
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Trend Analysis of Belief-State History with Discrete
Wavelet Transform for Improved Intention
Discovery
VIjaya Krishna Mulpuri
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Mulpuri, VIjaya Krishna, "Trend Analysis of Belief-State History with Discrete Wavelet Transform for Improved Intention Discovery"
(2016). Electronic Theses and Dissertations. Paper 5856.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5856?utm_source=scholar.uwindsor.ca%2Fetd%2F5856&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Trend Analysis of Belief-State History with Discrete

Wavelet Transform for Improved Intention Discovery

by

Vijaya Krishna Mulpuri

A Thesis

Submitted to the Faculty of Graduate Studies
Through Computer Science

In Partial Fulfillment of the Requirements for
The Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2016

© 2016 Vijaya Krishna Mulpuri

Trend Analysis of Belief-State History with Discrete

Wavelet Transform for Improved Intention Discovery

by

Vijaya Krishna Mulpuri

APPROVED BY:

Dr. Christine Thrasher

Faculty of Nursing

Dr. Scott Goodwin

School of Computer Science

Dr. Xiaobu Yuan, Advisor

School of Computer Science

September 21, 2016

 iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material

from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for

a higher degree to any other University or Institution.

 iv

ABSTRACT

Software Product Lines (SPL) have emerged as a new paradigm of software development. By

means of mass production of customized software products, SPL has the potential to

significantly reduce development time and cost while improving the quality of software systems.

Currently, there is still a severe shortage of tools that support the decision-making process for

software clients to interactively "order" software products due to the difficulty of software

customization, especially via dialogue in natural language. While most of the existing

approaches use POMDP-based dialogue management, this thesis research proposes to introduce

historical information of belief states into the POMDP model and to analyze its trend with

discrete wavelet transformation (DWT). Accordingly, a new algorithm is developed to improve

the accuracy of intention discovery with trend analysis, and to reduce the dialog length by

switching POMDP policies between contextual control modes according to the anticipated

knowledge of different users. The efficiency and accuracy of the proposed method are examined

by experiments with simulation.

 v

DEDICATION

To the almighty god, my mom (M. Subhadra Devi), my grandfather (G. Anatharamaiah) and all

my friends for their belief and support.

 vi

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my supervisor Dr. Xiaobu Yuan for his

encouragement and support in presenting this Thesis work. My ultimate gratitude goes to him for

contributing his suggestions and ideas during my research. His insightful feedback and

instructions made it possible for me to accomplish this work.

I would like to acknowledge my thesis committee members Dr. Christine Thrasher and

Dr. Scott Goodwin whose suggestions and recommendations greatly improved the quality of this

work. I would like to thank them for spending their valuable time providing feedback about

thesis throughout my proposal and defense.

My special thanks goes to my parents and my family for their patience and love they

provided to me during all times. I express my deep appreciation to my all friends for their

motivation and moral support they provided during all stages of my thesis work.

 vii

TABLE OF CONTENT

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENT vi

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF APPENDICES xiv

LIST OF ABBREVIATIONS/SYMBOLS xv

CHAPTERS

1. INTRODUCTION 1

1.1. Software Product Line Engineering 2

1.2. Limitations in Automating RE in SPL using ECA 3

1.3. The Problem Statement 4

1.3.1. What is User Intention Discovery? Why improve it? 4

1.3.2. What is Dialog Length? How to optimize it? 5

1.3.3. Insight into Existing Decision-Making Algorithms 6

1.4. A Novel Approach 7

1.5. The Thesis Statement 7

1.6. Summary of Thesis Contributions 7

1.7. The Structure of This Thesis 8

2. A LITERATURE REVIEW 9

 viii

2.1. Partially Observable Markov Decision Processes (POMDP) 9

2.1.1. POMDP Model 10

2.1.2. Markov Property 11

2.1.3. What is Belief-State? 12

2.1.4. What are Policies? 12

2.1.5. Limitations in using POMDP 13

2.2. Trend Analysis 13

2.2.1. Signals, Frequencies and Transformations 14

2.2.2. Fourier Transformation (FT) 17

2.2.3. Short-Time Fourier Transformation (STFT) 19

2.2.4. Theory of Wavelets 20

2.2.4.1. Continuous Wavelet Transform (CWT) 20

2.2.4.2. Discrete Wavelet Transform (DWT) 23

2.3. Contextual Control Model (COCOM) 25

2.4. Previous Works 26

2.4.1. An Interactive approach by using Dialog Interface 26

2.4.2. An Interactive approach by using Software Visualization 27

2.4.3. An Interactive approach by using Embodied Conversational Agent 31

2.4.4. Affective Dialogue Modelling using POMDP 32

2.5. Summary 33

3. THE PROPOSED METHOD 35

3.1. Overview 35

3.2. Architecture 35

 ix

3.3. Modified POMDP Model 37

3.3.1. States (S) 38

3.3.2. Action (A) 38

3.3.3. Observations (O) 39

3.3.4. Transition (T) and Observation Probabilities (Ω) 39

3.3.5. Reward Function (R) and Discount Factor (𝛾) 40

3.3.6. Deriving Formula for Updating Belief-State 41

3.4. Design of Algorithms 41

3.4.1. Overview 41

3.4.2. StateEstimator Module 43

3.4.3. TrendAnalysis Module 43

3.4.4. KnowledgeLevelSelector Module 44

3.4.5. PolicySelector Module 45

3.4.6. MakeAction Module 45

3.5. Time Complexity 46

3.6. Training POMDP Model for Knowledge Level Thresholds 47

3.7. A Walk Through Example 48

4. EXPERIMENT DESIGN 49

4.1. Overview 49

4.2. Software 49

4.3. Ontology based requirement model 51

4.4. Interface 52

4.5. Simulation Environments 54

 x

4.5.1. Using POMDP and Policies 54

4.5.2. Using POMDP, Belief-State History, DWT and COCOM 54

5. SIMULATION AND RESULTS 57

5.1. Overview 57

5.2. Goal Datasets 57

5.3. Knowledge-Level Semantic Datasets 58

5.4. Life Cycle of a Simulator 60

5.5. Results of Simulation 61

6. CONCLUSIONS 63

6.1. Concluding Remarks of Previous Chapters 63

6.2. Future Improvements and Directions 63

REFERENCES 65

APPENDICES 70

VITA AUCTORIS 80

 xi

LIST OF TABLES

Table 2.1 Classification of decision-making algorithms 10

Table 3.1 Time Complexity of AutomateREinSPL algorithm 46

Table 3.2 Min/Max Sharp variation points for different knowledge level 48

Table 5.1 Accuracy results comparison of Traditional POMDP and

Proposed POMDP

61

Table 5.2 Dialog length results comparison of Traditional POMDP and
Proposed POMDP

62

 xii

LIST OF FIGURES

Figure 1.1 Example of Software Product Line 1

Figure 1.2 An Idea to Automate RE in SPL 3

Figure 2.1 Decision-making algorithms lineage 9

Figure 2.2 Sample Signal 15

Figure 2.3 Unknown Stationary Signal 16

Figure 2.4 Frequencies in Unknown Stationary Signal illustrated in Figure
2.3 on applying FT

16

Figure 2.5 A non-stationary signal 18

Figure 2.6 Frequencies in non-stationary signal illustrated in Figure 2.5 on
applying FT

18

Figure 2.7 FTR for non-stationary signal illustrated in Figure 2.5 using STFT 19

Figure 2.8 FTR for non-stationary signal illustrated in Figure 2.5 using CWT 22

Figure 2.9 Decomposition of signal using DWT 24

Figure 2.10 Example of DWT 24

Figure 2.11 Internal Structure of COCOM 26

Figure 2.12 The ontology-based requirement elicitation model 27

Figure 2.13 A Petri-Net based method of graphical visualization for software

customization

28

Figure 2.14 The enhanced text-based system with the graphical interface 29

Figure 2.15 An Interactive visualization for software customization 30

Figure 2.16 COCOM based interactive visualization architecture 30

Figure 2.17 Contextual Control in Dialogue Management with Belief State
Prediction

31

Figure 2.18 (a) Standard POMDP, (b) Two time-slice of factored POMDP for
the ADM

32

Figure 3.1 Architecture Diagram of proposed framework 36

Figure 3.2 Flow Chart for every interaction between user and agent 37

 xiii

Figure 3.3 POMDP Model 38

Figure 3.4 Knowledge Trainer Architecture 47

Figure 4.1 Functionalities of an online book shopping system 51

Figure 4.2 Data Model for the services 52

Figure 4.3 Web Application GUI 53

Figure 4.4 Experiment Project Structure 54

Figure 4.5 Simulator Architecture by using POMDP and Policies 56

Figure 4.6 Simulator Architecture by using POMDP, History, DWT and
COCOM (proposed)

56

Figure 5.1 Goals created from list of services in Appendix A for simulation 58

Figure 5.2 Life Cycle of a Simulator 60

 xiv

LIST OF APPENDICES

Appendix A The Subset of Requirement Model from Zhang [35] case study

70

Appendix B The Following is the Java code for the AutomateREinSPL

Algorithm in section 3.4.1

73

Appendix C The Following is the HTML, CSS and JS code for the Interface

described in section 4.5

75

 xv

LIST OF ABBREVIATIONS/SYMBOLS

COCOM Contextual Control Model

CWT Continuous Wavelet Transformation

DWT Discrete Wavelet Transformation

ECA Embodied Conversational Agent

FT Fourier Transformation

HCI Human Computer Interaction

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

RE Requirements Elicitation

SPL Software Product Line

STFT Short-Time Fourier Transformation

TFR Time-Frequency Representation of a Signal

WT Wavelet Theory

 1

CHAPTER 1

INTRODUCTION

Requirements Engineering aims to define, document and maintain the software

requirements and it is the most vital phase in Software Engineering (SE). It's a complex exercise

that considers product demands from a vast number of viewpoints, roles, responsibilities, and

objectives [20]. Requirements Elicitation (RE) is a part of Requirements Engineering where

requirements of a product/system are gathered from users, clients, and stakeholders [12]. A lot of

effort [32] [37] has been put in this area of research and many techniques were identified to

reduce errors and make the elicitation process work more efficiently. Consider the following

example, a software company gets following requirements from Client A and Client B as

illustrated in the diagram.

Client A: {Requirement A1, Requirement A2, Requirement A3}

Client B: {Requirement B1, Requirement B2, Requirement B3}

Figure 1.1: Example of Software Product Line

 2

Software Company analyzes the requirements and found that Requirements A1, A2 are

same as B1, B2 respectively and A3, B3 were different. By developing common assets library

consisting of Requirements A1, B1 as Requirement 1 and Requirements A2, B2 as Requirement

2 and using this common assets library in the development process of Products 1 and 2 will save

development time and cost. This technique is known as Software Product Line (SPL)

Engineering.

1.1 Software Product Line Engineering

In the course of time, there has been a significant change in the ways of production of

software applications due to the increase in demand for mass production of customized software.

