considered. What is expected is then an increase in the temperature, as shown in

Figure 4.8, with a consequent increase in the EGR cooler duty.
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Figure 4.8: Exhaust gas temperature entering the EGR cooler - BMEP = 4 bar

The maximum gas temperature entering the cooler is now changed from the value of

290°C in Figure 4.2 to a value of 360°in Figure 4.8. This increase in temperature entering

the cooler will be reflected also on the outlet one, in fact, as shown in Figure 4.9, now the

EGR temperatures are higher than the ones in Figure 4.3.

Also for this working point no boost is required and consequently the rise in temperature

in the compressor is around 13°C, from 27 to 40°C. The main difference however is on the

quantity of fresh air flowing, in fact increasing the load, there is the need to increase the

amount of air to burn more fuel and obtain a higher output power. Following this reasoning,

it is possible to see that the temperature at the CAC inlet is slightly lower than the condition

at 2 bar, even if the temperatures of the EGR gas is higher than the previous condition.

Comparing Figure 4.10 and Figure 4.4 no great differences could be noticed, except the

fact, above mentioned, that for the 4 bar load the gas temperatures entering the CAC are

slightly lower than the 2 bar condition.

Also in this case the charge air cooler is being used as a proper cooler only for the 30 and

40°C manifold temperatures. For all the other ones, it is used as a heater. It is particularly

interesting the fact that observing the 50°C curve, in Figure 4.10, the mixture is entering

at a lower temperature than the target one, so it is heated in the EGR “cooler”; during
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Figure 4.9: EGR temperature out of the EGR cooler - BMEP = 4 bar

Figure 4.10: Temperature of the mix of fresh air and EGR before entering the charge air cooler -

BMEP = 4 bar

63



4. RESULTS AND DISCUSSION

the 2 bar tests, instead, the flow was at a temperature comparable to the target and no

significant change was observed.

Effects of EGR on BSFC

The effects on the brake specific fuel consumption are respecting the decreasing trend ex-

pected at high EGR rates. For this load condition also a certain effect of the ACT could be

observed. The curves are still overlapping a bit, but a general behavior could be highlighted.

Figure 4.11: Effects of EGR rate and ACT on the BSFC - BMEP = 4 bar

Observing Figure 4.5 and comparing it with Figure 4.11, there has been a great reduction

in the BSFC range only due to the increased load condition; the ranges are respectively

370-345 [g/kWh] and 285-265 [g/kwh], with an average reduction of 23% only doubling the

load. This is in line with what expected considering the brake specific fuel consumption as

a function of the load, the curve which is in a parabolic shape: decreasing for increasing

load values down to a minimum and then increased again for increasing loads. A schematic

behavior is shown in Figure 4.12.

In Figure 4.11 it is possible to start observing a certain trend. The lowest BSFC value

is obtained for the highest temperature; in particular, 90°C curve is showing a higher EGR

rate admissible (5% more if compared to 30°C) with a decrement in BSFC of 1.85% )in
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respect to the 30°C case).

BSFC

Load

Figure 4.12: Schematic of BSFC curve at increasing load values

In Table 4.2 average values for the BSFC at the different EGR rates are considered and

increasing it from 5% to 25% could lead to a reduction of about 5.32% in the BSFC.

Again the EGR effect is proven to be very effective in reducing the BSFC, more than

the reduction in ACT.

Table 4.2: Reduction in BSFC due to EGR rate - BMEP = 4 bar

EGR 5% 25%

BSFC [g/kWh] 282 267

∆BSFC [%] -5.32

Effects of EGR on spark advance

For what concern the spark advance, the trend is similar to the one showed in Figure 4.6.

High EGR rates, as well as lower ACT could allow the possibility to set a higher advance.

It should be noticed that in Figure 4.13 the minimum value, set when the EGR valve is

closed, is lower than the one in the 2 bar test case. In both cases the minimum value is set in

order to assure that the CA50 is around 8 degrees after TDC in order to get the maximum

torque from the given mass of fuel. For higher loads, where the tendency to knock is more

problematic, the spark will be retarded more, up to being set later than the TDC.

Another consideration should be made observing the maximum spark advance obtain-

able and the BSFC curves. They have two opposite trends: the maximum reduction in
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Figure 4.13: Effects of EGR and ACT on the crank angle spark advance - BMEP = 4 bar

BSFC is found to appear for higher temperature; while the maximum spark advance is

found to appear at lowest temperature. Observing Figure 4.13, the 90°C curve is showing,

at maximum EGR rate, the same spark advance of the 30°C one. Following this consid-

eration, a higher EGR rate at higher temperature is favorable since it reduces the BSFC

maintaining the same combustion phasing.

4.1.3 Results at BMEP = 6.5 bar

This test condition is starting to increase the stress added on the engine. Boost is not used

yet, but attention should be made when controlling the spark timing to avoid knock.

Effects of EGR on COV of IMEP

For this load the maximum EGR rate was found when the COV of IMEP was higher than 3

%, except for the tests performed at 80 and 90°C, where the maximum EGR rate is reached

due to insufficient pressure difference between the exhaust and the intake. In the previous

test, in fact, the throttle valve was only partially open, reducing the pressure in the intake

manifold. The general trend, followed also before, is that, increasing the EGR rate, the

throttle valve should be open to admit more air and burn the mixture in a stoichiometric
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ratio. In addition to that, increasing the load the valve must be opened even more; for this

reason, at 6.5 bar load the throttle valve is completely open and the pressure in the intake

manifold is increased up to a certain value similar to the exhaust one, decreasing thus the

driving force for the exhaust recirculation.

Figure 4.14: COV of IMEP at different EGR rate and ACT - BMEP = 6.5 bar

Observing Figure 4.14, especially the 90°C curve, it is very clear the effect explained

above. The maximum EGR rate is only 27% with only a COV ofIMEP = 1.7; for all the

other temperature the limitation on the EGR admissible was found looking at the value of

the COV of IMEP. The 80°C test is a borderline test because the maximum EGR rate is

found when the pressure difference between the intake and the exhaust was not high enough

to go further in the recirculation, and it also shows a COV ofIMEP = 2.99.

Effects on gas temperature

As expected, increasing the load also the temperature of the exhaust gas is increased.

The trend, similar to the previous ones, is showed in Figure 4.15. The increment in inlet

temperature is followed by an increment of the outlet one as well, as reported in Figure 4.16.

Since no boost is required, the temperature of the fresh air is not increased and the

considerations applied for the loads in the previous sections are still valid. The trend of the

CAC temperature inlet is shown in Figure 4.17. Also in these tests the charge air cooler
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Figure 4.15: Exhaust gas temperature entering the EGR cooler - BMEP = 6.5 bar

Figure 4.16: EGR temperature out of the EGR cooler - BMEP = 6.5 bar

has been used as a real cooler only in the 30 and 40°C conditions, for all the other points

it has been used to heat up the mixture.

Effects of EGR on BSFC

For the BSFC the same reasoning done for the previous tests is applied, the range over

which the values are placed is reduced further, meaning that this load condition is still in
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Figure 4.17: Temperature of the mix of fresh air and EGR before entering the charge air cooler -

BMEP = 6.5 bar

Figure 4.18: Effects of EGR rate and ACT on the BSFC - BMEP = 6.5 bar

the descending branch of the curve in Figure 4.12.

For this load the BSFC range is between 254 and 235 [g/kWh], as reported in Figure 4.18,

which corresponds, in respect to the previous load, to a decrement of 10.1% in the average

BSFC values. The EGR rate is further increase up to 30% for the manifold temperature

of 90°C. The percentage decrease of the BSFC due to the variation in the EGR rate is
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highlighted in Table 4.3

It should be noticed that a certain trend in the temperature is appearing, and it is

actually the opposite of the previous twos. In this case in fact, the higher BSFC curve

corresponds also to the highest manifold temperature.

For the engine type and speed considered, the 6.5 bar condition represent, as will be

observed analyzing the other loads, the transition point over which it is better to have colder

mixture rather than hot ones and over which the BSFC will start to follow the ascending

branch of Figure 4.12.

Table 4.3: Reduction in BSFC due to EGR rate

EGR 5% 27%

BSFC [g/kWh] 252 236

∆BSFC [%] -6.34

Effects of EGR on spark advance

Figure 4.19: Effects of EGR and ACT on the crank angle spark advance - BMEP = 6.5 bar

For the spark advance the reasoning followed during the previous analysis could be

applied as well. In this condition the effect of temperature is even more predominant,
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and considering also the BSFC trend, it is better now to have high EGR rate at a low

temperature.

It should be observed that the minimum value of the spark advance 0% EGR is closer

to the TDC, around 6 to 10 degrees BTDC.

4.1.4 Results at BMEP = 10 bar

For this working point the intake was boosted in order to meet the target load while deliv-

ering enough EGR.

Effects of EGR on COV of IMEP

Figure 4.20: COV of IMEP at different EGR rate and ACT - BMEP = 10 bar

In this series of tests the maximum EGR rate is obtained no more due to the increase in

the COV of IMEP value, as shown in Figure 4.20, but due to insufficient boost or onset of

knock. Great attention must be kept in this condition to avoid knock and possible damages

to the engine.

It should be noticed that the manifold temperature of 80 and 90°C are no more present.

This is because of knocking problems, in fact at this load, such high temperature easily

favor the onset of knock. It has been decided not to go further than 70°C because it was
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already representing a very severe condition difficult to be controlled properly.

