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ABSTRACT 

 

This research aims at developing novel methods for utilizing the commonality between 

part/product variants to make modern manufacturing systems more flexible, adaptable, 

and agile for dealing with less volume per variant and minimizing total changes in the 

setup between variants. Four models are developed for use in four important domains of 

manufacturing systems: production sequencing, product family formation, production 

flow, and products operations sequences retrieval. In all these domains, capitalizing on 

commonality between the part/product variants has a pivotal role.   

For production sequencing; a new policy based on setup similarity between product 

variants is proposed and its results are compared with a developed mathematical model in 

a permutation flow shop. The results show the proposed algorithm is capable of finding 

solutions in less than 0.02 seconds with an average error of 1.2%. For product family 

formation; a novel operation flow based similarity coefficient is developed for variants 

having networked structures and integrated with two other similarity coefficients, 

operation and volume similarity, to provide a more comprehensive similarity coefficient. 

Grouping variants based on the proposed integrated similarity coefficient improves 

changeover time and utilization of the system. A sequencing method, as a secondary 

application of this approach, is also developed. For production flow; a new mixed integer 

programing (MIP) model is developed to assign operations of a family of product variants 

to candidate machines and also to select the best place for each machine among the 

candidate locations. The final sequence of performing operations for each variant having 

networked structures is also determined. The objective is to minimize the total 

backtracking distance leading to an improvement in total throughput of the system 

(7.79% in the case study of three engine blocks). For operations sequences retrieval; two 

mathematical models and an algorithm are developed to construct a master operation 

sequence from the information of the existing variants belonging to a family of 

parts/products. This master operation sequence is used to develop the operation 

sequences for new variants which are sufficiently similar to existing variants. Using the 

proposed algorithm decreases time of developing the operations sequences of new 

variants to the seconds.  
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NOMENCLATURE 

 

Production Sequencing Model (Chapter 2): 

n Number of product variants. 

k Number of work stations.           

Sirp Setup change time/cost for product i if processed immediately after product r at 

station p.  

Wip is equal to one if product i requires an operation at work station p and zero 

otherwise.      

Xij is equal to one if product i is placed in j
th

 position of the sequence and zero 

otherwise.      

Zjmp is equal to one if, at station p, product in position j is processed immediately after 

product in position m and zero otherwise.  

Qijrmp  is equal to one if product i is placed in position j and is processed immediately 

after product r which is placed in position m of the sequence and it is zero 

otherwise. 

 

Product Family Formation Model (Chapter 3): 

n          Total numbers of positions/variants. 

𝑆𝑀𝑖𝑗    Integrated similarity coefficient value between variants i and j.  

Xij is equal to one if variant j is placed immediately after variant i in the sequence and 

zero otherwise.      

Yik is equal to one if variant i is placed in k
th

 position of the sequence and zero 

otherwise.      
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Zijk is equal to one if variant i is placed in k
th

 position immediately before variant j in 

the sequence and zero otherwise.  

 

Production Flow Model (Chapter 4): 

S Total number of different operations among all variants. 

nr Total number of operations for part r.          

m Total number of machines/locations. 

q Total number of part/product variants. 

M A large positive number. 

Vr Volume required for part/product r. 

Cki is equal to one if machine k is capable of performing operation i and zero 

otherwise.      

Pri is equal to one if product r requires operation i and zero otherwise.      

Oijr is equal to one if operation j is performed after operation i in product r and zero 

otherwise.  

dhh’ backtracking distance from location h to location h'.  

Lhk is equal to one if machine k is assigned to location h and zero otherwise. 

Xik is equal to one if operation i is assigned to machine k and zero otherwise.      

Yibr is equal to one if operation i is performed in b
th

 position of the final operations 

sequence of product r and zero otherwise.      

Zijbrkh𝑘′ℎ′is equal to one if operations i and j are placed respectively in positions b and 

b+1 of product r and also operations i and j are performed with machines k and k' 
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respectively and machines k and k' are assigned to locations h and h' and it is zero 

otherwise. 

 

Products Operations Sequences Retrieval Model (Chapter 5): 

n Total number of operations among all variants. 

p Total number of part variants. 

Aki is equal to one if operation i exists in k
th

 part variant and zero otherwise. 

Bijk is equal to one if operation j of k
th

 part variant is performed immediately after 

operation i and zero otherwise.  

Xij is equal to one if operation j of the master is performed immediately after 

operation i and zero otherwise.      

Wig is equal to one if operation i is placed in g
th

 position of the master and zero 

otherwise. 

Sijg is equal to one if operation i is placed in g
th

 position immediately before operation 

j in master and zero otherwise.   
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Chapter 1  

Introduction 

 

1.1 Motivation 

Today, many modern manufacturing systems are shifting from mass production to mass 

customization (Fogliatto et al., 2012; Tseng and Hu, 2014; Daie and Li, 2016). Some of 

the reasons for this shift are changing demands, global competition and new technologies. 

Customers frequently request new types of products and if a manufacturer is not able to 

meet these new demands, other competitors would satisfy them leading to potential loss 

of market share. Therefore, manufacturing systems should be sufficiently flexible and 

adapt to frequently changing demands and this may result in significant costs for 

manufacturers if not managed well. “Mass Customization” describes this issue very well. 

“Customization” refers to the fact that manufacturing systems should be able to produce 

different variants of products according to customers’ requirements with usually low to 

medium production volume (Piller, 2004; Yang et al., 2007; Tseng et al., 2010; Fogliatto 

et al., 2012) and “Mass” means that the system, by using modern techniques such as 

delayed product differentiation (AlGeddawy and ElMaraghy, 2009; AlGeddawy and 

ElMaraghy, 2010), should try to combine the cost efficiency of mass production while 

satisfying the wide scope of variety demanded by customers (ElMaraghy et al., 2013).  

One of the best strategies in decreasing production cost in modern manufacturing systems 

is utilizing the commonality between part/product variants. The commonality between 

part/product variants refers to different similarity aspects including their setup similarity, 

operation flow based similarity, operation similarity, production volume similarity and so 

on. This research is in fact motivated by the vital needs for developing practical models 

and methodologies using the commonality between part/product variants to help 

designers and planners to efficiently decrease changeover time and improve productivity, 

throughput and utilization in manufacturing systems. Despite the fact that many research 

works in literature have focused on this issue, there are still significant gaps in literature 

in terms of practical and efficient methods and a need for developing novel methods in 

this regard.  
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1.2 Research Scope 

In this sub-section, the scope of the research is addressed under different categories as 

follows: 

System Type 

This research encompasses different types and aspects of manufacturing systems. The 

problems described in this research are applicable in different manufacturing systems 

such as flow shop, job shop, cellular, flexible and reconfigurable manufacturing systems. 

Process Type 

The considered part/product variants can have different types of processes from 

fabrication to assembly or combination of both.  

Production Volume Type 

This research is mainly targeting mass customization and personalization and, hence, the 

considered parts/ products usually require low to medium production volumes. Figure 1.1 

shows the scope of the research in terms of variety and volume. 

 

 
Figure 1.1  Scope of the research with respect to volume and variety 
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Setup Type 

The type of the setup changes considered in this research includes tooling, fixtures, and 

machines CNC programs. 

Complexity Type 

Manufacturing systems consist of various tools, machines, parts/products and operators. 

These factors usually contribute to the complexity of a system (Badrous, 2011). In the 

present work, the complexity of the system corresponds to the variety part/product 

variants that should be produced. This research aims at managing this type of complexity 

or in other words, managing part/product variety produced by the system.   

Product Type 

The potential part/product families for which this research is applicable are quite wide: 

mechanical parts/products (e.g. engine blocks, valves, chairs, cutting tools, pressing tools, 

etc.), electronic parts/products (e.g. personal computers, tablets, printed circuit boards 

(PCBs)), or other part/product families such as label stickers, storage containers, bottle 

caps and so on. 

Model Type 

The types of the developed models in this research are within process planning and 

scheduling domains. Process planning is a link between design and manufacturing and is 

classified in three different levels: 1) Multi-domain process planning 2) Macro-process 

planning and 3) Micro-process planning (ElMaraghy, et al., 2013). Scheduling is about 

assigning resources to some tasks over a period of time to optimize one or more 

objectives (Pinedo, 2012). In the present work, resources refer to machines and stations 

and tasks are processes to be performed on the part/product variants. 
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1.3 Research Gaps and Novelty 

This sub-section briefly highlights the research gaps in literature with respect to each of 

the aforementioned applications and explains the novelty of each section.  

This research includes four parts. The first part of the research focuses on permutation 

flow shop environment. There are huge number of works in literature regarding 

sequencing product variants in a permutation flow shop (e.g. Toktas et al., 2004; Tseng et 

al., 2004; Lin and Wu, 2006; Khan and Govindan, 2011; M’Hallah, 2014; Zhao et al., 

2015; Wang et al., 2015; He, 2016; Rafai et al., 2016). However, most of these works 

only focus on mathematical modeling or meta-heuristic methods which are not practical 

and applicable in real manufacturing systems. There is dearth of literature on using the 

similarity between variants for sequencing their production steps. Table 1.1 summarizes 

the research gaps by considering some of the important works in literature.  

In this research, a new and practical sequencing policy is proposed which is based on the 

setup similarity between variants and it aims at minimizing the setup changes required 

between product variants.  

Table 1.1 Research gap in permutation flow shop  

No. Reference Year Approach Setup 

similarity 

included? 

1 Toktas et al. 2004 branch and bound N 

2 Tseng et al. 2004 MIP N 

3 Lin and Wu 2006 branch and bound N 

4 Khan and Govindan 2011 simulated annealing N 

5 M’Hallah 2014 MIP N 

6 Zhao et al. 2015 evolutionary algorithm N 

7 Wang et al. 2015 branch and bound N 

8 He 2016 branch and bound and heuristic N 

9 Rafai et al. 2016 Adaptive large neighborhood 

search 

N 

 

The second part of the research is grouping part/product variants based on networked 

operation sequences such as those found in locomotive and automotive industries. Many 
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part/product similarity coefficients have been proposed in literature with respect to 

different criteria such as operations similarity, operations flow similarity, and volume 

similarity(e.g. Tam, 1990; Choobineh, 1988; Galan et al., 2007b ; Pattanaik and Kumar, 

2010; Goyal et al., 2013; Alhourani, 2013; Wu and Suzuki, 2015; Won and Logendran, 

2015; Raja and Anbumalar, 2016). However, there is no work in literature proposing a 

similarity coefficient for variants having networked operation sequences while there are 

many practical examples in which the operations of a variant have flexibility to be done 

before, after or at the same time as other operations which is known as sequencing 

flexibility. Table 1.2 shows the research gaps regarding operation flow based similarity 

for product variants having networked structure.   

In this research, a novel similarity coefficient for part/product variants is developed based 

on the networked operations sequence similarity inspired by the analysis used in the field 

of biology (e.g. enzymes structures comparison). In order to have a more comprehensive 

similarity coefficient, two other important criteria in grouping part/product families 

namely operation similarity and volume similarity are also included.  

Table 1.2 Research gap in similarity coefficient for variants with networked structure 

No. Reference Year 
Operation 

similarity 

Operation 

flow based 

similarity 

(serial) 

Operation 

flow based 

similarity 

(networked) 

Volume 

similarity 

1 Choobineh 1988 N Y N N 

2 Tam 1990 N Y N N 

3 Galan et al. 2007 Y N N Y 

4 Pattanaik and Kumar 2010 Y N N Y 

5 Goyal et al. 2013 N Y N N 

6 Alhourani 2013 N Y N Y 

7 Wu and Suzuki 2015 N Y N N 

8 Raja and Anbumalar 2016 Y N N N 

 

After grouping product variants based on their similarity, in the third part of the research, 

processing tasks are assigned to facilities (e.g. machines, etc.) in a way that production 

flow is optimized. The objective is to minimize the total backtracking distance by 

considering the production volume of each variant. In literature, backtracking problem 

has been addressed in two different categories namely generalized flow line (GFL) 
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problems and cellular manufacturing systems. Nevertheless, there is no work in literature 

on backtracking minimization considering product variants with networked operations 

sequence and also, machine selection for each operation (Sarker et al., 1991; Sarker et al., 

1995; Gong et al., 1999; Chang et al., 2013; Forghani et al., 2015; Golmohammadi et al., 

2016). Table 1.3 shows the research gap in literature of backtracking minimization.  

In this research, a novel mixed integer programing (MIP) model is developed to optimize 

three decision variables: (1) to assign various operations of product variants to candidate 

machines, (2) to assign the machines to candidate locations, and (3) to determine the final 

sequence of performing operations for variants having networked structures.  

 

Table 1.3 Research gap in backtracking minimization 

No. Reference Year Category 

Location 

assignment 

to 

machines 

Machine 

assignment 

to 

operations 

Networked 

operations 

sequence 

1 Sarker et al. 1991 GFL Y N N 

2 Sarker et al. 1995 GFL Y N N 

3 Gong et al. 1999 GFL Y N N 

4 Chang et al. 2013 
Cellular 

manufacturing 
Y N N 

5 Forghani et al. 2015 
Cellular 

manufacturing 
Y N N 

6 Golmohammadi et al. 2016 
Cellular 

manufacturing 
Y N N 

 

The last part of the research focuses on data mining and using the information of existing 

variants for developing new variants. There is no work in literature for constructing a 

master operations sequence for use in developing the operations sequence of new 

variants. In fact, Most of the works in the literature focus on generic bills of material (e.g. 

Hegge and Wortmann, 1991; Romanowski and Nagi, 2004; Shu et al., 2014). There are 

also some works such as Kashkoush and ElMaraghy (2014, 2015) which consider master 

assembly sequence but were not applied to manufacturing/fabrication. Table 1.4 shows 

the research gap regarding the construction of master operation sequence in literature.  

In this research, two new mathematical models are developed and a novel algorithm is 

proposed to generate master operation sequence for variants having serial, networked 

operation sequences or combinations of both. The operation term in this work refers to 

both assembly and fabrication processes.  
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Table 1.4 Research gap in generating master operation sequence 

No. Reference Year Generating Approach Application 

1 Hegge and Wortmann 1991 generic bill of material code number assembly 

2 Romanowski and Nagi 2004 generic bill of material data mining assembly 

3 Shu et al. 2014 generic bill of material 
simulation and neural 

network 
assembly 

4 
Kashkoush and 

ElMaraghy 
2014 

master assembly 

sequence 
genetic algorithm assembly 

5 
Kashkoush and 

ElMaraghy 
2015 

master assembly 

sequence 
MIP assembly 

The developed mathematical models and proposed algorithms in this research can be 

applied in design and operational stages. They can be used for both existing and new 

product variants.  

 

1.4 Developed Models 

In this research, four different models are considered and consequently, some novel 

methods and mathematical models are developed. Figure 1.2 illustrates each model in the 

form of an IDEF0 diagram showing the main activities along with inputs, outputs, 

controls and mechanisms (http://www.idef.com/idefo-function_modeling_method/). 

First model: 

 

R
atio

 o
f setu

p
 

tim
e to

 

p
ro

cessin
g
 tim

e
 

P
erm

u
tatio

n
 

flo
w

 sh
o

p
 

co
n
d

itio
n
s 

Total number of 

product variants 

Setup change time/cost 

between variants 

PRODUCTION SEQUENCING  

M
IL

P
 m

o
d

el 

A
v
erag

e 

L
in

k
a
g
e 

C
lu

sterin
g

 

P
ro

p
o

sed
 

seq
u
en

c
in

g
 

p
o

licy
 

Optimal 

production 

sequence 



 

8 

 

Second model:   
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Fourth model: 

 

 

 

1.5 Hypothesis 

This research is based on the hypothesis that: 

Utilizing the commonality between part/product variants could reduce changeover and 

operations sequence retrieval time and improve throughput, productivity and utilization 

of modern manufacturing systems for dealing with less production volume per variant. 

 

1.6 Engineering Thesis Questions 

In this sub-section, based on the conducted research, the typical engineering thesis 

questions are answered. 
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Q.1. What is the engineering problem to be solved? 

Despite the fact that similarity notion has a significant impact on decreasing total setup 

time and improving utilization and productivity of the system in modern manufacturing 

systems, there is a lack of research in developing and applying novel methods using 

similarity aspect between part/product variants. Accordingly, four main domains have 

been addressed: production sequencing, product family formation, production flow, and 

product operations sequence retrieval. 

Q.2. In what sense are previous works to this problem insufficient? 

Production sequencing: most of the developed models and algorithms in this area are not 

practical in industries and some of these methods are computationally time consuming 

and cannot find solutions in a reasonable time. 

Product family formation: in spite of significant works in this area, no research has been 

carried out for part/product variants having networked structure and hence, no practical 

method has been developed for grouping variants with such features. 

Production flow: most of the works in literature focused on machine assignment to 

locations and they did not consider machine capability in performing different operations 

and also product variants having networked structures.  

Operations sequence retrieval: Only few methods developed in literature regarding this 

problem and all of these works focus on assembly application and they lack fabrication 

aspect.  

Q.3. What are the developed solutions in this research/contributions/significance? 

Production sequencing: a novel production sequencing policy based on the setup 

similarity between product variants is proposed. 

Product family formation: a novel operation flow based similarity coefficient is proposed 

which has been inspired by analysis of comparison made on biology field. It is then 

integrated with other similarity criteria namely operations similarity and production 

volume similarity to yield a more comprehensive coefficient. 
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Production flow: A mathematical model is developed to minimize backtracking distance 

by optimizing three decision variables: (1) assignment of machines to locations, (2) 

assignments of operations to machines, and (3) final sequence of performing operations 

for each product variant.  

Operations sequence retrieval: two mathematical models are developed and an algorithm 

is proposed to generate master operations sequence from existing variants which can be 

used to retrieve operations sequences of new variants. Operations refer to both assembly 

and fabrication applications. 

Considering the economic perspective of the present research, optimizing the objective 

functions in all the four topics would be equivalent to less cost for manufacturing 

systems.  

 

1.7 Overview of Case Studies 

In the first part of the research, a case study retrieved from the work carried out by Lin 

and Lio (2003) is provided in which six classes/variants of label stickers visit a calendar 

machine to glue surface material and liner for producing label stickers. The obtained 

result from the proposed sequencing policy is compared with the developed mathematical 

model which demonstrates the accuracy and speed of the proposed sequencing policy. 

The second part of the research includes a case study from a local company 

manufacturing different parts for locomotive and automotive industries. For 

confidentiality reasons, the name of the company is not revealed. This case study includes 

seven representative parts with their operation sequences. It clearly illustrates variants 

having networked operation sequences and how the proposed integrated similarity 

coefficient is used to group the variants. Sequencing of the variants under some 

assumption is also provided to show the potential application of the proposed approach 

and the result is compared with the developed mathematical model to illustrate the 

efficiency of the proposed approach in terms of time and accuracy.  
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In the third part of the research, a case study of a family of three engine blocks is 

considered. The case study shows the real-application of the problem along with the 

optimum solution found by the developed mathematical model. It also demonstrates how 

minimizing backtracking improves the total throughput by 7.79%.  

The last part of the research includes two case studies, one for assembly application and 

the other for fabricating application. The first case study considers five variants of pilot 

control valves while the second one includes nine variants of mostly ejecting and 

coupling parts/components produced by Rabourdin Industry. Both case studies 

demonstrate how a master operations sequence is derived from existing variants and used 

for constructing the operations sequences of new variants in real manufacturing 

environments. 

 

1.8 Research Map 

This research consists of five chapters in which three different models are addressed and 

the relevant literature review and developed methods/mathematical models are presented 

in Chapters 2, 3 and 4. Figure 1.3 outlines the research map. 
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The dissertation consists of six chapters where the literature review of each topic is 

addressed at the beginning of its corresponding chapter. In Chapter 2, the sequencing 

policy is proposed along with the developed mathematical model. Chapter 3 considers 

product family formation with the novel similarity coefficient for variants having 

networked operation sequences which is then integrated with other similarity criteria. 

Chapter 4 consists of developing the mathematical model to solve facility assignments 

and determine the final sequence of performing operations with respect to backtracking 

minimization. In Chapter 5, the two developed mathematical models and the proposed 

algorithm are presented for generating a master operation sequence from the information 

of existing variants which can be used to retrieve the operation sequences of new 

variants. Finally, in Chapter 6, summary and conclusions with the directions for future 

works are presented. 

 

Figure 1.3  Research map 
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Chapter 2 

Grouping and Sequencing Product Variants Based on Setup Similarity 

 

2.1 Introduction 

Manufacturing systems should be designed to enable physical reconfiguration to shift 

from producing one product variant to another efficiently as needed. There are generally 

two levels of reconfiguration which are system level where machines are added/removed 

and machine level where tools, fixtures and machining directions may be changed (Koren 

et al., 1999; ElMaraghy, 2005; Koren and Shpitalni, 2010). However, reconfiguration at 

the system level is not very common and most manufacturing systems try to produce 

different variants using existing machines by changing tools, fixtures and programs. 

Therefore, frequent changes of machines setup are inevitable and managing these 

changes efficiently is important.   

Setup time in a work station refers to the time required to change tools, fixtures and 

configuration of a machine from production/assembly of one product variant to another. 

Total setup time contributes to the productivity of a system (Luo et al., 2015). 

Productivity is defined as output over input. Total machine productivity is also defined as 

total number of finished products over total available time. Therefore, minimizing total 

setup time increases total finished products and consequently, improves productivity of 

the system. There are many manufacturing systems in which setup time is more 

significant compared with processing time (Shtub and Maimon, 1992; Kumar and 

Narendran, 1997; Rajkumar and Narendran, 1998). Examples of this situation include 

printed circuit boards (PCBs) and re-sharpening of cutting tools and painting applications 

where most manufacturing time is spent on changing the setup of machines to perform 

other operations. In these cases, maximizing throughput can be achieved by minimizing 

total setup changes and associated cost/time. An effective way to do this is by sequencing 

products based on their setup similarity.  

This chapter proposes a new coefficient for calculating setup time similarity between 

each pair of product variants. A new sequencing policy is also developed to find the best 
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sequence of product variants to mitigate the effect of frequent changes and setup by 

processing similar products sequentially in the master production schedule after grouping 

the product variants based on the proposed setup similarity coefficient and Average 

Linkage Clustering (ALC) algorithm. Although grouping of parts and products into 

families based on geometric and/or processing similarity and applying group technology 

to many downstream manufacturing activities has been researched extensively (Yin and 

Yasuda, 2006), the concept of grouping product variants based on their machine setup 

similarity to sequence them accordingly has never been addressed in the literature. The 

results of applying the proposed grouping method are compared with the developed 

mathematical model for a flow shop where bypassing is not allowed), to demonstrate the 

efficacy of the proposed similarity coefficient and sequencing policy.  

 

2.2 Literature Review 

The problem considered in this chapter is a flow shop where bypassing is not permitted 

which is referred to as permutation flow shop (Pinedo, 2012). There are generally two 

types of methods found in literature dealing with sequencing product variants in 

permutation flow shop problems: 1) exact methods such as mathematical models for 

scheduling the product variants for small to medium sized problems, and 2) 

approximation methods such as heuristic and meta-heuristic algorithms which try to find 

good, but not necessarily optimal, solutions (Yenisey and Yagmahan, 2014).  

In the first category, some exact algorithms and models have been developed based on 

the features and objective functions. However, most of them are efficient only for small 

to medium sizes of problems. For instance, Tseng et al. (2004) conducted an empirical 

analysis to compare the effectiveness of four different integer programming models for 

the permutation flow shop problem. A set of 60 different problems were solved four 

times by each of the mathematical models and results were compared based on the 

computation time. M’Hallah (2014) developed an MIP model for a permutation flow 

shop with m number of stages to minimize total earliness and tardiness. This model is 
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only suitable for small to medium sized problems and, hence, a meta-heuristic algorithm 

called VNS was used for large sized problems.   

In addition to mathematical models, the branch and bound approach has been used for 

finding exact solutions (e.g. Toktas et al., 2004; Lin and Wu, 2006; Wang et al., 2015). 

For instance, Lemesre et al. (2007) developed an exact method based on the branch and 

bound approach to solve the permutation flow shop, which is in fact a parallel model to 

improve search speed. The proposed method was able to find optimal solutions for up to 

20 machines and jobs. Moslehi et al. (2009) proposed a branch and bound algorithm for a 

two machine permutation flow shop. The objective function was the minimization of 

earliness and tardiness. Some lemmas were developed for increasing the computation 

speed and the performance was examined by considering 380 different problems. 

However, the exact solution using mathematical models or other developed exact 

methods for large size of permutation flow shop problems encompassing many jobs and 

machines cannot be found (Yenisey and Yagmahan, 2014). For that reason, many 

researchers have applied or developed some approximation methods, such as 

metaheuristic methods, to deal with the complexity of the permutation flow shop 

problems. Zhao et al. (2015) proposed an evolutionary algorithm called shuffled complex 

evolution algorithm to solve a permutation flow shop problem. They applied OBL 

strategy to enhance the quality the algorithm. Twenty-nine instances were used to assess 

the performance of the proposed algorithm. Khan and Govindan (2011) considered a 

multi-objective permutation flow shop with makespan minimization and tardiness 

maximization. A simulated annealing (SA) algorithm was proposed and compared with 

other existing heuristic algorithms to illustrate the efficiency of the method. Lin and Ying 

(2013) considered an m-machine environment for a permutation flow shop and developed 

a simulated annealing (SA) algorithm. The objective function minimized makespan and 

total flow time. The proposed method was compared to six existing algorithms in the 

literature and proved to outperform them. In addition to SA, Tabu search (TS), genetic 

algorithm (GA), ant colony optimization (ACO), and particle swarm optimization (PSO) 

are some of the most common metaheuristic methods applied in literature (e.g. Ishibuchi 
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et al., 2003; Armentano and Arroyo, 2004; Rahimi-Vahed and Mirghorbani, 2007; 

Yagmahan and Yenisey, 2010; Lin et al., 2015).  

Some developed policies such as the shortest processing time (SPT) (Baker and College, 

2008) can find good sequencing solutions and are not traditional heuristic approach. 

These policies are more practical to use in manufacturing systems than the exact solution 

approaches or traditional meta-heuristic based algorithms.  