Software produced are usually denoted either as Individual or Standard Software products. There

are many drawbacks of these software produced, like for example Individual software though

adaptable to changes are expensive whereas standard software products lack sufficient

diversification. Software Product Line (SPL) engineering has emerged as a new paradigm for the

development of software applications using reusable software assets, tailored to the individual

customer needs [22]. By reusing the common set of core assets in a prescribed way, SPL

improves the software customization process by reducing the development cost, time and

enhancing the quality. Organizations of all types and sizes can implement SPL strategies and the

benefits when implemented skillfully are as follows: [13]

 Productivity is improved by 10x

 Quality is increased by 10x

 Cost is decreased by 60%

 Time to market is decreased by as much as 98%

 3

 Labor needs are decreased by 87%

On the other hand, there were several attempts [11] [17] made to automate requirement

elicitation process in SPL engineering. Here automation means gathering requirements and

automatically looking for the relevant services/modules available in the common assets library or

not to implement the concepts of SPL Engineering. For gathering requirements, automation

requires an interactive tool/dialog which can guide humans through the elicitation process by

taking necessary inputs or interactions.

Figure 1.2: An Idea to Automate RE in SPL

1.2 Limitations in Automating RE in SPL using ECA

An Embodied Conversational Agents (ECA) is a computer-generated character with 2D

or 3D human object, with human-like appearance and lifelike behavior that answers questions

and performs tasks for the user through conversational, natural language-style dialogs [6].

Various approaches [9] [34] have been developed using ECA as an interface to gather

requirements in natural language and assist the user accordingly. However, managing the

complexity and variability of product features inherent in software product lines is very

challenging [11]. In addition, a supporting tool for directing the automatic and interactive

product customization is still lacking [25]. According to Mimoun et al. [21] two important

aspects which make automation challenging are as follows:

 4

a. Appearance – In the process of automation using ECA, we replace human-human

interaction in requirement elicitation with human-ECA interaction. So the appearance

of ECA should be realistic (human-like). For example, having features like animated

speech with lip movement and facial expressions; eye, head and body movements to

realize gestures; express emotions; and perform actions or display listening or

thinking postures makes them realistic [18]. Also, it is evident that face-to-face

interaction allows much richer information exchange than other means of

communication [5] [26].

b. Intelligence – The automation process involves understanding the requirements in the

form of natural language from the user and to make optimized decisions which

expedite user goals.

Intelligence aspect is the primary focus of this thesis. Precisely, the thesis focuses on

understanding the requirements of the user thereby improving the accuracy of intention

discovery and anticipating the user knowledge level to make optimized decisions thereby

reducing the dialog length. This demands an advanced algorithm which makes the automation

challenging and worth solving.

1.3 The Problem Statement

1.3.1 What is User Intention Discovery? Why improve it?

Generally, intention means the thing intended; aim or plan. An analysis to understand

what users aim or plan or actually intended about the requirement is known as User Intention

Discovery. For example, when user provides requirement as follows:

User Requirement> I need search by keyword feature for my bookstore

 5

System Response> Would you like search to be a broad match or exact match?

System (ECA) should understand that the user is looking for the “Search by keyword” feature

and checks if the service/module is available in the common assets or not. Based on the service

availability, System (ECA) will provide necessary response to understand more about the

specified requirement thereby improving the user intention discovery. By improving the

accuracy of user intention discovery we are making the automation process better.

1.3.2 What is dialog length? How to optimize it?

 Automation of RE in SPL involves communication between user and system (ECA). The

number of conversations exchanged or interactions made between user and system (ECA) is

known as dialog length. The dialog length can be optimized by anticipating the user knowledge

level. For Example, consider following cases:

Case 1: Consider an Expert User interacting with System (ECA)

User> I need search by keyword feature for my bookstore

System> Would you like search to be a broad match or exact match?

User> exact match is what I am looking for

Case 2: Consider a Naive User interacting with System (ECA)

User> I need search by keyword feature for my bookstore

System> Would you like search to be a broad match or exact match?

User> What do you mean by broad and exact match?

System> Broad match means …. and exact match means …. What would you like?

In Case 1, the user is an expert and has knowledge about what is a broad match and exact match.

So the System (ECA) can handle it. But if we observe Case 2, the user is Naive and does not

 6

have knowledge about the broad and exact match. So the System has to explain about the

services and then take the response from the user, where the dialog length is increased. If the

system (ECA) can understand the user knowledge based on earlier conversation, it would be easy

to ask the question along with the information about the subject of the question such that dialog

length can be reduced. For Example, System response can be as follows:

System> Would you like search to be a broad match or exact match? Where Broad match

 means …. And exact match means ….

1.3.3 Insight into Existing Decision-Making Algorithms

 Firstly, most existing decision-making algorithms like Breadth First Search (BFS), Depth

First Search (DFS) and A* are limited to planning under definite environments and cannot

handle the uncertainty in the environment. There are many algorithms proposed since 1960’s to

mathematically model decision-making under uncertainty and best among them are Markov

Decision Processes (MDP). Since system (ECA) cannot observe the intention of the user

directly, Partially Observable Markov Decision Processes (POMDP) which is an extension of

MDP is more appropriate. Despite POMDP’s undeniable advantages in handling uncertainty

over other approaches, POMDP models cause significant loss of history information over

interaction, leading to the untruthful recognition of user intention. In other words, POMDP helps

to model till control level (decision making) but fails to maintain the user knowledge and

addresses every user similarly, despite user’s domain knowledge and intention. POMDP cannot

handle problems mentioned in sections 1.3.1 and 1.3.2 because of loss of history information.

Various approaches [9] [33] [34] are proposed using POMDP and by storing the history

information but still, there is a lot of scope to improve the intention discovery of the user.

 7

Chapter 2 of this thesis comprehensively discusses drawbacks of POMDP and Shortcomings of

existing approaches using history information. In summary, for the problems specified above i.e.

for better user intention discovery and to optimize the dialog length thereby the automation of

RE in SPL is effective:

a. Can we learn from the information space (history)?

b. Can we determine the user's knowledge level to address better?

1.4 A Novel Approach

The new approach aims to understand the requirement from the user as input by parsing it

using natural language processing (NLP) and uses POMDP for decision making to find relevant

services. For every decision made belief-state is computed and stored in POMDP. Trend analysis

is performed on the belief-state history to anticipate the user knowledge level and to switch

POMDP policies between different contextual control modes thereby improving the accuracy in

intention discovery and also optimizing the dialog length.

1.5 The Thesis Statement

It is possible to effectively automate the Requirements Elicitation (RE) process in

Software Product Line (SPL) using Embodied Conversational Agent (ECA) by performing trend

analysis on belief-state history using Discrete Wavelet Transform.

By effectively automating, it is possible to improve the accuracy of user intention

discovery and to reduce the dialog length over traditional POMDP model.

1.6 Summary of Thesis Contributions

 8

In summary, the contributions of this thesis include:

 Effectively modeled the automation process of RE in SPL using the combination

of POMDP, belief-state history and DWT.

 Analyzed the trend in belief-state history with DWT and associated the changing

trend with the four modes of COCOM.

 Introduced different set of POMDP policies to recognize users with different

knowledge levels thereby optimized the dialog length by performing appropriate

actions in four modes of COCOM.

1.7 The Structure of This Thesis

The rest of the thesis is structured as follows: Chapter 2 provides an in-depth survey of

existing works to automate RE in SPL, especially using POMDP, plus the concepts of trend

analysis using the theory of wavelets and the use of it in automation. Chapter 3 discusses the

proposed method of trend analysis on belief state history using DWT and to analyze the change

in user intention thereby switching the contextual control mode to handle different user groups.

Chapter 4 presents the experiment design of proposed method. The experiment design described

in Chapter 4 is simulated on different user groups to obtain the results. Chapter 5 discusses the

simulation methodology and results by comparing with the existing techniques to demonstrate

the improved accuracy and efficiency. Finally, Chapter 6 discusses the conclusion and future

work.

 9

CHAPTER 2

A Literature Review

This Chapter discusses the decision-making algorithms, trend analysis methods, and

previous works on information space and trend analysis thoroughly. End of the chapter

summarizes the limitations of the existing algorithms, drawbacks of the previous works and also

presents approaches to improve them.

2.1 Partially Observable Markov Decision Processes (POMDP)

POMDP is a generalization of a Markov decision process (MDP) and comes under

probabilistic decision-making algorithms. Both POMDP and MDP are applicable for planning

under uncertainty.

Figure 2.1: Decision-making algorithms lineage [14]

Planning algorithms are classified as follows:

 10

Deterministic vs Stochastic - In deterministic environments, the outcomes of an action are

predictable and always the same but in stochastic environments the outcomes of an action are

random.

Fully Observable vs Partially Observable - When the states of an environment are visible then it

is fully observable and when the states of the environment are partially visible then it is partially

observable.

 DETERMINISTIC STOCHASTIC

FULL OBSERVABLE BFS, DFS and A* MDP

PARTIALLY OBSERVABLE - POMDP

Table 2.1: Classification of decision-making algorithms

2.1.1 POMDP Model

A POMDP model [14] is a 7 tuple set < 𝑆, 𝐴, 𝑂, 𝑇, 𝛺,𝑅, 𝛾 > where:

a. States (S) – The world is divided into a finite set of possible states. For example,

possible states of a self-navigating robot are different positions (X and Y coordinates)

it can take in a room.

b. Actions (A) – Finite set of possible actions available. Actions are Information driven

or Goal driven.

c. State Transition Function (T) – It captures the probabilistic relationship between the

states and the actions executed to change the state of the world.

T (s, a, s’): S x A x S = P (s’ | s, a)

d. Reward Function (R) – It gives the relative measure of desirability to be in a state.

R (s, a): S x A

e. Observations (O) – Finite set of observations of the state.

 11

f. Observation Function (Ω) – It captures the probabilistic relationship between the state

and observations.

Ω (s, a, o): S x A x O = P (o | s, a)

g. Discount Factor (γ) – The discount factor decides how much immediate rewards are

favored over future rewards. For example, when γ = 0 system chooses the largest

immediate reward and when γ = 1 system chooses to maximize the expected sum of

future rewards.

Using POMDP Model, the system makes decisions by executing the following steps:

Step 1: Use the policy to select an action for current belief state.

Step 2: Execute the action

Step 3: Receive an observation

Step 4: Update the belief state using current belief, action, and observation

Step 5: Repeat

2.1.2 Markov Property

 Markov Property states that the optimal decision depends only on the current state [14]. It

refers to the memoryless property of a stochastic process where there is no necessity to

remember the history of what states were already visited, what actions were taken and what

observations made.

 In POMDP as the environment is partially observable, it is hard to say the decisions made

are optimal as POMDP follows Markov property and does not remember history. It is also

necessary to capture the relative likelihood of being in a particular state. POMDP uses the belief-

 12

state concept in order to equip the factor replacing history. Markov Property is also referred as

Markovian over belief-state.