Effects on gas temperature

The temperature of the exhaust gases entering the cooler are now slightly lower than the

previous case. The maximum value, as showed in Figure 4.21, is around 360°C.

Figure 4.21: Exhaust gas temperature entering the EGR cooler - BMEP = 10 bar

The exhaust gas, now, after being cooled, has almost the same trend independently

on the manifold temperature desired. It is important to notice, in Figure 4.22, that the

downward spike at 1% EGR is related to the way the temperature is measured. In fact,

prior to that point the EGR valve is closed and what is measured is an high temperature

due to metal surfaces radiation, once the valve is open, a certain amount of EGR is starting

flowing and the measurements are accurate.

From this load on, it is possible to note the usage of turbocharging observing the trend

of the temperature at the entrance of the CAC. Boosting is increased as the EGR rate is

increased, meaning that also the fresh air leaving the compressor has increased its temper-

ature, this explains the trend observed in Figure 4.23.

It should be pointed that in this case the CAC is used as a cooler for high EGR rates

and the 30 and 40°C manifold temperature conditions, while for low EGR rates and other

temperature it is still used as a heater.
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Figure 4.22: EGR temperature out of the EGR cooler - BMEP = 10 bar

Figure 4.23: Temperature of the mix of fresh air and EGR before entering the charge air cooler -

BMEP = 10 bar

Effects of EGR on BSFC

As previously mentioned, the BSFC is starting to increase. The 6.5 bar load was placed

near the minimum point of Figure 4.12, meaning that, for loads higher than that, the BSFC

has to increase. This is what is happening for these results: the range is now increased to

values from 265 to 235 [g/kWh], as reported in Figure 4.24, which is an increase in 1% on

the average.
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Figure 4.24: Effects of EGR rate and ACT on the BSFC - BMEP = 10 bar

It must be observed that now a clear temperature trend is appeared. The EGR rate

is still playing an important role in reducing the BSFC value, but, especially at low recir-

culation values, the ACT effect is predominant. Around 1% EGR, reducing the manifold

temperature from 70 to 30°C lead to a reduction on the BSFC value from respectively 262

to 237 [g/kWh], almost a 9.5% reduction.

If considering the effect of the EGR rate at 30°C manifold temperature, it could be

observed that at 1% EGR the BSFC = 237 [g/kWh] while at 25% EGR the BSFC =

230 [g/kWh], a reduction of only 2.95% is observed.

However, when high EGR rate at low temperature is used, the decrease in the BSFC is

higher because is not considering the two effects (of low temperature and high EGR rate)

as distinct, but together, in synergy.

Effects of EGR on spark advance

The trend of the spark advance is particularly interesting when considering this load, in fact,

as it is shown in Figure 4.25, the minimum spark advance is at negative values, meaning

that the spark event is actually after the TDC; it should then more correctly called spark

retard.
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Figure 4.25: Effects of EGR and ACT on the crank angle spark advance

Figure 4.26: Effects of EGR and ACT on the CA50 - BMEP = 10 bar

Figure 4.25 is particularly interesting because it helps in understanding the effect of

temperature on the combustion phasing. At 60 and 70°C in fact the combustion would

be knock limited if the spark is not retarded enough, this fact justifies also the increase of

the BSFC for these two temperatures. Exhaust gas recirculation and reduction of manifold

temperature are, in literature, two solutions proposed to reduce knocking; looking at Fig-

ure 4.25 it is evident the great effect they have to counteract these abnormal combustion

events.

The effect on the combustion phasing mentioned above could be also observed looking

at Figure 4.26, where the CA50 at different EGR rates and manifold temperature is plotted.
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A value around 8, which is the angle after the TDC at which the 50% of the heat is released,

is the target, so the closer to this value the better is the combustion process. It should be

noticed that the target is not reached only for a manifold temperature of 70°C.

4.1.5 Results at BMEP = 15 bar

This condition, as will be observed by the small amount of data available, was very se-

vere for the engine. All the tests were ended due to the instability of combustion, this is

demonstrated by the fact that at 60°C only two points were collected.

Effects of EGR on COV of IMEP

The analysis for the COV of IMEP is similar to the one at 10 bar, the only difference is

that the points at 60°C, being particularly knocking limited, show a COV ofIMEP > 3.

The results are reported in Figure 4.27.

Figure 4.27: COV of IMEP at different EGR rate and ACT - BMEP = 15 bar

Effects on gas temperature

To reach the necessary power output to test the engine at the desired load, high levels of

boost must be used. This fact is then reflected on the temperature of the gases entering

76



4. RESULTS AND DISCUSSION

the different coolers. The exhaust reaches a temperature around 400°C before entering the

EGR cooler (Figure 4.28).

Figure 4.28: Exhaust gas temperature entering the EGR cooler - BMEP = 15 bar

The EGR cooler, despite the increase in temperature of the inlet gas in respect to the

previous condition (10 bar), is still able to lower down the exhaust temperature at 80 °C

prior its mixing with the fresh air (Figure 4.29).

Figure 4.29: EGR temperature out of the EGR cooler - BMEP = 15 bar

The mix is then compressed and, due to the need of high boost values, the temperature

is increased to a certain extent in all conditions. The range is between 80 and 120 °C, as
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shown in Figure 4.30; this is the first load for which the CAC is used as a proper cooler for

all the EGR rates and ACT, and actually its thermal duty is particularly intense since, for

example considering the 30°C curve, it has to lower, in average, the temperature from 90

to 30°C.

Figure 4.30: Temperature of the mix of fresh air and EGR before entering the charge air cooler -

BMEP = 15 bar

Effects of EGR on BSFC

Figure 4.31: Effects of EGR rate and ACT on the BSFC - BMEP = 15 bar

The BSFC, as expected from all the previous considerations, is further increased in

respect to the previous load point. From Figure 4.31 it is found that the 60°C manifold

temperature, due to its extremely high instability, is worsening a lot the BSFC. The average
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range for all the other temperatures is between 260 to 250 [g/kWh], while for the 60°C the

results are around 310 [g/kWh]. The average increase in respect to the previous condition

is around 5.88%.

Effects of EGR on spark advance

Figure 4.32: Effects of EGR and ACT on the crank angle spark advance - BMEP = 15 bar

The spark advance trend, Figure 4.32 is showing that, when the EGR valve was closed,

all the points were knock limited, in fact the spark is retarded by 2 to 8 degrees. The general

trend is the one already showed for all the working points, the main difference is that for

certain conditions the spark event is set at points always after the TDC (50°C curve) or

slightly before it.

The best results is found for the 30°C condition, where an advance of 3.8 degrees is

reached, but when compared with the 35 of the previous tests it is clear why this load is

showing very poor BSFC values.

It is important also to note that the maximum EGR rate is located around 10%. This

lowering in the maximum amount admissible was already observed for the test at 10 bar,

but now it is more accentuated. This low point is limiting the EGR positive effects, as

extensively described in the previous section, and the causes have to be associated to the

great instability of the combustion process.

The CA50, similarly to the previous case, is showing values far from the required one,
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Figure 4.33: Effects of EGR rate and ACT in the CA50 - BMEP = 15 bar

Figure 4.33, the lowest result (19 degrees) is obtained with high EGR rate at a manifold

temperature of 30°C.

4.1.6 Results at BMEP = 17.34 bar

This is the most severe condition considered in the test. It is run at a temperature of 36°C,

an engine speed of 1997 rpm and a load = 17.34 bar and it is critical for the engine. At

this particular working point, a study on the effects of the enrichment (λ = 0.8) on the fuel

consumption is performed. For this last case a manifold temperature of 50°C is set and

the tests are run trying to maintain the same CA50 of the 40°C test; in doing so a direct

comparison could be made. The enrichment was analyzed to highlight whether if, at this

high ambient temperature, it better to cool the engine with the cooling system or injecting

additional fuel in the chamber, which evaporates and subtract heat.

Effects of EGR on COV of IMEP

The trend showed in Figure 4.34 for the COV of IMEP is in line with the previous ones.

As for the other tests, where boost is applied, also here the maximum EGR rate admissible

is obtained at the onset of knock. It should be observed that, the curve at 70°C is at very

high values of COV of IMEP, higher than the target of 3; the best result is obtained instead

when the mixture is enriched.
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Figure 4.34: COV of IMEP at different EGR rate and ACT - BMEP = 17.34 bar

Effects on gas temperature

The effects of the increased load, but also of the increased ambient temperature are clearly

visible when analyzing the temperature of the gases entering the different coolers.

The exhaust temperature prior the entrance in the EGR cooler is much higher than

the previous test, around 420-500°C. The effect of the enrichment (red curve) on lowering

the temperature inside the chamber is clearly visible in Figure 4.35. This mean that this

technique could be favorable to reduce knock problems, the main drawback, as will be

highlighted in the following is the great increase in the BSFC value.

The EGR cooler is still very effective in reducing the temperature of the exhaust gas, in

fact, as observed in Figure 4.29, also in this condition the average outlet gas temperature

is around 83°C, as retrieved from Figure 4.36. This is a very good result if it is considered

the very stressful conditions of this test.