In order to apply the proposed sequencing policy, product variants are required to be first 

grouped based on machine setup similarity. Grouping variants based on their similarity 

has been addressed in literature and in different manufacturing environments. Most 

methods such as group technology (GT) have been developed for the cellular 

manufacturing environment (e.g. Alhourani and Seifoddini, 2007; Bhatnagar and 

Saddikuti, 2010; Paydar et al., 2014; Wu and Suzuki, 2015). Some methods were 

proposed for reconfigurable manufacturing systems (e.g. Galan et al., 2007a; Galan et al., 

2007b; Goyal et al., 2013). In any of the studied systems, there are different criteria based 

of which the similarity coefficients have been developed; the most common criteria are 

operation similarity (e.g. Pattanaik and Kumar, 2010), operation sequence similarity (e.g. 

Choobineh, 1988), volume/demand similarity (e.g. Pattanaik and Kumar, 2010), 

operation time similarity (Ilic, 2014), and alternative process routings (e.g. Alhourani, 

2013). 

“Grouping” has been referred to using different terminology in literature such as “family 

formation”, “part/product formation”, “cell formation” and “clustering”. There are 

several ways in literature for grouping product variants. Mathematical models, 

descriptive procedures, and hierarchical clustering are some of the most common ones 

(Galan et al., 2007b). Average Linkage Clustering (ALC) algorithm is one of the 

hierarchical clustering algorithms which has been used by different researchers and 

proved to be efficient (Yin and Yasuda, 2006; Galan et al., 2007a). In this chapter, the 

ALC algorithm is applied for grouping product variants and subsequently a new policy is 

proposed for sequencing them. 
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2.3 Problem Description 

A manufacturing system consists of several work stations such as milling, turning, 

drilling tapping, finishing, etc. to fabricate or assemble different product variants 

belonging to a product family and each of which requires a set of operations. Each station 

usually has a particular CNC machine which is able to perform different tasks by 

reprogramming. However, the types of operations performed at each station are not 

significantly different (i.e. they have some similarities). For instance, in a drilling station, 

the machine is capable of making holes with different diameters and depths at different 

location coordinates (x, y, z) or performing boring and tapping according to the 

programmed instructions.   

Product variants have to pass through a similar sequence of stations. A product may not 

visit some stations according to its process plan.  Therefore, product variants are different 

in two aspects: 1) the number and type of stations a product visits, and 2) the operations 

they require which may necessitate a machine setup change. Note that consecutive 

operations carried out at a given station may be identical, hence, requiring no setup 

changes. 

Different product variants are processed based on their sequence and sequence changes 

between stations are not permitted since a permutation flow shop is considered. 

Therefore, sequence of the variants does not change from one station to another as 

bypassing is not allowed. This type of problem is very common in industries. In many 

manufacturing systems with a single production line, such as those found in auto-

manufacturing companies, products are often large which makes it infeasible for products 

to bypass each other on the same line. In other situations, although the products are small 

in size, the limited production space does not allow bypassing.  At any time, only one 

operation can be performed at a given station, hence, depending on process plans, it may 

require setup changes between consecutive variants processed at that station. Figure 2.1 

shows a schematic illustration of a permutation flow shop for five variants and three 

stations. It is noteworthy mentioning that the demand for each variant may vary from 

single unit to several units. Therefore, product variants might be processed in the form of 
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batches. Based on both the developed mathematical model and the proposed sequencing 

policy, it would be advisable to finalize one type of variant and then switch to another 

type in order to minimize setup changes.  

 

Other considered assumptions which are applied are as follows: It is assumed that the 

time required for changing the setup from product variant A to variant B is equal to the 

time for changing the setup from variant B to variant A (in a given station). It is also 

assumed that setup time is more significant than processing time and each product variant 

is produced in batches of one, typical of customized or personalized products (Hu et al., 

2011, AlGeddawy and ElMaraghy, 2012; ElMaraghy et al., 2013). In addition, it is 

assumed that all products have the same importance and that there is no specific 

prioritization among the variants. It is assumed that the first product at a given station 

does not require any setup change, since only the effect of setup changes between two 

consecutive variants is considered. The objective is to find the best sequence of product 

variants in order to minimize total setup changes/costs/times. This minimization would 

lead to maximizing throughput (Kumar and Narendran, 1997). 

 

2.4 Mathematical Model  

A mathematical model is developed to clearly demonstrate the problem and assess the 

efficiency of the proposed sequencing policy. This model is at first a non-linear 

mathematical model and is subsequently reformulated to a mixed integer linear 

programming (MILP) to find exact solutions using General Algebraic Modeling System 

(GAMS) optimization software with CPLEX 12.0.1 MILP solver. The notation used in 

this model can be structured into two parameter and variable groups. Note that in the 

    

   

Station 1 Station 3 Station 2 

Input 

      

Output 

Figure 2.1 A schematic view of a permutation flow shop 
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following model a dummy product (product zero) has been considered to facilitate the 

mathematical manipulation. 

Parameters: 

n Number of product variants. 

i,r Indices showing product variants i,r    i =0,1,2,…,n       r =0,1,2,…,n. 

j, m Indices showing product variant in positions j and m of a given sequence  j 

=0,1,2,…,n   m =0,1, j-1. 

k Number of work stations.           

p An index showing work station p          p=1,2,…,k. 

Sirp Setup change time/cost for product variant i if processed immediately after 

product variant r at station p. It is assumed that there is no setup change time/cost 

for product variants processed first at a given work station (Si0p=0).    i=1,2,…,n,  

r=0,1,2,…,n,  p= 1,2,...,k. 

Wip is equal to one if product variant i has an operation at work station p and zero 

otherwise     i=1,2,…,n,   p= 1,2,...,k. 

 

Variables: 

Xij is equal to one if product variant i is placed in jth position of the sequence and 

zero otherwise     i=0,1,2,…,n,  j=0,1,2,…,n. 

Zjmp is equal to one if, at station p, product variant in position j is processed 

immediately after product variant in position m and zero otherwise      j=1,2,…,n,  

m=0,1,…,j-1,  p= 1,2,...,k. 

 

 

Constants (2.1) to (2.3) are considered ensuring that the dummy product (product zero) is 

the only product placed in position zero and cannot be placed in other positions of the 

sequence: 

𝑋0𝑗 =  0                                      ∀𝑗 = 1,2, … , 𝑛   (2.1) 

𝑋𝑖0 =  0                                      ∀𝑖 = 1,2, … , 𝑛   (2.2) 

𝑋00 =  1                                                                   (2.3). 
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The objective function is to minimize the total setup change time/cost which is equal to:  

𝑀𝑖𝑛 ∑∑ ∑ ∑ ∑ 𝑍𝑗𝑚𝑝

𝑘

𝑝=1

𝑛

𝑗=1

𝑗−1

𝑚=0

∙  𝑋𝑖𝑗

𝑛

𝑟=0

𝑛

𝑖=1

∙  𝑋𝑟𝑚 ∙  𝑆𝑖𝑟𝑝                    (2.4) 

Subject to: 

∑𝑋𝑖𝑗

𝑛

𝑖=1

=  1                                      ∀𝑗 = 1,2, … , 𝑛   (2.5) 

∑𝑋𝑖𝑗

𝑛

𝑗=1

=  1                                      ∀𝑖 = 1,2, … , 𝑛   (2.6) 

∑𝑍𝑗0𝑝

𝑛

𝑗=1

=  1                                      ∀𝑝 = 1,2, … , 𝑘   (2.7) 

∑ 𝑍𝑗𝑚𝑝

𝑛

𝑗=𝑚+1

 ≤  ∑𝑋𝑖𝑚.𝑊𝑖𝑝

𝑛

𝑖=1

             ∀𝑚 = 0,1, … , 𝑛 − 1,    ∀𝑝 = 1,2, … , 𝑘   (2.8) 

∑ 𝑍𝑗𝑚𝑝

𝑗−1

𝑚=0

= ∑𝑋𝑖𝑗.𝑊𝑖𝑝

𝑛

𝑖=1

                 ∀𝑗 = 1,2, … , 𝑛,    ∀𝑝 = 1,2, … , 𝑘   (2.9) 

𝑋𝑖𝑗  ∈ {0,1}        𝑌𝑗𝑝  = 0,1     ∀𝑖 = 0,1,2, … , 𝑛, ∀𝑗 = 0,1,2, … , 𝑛,

∀𝑝 = 1,2, … , 𝑘         

𝑍𝑗𝑚𝑝 ∈ {0,1}     ∀𝑗 = 1,2, … , 𝑛, ∀𝑚 = 0,1, … , 𝑗 − 1    ∀𝑝 = 1,2, … , 𝑘   (2.10)  

Constraints (2.5) and (2.6) ensure that a sequence position is occupied by only one 

product and a product is placed in only one position of the sequence. Constraint (2.7) 

guarantees that there is at least one product to be completed immediately after the dummy 

product at each station, otherwise the station would always be idle and it would be 

removed from the system. Constraint (2.8) ensures that a product can be processed 

immediately after the product in position m at station p if that product is in a position 

between m+1 and n and also the product in position m has an operation at station p. In 

other words, if the product in position m does not have an operation to be executed at 

station p, then, there is no product (in position between m+1 and n) to be completed 

immediately after the product in position m at station p. Constraint (2.9) indicates that if a 

product in position j requires an operation at station p, there must be a product in position 
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between 0 and j-1 which has been processed immediately before the product at that 

station, which can also be the dummy product. Finally, Constraint (2.10) indicates 

that 𝑋𝑖𝑗, 𝑌𝑗𝑝and 𝑍𝑖𝑟𝑝 are binary variables. The developed mathematical model tries to 

optimize the sequencing of the product variants in all stations. As an alternative approach, 

the model can be decomposed to each station and the optimal solution for each station is 

obtained and based on that, the final optimal sequence is found. 

In the mathematical model, the objective function is non-linear. The model is 

reformulated by defining a new binary variable. By this way, it would be possible to have 

the equivalent linear model and get exact solutions from the equivalent linear model. The 

new variable is defined as follows: 

𝑄𝑖𝑗𝑟𝑚𝑝      is equal to one if product i is placed in position j and is processed immediately 

after product r which is placed in position m at station p of the sequence and it is 

zero otherwise;  ∀𝑖, 𝑗 = 1,2, … , 𝑛, ∀𝑟 = 0,1,2, … , 𝑛, ∀𝑚 = 0,1, … , 𝑗 − 1    ∀𝑝 =

1,2, … , 𝑘. 

The previous non-linear objective function is reformulated to have the equivalent linear 

model and three new sets of linear constraints are added as follows. Therefore, there 

would be thirteen sets of linear constraints with a linear objective function. 

𝑀𝑖𝑛 ∑∑ ∑ ∑ ∑ 𝑄𝑖𝑗𝑟𝑚𝑝

𝑘

𝑝=1

𝑛

𝑗=1

𝑗−1

𝑚=0

𝑛

𝑟=0

𝑛

𝑖=1

. 𝑆𝑖𝑟𝑝                          (2.11) 

Subject to: 

𝑍𝑗𝑚𝑝 + 𝑋𝑖𝑗 + 𝑋𝑟𝑚 − 2 ≤ 𝑄𝑖𝑗𝑟𝑚𝑝                                     (2.12) 

𝑄𝑖𝑗𝑟𝑚𝑝 ≤
𝑍𝑗𝑚𝑝 + 𝑋𝑖𝑗 + 𝑋𝑟𝑚

3
                                         (2.13) 

𝑄𝑖𝑗𝑟𝑚𝑝 = 0,1                                                                   (2.14) 

∀𝑖, 𝑗 = 1,2, … , 𝑛, ∀𝑟 = 0,1,2, … , 𝑛, ∀𝑚 = 0,1, … , 𝑗 − 1    ∀𝑝 = 1,2, … , 𝑘. 
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2.5 Proposed Product Variants Grouping and Sequencing Policy 

A new policy for grouping and sequencing variants is where variants are sequenced based 

on their relative degree of similarity which is discussed in this section. 

2.5.1 Grouping Variants 

A new method for calculating the setup similarity coefficient between pairs of products is 

proposed. The product variants share many common components and operations since 

they all belong to the same family. However, common operations do not guarantee 

similar setups. For instance, it is clear that the two variants in Figure 2.2 share many 

common operations. Both variants require milling operations with similar dimensions 

and, hence, the milling station setup change between these two variants is negligible. On 

the other hand, both variants require drilling operations but for different hole depth and 

diameter. This necessitates changing tools and the program used by the drilling machine. 

 

Figure 2.2 Two product variants belong to the same family 

The goal of the sequencing policy in this chapter is to find the similarity between product 

variants to minimize machine setup changes and sequence them accordingly.  

Each product requires a set of operations, each of which is performed at one station. The 

relative degree of setup similarity between variants i and j at a given station can be 

calculated as follows: 
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DoSijp

= 1

− 
time required for changing the setup from variant j to variant i in station p

total setup time changes for each pair of variants visiting station p
         (2.15) 

Where, 

𝑝 ∈ 𝑅𝑖𝑗 ,       𝑅𝑖𝑗 = { 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑣𝑖𝑠𝑖𝑡}                    

It is clear that 𝐷𝑜𝑆𝑖𝑗𝑝 is meaningful when both variants i and j are processed at station p.  

If at least one of the variants does not require an operation at station p, then their relative 

degree of setup similarity at station p does not exist.  

The setup similarity of two variants is relative. In other words, the setup similarity of two 

variants cannot be interpreted by itself without comparing with setup similarity of other 

pairs of variants. After calculating the relative degree of similarity between two variants 

at each station, the total setup similarity between them is determined. First, stations that 

both pair of product variants visit are identified. The weight of each of those stations is 

then obtained by dividing the total setup time changes in that station over the summation 

of total setup time changes in all those stations. For each pair of variants, the summation 

of the station weight multiplied by the relative degree of setup similarity at that station is 

calculated over the common stations visited by both variants. This value is equal to the 

setup similarity between two variants and is summarized in Equation (2.16): 

Sij = ∑
total setup time changes for all pair of variants visiting station p

total setup time changes for all pair of variants  visiting R𝑖𝑗
𝑝∈𝑅𝑖𝑗

 

× DoSijp         (16) 

𝑅𝑖𝑗 = { 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑣𝑖𝑠𝑖𝑡} 

According to Equations (2.15) and (2.16), when calculating the setup similarity of two 

product variants, only those stations both variants visit are considered. For more clarity, 

consider Figure 2.3 which demonstrates two variants of a lap chair.  
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Figure 2.3 Two variants of a lap chair (Polo’s Furniture Blog) 

It is evident that most operations needed to finalize these two chair variants are similar 

and the variants share many common components. Suppose that there is a station 

dedicated for joining the handles to chairs. There would be no setup change between 

these two variants at the arms joining station as the black chair visits the station but the 

white does not. Therefore, the arms joining station is not considered in calculating the 

setup similarity between these two variants. 

ALC algorithm 

The Average Linkage Clustering (ALC) algorithm is used to group product variants, after 

finding the similarity coefficient between each pair of variants. Grouping results are used 

to find the best sequence of product variants. In this algorithm, products with higher 

coefficient of similarity are grouped together (Vakharia and Wemmerlöv, 1995, Galan et 

al., 2007a, Galan et al., 2007b, Eguia et al., 2011, Eguia et al., 2013). A sub-matrix 

consisting of ungrouped products and a family of products is then constructed. This 

procedure is repeated until all the products are grouped into a single family and 

consequently a dendrogram can be drawn. The similarity of product variants at each stage 

can be obtained using Equation (2.17) (Galan et al., 2007b): 

𝑆𝑖𝑗 =
∑∑𝑆𝑚𝑛

𝑁𝑖 × 𝑁𝑗
                                                                                                              (2.17) 
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Where i and j are families’ indices; m and n are products of families i and j respectively; 

Sij is the similarity coefficient between families i and j; and Ni and Nj are the number of 

products at each family. 

2.5.2 Sequencing Product Variants 

The proposed method is a policy to sequence products based on their setup similarity and 

it is not a traditional heuristic. This sequencing policy is straightforward and does not 

need local search as with most traditional heuristic-based sequencing methods.   

Following are steps to obtain the final sequence of product variants after the dendrogram 

is constructed. Any two variants with the highest similarity coefficients, based on the 

dendrogram, should be placed next to each other in the sequence. If the next level of 

dendrogram is related to two other variants, they should also be next to each other in the 

production sequence. If a new variant is further grouped with a pair of variants which 

have previously been grouped together, then the similarity coefficient between the new 

variant and each of the two variants is checked. The value of similarity coefficient 

determines which of the two variants is placed next to the new one in the processing 

sequence. The same procedure is repeated when two groups, each of which has several 

variants, are further grouped. In this case, we only check the similarity coefficient with 

extreme variants at the start or the end of their own groups.  

 

2.6 Illustrative Example 

An illustrative example is presented to demonstrate the sequencing policy. Assume that 

there are five product variants with four stations (machines) and that the setup similarity 

coefficients, obtained by using the proposed formula, between each pair of variants are as 

follows: 

𝑆12 = 1      𝑆13 = 1      𝑆14 = 0.67      𝑆15 = 0.75      𝑆23 = 0.83      𝑆24 = 0.75     𝑆25

= 0.83       𝑆34 = 0.75     𝑆35 = 0.67      𝑆45 = 1 
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ALC algorithm is used to further group the variants. A dendrogram is constructed based 

on the obtained results, after clustering variants as follows: 
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   Figure 2.4 Dendrogram for the illustrative example 

 

According to Figure 2.4, Variants 1 and 2, then Variant 3 should be next to each other in 

the sequence. Similarly, Variants 4 and 5 should be placed next to each other in the 

production schedule. Therefore, the general structure of setting products in sequence is as 

illustrated in Figure 2.5: 

 

 

 

Figure 2.5 Rudimentary variants sequence for the above example 

 

The proper position for Variant 3 should be decided first and that whether it should be 

next to Variant 1 or Variant 2.  The setup similarity value between pairs of 3 and 1 with 

pairs of 3 and 2 is compared. According to the given information,   𝑆13 = 1 while  𝑆23 =

0.83; therefore, Variant 3 should be next to Variant 1 in the sequence. 

The best sequence of Variants 1, 2, and 3 are either 3→1→2 or 2→1→3. Variants 4 and 

5 should now be added to the sequence. It is required to compare the similarity for those 

3 

 
1, 2 4, 5 
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products in extreme positions, to find the best sequence. Therefore, comparing the 

similarity coefficients of the following pairs is considered: 

  𝑆34 = 0.75,   𝑆35 = 0.67,   𝑆24 = 0.75,   𝑆25 = 0.83 

Variants 2 and 5 should be placed next to each other in the sequence. Therefore, the best 

sequences of products would be either 3→1→2→5→4 or 4→5→2→1→3, since the 

objective is reducing setup cost. The obtained product variants sequence helps production 

planners in finalizing the production sequence. 

 

2.7 Numerical Results 

Several numerical tests were conducted and the results were compared with the exact 

solutions obtained from the linear mathematical model using GAMS, to demonstrate the 

efficiency of the proposed grouping and sequencing policy. The computer used for this 

analysis has the following features: 2.13 GHz CPU processor using Windows 7 operating 

system with 2 GB of RAM. The mathematical MILP model of the sequencing problem 

was implemented in GAMS optimization software and solved with CPLEX 12.0.1 MILP 

solver. The proposed grouping and sequencing policy was implemented in Borland C++ 

compiler version 5.02.  

The problem was solved for small (less than 8 variants), medium (between 8 to 25 

variants) and large sized groups (more than 25 variants). However, the GAMS solver was 

not able to find the exact solutions in reasonable computing time and was terminated after 

60 minutes for medium and large problem sizes in most cases and the best obtained 

answer was reported. The solutions obtained by GAMS in those cases are not necessarily 

optimal but are sub-optimal as GAMS may not be able to find the optimal solution in 60 

minutes. 

For this purpose, 3, 4, 6, 8, 10, 15, 25 and 50 jobs (n) are selected. The number of 

stations/machines (m) is set to be 1, 3, 5, 10 and 20. Therefore, all the combinations are 
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40. For each combination, 25 replicates were generated randomly and hence, a total 

number of 1000 instances were evaluated (8×5×25).   

Two measures namely relative average percentage error and run time were considered to 

assess the performance of the proposed sequencing policy versus GAMS solutions. The 

relative percentage of error is calculated as follows: 100*(the solution found by proposed 

methods (or by GAMS) - best solution)/ (best solution). The best solution can be obtained 

either by the proposed methods or by GAMS. The relative percentage of error is 

calculated for all 25 replicates of each combination and the average error is obtained for 

each method accordingly. Therefore, for a given combination of n and m, the average 

error obtained for both methods might be higher than zero (For example refer to n=8, 

m=20 in Table 2.1). In large problem sizes, since GAMS may not find the optimal 

solution within 60 minutes, the solution obtained by the proposed method may be better 

and considered the best solution. This method of error calculation was previously used by 

other authors such as (Mozdgir et al., 2013). 

Table 2.1 summarizes the results. 

Table 2.1 Comparison between GAMS method and the proposed sequencing policy 

  
GAMS 

 
Proposed Sequencing Policy 

n m 
Avg. Error 

(%) 

Avg. time 

(Sec.)  
Avg. Error 

(%) 

Avg. time 

(Sec.) 

3 

1 0 3.6 
 

0 

< 0.01 

3 0 3.6 
 

0 

5 0 4.1 
 

0 

10 0 3.8 
 

0 

20 0 3.5 
 

0 

4 

1 0 3.4 
 

0 

3 0 3.6 
 

3.3 

5 0 4 
 

3.7 

10 0 3.6 
 

4.1 

20 0 4.2 
 

0.7 

6 

1 0 3.3 
 

0 

3 0 6.7 
 

4.9 

5 0 8 
 

3.4 



 

30 

 

10 0 52.1 
 

3.8 

20 0 208.7 
 

2.6 

8 

1 0 4.1 
 

0 

3 0 98.4 
 

4.4 

5 0 827.4 
 

1.9 

10 0 2829.6 
 

7.1 

20 0.47 3600* 
 

2.4 

10 

1 0 29.8 
 

0 

3 0 2480 
 

5.9 

5 4.27 3600* 
 

0.4 

10 2.62 3600* 
 

0.8 

20 6.53 3600* 
 

0 

15 

1 0 3060 
 

0 

< 0.02 

3 29.5 3600* 
 

0.9 

5 36.8 3600* 
 

0 

10 35.9 3600* 
 

0 

20 37.5 3600* 
 

0 

25 

1 88.9 3600* 
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Memory 
N/A 
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Memory 
N/A 

 
0 
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Memory 
N/A 

 
0 

50 

1 
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Memory 
N/A 

 
0 

3 
Out of 

Memory 
N/A 

 
0 

5 
Out of 

Memory 
N/A 

 
0 

10 
Out of 

Memory 
N/A 

 
0 

20 
Out of 

Memory 
N/A 

 
0 

* GAMS execution has been terminated after 3600 seconds. 

As seen in Table 2.1, the proposed sequencing policy is able to find good solutions (even 

optimal) within 0.02 seconds which is extraordinarily fast. In contrast, the time used by 
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GAMS to find the exact solutions exponentially increases with the problem size.  Figures 

2.6 and 2.7 illustrate this trend for GAMS results in terms of the number of jobs and 

stations respectively. Since, GAMS could not find the exact solution in 60 minutes for 10 

or more jobs (as we set a time limit of 3600 seconds for GAMS), it was terminated. 

Therefore, the run time of GAMS is illustrated only for 3, 4, 6 and 8 jobs to appropriately 

demonstrate the trend of run time in terms of number of jobs and stations (Figures 2.6 and 

2.7). 

 
Figure 2.6 GAMS run time in terms of number of jobs (n) 

  

 
Figure 2.7 GAMS run time in terms of number of stations (m) 

 

Figure 2.6 shows that the time spent by GAMS in solving the problem increases 

exponentially with the number of jobs. Figure 2.7 indicates that although the time 

increases with the number of stations, it is not as sharp as the trend in Figure 2.6. The 
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proposed sequencing policy is not sensitive to the size of the problem and can quickly 

find the solutions. 

Figures 2.8 and 2.9 compare GAMS to the proposed sequencing policy based on the 

relative average percentage of error for different numbers of jobs and stations 

respectively. This comparison is limited to 15 jobs since GAMS cannot find any solution 

as it runs out of memory for large problem sizes. This also proves the efficiency of the 

proposed sequencing policy. 

 
Figure 2.8 Average percentage error comparison in terms of number of jobs (n) 

 

 
Figure 2.9 Average percentage error comparison in terms of number of stations (m) 

 

Figure 2.8 shows that for small number of jobs, GAMS does not have any relative error, 

and then it increases as the number of jobs increases since it cannot find exact solutions 

in 60 minutes and the best answer until then was considered. The proposed policy, as 
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shown in Figure 2.8, yields exact solutions for all the studied n=3. Then, the relative error 

for the proposed sequencing policy increases and while GAMS cannot give the exact 

solution within 60 minutes, it starts decreasing. In other words, in large problem sizes, the 

proposed sequencing policy produces more accurate solutions than GAMS. Note that, 

depending on the situation, the run time for MIP model can change and one might be 

interested to allow GAMS to solve the problem for a longer time than 60 minutes. 

Figure 2.9 compares the relative percentage error in terms of number of stations (m). 

According to this figure, the proposed sequencing policy yields exact solutions for all the 

studied m=1. In addition, in spite of lack of any specific trend in error for both methods, 

the proposed sequencing policy has less relative average error than GAMS for the same 

aforementioned reason. It is noteworthy mentioning that the initial non-linear model was 

also solved for some cases and revealed the same solutions. However, it took a longer 

time to find the optimal solutions.   

An efficient way in obtaining optimum solutions is to integrate both mathematical model 

and the proposed sequencing policy. In this approach, after finding the solution (sequence 

of jobs) using the proposed policy, it is given to the GAMS software as a “warm start” 

point (Ferris and Voelker, 2002). In this way, the computing time of GAMS can be 

reduced. However, since the aim of the present work is to propose a policy to be easily 

implemented in industry, this integrating approach has not been considered. 