2.1.3 What is Belief-State?

Belief-State is a probability distribution over all possible states which gives as much

information as the entire action-observation history [1] [14]. In fact, belief-state along with

transition and observation probabilities helps to transform the problem from partially-observable

to completely observable. If we are given a belief state for time 't' and we perform an action 'a'

and get observation o' we can compute a new belief state for time 't+1' by simply applying Bayes'

Rule [14] and using the model parameters.

Belief-state Update:

b’(s’) = P (s’ | o’, a, b)

= (P (o’ | s’, a, b) P (s’ | a, b)) / P (o’ | a, b)

= (P (o’ | s’, a) Σ s Ɛ S P (s’ | a, b, s) P (s | a, b)) / P (o’ | a, b)

= (P (o’ | s’, a) Σ s Ɛ S P (s’ | a, b, s) b(s)) / P (o’ | a, b)

Bayes Theorem (Conditional Probability):

P (A | B) = P (B | A) P(A) / P(B)

P(A) and P(B) – The probabilities of observing A and B exclusively

P (A | B) – The probabilities of observing event A given that B is true

P (B | A) – The probabilities of observing event B given that A is true

2.1.4 What are Policies?

 13

In conventional planning, the system constructs a tree with states and actions. By

traversing the tree from the root node to leaves, the optimal plan is computed. But in POMDP, as

the outcomes of actions taken are stochastic in other words as the branching factor is high, the

tree constructed using conventional planning is very deep. It is very hard to compute optimal

plan by traversing the whole tree. To overcome these challenges, policies are introduced in

POMDP. Policies are mapped from belief-states to actions.

Policy: belief-state action

π: b(s’) a

2.1.5 Limitations using POMDP

Limitation of using POMDP for decision-making are as follows:

a. Because of Markovian property, POMDP model refrains to capture the history of

actions taken and observations made which is a valuable information.

2.2 Trend Analysis

 Trend Analysis is a technique for extracting an underlying pattern or behavior from the

data. In general trend analysis is performed on historical data and time series data to predict the

subject of interests for future. For example, trend analysis of rainfall for previous years helps us

to determine the rainfall for the current year [1]. Different approaches of trend analysis are as

follows [7]:

a. Sampling – In Sampling, the historical data is split into training and testing datasets.

The training dataset is used to develop a predictor model and its accuracy is

 14

determined using the testing dataset. Random Sampling and Reservoir based

sampling are few sampling methods.

b. Histogram – Trend is analyzed by constructing a histogram from the historical data

by dividing the entire range of values into a series of intervals and then count how

many values fall in each interval. Equi-Depth and V-Optimal are few Histogram

approaches.

c. Sketches – The frequency distribution of historical data is summarized by using hash

functions. Count Sketches and Count-Min Sketches are few examples.

d. Wavelets – Mathematical transformations are applied to transform the data into a set

of wavelet coefficients representing a different level of granularity to analyze the

trend.

This thesis primarily focuses on using the theory of wavelets for trend analysis as wavelets

outperform other trend analysis approaches for time-series data [4] [7]. Later sections of this

chapters discuss Signals, Frequencies, and Transformations (FT, STFT) as they form a necessary

background to understand how the Wavelet Theory (WT) works.

2.2.1 Signals, Frequencies and Transformations

What is signal?

Signal is the time-amplitude representation of a graph plotted between time (independent

variable) on x-axis and amplitude on the y-axis (dependent variable) [23]. In most cases,

distinguishable information is present in the frequency components of a signal.

 15

Figure 2.2: Sample Signal

What is frequency?

Frequency is the rate of change of a variable. If the variable changes rapidly, it is high frequency.

If the variable change is smooth, it is low frequency. Mathematical transformations are applied to

signals to obtain further information (frequency spectrum) which is not readily available in raw

signal. For example, on applying mathematical transformation to the unknown signal in Figure

2.3, we understand how much of each frequency exists in the unknown signal. The plot in Figure

2.4 tells that it consists of following frequencies: 10, 25, 50 and 100 HZs.

 16

Figure 2.3: Unknown Stationary Signal [23]

Figure 2.4: Frequencies in Unknown Stationary Signal illustrated in Figure 2.3 on applying FT

[23]

Stationary Vs Non-Stationary Signals?

For Stationary Signals, all the frequency components that exist in the signal, exist throughout the

entire duration of the signal. For example, the signal in Figure 2.3 is a stationary signal and it has

same frequencies of 10, 25, 50 and 100 HZ at all times. For non-stationary signals, the frequency

 17

components change over time. For example, the signal in Figure 2.5 is a non-stationary signal

where the frequency of 10HZ exists from 0 to 300 ms only.

2.2.2 Fourier Transformation (FT)

 Fourier Transform (FT) transforms a signal to complex exponential functions of different

frequencies and represented from following equations [23]:

𝑋(𝑓) = ∫ 𝑥(𝑡) ∙ 𝑒−2𝑗𝜋𝑓𝑡 𝑑𝑡

∞

−∞

𝑥(𝑡) = ∫ 𝑋(𝑓) ∙ 𝑒2𝑗𝜋𝑓𝑡 𝑑𝑓

∞

−∞

In the above equations, f stands for frequency and t stands for time. 𝑥(𝑡) denotes the original

signal in time domain and 𝑋(𝑓) denotes the signal in frequency domain. The exponential term

can be replaced with combination of cosines and sines as follows:

𝑒−2𝑗𝜋𝑓𝑡 = cos(2𝜋𝑓𝑡) + 𝑗 sin(2𝜋𝑓𝑡)

In other words, the raw/original signal is multiplied with above equation over all times

from −∞ to ∞. The result of the integration is a large value, then the raw/original signal 𝑥(𝑡) has

a frequency component. The result from the FT is a plot with frequency on X-axis and amplitude

on Y-axis. It misses capturing the details of what frequencies exist at what times. FT is not

suitable for non-stationary signals. For example, the resultant frequencies for signals in Figure

2.3 (stationary) and Figure 2.5 (non-stationary) are same as shown in Figure 2.4 and Figure 2.6

respectively.

 18

Figure 2.5: A non-stationary signal [23]

Figure 2.6: Frequencies in non-stationary signal illustrated in Figure 2.5 on applying FT [23]

 19

2.2.3 Short-Time Fourier Transformation (STFT)

 STFT is a revised version of FT which gives the time-frequency representation (TFR) of

the raw/original signal. Based on the idea that a non-stationary signal composes of stationary

signals for fixed duration. In STFT the signal is divided into small segments by applying window

function where each segment is a valid stationary signal.

𝑆𝑇𝐹𝑇𝑋
𝑊(𝑡′ ,𝑓) = ∫[𝑥(𝑡) ∙ 𝑊(𝑡 − 𝑡′)] ∙ 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

𝑡

In the above equation 𝑡′is window interval, 𝑡 is finite time and 𝑓is the frequency. 𝑥(𝑡)is the

raw/original signal and 𝑊(𝑡) is a window function.

Figure 2.7: FTR for non-stationary signal illustrated in Figure 2.5 using STFT [23]

 20

 From the FTR as illustrated in above diagram, STFT provides details about what

frequencies exist at what time. But the problem with STFT is the fact whose sources go back to

Heisenberg Uncertainty Principle [23]. The principle says that the frequency and time of a signal

cannot be known simultaneously. STFT provides the time intervals in which certain band of

frequencies exists, which is a resolution problem. The reason for having time and frequency

resolution problems is window size. The narrow window gives good time resolution and poor

frequency resolution where wide window gives good frequency resolution and poor time

resolution.

2.2.4 Theory of Wavelets (WT)

 Wavelet means a small wave. The term 'small' refers that the function of finite length and

the term 'wave' refers that the function is oscillatory. The transformation function in wavelet

theory is mother wavelet. The term mother implies the one main function which generates the

transformation functions needed for the whole transformation process. Examples of mother

wavelet are Morlet wavelet and Mexican hat function [24].

2.2.4.1 Continuous Wavelet Transformation (CWT)

 The CWT was developed as an alternative approach to STFT to address the time and

frequency resolutions.

𝐶𝑊𝑇𝑥
𝜓(𝜏, 𝑠) = 𝜓𝑥

𝜓(𝜏, 𝑠) = ∫ 𝑥(𝑡) ∙ 𝜓𝜏 ,𝑠
∗ (𝑡) 𝑑𝑡

𝜓𝜏,𝑠 =
1

√|𝑠|
𝜓(

𝑡 − 𝜏

𝑠
)

 21

From the above equation [23], the transformed signal is a function of two variables, 𝜏 and 𝑠, the

translation and scale parameters respectively. 𝜓𝜏,𝑠
∗ (𝑡) is the transforming function i.e. the mother

wavelet.

What is translation?

The term translation refers to the location of window in terms of time, as the window is

shifted through the signal.

What is scale?

Scale is the inverse of frequency and as a mathematical operation it either dilates or

compresses a signal. High scales (low frequencies) gives the global information of a signal,

whereas low scales (high frequencies) corresponds to a detailed information of hidden pattern in

the signal. From the definition of WT, as the scale parameter is defined in the denominator,

scales 𝑠 > 1 dilates the signal and 𝑠 < 1 compresses the signal.

 Often the signals encountered in the practical application have high-frequency

components for a short duration and low-frequency components for a long duration. WT is

designed to give good frequency resolution and poor time resolution at low frequencies and good

time resolution and poor frequency resolution at high frequencies.

How the computation of CWT works?

 The mother wavelet serves as a prototype for the wavelet analysis. Two commonly used

mother wavelets are Morlet wavelet and Mexican hat function [24]. The Morlet wavelet is

defined as follows:

𝑊(𝑡) = 𝑒𝑖𝑎𝑡 ∙ 𝑒
−𝑡2

2𝜎

where 𝑎 is the modulation parameter and 𝜎(𝑠𝑖𝑔𝑚𝑎) is the scaling parameter which affects the

width of the window. The Mexican hat function is defined as follows [24]:

 22

𝜓(𝑡) =
1

√2𝜋𝜎 3
(𝑒

−𝑡2

2𝜎2 ∙ (
𝑡2

𝜎 2
− 1))

where 𝜎(𝑠𝑖𝑔𝑚𝑎) is the scaling parameter. Once the mother wavelet is selected, the computation

starts with scaling parameter as 𝑠 = 1 and CWT is computed for all values of 𝑠 (smaller and

larger than 1) by translating (shifting) the signal by 𝜏(tau) each time. For real world applications,

it is not necessary to compute the CWT for all values of 𝑠 and 𝜏(tau) and can be limited.

Figure 2.8: FTR for non-stationary signal illustrated in Figure 2.5 using CWT [23]

Note that in Figure 2.8, CWT has a good time and frequency resolutions at high and low

frequencies respectively rather than constant resolution using STFT (refer Figure 2.7).

 23

 The computation of FT or STFT or CWT by using analytical equations and integrals is

practically very hard for computers [23]. Particularly, CWT provides highly redundant

information which requires a significant amount of computation time and resources. Therefore it

is necessary to discretize the transforms.

