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Abstract 

Recently, the automakers have become more and more aware of the environmental and 

economic impact of their manufacturing processes. The paint shop is the largest energy user in a 

vehicle manufacturing plant, and one way to reduce costs and energy usage is the optimization 

of this area. This project aims at providing a tool to model and simulate a paint shop, in order to 

run and analyze some scenarios and case studies, helping to take strategic decisions. Analytical 

computations and real data were merged to build a tool that can be used by FCA for their 

Sterling Heights plant. 

Convection and conduction heat losses were modeled for the dip processes and the ovens. 

Thermal balances were used to compute the consumptions of booths, decks and ovens, while 

pump and fan energy consumptions were modeled for each sub-process. The user acts on a 

calendar, scheduling a year of production, and the model predicts the energy consumption of 

the paint shop. 

Five scenarios were run to test different conditions and the influence of scheduling on the 

energy consumption. Two different sets of production schedules have been evaluated, the first 

one fulfilling the production requirement in one shift of 10 hours, at high rate, the second one 

using two 7-hour-long shifts at medium production rate. It was found that the unit cost was 

minimized in the warmest months of spring and fall, and system shutdown was a crucial factor 

to reduce energy consumption. A fifth hypothetical scenario was run, with a 4 month 

continuous production and an 8 month total shutdown, which reduced the energy consumption 

to a half of the best realistic scenario. When the plant was run in a two-shifts configuration, the 

cost to coat a vehicle was found to be $29 with weekend shutdown, and $39 without. In the 

one-shift configuration, the cost was slightly higher, but the difference was less than 5%. While 

the fifth scenario showed a consistent reduction of the unit cost, inventory and logistic expenses 

deriving from the production strategy make this scenario almost impossible to realize. A 

sensitivity analysis was run on several parameters influencing the energy consumption of the 

paint shop, and the booths set point temperature was found to be the most significant factor. 
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1 Introduction 

Fuel consumption has become a very important topic for automakers all over the world. Local 

and global regulations effectively forced the car manufacturers to improve their technology, 

massively investing in their research departments, to lower the fuel consumption of their 

products. 

The United States of America enacted the Corporate Average Fuel Economy (CAFE) Standards in 

1975, to improve the average fuel economy of the vehicles sold in the United States. According 

to the Summary of Fuel Economy Performance, written at the end of 2015 by the U.S. 

Department of Transportation, the CAFE standards were able to take the average fuel economy 

of the total fleet (i.e. including imported and domestic passenger cars and light trucks) from 19.9 

MPG in 1978 to 31.5 MPG in 2014. [1] 

While industry efforts to improve fuel efficiency are well known, less has been said about the 

impact that the production process has on the “Carbon Footprint” of a vehicle. Companies are 

becoming more and more sensitive to the idea of sustainability, and they are self-regulating to 

lower the energy involved in the manufacturing of their vehicles. Keeping the car production 

process carbon footprint low helps both in decreasing the cost of the vehicle for the 

manufacturer and in developing the idea of a sustainable future for the subsequent generations. 

A step further in this direction is the analysis of the lifecycle impact of a product. It takes into 

account the environmental impact of a vehicle throughout its whole life, from raw materials 

extraction to waste treatment and recycling. The manufacturing process of a vehicle then 

becomes a part of every consideration regarding the environmental impact of the product. 

According to a study by Leven and Weber of the University of Stuttgart [2], the production of a 

car can account for about 3 MWh of energy use, based on data collected exclusively in German 

plants. Taking the gasoline heating value as 47,300 kJ/kg and its density as 0.755 kg/L, that value 

would correspond to the energy contained in approximately 302 L of fuel. Going deeper into 

speculations, if a mid-size car mileage is 15 km/L and the average annual distance per driver in 

the United States [3] is 21,000 km, that amount of energy – and consequently of gasoline – 

would allow that car to be driven for more than 4,500 km or approximately two and a half 



2 
 

months. This value is expected to increase as vehicle efficiency improves. Although this is a 

rough estimation, it gives an idea of the real impact of the car manufacturing process and of 

why the analysis of it is becoming more and more a central topic in the automotive landscape. 

To better focus the efforts for improvements in this field, it is important to break down the 

energy use in the various macro-areas that make up a vehicle production process: it is not 

enough to analyze the body shop, the paint shop, the assembly as a whole, to effectively 

address the problem it is fundamental to go deeper in detail into these areas. In the ENERGY 

STAR® guide [4], it is stated that up to 50% of the whole energy related to the production of a 

vehicle is used for coating. The electric share of the coating energy is mainly used to power the 

fan motors, and the fuel is used to condition the process air and for the thermal oxidation of 

VOCs in the exhaust. As will be discussed in the next sections, part of the paint shop energy 

consumption is due to the toxic nature of the materials. 

Figure 1.1 shows the electricity usage in the macro-areas of a car manufacturing process. The 

diagram confirms, as already discussed, the energetic impact of the paint shop. 