 

2.8 Case study – Labels Stickers Making 

A case study of label sticker printing is presented to demonstrate the practicality of the 

proposed sequencing policy in real manufacturing systems. The required process is to 

print a specific image on a particular labeling material. The case study is a two-stage 

hybrid flow shop taken from the work carried out by Lin and Lio (2003) and also 

considering some information obtained from another source (http://www.a4labels.com/). 

We only consider the first stage of this industrial application for comparison as the setup 

time in the second stage is sequence-independent. In stage one, a single high speed 
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calendar machine (Figure 2.10) is used to glue surface material and liner for producing 

label stickers. There is a total number of six classes (variants) of jobs (label stickers) 

visiting stage one. The calendar needs setup change when switching from jobs in one 

class to jobs in another which is dependent on the type of previous and current classes of 

jobs.  

 

 

Figure 2.10 An example of a calendar machine (http://www.wotol.com/) 

There are six classes/variants of label stickers used for suitcases, shoes, water bottles, 

anti-theft/shoplifting, windows, and box labels. Moreover, three sticker adhesive bases 

namely Rubber, Acrylic, and Water-based are used. Each adhesive base consists of two 

types which are compatible with each other and, hence, there are six adhesive bases in 

total. The temperature required for each of the six adhesive bases is 120, 130, 110, 130, 

120 and 130 
o
C respectively based on adhesive specifications. The setup includes two 

main activities which are: changing the adhesive base and modifying the operating 

temperature. If the components of the preceding and successor adhesive bases are 

incongruous with each other when changing the adhesive base, then the preceding one is 

cleaned out of the container before the successor is installed. If they are compatible then 

the cleaning/setup procedure is eliminated. Table 2.2 shows this classification. In this 

case study, the processing time is assumed to be negligible compared to setup time. 
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Table 2.2 Classification of label stickers 

  Adhesive 

base 
    Temperature (

o
C)   Class/variant 

Rubber 
 

g1 120 
 

Suitcase label(C1) 

  
g2 130 

 
Shoe label(C2) 

      
Acrylic 

 
g3 110 

 
Bottled water label(C3) 

  
g4 130 

 

Anti-theft shoplifting 

label(C4) 

      
Water-based 

 
g5 120 

 
Window label(C5) 

    g6 130   Box label(C6) 

 

Setup time required for cleaning the adhesive base is about 8 minutes on average. In 

addition, the operating temperature takes about 1.5 minutes to decrease or increase by 

1
o
C, so it can take up to 30 minutes to reach the correct temperature (adjusting 

temperature). 

The final setup change time from one class of stickers to another can be calculated 

according to the aforementioned information. Table 2.3 summarizes these values. 

Table 2.3 Setup time considering both changing temperature and cleaning the base (minutes)  

  To 

    

    

From   C1 C2 C3 C4 C5 C6 

C1 
 

0 15 23 23 8 23 

C2 
 

 0 38 8 23 8 

C3 
 

  0 30 23 38 

C4 
 

   0 23 8 

C5 
 

    0 15 

The relative degree of similarity is first calculated between each pair of label sticker 

variants at each station based on the proposed sequencing policy. In this case study, only 

one station has been considered, hence, p=1. Table 2.4 summarizes the calculated 

similarities. Equation (2.17) shows that when there is only one station, the relative degree 

of setup similarity (𝐷𝑜𝑆𝑖𝑗𝑝) is equal to the setup similarity coefficient (𝑆𝑖𝑗). 
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Table 2.4 Relative degree of setup similarity  

 
j 

    

    

 
 

  1 2 3 4 5 6 
 

 
˗ 0.951 0.925 0.925 0.974 0.925 

 

  
˗ 0.876 0.974 0.925 0.974 

 

   
˗ 0.902 0.925 0.876 

 

    
˗ 0.925 0.974 

            ˗ 0.951 

        
Both the proposed sequencing policy and GAMS yield the same minimum total setup 

time of 62 minutes. This validates the accuracy of the proposed sequencing policy. The 

obtained sequence of jobs to be carried out on the Calendar machine is 

C2→C4→C6→C5→C1→C3. Now consider a situation in which these six variants are 

sequenced randomly. Using computer, the following random sequence was obtained: 

C5→C3→C2→C1→C6→C4. This sequence yields total setup time of 107 minutes. This 

perfectly shows the merit of sequencing based on the proposed policy reducing total setup 

time by 42%. If it is assumed that the total available time in the system is 8 hours per day, 

the machine productivity increases from 373/480 to 418/480, equivalent to 12% 

improvement. 

As mentioned before, the aim of proposing the sequencing policy is to have a method 

which can be easily implemented in industry and it is not designed to serve as a robust 

approach in order to deal with stochastic setup times. In other words, when there is 

uncertainty about the setup time of product variants, the obtained sequence from the 

proposed policy may need to be updated depending on different factors such as 

magnitude of changes in setup times, initial values of setup times, number of stations 

with changes in setup times, and so on. However, proposing a robust approach can be a 

potential direction for future works.   

 

 

 

 

𝐷𝑜𝑆1𝑗1 

𝐷𝑜𝑆2𝑗1 
𝐷𝑜𝑆3𝑗1 

𝐷𝑜𝑆4𝑗1 

𝐷𝑜𝑆5𝑗1 
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2.9 Summary 

In this chapter, sequencing of product variants in a flow shop problem was considered 

where bypassing is not permitted.  It was assumed that setup times/costs are more 

considerable / important than processing time. Therefore, the effectiveness of the 

manufacturing system improves by minimizing total setup changes between product 

variants. The problem was formulated and modeled using MINLP and then converted to 

MILP model in order to obtain the exact solutions using GAMS optimization software. A 

new sequencing policy based on machine setup similarity between product variants was 

developed. This policy is very simple and unlike traditional meta-heuristics can easily be 

implemented in manufacturing systems. Computational results demonstrated that the 

proposed sequencing policy is very efficient and capable of finding good and even 

optimum solutions in less than a second regardless of the number of considered jobs and 

stations. The validity of the proposed sequencing policy was confirmed numerically and 

by using a case study in label sticker industry. The novelty of this policy is the utilization 

of the machine setup similarity in grouping and sequencing product variants. This 

sequencing policy is very beneficial in cases when jobs’ due dates are the same and set up 

time is more significant than processing time. In other cases, it would still be beneficial to 

use in order to obtain a good preliminary sequence which may further be modified, if 

required, by the production planner based on other criteria. This approach reduces the 

time and effort required to sequence product variants.   
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Chapter 3 

Grouping Part/Product Variants Based on Networked Operations Sequence 

 

3.1 Introduction 

Grouping part/product variants based on their similarities is one of the most efficient 

strategies in modern manufacturing systems to manage the variety. There are different 

criteria based of which part/product variants can be grouped. One of these criteria is 

“operations sequence”. A part/product variant (or variant in brief) usually requires a 

number of operations. Examples of these operations are machining, assembly, painting, 

finishing, and packaging. The term “operation” here refers to both “fabrication” and 

“assembly” processes. Operations usually have precedence constraint relationship but it is 

not necessarily serial. Most of the time, based on the features of a variant, some 

operations have flexibility to be done before, or after or simultaneously with other. In this 

case, the operations sequence of the variant would similar to a network of connected 

operations. This situation usually adds more complexity to the manufacturing system in 

terms of flow of operations and managing the changeover between different variants. 

Grouping variants based on operations flow similarity has several advantages including 

ease of system reconfiguration (Youssef and ElMaraghy, 2006) and reduction of 

changeover time.  

An “operation precedence graph” is a good representation of operations sequence. Figure 

3.1 illustrates the difference between operation precedence graphs of two variants with 

sequential serial operations and networked operations. The numbers in the figure refer to 

the operations. As a real example, suppose that Operations 1 and 2 at Figure 3.1(a) refer 

to “Drilling” and “Internal Threading” processes respectively. It is obvious that “Internal 

Threading” process cannot be carried out unless “Drilling” process is finalized. Now, 

suppose that Operations 5 and 6 at Figure 3.1(b) represent “Boring” and “Cylindrical 

Turning” processes. Generally, these two processes do not have any precedence 

constraints and they can be performed before or after each other or at the same time using 

a CNC machining center. Those variants that only require the first mentioned group of 
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operations have serial structures while variants requiring the second mentioned group of 

operations have networked structures. The reason for using the term “networked 

structure” for variants similar to the one in Figure 3.1(b) is because of the flexibility in 

performing some operations which makes the structure of a variant precedence graph 

similar to a network.  

Similarity measurement for variants having networked operations sequence has not been 

considered in literature. There is also a need to develop a novel operations flow based 

similarity coefficient to measure the similarity between the variants with network 

structure to be used in grouping them.  

 
Figure 3.1 An example of comparison between  operation precedence graphs of two variants with: (a) 

sequential serial operations and (b) networked operations  

 

In this chapter, the proposed operations flow based similarity coefficient considers this 

processing order flexibility which is different from routing flexibility. In other words, it is 

required to process all the operations of the operation precedence graph; however, some 

operations have flexibility of being processed in different order.   

The proposed operations flow based coefficient is in fact based on analysis and principles 

used in comparing the similarity of biological structures. The comparison of different 

metabolic pathways in different systems has enabled biologists to understand the 

evolutionary and structural relationships between different species (Heymans and Singh, 

2003). In this field, there are many biological systems which have network structures. 

(a) 
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Consequently, various methods have been proposed in order to compare these metabolic 

network structures (Heymans and Singh, 2003; Ogata et al., 2000).  

In addition to proposing a new operations flow based coefficient which is dominantly 

based on the operations sequence, two other important similarity criteria used in the 

literature, namely operations similarity and production volume similarity, are also taken 

into consideration to yield a more comprehensive similarity measurement which 

encompasses different similarity aspects. 

The most common and well-known similarity coefficient in the literature, regarding 

operations similarity, is Jaccard’s similarity introduced by McAuley (1972). Therefore, 

this coefficient is used in the present chapter to satisfy the operations similarity aspect.  

Production volume similarity identifies and groups the variants with similar volume in 

order to increase the utilization of machines. One of the most well-known coefficients for 

production volume similarity was developed by Galan et al. (2007b); but it has a 

drawback as it does not consider volume ratio. Therefore, in this chapter, a new 

production volume similarity coefficient is also developed which is in fact a modification 

on the coefficient developed by Galan et al. (2007b) to obviate its drawback.   

After considering all three similarity coefficients (i.e. operations flow based similarity, 

Jaccard’s similarity, and production volume similarity) and obtaining the integrated 

similarity coefficient, variants are grouped accordingly using the Average Clustering 

Algorithm (ALC). Grouping variants is useful particularly in a cellular manufacturing 

system where each cell has its own machines responsible for processing families of 

similar variants which increases utilization and productivity of machines/stations 

(Kashkoush and ElMaraghy, 2014a). 

A secondary application of grouping variants based on their similarity is finding an 

appropriate sequence of variants for production/assembly. This application is most 

suitable when the system processing one variant at a time, then setup is changed for 

production/assembly of the next variant. The obtained sequence serves as a better starting 

sequence for production planners and requires modification based on processing time, 
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due dates, etc. The sequencing application is also considered here and a proper method of 

sequencing variants is provided and validated mathematically. 

 

3.2 Literature Review 

There are many similarity coefficients proposed for grouping variants based on different 

criteria. Most methods have been developed as group technology (GT) for the cellular 

manufacturing environment (e.g. Alhourani and Seifoddini, 2007; Bhatnagar and 

Saddikuti, 2010; Nouri and Hong, 2012; Wu and Suzuki, 2015). Some methods were 

proposed for reconfigurable manufacturing systems (e.g. Galan et al., 2007a; Galan et al., 

2007b; Goyal et al., 2013). There are different criteria for which the similarity 

coefficients have been developed in any of the studies systems.  The most common 

criteria are operations similarity (e.g. Pattanaik and Kumar, 2010), operations sequence 

similarity (e.g. Choobineh, 1988; Tam, 1990), volume/demand similarity (e.g. Galan et 

al., 2007b; Pattanaik and Kumar, 2010), and operations time similarity (Ilic, 2014). 

Choobineh (1988) developed a method for measuring similarity coefficient between two 

parts which uses the common sequences of length 1 through L between two components. 

The number of cells and assignments of parts to the cells are calculated. The proposed 

method applies two criteria, parts’ operations and operations’ sequences, where the later 

criterion is the significance of the work.  However, serial operations sequences were 

considered in calculating similarity coefficient.  

Askin and Zhou (1998) proposed a method to form flow lines in manufacturing cells. 

Process planning and operations sequence of each part were applied to form the families. 

The objective was to find a set of flow-line cells at minimum cost of machines and 

material handling. The cells were assumed to be independent. Two concepts were applied 

to form the part families: longest common sub-sequence and shortest composite super-

sequence. A method was proposed to calculate the similarity coefficient and a modified 

hierarchical clustering algorithm was proposed to group the parts. The optimum machine 

sequence for each cell was found using an augmented graph based on the capabilities of 
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machines in performing the operations. The computational experiments showed the 

efficiency of the method. 

Regarding multiple process routing, Gupta (1993) considered a problem in flexible 

manufacturing systems where alternative routing is possible to address machines failure. 

A similarity coefficient was designed based on machines, not parts, and it incorporated 

production volume and number of trips. A dendrogram was used to illustrate the final 

grouping of machines. A case study was provided using MANUPLAN software and the 

results show the efficacy of this method.  

Alhourani (2013), in a more recent work,  addressed the cell formation problem by 

considering different criteria such as multiple process routings, operations sequence, 

batch size, production volume and the capacity of machines. He claimed that the 

mentioned criteria have not been considered together in literature. The proposed method 

of grouping machines is based on minimization of intercellular movements.  Each part 

has at least one process route when considering multiple process routings and each route 

may consist of a set of different machines compared to other process routes. This method 

was compared to other existing methods proposed by other researchers such as Yin and 

Yasuda (2002), Lei and Wu (2005), and Spiliopoulos and Sofianopoulou (2007) and 

proved that the proposed method outperforms others in terms of inter-cellular moves.  

Alhourani and Seifoddini (2007) developed a new ordinal production data similarity 

coefficient to form a machine cell in a cellular manufacturing system. The method is 

based on sequence of operations in which a part visits different machines and the batch 

size of each part. The results were compared with the current methods available in the 

literature and a new clustering algorithm to form the machine cells was proposed. The 

proposed similarity coefficient is generally sensitive in terms of intercellular movements. 

The machines are first grouped based on their commonality and the cells are formed and 

finally parts are assigned to the cells based on the volume of traffic between machines. 

This method of grouping is based more on machine capabilities.  

Bhatnagar and Saddikuti (2010) proposed and compared two cellular manufacturing 

system models, sequential and concurrent.  The sequential model utilizes machine-part 
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information while the concurrent model considers both machine-part and machine-

operator information to form cells. The results showed the superiority of the concurrent 

model over the sequential model. 

Chang et al. (2013) considered three aspects of cellular manufacturing design 

simultaneously and claimed that cell formation, cell layout, and intercellular machine 

sequence are three practical and crucial aspects that are yet to be taken into consideration 

together. They proposed a mathematical model which encompasses different aspects such 

as alternative process routings, operations sequences and production volume. However, 

only the serial operations sequence was considered and the family formation was based 

on machine selection. A tabu search algorithm was developed to find solutions for large 

scale problems. 

Navaei and ElMaraghy (2014) proposed a new similarity coefficient for grouping product 

variants considering alternative machines for each operation and based on their similarity 

in machine usage. It was assumed that for each operation of a given variant more than 

one candidate machine are available and only one machine should be selected for that 

operation. Nevertheless, for another product variant having the same operation a different 

machine might be selected depending on the ability of the new machine to perform other 

operations of that variant. A non-binary incidence matrix was developed based on this 

assumption and the average linkage clustering (ALC) algorithm was used to group the 

variants accordingly. The work (Navaei and ElMaraghy, 2014) was based on probabilistic 

principles in machine selection and does not consider the structure of the variants 

operations. The present chapter does not address the choice of alternate machines for 

operations. It considers the operations structures, represented by the networked 

operations sequences, and groups product variants based on their operations flow 

similarity, operations similarity and production volume similarity. 

Wu and Suzuki (2015) proposed a new method of cell formation in the cellular 

manufacturing environment. Their method consists of two phases. Part families are 

identified in the first phase by using different criteria such as serial operations sequence 

similarity, and in the second phase, a mathematical model is presented to assign the part 
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families to machines to minimize the total cost, i.e. machine cost, operation cost and 

inter-cell movement cost. The efficacy of the proposed method was examined using 

different test problems and sensitivity analysis. 

In a different approach, Lin et al. (2010) applied a simulated annealing (SA) algorithm in 

cell formation. They applied this method to solve the part-machine cell formation 

problem. They also developed an approach based on Cauchy function to escape from 

local optimal solutions. They compared the proposed algorithm with thirteen traditional 

algorithms in the literature by considering four performance measures namely total bond 

energy, machine utilization, grouping efficiency and percentage of exceptional elements. 

The results proved the efficiency of the proposed SA. 

There are other works in the literature which applied operations sequence in family 

formation for serial operations sequences and did not consider the network configuration 

(e.g. Goyal et al., 2012; Goyal et al., 2013; Won and Logendran, 2015, Tambuskar et al., 

2015). 

It is clear that the literature does not include any work considering a network structure for 

operations sequences of variants. 

Variants should be grouped after finding the integrated similarity coefficient. This 

“grouping” has been expressed using different terminology in literature. “Clustering”, 

“family formation” and “cell formation” are some of the frequently used titles. 

Several methods have been developed for grouping variants. Mathematical programming, 

hierarchical clustering, descriptive procedures, and array-based clustering are the most 

popular in literature (Galan et al., 2007b). Average Linkage Clustering (ALC) algorithm 

is one of the most efficient hierarchical clustering grouping methods. Therefore, in this 

chapter, ALC algorithm is applied for grouping variants based on their similarities. This 

method will be described in more detail in Section 3.5. 
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3.3 Similarity Coefficient Based on Operations Flow 

The problem is first described in this section with a brief discussion regarding how 

biological structure comparison can be utilized in developing the proposed method. The 

proposed operations flow based similarity coefficient is then presented with an illustrative 

example. An extension to the proposed coefficient is also provided.  

3.3.1 Problem Description 

There are a number of part/product variants which belong to a larger family. Each variant 

has its own sequence of operations with the corresponding operation precedence graph. 

The operation precedence graph of each variant, unlike previous research in literature, 

has a network structure meaning that there are some operations that have flexibility to be 

carried out before, after or at the same time with some other operations (Figure 3.1b). The 

objective is to find a good similarity coefficient between each pair of such variants based 

on the similarity of operation flows.  

3.3.2 Biological Network Structure 

The proposed coefficient, which will be described in Sub-Section 3.3.3, has been inspired 

by analysis and principles used in biology. There are organisms in biology which have 

network structures. Moreover, there are biological species whose structures are not only 

network-based but also have directed edges between nodes. Enzymes are an example of 

such cases where biological enzymes are represented by nodes and when a given enzyme 

like e1 catalyzes a reaction the output of which is the substrate (a molecule) for e2, it is 

represented by an edge from e1 to e2. 

In biology, the metabolic pathways of different enzymes are compared to discover their 

evolutionary distance and organizational relationships. Different notions are considered 

when comparing two enzyme graphs such as structural similarity, sequence similarity of 

genes and identity mapping. The basic principle behind the comparison of similarity of 

two nodes in two graphs is that they are considered similar when the two nodes reference 

and are referenced by similar nodes (Heymans and Singh, 2003). This principle will be 

applied in developing the proposed similarity coefficient. 
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3.3.3 Proposed Operations Flow Based Similarity Coefficient 

A new similarity coefficient is proposed to enable comparison of two variants having 

networked operations sequence. As mentioned before, operation precedence graph can be 

used as a representation of the operations sequence of a variant. Operations are 

considered to be nodes and their connections serve as directed edges.  

Suppose that there are two Operation Graphs A and B representing the operations 

sequences of Variants “a” and “b”. Also, suppose that 𝑂𝑚 refers to any common 

operation between these two variants. The similarity coefficient (SoF) of the two variants 

based on their operations flow can be obtained using Equations (3.1) to (3.5). Note that 

the value of this coefficient is between zero and one. 

𝑆𝑜𝐹𝑎𝑏 =
∑ (𝑄𝐶𝑖𝑛(𝑂𝑚) + 𝑄𝐶𝑜𝑢𝑡(𝑂𝑚))  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝑚 ∈{𝐺𝐴∩𝐺𝐵}

∑ (𝑚𝑎𝑥{𝑄𝑖𝑛(𝑂𝑚)} +  𝑚𝑎𝑥{𝑄𝑜𝑢𝑡(𝑂𝑚)})  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝑚 ∈{𝐺𝐴∩𝐺𝐵}
                   (3.1) 

Where: 

𝑄𝐶𝑖𝑛(𝑂𝑚) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑒𝑑𝑔𝑒𝑠 𝑡𝑜 𝑂𝑚                            (3.2) 

𝑄𝐶𝑜𝑢𝑡(𝑂𝑚) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑒𝑑𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 𝑂𝑚                  (3.3) 

𝑄𝑖𝑛(𝑂𝑚) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑒𝑑𝑔𝑒𝑠 𝑡𝑜 𝑂𝑚                                                (3.4) 

𝑄𝑜𝑢𝑡(𝑂𝑚) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑒𝑑𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 𝑂𝑚                                        (3.5) 

The following steps, according to the above equations, are applied for each common 

operation like Operation m. First, all the nodes from which Operation m has incoming 

edges in Operation Graph A are compared with their counterparts in Operation Graph B 

and the total number of common incoming edges is recorded. The same procedure is 

applied for outgoing nodes from Operation m in Operation Graph A and its counterparts 

in Operation Graph B and total number of common outgoing nodes is recorded and 

summed with the recorded incoming edges. The result then appears in the numerator. 

Meanwhile, the number of incoming and outgoing edges from Operation m in Graph A is 

respectively compared with the number of incoming and outgoing edges in Graph B and 

the maximum numbers are recorded and summed together. The obtained value then 

appears in the denominator.  
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3.3.4 Illustrative Example 

In this sub-section, an example of a family of six variants is considered. This example 

will also be used in other sections. Figure 3.2 demonstrates the corresponding operation 

precedence graphs of the variants. 
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Figure 3.2  Operation precedence graphs for an example of a family with six variants 
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After calculating the incoming and outgoing edges for common operations, the operations 

flow similarity between each pair of variants would be as follows: 

𝑆𝑜𝐹12 =
(2) + (1 + 0) + (1 + 1) + (1 + 1) + (1)

(2) + (1 + 1) + (2 + 1) + (1 + 1) + (2)
=

8

11
= 0.73. 

𝑆𝑜𝐹13 =
(2) + (1 + 0) + (1 + 0) + (0)

(2) + (1 + 1) + (1 + 1) + (2)
=

4

8
= 0.5, 

𝑆𝑜𝐹14 = 0.55,                 𝑆𝑜𝐹15 = 0.33,               𝑆𝑜𝐹16 = 0.18,               𝑆𝑜𝐹23 = 0.5,        

 𝑆𝑜𝐹24 = 0.67,               𝑆𝑜𝐹25 = 0.5,                  𝑆𝑜𝐹26 = 0.18,           𝑆𝑜𝐹34 = 0.5,                

  𝑆𝑜𝐹35 = 0.67,             𝑆𝑜𝐹36 = 0.44,         𝑆𝑜𝐹45 = 0.57,            𝑆𝑜𝐹46 = 0.18,         𝑆𝑜𝐹56

= 0.33. 

Calculating the similarity coefficient manually gets difficult as the number of operations 

and variants increases. However, by developing a code in commercial software such as 

Excel, MATLAB, or C++ it can be easily calculated. In the present work, Borland C++ 

software was implemented. Binary matrices were used to decode the operations 

sequences of variants to the program. Each variant has a binary matrix of k×k in which k 

refers to the maximum number of operations among all variants. The element aij of the 

matrix for a given variant is equal to one if there is a directed edge from Operation i to 

Operation j in its operations sequence and is zero otherwise. If all elements of q
th

 column 

and q
th

 row are equal zero, it means that the variant does not require Operation q. In 

addition to the variants matrices, the total number of variants and maximum number of 

operations are the other inputs to the program. The program checks the existence of each 

node for each variant. If, in the matrix of a given variant, there is at least one element 

with value of one in the row or column corresponding to a node (operation), it means that 

the node exists for that variant. Next, for each existing node in a given variant, the total 

number of incoming edges to that node is calculated by summing up all the elements of 

the column corresponding to that node (in the matrix of that variant). Similarly, the total 

number of outgoing edges is calculated by summing up all the elements of the row 

corresponding to that node. For any common operation of each pair of variants, the 
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number of common incoming and outgoing edges is obtained and the operations flow 

based similarity between each pair of variants is calculated based on the total incoming 

and outgoing edges. 

3.3.5 Extension of the Proposed Operations Flow Based Similarity- Weighted Edges 

In the proposed similarity coefficient, it has been assumed that the flow from one 

operation to another is equally important for all operations. However, sometimes due to 

reasons such as route complexity the importance of flows between operations is different. 

For instance, suppose that two particular stations responsible for two consecutive 

operations are connected by a gantry crane while other stations are connected by simple 

conveyors. In this case, the manufacturer/planner may prefer to group the variants 

requiring the use of the gantry crane together as much as possible.  

In such cases, the importance weight of operations flows should be considered in 

calculating the similarity coefficient. This is referred to as weighted edges (Zager, 2003) 

in which the edge between two nodes (operations) of i and j has a weight of wij. 