As previously mentioned in the 15 bar load, the CAC is now acting, in all temperature

conditions, as a proper cooler. The mixture of air and recirculated gas is always entering

the heat exchanger at a temperature greatly higher than the target one. The reason of this

increase in charge air cooler inlet temperature could be addressed looking at three factors:

higher ambient temperature, higher boost levels and higher EGR temperature prior to the
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Figure 4.35: Exhaust gas temperature entering the EGR cooler - BMEP = 17.34 bar

Figure 4.36: EGR temperature out of the EGR cooler - BMEP = 17.34 bar
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Figure 4.37: Temperature of the mix of fresh air and EGR before entering the charge air cooler -

BMEP = 17.34 bar

mixing with fresh air. All these effects combined together lead to the trend showed in

Figure 4.37.

Effects of EGR on BSFC

A straightforward reasoning on the BSFC trend is no more valid for this condition since

the engine speed is moved from 1500 rpm to 1997 rpm, however, being a very high load

condition, the expected range of values should be particularly high. This is confirmed from

Figure 4.38, where the BSFC is around 260-230 [g/kWh]; exceptions are found for the 70

°C and for the enrichment case. From this last observation it is clear that, unless strictly

necessary, enrichment should be avoided since it contributes a lot in increasing the fuel

consumption.

As expected for high load conditions, also in this case lowering the temperature is very

effective in reducing the BSFC, however attention should be made because cooling in this

condition could be difficult and could lead to a high fuel consumption. The scope of the

project will be indeed the investigation of the effects of this additional load on the cooling

system.
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Figure 4.38: Effects of EGR rate and ACT on the BSFC - BMEP = 17.34 bar

Effects of EGR on spark advance

As the test ran at 15 bar, the spark should be retarded for most of the conditions when

low values of EGR are considered. The positive effect of both low air charge temperature

and high EGR rate is present and it is significant that the highest gain in spark timing is

obtained when the manifold temperature is set at 30°C and an EGR rate of 15%.

Figure 4.39: Effects of EGR and ACT on the crank angle spark advance - BMEP = 17.34 bar
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Higher temperature, in high load conditions, are not only worsening the combustion

phasing, but are also reducing the maximum admissible amount of EGR rate, as showed in

Figure 4.39.

For what concern the spark timing, enrichment is not very effective and does not show

any useful improvement, in fact the two curves at 50°C are almost overlapped for all the

points, meaning that enrichment is not affecting the spark timing.

Figure 4.40: Effects of EGR and ACT on the CA50 - BMEP = 17.34 bar

The trend for the CA50 is the same of the one showed for the 15 bar condition. It

should be noticed that the enrichment (red) and the 40°C (light blue) curves are overlapped;

this is because of the assumption made at the beginning: to make a comparison possible

between enrichment and the other points, the CA50 was set equal to the one at a manifold

temperature of 40°C.

4.2 Pumping work reduction

As general results, it is interesting to highlight the effect of the manifold temperature on

the manifold pressure and on the pumping mean effective pressure (PMEP). The graphs

presented in the following are obtained from the results of the tests ran at 6.5 bar BMEP.

In Appendix B the values of the PMEP for the other loads are reported.
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Figure 4.41: Manifold pressure as a function of manifold temperature at different EGR rates

This result is interesting because having a higher temperature is directly translated in

lower air density. Therefore, in order to maintain constant BMEP, the throttle valve should

be opened further as the intake manifold temperature increases.

Figure 4.42: Effects of manifold temperature and EGR rate on PMEP

The effect of the increased manifold temperature over the pressure is showed in Fig-

ure 4.41.

For what concern the PMEP, the trend, similar to the manifold pressure one, is reported

in Figure 4.42. As the intake manifold temperature increases, the throttle valve should open

up more. This further opening of the throttle valve resulted in reduced pumping loss (i.e.,

86



4. RESULTS AND DISCUSSION

PMEP). This trend of improving PMEP as a function of intake manifold temperature is

shown in Figure 4.42. Furthermore, this trend is observed in all 6 different EGR rates

tested. Differentiating the contribution of EGR rate and intake manifold temperature on

the BSFC improvement is beyond the scope of this study, and will not be discussed further.

4.3 Simulation results analysis

After the extensive description of the results obtained during the tests on the engine dy-

namometer, the analysis of the results obtained from the simulations on the cooling system

will be presented in the followings. This part represents the key point of the whole project

since it joins data obtained from the real engine, about the combustion behavior, and data

obtained from simulations, about the cooling system.

If so far the main concern was on the engine and on the combustion stability, now the

point of view is moved to a general vision; the cooling system is inserted in the equation to

evaluate the overall fuel consumption.

The analysis on the simulation data collected will lead to the identification of the best

position of the cooling system actuators to minimize fuel consumption while, at the same

time, maintaining combustion stability and engine durability.

Just as a reminder, the procedure followed in this second part could be schematized as:

• Preparation of DOE to take into account all different actuators positions

• Simulation of all the positions evaluated using the DOE

• Filtering of the results based on constraints for engine durability

• Analysis of the remaining configurations, after being filtered, to find, among all of

them, the one which leads to the lowest fuel consumption.

4.3.1 Interpolation errors

The procedure followed to find the final result is based on the interpolation of data from the

first part (engine dyno tests) to obtain the value of BSFC as a function of the input parame-

ters. The main parameter chosen as inputs are: EGR rate, air charge temperature and load
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condition. In this way the BSFC could be obtain as: BSFC = f(EGR rate,ACT, load)

and a 3D space is filled with all the data coming from the previous tests. For each set of the

three inputs one and only one value of the BSFC is obtained. With this consideration, all

the configurations evaluated in the 1D simulations are evaluated, and a value of the BSFC

is assigned. From a simple formula it is possible then to retrieve the fuel consumed in both

the conditions where the cooling system is considered or not.
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Figure 4.43: Interpolation of BSFC data at different loads

The function used to interpolate the data is applying a linear interpolation technique,

and the option to not extrapolate data outside the range is chosen as well. With this
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configuration it is possible to know the value of the BSFC only inside the domain of data

collected during the dyno tests. This is a fundamental step since it acts as an additional

filtering constraint: all the configurations which are outside the admissible ranges obtained

during the tests are not considered.

However, it was found, analyzing the trend of the data at different loads, that the

interpolating function is not performing well when considering the data in the whole range

of loads.

This effect could be highlighted in Figure 4.43 (a), where it is clearly visible the absurd

trend of the 4 bar load, particular in Figure 4.43 (b). These spikes and pits are not absolutely

realistic; they are very different from the actual trend, in Appendix A Figure 2, and are

generated because of the interpolating technique. In fact, if looking closer in detailed to the

loads at 2 and 6.5 bar, it is possible to see a different inclination of the surfaces: the 2 bar

is more steep, while the other one is flatter. When interpolating at 4 bar the function is

trying to consider values from the three different conditions 2, 4 and 6.5 bar, but in doing

so the result is not reliable at all. The 4 bar surface, in fact, is passing through the points

collected on the dyno tests, which is correct, but, for the points outside these data (for

example 35°C and all the other temperatures different from the tests ones), the values are

interpolated considering also the effect of the previous and following surface(load), which

are not compatible due to the great difference in the slopes.

This problem is solvable with two different approaches:

• Proactive: the number of loads tested on the dyno cell could be increased, in this

way the interpolation would be done on more widespread data allowing to simulate

more smoothly the change in slope. This clearly would increase the required time for

testing as well as the computation time.

• Reactive: it was observed that reducing the range over which the data were inter-

polated the results are representing better the actual BSFC surfaces. For the fuel

consumption calculation, in fact, the data were interpolated between the load consid-

ered and the following one, for example between 4 and 6.5 bar. It is correct to do this

operation because, after analyzing the simulation results, it is found that the increase
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in the load due to the cooling system is always lower than 1 bar. The results coming

from the application of this approach are reported in Appendix A.

Once the interpolation problem was solved, the results obtained are presented in the

next sections.

4.3.2 BSFC curves as function of load value

Referring to Figure 4.12, here the same curves are reported. It is important to highlight

that these graphs are the result of tests done at 1500 rpm, and, to build them, the points

at the different loads are evaluated from the interpolated surfaces. However, the values of

the BSFC at the corresponding tests conditions (2, 4, 6.5, 10, and 15 bar) are the correct

ones, since are not either interpolated or extrapolated.

Two different ways of representing the BFSC = f(Load) curve are showed in the

followings. In Figure 4.44 the graphs are plotted at constant EGR rate, while in Figure 4.45

they are plotted at constant ACT.

Considering Figure 4.44, it is possible to clearly understand the effect of the different

ACT on the different loads. What was highlighted from the engine tests is that, for light

loads, the effect of the manifold temperature is not very predominant over the effect of EGR

rate and so the better compromise is to have high ACT to have the possibility to admit

higher EGR rates; for high loads, instead, the effect of different temperature is present and

is helping in reducing in a great extent the BSFC, so the best choice, in this cases, would be

a lower temperature. This trend is clearly represented in Figure 4.44, in fact, considering,

for example the 5% EGR graph, it is possible to see that, for loads lower than 6.5 bar, the

BSFC is worsened if a manifold temperature of 30°C (red) is considered, while, for high

loads it actually leads to the lowest BSFC value.

Figure 4.44 moreover is showing the different EGR limits and temperature which could

be obtained for each loads. For example, considering the graph at 25% EGR, no data are

present for loads before 4 bar, meaning that no such amount of exhaust gas is recirculated

in these conditions; for the same reason, there are not data for loads greater than 10 bar.