2.2.4.2 Discrete Wavelet Transformation (DWT)

 The DWT decompose signal to discrete time and provides sufficient information for both

analysis and synthesis of the original signal within signification computation time. The

discretization of the signal is achieved by subsampling and upsampling operations. Subsampling

refers to the removal of some of the samples of the signal by reducing the sampling rate.

Upsampling refers to the addition of new samples to the signal by increasing the sampling rate.

In DWT, coefficients are obtained by sampling with 𝑠 = 2𝑗 and 𝜏 = 𝑘 ∗ 2𝑗. DWT analyzes

signal by decomposing signal at different frequencies to address different resolutions. DWT uses

two sets of functions called scaling and wavelet functions. The original signal x[n] is first passed

to high-pass filter g[n] and low pass filter h[n] iteratively to obtain the frequencies.

𝑦ℎ𝑖𝑔ℎ[𝑘] = ∑ 𝑥[𝑛] ∙ 𝑔[2𝑘 − 𝑛]

𝑛

𝑦𝑙𝑜𝑤[𝑘] = ∑ 𝑥[𝑛] ∙ ℎ[2𝑘 − 𝑛]

𝑛

where 𝑦ℎ𝑖𝑔ℎ[𝑘] and 𝑦𝑙𝑜𝑤[𝑘] are the outputs of high-pass and low-pass filters. For every iteration

the signal is subsampled by 2 to obtain the remaining frequencies. The decomposition of the

original signal and coefficients obtained at each level is illustrated in Figure 2.9.

 24

Figure 2.9: Decomposition of signal using DWT [23]

The coefficients obtained at different levels are plotted on graph to understand the frequency

content within the original signal. In this thesis, the number of sharp variation points obtained

from graph (b) in Figure 2.10 are used.

Figure 2.10: Example of DWT [23]

 25

2.3 Contextual Control Models (COCOM)

 Humans can achieve their goals by doing many things in many different ways and the

performance is mainly determined by the situation. In other words, the selection among the

possible actions is not determined by the characteristics of action elements but by the current

needs and constraints. A COCOM is based on three main concepts: competence, control and

constructs. The COCOM simplifies the description of control through four control modes [30]:

a. Scrambled – In Scrambled control mode, the next action is random or irrational.

There is a little or no correspondence between the situation and the actions. In other

words, it is an extreme situation with zero control.

b. Opportunistic – In Opportunistic control mode, the actions made are heuristic due to

lack of clarity about current situation. Planning and anticipation are limited in this

mode.

c. Tactical – In Tactical control mode, the next action is more or less follows a known

procedure or rule. Planning for limit scope is considered where more focus is on

fulfilling the dominant needs of the present.

d. Strategic – In Strategic control mode, the choice of actions has very less influence on

the situation. The interaction between multiple goals can also be taken into account

for planning in this mode.

 26

Figure 2.11: Internal Structure of COCOM [30]

2.4 Previous Works

 The primary focus of this thesis is to automate the requirement elicitation in SPL. In other

words, automation of requirement elicitation means the software is customized to meet the needs

of user requirements. Various approaches [9] [19] [27] [34] [35] are published to interactively

gather the requirements from the user for software customization using Dialog Interfaces,

Software Visualization techniques, and Conversational Web Agents. Subsequent sections of this

chapter discuss the previous works, summarizes their contributions and limitations.

2.4.1 An Interactive approach by using Dialog Interface

 27

Zhang et al. [35] proposed a dialog-based interactive approach for software customization

using ontology-based requirement elicitation. The framework designed is text-based and has four

components: Dialogue Interface, I/O Controller, Dialogue Manager and Ontology Knowledge

Base as illustrated in the Figure 2.10.

Figure 2.12: The ontology-based requirement elicitation model [35]

The Dialogue Interface displays machine generated text from I/O controller and also has a slot

for the user to fill decision about the requirement as YES or NO. If the answer matches with

predefined information, I/O controller passes the user's input to Dialog manager. The Dialog

Manager evaluates the requirement after receiving the decision from the user and it consults with

the ontology knowledge base for software customization. I/O controller receives the output from

Dialog Manager. It translates output into natural language and displays the message on Dialog

Interface. The process is repeated until the user’s goal is reached. The evaluation of requirements

in Dialog Manager is facilitated through following functions: Generalize, Decompose, Rely,

Contradict, Associate, hasRank, and Invalid.

2.4.2 An Interactive approach by using Software Visualization

 28

 Sadri et al. [27] have enhanced the approach in [35] by adding a Petri-Net based method

of graphical visualization for software customization. It aims primarily to enhance the user

understanding and reduces the time, cost and effort spent on the previous system thereby

increasing the overall usability of the system.

Figure 2.13: A Petri-Net based method of graphical visualization for software customization [27]

The author discusses different visualization techniques like Flow Chart, State Diagram,

Activity Diagram, and Petri Nets. Petri Nets is chosen as its more suitable for demonstrating the

workflow behavior of the system. Petri-net is a special type of directed graph with two types of

nodes called places and transition, which are illustrated by circles and rectangles respectively.

An arc will connect each place to a transition and each transition to a place. The contributions are

justified through usability study by comparing the text based approach in [35] with the graphical

interface illustrated in Figure 2.13.

 29

Figure 2.14: The enhanced text-based system with the graphical interface [27]

Kaler et al. [19] have improved the approach in [27] by adding an interactive

visualization to improve the usability of the system. In this approach, COCOM is used to classify

users into four groups based on the knowledge level of the software customization and software

development. These users are provided with different visualization interfaces as per their

knowledge. The four different visualizations approaches are as follows: Petri nets based, directed

graph based, requirement model based and block based visualization. A usability study is

conducted and evaluated that the aimed interactive visualization enhances the learnability for real

users.

 30

Figure 2.15: An Interactive visualization for software customization [19]

Figure 2.16: COCOM based interactive visualization architecture [19]

 31

2.4.3 An Interactive approach by using Embodied Conversational Agents

 Dhanapal et al. [9] has proposed a model by introducing belief state history into POMDP

based dialog management system. The belief state history is analyzed and rate of change of trend

in belief state is observed. The next belief state is predicted using data mining techniques such as

Apriori algorithm to switch between different contextual modes for better user intention

discovery. The proposed approach is evaluated by experimenting under different scenarios.

Figure 2.17: Contextual Control in Dialogue Management with Belief State Prediction [9]

 Dialog Manager receives observation in natural language as YES/NO from the Dialog

interface through I/O controller. The belief state values are computed in Dialog Manager and

trend analysis is performed on history of belief states to predict the next belief state (Trend

Analyzed and Predictor). Policy selector selects the policies based on the predicted next belief

state value by referring the Policy files which consists of the states, action, rewards and policies

predefined.

 32

2.4.4 Affective Dialogue Modelling using POMDP

Bui et al. [2] [3] proposed an approach to develop a dialogue model which is able to take

emotional state aspects of user into account and can act accordingly. Their model is based on

POMDP which observes the observations composed of emotional state and action. Therefore, to

create an affective dialog manager process, two inputs were used. One is emotional state and

another is actions of the user. As the two inputs emotional state and actions are very uncertain

and can change quickly so, their model is based on POMDP which is suitable for designing

affective dialog models.

Figure 2.18: (a) Standard POMDP, (b) Two time-slice of factored POMDP for the ADM [2] [3]

The state set and observation set are composed of six features. As shown in Figure 1a the state

set is composed of the user’s goal (Gu), the user’s emotional state (Eu), the user’s action (Au),

and the user’s dialogue state (Du). In the observation set, the (OAu) is observed user’s action and

the (OEu) is observed user’s emotional state. Figure 1b shows the affective dialogue model

(ADM). The features of the state set, action set, observation set, and their correlations form a two

time-slice Dynamic Bayesian Network (2TBN) which is built for the “route navigation in an

unsafe tunnel” example used for experimental work. 2TBN can be easily modified to represent

 33

other correlations, for example the correlation between the user’s goal and emotional state. The

2TBN representation is allowing integrating the features of states, actions, and observations in a

flexible way. The author states that if the observation is perfect, the expected return of the

optimal dialogue strategy depends on the correlation between the user’s emotion state and the

user’s action. The model is still lacking in scaling up the model with larger state, action, and

observation sets for real-world dialogue management problems, extending the model

representation, collecting and generating both real and artificial data to build and train the model.

2.5 Summary

 In summary, the limitations of existing decision-making algorithms, trend analysis

approaches and drawback of previous works to automate the RE in SPL are as follows:

 POMDP model refrains to capture the history of actions taken and observations

made. This history information can be used as a knowledge base to discover

interesting facts about the environment (user).

 Sampling, Histogram, and Sketches are statistical-based approaches and are

inadequate to predict the hidden patterns when applied to time-series data.

 Fourier Transform (FT) is suitable to understand what frequencies exists in a

signal but misses to capture at what times these frequencies occur.

 Short Time Fourier Transform (STFT) provides the TFR for an signal but has

frequency and time resolutions.

 Continuous Wavelet Transform (CWT) is hard to compute in practical application

and discretization is necessary.

 34

 Approach [35] using Dialog Interface lacks Interactivity, Natural Language

processing of user input (not just Yes/No text), user intention discovery for better

software customization and optimizing dialog length.

 Approaches [19] [27] using Visualization techniques provides a flavor of

interaction but still lacks Natural Language processing of user input (not just

Yes/No text), user intention discovery for better software customization and

optimizing dialog length.

 Approach [9] using ECA provides better user interaction than [19] [27] but still

lacks Natural Language processing of user input. It addresses to improve the user

intention discovery using naive data mining techniques which captures the hidden

patterns but misses to identify frequency aspects in time-series data.

 Approaches [2] [3] effectively models the dialog but misses to capture the history

and learn from it.

 35

CHAPTER 3

THE PROPOSED METHOD

3.1 Overview

 This Chapter discusses the architecture of the proposed method, steps involved by flow

diagram, modified POMDP Model and algorithms developed thoroughly.

3.2 Architecture

 The user interacts with the agent by providing the observation and agent responds to the

user by performing an action.

Figure 3.1: Architecture Diagram of proposed framework

 36

Architecture diagram in Figure 3.1, illustrates the different modules enclosed within the

agent. Later sections (refer 3.4) of this chapter explain the algorithms involved in each module.