Therefore, Equation (3.1) is modified and the extended operations flow based similarity 

between Variants a and b is calculated as follows: 

𝑆𝑜𝐹′𝑎𝑏

=
∑ (∑ 𝑊𝑖𝑚. 𝐾𝑖𝑚𝑎. 𝐾𝑖𝑚𝑏 + ∑ 𝑊𝑚𝑗 . 𝐾𝑚𝑗𝑎. 𝐾𝑚𝑗𝑏 

𝑇
𝑗=1  𝑇

𝑖=1 )  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝑚 ∈{𝐺𝐴∩𝐺𝐵}

∑ (𝑚𝑎𝑥{∑ 𝑊𝑖𝑚 . 𝐾𝑖𝑚𝑎 , ∑ 𝑊𝑗𝑚 . 𝐾𝑗𝑚𝑏  
𝑇
𝑗=1

𝑇
𝑖=1 } +  𝑚𝑎𝑥{∑ 𝑊𝑚𝑘 . 𝐾𝑚𝑘𝑎 , ∑ 𝑊𝑚𝑙 . 𝐾𝑚𝑙𝑏 

𝑇
𝑙=1

𝑇
𝑘=1 })  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝑚 ∈{𝐺𝐴∩𝐺𝐵}

   (3.6) 

 

Where,  

𝐾𝑖𝑚𝑎 = {
1       𝑖𝑓 𝑉𝑎𝑟𝑖𝑎𝑛𝑡 "𝑎" ℎ𝑎𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑚     
 0            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                          

       

(3.7) 
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and GA and GB are the representing operation graphs of Variants a and b, Wim is the weight of 

the edge between Nodes (Operations) i and m and T is the total number of operations among 

the variants. 

Figure 3.3 illustrates this notion for Variants 1 and 2 in the above example.  

 

The extended operation flow based similarity between these two variants using Equation 

(3.6) can be calculated as follows:  

𝑆𝑜𝐹12 =
(𝑊12 + 𝑊15) + (𝑊12 + 0) + (𝑊53 + 𝑊36) + (𝑊15 + 𝑊53) + (𝑊36)

(𝑊12 + 𝑊15) + (𝑊12 + 𝑚𝑎𝑥{𝑊23,𝑊24}) + (𝑊23 + 𝑊53 + 𝑊36) + (𝑊15 + 𝑊53) + (𝑊46 + 𝑊36)
. 

If all the weights are equal to one, then the similarity of operations flow between Variants 

1 and 2 would be 8/11 which was obtained previously.  

 

3.4 Other Similarity Criteria Consideration   

In this section, two important similarity criteria in the literature, operations similarity and 

production volume similarity, are considered in combination with the proposed 

operations flow based similarity to yield a more comprehensive similarity coefficient. 

The most frequently used coefficient in operations similarity is the Jaccard’s similarity 
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Figure 3.3  Weighted operation precedence graphs of two  variants 
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(Yin and Yasuda, 2006). Therefore, it is applied in this chapter as an aspect of operations 

similarity. In addition, a novel extension to Jaccard’s similarity is proposed. The 

coefficient developed by Galan et al. (2007b) for production volume similarity is 

modified to avoid its drawback and a new volume based similarity coefficient is proposed 

and developed. 

3.4.1 Operations Similarity 

Considering Equations (3.1) to (3.5) and the described example reveals that  in the 

proposed method, if the obtained operations flow based similarity value between two 

variants is close to one, then, not only do both variants have a similar operations flow, but 

they also share many common operations.  However, the operations flow based similarity 

value of two variants sharing many common operations may be low as their operations 

flows are not similar. In addition, depending on the situation of the manufacturing 

system, operations similarity may have more importance over the operations flow 

similarity. Therefore, operations similarity criterion is also taken into consideration and 

for this purpose, Jaccard’s similarity coefficient is applied and calculated as follows:  

𝐶𝑎𝑏 =
𝑒

𝑒+𝑓+𝑔
                   0 ≤ 𝐶𝑎𝑏 ≤ 1                                                    (3.8)        

In Equation (3.8), 𝐶𝑎𝑏is the Jaccard’s similarity coefficient between Variants a and b; e is 

the number of common operations between Variants a and b; f is the number of 

operations in Variant a but not in Variant b; and g is the number of operations in Variant 

b but not in Variant a.  

Considering the above illustrative example, the operations similarity between variants 

based on Jaccard’s similarity would be as follows: 

𝐶12 =
5

5 + 0 + 1
= 0.83,       𝐶13 = 0.8, 𝐶14 = 0.67,         𝐶15 = 0.5, 𝐶16 = 1 

 𝐶23 = 0.67,  𝐶24 = 0.83,        𝐶25 = 0.67, 𝐶26 = 0.83,               𝐶34 = 0.5 

𝐶35 = 0.6,        𝐶36 = 0.8, 𝐶45 = 0.5,                𝐶46 = 0.67, 𝐶56 = 0.5. 
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The operations similarity value between Variants 1 and 2 (𝐶12=0.83) is not far from the 

operations flow based similarity for these variants (SoF12=0.73) since Variants 1 and 2 

have a high level of similarity in operations flow indicating that they should also have 

many common operations (0.83 degree of similarity). As a result, the value of 𝐶12 is close 

to𝑆𝑜𝐹12 . Variants 1 and 6 have identical operations; nonetheless, they follow a different 

sequence of operations. Therefore, the similarity of operations flows for these variants is 

low (𝑆𝑜𝐹16 = 0.18) whereas their Jaccard’s similarity has a value of 1. 

An extension to Jaccard’s similarity coefficient considers the importance weight for each 

individual operation. In fact, it may be useful to group variants requiring a particular 

operation like heat treatment together for energy usage considerations. In this case, 

Equation (3.8) is modified as follows: 

 

𝐶𝑎𝑏
′ =

∑ 𝑊𝑘. 𝑀𝑎𝑘. 𝑀𝑏𝑘
𝑇
𝑘=1

∑ 𝑊𝑘 .
𝑇
𝑘=1 𝑁𝑎𝑏𝑘

                                                                                  (3.9)   

 

Where, 

𝑀𝑎𝑘 = {
1                      𝑖𝑓 𝑉𝑎𝑟𝑖𝑎𝑛𝑡 𝑎 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑘 

   0                                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            
                       (3.10) 

 

𝑁𝑎𝑏𝑘 = {
1                      𝑖𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑎 𝑜𝑟 𝑏 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑘 

   0                                                                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           
 

(3.11) 

 

and T is the total number of operations among the variants and Wk is the weight of 

Operation k.  It is clear that 0 ≤ 𝐶′
𝑎𝑏 ≤ 1.   
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3.4.2 Production volume similarity 

Another important criterion for grouping variants is volume/demand similarity. Variants 

with low relative volumes mixed with variants having high relative volumes would cause 

the system to experience a significant level of under-utilization. On the other hand, 

grouping products with similar volumes leads to more comparable workloads and allows 

for better utilization in the system (Kashkoush and ElMaraghy, 2014a).   

The production volume similarity coefficient developed by Galan et al. (2007b) is among 

the most common methods for part/ product family formation (Kashkoush and 

ElMaraghy, 2014a). This coefficient is formulated as follows: 

𝐷𝑎𝑏 = 1 −
|𝑑𝑎 − 𝑑𝑏|

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
   ,           0 ≤ 𝐷𝑎𝑏 ≤ 1                                               (3.12)  

Where 𝐷𝑎𝑏 is the production volume similarity coefficient between Variants a and b, 𝑑𝑎 

and 𝑑𝑏are volumes of Variants a and b respectively, and 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 are the 

maximum and minimum volumes throughout the entire variants. 

This coefficient, however, has a drawback as it is based on the volume difference 

between two variants and does not consider the volume ratio between two variants. For 

instance, if there are four variants (V1, V2, V3, and V4) with production volumes of 100, 

200, 900, and 1000 respectively then according to above formula, 𝐷12 = 1 −
100

900
= 0.888 

and similarly, 𝐷34 = 1 −
100

900
= 0.888. Despite the fact that the volume difference 

between Variants 1 and 2, and Variants 3 and 4 is equal to one hundred, Variant 1 

requires only 50% of the system capacity required for Variant 2;  however, the system 

capacity increase rate from Variants 3 to Variant 4 is relatively low (only 10%). 

Therefore, grouping variants based on Equation (3.12), depending on the capacity of 

manufacturing machines, could reduce system utilization. 

For that reason, another factor is taken into consideration which includes volume ratio as 

follows: 
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  𝐷𝑅𝑎𝑏 = 1 −
|𝑑𝑎−𝑑𝑏|

max(𝑑𝑎,𝑑𝑏)
    ,                              0 ≤ 𝐷𝑅𝑎𝑏 ≤ 1                            (3.13)  

The formula is based on the volume ratio between two variants. However, it does not 

consider the volume difference between different pairs of variants. For instance, assume 

that there are four variants with volumes of 1, 2, 100, and 200. According to Equation 

(3.13), 𝐷𝑅12 = 1 −
1

2
= 0.5 and similarly, 𝐷𝑅34 = 1 −

100

200
= 0.5. However, the 

difference in volume between Variants 1 and 2 is only one while the difference in volume 

between Variants 3 and 4 is 100. 

Therefore, a formula derived from both criteria represents a more effective approach. 

This can be calculated as follows: 

 𝐷𝑅𝐷𝑎𝑏 = 1 − (𝑊1 ×
|𝑑𝑎−𝑑𝑏|

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
+ 𝑊2 ×

|𝑑𝑎−𝑑𝑏|

max(𝑑𝑎,𝑑𝑏)
) , 0 ≤ 𝐷𝑅𝐷𝑎𝑏 ≤ 1 ,   𝑊1 + 𝑊2 =

1  (3.14)  

Where, 𝐷𝑅𝐷𝑎𝑏 is the production volume similarity coefficient between Variants a and b, 

and 𝑊1and 𝑊2are the weights of each criterion mentioned in Equations (3.12) and (3.13). 

These weights based on the difference between volumes and machine capacity should be 

assigned by planners. However, they usually take the same value (0.5-0.5) as they have 

more or less equal importance.  

For above illustrative example, the production volumes for the six variants are assumed 

according to Table 3.1 as follows: 

Table 3.1 Volume for each variant of the illustrative example 

 Variants   Volume  

 
  

 
 

1  20  

2 
 

15  

3 
 

40  

4 
 

65  

5  40  

6  50  
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Also, assume that W1=W2=0.5. According to Equation (3.14), the production volume 

similarity between variants is as follows: 

𝐷𝑅𝐷12 = 1 − (0.5 ×
|20 − 15|

75 − 15
+ 0.5 ×

|20 − 15|

max(20,15)
= 0.83 

𝐷𝑅𝐷13 = 0.55, 𝐷𝑅𝐷14 = 0.2,         𝐷𝑅𝐷15 = 0.55, 𝐷𝑅𝐷16 = 0.4 

 𝐷𝑅𝐷23 = 0.44,  𝐷𝑅𝐷24 = 0.12,        𝐷𝑅𝐷25 = 0.44,

𝐷𝑅𝐷26 = 0.3,    𝐷𝑅𝐷34 = 0.56 

𝐷𝑅𝐷35 = 1,        𝐷𝑅𝐷36 = 0.8, 𝐷𝑅𝐷45 = 0.56,           𝐷𝑅𝐷46 = 0.73,

𝐷𝑅𝐷56 = 0.8. 

According to Table 3.1, it is clear that Variants 3 and 5 and then Variants 3, 5 and 6 

should have the highest level of production volume similarity. On the other hand, 

Variants 2 and 4 should have the lowest production volume similarity. These conclusions 

can be verified by reviewing the results obtained using Equation (3.14).  

3.4.3 Integrated Similarity Coefficient 

In decision making theory, the most common and simplest multi-criteria decision analysis 

(MCDA) method for comparing different alternatives based on some defined criteria is 

the “weighted sum” approach (Triantaphyllou, 2000). Therefore, three addressed 

similarity coefficients, “operations flow based similarity”, “Jaccard’s similarity” and 

“production volume similarity” coefficients, are integrated using the weighted sum to 

provide a more comprehensive similarity coefficient. The importance of each similarity 

criterion is determined by the production planners. Thus, the similarity between Variants 

a and b can be calculated using Equations (3.15) and (3.16): 

𝑆𝑀𝑎𝑏 = 𝑊𝑆𝑜𝐹 × 𝑆𝑜𝐹𝑎𝑏 + 𝑊𝐶 × 𝐶𝑎𝑏 + 𝑊𝐷𝑅𝐷 × 𝐷𝑅𝐷𝑎𝑏  ,                               (3.15)  

Where, 0 ≤  𝑆𝑀𝑎𝑏 ≤ 1   ,   𝑊𝑆𝑜𝐹 + 𝑊𝐶 + 𝑊𝐷𝑅𝐷 = 1                                       (3.16).                
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In Equations (3.15) and (3.16) 𝑆𝑀𝑎𝑏is the similarity coefficient of Variants a and b, and 

𝑊𝑆𝑜𝐹, 𝑊𝐶, and  𝑊𝐷𝑅𝐷 are the weights of operations flow similarity, Jaccard’s similarity, 

and production volume similarity respectively. These weights are between zero and one, 

and their sum is one. 

In the addressed example, suppose that 𝑊𝑆𝑜𝐹, 𝑊𝐶, and  𝑊𝐷𝑅𝐷 are 0.4, 0.3 and 0.3 

respectively and that weighted edges and weighted operations are not considered; then 

the similarity between each pair of variants can be obtained as follows:  

𝑆𝑀12 = 0.4 × 0.73 + 0.3 × 0.83 +  0.3 × 0.83 = 0.79, 

𝑆𝑀13 = 0.4 × 0.5 + 0.3 × 0.8 + 0.3 × 0.55 = 0.61, 

𝑆𝑀14 = 0.4 × 0.55 + 0.3 × 0.67 + 0.3 × 0.2 = 0.48,           

 𝑆𝑀15 = 0.4 × 0.33 + 0.3 × 0.5 + 0.3 × 0.55 = 0.45, 

𝑆𝑀16 = 0.4 × 0.18 + 0.3 × 1 + 0.3 × 0.4 = 0.49,  

𝑆𝑀23 = 0.4 × 0.5 + 0.3 × 0.67 + 0.3 × 0.44 = 0.53, 

𝑆𝑀24 = 0.4 × 0.67 + 0.3 × 0.83 + 0.3 × 0.12 = 0.55,  

𝑆𝑀25 = 0.4 × 0.5 + 0.3 × 0.67 + 0.3 × 0.44 = 0.53, 

𝑆𝑀26 = 0.4 × 0.18 + 0.3 × 0.83 + 0.3 × 0.3 = 0.41,            

 𝑆𝑀34 = 0.4 × 0.5 + 0.3 × 0.5 + 0.3 × 0.56 = 0.52, 

𝑆𝑀35 = 0.4 × 0.67 + 0.3 × 0.6 + 0.3 × 1 = 0.75,           

 𝑆𝑀36 = 0.4 × 0.44 + 0.3 × 0.8 + 0.3 × 0.8 = 0.66, 

𝑆𝑀45 = 0.4 × 0.57 + 0.3 × 0.5 + 0.3 × 0.56 = 0.55,       

 𝑆𝑀46 = 0.4 × 0.18 + 0.3 × 0.67 + 0.3 × 0.73 = 0.49, 

𝑆𝑀56 = 0.4 × 0.33 + 0.3 × 0.5 + 0.3 × 0.8 = 0.52. 

The three considered similarity criteria namely operations flow based similarity, 

operations similarity (using Jaccard’s similarity coefficient) and production volume 

similarity are among the most important and commonly used criteria in the literature (Yin 

and Yasuda, 2006). 

There is a relationship between the operations flow based similarity coefficient and the 

Jaccard’s similarity coefficient used for operations similarity criterion. As mentioned 
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before, when two variants do not share similar operations, it means that they probably do 

not visit similar stations and therefore, their operations flows would also be different. In 

such case, the values of both Jaccard’s similarity and operations flow based similarity 

coefficients for that pair of variants would be relatively low. However, if two variants 

share several similar operations (resulting in a high value for Jaccard’s similarity 

coefficient) and, hence, visit similar stations, it still does not guarantee that they will have 

similar flows of operations; since, depending on features of the two variants, they may 

visit the stations in different sequence leading to a low value of operations flow based 

similarity coefficient. Regarding the production volume similarity coefficient, it is not 

much related to the other two coefficients; however, the production volume similarity 

criterion is an important factor in grouping variants and many researchers in literature 

considered it along with other factors (e.g. Galan et al., 2007b; Pattanaik and Kumar, 

2010; Kashkoush and ElMaraghy; 2014a). 

The weight of each coefficient indicates the relative importance of the corresponding 

criterion. The weights affect how the variants are grouped and by changing the weights, a 

variant might be reallocated from one group to another. In the case of cellular 

manufacturing systems, the number of cells and how the variants are assigned to each cell 

can be affected by changing the weights of the criteria. In literature, these weights are left 

for the planner to assign.  However, some general guidelines are offered here.  

If variants with different flows of operations are assigned to one cell/line, some 

modifications in switching from one variant to another will be needed requiring 

investment in time and effort and an increase in changeover time. Therefore, when the 

connections between stations/machines are very rigid or complex such that modifying 

them requires considerable time and effort, the weight assigned to the operations flow 

based similarity coefficient should be relatively high.  

When there are several cells/lines each of which is used for a group of variants, it is 

advised to assign variants having large number of similar operations to the same cell/line 

to avoid under-utilization within each cell or increased wasteful intercellular movement 
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and hence, increase productivity. In this case, Jaccard’s similarity coefficient should get a 

higher weight.   

If variants with different production volumes are assigned to the same 

cell/line/station/machine, the system will experience under-utilization for those variants 

with low demand. In this case, the weight assigned to the production volume similarity 

coefficient should be relatively high. 

There are different methods in the literature that can help the planners/decision makers to 

assign the importance weights to each coefficient. Some of the most common methods 

include the fixed point scoring, rating, ordinal ranking and paired comparison methods 

(Galan et al., 2007b). Analytic Hierarchy Process (AHP) proposed by Saaty (1980) is one 

of the paired comparison methods and is the most popular method for finding the 

importance weights of qualitative criteria. 

 

3.5 Hierarchical Grouping of Part/Product Variants 

Variants are grouped based on the obtained similarity coefficient to achieve the 

aforementioned advantages of grouping. After grouping variants, a dendrogram is 

constructed. In order to group the variants, an average linkage clustering (ALC) 

algorithm (Galan et al., 2007a, Galan et al., 2007b) is used in this chapter. In this 

hierarchical based algorithm, the values of the obtained similarity coefficient are used to 

group the most similar pair of variants together. Next, either two other variants are 

grouped together or another variant is added to the already grouped variants. This 

procedure continues until all variants are grouped into a single family. At each step, after 

grouping, the similarity between variants is recalculated by using the following equation 

(Galan et al., 2007a): 

𝑆𝑀𝑘𝑙 =
∑ ∑ 𝑆𝑀𝑎𝑏𝑏∈𝑙𝑎∈𝑘

𝑁𝑘. 𝑁𝑙
                                               (3.17), 
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Where k and l are part/product families; a and b are variants of Family k and Family l 

respectively; 𝑆𝑀𝑎𝑏 is the coefficient similarity between Variants a and b;  𝑆𝑀𝑘𝑙 is the 

similarity coefficient between Families k and l; and Nk and Nl are the number of variants 

within Families k and l respectively. 

Using the current example, first, Variants 1 and 2 are grouped since they have the highest 

value of similarity among all pairs of variants. The coefficient of similarity between this 

family and other variants can be obtained using Equation (3.17). 

𝑆𝑀(12),3 =
𝑆𝑀13 + 𝑆𝑀23

2 × 1
= 0.57,                              𝑆𝑀(12),4 =

𝑆𝑀14 + 𝑆𝑀24

2 × 1
= 0.515, 

  𝑆𝑀(12),5 =
𝑆𝑀15 + 𝑆𝑀25

2 × 1
= 0.49,                              𝑆𝑀(12),6 =

𝑆𝑀16 + 𝑆𝑀26

2 × 1
= 0.45. 

 

The following table of similarity is constructed accordingly: 

Table 3.2 Similarity coefficient of variants after first grouping 

    3 4 5 6 

1,2   0.57 0.515 0.49 0.45 

3 
  

0.52 0.75 0.66 

4 
   

0.55 0.49 

5 
    

0.52 

According to Table 3.2, the highest similarity coefficient is 0.75. Thus, in the next step, 

Variants 3 and 5 are grouped together. The coefficient similarities are updated as follows: 

𝑆𝑀(1,2),(3,5) =
𝑆𝑀13+𝑆𝑀15+𝑆𝑀23+𝑆𝑀25

2×2
= 0.53,               𝑆𝑀(3,5),4 =

𝑆𝑀34+𝑆𝑀54

2×1
= 0.535, 

𝑆𝑀(3,5),6 =
𝑆𝑀36 + 𝑆𝑀56

2 × 1
= 0.59. 

Table 3.3 shows the second step in grouping variants. 
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Table 3.3 Similarity coefficient of variants after second grouping 

    3,5 4 6 

1,2   0.53 0.515 0.45 

3,5 

 

 0.535 0.59 

4 

   

0.49 

This procedure continues until all variants are placed in one group. Having grouped the 

variants, the dendrogram can be constructed accordingly as illustrated in Figure 3.4.  
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Figure 3.4 The dendrogram illustration of the example 
 

The dendrogram is a good representation of variants grouping and the similarity value at 

each level.  

 

3.6 Sequencing Variants: An Application of the Proposed Method 

As discussed before, one of the applications of grouping variants is to benefit from their 

similarity in order to sequence them for assembly/production as illustrated by the 

powertrain part variants shown in Figure 3.5. 
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Figure 3.5 Axle and transmission part variants of powertrain (http://seissenschmidt.com/en/company/) 

When all of these variants are produced in a company, one of the main tasks is scheduling 

the production in a way that minimizes changeover time. If there is no priority among 

variants, one of the best ways to schedule for production is to sequence them based on 

their similarity. As a result, the setup changes between variants will be minimized and 

throughput will be improved.   

It is noteworthy to mention that sequencing is not the main target of proposed similarity 

coefficient and it is only one of its potential applications. The main application is for 

those manufacturing systems such as cellular manufacturing system where there are 

number of cells or production/assembly lines each of which is responsible for processing 

a group of part/product variants. In such case, by grouping similar part/product variants 

and assigning each group to a different cell/line, changeover time can be decreased and 

utilization can be improved. 

Despite of not being the main application, the proposed similarity coefficient has 

potential advantages for sequencing variants. Placing variants with similar operations 

flow next to each other in the sequence can decrease the changeover time spent in 

modifying the connections between stations. Placing variants with high number of 

common operations (second criterion) next to each other can decrease the setup changes 

(i.e. tools, fixtures, program, or adding/removing machines) in stations. Placing variants 

in the sequence based on production volume similarity can also help in either improving 

utilization or decreasing the number of times machines are added or removed.  
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The obtained sequence serves as a better starting sequence which is not necessarily 

optimal that can reduce changeover time and hence, improve utilization of the system. 

Production planners can benefit from the obtained sequence based on similarity 

coefficients and modify it based on other factors such as due dates, processing times, job 

priorities and so forth. 

Two assumptions are considered here: 1) one type of variants (or a batch of a typical 

variant) is processed at a time and when it is done, the second type is started. This 

assumption is logical as many manufacturing systems first produce the total demand of 

one variant followed by another variant.  2) If two consecutive variants in a production 

sequence have a common operation, the setup change in the station is insignificant. This 

is reasonable as it was initially assumed that all variants belong to a family and hence 

share many similarities.   

Quantitative analysis: 

At first, it is noteworthy to mention that considering time is out of scope of the present 

chapter. However, processing time is implicitly improved when grouping product 

variants according to the presented similarity approach. It is our expectation that the 

obtained sequence would serve as a better starting point (and not necessarily an optimal 

sequence) for planners which requires modification by considering other manufacturing 

aspects. Based on explanations regarding the advantages of the three grouping criteria, it 

is assumed that the integrated similarity coefficient corresponds to the combination of 

changeover time and utilization in a way that the higher value of the coefficient 

represents less changeover and better utilization. This is used as the objective function 

here. That is, to calculate the objective function for a given sequence, the coefficient 

value of each two adjacent variants is calculated and added to the coefficient values of 

other adjacent variants. 

In order to find an exact solution based on the aforementioned assumptions, a mixed 

integer programing (MIP) model is developed. This exact solution is only based on the 

aforementioned assumptions and it does not guarantee the optimality without considering 

other manufacturing aspects. 
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The following parameters and variables have been applied in the model. 

Parameters: 

n          Total numbers of variants (and positions) 

𝑆𝑀𝑖𝑗       Integrated similarity coefficient value between Variants i and j  

 

Variables: 

𝑋𝑖𝑗 =

{
1      If Variant 𝑗 is placed immediately after Variant 𝑖  𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒                         
0          Otherwise                                                                                                                               

 

(3.18) 

𝑌𝑖𝑘 = {1    If Variant 𝑖  is placed in 𝑘𝑡ℎ position of the sequence                                  
0         Otherwise                                                                                                             

                   

(3.19) 

𝑍𝑖𝑗𝑘 =

{1 If Variant 𝑖 is placed in 𝑘𝑡ℎ position immediately before Variant 𝑗  in the sequence 
0  Otherwise                                                                                                                                        

   

(3.20) 

The linear mathematical model is to: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑∑𝑋𝑖𝑗 .  𝑆𝑀𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

            (3.21) 

 

Subject to: 

𝑍𝑖𝑗𝑘   ≤   
𝑌𝑖𝑘 + 𝑌𝑗,𝑘+1

2
                ∀𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛 , ∀𝑘 = 1,2, … , 𝑛 − 1       (3.22) 
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𝑌𝑖𝑘 + 𝑌𝑗,𝑘+1 − 1  ≤     𝑍𝑖𝑗𝑘               ∀𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛         (3.23) 

𝑋𝑖𝑗  =     ∑ 𝑍𝑖𝑗𝑘

𝑛

𝑘=1

              ∀𝑖, 𝑗 = 1,2, … , 𝑛           (3.24) 

∑𝑌𝑖𝑘

𝑛

𝑖=1

= 1                          ∀𝑘 = 1,2, … , 𝑛    (3.25) 

∑ 𝑌𝑖𝑘

𝑛

𝑘=1

= 1                          ∀𝑖 = 1,2, … , 𝑛    (3.26) 

𝑋𝑖𝑗 ∈ {0,1}                                                   ∀𝑖, 𝑗 = 1,2, … , 𝑛       (3.27) 

𝑌𝑖𝑘 ∈ {0,1}                                    ∀𝑖, 𝑘 = 1,2, … , 𝑛         (3.28) 

𝑍𝑖𝑗𝑘 ∈ {0,1}                                                      ∀𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛        (3.29) 

Equation (3.21), the objective function of the problem, calculates the integrated similarity 

coefficient of each two adjacent variants in the sequence and tries to maximize it. 