Same considerations could be made for the temperatures, in fact, in all the plots, after

10 bar, no data are present for manifold temperature equal to 80 and 90°C.
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Figure 4.44: BSFC curves as a function of load at constant EGR rates
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Figure 4.45: BSFC curves as a function of load at constant manifold temperatures
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Considering Figure 4.45 the same reasoning as above could be done. From this graphs

a clearer view on the maximum air charge temperature tolerable is showed. For increasing

ACT the lines on the graph are stopped every time at decreasing loads; for the last plot

(90°C) data are present only for working points between 2 and 6.5 bar.

Another clear effect showed in Figure 4.45 is that, for every temperature the lines are

almost stacked one over the other, for increasing EGR rates; the 27% line is the one always

showing the lowest BSFC values. This trend is particularly interesting since it states that,

independently on the ACT, the greatest reduction in BSFC is obtained for the highest EGR

rate admissible. Together with this consideration, it should be remembered that, all the

data are collected in the limits of a stable combustion process, this assures that, also for

the simulation results the actuator positions considered are simulating a possible real life

situation.

4.3.3 BSFC contour plot at constant load

In this section an additional way of representing the BSFC as a function of EGR rate, ACT

and load is presented. In these Figures the 3D interpolated space is “sliced” at constant

load values and on each plane the effects of EGR rates and ACTs are evaluated.

The first thing that should be noticed is the ranges over which the data are placed. x

and y axes are set, for all graphs, with the same limits. In doing so, depending on the load

considered, the data will populate the plane accordingly to the maximum EGR admissible

at the different temperatures. For low loads the data will occupy a greater part of the plane,

while increasing the load, the ranges are reduced. It is fairly interesting that, looking at

Figure 4.46 (c) and Figure 4.46 (e), the data are respectively occupying the whole plane

or only a temperature range between 30 to 60°C with maximum EGR rate of 10%, this

gives a clear explanation of the reduction in EGR rate and manifold temperature changes

obtained increasing the load. It is, instead, of great interest the observation of the trend of

the iso-BSFC lines as the load is increased. Moving, in fact, from graph (a) to (e) the lines

are firstly almost vertical and then the slope is changing to become almost horizontal.

The information coming from this observation are highlighting the effects of the EGR

rate and the ACT.
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Figure 4.46: BSFC contour plots at different loads
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For light load, being the lines almost vertical, a small increase in EGR rate permits

to reduce the BSFC more than a great decrease in the ACT. For high loads, the lines are

almost horizontal, this is translated in a greater effect on the reduction of the BSFC due to

lower manifold temperatures rather than variations in EGR rates.

It should also be mentioned that, in Figure 4.46 (a), the data are showing two BSFC

islands, this behavior is related to the fact that the BSFC measurements during the engine

dyno tests were affected by noise.

4.3.4 Fuel consumption calculations

This section represents the final merge of the results coming from the dyno tests and the

1D heat transfer simulations on the cooling system.

The tests performed on the dyno cell are of paramount importance because of the double

function of their results: on one side the BSFC data for wide ranges of EGR rate, ACT

and loads have been acquired, on the other side, running the test always considering the

combustion stability, has set some constraints on the maximum EGR range and manifold

temperature.

The fuel consumption is calculated thus considering this data together with the simula-

tions results. Many actuator positions are analyzed through the DOE technique. Varying

these set of positions it was possible to receive as output the additional torque required

by the cooling system to acieve different EGR rate and ACT. A very important point to

understand the results is that, during the simulations, the cooling system is adjusting itself

the manifold temperature depending on the position set for the actuators. The ACT is

not forced anymore to predetermined values, but it is obtained, depending on the power

drawn by the cooling system. This is translated in the fact that from this point on, when

considering ACT values, they are very often different from the previously fixed ones: 30,

40, 50, 70, 80, 90°C.

Since the final goal of the project is to reduce fuel consumption always maintaining

combustion stability and engine durability, it is clear the importance covered by the afore-

mentioned results.

After filtering the simulation results depending on the constraints to assure the desired
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engine durability, and sorting them in ascending order of the total power required to cool

(calculated from the simulation results); the first step followed for the final calculation of

the fuel consumed is to build a BFSC map for the new load conditions.

The cooling system, in fact, is adding an additional load to the engine, so, to maintain

the same power output, the torque developed by the engine itself have to be increased.

Considering the previous results, depending on the load condition analyzed, this additional

torque will decrease the BSFC, if light loads are considered, or increase it, if dealing with

high loads. Recalling that BSFC = f(EGR rate,ACT, load) new maps are, at this point,

generated for the increased torque points.

The correct procedure to be followed, after generating these maps, is then no more

to look at the BSFC values, but to convert all the data in fuel consumption; the unit of

measure used for these results is chosen to be [g/s]. The formulas used are the following

ones:

FCBaseline =
TorqueBaseline · rpm · 2π

60 · 1000
· BSFC(EGR,ACT, TorqueBaseline)

3600
(4.3.1)

FCCorrected =
TorqueCorrected · rpm · 2π

60 · 1000
· BSFC(EGR,ACT, TorqueCorrected)

3600
(4.3.2)

• FCBaseline is the fuel consumption calculated when the cooling system is not consid-

ered; it is obtained directly from the engine dyno test. The only difference is that in

this case the EGR rate and ACT are values directly obtained from the simulations,

meaning that they could be whichever point inside the ranges indicated in Figure 4.46.

It is measured in [g/s].

• Both TorqueBaseline and TorqueCorrected are expressed in Nm. The first one is

directly retrieved from the load condition considered and it is equal to the one

set during the dyno tests. The second one instead is the one obtained from the

1D simulations and, for that reason, the following relationship is always verified:

TorqueCorrected > TorqueBaseline
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• rpm is the engine speed, except for the 17.34 bar load, where the engine speed was

set to 1997 rpm, its value is always 1500 rpm.

• The BSFC values, in both equations, are measured in [g/kWh]. The main difference

between the two is the third input: the load condition. In fact, it is determining

whether an increase or a decrease in the BSFC value is achieved. EGR rate and ACT

are obtained from the simulations and are the same for the baseline or corrected fuel

consumption calculations, because what is of major importance is the difference in

the torque due to the additional resistance of cooling system components.

One fundamental concept that should be always kept in mind is that the BSFC values

for TorqueBaseline are placed on the surfaces interpolated from engine dyno tests; the BSFC

values for TorqueCorrected are obtained through interpolation, between loadn and loadn+1,

and consequently they are placed on different surfaces.

From the application of the aforementioned formulas the fuel consumed for the different

set of actuators position is calculated and fuel consumption surfaces are built for every load

considered. As will be showed in the next pages, the surfaces representing the baseline

fuel consumption are simply the same BSFC presented in Appendix A, but scaled by a

factor = TorqueBaseline·rpm·2π
60·1000·3600 , while the ones representing the corrected fuel consumption

are more complex since they depend both on TorqueCorrected and on BSFCCorrected =

f(EGR,ACT, TorqueCorrected).

To facilitate the understanding of the results presented in the followings, could be impor-

tant to stress again on the difference between Fuel consumptionBaseline and Fuel consumptionCorrected.

The first is calculated when no cooling system is attached on the engine; same configuration

of the dyno cell. The second is related to the simulations and to the added resistance of the

cooling system components. When comparing the two clearly the Baseline will be always

lower than the corrected one.

Before going further in the analysis of the results it is necessary to recall that during

the simulations also the vehicle speed was considered, and the values of this parameter

were extrapolated from analysis on the FTP cycles: city and highway. A summary table is

reported in Table 4.4; where only one speed value is present it means that the vehicle speed
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during highway and city traveling, at that engine load, is considered to be the same.

Table 4.4: Vehicle speed for each load and FTP cycle considered

2 bar 4 bar 6.5 bar 10 bar 15 bar 17 bar

City 25 mph 27 mph 45 mph
54 mph 52 mph 45 mph

Highway 45 mph 52 mph 54 mph

4.3.5 Fuel consumption at load = 2 bar

The analysis will be divided in two parts, one related to the city and the other to the

highway.

City

In Figure 4.47 the trend of the fuel consumption over different EGR rates and ACT is

reported. The green surface represents the fuel consumed in the baseline condition, where

the effect of the cooling circuit is not considered. This surface, as already mentioned, is

obtained directly from the data collected on the dyno tests and it is similar to Figure 1 in

Appendix A, but scaled.

The red curve, instead, is the one calculated considering the torque corrected to take

into account the additional load due to the cooling system. It is, as previously stated,

obtained from the corrected torque and the BSFC associated to it. It shows some peaks

between the manifold temperatures of 40-45°C and 60-65°C; these temperature should then

be avoided because the final fuel consumed would be fairly high.

Figure 4.48 is particularly interesting because is showing many information all in a

glance. It is worth to spend some time in describing this graph.

The first thing to consider is that the data used in this plot are sorted in ascending

order, from the lowest to the highest power required by the cooling system; this is also

noticed looking at the general trend of the blue curve. The cooling system power is not

reported in the graph only to help the reading. The values to look at are the squares or

the dots, the line between them are just added to help the reading since they could help
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Figure 4.47: Fuel consumption surfaces - 2 bar City

in distinguish the different conditions. It must be clear that the graph is showing discrete

points and it is wrong to read results on the lines.

The red curve represents the baseline fuel consumption in [g/s] and it ranges between

0.483 and 0.496 g/s. On the x axis the number of the configuration leading to the particular

value of fuel consumption is reported and, looking in closer detail, the lowest fuel consump-

tion when the cooling system is not considered is found for the configuration number 67.