 

Figure 1.1 – Electricity consumption portions in areas of a vehicle assembly plant [4], [5] 
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Figure 1.2 is the result of Dürr’s analysis of the trends in the automotive paint industry [6]. It 

shows the variety of energy carriers in use in the different areas of a paint shop, and their 

impact on the total cost. It is clear that the pretreatment has a very high consumption of hot 

water, while booths and ovens use most of the electricity and natural gas of the whole process. 

This is due to the nature of the operations: pre-treatment typically uses large dip tanks and the 

temperature of the phosphating bath has to be controlled and maintained in a certain range, 

while in the booths large air flows have to be treated and conditioned in order to keep the 

temperature and the humidity within the set point window. 

 

Figure 1.2 – Energy carriers used in paint shop processes [6] 

Figure 1.3, shows the trend of the distribution of the expense for fuel (natural gas and heating 

oil) and electricity during the years for US vehicle assembly plants. It’s noticeable that the 

proportions between fuel and electricity expenditures have kept almost constant. Although the 

chart shows the trend until 1994, nowadays the situation is very similar [7], [8], [6]. 
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Figure 1.3 – Total fuel and electricity use in US assembly plants [4] 

1.1 Objectives 

This project aims at generating a tool that could help the engineers and the professionals that 

are involved in strategic decisions for energy reduction in vehicle assembly plant paint shops. 

This tool will then be used to run various production strategy scenarios and differentiate 

between their energy consumption. 

1.2 Scope 

The tool is an analytical model, generated for the Sterling Heights Assembly Plant (SHAP) of FCA. 

The scope of this project is to model all the steps of the coating process that are directly 

involved in the production. Therefore, building HVAC, lighting of some sections, and whole 

substations that are not linked to the main flow of production are not included in the model. 

Furthermore, some other stations that contribute to a small part of the overall energy 

consumption and for which it is not easy to get information, are included as “black boxes” - 

simply added to the partial result to deliver the final outcome without significantly affecting its 

accuracy. 

Moreover, this project consists of the generation of a virtual environment in which data of the 

equipment currently installed in the paint shop can be inserted, and their operations can be 

simulated, while collecting the results of their energy consumption. This environment works by 

being coupled to the theoretical model, on the same schedule, and the cumulative energy 

consumption of every process in the paint shop can be analyzed.  
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2 Literature Review 

Prendi et al. in their study “Life Cycle Inventory of the Automotive Paint Processes“ [9] state that 

“As recognized by many authors, the most difficult part of the LCA [Life Cycle Assessment] is 

data collection, the part of the LCA known as the life cycle inventory (LCI)”. The complexity of 

this kind of analysis explains the increasing focus on this matter, and the same authors, in their 

“Life Cycle Inventory E-Coat and Data Application Protocol for the Automotive Paint Processes” 

[10], published one year later, relate the energy and water use and the materials usage with the 

painted surface area in three of the paint process phases: pretreatment, e-coat and topcoat. 

Their study shows that while the e-coat water and materials usage are substantially higher than 

for the topcoat, in terms of the energy involved, the situation is the opposite. The e-coat 

process, in fact, uses at least one large dip-tank in which the body is submerged, as well as 

several spray rinses. On the other hand, the topcoat energy use is almost six times higher than 

that of the e-coat. This is explained by thinking of a spray booth operation: a strong downdraft is 

needed, with air temperature and humidity that have to be inside a narrow set-point window, 

leading to high power consumption for ventilation and air treatment. 

2.1 Coating 

The coating of a vehicle is the most direct quality factor that the customer can easily and 

immediately evaluate. It is not a simple layer of paint sprayed on the Body In White. 

Painting a car body has two purposes: 

 Aesthetic, since the finish of a vehicle is the most direct quality factor that the customer 

can easily and immediately evaluate. There are several types of coating, depending on 

the desired result: solid, metallic, and pearlescent coatings can be used to get the 

desired appearance. 

 Physical, since coating a vehicle is fundamental to protect the body against corrosion, 

deterioration and contamination by external agents such as weather, chemicals, salt and 

sunlight. 

The paint of a finished car is the result of a very complex process, with surface treatments, dip 

baths, multiple sprayed layers and heat curing. The painting process consists then of a multitude 
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of sub-phases, each being responsible for manpower and asset utilization, resource allocation 

and energy consumption. Figure 2.1 shows the layers that usually make up a vehicle coating, 

with their average thickness [7]. 

 

Figure 2.1 – Typical vehicle coating layers [7] 

While developing a tool that allows one to analyze, simulate and estimate the energy use in 

such an intricate process is extremely important for any car manufacturing company, usually the 

complexity of the task acts as a discouraging factor, limiting the developments in this sense. 

Whenever anybody has to deal with the creation of a model of a determined part of the real 

world, the knowledge of the underlying principles has to be solid enough to guarantee good 

execution of the project. That is the reason why a section about coatings, coating processes and 

their new development, as reported in the literature has been included in the following 

sections. 