Equations (3.22) to (3.24) indicate whether or not variant i is placed immediately before 

variant j in the sequence. Equation (3.25) guarantees that each position of the sequence is 

occupied by only one variant. Equation (3.26) ensures that each variant is placed in only 

on one position of the sequence. Finally, Equations (3.27) to (3.29) indicate that variables  

𝑋𝑖𝑗, 𝑌𝑖𝑘 and 𝑍𝑖𝑗𝑘 are binary. 

GAMS optimization software was implemented to solve the model using CPLEX 12.0.1 

MILP solver. Considering the illustrative example, the sequence obtained by GAMS is: 

1→2→4→5→3→6 with the value of 3.30 as the objective function 

(0.79+0.55+0.55+0.75+0.66=3.30).   

Although the presented mathematical model is a good approach to find the sequence, it is 

able to find the solution only for small to medium size problems. For large size problems 

the model solution time would not be reasonable. For that reason, the proposed 

sequencing approach in previous chapter is applied here. This sequencing approach is 

able to find solutions in a negligible time as it does not involve any constraint or local 
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search. This method is based on the obtained similarity coefficient and using the resulting 

dendrogram.  

The procedure for sequencing variants begins by placing two variants next to each other 

in the sequence with the highest level of similarity coefficient in the obtained 

dendrogram. Then, the second level of similarity in the dendrogram is considered. In this 

level, either two different variants are grouped together or one new variant is added to the 

pair of variants which have already been grouped in the previous level. In the former 

case, two new variants, similarly, are placed next to each other in the production 

sequence. In the latter case, the similarity coefficient between this new variant and each 

of the two previously grouped variants are compared to each other. The higher value 

determines where the new variant should be placed in the production schedule. 

Proceeding to lower levels of dendrogram, two groups of variants may be further grouped 

together. In this case, only the similarity coefficient between extreme variants is checked. 

The extreme variants are those which have been placed at the start or end of their own 

groups. This procedure is repeated until all the variants are placed in the sequence.  

According to the dendrogram in Figure 3.4 and the first similarity level (79%), Variants 1 

and 2 should be placed next to each other in the sequence. Similarly, based on Level 2 of 

the dendrogram, Variants 3 and 5 are placed next to each other. In Level 3, Variant 6 is 

added to the group of Variants 3 and 5. Following the procedure, 𝑆𝑀36 should be 

compared with 𝑆𝑀56 and based on the higher value, the position of Variant 6 with regard 

to Variants 3 and 5 is determined. Comparing the values leads to placing Variant 6 next 

to Variant 3 in the sequence. Therefore, the best sequence of these three variants is either 

6→3→5 or 5→3→6. Considering Level 4, Variant 4 is added to the pre-grouped 

Variants 3, 5 and 6.  Based on the procedure, the similarity of Variant 4 is compared with 

respect to the extreme members of these pre-grouped variants which are Variants 6 and 5. 

Comparing 𝑆𝑀46 with 𝑆𝑀54 leads to placing Variant 4 next to Variant 5 in the sequence. 

Therefore the best sequence of these variants, based on the procedure, is either 

6→3→5→4 or 4→5→3→6. At the last level, two groups, Group 1 including Variants 1 

and 2 and Group 2 including Variants 3, 4, 5 and 6 are further grouped together. As 

mentioned before, only similarity coefficients for extreme variants of each group are 
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compared. In Group 1, both Variants 1 and 2 are extreme variants. In Group 2, Variants 4 

and 6 are considered extreme variants. Thus, 𝑆𝑀14, 𝑆𝑀16, 𝑆𝑀24, and 𝑆𝑀26 are compared 

with each other. Since 𝑆𝑀24 has the highest value, these two groups are placed next to 

each other in a way that Variants 2 and 4 are adjacent. Therefore, the best sequence of all 

variants, based on their similarity, would be either 1→2→4→5→3→6 OR 

6→3→5→4→2→1. Since the objective function is based on reducing setup costs, both 

sequences according to this algorithm are considered the best.  

As we can see, applying the proposed sequencing approach for the illustrative example 

yields the same objective value and sequence which indicates the efficiency of the 

proposed method. It should be noted that the solution obtained from either developed 

mathematical model or the proposed sequencing approach serve as a good preliminary 

sequence which can be modified by planners based on other aspects such as processing 

time, due dates and job priorities. 

 

3.7 Case Study 

A company produces different parts for locomotive and automotive industries. The 

company operates using several shifts and can also use the weekends if needed. The 

operations are mainly machining operations such as gun drilling, turning, and milling.  

For confidentiality reasons, the name of the company and variants are not revealed.  

Seven part variants are considered.  Figure 3.6 illustrates the representative variants. Note 

that some internal features are not displayed in the images but are embedded in the parts 

and presented in Figure 3.7.  
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(a). Variant 1 (b). Variant 2 

(c). Variant 3  (d). Variant 4  

(e). Variant 5  
(f). Variant 6  

(g). Variant 7 

Figure 3.6 Representative part variants (case study) 
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Table 3.4 shows the demand required for each variant. 

Table 3.4 Volume for each variant of the case study 

    Volume  

Variants   
 

 

1  25  

2 
 

200  

3 
 

20  

4 
 

50  

5  40  

6  30  

7  100  

Table 3.5 lists the abbreviations used to demonstrate the corresponding operation 

precedence graphs of the variants with the complete name of each operation. For clarity 

purposes, explanation is provided for some operations. 

Table 3.5 Abbreviation and complete names of each operation 

Abbreviation    Complete name of the operation and description 

SW   Saw Cutting 

CT   Cylindrical Turning  

CTF   
Cylindrical Turning-Finishing 
This operation is for cleaning the outer surface of a part 

(finishing cuts). 

GD   
Gun Drilling 
This operation is applied for deep drilling. 

PM   Plain Milling 

ExT   
External Threading 
This operation is applied for making thread on the surface of a 

part. 

InT   
Internal Threading 
This operation is applied for making thread into a hole made by 

gun driller. 

InCT   Internal Cylindrical Turning  

UC   Under Cutting 

InUC  Internal Under Cutting 

EDM   
Electric Discharge Machining 
This operation is used to make small and accurate holes on the 

surface of a part. 

LM   
Laser Marking 
Depends on  requirements, some parts need to be marked by 

logo, codes, names, etc.  
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HT   
Heat Treatment 
This operation is applied for hardening parts. Not all the variants 

need this operation. 

QC   
Quality Control 
This operation is for checking and comparing the actual 

dimensions of the finalized part with the specifications. 

 

 

Figure 3.7 demonstrates the representing operation precedence graphs for each of the 

seven variants.  

 

 

Variant 2: 

SW 

CT 

GD InT 

CT

F 
EDM 

ExT 

HT QC 

Variant 1: 

SW 

CT 

GD 
InT 

CTF 
PM 

UC 

ExT 

QC 

InCT 

Variant 3: 

SW 

CT 

GD InT 

CTF PM 

HT QC 

InCT 

LM 
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Variant 5: 

SW 

GD 
InT 

CT

F PM 

QC 

InCT 

Variant 6: 

SW 

CT 

GD 

InT 

CTF 

PM 

UC 

ExT 

HT QC 

InUC 

ExT(other 

end) 

LM 

Variant 4: 

SW 

CT 

GD 
InT 

CTF 
PM 

UC 

ExT 

HT QC 

InCT 

LM 

Variant 7: 

SW 

CT 

GD 
InT 

CTF 
PM 

QC 

InCT 

Figure 3.7 Representing operation precedence graphs of the variants 
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Three similarity criterion described in previous sections are implemented to find the 

similarity values between each pair of variants. 

The operations flow based similarity between each pair of variants is calculated as 

follows: 

𝑆𝑜𝐹12 =
3 + 1 + 1 + 1 + 0 + 1 + 0 + 1 + 0 + 0 + 0 + 0

3 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 4
=

8

18
= 0.444 

For the other pairs of variants, the following values are obtained: 

𝑆𝑜𝐹13 = 0.600,                𝑆𝑜𝐹14 = 0.667,                𝑆𝑜𝐹15 = 0.823,             𝑆𝑜𝐹16

= 0.500,        

 𝑆𝑜𝐹17 = 0.800,               𝑆𝑜𝐹23 = 0.625,                  𝑆𝑜𝐹24 = 0.700,            𝑆𝑜𝐹25

= 0.363,               

𝑆𝑜𝐹26 = 0.667,               𝑆𝑜𝐹27 = 0.429,                  𝑆𝑜𝐹34 = 0.833,           𝑆𝑜𝐹35

= 0.667,               

𝑆𝑜𝐹36 = 0.615,               𝑆𝑜𝐹37 = 0.667,                  𝑆𝑜𝐹45 = 0.667,           𝑆𝑜𝐹46

= 0.800,               

𝑆𝑜𝐹47 = 0.632,               𝑆𝑜𝐹56 = 0.429,                  𝑆𝑜𝐹57 = 0.875,           𝑆𝑜𝐹67

= 0.421.               

Next, Jaccard’s similarity is considered to find the operations similarity between each 

pair of variants. It is assumed that all operations have the same level of importance. 

𝐶12 = 0.583,                𝐶13 = 0.667,                𝐶14 = 0.833,             𝐶15 = 0.600,        

 𝐶16 = 0.643,               𝐶17 = 0.800,                  𝐶23 = 0.583,           𝐶24 = 0.615,               

𝐶25 = 0.364,               𝐶26 = 0.571,                  𝐶27 = 0.545,           𝐶34 = 0.833 ,              

𝐶35 = 0.600,               𝐶36 = 0.643,                 𝐶37 = 0.800,           𝐶45 = 0.500,               

𝐶46 = 0.786,               𝐶47 = 0.667,                  𝐶56 = 0.357,           𝐶57 = 0.750,       𝐶67

= 0.500. 
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It is obvious that grouping the variants will change based on the selected criterion. For 

instance, consider Variants 1, 4 and 5; based on the operations flow similarity, Variants 1 

and 5 should be grouped together whereas based on Jaccard’s similarity, Variants 1 and 4 

should be grouped together. Figures 3.6 and 3.7 show that Variant 5 is basically a sub-set 

of Variant 1 and for that reason their operations flow similarity is high. On the other 

hand, although Variants 1 and 4 have some different operations and some different flows, 

the number of common operations between these variants is high. Therefore, it is the 

planner’s decision to consider which criterion for grouping is the best for the system. 

The following results are obtained, considering production volume similarity criterion 

and using Equation (3.14). It is assumed that in Equation (3.14) W1=W2=0.5. 

𝐷𝑅𝐷12 = 0.076,                𝐷𝑅𝐷13 = 0.886,                𝐷𝑅𝐷14 = 0.681,             𝐷𝑅𝐷15

= 0.771,        

 𝐷𝑅𝐷16 = 0.903,               𝐷𝑅𝐷17 = 0.417,                  𝐷𝑅𝐷23 = 0.05,      𝐷𝑅𝐷24

= 0.208,               

𝐷𝑅𝐷25 = 0.156,               𝐷𝑅𝐷26 = 0.103,                  𝐷𝑅𝐷27 = 0.472,       𝐷𝑅𝐷34

= 0.617 ,              

𝐷𝑅𝐷35 = 0.694,               𝐷𝑅𝐷36 = 0.806,                 𝐷𝑅𝐷37 = 0.378,        𝐷𝑅𝐷45

= 0.872,               

𝐷𝑅𝐷46 = 0.744,     𝐷𝑅𝐷47 = 0.533,      𝐷𝑅𝐷56 = 0.847,     𝐷𝑅𝐷57 = 0.533,       𝐷𝑅𝐷67 =

0.456. 

𝑊𝑆𝑜𝐹, 𝑊𝐶, and  𝑊𝐷𝑅𝐷 were assumed to be 0.4, 0.4 and 0.2 respectively. Table 3.6 shows 

the final similarity coefficient between each pair of variants based on these importance 

weights. 

Table 3.6 Similarity coefficient between each pair of variants (case study) 

  
2 3 4 5 6 7 

1 
 

0.426 0.684 0.736 0.723 0.678 0.723 

2 
 

 0.493 0.568 0.322 0.516 0.484 

3 
 

  0.79 0.646 0.664 0.662 

4 
 

   0.641 0.783 0.626 

5      0.484 0.757 

6       0.46 
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Variants are grouped according to ALC algorithm. Figure 3.8 demonstrates the 

corresponding dendrogram after grouping. This figure provides good insight about how 

the variants should be grouped.  
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Figure 3.8 The dendrogram illustration of the case study 

 
The assumptions mentioned in previous section are also considered here and the sequence 

obtained from the proposed sequencing approach is compared with sequences obtained 

using five other approaches to find out which approach yields higher value with respect 

to the integrated similarity coefficient.  

Based on the proposed sequencing approach, the sequence would be either 

2→6→4→3→1→5→7 OR 7→5→1→3→4→6→2. Now, the integrated similarity 

coefficient values of adjacent pairs are summed together as follows to calculate the 

objective value: 𝑆𝑀26 + 𝑆𝑀64 + 𝑆𝑀43 + 𝑆𝑀31 + 𝑆𝑀15 + 𝑆𝑀57 = 0.516 + 0.783 +

0.79 + 0.684 + 0.723 + 0.757 = 4.253. 

Five other sequencing approaches are considered to compare their sequence with the 

sequence obtained from the proposed sequencing approach.  

The first approach is the mathematical model developed in Section 3.6. Using GAMS 

software, it yields the following sequence: 2→6→4→3→1→7→5 with the objective 

value of 4.253. The only difference between two sequences is the positions of Variants 5 
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and 7 and because Variant 1 has the same similarity coefficient with both Variants 7 and 

5 (0.723), the values of the objective function for both approaches are equal. This 

confirms the accuracy of the proposed sequencing approach.  

The second approach is to sequence the variants based on their appearance so that the 

similar variants (in terms of appearance) are placed next to each other in the sequence. 

The final sequence based on this approach and by considering Figure 3.6 would 

approximately be: 2→5→1→7→3→4→6 and the value of the objective function would 

be: 0.322+0.723+0.723+0.662+0.79+0.783=4.003. 

The third approach is to sequence the variants based on only Jaccard’s similarity 

coefficient. Considering the value obtained from Jaccard’s similarity coefficient, variants 

with higher values are placed next to each other in the sequence. The obtained sequence 

using Jaccard’s similarity coefficient would be 1→7→5→3→4→6→2 with objective 

value of 0.723 + 0.757 + 0.646 + 0.79 + 0.783 + 0.516 = 4.215.  

The fourth approach is to sequence the variants based on the Shortest Processing Time 

First (SPTF) policy. In SPTF, variants with less processing times are processed first 

(Baker and College, 2008). Since the processing times are not considered here, the 

number of operations for each variant and whether or not they require some time-

consuming processes such as heat treatment can be used as a rough indication of 

processing time. The final sequence obtained from this approach would roughly be 

5→7→1→2→3→4→6. The result is: 0.757 + 0.723 + 0.426 + 0.493 + 0.79 +

0.783 = 3.972. 

The last approach is a more comprehensive approach. In this approach, all possible ways 

of sequencing the seven product variants which is 7!=5040 were considered and the 

objective function was calculated for all cases. Based on this approach, there are four 

sequences yielding the highest objective value (4.253):  2→6→4→3→1→7→5, 

2→6→4→3→1→5→7, 5→7→1→3→4→6→2 and 7→5→1→3→4→6→2. There are 

two sequences yielding the lowest objective value (3.002): 4→7→6→5→2→1→3 and 

3→1→2→5→6→7→4. The sequence that yields the median value (3.677) is: 

2→5→3→4→1→7→6. 
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Comparing the above results reveals that the proposed sequencing approach yields the 

highest value in terms of the integrated similarity coefficient. It can also be concluded 

that on average the sequence obtained from the proposed sequencing approach, in this 

case study, improves the objective function (combination of changeover time and 

utilization) by 15.7% (
4.253−3.677

3.677
). In addition, a random sequence was generated and the 

following sequence was obtained: 5→4→6→3→2→1→7 with the objective value of 

3.73. It also shows that the proposed sequencing approach has a better performance over 

a random generated sequence. 

Hence, it can be concluded that if there is only one production line, the sequence of 

2→6→4→3→1→5→7 is a good preliminary parts/products sequence with respect to 

changeover time and utilization. 

It is noteworthy to mention that the prosed sequencing approach is based on the values 

obtained from the integrated similarity coefficient and is not affected by the criteria 

themselves. In other words, if more criteria are added or some criteria are removed from 

the integrated similarity coefficient, it does not affect the way the proposed sequencing 

approach works. For instance, if production volume similarity is disregarded from the 

integrated similarity coefficient, the procedure of sequencing based on the proposed 

sequencing approach would be the same as before; however, the final sequence may not 

be the same as before as the similarity values have changed. 

 

3.8 Summary 

In this chapter, grouping part/product variants based on operations flow similarity, 

operations similarity and production volume similarity was considered. Such grouping 

has significant impact on improving productivity and decreasing setup changes. For 

operations flow based similarity, no method has been developed in literature for grouping 

variants with network structure of operations sequence. A novel method inspired by 

analysis used in biology was proposed. In addition, since some flows of operations may 

be more important than other flows in a given variant, a similarity coefficient taking 
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relative importance was proposed. The most common method in the literature called 

Jaccard’s similarity was applied for developing the operations similarity criterion. Also 

an extension to this method was proposed for use when operations are not equally 

important. A new coefficient was presented for production volume similarity, which 

obviates the drawback of the production volume similarity coefficient developed by 

Galan et al. (2007b).  These three criteria were integrated to yield a more comprehensive 

similarity coefficient using weighted sum. This provides flexibility to change the 

importance weight of each mentioned similarity coefficient as needed. Variants were 

further grouped using the average linkage clustering (ALC) algorithm. Grouping variants 

based on these three criteria in the manufacturing systems having different cells/lines for 

different variants can reduce changeover time and ease reconfiguration. As a result, it is 

also expected to improve productivity and utilization of the system. A secondary 

application of grouping is sequencing variants. This application was considered with 

some assumptions and a mathematical model was developed and its results were 

compared with those obtained from the proposed sequencing method. The results 

demonstrate the accuracy of the proposed sequencing approach by finding optimum 

solutions. 
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Chapter 4 

Optimal Assignments of Facilities with backtracking of Product Variants Having 

Networked Operations Sequence 

 

4.1 Introduction 

After grouping product variants based on their similarities and assigning them to different 

cells, the next step is to optimize flow of product variants within each cell so that the total 

throughput is maximized. There are generally four types of movements in manufacturing 

systems: (1) forward flow, (2) repeat operation, (3) by-passing and (4) reverse flow 

(backtracking) (Aneke and Carrie, 1986). In many industries, various stations are 

connected using conveyors. Examples of such industries include, but are not limited to, 

automotive assembly lines, sheet metal production, label stickers production, and printed 

circuit board (PCB) assembly. One strategy for improving throughput in such industries 

is to ensure that the products flow downstream and machines/stations are located to 

maximize forward products flow, hence, minimizing backtracking. Heragu and Kusiak 

(1988) illustrated the concept of forward and backward flows by considering m machines 

in m locations along a straight line as shown in Figure 4.1.    

 

 

 

Minimizing backtracking has several advantages; it reduces the workload of 

conveyors/transporters, improves the availability of jobs in downstream leading to 

reduction of machine idle time and enhancing utilization of the system and consequently, 

Upstream 

Backtrack 

Downstream 

1 m 2 h m-1 

Primary Flow 

Figure 4.1 Illustration of forward and backward flows (Heragu and Kusiak, 1988)  
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increasing the total system throughput. Scheduling is also simplified by minimizing 

backtracking (Sarker et al., 1995).   

This chapter also considers a family of product variants with networked operations 

sequence where some of operations do not have precedence constraints. There are also m 

locations with m available machines each of which is capable of performing one or more 

type of operations. The objectives are to: 1) assign the machines to the available 

locations, 2) assign operations to available machines, and 3) determine the final sequence 

of performing operations for each product variant which minimizes the total backtracking 

distance. The final sequence of operations refers to the optimal sequence of the 

operations of a given product variant. As mentioned earlier, product variants have 

networked structures and there is sequence flexibility in performing some operations. 

Therefore, different ways of processing operations of a product variant may exist.  

Minimizing backtracking has been addressed in literature under two different categories: 

i) for generalized flow line (GFL) problems, and ii) for intracellular machining sequence 

in cellular manufacturing systems. However, there is no work in backtracking literature 

considering product variants with networked structures taking into consideration machine 

selection for each operation based on machine capability.     

A novel mathematical model is developed to solve the outlined problem. A non-linear 

model is first developed then reformulated as a mixed integer programing (MIP) model. 

A case study of engine blocks is used to demonstrate its application to an industrial 

setting. The obtained results reveal that backtracking minimization can remarkably 

increase the total throughput (7.79% improvement in the case study). 

 

4.2 Literature Review 

Backtracking of jobs has been considered in: (1) generalized flow line (GFL) problems 

(Sarker et al., 1991),  and (2) cell formation problems. Sarker et al. (1995) considered 

backtracking of jobs by assigning M machines to M locations along a linear track. Since 

the problem is NP-hard especially for large sized problems, a multi-pass heuristic was 

proposed and improved by applying depth-first insertion heuristic. A simulation model 

was applied to examine the performance of the system by reducing backtracking. 
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Sodhi and Sarker (2003) applied the backtracking concept to flexible manufacturing 

systems. They assumed that all available machines are identical CNCs, however, by 

adding tool magazines they can perform more operations and consequently less number 

of stations would be required. A mathematical model was developed to assign tool 

magazines to different locations in order to minimize three types of costs: total 

backtracking cost, changeover cost and production cost.    

Gong et al. (1999) considered generalized flow line (GFL) problem to minimize total 

backtracking of jobs by assigning M machines to M locations along a linear track. A 

genetic algorithm was proposed and compared with existing methods. It was able to find 

good quality solutions in acceptable computing time. 

More recent works have applied backtracking in cellular manufacturing systems. Chang 

et al. (2013) developed two mathematical models for cell formation problem. The first 

model was to solve the cell formation and cell layout problems whereas the second model 

was developed to determine the sequence of machines in each cell so that forward flow is 

maximized and backtracking is minimized. Mahdavi et al. (2013) developed an integrated 

mathematical model to simultaneously solve cell formation and cell layout problems. It 

was assumed that the cell layouts are not linear; however, there are pre-specified places 

where cells can be located. The machine layout problem within each cell was also 

considered to minimize backtracking cost. Two benchmark examples in literature were 

considered to study the efficiency of the developed model. Forghani et al. (2015) 

considered the same problem with some new features such as multi-row intra-cell layout, 

rectangular shape layouts and aisle distance. One of the objectives was to arrange the 

machines within each cell so that material handling cost is minimized necessitating 

backtracking minimization.         

Golmohammadi et al. (2016) considered a cell formation problem to minimize total 

moving costs consisting of cost of intra-cell movement, cost of movement between cells 

and cost of backtracking under dynamic conditions. . A genetic algorithm was proposed 

to solve the problem and the results were compared with a developed mathematical 

model. Computational results showed the efficiency of the proposed algorithm.  
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There are some other works in literature considering backtracking/backward movement 

(e.g. Lee and Chiang, 2002; Li and Li, 2007; Mahdavi et al., 2008; Paydar et al., 2010; 

Hogg, 2012; Davies et al., 2013).      

Based on the above review, there is no work in the literature dealing with products flow 

backtracking particularly considering product variants with networked structures and 

also, regarding machine capabilities in performing different operations and hence, 

machine selection for each operation.       

 

4.3 Backtracking Problem Description 

A number of part/product variants belong to a family; hence, they share some similarities. 

Each individual part/product variant has different demand and requires a number of 

operations to be finalized.  

There are also m machines which should be placed in m locations. Each machine has its 

own capability and is able to perform different types of operations. The operations 

required for part/product variants follow precedence relationships called “operations 

sequence”. The term “operation” in the present work refers to both assembling and 

fabricating/manufacturing processes such as machining, molding, welding, heat treating 

and quality control. The structure of operations sequence of product variants is generally 

divided to two categories: serial and networked. In serial operations sequence, the order 

of performing operations of a product variant is fixed and rigid. However, in networked 

structure, some operations have sequence flexibility to be carried out before or after other 

operations. The detailed information about serial and networked operations sequences 

have been provided in Chapter 3.  

Product variants with networked structures are considered in the present chapter. 

However, to finalize a product variant with a networked structure, only one sequence of 

performing operations among the alternative sequences should be determined based on 

the considered objective. There might be more than one sequence yielding the same 

optimum value for the objective function. In such case, performing the operations based 

on any of these sequences is acceptable.  
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It is required to select an appropriate machine for each operation and also to assign each 

machine to an appropriate location within the layout and lastly, to determine the final 

sequence of operations for each part/product variant in order to minimize the total 

backtracking distance. Therefore, three decision variables are used in the model 

formulation. 

Backtracking occurs when a product variant requires going upstream after performing 

one operation at one station to another operation in another station. Backtracking between 

two stations is determined based on the distance between them. 

 

4.4 Backtracking Mathematical Model 

A mathematical model is developed to assign operations to machines and machines to the 

locations and also to determine the final sequence of operations for each product variant 

so that total backtracking distance is minimized. The following is a description of the 

parameters and variables used in the model. 