Following the reasoning that, for the baseline configuration the fuel consumption is equal

to the BSFC surface but scaled, the minimum fuel consumption point is found to be also

the lowest BSFC value.

Without the study made in this project, configuration 67 would have been chosen as the

preferred working point to minimize the fuel consumption, however, as will be explained,

this approach is wrong when the cooling system is considered, even though sometimes both

the minimum coincide.

The blue curve represents the percentage increase in fuel consumption in respect to the

baseline when the cooling system is considered. It is calculated as:
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Figure 4.48: Percentage increment of fuel consumption (blue) in respect to the baseline configura-

tions (red) - 2 bar City

Percentage increment =
FCCorrected − FCBaseline

FCBaseline
· 100 (4.3.3)

From the baseline fuel consumption and its percentage increase the corrected fuel con-

sumption could be easily evaluated, so, in a certain way, in Figure 4.48, even if not directly,

also this result is plotted; it is not showed on the same graph not to burden the reading.

The range over which the percentage is varied is between 5 to 15%. On this curve it is also

highlighted the best configuration for what concern the fuel consumption when the cooling

system is considered. In this particular case it is found to be the configuration 1 (black

cross in the graph), which is also the one with the lowest percentage increase. It should

be observed, however, that, looking directly at the baseline fuel consumption it is not at

its minimum, but actually is above the average. This is particularly interesting because

the best configuration is not found when the baseline BSFC is at its minimum but when

both the baseline fuel consumption and the percentage increment are at low values. When

observing other results these considerations will be clearer.

In Figure 4.49 fuel consumption contour graphs are plotted. It should be noticed that
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Figure 4.49: Best configurations to reduce fuel consumption: baseline on the left and corrected on

the right - 2 bar City

the graph on the left, representing the fuel consumption of the baseline configuration, is

simply the same of Figure 4.46 (a) but scaled and limited to a smaller region; the EGR

values range from 5 to 20% and the y axis between 30 and 70°C. This difference is the

result of the implementation of the cooling system, in fact only the temperatures and EGR

rates admissible when the cooling system is simulated are considered. On this graph, with

a black dot, it is highlighted the best fuel consumption point for the baseline configuration.

Then it is increased (considering the percentage increase of this configuration) to obtain

the Non-optimized point and its main values are present in Table 4.5.

The plot on the right is representing the fuel consumption region when the cooling

system is considered. Recalling the red surface in Figure 4.47 it is possible to notice here

that two high fuel consumption islands are present, these are representing the two peaks on

the surface. Also for this condition the black dot is indicating the best fuel consumption

point, and the first thing that is showed is that the temperature is almost halfed. This

result is particularly interesting because, when the cooling system considered, the best fuel

consumption point position is completely opposite in respect to the initial belief coming
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from engine dyno tests that at low loads it is better to have a high manifold temperature.

The results for this configuration are presented in Table 4.5.

Table 4.5: Fuel consumption results for baseline and corrected configurations - 2 bar City

2 bar City ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

Non-optimized 68.71 19 818.27 0.541

Optimized 34.66 18 360.03 0.519

FC reduction [%] 4.07%

The fuel consumption reduction in percentage is calculated considering how the previous

studies were made in respect to the new approach. The Non-optimized row is representing

the fuel consumed if the old method for the analysis is used. In fact, before this project, the

procedure followed was looking at the lowest BSFC baseline value, consider the actuators

configuration which leads to that point, calculate the additional power required by the

cooling system and finally the fuel consumed (in this case the Non-optimized one). The

new approach is no more looking at the lowest baseline BSFC, but at the lowest corrected

BSFC. In doing so the values for the fuel consumption are slightly different, there is only one

case where they are exactly the same point: 4 bar highway. This is a further explanation of

the reasons behind having chosen, for this load, configuration 1 rather than configuration

67. The final reduction in fuel consumption is then found to be around 4.07%, obtained only

changing the working point in a possible range favorable both for the cooling system (low

power required) and both for the engine (combustion stability and engine durability are

respected). The important difference that should always kept in mind is that the Baseline

fuel consumption is not considering the cooling system connected to the engine. When this

system is considered, the fuel consumption is consequently increased and the Non-optimized

value is found. The Non-optimized value is, in fact, taking into account the cooling system

and it is the results that would have been obtained from the old procedure.

104



4. RESULTS AND DISCUSSION

Highway

The analysis for the highway test is identical to the one conducted for the city. Similar data

charts will be presented and the attention will be focused on the particularly interesting

results.
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Figure 4.50: Fuel consumption surfaces - 2 bar Highway

In Figure 4.50 the fuel consumption surfaces are presented, the reasoning and the color

codes are the same applied above.

Figure 4.51 is showing in a better way the idea behind this project. In this case, dif-

ferently than Figure 4.48, the best configuration for the lowest corrected fuel consumption

is found for configuration 7, which does not show neither the minimum value of the base-

line fuel consumption (and consequently of baseline BSFC) or the minimum percentage

increment. This fact is of particular interest since it is proving that is not only the power

required by the cooling system to influence the fuel consumption, but a combined effect of

that power together with the baseline fuel consumption, meaning that the engine and the

cooling system has to be analyzed as a unique system and not in a separate way.

It should be noticed that the number of configurations analyzed for this load condition

are less than half of the previous ones. This should be referred to the fact that the 1D model

is having some difficulties to reach the steady state. The possible reasons are related to the
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Figure 4.51: Percentage increment of fuel consumption (blue) in respect to the baseline configura-

tions (red) - 2 bar Highway

low amount of coolant flow in conjunction with a high air flow rate due to the high vehicle

speed and it represents one of the limitations of the steady state analysis over a transient

one. The model is probably tuned better for higher loads, where the behavior will be better,

but despite this fact good results has been found also for the light load conditions.

In Figure 4.52 the fuel consumption contour maps are reported for the baseline and

corrected configurations. The black dots are highlighting that the EGR rate and ACT to

minimize the fuel consumption almost coincide, as it is reported also in Table 4.6. With

this consideration no or very small fuel reduction should be expected, but actually the fuel

consumption reduction is around 4.9%. Recalling that this evaluation is obtained comparing

the previous method with the new one, this great reduction could be explained considering

that the cooling power of the two points is different, because not only the actuators affecting

the EGR rate and the ACT are considered, but the system itself as a whole.

As a general reasoning, looking at the corrected fuel consumption contour it is possible

to individuate different low value islands, this could be a good region to reduce the fuel

consumption, but the best position is still the one highlighted by the black dot.

Figure 4.53 is showing the baseline BSFC map over which the different points for the
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Figure 4.52: Best configurations to reduce fuel consumption: baseline on the left and corrected on

the right - 2 bar Highway

Table 4.6: Fuel consumption results for baseline and corrected configurations - 2 bar Highway

2 bar Higway ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

Non-optimized 40.80 17 939.35 0.552

Optmized 40.97 17 540.69 0.525

FC reduction [%] 4.93%

lowest fuel consumption are placed. Considering that 2 bar is placed in the descending part

of the BSFC/load curve, the corrected points are showing a lower BSFC value than the

baseline ones, and this is reported also looking at Figure 4.53(the perspective is impairing

the vision).

4.3.6 Fuel consumption at load = 4 bar

The analysis for the 4 bar load is similar to the one at 2 bar, the only exception is found in

the values for the vehicle speeds, both in city and highway tests, as reported in Table 4.4.
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Figure 4.53: Position of the best actuators configurations over the baseline BSFC surface - 2 bar

City

The analysis performed on fuel consumption surfaces, shown in Figure 4.54, is identical to

the previous ones; nothing particular should be highlighted.

Also for what concern the baseline fuel consumption and its percentage increment, Fig-

ure 4.55, the results are similar to the previous cases. Also in this case it has not been

chosen the lowest baseline BSFC point, but one point with both low values of percentage

increase and baseline BSFC. The configuration which leads to the lowest corrected fuel

consumption is the number 7, while the one with the lowest baseline one is the number 23.

As it is reported in Table 4.7, the fuel reduction obtained, analyzing the results, is found
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Figure 4.54: Fuel consumption surfaces - 4 bar City

to be around 0.33%.

In Figure 4.56 the fuel consumption maps are reported; as expected, the baseline one

(on the left) has the same trend as Figure 4.46(b) and it is clearly showed the major effect

of the EGR rate over the ACT to reduce the fuel consumed. The corrected one, as expected

from Figure 4.54, is showing many different island at different values, this is the results of

the spiky trend of the fuel consumption surface.

The black dots are in line with the aforementioned reasoning on the effect of the EGR

rate, in fact are both placed on the right part of the graphs. They differ in the temperature

values, because increasing the manifold temperature, the cooling system is let to work at

high temperatures and consequently the load is reduced.

Table 4.7: Fuel consumption results for baseline and corrected configurations - 4 bar City

4 bar City ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

Non-optimized 39.70 24 444.24 0.770

Optimized 41.62 24 379.28 0.768

FC reduction [%] 0.33%
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Figure 4.55: Percentage increment of fuel consumption (blue) in respect to the baseline configura-

tions (red) - 4 bar
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Figure 4.56: Best configurations to reduce fuel consumption: baseline on the left and corrected on

the right - 4 bar City

In Table 4.7 the values of the EGR rate, ACT, cooling power and fuel consumption are

reported for the two configurations. As it is already stated, the fuel consumption reduction
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is low compared to the 2 bar cases. This result is expected if the variation of cooling power

is considered: the two values are very close one to the other, while before the differences

were fairly high.