The modules are as follows:

a. State Estimator (SE) – It receives the observation as input from user. SE computes the

observation probabilities through NLP and updates the belief-state value 𝐵(𝑠′).

b. Belief History Information Storage – The belief-state 𝐵(𝑠′) value computed in the SE

is stored in the belief history information (𝑏ℎ𝑖𝑠𝑡) storage module.

c. Trend Analysis – It receives the history of belief information (𝑏ℎ𝑖𝑠𝑡) as input. Number

of sharp variation points (𝑁𝑐𝑝) is obtained by performing DWT on 𝑏ℎ𝑖𝑠𝑡 .

d. Knowledge Level Selector – It receives sharp variation points (𝑁𝑐𝑝) as input and

decides the knowledge level (𝑘) of the user based on the knowledge level thresholds

obtained from training (refer 3.5).

e. Policy Selector – It receives knowledge level (𝑘) of the user and belief state 𝐵(𝑠′)

value as input. In Policy Selector, different set of policies are defined for users at

different knowledge level. Policy (𝜋𝑘) is selected based on the value of 𝐵(𝑠′).

f. Make Action – It is a within the Policy Selector module which receives the policy

(𝜋𝑘) to execute. Each policy in POMDP is mapped from 𝐵(𝑠′) to actions. In Make

Action module, action (𝑎) is performed through COCOM modes.

The sequence of computations that are happening for every interaction between user and

agent is illustrated thoroughly as Flow chart in Figure 3.2. Agent will prompt user to check if

user has achieved goal to end the requirement elicitation process by automatically generating

customized software with selected services.

 37

Figure 3.2: Flow Chart for every interaction between user and agent

3.3 Modelling POMDP

 This section discusses 7 tuples < 𝑆, 𝐴, 𝑂, 𝑇, 𝛺, 𝑅, 𝛾 > in POMDP model such as States

(𝑆), Actions (𝐴), Observations (𝑂), Transition (𝑇) and Observation Probabilities (Ω), Reward

Functions (𝑅) and Discount Factor (𝛾) are defined as follows:

 38

Figure 3.3: POMDP Model

3.3.1 States (S)

 The primary focus of this thesis is to automate the RE in SPL thereby producing the

customized software as per the requirements of the user. So, the list of services recognized from

the requirements given by the user is the world for the agent.

As illustrated in Figure 3.3, the states of the proposed POMDP model are defined as the

list of services with their respective observation probabilities. The State 𝑠1 at time 𝑡 holds the

services 𝑆1, 𝑆2, 𝑆3, 𝑆4 with observation probabilities 1, 1,𝑝1, 𝑞1 respectively. Where the

observation probability of 1 means that the services (𝑆1, 𝑆2) are already selected by the user.

3.3.2 Actions (A)

Actions in proposed POMDP are either Information gathering actions or goal driven

actions. Sample actions are as follows:

a. Requested service/feature is selected. // Strategic Mode

 39

b. Sorry, which of the following do you want: broad match search or exact match

search? // Scrambled Mode

c. Did you mean: exact match search? // Tactical Mode

d. Sorry! Can you explain about it more? // Opportunistic Mode

As illustrated in Figure 3.3, 𝑎1, 𝑎2,𝑎3, 𝑎4 are the actions performed. As the actions are

information gathering or goal driven, action 𝑎2 can increase or decrease the probability of

services 𝑆3 and 𝑆4 from 𝑝1 𝑡𝑜 𝑝2 and 𝑞1 𝑡𝑜 𝑞2 respectively. Also action 𝑎2 can also gather

information about service 𝑆5 and add it to the list in State 𝑠2. In proposed POMDP model,

actions are the strings derived from different contextual modes.

3.3.3 Observations (O)

Observations are inputs from user to the agent in proposed POMDP model. For example,

observation can be a requirement or selection of a service or requesting information about a

service. Sample observations are as follows:

a. I need search by keywords feature for my book store // requirement

b. Yes, I will go with broad match search feature // selection

c. Can you explain what is exact search means? // requesting information

The observation received from the user is analyzed using NLP to understand the intention

of the user and belief-state value is computed as described in Chapter 2 using Bayes theorem.

3.3.4 Transition (T) and Observation Probabilities (𝛀)

In the proposed POMDP, the states are dynamic and dependent on the observations that

are received throughout the interaction. Observations are in turn partially dependent on Actions.

 40

As illustrated in the Figure 3.3, there can infinitely possible states agent can make

transaction to for a given action. For example, based on the observation 𝑜1 received from user,

agent can make a transition from state 𝑠1 to unknown infinitely possible state where there could

be new services that added to the list, services can be removed, services can improve/decrease

the observation probabilities. So, in proposed POMDP the transition probabilities (𝑇) are

assumed to be having equal probability.

Observation probabilities (Ω) are computed by tokenizing the input string given by the

user. Using NLP, semantics and string similarity functions comparing input string with the

service description Ω for different services can be calculated. NLP, sematic and string similarity

can be easily achieved by using pre-built popular libraries mentioned software section (refer 4.2)

in Chapter 4.

3.3.5 Reward Function (R) and Discount Factor (𝛄)

In General, reward functions are defined for the actions made from various status. In

proposed POMDP model, since the strategy for actions made are based on contextual control

modes. The rewards are randomly assigned based on logic reasoning that Strategic mode is better

than Scrambled mode:

a. Reward(State, Strategic Mode) 100

b. Reward(State, Tactical Mode) 50

c. Reward(State, Opportunistic Mode) 0

d. Reward(State, Scrambled Mode) -50

Discount Factor (𝛾) is assumed as 1 to maximize the future sum of rewards. Refer section

2.1.1 for more detailed explanation.

 41

3.3.6 Deriving Formula for Updating Belief-State

The key for POMDP’s decision making is in updating the belief-state for every action

and observation received. To update the belief-state, the below equation is taken from the section

2.1.3 where 𝑎 is the action, 𝑜′ is the observation received from transition from state 𝑠 to 𝑠′.

b’(s’) = (P (o’ | s’, a) Σ s Ɛ S P (s’ | a, b, s) b(s)) / P (o’ | a, b)

Since the transition functions are assumed to have equal probability distribution, the above

equation will transform into following:

b’(s’) = P (o’ | s’, a) /Σ s Ɛ S P (o’ | a, b)

In words, the belief-state in proposed POMDP model can be updated as probability of

current observation probabilities of individual services divided by probability of previous

observation probabilities of individual services. For example, In Figure 3.3 𝑏𝑠3 , 𝑏𝑠4 and 𝑏𝑠5 can

be computed as follows:

𝑏𝑠3 = 1
𝑛⁄ (

𝑝2

𝑀𝐴𝑋(𝑝1, 𝑝2)
) , 𝑏𝑠4 = 1

𝑛⁄ (
𝑞2

𝑀𝐴𝑋(𝑞1,𝑞2)
) , 𝑏𝑠5 = 1

𝑛⁄ (
𝑟2

𝑀𝐴𝑋(𝑟1,𝑟2)
)

where 𝑛 is the number of services in the list with observation probability not equal to 1. Policies

are defined such that the service with higher belief-state value is preferred over others. The

observation probability of services 𝑆3 and 𝑆4 changes from 𝑝1 𝑡𝑜 𝑝2 and 𝑞1 𝑡𝑜 𝑞2 respectively.

Also action 𝑎2 can also gather information about service 𝑆5 with observation probability as 𝑟2.

3.4 Design of Algorithms

3.4.1 Overview

The AutomateREinSPL algorithm is the main algorithm and it is composed of smaller

algorithms – StateEstimator, TrendAnalysis, ModeSelector, PolicySelector and MakeAction

 42

which are explained in greater details in next 5 sections. The Flow for the AutomateREinSPL is

illustrated in Figure 3.2. The AutomateREinSPL algorithm is as follows:

Algorithm 1: AutomateREinSPL

INPUT:
OUTPUT:

1. isGoalState false // initializing goal to false
2. belief 1 // initializing belief value to 1

3. CREATE empty LIST bhist
4. ADD belief to LIST bhist // adding initial belief value to list
5. WHILE isGoalState NOT EQUAL true // repeats until goal is reached

6. input READ(observation)
7. IF input EQUAL ‘exit’ THEN // checking for the goal reached?

8. isGoalState true
9. ELSE
10. b(s’) StateEstimator(input, belief)

11. ADD b(s’) to LIST bhist // adding update belief value to list
12. Ncp TrendAnalysis(bhist)

13. k KnowledgeLevelSelector(Ncp)
14. πm PolicySelector(k)
15. action MakeAction(πm, b(s’))

16. belief b(s’) // updating the belief value
17. PRINT action

18. ENDIF
19. END WHILE

The process starts with initial belief-state value 1 as in Line 2 and creates an empty list to store

the belief-state history. The loop in Line 5 is executed until the goal is reached and the status of

the goal reached or not is validated in Line 7. A new belief-state value is calculated for the

observation received in Line 6 from the StateEstimator method and updated in Line 16. The new

belief-state value is added to the belief-state history list in Line 11. The sharp variation points

(𝑁𝑐𝑝). are obtained from TrendAnalysis method in Line 12. The control modes are selected based

on 𝑁𝑐𝑝 from ModeSelector method in Line 13 and respective policy 𝜋𝑚 is selected through

 43

PolicySelector in Line 14. Finally, Agent will make action based on the policy selected and new

belief-state value.

3.4.2 State Estimator Module

 The State Estimator Module gets the observation as text in natural language. The input

text is tokenized using NLP and compared with the service descriptions to identify the services

relevant to user input. A new state 𝑠′ is created and updated belief-state value 𝑏(𝑠′) is computed

using current belief, action taken and observation received as 𝑖𝑛𝑝𝑢𝑡. The StateEstimator

algorithm is as follows:

Algorithm 2: StateEstimator

INPUT: input is string, belief is decimal, action is string
OUTPUT: b(s’) is decimal

1. tokens NLP(input) // tokenization using NLP

// A new state s’ is create by

2. s’ MATCH_SERVICES(tokens) // compares tokens from user input with services
3. b(s’) Pr(s’ | belief, action, input) // calculating new belief using Bayes’ rule

4. return b(s’)

The primary focus of this module is to extract the subjects of user interest using NLP in Line 1

and Line 3 computes the new belief-state value for state 𝑠′ using Bayes theorem as described in

section 2.1.3. The probabilities required to compute belief-state value such as observation

probabilities and transition probabilities are determined in Line 2 by matching extracted subject

areas in user input with service descriptions.

3.4.3 Trend Analysis Module

 44

 The Trend Analysis Module gets the belief-state history list as input from

AutomateREinSPL Module. Each value in the list constitutes of belief-state value and time at

which the belief-state value is calculated during the interaction. The output of Trend Analysis

Module is number of sharp variation points (𝑁𝑐𝑝) i.e. the coefficients of DWT as described in

section 2.2.3.2. The TrendAnalysis algorithm is as follows:

Algorithm 3: TrendAnalysis

INPUT: bhist is list
OUTPUT: Ncp is integer

1. Ncp DWT(bhist) // Computing the sharp variation points
2. return Ncp // using DWT equation

3.4.4 Knowledge Level Selector Module

The Knowledge Level Selector Module gets the sharp variation points (𝑁𝑐𝑝) as input and

return 𝑘 as output. The KnowledgeLevelSelector algorithm is as follows:

Algorithm 4: KnowledgeLevelSelector

INPUT: Ncp is integer
OUTPUT: k is string

1. expertThreshold READ_FROM_TRAINED_MODEL
2. professionalThreshold READ_FROM_TRAINED_MODEL

3. amateurThreshold READ_FROM_TRAINED_MODEL
4. noviceThreshold READ_FROM_TRAINED_MODEL
5. IF Ncp < expertThreshold THEN

6. k ‘expert’
7. ELSE IF Ncp >= expertThreshold AND Ncp < professionalThreshold

8. k ‘professional’
9. ELSE IF Ncp >= professionalThreshold AND Ncp < amateurThreshold
10. k ‘amateur’

11. ELSE
12. k ‘novice’

13. ENDIF
14.
15. return k

 45

Output values of 𝑘 are as follows: expert, professional, amateur and novice. The output mode is

selected based on the value of 𝑁𝑐𝑝 from the conditional statements from Line 5 to Line 11. The

thresholds in the algorithm: expertThreshold, professionalThreshold, amateurThreshold and

noviceThreshold are constants in this module and are calculated by training the proposed model

with different knowledge base users datasets. The methodology involved in training is explained

in detail in section 3.6.