Parameters: 

S: total number of different operations among all variants 

nr: total number of operations for part r 

m: total number of machines/locations 

q: total number of part/product variants 

  Vr:  volume required for part/product r 

Cki = {
1          If machine k is capable of performing operation i
0            Otherwise                                                                        

 

Pri = {
1          If product r requires operation i                
0          Otherwise                                                          

 

Oijr = {
1                If Operation j  is performed after operation i in product r       
0               Otherwise                                                                                                  

 

dhh′

= backtracking distance based on going downstream from location h to location ℎ′

= {
total distance between two locations                    upstream flow       
0                                                                                    downstream flow 

 

 

Variables: 
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Lhk = {
1        If machine k is assigned to location h
0            Otherwise                                               

 

Xik = {
1        If operation i is assigned to machine k
0            Otherwise                                                 

 

Yibr =

{1   If operation i is performed in bth position of the final operations sequence of product r
0            Otherwise                                                                                                                                   

  

Using the listed parameters and variables, a non-linear integer programing model is 

developed as follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑∑ ∑ ∑ ∑ ∑ ∑ ∑ Yibr

𝑚

ℎ′=1

𝑚

𝑘′=1

𝑚

ℎ=1

𝑚

𝑘=1

𝑞

𝑟=1

𝑛𝑟−1

𝑏=1

𝑠

𝑗=1

. Yj,b+1,r. Xik. Xj𝑘′ . Lhk. Lℎ′𝑘′ . dhℎ′ . Vr

𝑠

𝑖=1

(4.1) 

 

Subject to: 

∑ 𝑋𝑖𝑘

𝑚

𝑘=1

 =   1                ∀𝑖 = 1,2, … , 𝑠        (4.2) 

∑𝑋𝑖𝑘

𝑠

𝑖=1

 ≥   1                ∀𝑘 = 1,2, … ,𝑚        (4.3) 

Xik   ≤  Cki                ∀𝑖 = 1,2, … , 𝑠 , ∀𝑘 = 1,2, … ,𝑚       (4.4) 

∑ Lhk

𝑚

ℎ=1

 = 1                ∀𝑘 = 1,2, … ,𝑚        (4.5) 

∑ Lhk

𝑚

𝑘=1

 = 1                ∀ℎ = 1,2, … ,𝑚        (4.6) 

∑Yibr

𝑠

𝑖=1

 = 1                ∀𝑟 = 1,2, … , 𝑞, ∀𝑏 = 1,2, … , 𝑛𝑟        (4.7) 

∑ Yibr

𝑛𝑟

𝑏=1

 = Pri                ∀𝑖 = 1,2, … , 𝑠, ∀𝑟 = 1,2, … , 𝑞       (4.8) 
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𝑀(1 − Yibr) ≥ ∑ ∑ (Yjer

𝑛𝑟

𝑒=𝑏+1

. Ojir)

𝑠

𝑗=1

              ∀𝑖 = 1,2, … , 𝑠, ∀𝑏 = 1,2, … , 𝑛𝑟 − 1, ∀𝑟

= 1,2, … , 𝑞        (4.9) 

Yibr, Xik, Lhk  ∈ {0,1}                   ∀𝑖 = 1,2, … , 𝑠, ∀𝑏 = 1,2, … , 𝑛𝑟 , ∀𝑟 = 1,2, … , 𝑞, ∀k, h
= 1,2, … ,𝑚,                      (4.10)   

 

Equation (4.1) is the objective function for minimizing the total backtracking distance. 

Constraint (4.2) indicates that each type of operation is assigned to only one machine. 

Constraint (4.3) guarantees that each machine will be responsible for at least one type of 

operation. Constraint (4.4) ensures that an operation is assigned to a machine provided 

that the machine is capable of performing that operation. Constraints (4.5) and (4.6) 

indicate that each machine is assigned to only one location and each location can 

accommodate only one machine.  Constraint (4.7) guarantees that only one operation can 

be placed in b
th

 position of final operations sequence for each product variant. Constraint 

(4.8) ensures that if a particular operation is required by a given product variant, it is 

assigned to only one position of the final operations sequence of that variant. Constraint 

(4.9) guarantees that the final operations sequence of each variant complies with the 

operations precedence constraint of that variant. Note that parameter “M” in Constraint 

(4.9) refers to a large positive number (Big M). Finally, Constraint (4.10) indicates that 

Yibr, Xik, andLhkare binary variables. Note that Constraint (4.3) can be excluded from the 

model if there is no need to assign all the machines. In such case, Constraints (4.5) and 

(4.6) would also be modified. In this model, it is assumed that all available machines are 

deployed in processing operations.  

The developed mathematical model is non-linear. In order to utilize linear solvers it is 

necessary to reformulate the model to its equivalent linear format (Mozdgir et al., 2013). 

The only non-linear equation in the above mathematical model is the objective function. 

Therefore, a new binary variable is defined to reformulate the model. The new variable is 

as follows: 
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Zijbrkh𝑘′ℎ′      is equal to one if operations i and j are placed respectively in positions b 

and b+1 of product r and also operations i and j are performed with 

machines k and k' respectively and machines k and k' are assigned to 

locations h and h' and it is zero otherwise;  ∀𝑖, 𝑗 = 1,2, … , 𝑠, ∀𝑏 =

1,2, … , 𝑛𝑟 − 1, ∀𝑟 = 1,2, … , 𝑞, ∀k, h, 𝑘′, ℎ′ = 1,2, … ,𝑚. 

The previous non-linear model is reformulated to its equivalent MIP model with a new 

linear objective function and three new sets of linear constraints as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑∑ ∑ ∑ ∑ ∑ ∑ ∑(

𝑚

ℎ′=1

𝑚

𝑘′=1

Zijbrkh𝑘′ℎ′

𝑚

ℎ=1

𝑚

𝑘=1

𝑞

𝑟=1

𝑛𝑟−1

𝑏=1

𝑠

𝑗=1

. dhℎ′ . Vr)

𝑠

𝑖=1

            (4.11) 

Zijbrkh𝑘′ℎ′ ≥ Yi,b,r + Yj,b+1,r + Xik + Xj𝑘′ + Lhk + Lℎ′𝑘′ − 5       ∀𝑖, 𝑗 = 1,2, … , 𝑠,

∀𝑏 = 1,2, … , 𝑛𝑟 − 1, ∀𝑟 = 1,2, … , 𝑞, ∀k, h, 𝑘′, ℎ′ = 1,2, … ,𝑚,

(4.12) 

 

Zijbrkh𝑘′ℎ′ ≤
Yi,b,r + Yj,b+1,r + Xik + Xj𝑘′ + Lhk + Lℎ′𝑘′

6
                 ∀𝑖, 𝑗 = 1,2, … , 𝑠, ∀𝑏

= 1,2, … , 𝑛𝑟 − 1, ∀𝑟 = 1,2, … , 𝑞, ∀k, h, 𝑘′, ℎ′ = 1,2, … ,𝑚,           (4.13) 

 

Zijbrkh𝑘′ℎ′  ∈ {0,1}                   ∀𝑖 = 1,2, … , 𝑠, ∀𝑏 = 1,2, … , 𝑛𝑟 − 1, ∀𝑟 = 1,2, … , 𝑞, ∀k, h

= 1,2, … ,𝑚,                      (4.14) 

 

4.5 Illustrative Example 

In this section, an example is used to illustrate how the model works. Assume that there 

are four product variants each of which requires a set of operations. Also, there are three 

machines with different capabilities which should be placed in three candidate locations 

within the production line. Figure 4.2 shows the operations sequence of the four variants. 

Based on this figure, Variants 1 and 3 have networked operations sequences. 
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Table 4.1 shows the daily production volume required for each variant. 

Table 4.1 Volume for each variant of the illustrative example 

 Variant   
Production 

Volume (unit) 
 

1  10  

2 
 

5  

3 
 

20  

4 
 

40  

 

Table 4.2 shows the machine capability matrix in performing different operations. 

Table 4.2 Machine capability matrix (illustrative example)  

  

Operation 

  

O1 O2 O3 O4 O5 

M
a

ch
in

e
 M1 0 1 1 1 0 

M2 1 0 1 0 1 

M3 0 1 0 0 0 

 

1 

2 

3 
4 

1 3 5 4 

2 

3 

4 

5 1 

2 5 3 

Variant 1: 

Variant 3: 

Variant 4: 

Variant 2: 

Figure 4.2  Operations sequence of the four variants 
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Table 4.3 refers to the backtracking distance from one station to another. As mentioned 

earlier, backtracking occurs when a variant travels in upstream direction.  

Table 4.3 Backtracking distance (in meters)  

  

Station 

  

S1 S2 S3 

S
ta

ti
o

n
 S1 - - - 

S2 5 - - 

S3 12 7 - 

 

GAMS optimization software with CPLEX 12.0.1 solver was used to solve the developed 

MIP model on a PC with 3.4 GHz Intel Core i7-4770 CPU processor under the Windows 

10 operating system with 16 GB of RAM. It took 3.95 seconds to solve this example with 

the objective value of 325 meters as the minimum total backtracking distance. Figure 4.3 

summarizes the results. 

 

O1, 

O3, 

O5 

O4 

Downstream 

M3 M2 M1 

Assigned operations to 

each machine: 
O2 

Final operations 

sequence: 

1 3 5 4 

2 4 3 5 1 

2 5 3 

Variant 1: 

Variant 3: 

Variant 4: 

Variant 2: 

Figure 4.3  Summary of the solution for the illustative example 

 

1 3 4 2 
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4.6 Numerical Experiments 

In this section, the performance of the developed mathematical model in terms of solution 

time is examined. The system used in this experiment is a PC with 3.4 GHz Intel Core i7-

4770 CPU processor under the Windows 8 operating system with 16 GB of RAM. 

Several numerical tests were conducted. The developed mathematical model was 

implemented in GAMS optimization software and solved with CPLEX 12.0.1 MILP 

solver.  

Different sets of problems were taken into consideration to include different sizes of 

problems. For the number of operations (s), 5, 7, 10, 15, 20, and 30 were selected while 

the number of variants (q) was set to be 2, 6, 10, 15, and 20. The number of 

machines/stations (m) was also set to be 2, 4, and 6. Since in numerical analysis, it may 

happen that the solutions for some cases are found much faster or much slower than the 

normal situation, six different replicates were solved randomly for each combination and 

the average time was recorded to have a better estimation of the solution time for 

different problem sizes. Table 4.4 summarizes the results. Since GAMS software is 

capable of finding small to medium problem sizes, it was terminated after 90 minutes 

(5400 seconds) if the optimum solution was not found. Moreover, for large sizes of 

problems, GAMS was not able to find any solution and it yielded the “out of memory” 

message. 

 

Table 4.4 Performance of the developed mathematical model in terms of solution time using GAMS 

s (operations) 
m 

(stations) 
q (variants) Avg. time (Sec.) 

5 

2 

3 2.15 

5 3.63 

10 5.26 

15 6.50 

20 8.82 

4 

3 3.48 

5 5.37 

10 11.72 

15 18.93 

20 30.53 

6 
3 

N/A 
5 
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10 

15 

20 

7 

2 

3 2.48 

5 3.96 

10 4.55 

15 6.03 

20 9.76 

4 

3 9.88 

5 12.35 

10 15.69 

15 22.42 

20 37.96 

6 

3 48.41 

5 53.26 

10 68.13 

15 77.71 

20 96.33 

10 

2 

3 6.15 

5 8.96 

10 11.23 

15 15.71 

20 22.94 

4 

3 30.68 

5 39.11 

10 48.74 

15 68.24 

20 102.13 

6 

3 165.01 

5 198.22 

10 236.61 

15 281.85 

20 352.81 

20 

2 

3 218.88 

5 302.19 

10 367.55 

15 547.62 

20 828.46 

4 

3 1237.92 

5 1527.92 

10 1975.16 

15 2779.55 

20 4185.63 
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6 

3 > 5400 

5 > 5400 

10 Out of memory 

15 Out of memory 

20 Out of memory 

30 

2 

3 

Out of memory 

5 

10 

15 

20 

4 

3 

5 

10 

15 

20 

6 

3 

5 

10 

15 

20 

 

Figures 4.4, 4.5 and 4.6 illustrate the solution time in terms of different product variants, 

operations, and machines/stations. Note that Figure 4.6 is limited to 2 and 4 numbers of 

machines as the information regarding the solution time for 6 numbers of machines is not 

sufficient to be plotted in the figure.  

 

 
Figure 4.4 GAMS run time in terms of number of product variants 
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Figure 4.5 GAMS run time in terms of number of operations 

 

 
Figure 4.6 GAMS run time in terms of number of machines/stations 

 

Based on the figures, it is observable that the solution time is very sensitive to the number 

of operations and it grows exponentially as the number of operations increases. The 

solution time is also sensitive to the number of machines and product variants. However, 

its sensitivity is less significant for the number of product variants.  

 

4.7 Case Study 

This case is about an automotive company manufacturing different variants of engine 

cylinder blocks. For confidentiality reasons, the company information is not revealed and 

some assumptions are made. Three variants of cylinder blocks namely I-4, V-6, and V-8 
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are considered in this case study with the production volume of 250, 100, and 50 units per 

day for each variant, respectively. Figure 4.7 illustrates these cylinder blocks. 

 

 
 

 

(a) I-4 cylinder block (b) V-6 cylinder block (c) V-8 cylinder block 

Figure 4.7  Three variants of engine cylinder block (http://paceperformance.com/) 

 

Figure 4.8 demonstrates operations sequences of the three cylinder blocks.  
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There are four types of available machines, including two different types of 5-axis CNC 

machines, one honing machine and one industrial washing machine. There are also some 

parallel machines of each type at each station to satisfy the demands. Depending on 

accuracy and cost considerations, the two types of the CNC machines have different 
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Figure 4.8  Operations sequences of a family of cylinder blocks  
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capabilities. Table 4.5 shows the capabilities of each machine in performing the various 

operations.  

Table 4.5 Machine capability matrix 

 
Machine 

 
CNC-1 CNC-2 Honing Washing 

Rough milling (deck face, 

side deck, pan face) 
0 1 0 0 

Finish milling (deck face, 

side deck, pan face) 
1 0 0 0 

Rough cylinder boring 1 1 0 0 

Drilling oil holes (deck 

face, side deck) 
1 1 0 0 

Honing cylinder bore 0 0 1 0 

Camshaft & water pump 

boring (finish bore) 
1 0 0 0 

Drilling & reaming & 

tapping holes on pan face 
1 0 0 0 

Rough crank bore 1 1 0 0 

Honing crank bore 0 0 1 0 

Cleaning 0 0 0 1 

Contour milling 1 1 0 0 

 

Table 4.6 also shows the backtracking distance between the stations. 

Table 4.6 Backtracking distance for case study (in meters)  

  

Station 

  

S1 S2 S3 

S
ta

ti
o

n
 S2 5 - - 

S3 9 4 - 

S4 15 10 6 

 

The developed MIP model was solved for this case study using GAMS optimization 

software and the optimum solution of zero total backtracking distance was obtained. To 

demonstrate that the variability of the solution time is negligible, the case study was 

solved five times and GAMS was able to find the optimal solution in 2261.74 seconds on 

average with 26 seconds standard deviation. Due to capabilities of CNC machines and 

also sequence flexibility in performing the operations, this case study does not yield a 

unique solution.  One of the obtained solutions suggest locating Machines CNC-2 and 
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CNC-1 at Stations 1 and 2, and honing and industrial washing machines at Stations 3 and 

4 respectively. In addition, all rough milling operations are assigned to CNC-2, all honing 

operations to the honing machine, the cleaning operation to the washing machine and the 

rest of the operations are assigned to CNC-1. Consequently, in the final operations 

sequence of each cylinder block variant, rough milling operations should be carried out 

first (no restriction on their order), cleaning operation would be the last operation, and 

immediately before that, honing operations should be performed. The rest of the 

operations should be carried out after rough milling and before honing processes. In other 

words, based on the result from the model, the rest of the operations can be carried out in 

any sequence before honing and after rough milling processes.    

Suppose that in the current system instead of assigning “Rough crank bore” operation to 

CNC-1, it is assigned to CNC-2. In that case, backtracking would occur with the 

minimum value of 5 meters per product unit. In the current system, there are two CNC-2, 

six CNC-1, two Honing, and two Washing machines in parallel at Stations 1 to 4 

respectively for line balancing and also fulfilling the demands. The cycle time at these 

stations is 65, 70, 58 and 50 seconds respectively. The cycle time at Stations 1 and 2 

includes the wasted time occurred for backtracking. Each cylinder block requires 

backtracking for traveling from Station 2 to Station 1 and then going back from Station 1 

to Station 2 for further processes. It can be assumed that based on the speed of the 

transporter, every meter of backtracking in this case study corresponds to 2 seconds 

wasted time. Thus, 10-second wasted time exists for each cylinder block unit. “Rough 

crank bore” operation takes typically 30 seconds to be processed. If this operation is 

assigned to CNC-1 at Station 2 to minimize the backtracking, it increases the cycle time 

at Station 2 by 5 seconds (30s/6 = 5s) but it also decreases the cycle time at Station 2 by 

10 seconds for eliminating the backtracking. Therefore, the new cycle time at Station 2 

would be 65 seconds (70s+5s-10s = 65s). The total throughput of a system is determined 

based on the greatest value of the cycle time amongst different stations called 

“bottleneck”. If only one shift (8 hours) is considered, the first system is capable of 

manufacturing 411 units while the second system with zero backtracking is capable of 

manufacturing 443 units. In other words, by minimizing the backtracking, total 

throughput increases by 32 units per shift. This is equivalent to 7.79% improvement in 
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total throughput. Therefore, by minimizing backtracking, the availability of jobs to 

machines increases and the total throughput improves accordingly. For further 

quantitative analysis regarding improvement of throughput by minimizing backtracking, 

readers are referred to Sarker et al. (1995).   

 

4.8 Summary 

Backtracking minimization of a family of product variants was considered in this chapter. 

Minimizing backtracking can result in significant improvement in total throughput. 

Product variants were considered to have networked operations sequence. A 

mathematical model was developed to optimize three decision variables: (1) location of 

each machine at each station, (2) assignment of operations to the machines considering 

machine capability and (3) final sequence of performing operations for each product 

variant. No work in the backtracking literature has considered all the addressed features. 

Particularly, there is no work considering networked product variants and machine 

selection for performing each operation. 

Since the developed mathematical model is non-linear, it was reformulated to its 

equivalent MIP model to be able to use LP solvers. A case study demonstrated real-life 

application of the model and highlighted the importance of minimizing backtracking.  
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Chapter 5 

Generating Serial and Networked Master Operations Sequence 

 

5.1 Introduction 

Another strategy of managing variety in the modern manufacturing systems is to use the 

available information of current variants for design and production of new variants. 

Operations sequences of existing variants are one of the available useful information that 

should benefit from. The term “operation” in this chapter also refers to both 

“fabrication/manufacturing” and “assembly” processes.  

The sequence by which operations are performed for a given variant has a significant 

impact on many system operation aspects such as operation cost, operation difficulty, 

need for reworking, and need for changing tools and fixtures. There are quite few works 

in the literature regarding this problem. Most of these works focus on generating a master 

bill of material called generic bill of material (GBOM) and are for assembly purposes 

only (e.g. Hegge and Wortmann 1991, Romanowski and Nagi 2004). In other words, 

there is no work in the literature considering construction of master operations sequence 

for processes other than assembly. In addition, the methodologies and approaches applied 

in the addressed works are based on assembly trees and are not usually applicable to 

fabrication. Assembly trees cannot efficiently represent the precedence relationships in 

fabricating applications. Moreover, most of the developed algorithms for master 

assembly sequence or generic bill of material (GBOM) in literature are not retrieval-

based and do not benefit from available legacy assembly sequence information. In fact, 

most of the works in literature aim at generating feasible assembly sequences using a pre-

defined set of feasibility constraints (e.g. ElMaraghy and Laperrière 1992) and then 

searching the best assembly sequence from the generated ones based on some criteria. 

Therefore, there is a need to develop a model which not only can be applied for both 

assembly and fabrication, but it also deploys the available information of the existing 

variants. 
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Generating a master operations sequence derived from operations sequences of a family 

of existing variants has several advantages. Frequent changes in demands necessitate 

design and production of new variants. Operations sequence planning/process planning of 

these new variants from scratch requires time, cost and effort. However, the generated 

master operations sequence can be used to construct the operations sequence for new 

variants that fall within or significantly overlap with the boundary of the considered 

family and would require minimal updates. This will lead to reducing the required time 

and cost for developing operations sequences of the new variants and consequently, 

enhancing the productivity. In addition, since major modification in a manufacturing 

system is not desired, most manufacturers prefer to use as much as possible their existing 

way of performing operations for the next generations of parts/products unless new 

machines with new capabilities or different technologies have been introduced which 

would affect the existing/legacy operations sequences. By using the obtained master 

operations sequence, the new variant can be processed in line with the existing variants. 

This will also result in less changeover time when changing the system setups for 

processing new variants. 

In this chapter, two new mathematical models are developed to generate master 

operations sequence for a family of part/product variants. As mentioned in previous 

chapters, depending on the features of a given variant, its operations sequence can be 

serial or networked. The first mixed integer programing (MIP) model is developed for 

variants with serial operations sequences. The second model, a generalized form of the 

first model, is developed for variants with various process sequence structures (e.g. serial, 

networked or combination of both).  

As the number of operations increases, the ability of the models to find the optimum 

master operations sequence in a reasonable time decreases. Therefore, a novel algorithm 

is proposed which is not only capable of dealing with variants having both serial and 

networked operations sequences but also is capable of finding solutions for the large size 

problems. The proposed algorithm is quite fast and comparing its solutions with the 

solutions obtained from the two developed mathematical models indicates that it is able 

to find the optimum solutions for all the studied cases. Results illustrate the efficiency of 
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the algorithm in terms of run time and quality of the obtained solutions. Two case studies 

are demonstrated for assembly and fabricating applications.   

 

5.2 Literature Review 

As mentioned before, there is a dearth of literature on this topic. In particular, there is no 

work considering generating a master operations sequence other than assembly processes. 

The “Operation” term in the present chapter, like previous chapter, refers to both 

fabrication/manufacturing (including machining, heat treatment, quality control, etc.) and 

assembly processes.  

Most of the works in the literature focus on generic bill of material (e.g. Hegge and 

Wortmann 1991, Jiao et al. 2000, Romanowski and Nagi 2004). A bill of material (BOM) 

of a specific product is a list of the raw materials, components, sub-assemblies, parts and 

also the number of each item required to manufacture that product. BOM usually 

involves three aspects: (1) items: how a product is constructed from semi-finished 

product and purchased parts; (2) goes-into relationships: how a particular parent and 

component are related together; (3) employment: in which application, a particular BOM 

is used (Jiao, et al. 2000). Generic Bill Of Material (GBOM), which was first developed 

by Hegge and Wortmann (1991), represents a general structure of different variants 

belonging to a product family and performs as a tool for designing new variants and 

facilitates search of similar parts. Romanowski and Nagi (2004) developed a data mining-

based methodology to generate generic bill of material (GBOM). In their method, they 

tried to unify similar BOM trees into a single GBOM by using text mining. They also 

deployed some data from an industrial BOM database to demonstrate their proposed 

method. In another application, Shu et al. (2014) applied generic bill of material (GBOM) 

concept in supply chain construction. By using generic bill of material (GBOM), they 

assessed the control of production disruption risk and examine the effect of production 

uncertainty in supply chain companies. They developed a function based on random 

simulation and neural network to approximate the level of uncertainty and used genetic 
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algorithm and simulated annealing to find near optimal scheme of supply chain 

construction.  

The limitation of the proposed generic bill of material (GBOM) is that they are based on 

assembly processes with some restrictions on the BOMs’ structures which make them 

inappropriate for use with processes other than assembly. 

There are few works in the literature which tried to generate master assembly sequence 

from existing assembly sequence of variants. Martinez et al. (2000) generated a master 

assembly sequence and called it “parent”. Master assembly sequence is a comprehensive 

assembly sequence for a set of products which have a significant number of similar 

components and share a similar structure. This parent plan was developed for a 

hypothetical product called “meta-product” which includes all the components of a 

family of products, which is the same as generating master part for a family using group 

technology. They considered three types of constraints in assembly space to ensure that 

only feasible master assembly sequences are generated. The difference in the path length 

was considered as a measure for selecting the best master assembly sequence. The path 

length is a measure of the deviation of the generated assembly sequence from the existing 

ones. Kashkoush and ElMaraghy (2014) generated master assembly sequence by using 

the assembly trees of members of products families. Each assembly tree was converted to 

an equivalent matrix. Feasible master assembly sequence was found by minimizing 

Robinson-Foulds distance from the assembly sequence of each product variant in the 

family. Kashkoush and ElMaraghy  (2015) also developed a mathematical model to 

generate a master assembly sequence from the assembly information of individual family 

members. They first developed a non-linear model and then in order to find the exact 

solution, the model was linearized. In both works, the authors indicated that the generated 

master assembly sequence can reduce the assembly planning cost and enhance 

productivity in assembly industries. Lai and Huang  (2003) proposed a method called 

ASP-LMPR to find the optimal assembly sequence of a product family. Their method 

uses Boolean operators to generate feasible assembly sequences at each loop. They also 

considered all evaluation factors available in the literature to determine the feasible and 
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optimal assembly sequences and applied an illustrative example to show the efficiency of 

their proposed method. 

In all above works, the proposed methods have been applied to assembly processes and 

used non-directed trees which are considered as limitations. The non-directed trees, as 

mentioned before, cannot efficiently illustrate the precedence relationships in fabricating 

processes and are limited to assembly applications.   

Azab and ElMaraghy (2007a) proposed a new process planning approach to reconfigure 

the process plan of a composite master part instead of defining a new process plan for 

new product variants. This reconfiguration can be achieved by adding/removing some 

features according to a novel binary integer programming model. The configured process 

plan may have some inserted/deleted features in order to meet the requirements of new 

product variants. This reconfigured Process Plan method minimizes the extent of plan 

change hence reducing the cost of set-up changes on the shop floor.  It was assumed that 

the process plan for the composite part of a family of products is available in advance. 

Azab and ElMaraghy (2007b) also proposed a sequential hybrid approach for macro level 

of process planning. They compared their model with the re-planning approach and 

showed that their proposed model is more practical, faster, less costly and easy to 

implement. Similarly, the authors assumed that the process plan for the composite part is 

available beforehand.  

According to the literature review, there is no work which considers generating master 

operations sequence from the available operations sequence of the existing variants. This 

is what both developed models and the proposed algorithm in this chapter aim to achieve.   

 

5.3 Problem Scope and Definition 

There are a number of part/product variants belonging to a family. Each individual 

variant requires a number of operations to be finalized. As aforementioned, “operation” 

in this chapter refers to both “fabrication/manufacturing” and “assembly” processes. 