Highway

The fuel consumption surfaces obtained, Figure 4.57, for this working point are in line with

what expected and nothing particular should be mentioned.
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Figure 4.57: Fuel consumption surfaces - 4 bar Highway

What should be mentioned instead is that, for this set of load and vehicle speed, the

lowest fuel consumption for the baseline and corrected configuration are coincident, mean-

ing that no real decrease in fuel consumption would have been found using the approach

developed in the project.

Looking at Figure 4.58 it is important to highlight that the lowest fuel consumption

is not found for the configuration 1, which shows the lowest cooling power value, but it is

found for the configuration 2, which has a slightly higher power value. This additionally

confirms what explained so far about the cooling power: it is not the parameter to be

minimized, but its interaction with the baseline fuel consumption.
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Figure 4.58: Percentage increment of fuel consumption (blue) in respect to the baseline configura-

tions (red) - 4 bar Highway

In Figure 4.59 it is possible to notice that also the corrected fuel consumption is starting

to show a trend similar to the baseline one, this is because the red surface in Figure 4.57

is more flat and smooth in respect to the previous cases. The black dot on both graphs

is placed in the same position, this is confirmed also by Table 4.8, where only one line of

results is present.

Table 4.8: Fuel consumption results for baseline and corrected configurations - 4 bar Highway

4 bar Higway ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

53.30 25 464.83 0.771

FC reduction [%] 0%

To conclude, Figure 4.60, is showing, over the 4 bar BSFC curve, the different best point

discovered. In accordance with what was found in the previous sections, when the cooling

system is considered, since it adds additional load, the BSFC values for these configurations

are lowered in respect to the baseline. It should be noticed also that the green and yellow

dots are placed on the surface, while the red and black ones are respectively beneath them,

this is a consequence of having the same EGR rate and ACT but at a higher load.
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Figure 4.59: Best configurations to reduce fuel consumption: baseline on the left and corrected on

the right - 4 bar Highway
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4.3.7 Fuel consumption at load = 6.5 bar

A complete explanation on how to read the graphs and on their trends has already been

provided. From this point on only the results worth to mention will be highlighted.

City

Looking at the surfaces shown in Appendix A, at higher loads the surfaces tends to be more

smooth and this is reflected also in Figure 4.61.

Figure 4.61: Fuel consumption surfaces - 6.5 bar City

Table 4.9: Fuel consumption results for baseline and corrected configurations - 6.5 bar City

6.5 bar City ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

Non-optimized 53.63 25 469.98 1.097

Optimized 47.76 25 303.21 1.088

FC reduction [%] 0.83%

What is emerging from Figure 4.62 is that the model is performing better, in fact the

number of configurations analyzed is higher than all the previous tests. In this case the
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Figure 4.62: Percentage increment of fuel consumption (blue) in respect to the baseline configura-

tions (red) - 6.5 bar City

best configuration is found to be the number 1, which is also the lowest cooling power

configuration.

In Figure 4.63, the corrected fuel consumption contour plot is showing a trend more

similar to the baseline one, this is the effect of the smoothening of the surfaces at higher

loads.
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Highway
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Figure 4.64: Fuel consumption surfaces - 6.5 bar Highway

One fact that should be noticed when increasing the load is that the ranges in which

the data are plotted are reduced; particular attention should be paid on the values of x and

y axes, which are, to give a better resolution, not all set at the same ranges.
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Figure 4.65: Percentage increment of fuel consumption (blue) in respect to the baseline configura-

tions (red) - 6.5 bar Highway

In Table 4.10 the results obtained for the best configurations are reported, in this case
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the reduction is quite significant and similar to lower loads; it is important to recall that it

could be achieved only changing the control strategy over the ACT and EGR rate, meaning

that no hardware modifications should be made.

Table 4.10: Fuel consumption results for baseline and corrected configurations - 6.5 bar Highway

6.5 bar Highway ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

Non-optimized 53.38 27 1019.03 1.130

Optimized 42.15 27 344.57 1.091

FC reduction [%] 3.45%

An interesting trend, in line with all the previous considerations, could be individuated

looking at Figure 4.67. Remembering that at 6.5 bar the BSFC curves were starting to

bend upwards, the BSFC points for the corrected configurations are now slightly above the

baseline ones; this effect will be even more prominent for higher loads.
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Figure 4.66: Best configurations to reduce fuel consumption: baseline on the left and corrected on

the right - 6.5 bar Highway
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Figure 4.67: Position of the best actuators configurations over the baseline BSFC surface - 6.5 bar

4.3.8 Fuel consumption at load = 10 bar

From this working point on, a distinction between the City and Highway tests will not be

present.
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For this load condition the corrected fuel consumption surface, Figure 4.68, is starting

to show some irregularities. This could be addressed to the fact that the next load point on

which the BSFC values were interpolated is at 15 bar. With such a high gap between the

two loads the results could be impaired, so they should be taken with a certain uncertainty.
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Figure 4.69: Percentage increment of fuel consumption (blue) in respect to the baseline configura-

tions (red) - 10 bar

In Figure 4.70 the effect of the ACT in respect to the EGR rate is starting to increase.

The best configuration from the corrected fuel consumption calculation has moved to a

higher manifold temperature, this could be explained again considering the additional load

required by the cooling system to cool a lot the mixture. With the usage of simulations it

has been highlighted, in fact, that it is better to let the engine run at a higher temperature

decreasing the BSFC, but reducing at the same time and in a greater extent the cooling

system power request.

Table 4.11: Fuel consumption results for baseline and corrected configurations - 10 bar

10 bar ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

Non-optimized 38.83 15 1006.48 1.674

Optimized 47.21 15 256.98 1.625

FC reduction [%] 2.95%
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In Figure 4.71 the point representing the best configuration for the lowest corrected

fuel consumption is again placed slightly above the surface, further demonstrating that the

region now analyzed is where the BSFC is increased for increased loads.
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Figure 4.70: Best configurations to reduce fuel consumption: baseline on the left and corrected on

the right - 10 bar
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4.3.9 Fuel consumption at load = 15 bar
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Figure 4.72: Fuel consumption surface - 15 bar

The results obtained for this load have to be considered carefully since the surface used

to calculate the BSFC for loads above 15 bar is extrapolated from the previous points.

In doing so the results could not be accurate, however it should be mentioned that these

values are not automatically generated by the software, but are calculated manually. This

operation is necessary since the extrapolation technique performed by the software itself is

creating surfaces that are not representing at all a possible real trend; abrupt changes from

point to point are observed and so it has been decided to proceed manually.

Looking at Figure 4.72 it is possible to notice that, despite the extrapolation, the surfaces

do not present strange behavior, meaning that the results, always considered with the

required uncertainty, are fairly representative of the fuel consumed by the cooling system.

In Figure 4.74 the preponderant effect of the ACT is shown, and it is highlighted,

despite the extrapolation made, on the graph on the right. For this load condition the two

best configurations not only differ on the ACT value, but also on the EGR rate. This is

meaningful since now also the amount of recirculated gas is accounted: cooling a higher
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Figure 4.73: Percentage increment of fuel consumption (blue) in respect to the baseline configura-

tions (red) - 15 bar

Table 4.12: Fuel consumption results for baseline and corrected configurations - 15 bar

15 bar ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

Non-optimized 44.99 6.2 1530.73 2.822

Optimized 49.03 5 929.46 2.786

FC reduction [%] 1.28%

flow rate requires a higher cooling power.

The results for each configuration are reported in Table 4.12 and when considering the

cooling power a reduction in more than a half is achieved, but it is not directly translated

in a great decrease in fuel consumption, limited to the value of 1.28%.

Finally the position of the best actuators configuration over the BSFC curve at 15 bar

is reported in Figure 4.75 and it is quite interesting the fact that the surface is occupying

a very narrow part of the space: EGR between 0 to 10% and ACT between 30 and 60°C.
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the right - 15 bar
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4.3.10 Fuel consumption at load = 17.34 bar

This load condition is particularly severe for the engine and the cooling system since it

is run at high speed, high load and 36°C external temperature. From a point of view

of the combustion the engine should admit the mixture at the lowest possible manifold

temperature, but at the same time the load required on the cooling system would be rather

high, and so a tradeoff must be found.

In order to relief the duty of the cooling system some tests with mixture enrichment,

to reduce in-chamber temperature, were performed. The tests were run always bearing in

mind that this technique is directly affecting in a great extent the fuel consumption, but

the final outcome from this test point is to discover if it is better to cool the engine using

the cooling system or enriching.

The results presented for this working point are only reported as a general study, since

they are obtained after strong assumptions:

1. Only one load condition has been run, at 17.34 bar. With solely the data at this point

it is impossible to interpolate or to extrapolate the BSFC values for other loads.

2. For the calculations of the corrected fuel consumption the data used are, considering

the above point, the baseline BSFC and the corrected torque. In doing so it is supposed

that at higher loads the BSFC value is the same of the baseline one. This is unrealistic

and lead to underestimation in the final result of fuel consumption since, for loads

higher than 17.34 bar, the BSFC should further increased.

3. To compare the effect of enrichment a “corrected” BSFC has been supposed, and an

extreme case has been analyzed, in fact the “corrected” BSFC value, used to compare

the fuel consumed in enriched condition, is increased by 20% from the baseline one.

Bearing in mind the above points it is possible to proceed analyzing the results.