3.4.5 Policy Selector Module

 The Policy Selector module get the 𝑚𝑜𝑑𝑒 as input and return respective policy as output.

Policies are mapped from belief-state values to action as described in section 2.1.3. Policies are

defined using Policy Graph concept and is explained in Chapter 4. The PolicySelector Algorithm

is as follows:

Algorithm 5: PolicySelector

INPUT: k is string
OUTPUT: π is string

1. CASE k OF
2. expert: return πexpert

3. professional: return πprofessional
4. amateur: return πamateur

5. novice: return πnovice
6. ENDCASE

The CASE statement block from Line 1 to Line 6 determines the policy to be returned based on

the input 𝑘.

3.4.6 Make Action Module

 46

 The Make action module receives the new belief-state value and policy and returns the

𝑎𝑐𝑡𝑖𝑜𝑛 as string to the user. The 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 returned can be goal driven or information gathering

responses. The MakeAction Algorithm is as follows:

Algorithm 6: MakeAction

INPUT: πm is string, b(s’) is decimal

OUTPUT: action is string

1. action GET(Action from Transition of state s to s’)

2. return action

3.5 Time Complexity

 The time complexities of different modules are as mentioned in the below table.

Modules Time COMPLEXITY Notes

State Estimator Tokenizing - 𝑂(𝑛2)

Services Matching - 𝑂(𝑛 ∗ 𝑚)

‘n’ is input string length

‘n’ is input string length

‘m’ is number of services

Trend Analysis Wavelet Transform - 𝑂(𝑛2)

Sharp Variation Points Detection - 𝑂(𝑛)

‘n’ is belief history length

Knowledge Level

Selector

𝑂(1)

Policy Selector 𝑂(1)

Make Action 𝑂(1)

Table 3.1: Time Complexity of AutomateREinSPL algorithm

The StateEstimator Module uses the libraries defined in section 4.2 so the time

complexity involved is 𝑂(𝑛2) for tokenizing [16] and 𝑂(𝑛 ∗ 𝑚) for matching services [16]. The

 47

TrendAnalysis module take the time complexity of 𝑂(𝑛2) for Wavelet Transform [15] and 𝑂(𝑛)

for detecting sharp variation points. KnowledgeLevelSelector, PolicySelector and MakeAction

modules have CASE statements or IF-ELSE ladder and the time complexity is 𝑂(1).

3.6 Training POMDP Model for Knowledge Level Thresholds

Training Datasets (5 samples) are prepared manually as described in [9] [19] such that the

datasets behave as virtual users with knowledge as expert, professional, amateur and novice.

Figure 3.4: Knowledge Trainer Architecture

 48

 As illustrated in the Figure 3.4, knowledge dataset is replaced with expert dataset and

Policy selectors are replaced with expert policies to determine the range of sharp-variation

points. Similarly, the sharp-variation points range is determined for professional, amateurs and

novice by replace the respective dataset and policies. The knowledge trainer is executed 1000

times to achieve multiple goals. Goals are the list of services the trainer is intended to achieve.

The computed values are used in KnowledgeSelector to switch between different policy sets. The

minimum and maximum sharp variation points obtained for different knowledge levels are as

follows:

Knowledge Level Minimum Sharp Variation Points Maximum Sharp Variation Points

Expert 2 11

Professional 7 15

Amateur 13 21

Novice 17 39

Table 3.2: Min/Max Sharp variation points for different knowledge level

3.7 A Walk Through Example

 Let’s consider the following situation: Current belief-state value = 1. If the welcome

action is performed and observation received is as follows, then the observation probabilities and

belief-state values are computed as follows:

Action> Hi, how can I help you today?

Observation> user can manage shopping cart?

Applying NLP on the observation generated the

Service 17: Manage Shopping Cart 0.22

Service 20: List the items in Cart 0.07

 49

Belief-state can be computed as follows:

𝑏 = 1
2⁄ (

0.22

𝑀𝐴𝑋(0.22,1)
+

0.07

𝑀𝐴𝑋(0.07,1)
) =

0.29

2
= 0.145

There the observation probabilities are Ω(S17) = 0.22 and Ω(S20) = 0.07. The new belief-state

value is 𝑏 = 0.145

 50

CHAPTER 4

EXPERIMENT DESIGN

4.1 Overview

 This chapter discusses the software’s used for the experimental design of proposed

method. It also covers the necessary training conducted and simulation environments designed to

obtain results.

4.2 Software

 The following is the comprehensive list of all the libraries and software’s used for

experimenting the proposed method.

a. Java 7.0 – The programming language

b. WordNet 3.0 – A Lexical database for English language, which is widely used to

develop NLP applications.

c. Java WordNet Library (JWNL 1.4)– A Java API for accessing the WordNet relational

dictionary.

d. Three.js – A JavaScript 3D library to render 3D objects on web browsers.

e. NetBeans 8.0 – IDE for developing Java Web Applications.

f. Tomcat Server 7.0 – A web server

g. Bootstrap 3.3.7 – A front-end JavaScript and CSS framework.

h. JWave – Open Source Java implementation of Discrete Wavelet Transform (DWT).

 51

4.3 Ontology-based requirement model

 A frame-based dialog system is developed by Xieshen Zhang in this thesis [35] which

uses the ontology model as the knowledge base. The knowledge base is used to elicit user’s

demands. An online book shopping system is used by Zhang [35] in his experiments. The

approach used to customize software is discussed in Chapter 2 (refer 2.4.1).

Figure 4.1: Functionalities of an online book shopping system [35]

In this thesis for the experiment design, the subset of ontology is taken from Zhang [35]

case study as .OWL file. Figure 4.4 high-level overview of the different services involved. A

data model is constructed which stores the services list and dependencies by reading the .OWL

file. The data structure for the data model is as follows:

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 < 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐼𝑑, 𝑛𝑎𝑚𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛, 𝑝𝑎𝑟𝑒𝑛𝑡𝑖𝑑, 𝑖𝑠𝑂𝑝𝑡𝑖𝑜𝑛𝑠, ℎ𝑎𝑠𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠 >

 52

Figure 4.2: Data Model for the services

4.4 Interface

 A web based application is developed as GUI for user to interact with the ECA. NetBeans

8.0 is used as IDE for developing interface and Apache Tomcat Server is used for hosting the

web application. The interface constitutes of four components:

a. List of Services – All the available services/assets for automation of SPL are listed.

The List of Services are from the data mode discussed in section 4.4.

b. Selected Services – All the services/assets selected by user will be listed.

c. Information Window – ECA (Agent) communicates with the user through the

information window. The information window is located right next to 3D face.

 53

d. Message Window – User communicates with the ECA (Agent) by typing message in

this window and clicking send button.

Figure 4.3: Web Application GUI

When user click on the send button an AJAX call (web request to server) happens to post

the text in the Message Window to server to process. All the algorithms discussed in the Section

3.3 of Chapter 3 were implemented as illustrated in the Figure 4.7.

 54

Figure 4.4: Experiment Project Structure

4.5 Simulation Environments

 By comparing the results of the proposed POMDP model with the traditional POMDP

model, the accuracy of proposed method is evaluated. Therefore, two environments are created

to simulate the methods in order to compare the results. Environments are as follows:

a. Using POMDP and Policies – It is a subset of the implementation for the proposed

method.

b. Using POMDP, Belief History, DWT and COCOM.

 55

The idea behind creating two environments is to feed both the environments with the same input

observations generated from Goal state dataset and semantics of services dataset, to measure the

dialog length and accuracy in user intention discovery. The Goal state dataset and semantics of

services dataset were explained thoroughly in Chapter 5.

4.5.1 Using POMDP and Policies

 As illustrated in the Figure 4.8, the traditional POMDP model constitutes of State

Estimator and Policy Selector Modules. The State Estimator module receives the observation and

computes the belief-state value. The Policy Selector receives the belief-state value and performs

an action.

4.5.2 Using POMDP, Belief-State History, DWT and COCOM

 As illustrate in the Figure 4.9, the proposed POMDP model constitutes of all the models

explained in the architecture section 3.2.

 56

Figure 4.5: Simulator Architecture by using POMDP and Policies

Figure 4.6: Simulator Architecture by using POMDP, History, DWT and COCOM (proposed)

 57

CHAPTER 5

SIMULATION AND RESULTS

5.1 Overview

 This chapter discusses how the simulator works and results obtained from the simulation.

Before simulator, we will first look at the design of goal and knowledge level semantic datasets.

5.2 Goal Datasets

 The simulator imitates the behavior of the user. So, the simulator needs to have a

fixed goal as the real world user have a goal. By selecting a different combination of services 25

goals are developed. Simulator holds the list of goals and each goal has the list of service ids

selected for that goal. Refer section 4.3 for the data structure of Service. Data Structures of

Simulator and Goal Datasets is as follows:

Simulator {

 List<Goal> goalDataset;

}

Goal {

 List<Integer> serviceIds;

}

The goal datasets developed are illustrated in Figure 5.1.

 58

Figure 5.1 Goals created from list of services in Appendix A for simulation

5.3 Knowledge-level semantic datasets

The simulator imitates the behavior of the different user with varying knowledge level.

Simulator tests the proposed method by providing observations, affirmative/negative statements

 59

to confirm the actions made by agent. Users are classified as follows: expert, professional,

amateur and novice. The strategy for designing the knowledge level semantic datasets are as

follows [30]:

a. Expert – Profound knowledge about the requirements both technical and business

knowledge.

b. Professional – Have both technical and business knowledge but missing logical

implication within the requirements.

c. Amateur – Only have business knowledge and no technical knowledge about the

requirements.

d. Novice – No technical and business knowledge about the requirements.

The data structure for simulating users with different knowledge level are as follows:

Expert {

 List<String> observations;

}

Novice {

 List<String> observations;

}

For Example, consider Service 20: List the items in the cart. For the service, List is the

technical term and Cart is the business term. The dataset is as follows:

Expert> List the items in the cart

Professional> Display the books added in the cart

 60

Amateur> User should be able to browse the books in cart

Novice> Display the books from which I can place an order

5.4 Life Cycle of Simulator

The steps involved in simulator are as follow:

Step 1: Select Goal and Knowledge level of user from respective datasets

Step 2: Execute Simulation

Step 3: Pass the observation to the Model

Step 4: Model passes the Action to execute.