Examples of fabrication/manufacturing processes include machining, welding, molding, 
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heat treatment, quality control and so on. Operations of a variant follow a precedence 

relationship which is called “operations sequence”. A generic or master operations 

sequence is derived by considering the operations sequences of the existing variants. The 

derived master operations sequence is then deployed to extract the operations sequences 

of new variants which belong to the same family of the variants or significantly overlap 

with its scope.   

The developed mathematical models and the proposed algorithm which will be described 

in the following section try to employ the knowledge embedded in available operations 

sequences of the existing variants. Therefore, the problem is to construct a generic or 

master operations sequence that best represents each individual operations sequence (i.e. 

minimum distance from each of them) even if there are some conflicts between the 

master operations sequence and some individual one(s). 

The following assumptions are considered: 

 All part/product variants belong to a family and, hence, share many similarities. 

 The new variants belong to or significantly overlap with the scope of the 

considered family. Hence, they also share many similarities with the existing 

variants. 

  Operations sequence information of the existing variants is available. 

 The same operation name or number is used for all different variants requiring a 

particular operation.  

As mentioned in Chapter 3, an “operation precedence graph” is a good representation of 

operations sequence of a given variant. This graph indicates how operations of variants 

relate to each other and their sequence. There are typically two types of operations 

sequences for variants: serial and networked. Figure 5.1 illustrates the representing 

operation precedence graphs of two variants with serial and networked operations 

sequences.  
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Figure 5.1 An example of comparison between  operation precedence graphs of two variants with: (a) 

sequential serial operations and (b) networked operations  

According to Figure 5.1, Operation 3 of the first variant must be processed exactly after 

Operation 2 and before Operation 4. In contrast, Operation 3 of the second variant has the 

flexibility to be carried out before, after or simultaneously with Operations 2 and 4.  

Two mathematical models are developed and an algorithm is proposed to find the master 

operations sequence from existing variants with both serial and networked structures in 

order to be used for generating the operations sequences of new variants.  

 

5.4 Master Generating Mathematical Models 

In this section, two mathematical models are developed. The objective function is to 

minimize the sum of dissimilarity distances between the generated master operations 

sequence with each individual operations sequence of the existing variants. Before 

developing the models, the next sub-section describes how a given operations sequence is 

encoded and how the dissimilarity distance between any two operations sequences is 

calculated. 

5.4.1 Encoding Operations Sequences and Calculating the Objective Function 

A matrix structure is used to encode operations sequences of variants. Each matrix has a 

size of m×m where m refers to the total number of operations among all the variants. For 

(a) 
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the corresponding matrix of a given variant, aij is equal to one if Operation j is performed 

immediately after Operation i and zero otherwise. In other words, if there is a directed 

edge from Operation i to Operation j in the representing operation precedence graph of 

the variant, the value of element aij in the matrix would be one. Therefore, the encoded 

matrix is binary. It is clear that if a variant does not require a particular operation, in the 

encoded matrix of the variant, the corresponding row and column of that operation will 

be zeros. This is to keep the matrices’ sizes of all variants the same (m×m) which 

facilitates the numerical computation of the objective function and construction of the 

master operations sequence. Figure 5.2 shows the operations sequence-to-matrix 

encoding scheme for the operation precedence graph of a variant. Note that while this 

variant does not require Operation 4, the row and column of this operation appears in the 

encoded matrix. The main advantage of the proposed encoding scheme is that only one 

matrix can be encoded from a given operations sequence (or its corresponding operation 

precedence graph) and also only one operations sequence can be extracted from the 

encoded matrix. As shown in Figure 5.2, the number of elements with value of one in the 

encoded matrix of a variant is equal to the number of edges appearing in the 

corresponding operation precedence graph of that variant.  

 

3 

      
 1 2 3 4 5 

1 0 0 1 0 1 

2 0 0 0 0 0 

3 0 1 0 0 0 

4 0 0 0 0 0 

5 0 1 0 0 0 
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5 

Figure 5.2  Operation sequence-to-matrix encoding scheme for a variant 
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The output of the mathematical models is also a matrix called “master matrix” which has 

the same size (m×m) of existing variants matrices. The master operations sequence can 

easily be extracted from this master matrix. It is noteworthy to mention that the k
th

 row or 

column (k=1,2,…,m) of this matrix has at least one element with the value of one 

indicating that the master operations sequence has all the operations required by the 

considered variants. 

The objective is to find a master operations sequence which has the minimum 

dissimilarity with the operations sequences of existing variants. Hence, the master matrix 

should have the minimum dissimilarity distances from the encoded matrices of the 

existing variants. To find the dissimilarity distance, the difference between elements of 

the master matrix with each individual encoded matrix is calculated and the result is 

summed over all the number of existing variants. For calculating the difference between 

the master matrix and a given encoded matrix, first those rows and columns of the master 

matrix corresponding to the operations which do not exist in the considered variant are 

set as zeros. In fact, to compare the master operations sequence with a given operations 

sequence of an existing variant, it is required to exclude those operations (with their 

incoming and outgoing edges) from the master operations sequence that did not appear in 

that variant. Then the absolute difference between each element of the master matrix and 

its counterpart in the encoded matrix is calculated and summed with other difference 

values. This procedure is repeated for all remaining variants and the summation of all the 

obtained values yields the dissimilarity distance between master operations sequence and 

operations sequences of the existing variants.  

 To better explain the objective function, consider the two operation precedence graphs 

illustrated in Figure 5.3. The first graph is the representation of the operations sequence 

for one of the existing variants while the second graph is the representation of the 

potential master operations sequence. The corresponding encoded matrices have also 

been illustrated.   
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To find the dissimilarity distance between these two matrices, first, the rows and columns 

of 3 and 4 are excluded from the comparison as Operations 3 and 4 do not exist in the 

existing variant (see the red lines in Figure 5.3). Then, the absolute differences between 

remaining elements of two matrices are calculated and summed. Therefore, the 

dissimilarity distance between the operations sequence of the existing variant and the 

potential master operations sequence is: |0-1|+|1-1|+|1-1|+|0-1|=2. 

5.4.2 Serial Master Operations Sequence Generating Model 

In this sub-section the first mathematical model, serial master operations sequence 

generating model, is developed for constructing a master operations sequence using the 

available information of the existing variants with serial operations sequences. This 

model is based on the assumption that new variants also have serial operations sequences. 

Therefore, the developed model derives strictly serial master operations sequence to 

guarantee that the extracted operations sequence for a new variant will also be serial.  

It should be noted that for this model, it might be the case that the optimum master 

operations sequence should be networked to minimize the total dissimilarity distance 

from the existing variants. However, based on the assumption made in this model, the 

generated master operations sequence would always be serial; hence, the optimality of the 

obtained solution is not guaranteed.  
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3 
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Figure 5.3  An illustartive example for calculating the objective function 
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Nevertheless, if the model yields a single solution with zero dissimilarity distance (zero 

objective function), then it is assured that the optimum master operations sequence is in 

fact serial and the obtained solution from the serial master operations sequence 

generating model is optimal; otherwise, there is no guarantee for optimality and it is 

advisable to use the general master generating model (second mathematical model) or the 

proposed master generating algorithm.  

The following notations are used in the serial master operations sequence generating 

model. 

Parameters: 

n          total numbers of operations among all variants 

p          total numbers of part variants 

𝐴𝑘𝑖 = {1                     If Operation 𝑖 exists in 𝑘𝑡ℎ part variant              
0                        Otherwise                                                                  

(5.1) 

𝐵𝑖𝑗𝑘 =

{1               If Operation 𝑗 of 𝑘𝑡ℎ part variant is performed immediately after Operation 𝑖 
0                 Otherwise                                                                                                                             

(5.2) 

Variables: 

𝑋𝑖𝑗 =

{
1      If Operation 𝑗 of the master  is performed immediately after Operation 𝑖            
0          Otherwise                                                                                                                               

      

(5.3) 

𝑊𝑖𝑔 = {1    If Operation 𝑖  is placed in 𝑔𝑡ℎ position of the master                                 
0         Otherwise                                                                                                             

          

(5.4) 

𝑆𝑖𝑗𝑔 =

{1       If Operation 𝑖 is placed in 𝑔𝑡ℎ position immediately before Operation 𝑗  in master
0        Otherwise                                                                                                                                        

  (5.5) 

Using the listed parameters and variables, a non-linear integer programing model is 

developed as follows. Note that to find the total dissimilarity distance, square of distance 
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has been used for its simplicity over the absolute distance while both would yield the 

same result.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑∑ ∑((𝑋𝑖𝑗 − 𝐵𝑖𝑗𝑘)
2

𝑝

𝑘=1

𝑛

𝑗=1

∙ 𝐴𝑘𝑖 ∙ 𝐴𝑘𝑗)

𝑛

𝑖=1

            (5.6) 

 

Subject to: 

𝑆𝑖𝑗𝑔   ≤   
𝑊𝑖𝑔 + 𝑊𝑗,𝑔+1

2
                ∀𝑖, 𝑗, 𝑔 = 1,2, … , 𝑛        (5.7) 

𝑊𝑖𝑔 + 𝑊𝑗,𝑔+1 − 1  ≤     𝑆𝑖𝑗𝑔              ∀𝑖, 𝑗, 𝑔 = 1,2, … , 𝑛        (5.8) 

𝑋𝑖𝑗  =     ∑ 𝑆𝑖𝑗𝑔

𝑛

𝑔=1

              ∀𝑖, 𝑗 = 1,2, … , 𝑛        (5.9) 

𝑊𝑖,𝑛+1 = 0                                                      ∀𝑖 = 1,2, … , 𝑛        (5.10) 

∑𝑊𝑖𝑔

𝑛

𝑖=1

= 1                          ∀𝑔 = 1,2, … , 𝑛    (5.11) 

∑ 𝑊𝑖𝑔

𝑛

𝑔=1

= 1                          ∀𝑖 = 1,2, … , 𝑛    (5.12) 

𝑋𝑖𝑗 ∈ {0,1}                                                 ∀𝑖, 𝑗 = 1,2, … , 𝑛     (5.13) 

𝑊𝑖𝑔 ∈ {0,1}                                    ∀𝑖 = 1,2, … , 𝑛  , ∀𝑔 = 1,2, … , 𝑛 + 1     (5.14) 

𝑆𝑖𝑗𝑔 ∈ {0,1}                                                      ∀𝑖, 𝑗, 𝑔 = 1,2, … , 𝑛     (5.15) 

  

Equation (5.6) is the objective function of the problem which minimizes total 

dissimilarity distance between the master operations sequence and operations sequences 

of the existing variants. In fact master operations sequence, by definition, must yield a 

graph similar to the graph of an individual variant when excluding the operations 

appearing in the master graph but not in the graph of that variant. Therefore, by defining 

parameters 𝐴𝑘𝑖 and 𝐴𝑘𝑗 , only common operations between master graph and individual 

graphs are considered. 

Equations (5.7) to (5.9) determine whether or not Operation j is processed immediately 

after Operation i in the master operations sequence. Equation (5.10) guarantees that no 

operation can be placed in position n+1. This position is, in fact, a dummy position and is 

applied in Equations (5.7) to (5.9) for finding the value of 𝑋𝑖𝑗. Equation (5.11) ensures 



 

109 

 

that each position is occupied by only one operation. Similarly, Equation (5.12) 

guarantees that each operation is placed only on one position of the master operations 

sequence. Finally, Equations (5.13) to (5.15) indicate that 𝑋𝑖𝑗, 𝑊𝑖𝑔 and 𝑆𝑖𝑗𝑔 are binary 

variables. 

The developed mathematical model is non-linear. GAMS optimization software with 

CPLEX Solver is used. It is reformulated to its equivalent linear model before 

implementing it in GAMS (Mozdgir et al. 2013, Navaei et al. 2013). In the serial master 

operations sequence generating model, all constraints are linear and the only non-linear 

formulation is the objective function which consists of a square term. To reformulate a 

square function to its equivalent linear format, it is first extended as follows: (𝑋𝑖𝑗 −

𝐵𝑖𝑗𝑘)
2

= 𝑋𝑖𝑗
2 − 2𝑋𝑖𝑗𝐵𝑖𝑗𝑘 + 𝐵𝑖𝑗𝑘

2. Then, since 𝑋𝑖𝑗 is a binary variable, the value of 𝑋𝑖𝑗
2 

is equal to 𝑋𝑖𝑗 itself. This rule can also be applied for a binary parameter such as 𝐵𝑖𝑗𝑘. 

Therefore the objective function is linearized as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑∑ ∑ 𝑋𝑖𝑗. 𝐴𝑘𝑖. 𝐴𝑘𝑗 − 2𝑋𝑖𝑗. 𝐵𝑖𝑗𝑘𝐴𝑘𝑖. 𝐴𝑘𝑗 + 𝐵𝑖𝑗𝑘

𝑝

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

𝐴𝑘𝑖 . 𝐴𝑘𝑗             (5.16). 

Using Equation (5.16) as the linear objective function and initially linear Constraints 

(5.7) to (5.15), the elements of the master matrix can be determined and based on the 

obtained matrix, the master operations sequence can be constructed. 

5.4.3 Generalized Master Operations Sequence Generating Model 

A model is developed for generating master operations sequence from existing variants 

with serial or networked operations sequences or combination of both structures. It is a 

generalized form of the serial master operations sequence generating model and hence, 

can deal with variants having various operations sequence structures. Therefore, it is 

more complicated than the serial model and contains greater number of constraints.    

Both the serial and generalized models share some similar notations and hence, they are 

not repeated here. The objective function of the generalized model is also the same as the 

serial model and hence, the linearized form is presented here. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ ∑ ∑ 𝑋𝑖𝑗. 𝐴𝑘𝑖. 𝐴𝑘𝑗 − 2𝑋𝑖𝑗. 𝐵𝑖𝑗𝑘𝐴𝑘𝑖. 𝐴𝑘𝑗 + 𝐵𝑖𝑗𝑘

𝑝

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

𝐴𝑘𝑖 . 𝐴𝑘𝑗             (5.16) 

Subject to: 

∑ 𝑋𝑖𝑗 +

𝑛

𝑗=1

∑𝑋𝑗𝑖 

𝑛

𝑗=1

  ≥   1                ∀𝑖 = 1,2, … , 𝑛        (5.17) 

∑ 𝑋𝑚(𝑢,𝑙),𝑚(𝑢+1,𝑙)
+

𝜏−1

𝑢=1

 𝑋𝑚(𝜏,𝑙),𝑚(1,𝑙)
  ≤   𝜏 − 1      ∀𝑇 ⊆ 𝑁,𝑁 = {1,2, … , 𝑛}, 𝜏 = |𝑇|, |𝑇|

≥ 2, ∀𝑙 = 1,2, … , (𝜏 − 1)!   (5.18) 

 𝑋𝑖𝑖 = 0                                                      ∀𝑖 =

1,2, … , 𝑛        (5.19) 

𝑋𝑖𝑗 ∈ {0,1}         ∀𝑖, 𝑗 = 1,2, … , 𝑛                             (5.20) 

Where in Equation (5.18): 

𝑁 = {1,2, … , 𝑛}, 𝑇 ⊆ 𝑁, 𝜏 = |𝑇| 

𝑚(𝑢,𝑙)= 𝑢𝑡ℎ member of 𝑙𝑡ℎmember of Set S. 

S is a set whose members are actually sets themselves. Members of S are all the circular 

permutations of all members of T. In other words, the total members (sets) of S are equal 

to the total distinctive ways of creating directed loops using all members of T which are 

equal to(𝜏 − 1)!. Thus, Set S can be shown as follows: 

𝑆 = {{𝑚(1,1),𝑚(2,1), … ,𝑚(𝑢,1), … ,𝑚(𝜏,1)},… , {𝑚(1,𝑙),𝑚(2,𝑙), … ,𝑚(𝑢,𝑙), … ,𝑚(𝜏,𝑙)},… {𝑚(1,(𝜏−1)!),𝑚(2,(𝜏−1)!), … ,𝑚(𝑢,(𝜏−1)!), … ,𝑚(𝜏,(𝜏−1)!)}} 

(5.21). 

Equation (5.16) is the objective function which was described in previous sub-section. 

Equation (5.17) is the first set of constraints of the model ensuring that master operations 

sequence has all the operations shared among the operations sequences of the existing 

variants. Equation (5.18) guarantees that no directed loop can exist in the master 

operations sequence. In order to make sure that no directed loop will happen, for each set 
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of operations, this constraint should be applied. In fact, Equation (5.18) is a set of anti-

loop constraint sets and is similar to sub-tour elimination constraint in Travelling 

Salesman Problem (TSP) (Hoffman, 2013). Equation (5.18) prevents performing an 

operation that has already been carried out. For instance, a given part which has already 

undergone “Saw Cutting” operation should not again undergo the same “Saw Cutting” 

operation. Note that, in reality, a part/product may require several milling, drilling, etc. 

operations in different steps but they should be identified under different operation names 

(such as milling1, milling2,…) to be distinguished from the addressed directed loop 

issues. Figure 5.4 shows some examples of invalid master operations sequences with 

directed loops. 

 

In all above examples, there are directed loops which make the generated operations 

sequence invalid. In the first case, the directed loop is: 1→3→1.Note that Operations 2, 3 

and 4 in the first case do not make a directed loop; because their relationship indicates 

that Operation 2 should be performed after Operations 3 and 4 and Operation 4 should be 

performed after Operation 3 and there is no directed loop among them. In fact, 

precedence constraint of 3→2 is redundant. In the second case, 1→2→4→1 and in the 

last case, 1→2→5→6→4→1 make the directed loops. Equation (5.19) is a logical 

1 

3 

4 

2 

1 

2 

4 

3 

1 

2 6 

4 

3 5 

Figure 5.4  Examples of invalid master operation sequences (at each bulb, a directed loop exists) 
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constraint, with the same concept as Equation (5.18), which avoids the directed loops for 

each single operation. Finally, Equation (5.20) ensures that 𝑋𝑖𝑗 is a binary variable. 

 

5.5 The Proposed Master Generating Algorithm 

As the total number of operations increases, the time efficiency of the developed models 

decreases. In this section, a novel algorithm is proposed which is not only capable of 

finding good (and even optimal) solutions, but it is also quite time efficient for any sizes 

of problems.  

Considering the objective function, it can be interpreted that the appearance of each edge 

in the master operations sequence is in fact based on the frequency of that edge among all 

variants as long as it satisfies the objective function. Having reasonable number of a 

particular edge among variants does not guarantee that it should also be appeared in the 

master operations sequence. For instance, suppose that the edge 1→4 has been appeared 

in five out of thirteen operations sequences of existing variants. In addition, suppose that 

Operations 1 and 4 are both appeared in eleven out of these thirteen variants. Despite the 

fact that the edge 1→4 has a reasonable frequency (five), there are six other variants (11-

5=6) which have both Operations 1 and 4 but do not have that edge (i.e. there is no 

immediate relationship between the two operations in those six variants). Therefore, the 

edge 1→4 should not be appeared in the master operations sequence since adding it to the 

master operations sequence corresponds to deterioration in the objective function. On the 

other hand, there might be edges with low frequency among variants and still they should 

be appeared in the master operations sequence as they improve the objective function. 

In the proposed master generating algorithm, after finding the frequency for each edge, 

those edges with zero frequency and those that worsen (increase the value of) the 

objective function are eliminated. The remaining edges are sorted in descending order. 

Next, one edge at a time is considered to be added to the master operations sequence. If 

the new edge (which is going to be added) makes a directed sub-tour with any sets of 

previously added edges, it will not be added to the master operations sequence. This is 

similar to Constraint (5.18) for sub-tour elimination in the second mathematical model. 

For this purpose, in the proposed algorithm, each operation has a list of Tabu operations 
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which is empty at the beginning. Whenever, an edge is going to be added to the master 

graph, this edge is first checked to make sure that it is not a non-permitted edge and after 

adding the edge, Tabu lists are updated accordingly. For instance, suppose that the edge 

3→5 is the first edge that is added to the master operations sequence. Therefore, Set 3 is 

updated from 3={∅} to 3={5} meaning that the edge 5→3 is not permitted anymore to be 

in the master graph. Now, suppose that the edge 5→2 is the second candidate edge (in 

terms of frequency) to be added to the master graph. Therefore, Set 5 is updated from 

5={∅} to 5={2} and consequently Set 3 is updated from 3={5} to 3={5,2} as Set 5 is 

actually an element of Set 3. It means that, in addition to the edge 5→3, the edges 2→5 

and 2→3 are also not permitted to be in the master operations sequence since they lead to 

having a directed loop in the master operations sequence. This procedure continues until 

all remaining edges are assessed to be either added to or not considered in the master 

operations sequence.  

The proposed master generating algorithm can deal with variants having serial, 

networked or combination of both structures and the obtained master operations sequence 

can be serial or networked.  

The following is the pseudo code of the proposed master generating algorithm: 

 

Begin algorithm 

 

Set n= total number of existing variants, m=maximum number of operations among 

all the existing variants. 

Set P1,P2,…Pn: matrices of operations sequences of Variant 1 to Variant n with the 

elements of y[i][j][k]=1 if edge i→j exists in Variant k and 0 otherwise.   

Set Matrix X: matrix of master operations sequence (master matrix) with its all m×m 

elements equal to zero.  

Set O1=O2=…=Om={∅}, Tabu list of each operation in the master operations 

sequence. 

Set e← 0, w← 1, and q← 1, as counters. 

 

For all possible edges (m×(m-1), i≠j): *finding the frequency of each edge over all existing 

variants*  

a. Set Frq[i][j]= ∑ 𝑦[𝑖][𝑗][𝑘]𝑛
𝑘=1  

Endfor 

 

For all possible edges (m×(m-1), i≠j): *finding edges deteriorating OF and setting them zero* 

If  Frq[i][j]≠ 0 and Frq[i][j]<0.5×n 
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a. Set l=total number of existing variants having both Operations i and j  

b. If Frq[i][j]< 0.5×l 

 Set Frq[i][j] ← 0 

Endif 

Endif 

Endfor 

 

For all possible edges (m×(m-1), i≠j): *eliminating initial zero-frequency and deteriorating 

edges* 
If  Frq[i][j]≠ 0  

a. Set Frqno[g][h] ← Frq[i][j]  

b. g← i 

c. h← j 

d. e← e+1* finding total number of non-zero edges after elimination of deteriorating 

edges* 

Endif 

Endfor 

 

While w ≤ e: *sorting edges in descending order * 

a. Set Frqnosort[w] = w
th

 highest frequency among Frqno 

b. Identify the corresponding edge placed in rank w  

c. w← w+1 

Endwhile 

 

While q ≤ e: 

a. Select the edge corresponding to Frqnosort[q] (edge c→d for instance) 

b. If edge c→d is a permitted edge (c ∉ Od ) 

i. add it to the master matrix (x[c][d] ←1) 

ii. update Tabu lists accordingly 

Endif 

c. q← q+1 

Endwhile 

 

Calculate objective function based on the elements of Matrix X. 

 

End algorithm. 

 

5.6 Illustrative Example 

In this section, a hypothetical example is provided to show how the master operations 

sequence is generated from the existing variants and how it is used to extract the 
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operations sequence of a new variant. Suppose that there are five existing variants with 

the total number of seven operations. The operations sequences of the existing variants 

are available. Figure 5.5 illustrates the operation precedence graphs of the existing 

variants. 

 

Since the above example includes a combination of both serial and networked operations 

sequences, the generalized master operations sequence generating model is considered to 

find the master operations sequence. For this purpose, GAMS optimization solver is used 

to find the optimum solution. The obtained master matrix has been illustrated in Figure 

5.6 with an optimum objective function of 3. It took 6.27 seconds for the model to obtain 

the solution under a PC with 3.4 GHz Intel Core i7-4770 CPU processor with the 

Windows 8.1 operating system and 16 GB of RAM. Applying the proposed master 

generating algorithm also yields the same solution and objective function. Obtaining non-

zero objective function indicates that some conflicts (dissimilarities) exist between the 

existing variants. For instance, in Figure 5.5, in the second variant, there is direct 

precedence relationship between Operations 2 and 3 (2→3) while in the fourth and fifth 

variants, Operations 2 and 3 do not have such precedence constraint. This phenomenon is 

1 

3 

5 

7 2 3 

6 

7 

4 

Figure 5.5  Operation precedence graphs for the four existing variants 
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not uncommon in reality and variants belonging to the same family may have some 

precedence dissimilarities depending on their features. 

[
 
 
 
 
 
 
0 1 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

   

0 1 0
1 0 0
1 0 1
0 0 0
0 0 0
0 0 0
0 0 0

   

0
0
0
1
1
1
0]
 
 
 
 
 
 

 

 

 

The master operations sequence can be extracted from the obtained master matrix. Figure 

5.7 shows the master operations precedence graph. 

 

Now, suppose that a new variant requires operations 1,2,4,5 and 7. Observing Figure 5.5 

indicates that none of the existing variants have all these operations. The operations 

sequence of the new variant can be obtained by excluding the operations (and their edges) 

from the master operations sequence that do not appear in the new variant. The operation 

precedence graph for the new variant is shown in Figure 5.8. 

 

Figure 5.7  Master opeartion precdence graph extracted from the four variants 

 

1 3 6 7 

5 

2 4 

Figure 5.6  Master operation sequence matrix obtained from the second mathematical model  
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After obtaining the operations sequence for the new variant, it needs to be reviewed by 

planners in order to apply required modification. For instance, the new variant might 

require a new operation which none of the existing variants requires it. Therefore, 

planners should modify the obtained operations sequence in a way that the new operation 

also appears on it. This modification is more important when the obtained master 

operations sequence has non-zero dissimilarity distance from the existing variants. It 

indicates that there are some conflicts between the existing variants with respect to some 

operations steps and these operations steps might also appear in new variants. In such 

case, it is advised to first check if the new variants have those conflicting operations 

steps. If the answer is yes, then, those conflicting features of new variants should be 

examined, by considering other features, and determining the appropriate way of 

performing them. It should be noted that this research is based on the assumption that all 

the product variants, including the new variants, belong to the same product family and 

share many similarities and hence, only few aspects of them may vary from each other.  