In Figure 4.76 the fuel consumption surfaces are presented, it is fundamental to notice

that the red surface is nothing more than the green curve but shifted to higher values: the

reason is explained in point 2 above.
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Figure 4.76: Fuel consumption surface - 17.34 bar

Always considering the assumptions made it is easy to understand that the best config-

uration for the lowest fuel consumption is found to be the same in both cases. This fact is

shown in Figure 4.77 and in Table 4.13.

It is of particular interest, instead, the iso-fuel consumption plot in Figure 4.78 where

the corrected fuel consumption contour lines are plotted together with the fuel consumption

points of the enrichment technique. The data of the fuel consumed having a richer mixture

are directly retrieved from the dyno tests since are parameters actually measured.

The first idea coming from this graph is that enriching the mixture is worsening a lot the

fuel economy, but, this cannot be taken as strictly true due to the approximation processes

made in the calculations.

Table 4.13: Fuel consumption results for baseline and corrected configurations - 17.34 bar Highway

17.34 bar ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

52.37 10 1450.44 3.999

FC reduction [%] 0%

A final conclusion could be instead draw looking at Figure 4.79 where the fuel consump-

tion calculated with BSFC values 20% higher than the baseline is plotted together with the
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enrichment ones. It must be considered that an increase in 20% in not a realistic value,

but it is exaggerated and it is actually producing overestimated fuel consumption results.

The increase in load due to the cooling system is no more than 0.4 bar, meaning that the

increase in the BSFC could not be as high as 20%.

Accordingly to the very high values of the BSFC considered, enrichment is showing a

lower fuel consumption rather than the corrected one. Nevertheless if more data on the

BSFC would have been considered, cooling the engine using the cooling system allows to

save fuel in respect to the enrichment of the mixture.

The savings discovered only avoiding the usage of mixture enrichment are in the range

of 14 to 18%, when the initial values of BSFC are considered.
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For this configuration, however, another control strategy could be considered. Since

it is a condition in which high power output from the engine is required, the value to

look at, to calculate the best actuators position is no more the one with the lowest fuel

consumption, but the one with the lowest cooling power request. In this case, as shown in

Figure 4.77, they don’t coincide. With this consideration, in Table 4.14 the results which
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minimize the power and the one which minimize the fuel consumption are presented. Even

when the minimum resistance torque is considered (first row) the fuel consumption is still

well below the one with enrichment. However, it should be noticed, that the difference

in torque between the best configuration for the minimum power subtracted and the best

configuration for the minimum fuel consumption differ in torque only by 1.19% while the

difference in fuel consumption is of 3.37%. Looking at these data a probable final decision

would bear the small increase in torque to privilege the reduction in the fuel consumption.

Table 4.14: Fuel consumption results for lowest power request by the cooling system and lowest fuel

consumption - 17 bar

17 bar ACT [°C] EGR [%] Cooling Power [W] Fuel consumption [g/s]

Minimum Power 54.545 5 756.03 4.139

Minimum Fuel 52.366 10 1450.44 3.999
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Chapter 5

Conclusions

In the chapter dedicated to the results, for each load and vehicle speed, the best actua-

tors configurations have been individuated. In the results collected from the simulations

conducted on the cooling system model, the optimal position to be set for each single com-

ponent, such as pump speed, thermostat opening position etc., is stored and can be retrieved

to be implemented in real driving conditions. These optimal positions, for clear reasons of

company secrets, cannot be published in this study.

Some final conclusions could be nonetheless drawn observing the various results ob-

tained.

The first concept that should be always kept in mind is that the reduction in fuel con-

sumption calculated during this project is achieved only considering a different approach

to the problem. The hardware configuration has not been changed in any of its parts and

this is of paramount importance since the fuel consumption reduction is obtainable only

changing the control strategy: increasing or decreasing the EGR rate or the ACT depending

on the situation considered.

From the tests on the engine dynamometer some preliminary results are obtained and a

sort of control strategy could be implemented. However, the problem of this approach is that
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it is looking deep in detail to what is better for the combustion and the engine itself without

considering the auxiliary components attached to it. This represents a major drawback of

the tests performed in these conditions. On the other hand, simulating the engine behavior

with all the cooling module would require additional tests and instrumentations, increasing

rapidly the related costs.

In the studies conducted so far the engine and the cooling system were observed sepa-

rately, but with the procedure followed in the project, their mutual effects are taken into

account, with clear benefits from the fuel consumption point of view.

The effects of EGR and ACT observed in the first part of the project are in line with

what is expected from studies in literature. The knocking suppression coming from the

lower ACT is helping a lot in improving the combustion phasing, obtaining more power

output from the engine burning less fuel.

At the same time EGR has been found to have the same effect on the combustion

phasing, especially giving the possibility to further advance the spark event at high EGR

rates. Its positive effect in reducing pumping losses has been analyzed as well, and it has

been found to be one of the reasons of the great reduction in fuel consumption.

When considering low manifold temperature, it must be taken into account also the

additional power required by the cooling system. This point has been stressed many times,

since it represents the key of the project. The analysis on the best temperature and EGR

rate would be meaningless if the whole system is not considered.

In order to create a general guideline, what is obtained in the results could be summa-

rized in the following:

• For light loads, running the engine at a higher temperature is beneficial since pumping

losses are reduced. In these conditions the main effects in fuel reduction are obtained

varying the EGR rate rather than changing manifold temperature. The low influence

of this parameter is playing a fundamental role since the power request on the cooling

system could be reduced allowing higher charge temperatures.

• For high loads the best fuel economy is achieved for lower manifold temperatures. In
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this case the EGR effect is not as influent as in the previous condition, but, as far

as the combustion stability is maintained, it is better to work with high amounts of

recirculated gas. In this way it is taken advantage of the positive effects of the two

solutions. Lowering too much the manifold temperature however could produce side

effects of increased fuel consumption due to the higher additional load created by

cooling system.

• For severe conditions, similar to the one analyzed at 17.34 bar, enrichment is found

to require a very high amount of fuel. To correctly compare the enrichment of the

mixture to the usage of the cooling system, it has been looked for the same CA50 of the

40°C manifold condition. The final conclusion is that, despite the severe conditions,

it is still better to cool the engine using the cooling system.

In conclusion the development of a general procedure for all the working points is not

possible since each point should be analyzed carefully. However a common trend has been

observed, and few generic assumptions to control the engine and the cooling system to have

the lowest fuel consumption can be presented:

• Operate the engine at the highest EGR rate for the load condition observed,

• Let the manifold temperature take values around 40 and 50°C

• Avoid enrichment whenever is possible since it impairs in a great extent the fuel

economy.

These presented above are general rules and each load condition should be analyzed

more in detail to take real advantage from the outcome of the project.

The major disadvantage of this project is its impossibility to analyze transient conditions,

but it is only related to steady state conditions.

This fact could affect the control strategy during abrupt accelerations when the pedal is

completely pushed down. In this phase the engine, maybe, would require a lower operating

temperature and so the control on the cooling system should be changed. The problem is

that this change, since is related to cooling fluid in a liquid state, could require a certain
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time to reach the desired manifold temperature. An ideal strategy would change this tem-

perature instantaneously, but it is clearly impossible. The different operating temperatures

in steady state and in transient conditions should be analyzed with great attention. A small

temperature difference between the two should be individuated, in such a way the change

could be done in a lower amount of time.

In conclusion, it should be mentioned that:

• Most of the gas temperatures and flow rates are directly implemented in the 1D

model after being collected during the dyno tests, further improving the simulations

reliability.

• The 1D cooling system model could take into account also the effect of the air con-

ditioning system, but for the purpose of this project, no analysis were run with the

A/C switched on.

• The attention is only focused on the engine and the cooling system without consid-

ering emissions. A deeper analysis should also take into account emissions and their

interaction with EGR rates and ACT in order to comply with the stricter regulations.

• The best fuel consumption point is found analyzing many important parameters at the

same time: combustion stability, engine durability, cooling system power requirements

and their close interaction.

At the end, to summarize, the contribution of this project for the company will result

in an improvement over the past method of analysis. The old procedure, in fact, was

considering an optimization or of the engine or of the cooling system, considered separately.

The drawback of this previous method was that, when considered together, the optimal

configuration for the cooling system would result in a configuration worse from the engine

point of view. The innovative element of this project is that both the engine and cooling

system are considered at the same time. This is fairly important because it leads to find

the optimized configuration when the systems are considered acting together.
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Chapter 6

Recommendations

For future studies some points should be improved in order to have higher reliability on

the results. Here the main modifications and improvements are briefly summarized and

presented.

• Perform additional dyno tests at different load conditions, in doing so, having a higher

amount of data it is possible to have better interpolation of the BSFC values and

obtain more reliable results as well.

• Test the engine also at different engine speeds. This will increase the amount of

available results affecting directly the complexity of the analysis, but at the same

time a higher resolution on the working conditions is obtained.

• Improve the capabilities of the 1D model to simulate low load conditions, which for

some actuators positions did not reach a steady state result and consequently failed.

• Build the control strategy for the cooling system, maybe with the usage of look-up

tables that, depending on the engine load, gear engaged and vehicle speed, set the

different actuators to the correct position to minimize fuel consumption.
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[34] J. M. Lujàn, H. Climent, R. Novella, M. E. Rivas-Perea, Influence of a low pressure
EGR loop on a gasoline turbocharged direct injection engine, Applied Thermal Engineer-
ing, Vol. 8, pp. 432-443, 5 October 2015, doi:10.1016/j.applthermaleng.2015.06.039.