Step 5: If goal reached, terminate; else repeat Step 2.

Figure 5.2: Life Cycle of a Simulator

 61

5.5 Results of Simulation

The Traditional POMDP and Proposed POMDP model are tested by randomly selecting a

Goal from the Goal datasets and by selecting user knowledge level from knowledge level

sematic dataset as explained above. This process is continued for 1000 runs in order to see how

many times goal is achieved by the user. Below are the results of the simulation in perspective of

number of times goal achieved:

Case Traditional

POMDP

Proposed POMDP Model

Expert Professional Amateur Novice Total

Average number of

times user has

achieved the goal

per 1000 runs

679 250 211 197 135 793

Accuracy in % 67.9% 100% 84.4% 78.8% 54% 79.3%

Table 5.1: Accuracy results comparison of Traditional POMDP and Proposed POMDP

From the above accuracy results, it is evident that the proposed POMDP Model is more

accurate in driving the user to achieve their goals than Traditional POMDP based approach. It is

observed that the proposed model works 100% accurate for the Expert users and 54% accurate

for Novice users. The increase in the accuracy of proposed POMDP model is due to better

understanding of requirements, in other words better user intention discovery. Refer sections 3.7

and 4.3 for examples.

 62

The Traditional POMDP and Proposed POMDP model are tested by randomly selecting a

Goal from the Goal datasets and by selecting user knowledge level from knowledge level

sematic dataset as explained above. This process is continued for 1000 runs in order to see the

dialog length for each run. Below are the results of the simulation illustrating the average dialog

length for each run:

Case Traditional POMDP Proposed POMDP Model

Average Dialog length for per

1000 runs

34 21

Average number of times user

knowledge selection matched

with knowledge level in

Model per 1000 runs

- 772 (Accuracy is 77.2%)

Table 5.2: Dialog length results comparison of Traditional POMDP and Proposed POMDP

From the above Simulation results, it is evident that the dialog length for the proposed

method is less when compared to Traditional POMDP. The decrease in the dialog length is the

combination effect of trend analysis on belief history using DWT and making appropriate actions

through four COCOM modes.

In summary through simulation, it is observed that the accuracy of user intention

discovery is improved, dialog length is decreased and proposed method is successful in

addressing users with different knowledge levels.

 63

CHAPTER 6

CONCLUSIONS

6.1 Concluding Remarks

 In this thesis, the automation of Requirements Elicitation (RE) in Software Product Line

(SPL) is reviewed through Online Book Store system. This research has been accomplished in a

number of steps. Initially, all the decision-making algorithms that are necessary for the

automation and trend analysis approaches were studied thoroughly to understand their

limitations. Therefore, a new POMDP model is proposed where trend analysis is performed on

belief-state history to anticipate user knowledge level. Upon recognizing the user knowledge

level, they are addressed with different set of policies such that appropriate actions were

performed through contextual control modes.

 Furthermore, goal based and semantic level simulation is performed to evaluate the

proposed method. From the results of the simulation it is evident that, user intention discovery is

improved and the dialog length is decreased. Also it is evident that different knowledge level of

users were addressed differently.

6.2 Future Improvements and Directions

 The proposed method is capable of handling the user by matching the requirements with

the service descriptions to effectively automate the RE in SPL thereby producing customized

software.

 64

 The actions performed by the agent are appropriate but not optimal. In order perform

optimal actions, the agent should make actions that maximize the future rewards. The

focus of this thesis is to make appropriate/greedy actions.

 By using value iteration functions on updating the policies through learning. We can

transform the planning under uncertainty to reinforcement learning which yields overall

better results.

 The more the recognition of services from the observations, the better the user intention

discovery. Therefore, there is a lot of scope to still improve the accuracy of user intention

discovery by using advanced NLP and context-aware algorithms.

 65

REFERENCES

[1] Adarsh, S. and Janga Reddy, M., 2015. Trend analysis of rainfall in four meteorological

subdivisions of southern India using nonparametric methods and discrete wavelet

transforms. International Journal of Climatology, 35(6),1107-1124.

[2] Bui, T.H., Zwiers, J., Poel, M. and Nijholt, A., 2006. Toward affective dialogue modeling

using partially observable Markov decision processes.

[3] Bui, T.H., Zwiers, J., Poel, M. and Nijholt, A., 2010. Affective dialogue management

using factored POMDPs. In Interactive Collaborative Information Systems (pp. 207-236).

Springer Berlin Heidelberg.

[4] Brillinger, D.R., 2001. Time series: data analysis and theory, Siam,46.

[5] Cassell, J., 2000. Embodied conversational interface agents. Communications of the

ACM, 43(4), 70-78.

[6] Cassell, J., Bickmore, T., Vilhjálmsson, H. and Yan, H., 2000, January. More than just a

pretty face: affordances of embodiment. In Proceedings of the 5th international

conference on Intelligent user interfaces (pp. 52-59). ACM.

[7] Cormode, G., Garofalakis, M., Haas, P.J. and Jermaine, C., 2012. Synopses for massive

data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases,

4(1–3),1-294.

[8] Creed, C., Beale, R. and Cowan, B., 2015. The Impact of an Embodied Agent's Emotional

Expressions Over Multiple Interactions. Interacting with Computers, 27(2),172-188.

[9] Dhanapal, R., 2012. An Approach for Contextual Control in Dialogue Management with

Belief State Trend Analysis and Prediction.

 66

[10] Flycht-Eriksson, A. and Jönsson, A., 2000, October. Dialogue and domain knowledge

management in dialogue systems. In Proceedings of the 1st SIGdial workshop on

Discourse and dialogue. Association for Computational Linguistics.10,121-130.

[11] Gomaa, H. and Shin, M.E., 2007, January. Automated software product line engineering

and product derivation. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii

International Conference on IEEE,258a.

[12] Goguen, J.A. and Linde, C., 1993. Techniques for requirements elicitation.RE, 93,152-

164.

[13] http://www.sei.cmu.edu/productlines/ [Last Accessed on 22/07/2016]

[14] http://pomdp.org [Last accessed on 15/06/2016]

[15] https://code.google.com/p/jwave/ [Last accessed on: 20/07/2016]

[16] https://sourceforge.net/projects/jwordnet/ [Last accessed on 07/08/2016]

[17] `Krueger, C., 2001, October. Easing the transition to software mass customization. In

International Workshop on Software Product-Family Engineering. Springer Berlin

Heidelberg,282-293.

[18] Keskin, C., Balci, K., Aran, O., Sankur, B. and Akarun, L., 2007, May. A multimodal 3D

healthcare communication system. In 3D Conference.

[19] Kaler, M.S.2014. An interactive approach to software visualization for customization.

Electronic Master’s Theses and Dissertations, CS Dept. UWindsor, Windsor, ON, 5161,

1-102.

[20] Kotonya, G. and Sommerville, I., 1998. Requirements engineering: processes and

techniques. Wiley Publishing.

[21] Mimoun, M.S.B., Poncin, I. and Garnier, M., 2012. Case study—Embodied virtual

http://www.sei.cmu.edu/productlines/
http://pomdp.org/
https://code.google.com/p/jwave/
https://sourceforge.net/projects/jwordnet/

 67

agents: An analysis on reasons for failure. Journal of Retailing and Consumer services,

19(6),605-612.

[22] Pohl, K., Böckle, G. and van Der Linden, F.J., 2005. Software product line engineering:

foundations, principles and techniques. Springer Science & Business Media.

[23] Polikar, R., 1999. The story of wavelets. Physics and modern topics in mechanical and

electrical engineering,192-197.

[24] Polikar, R., 1996. The wavelet tutorial.

[25] Rabiser, R., Grünbacher, P. and Dhungana, D., 2010. Requirements for product derivation

support: Results from a systematic literature review and an expert survey. Information

and Software Technology, 52(3), 324-346.

[26] Rickenberg, R. and Reeves, B., 2000, April. The effects of animated characters on

anxiety, task performance, and evaluations of user interfaces. In Proceedings of the

SIGCHI conference on Human Factors in Computing Systems ,ACM,49-56.

[27] Sadri, V.2012. A Petri-Net Based Approach of Software Visualization for Software

Customization. Electronic Master’s Theses and Dissertations, CS Dept. UWindsor,

Windsor, ON.

[28] Sriram, S., 2012. Improved Intention Discovery with Classified Emotions in A Modified

POMDP.

[29] Sommerville, I. and Sawyer, P., 1997. Requirements engineering: a good practice guide.

John Wiley & Sons, Inc.

[30] Stanton, N.A., Ashleigh, M.J., Roberts, A.D. and Xu, F., 2001. Testing Hollnagel’s

contextual control model: Assessing team behaviour in a human supervisory control task.

Journal of Cognitive Ergonomics, 5(1), 21-33.

 68

[31] Tripathi, S., 2016. A Run-Time Approach of Combining Ontologies to Enhance

Interactive Requirements Elicitation for Software Customization.

[32] Tsui, F., Karam, O. and Bernal, B., 2013. Essentials of software engineering. Jones &

Bartlett Publishers.

[33] Yuan, X. and Bian, L., 2010, December. A modified approach of POMDP-based dialogue

management. In Robotics and Biomimetics (ROBIO), 2010 IEEE International

Conference,816-821.

[34]
Yuan, X. and Vijayarangan, R., 2013, August. Emotion Animation of Embodied

Conversational Agents with Contextual Control Model. In Green Computing and

Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),

IEEE International Conference on and IEEE Cyber, Physical and Social

Computing,IEEE,670-677.

[35] Yuan, X. and Zhang, X., 2013, August. An interactive approach of online software

customization via conversational Web agents. In Green Computing and Communications

(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International

Conference on and IEEE Cyber, Physical and Social Computing ,IEEE,327-334.

[36] Yuan, X. and Bian, L., 2010, December. A modified approach of POMDP-based dialogue

management. In Robotics and Biomimetics (ROBIO), 2010 IEEE International

Conference on IEEE,816-821.

[37] Yuan, X. and Zhang, X., 2015, August. An ontology-based requirement modeling for

interactive software customization. In Model-Driven Requirements Engineering

Workshop (MoDRE), 2015 IEEE International (pp. 1-10). IEEE.

[38] Zhang, M., 2016. Real-time Traffic Flow Prediction using Augmented Reality.

 69

[39] Zhang, X., 2011. An interactive approach of ontology-based requirement elicitation for

software customization.