 

5.7 Numerical Results 

The system used for the experiment in this section is the same as the one described in 

Section 5.6. Several numerical tests were conducted and the results obtained from the 

developed mathematical models were compared with the solutions obtained from the 

proposed algorithm. Both serial and generalized MIP models were implemented in 

GAMS optimization software and solved with CPLEX 12.0.1 MILP solver. For the 

proposed master generating algorithm, Borland C++ compiler version 5.02 was applied.  

Figure 5.8  Opeartion precdence graph for the new variant 
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Different sets of problems were considered for each model to encompass small, medium 

and large sizes of problems. For the number of operations (o), 3, 5, 7, 10, 15, 25 and 50 

were selected while the number of variants (n) was set to be 5, 10, 20, and 50. For each 

combination, 10 replicates were conducted and examined. Inasmuch as GAMS 

optimization software is not able to find the exact solutions for large sizes of problems in 

a reasonable computing time, it was terminated after 60 minutes for some cases. 

Regarding the performance measures, two important criteria namely relative average 

percentage error (%RE) and run time were considered to assess the performance of each 

model and the proposed algorithm. The relative percentage of error can be obtained using 

the following equation: 

 

 %𝑅𝐸 =
the solution found by proposed algorithm (or by GAMS) − best solution)

best solution
 × 100      (5.22).  

The best solution in above formula can be obtained by either GAMS or the proposed 

algorithm. In large problem sizes, GAMS may not be able to find the exact solution in 60 

minutes and in such case, the solution obtained from the proposed algorithm might be 

better than GAMS’s solution. 

Each mathematical model is compared with the proposed master generating algorithm 

separately. Tables 5.1 and 5.2 summarize the results. 

Table 5.1 Comparison of solutions of the first MIP model using GAMS and the proposed master 

generating algorithm 

    GAMS (Serial MIP model) 
Proposed master generating 

algorithm 

o (operations) n (variants) %RE Avg. time (Sec.) %RE Avg. time (Sec.) 

3 

5 

0 

0.666 

0 < 0.000001 

10 0.651 

20 0.65 

50 0.654 

5 

5 0.658 

10 0.646 

20 0.645 

50 0.781 

7 

5 0.641 

10 0.648 

20 0.771 
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50 0.652 

10 

5 0.676 

10 0.671 

20 0.802 

50 0.834 

15 

5 2.045 

10 1.95 

20 1.308 

50 1.702 

25 

5 26.833 

10 29.566 

20 23.607 

50 24.758 

50 

5 125 3600 0.031 

10 68.75 3600 0.031 

20 310 3600 0.032 

50 415 3600 0.036 

 

 

Table 5.2 Comparison of solutions of the second model using GAMS and the proposed master 

generating algorithm 

    GAMS (Generalized MIP model) 
Proposed master 

generating algorithm 

o (operations) n (variants) %RE Avg. time (Sec.) %RE Avg. time(Sec.) 

3 

5 

0 

0.846 

0 < 0.000001 

10 0.851 

20 0.853 

50 0.86 

5 

5 0.869 

10 0.801 

20 0.853 

50 0.961 

7 

5 6.018 

10 5.965 

20 5.975 

50 6.089 

10 

5 

out of memory 
10 

20 

50 
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The most significant finding from these two tables is that the proposed master generating 

algorithm was able to find the exact solutions for all the studied problems in a very short 

time (less than 0.000001 seconds in most cases). It verifies the efficiency of the proposed 

algorithm in terms of accuracy and run time. Besides, finding the same solutions by both 

GAMS and the proposed master generating algorithm verifies the accuracy of both 

developed serial and generalized mathematical models.  

It is also observable from Table 1 that the average computing time is not sensitive to the 

number of variants and in fact it is the number of operations which significantly affects 

the computing time for the mathematical models.   

According to Table 5.1 and the serial mathematical model, GAMS is capable of finding 

exact solutions in reasonable computing time until o=25. When the number of operations 

increases to 50, regardless of the number of variants, GAMS cannot find the solution in 

3600 seconds and it has been then terminated and the best solution obtained until that 

time has been recorded. For that reason, the relative percentage of error for GAMS is not 

zero when o=50. 

Table 5.2 refers to the comparison of solutions obtained from the generalized 

mathematical model and the proposed master generating algorithm. As mentioned before, 

the second mathematical model is more complicated than the first model as it can apply 

for variants having serial, networked or combination of both operations sequences. The 

number of operations corresponds to the number of constraints used to prevent directed 

loops in the generalized mathematical model.Thus, as soon as the number of operations 

rises to 10, GAMS software yields “out of memory” message. In contrast, the proposed 

master generating algorithm, even when the number of operations is high, can find the 

solutions in a very short time. 

 

5.8 Case Study 

In this section, two case studies, one for assembly application and the other for 

fabricating application, are provided to demonstrate how a master operations sequence is 

derived from existing variants and used for constructing the operations sequences of new 

variants in real manufacturing environment. 
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5.8.1 Case Study 1: Assembly Application 

This case study considers five variants of pilot control valves. A pilot control valve is a 

small valve which controls the flow and typically has emergency and safety applications. 

These valves are used in different industries such as food, beverage, paper and 

pharmaceutical industries.  In this case study, all information about the five variants has 

been retrieved from Dorot
®
 control valves catalogs (http://www.dorot.com/) with minor 

changes in some variants for better illustration of the model application. The first four 

variants are assumed to be the existing variants and their operations sequences are 

available in advance while the last pilot control valve is considered a new variant and 

there is no information about its operations sequence. In this case study “operation” 

mostly refers to an assembly process. Figure 5.9 illustrates the four existing variants of 

pilot control valves.  

http://www.dorot.com/
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V1 #: 29-200 V2 #: 31-300 V3 #: 66-200 V4 #: 68-200 

 

 

 

Table 5.3 also shows the name of each part used in the existing pilot control valves. 
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Figure 5.9  Four existing variants of pilot control valves for the case study 

retrieved from Dorot® control valves catalogs (http://www.dorot.com/) 
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Table 5.3 The name of the components used in the existing variants (case study) 

Part  # Part Name Part  # Part Name 

1 Adjusting Bolt 14 Body O-Ring 

2 Locking Nut 15 Plug 

3 Spring ID Ring 16 Seal for Plug 

4 Bonnet 17 Seal Housing 

5 Bonnet Nut 18 Seal 

6 Spring Disc 19 Seal Disc 

7 Spring 20 Seal Bolt 

8 Diaphragm Assembly 21 Seat Washer 

9 Diaphragm Bowl 22 Seat 

10 Ports Selection Body 23 Nozzle Bolt 

11 Body 24 2"-QR Bonnet 

12 Bracket 25 Pilot Locking Nut 

13 Bracket Bolt   

 

Figure 5.10 shows the operations precedence graphs of the existing variants which are 

assumed to be available in advance.  
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In Figure 5.10, “ASM” and “Sub-ASSY” refer to “assembling” and “sub-assembly” 

respectively. According to the graphs in Figure 5.10, each product variant consists of 

several components that may or may not appear in other variants. In addition, depending 

on the features and components, the assembly steps may differ between variants. Using 

these operation precedence graphs, the master operations sequence is generated by 

applying the proposed master generating algorithm. It took less than 0.000001 seconds to 

generate the master graph. Figure 5.11 shows the obtained master operation precedence 

graph which has an objective function value of 3 indicating that there are some 

conflicts/inconsistencies among the four existing variants. For instance, assembling 

Component 4 in Variant 3 is different from the ones in other variants. 

 

 

 

 

 

Figure 5.10  Operation precedence graphs of four existing variants of pilot control valves 
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Now, suppose that a new variant (V5#: 68-700) is introduced which is illustrated in 

Figure 5.12.  No information regarding the operations sequence of this variant is 

available. 

 

 

Figure 5.11  Master operation precedence graph obtained from the proposed 

algorithm for the case study 
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V5#: 68-700 

 

 

 

 

By using the obtained master operations sequence, the new variant can be processed in 

line with the existing variants. By removing the components not appeared in the new 

variant from the generated master operations sequence, the operations sequence for the 

new variant can be obtained as shown in Figure 5.13.  

1 

2 

3 4 

6 

7 

8 

14 

11 

12 

13 

17 

18 

19 

20 

21 

22 

Figure 5.12  Components of the new poilot control valve in the case study retrieved from Dorot® 

control valves catalogs (http://www.dorot.com/) 
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Comparing the obtained operations sequence of the new variant with its components 

(Figure 5.12) and also with the operations sequences of the existing variants verifies that 

the assembly steps obtained for the new variant from the proposed master generating 

algorithm are logical and consistent with the assembly steps of existing variants. As can 

be observed in Figure 5.12, the components of the new variant do not all appear in a 

single existing variant; some of its components appear in some existing variants while the 

remaining components appear in other existing variants. Therefore, the assembly steps for 

the new variant would be as follows: for Parts 1,2,3,4 and 6 the assembly steps would be 

almost the same as the ones for Variants 1,2 and 4, for Parts 7, 8, 11 and 14 should be 

similar to the ones for Variants 2, 3 and 4 while for Parts 12 and 13 it should be the same 

as the ones for Variant 1. Finally, Parts 17 to 22 only appear in Variant 3 and hence, the 

assembly steps for these parts would be similar to the assembly steps of Variant 3. This is 

Figure 5.13  Operation precedence graph of the new variant (V5#: 68-700) 

obtained from the generated master operation sequence (case study) 

ASM 

#21 

ASM 

#19 

ASM 

#20 

ASM 

#14 
ASM 

#11 

ASM 

#22 

Adding #8 

to fixture 

/pallet 

Unloading 

from bins/ 

buffers 

Assembling 
Bonnet Sub-

ASSY to Body 

Sub-ASSY 

ASM 

#7 

Final 

Assembly 

ASM 

#18 

ASM 

#17 

ASM 

#6 

ASM 

#4 

ASM 

#2 

ASM 

#3 

Adding #1 
to fixture 

/pallet 

ASM 

#12 

ASM 

#13 



 

129 

 

what exactly the generated master operations sequence does; i.e. aggregating the 

information of all existing variants to be used for retrieving the operations steps of new 

variants. 

By using the proposed algorithm in generating master operations sequence which takes 

less than 0.000001 seconds in most cases and then, removing the components not 

appearing in the new variant from the generated master operations sequence, the time of 

retrieval would be less than a minute. This will result in less time and effort in developing 

the operations sequence of the new variant from the scratch and less reconfiguration in 

system level. It should be noted that it is still required that the obtained operations 

sequence for the new variant is reviewed by the planner and required modifications are 

applied specially when the new variant has some new components that did not exist in 

any of the existing variants. 

5.8.2 Case Study 2: Machining Application 

This case study considers nine variants of mostly ejecting and coupling parts/components 

produced by Rabourdin Industry (http://www.rabourdin.fr/). These parts can be used in 

different applications such as automotive, power transmission, locomotive, 

manufacturing machinery and conveyors. Figure 5.14 illustrates the first eight variants 

with their names which are used as existing variants. The ninth variant is considered the 

new variant. Most of the required operations in this case study are machining processes. 
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V1 #: 070024L- 

Ejector sleeve 

V2 #: 094502L-

Hose extension 

V3 #: 090923L- One 

piece socket extender 

 

V4 #: 106807L- 

Guide bolt 

V5 #: 065392L- Bottom 

retained demountable pillar 

V6 #: 100893L- 

Shoulder bolt  

 

V7 #: 087540L- 

Knock out rod 

V8 #: 107522L- 

Hose extension 

Figure 5.14  Eight existing variants of different parts manufactured by 

Rabourdin Industry (http://www.rabourdin.fr/)  

http://www.rabourdin.fr/
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Figure 5.15 shows the operations precedence graphs of the eight existing variants based 

on the operations listed in Table 5.4. Explanation is provided for some operations for 

clarity. 

 

  Table 5.4 List of operations’ names used in the case study 

No.  Operation’s name and description No.  Operation’s name and description 

1 Saw Cutting 8 Taper Turning 

2 
Cylindrical Turning 1 (first round of 

stepping) 
9 Taper Turning-other side 

3 Cylindrical Turning -other side 10 Chamfering  

4 

Cylindrical Turning 2 (second round of 

stepping): 
11 Under Cutting 

This operation is done on a surface, which 

has already undergone cylindrical turning, 

to have a deeper cutting. 

12 Fillet 

5 
Gun Drilling: 

13 Boring 

This operation is applied for deep drilling. 

6 Hexagon Hole Drilling 

14 

Quality Control: 

7 Horizontal Milling 

This operation is for checking and 

comparing the actual dimensions of the 

finalized part with specifications. 

 

 

 

 



 

132 

 

 
 

 

 

Quality 

control 

Gun 

drilling 

V2: 

V1: 

Saw 

cutting 

Cylindrical 

turning 1 

V3: 

V4: 

Saw 

cutting 

Cylindrical 

turning 1 

Gun 

drilling 

Taper 

turning 

Quality 

control 

Taper 
turning-

other side 

Saw 

cutting 

Cylindrical 

turning 1 

Cylindrica

l turning 2 
Chamfering 

Quality 

control 

Gun 

drilling 

Saw 

cutting 

Cylindrical 

turning 1 

Quality 

control 

Taper 

turning 

Under 

cutting 

Hexagon 

hole 

drilling 



 

133 

 

 
 

 

V6: 

V5: 
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Figure 5.15  Operation precedence graphs of the eight existing variants (case study)  
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Using the proposed algorithm, a master operations sequence based on the eight existing 

variants is constructed. The obtained master operations sequence has an objective value 

of 8 (non-zero) meaning that some conflicts exist among the existing variants regarding 

their operations sequences. In such cases, more attention is required after extracting the 

operations sequence for a new variant as it may require some modifications and revisions 

based on those conflicting features. Figure 5.16 illustrates the obtained master operations 

sequence from the eight existing variants. 

 

Figure 5.16  Master operation precedence graph derived from the eight ejecting 

and coupling part variants (existing variants) 
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The operations sequence of the new variant (Bushed ejector rod) (Figure 5.17) is not 

available in advance. However, the processes that this variant undergoes are known as 

follows: Saw cutting, Gun drilling, Horizontal milling, Cylindrical turning 1, Quality 

control, Taper turning, Under cutting, Boring, and Fillet. The operations sequence of the 

new variant is obtained by removing those processes (manually or using a program) that 

are not required for the new variant from the generated master operations sequence. Here, 

the unnecessary operations were removed manually. Figure 5.18 shows the operations 

sequence of the new variant obtained from the master operations sequence. Comparing 

the obtained operations sequence in Figure 5.18 with the operations sequences of the 

existing variants in Figure 5.15 verifies the fact that the operations sequence of the new 

variant is consistent with the operations sequences of the existing variants. As mentioned 

before, the operations sequence for the new variant obtained by the developed retrieval 

method should be reviewed by the planner and based on features of the new variant, 

required modifications should be applied.  

 

Figure 5.17  The new variant- Bushed ejector rod 
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5.9 Summary 

In this chapter, two MIP models were developed to generate a master operations 

sequence from operations sequences of existing variants of a part/product family. Review 

of the previous works reveals lack of models addressing this issue. The first MIP model 

was developed for product variants with serial structure of operations sequences. The 

second MIP model is a generalized form of the first model which can deal with serial and 

networked operations sequences or combination of both structures. Therefore, the derived 

master operations sequence from the generalized model can be serial or networked. The 

obtained master operations sequence has the minimum total dissimilarity distance from 

the existing variant. Inasmuch as the developed mathematical models can find a master 

operations sequence for small to medium sizes of problems (in terms of total number of 

operations), a novel master generating algorithm was proposed which is capable of 

finding the optimum master operations sequence in all sizes of the studied problems in 

less than 0.036 seconds. Two case studies were also used to show the application of the 

developed models and the proposed algorithm to both assembly and fabricating 

applications. The obtained master operations sequence has several advantages. It helps 

planners to spend less time and effort in development of operations sequences of new 

Figure 5.18  Operation precedence graph of the new variant (Bushed ejector 

rod) obtained form the master operation sequence  
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variants which are within or significantly overlap with the scope of the existing variants. 

It also guarantees that the operation steps of a new variant are in line with those of the 

existing product variants leading to less changeover time between variants on the shop 

floor. 



 

138 

 

Chapter 6 

Conclusions and Future Work 

 

6.1 Research Significance and Achievements 

In this research, innovative mathematical models have been developed and novel 

algorithms have been proposed to fill identified research gaps existing in four different 

manufacturing systems domains namely production sequencing, product family 

formation, production flow, and operations sequence retrieval. 

In some flow shop environments, total setup times between product variants have an 

important role and are considered more significant than processing times. Therefore, 

optimal sequence of the various product variants is based on improving machine 

utilization. In the first part of the research, a permutation flow shop environment was 

considered where bypassing was not permitted. A mathematical model was developed 

and solved using GAMS software. The non-linear model was then reformulated to find 

the exact solutions. A novel policy for sequencing product variants was proposed and its 

results were compared to the exact solutions obtained from GAMS. This sequencing 

policy capitalizes on the commonality between product variants to increase sequencing 

efficiency. The developed sequencing policy is simple and easy to apply in 

manufacturing environments. A case study in the labels stickers making industry was 

used for demonstration and validation. Numerical results indicate that the proposed 

sequencing policy is capable of finding good solutions, and optimum ones in some cases, 

in less than 0.02 seconds for all small, medium and large studied problem sizes. The 

solutions obtained using the proposed sequencing policy has a total average of 1.2% 

relative error which is quite comparable with the solutions obtained using GAMS. 

Besides, according to the case study of six variants of label stickers, the obtained 

sequence from the proposed sequencing policy could reduce the total setup time by 42% 

and improve the productivity by 12% when compared with a random sequence. Using the 

results obtained in the first phase of this research can help production planners to benefit 

from the proposed sequencing policy and try to decrease the changeover time and 

improve utilization in the system. 
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Operations flow based similarity is an important criterion for grouping variants. 

Similarity coefficient for product variants with networked sequence of operations has not 

been considered in the literature. Previously proposed similarity coefficients, which are 

based on operation/assembly sequence, focused on variants with serial operations 

sequences where the order of processing operations is fixed; while in practice, there are 

many part/product variants with flexible operations sequence options. In the second part 

of the research, a novel similarity coefficient for part/product variants was proposed 

based on the networked operations sequence similarity inspired by the analysis used in 

the field of biology (e.g. enzymes structures comparison). An extension of the proposed 

coefficient was also presented with an example for illustration. A more comprehensive 

similarity coefficient was developed by including operations similarity and production 

volume criteria. The popular operations similarity coefficient, called Jaccard’s similarity, 

was applied and extended. A new coefficient using production volume similarity criterion 

was also developed. Part/product variants are then clustered and grouped based on the 

integrated similarity coefficient using the average linkage clustering (ALC) algorithm. 

The main applications of the proposed similarity coefficient were addressed. The grouped 

variants were sequenced as a secondary application of the proposed similarity coefficient. 

The sequence obtained from the proposed approach was compared with that obtained 

from a developed mathematical model. The result showed the accuracy of the proposed 

sequencing approach and can serve as a good preliminary sequence. A case study was 

also provided for demonstration with considering seven different product variants. The 

case study shows that the sequence obtained from the proposed sequencing approach 

improves the objective function (combination of changeover time and utilization) by 

15.7% on average and it yields the optimum solution verified by the solution obtained 

from the mathematical model. Using the similarity coefficient proposed in the second 

phase of this research can help the manufacturers to decrease the changeover time and 

intercellular movement and improve utilization and productivity of the system by 

grouping similar variants and assigning them to a single cell. It can also help production 

planners to sequence variants based on the proposed similarity coefficient, if the 

aforementioned conditions are met, leading to less changeover time.  
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After grouping product variants based on their similarity, facility assignment with respect 

to backtracking minimization was taken into consideration in the third phase of the 

research. Minimizing backtracking can reduce the wasted time and increase availability 

of parts/products to machines leading to improving machine utilization and throughput of 

the system. Therefore, a novel mathematical model was developed to minimize total 

backtracking distance by considering product variants having networked operations 

sequences and also considering their production volumes. In this regard, three problems 

were solved simultaneously in one model: (1) how to locate machines in candidate 

places, (2) how to assign operations to machines based on machine capability, and (3) 

how the final sequence of performing operations should be. The developed model was 

non-linear at first which was then reformulated to its equivalent MIP model in order to 

use LP solvers to find the exact solutions. A case study of three different variants of 

engine blocks was also provided for demonstration. Based on the obtained results, 

backtracking minimization improved the total throughput by 7.79% in the case study. 

Therefore, using the developed model can help manufacturers to increase availability of 

jobs to machines and to improve total throughputs of their systems.       

In the last phase of the research, two new mixed integer programing (MIP) models were 

developed and a novel algorithm was proposed for generating master operations sequence 

based on available operations sequences of a family of part/product variants. The 

generated master operations sequence can be used to construct the operations sequence 

for new variants falling within or significantly overlapping with the boundary of the 

considered family. Literature review indicates that no research has been carried out for 

generating master operations sequence. The main advantages of the master operations 

sequence include reducing time, cost and effort required for developing operations 

sequences of new variants and hence, improving productivity of the system. It also 

guarantees that the operation steps of the new variant are consistent with the operation 

steps of the existing variants resulting in less changeover time from processing existing 

variants to the new one. The first MIP model was developed for variants having serial 

operations sequence while the second model was a generalized model encompassing 

variants with serial or networked operations sequences or the combination of both 

structures. The proposed master generating algorithm was able to deal with variants with 
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various structures. The developed models and algorithm are used to find a master 

operations sequence which has the minimum total dissimilarity distance from existing 

variants. A case study was also provided for demonstration of the problem. By using the 

proposed algorithm in generating master operations sequence which takes less than 

0.000001 seconds in most cases (up to 50 variants and 25 operations) and then, removing 

the components not appearing in the new variant from the generated master operations 

sequence, the time of retrieval would be less than a minute. It helps planners to obtain the 

operations sequences of new variants much faster than starting from scratch. It also 

ensures that the operation steps of the new variant are consistent with the operation steps 

of the existing variants resulting in less changeover time and improving productivity. 

 

6.2 Contributions 

In this section, the contributions of the research made at each topic are presented. As 

mentioned before, this research included four different manufacturing systems domains 

namely production sequencing, product family formation, production flow, and 

operations sequence retrieval.  

6.2.1 Production Sequencing 

This topic was presented in Chapter 2. The contributions are as follows: 

 A new mathematical model was developed for a permutation flow shop. 

  For the first time, a novel setup similarity coefficient was proposed for this 

problem. 

 A novel sequencing policy based on the proposed setup similarity coefficient was 

developed for the first time which is quite efficient in terms of accuracy and 

runtime. 

6.2.2 Product Family Formation 

This topic was presented in Chapter 3. The contributions are as follows: 
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 A novel operations flow based similarity coefficient inspired by the analysis used 

in the field of biology was proposed for the first time for variants having network 

structure.  

 The proposed coefficient then was extended to the cases in which the connections 

between stations have different importance weight. 

 An extension to Jaccard’s similarity coefficient was proposed for cases that 

different operations have different importance weight. 

 A novel production volume similarity was proposed to obviate the drawback of 

the most common coefficient in literature. 

 A mathematical model was developed for sequencing application (secondary 

application) of the integrated similarity coefficient. 

 The sequencing policy used for the first topic was applied and its results were 

compared with the mathematical model indicating the efficiency of the policy in 

terms of time and accuracy. 

6.2.3 Production Flow 

This topic was presented in Chapter 4. The contributions are as follows: 

 Minimizing backtracking in a manufacturing system where product variants have 

networked structures and operations should be assigned to machines based on 

machine capability has never been addressed in literature.  

  A novel mathematical model was developed capable of dealing with three 

decision variables simultaneously: (1) machine location, (2) operation 

assignments to machines and (3) final sequence of performing operations. 

6.2.4 Operations Sequence Retrieval 

This topic was presented in Chapter 5. The contributions are as follows: 

 The considered problem of generating a master operations sequence has never 

been addressed in literature. Operation refers to both assembly and fabrication 

processes. 
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 Two new mathematical models were developed for generating master operations 

sequence from a family of existing variants. The first model was developed for 

variants having serial operations sequence while the second model, the 

generalized form of the first model, was developed for variants having different 

structure; i.e. serial, networked or combinations of both. 

 A novel algorithm was also proposed for generating master operations sequence 

in much less time than the developed mathematical models.  

 

6.3 Limitations and Future Work 

In this section the limitations of the current research are mentioned and the potential 

directions for future work are discussed.  

In Chapter 2, the proposed similarity coefficient and the sequencing policy were based on 

the setup criterion only. Other criteria that can be taken into consideration for future 

related research include process commonality in terms of lot sizing and processing time, 

due dates, job priorities and so on. In addition, some uncertainty such as stochastic setup 

times can be taken into consideration for future works and accordingly, a robust 

algorithm combined with simulation could be used to check the sensitivity of the 

algorithm.    

In Chapter 3, three important similarity criteria were considered. Yet, the developed 

similarity coefficient may be extended in the future to include additional criteria such as 

alternate routing to have a more comprehensive similarity coefficient. In addition, the 

developed coefficient can also be extended for application in grouping and assigning 

manufacturing machines.  

In Chapter 4, a mathematical model was developed to minimize total backtracking 

distance. Nevertheless, as the size of the problem increases, especially in terms of number 

of operations and machines (e.g. 30 operations and 6 machines), the efficiency of the 

developed model to solve the problem in a reasonable time decreases. Therefore, for 

future work, a heuristic or a Meta Heuristic algorithm can be used to deal with large sized 

problems.    
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In Chapter 5, two MIP models were developed and an algorithm was proposed to 

generate a master operations sequence. However, the obtained master operations 

sequence in this research is based on the available information of the existing variants 

and does not consider new features/components which may appear in new variants. This 

can be a subject for future research.  

Moreover, the proposed algorithms and developed mathematical models have not been 

implemented in real manufacturing systems which can be done in the future for validation 

purposes. Besides, their accuracy versus runtime can be examined in industrial 

applications.  

In some chapters, the developed mathematical models were not able to find the solutions 

for large size problems. One of the reasons for this drawback is the capability of the 

operating system by which the experiments were conducted. Usually, industrial problems 

are large sizes. Therefore, for such cases, using more powerful computers might be an 

option to obviate this issue.   
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