[35] T. Alger, J. Gingrich, C. Roberts, B. Mangold, Cooled exhaust-gas recirculation for
fuel economy and emissions improvement in gasoline engines, International Journal of
Engine Research, Vol. 12 No. 3, pp. 252-264, June 2011, doi: 10.1177/1468087411402442.

[36] M. Kaiser, U. Krueger, R. Harris, L. Cruff, “Doing More with Less”- The Fuel Economy
Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine, SAE Technical
Paper 2010-01-0589, doi:10.4271/2010-01-0589.

[37] E. Galloni, G. Fontana, R. Palmaccio, Effects of exhaust gas recycle in
a downsized gasoline engine, Applied Energy, 105, issue C, p. 99-107, 2013,
doi:10.1016/j.apenergy.2012.12.046.

[38] T. Lattimore, C. Wang, H. Xu, M. L. Wyszynski, S. Shuai, Investigation of EGR
Effect on Combustion and PM Emissions in a DISI Engine, Applied Energy, Vol. 161,
pp. 256-267, 1 January 2016, doi:10.1016/j.apenergy.2015.09.080.

[39] A. Cairns, H. Blaxill, G. Irlam, Exhaust Gas Recirculation for Improved Part and Full
Load Fuel Economy in a Turbocharged Gasoline Engine, SAE Technical Paper 2006-01-
0047, 2006, doi:10.4271/2006-01-0047.

[40] A. Cairns, Hugh Blaxill, A Comparison of Knock Reduction Strategies in a Tur-
bocharged DI Gasoline Engine, GLOBAL POWERTRAIN CONGRESS. Detroit, Michi-
gan, 2006.

136



BIBLIOGRAPHY

[41] K. Kumano, S. Yamaoka, Analysis of Knocking Suppression Effect of Cooled
EGR in Turbo-Charged Gasoline Engine, SAE Technical Paper 2014-01-1217, 2014,
doi:10.4271/2014-01-1217.

137



Appendix A:

Interpolated BSFC surfaces

In this appendix the BSFC surfaces at different loads are reported. These figure are ex-

plicative of how the surfaces should be when no interpolation errors are present. Comparing

Figure 2 to Figure 4.43 (b) it is possible to understand that the interpolation made by the

software when, all the data are considered, is not correct at all.

It should be also highlighted that in Figure 6 over the BSFC surface it is plotted also the

BSFC for the enrichment condition.
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Figure 1: BSFC surface at 2 bar load
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Appendix B:

PMEP data at different loads

In this Appendix, the data regarding the Pumping Mean Effective Pressure are presented

in the case of the load conditions not presented in the main body. For the 2 and 4 bar

BMEP conditions nothing remarkable should be mentioned; the trend is in line with the

6.5 bar one.

Figure 7: Effects of manifold temperature and EGR rate on PMEP - BMEP = 2 bar

Having higher manifold temperatures and higher EGR rates is directly translated in

the need of open up the intake valve more. In doing so the pumping loop, in Figure 2.21,

is reduced and the BSFC is reduced as well. So, as a final result, this great reduction in

PMEP is producing the reduction observed in BSFC.

For the conditions at BMEP 10 and 15 bar, high amount of boost levels are present. This

is directly influencing the pumping mean effective pressure. As it is shown in Figure 9 and
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B. PMEP DATA AT DIFFERENT LOADS

Figure 8: Effects of manifold temperature and EGR rate on PMEP - BMEP = 4 bar

Figure 9: Effects of manifold temperature and EGR rate on PMEP - BMEP = 10 bar

Figure 10: Effects of manifold temperature and EGR rate on PMEP - BMEP = 15 bar
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B. PMEP DATA AT DIFFERENT LOADS

Figure 10, the trend is no more highlighting a reduction of the BMEP as the temperature

or EGR is increase, but the trend is actually opposite. This could be explained considering

that, to have such an high amount of boost, the turbine is creating a big amount of back

pressure. This will result in an increase of the pumping loop area. However, it must be

said that, despite this increase in the PMEP, the positive effect of having a turbocharged

engine are still appreciable in terms of power output and fuel consumption reduction.
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Appendix C:

Combustion phasing characteristics

The combustion phasing for the different load conditions are presented in the followings.

The main parameters plotted are the CA50, for those load conditions not present in the

main body, the ignition delay and the combustion duration.

Ignition delay is defined as the crank angle degrees between the ignition event and the

start of the combustion. To be more precise, the parameter CA10 is used. It is the crank

angle position where the 10% of the total heat release occurs. To determine the ignition

delay the difference between the two crank angle positions CA00 and CA10 is used.

Combustion duration, similarly, is defined as the difference between CA10 and CA90,

where CA90 is the crank angle position where the 90% of the total heat release occurs.

Again, the values of this parameter, as well as the previous one, are not the exact crank

angle positions, but are representing a crank angle variation. This is important, because

knowing the engine speed it is possible to calculate the duration in time of these two events.

A deeper analysis of the effects of EGR rates and ACTs on the combustion phasing is

beyond the scope of the project, and will not performed further. The data will be simply

presented according to the different load conditions.
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C. COMBUSTION PHASING CHARACTERISTICS

Figure 11: Effects of EGR rate and ACT on CA50 - BMEP = 2 bar

Figure 12: Effects of EGR rate and ACT on ignition delay - BMEP = 2 bar

Figure 13: Effects of EGR rate and ACT on combustion duration - BMEP = 2 bar
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C. COMBUSTION PHASING CHARACTERISTICS

Figure 14: Effects of EGR rate and ACT on CA50 - BMEP = 4 bar

Figure 15: Effects of EGR rate and ACT on ignition delay - BMEP = 4 bar

Figure 16: Effects of EGR rate and ACT on combustion duration - BMEP = 4 bar
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C. COMBUSTION PHASING CHARACTERISTICS

Figure 17: Effects of EGR rate and ACT on CA50 - BMEP = 6.5 bar

Figure 18: Effects of EGR rate and ACT on ignition delay - BMEP = 6.5 bar

Figure 19: Effects of EGR rate and ACT on combustion duration - BMEP = 6.5 bar
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C. COMBUSTION PHASING CHARACTERISTICS

Figure 20: Effects of EGR rate and ACT on ignition delay - BMEP = 10 bar

Figure 21: Effects of EGR rate and ACT on combustion duration - BMEP = 10 bar

Figure 22: Effects of EGR rate and ACT on ignition delay - BMEP = 15 bar
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C. COMBUSTION PHASING CHARACTERISTICS

Figure 23: Effects of EGR rate and ACT on combustion duration - BMEP = 15 bar

Figure 24: Effects of EGR rate and ACT on ignition delay - BMEP = 17.34 bar

Figure 25: Effects of EGR rate and ACT on combustion duration - BMEP = 17.34 bar
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Appendix D:

Copyright permissions for using

figures

Here is the copyright permissions for using figures.

• Figure 1.1

From: gbsupport@gasbuddy.com

Hello Mirko,

Thanks for the e-mail.

You are welcome to use GasBuddy historical price charts from the page you men-

tioned. If including anywhere on the internet, we ask that you include a link back

to GasBuddy.com. If including outside the web, we as that you include the text

GasBuddy.com.

Let me know if you have any questions or problems using the charts.

All the best.

Regards,

Charlie (CC) GasBuddy.com http://help.gasbuddy.com

• Figure 2.1

From: Michael.Stoller@Honeywell.com
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D. COPYRIGHT PERMISSIONS FOR USING FIGURES

Yes, ok to use in this manner. Thanks for checking. For a photo credit, please use

Honeywell Transportation Systems.

Mike Stoller Director of Communications Honeywell — Transportation Systems 47548

Halyard Drive — Plymouth, MI, 48170 Office: +1 734 392 5525 Mobile: +1 734 233

5622

michael.stoller@honeywell.com https://turbo.honeywell.com @Honeywell Turbo

• Figure 2.2 and Figure 2.6

Figures are under Creative Common license.

https://creativecommons.org/licenses/by-sa/3.0/

• Figure 2.7

From: dmcaagent@enthusiastnetwork.com

Dear Mirko,

Thank you for asking the permission to use the figure. You can use it freely in your

work.

Best luck.

Regards.

TEN: The Enthusiast Network 831 South Douglas Street El Segundo, CA 90245

• Figure 2.8

From: blog@fastmotoring.com

The diagram is given by Volvo. Please feel free to use it. Thx

With Regards, Edvin Teo Sent from my mobile

• Figure 2.9

From: enged@aol.com

Hello, Mirko, The images in that item are Valeo press photos, nothing original on my

part, however feel free to use them. I hope this helps. Please let me know. Good luck

on your thesis. Cordially, Dennis Simanaitis
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D. COPYRIGHT PERMISSIONS FOR USING FIGURES

Sent from my iPhone

• Figure 2.17

From: tradekorea@kita.net

Good afternoon Mirko,

The figure you want to use are just esplicative of our products. You can use them

freely.

Thanks for asking, Regards,

tradeKorea.com

511 Yeongdong-daero, Gangnam-gu, Seoul, KOREA

• Figure 2.18

From: wam2@dieselnet.com

Please feel free to use the figure as requested.

Best Regards,

Addy Majewski

W. Addy Majewski Ecopoint Inc. P.O. Box 47055, Mississauga ON L5K 2R2, Canada

+1 905 990-0775 DieselNet.com
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