 70

APENDICES

Appendix A

The Subset of Requirement Model from Zhang [35] case study

The following figure illustrates the complete ontology-based requirement model instantiated with

the case study of online book shopping service. The figure is divided into four parts

 71

List of Services:

1. Search Books

1.1. Basic Search

1.1.1. Broad Match

1.1.2. Exact Match

1.2. Advanced Search

1.2.1. By author of book

 72

1.2.2. By title of book

1.2.3. By publication of book

2. Show list of books

2.1. Pick a book

2.1.1. Quick View

2.1.2. Detailed View

2.2. Sort the list of books

2.2.1. By title

2.2.2. By latest

2.2.3. By popularity

3. Manage a Shopping Cart

3.1. Add a Book to cart

3.2. Remove a Book from cart

3.3. List the items in the cart

4. Place an Order

4.1. Getting summary of order

4.2. Set Delivery Information

4.3. Set Payment Information

4.3.1. With High Security

4.3.2. With Low Security

 73

Appendix B

The Following is the Java code for the AutomateREinSPL Algorithm in section 3.4.1

/*
 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package com.vijay;

import com.vijay.model.BeliefHistory;
import com.vijay.model.Policy;
import edu.stanford.nlp.ling.CoreAnnotations.LemmaAnnotation;

import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;
import edu.stanford.nlp.ling.CoreLabel;

import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.simple.*;

import edu.stanford.nlp.util.CoreMap;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.PrintWriter;

import java.util.List;
import java.util.Properties;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import net.didion.jwnl.JWNL;

/**
 *
 * @author vijaymulpuri
 */

public class App extends HttpServlet {

 /**

 * Processes requests for both HTTP <code>GET</code> and <code>POST</code>
 * methods.
 *
 * @param request servlet request

 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 String message = request.getParameter("message");

 message = message.trim();
 String result = process(message);
 System.out.println(result);

 try (PrintWriter out = response.getWriter()) {
 /* TODO output your page here. You may use following sample code. */
 out.println(result);

 }
 }

 public String process(String input){

 double newBelief = StateEstimator.process(input);
 BeliefHistory historyInstance = BeliefHistory.getInstance();

 74

 historyInstance.addHistory(newBelief);
 int ncp = TrendAnalysis.process(historyInstance.getHistory());

 String k = KnowledgeLevelSelector.process(ncp);
 Policy policy = PolicySelector.process(k, newBelief);

 String[] expressions = {"A", "D", "F", "H", "SA", "SU"};

 double[] expressionCoeff = Fuzzy.process(ncp, policy.getReward());
 String expModel = "";
 for(int i=0;i<expressions.length;i++){
 if(expressionCoeff[i]>0.0){

 expModel += expressions[i]+"_";
 }
 }
 expModel = "H_SU";//expModel.substring(0, expModel.length()-1);

 return policy.getAction();//"{'action':'"+policy.getAction()+"', 'expression':'"+expModel+"'}";
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click on the + sign on the left to edit the code.">
 /**
 * Handles the HTTP <code>GET</code> method.

 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Handles the HTTP <code>POST</code> method.
 *

 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs

 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 processRequest(request, response);
 }

 /**

 * Returns a short description of the servlet.
 *
 * @return a String containing servlet description

 */
 @Override
 public String getServletInfo() {
 return "Short description";

 }// </editor-fold>

}

 75

Appendix C

The Following is the HTML, CSS and JS code for the Interface described in section 4.5

<%--

 Document : index

 Created on : Jul 23, 2016, 12:13:41 PM

 Author : vijaymulpuri

--%>

<%@page import="java.util.ArrayList"%>

<%@page import="com.vijay.ServicesData"%>

<%@page import="com.vijay.model.Service"%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">

 <title>Avatar</title>

 <!-- Latest compiled and minified CSS -->

 <link rel="stylesheet" href="css/bootstrap.min.css">

 <!-- Optional theme -->

 <link rel="stylesheet" href="css/bootstrap-theme.min.css">

 <link rel="stylesheet" type="text/css" href="css/avatar.css"/>

 <%

 ArrayList<Service> servicesList = ServicesData.getServices();

 %>

 </head>

 <body>

 <div class="container-fluid fill" >

 <div class="row" id="mainWindow">

 <div class="col-md-6">

 <div id="avatar"></div>

 </div>

 <div class="col-md-3">

 <textarea rows="7" class="form-control" id="info" name="info" style="font-size: 24px;" disabled></textarea>

 </div>

 <div class="col-md-3">

 <div class="panel panel-success" id="servicesSelectedWindow">

 <div class="panel-heading">

 <h3 class="panel-title">Selected Services</h3>

 </div>

 <div class="panel-body" style="padding:0px;">

 </div>

 </div>

 <div class="panel panel-info" id="servicesListWindow">

 <div class="panel-heading">

 <h3 class="panel-title">List of Services</h3>

 </div>

 <div class="panel-body" style="padding:0px;">

 <ul class="list-group">

 <%

 for(Service service: servicesList){

 %>

 <li class="list-group-item"><%=service.getName()%>

 <%

 76

 }

 %>

 </div>

 </div>

 </div>

 </div>

 <div class="row" id="messageWindow">

 <div class="col-md-12">

 <div class="panel panel-info">

 <div class="panel-heading">

 <h3 class="panel-title">Message</h3>

 </div>

 <div class="panel-body">

 <div class="input-group">

 <input class="form-control" id="message" name="message" style="height: 70px;font-size: 24px;" placeholder="Please type

your message here..."/>

 <button class="btn btn-success" style="height: 70px;" id="send">SEND</button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 <!-- Latest compiled and minified JavaScript -->

 <script src="https://code.jquery.com/jquery-2.2.4.min.js" integrity="sha256-BbhdlvQf/xTY9gja0Dq3HiwQF8LaCRTXxZKRutelT44="

crossorigin="anonymous"></script>

 <script src="js/bootstrap.min.js"></script>

 <script src="js/three.min.js"></script>

 <script src="js/DDSLoader.js"></script>

 <script src="js/MTLLoader.js"></script>

 <script src="js/OBJLoader.js"></script>

 <script src="js/Detector.js"></script>

 <script src="js/stats.min.js"></script>

 <script>

 var container, stats;

 var camera, scene, renderer;

 var mouseX = 0, mouseY = 0;

 var windowHalfX = window.innerWidth / 2;

 var windowHalfY = window.innerHeight / 2;

 var initialExpression = "H"; // Happy

 loadExpression(initialExpression);

 animate();

 function loadExpression(expression) {

 container = document.getElementById("avatar");

 camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 1, 2000);

 camera.position.z = 250;

 // scene

 77

 scene = new THREE.Scene();

 var ambient = new THREE.AmbientLight(0x444444);

 scene.add(ambient);

 var directionalLight = new THREE.DirectionalLight(0xffeedd);

 directionalLight.position.set(0, 0, 1).normalize();

 scene.add(directionalLight);

 // model

 var onProgress = function (xhr) {

 if (xhr.lengthComputable) {

 var percentComplete = xhr.loaded / xhr.total * 100;

 console.log(Math.round(percentComplete, 2) + '% downloaded');

 }

 };

 var onError = function (xhr) { };

 THREE.Loader.Handlers.add(/\.dds$/i, new THREE.DDSLoader());

 var mtlLoader = new THREE.MTLLoader();

 mtlLoader.setPath('obj/');

 mtlLoader.load('neutral.mtl', function (materials) {

 materials.preload();

 var objLoader = new THREE.OBJLoader();

 objLoader.setMaterials(materials);

 objLoader.setPath('obj/');

 objLoader.load(expression+'.obj', function (object) {

 object.position.z = -300;

 scene.add(object);

 }, onProgress, onError);

 });

 //

 renderer = new THREE.WebGLRenderer();

 renderer.setPixelRatio(window.devicePixelRatio);

 renderer.setSize(3 * window.innerWidth / 4, 3 * window.innerHeight / 4);

 while (container.hasChildNodes()) {

 container.removeChild(container.lastChild);

 }

 container.appendChild(renderer.domElement);

 //document.addEventListener('mousemove', onDocumentMouseMove, false);

 //

 window.addEventListener('resize', onWindowResize, false);

 }

 function onWindowResize() {

 windowHalfX = window.innerWidth / 2;

 windowHalfY = window.innerHeight / 2;

 78

 camera.aspect = window.innerWidth / window.innerHeight;

 camera.updateProjectionMatrix();

 renderer.setSize(3 * window.innerWidth / 4, 3 * window.innerHeight / 4);

 }

 function onDocumentMouseMove(event) {

 mouseX = (event.clientX - windowHalfX) / 2;

 mouseY = (event.clientY - windowHalfY) / 2;

 }

 //

 function animate() {

 requestAnimationFrame(animate);

 render();

 }

 function render() {

 camera.position.x += (mouseX - camera.position.x) * .05;

 camera.position.y += (-mouseY - camera.position.y) * .05;

 camera.lookAt(scene.position);

 renderer.render(scene, camera);

 }

 $(document).ready(function () {

 adjustHeight();

 document.getElementById("info").value += "Hi, How can I help you today?\n";

 $("button").click(function () {

 execute();

 });

 $("#message").keypress(function (e) {

 if (e.which === 13) { //checks whether the pressed key is "Enter"

 execute();

 }

 });

 });

 function execute(){

 $.ajax({

 url: "App",

 type: "get", //send it through get method

 data: {message: document.getElementById("message").value},

 success: function (response) {

 //var obj = JSON.parse(response);

 //alert(obj.expression);

 document.getElementById("info").value = response;//obj.action;

 document.getElementById("message").value = "";

 loadExpression("H");

 animate();

 },

 error: function (xhr) {

 79

 console.log(xhr);

 }

 });

 }

 function adjustHeight(){

 var messageWindow = document.getElementById("messageWindow");

 messageWindow.style.height = "160px";

 console.log(window.innerHeight, messageWindow.offsetHeight);

 var mainWindow = document.getElementById("mainWindow");

 mainWindow.style.height = (window.innerHeight - messageWindow.offsetHeight)+"px";

 var servicesSelectedWindow = document.getElementById("servicesSelectedWindow");

 servicesSelectedWindow.style.height = (mainWindow.offsetHeight/2 - 20)+"px";

 servicesSelectedWindow.style.overflowY = "scroll";

 var servicesListWindow = document.getElementById("servicesListWindow");

 servicesListWindow.style.height = (mainWindow.offsetHeight/2 - 20)+"px";

 servicesListWindow.style.overflowY = "scroll";

 var infoWindow = document.getElementById("info");

 infoWindow.style.margin = (2*servicesListWindow.offsetHeight/3-40)+"px 0px";

 }

 </script>

 </body>

</html>

 80

VITA AUCTORIS

NAME: Vijaya Krishna Mulpuri

PLACE OF BIRTH: Guntur, India

YEAR OF BIRTH: 1988

EDUCATION: Bachelor of Technology

Information Technology

SASTRA University, India

Master of Science

Computer Science

University of Windsor, Canada

	University of Windsor
	Scholarship at UWindsor
	2016

	Trend Analysis of Belief-State History with Discrete Wavelet Transform for Improved Intention Discovery
	VIjaya Krishna Mulpuri
	Recommended Citation

	tmp.1477499409.pdf.dnQdv