2.1.1 Primers 

Corrosion is a major issue for the car body. Because of its particular duty, it is subjected to many 

kinds of external contamination, and the primer layer is one of the main “defense lines” against 

deterioration. Prior to applying the primer layer, the welded body is pre-treated to prepare the 

surface for painting. Phosphate treatment passivates the metal surface. The subsequent primer 

layer does not just protect against corrosion and chemical damage; another important purpose 

of priming in the automotive industry is to resist mechanical damage, sometimes referred as 

“chipping”, of the paint film and to stop its propagation to the metal substrate. 
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Moreover, it is important to remember that the aesthetic result of the paint coating is of 

primary importance. A car with a finish that is very effective for metal substrate conservation 

but with a very poor appearance gives the customer the unavoidable feeling of poor quality, and 

can easily be the discriminant for the vehicle purchase. Another of the primer’s purposes is then 

the reduction of the roughness of the metal profile, preparing the car body for the topcoat. 

While the way the primer is applied on the surface will be discussed later, it is of some interest 

to go a little bit into the detail of the paint formulation. There has been a big evolution from the 

beginning of the twentieth century, and even nowadays there is not a prevalent technology. The 

choice of the manufacturer is still the main factor for the adoption of one paint technology 

instead of another [11]. 

In the 1960s Ford introduced a revolutionary system for the undercoating of the car bodies: 

electrodepositon, or electrocoating, has probably been the most significant change in the 

coating technologies over the years. In e-coat, paint is the solute of an aqueous solution, and 

the resin exists as positive or negative ions, depending on the technology used – anodic or 

cathodic. The paint resin with its ionic groups means the resin is soluble. The car body is charged 

by a direct current, and dipped into the tank filled with the solution. The coating ions migrate to 

the car body surface, and lose their charge leaving a neutral charge film. Electroendosmosis 

occurs, and the water leaves the deposit. The body is then cured in an oven. The first 

electrocoat primers were of the anodic type, but nowadays cathodic electrodeposition has 

become the standard almost everywhere, combined with the wide-spread use of galvanized 

sheet metal [12]. 

Typically, after the electrocoating process, the car body priming is not complete. This layer 

guarantees protection against the chemical alteration of the sheet metal parts, but usually a 

powder, solventborne or waterborne primer, sometimes referred as a “filling primer” or 

“surfacer”, is sprayed electrostatically on the surface to guarantee mechanical resistance to 

stone chipping and further UV and corrosion protection. It also provides an improved base for 

the support and adhesion of the subsequent paint layers. 
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This filling primer can be sprayed electrostatically or without charge. Nowadays, the majority of 

the automakers use electrostatic spraying for fillers, to lower the overspray as much as possible. 

This is very important for both environmental regulations and paint savings. The car body and 

the paint are oppositely charged with high voltage, improving the adhesion of the coating to the 

panels. The coating jet “wraps” the metal parts and the overspray is dramatically reduced. If a 

particle does not hit the surface, but its kinetic energy is not enough to escape the electric field, 

it turns in the air and it goes back to the car body. A typical value for an electrostatic spraying 

process transfer efficiency is 70%-80% (paint that exits the nozzle which goes effectively on the 

surface). When powder is used, values up to 97% can be reached, but this can only be achieved 

by overspray collection and recirculation: the transfer efficiency is then not obtained 

considering just the coating first pass spray process, but it is an overall value, computed 

considering the final coating waste. This result has the effect of decreasing the costs associated 

with sludge removal and disposal. 

Using the analysis contained in the document “Voltage Block Systems – Technological 

advancements for Waterborne Electrostatic Painting” [13], the economy of electrostatic 

spraying is very basic and yet effective; approaching the problem from the flow rate required by 

the atomizer to achieve the desired film build, if the present method has a 60% transfer 

efficiency and a flow rate of 300 cm3/min, and the gun is triggered for one minute, the amount 

of coating deposited on the surface is 

 300 𝑐𝑚3/ min  × 1 min ×  60% = 180 𝑐𝑚3  (1) 

Now, consider that the goal is to keep the amount of coating exactly the same, but with a 

system where the transfer efficiency is 75%. This means that the flow rate out of the nozzle has 

to be 

 180 𝑐𝑚3/75% = 240 𝑐𝑚3/𝑚𝑖𝑛 (2) 

Computing the paint savings: 

 (300 − 240)/300 = 20% (3) 



9 
 

The result is that with an increase of the 15% in transfer efficiency the saving on paint can mean 

that the actual saving is more than just 15%, and it explains why investing in electrostatic 

application or any other technologies that improve the transfer efficiency has been of 

paramount importance for the painting industry. 

Electrostatic spraying can also be problematic, in the case of semi-closed sections or of anything 

that can work as a Faraday cage: the electric charge density on the internal surface becomes null 

and – especially with powder paint – the spray adhesion to the surface is very poor. Great care 

should then be taken in the design phase of the car body and of the painting process. This is a 

simple example of how integrated design is mandatory for large companies, and of how 

engineers that design the product nowadays need to have great knowledge of the 

manufacturing process. 

2.1.1.1 Powder: 

In the case of powder coating the electrostatic charge is the only way to generate adhesion to 

the surface, and the powder is first fluidized by compressed air, then another compressed air 

stream pushes powder out through a nozzle, which can be conical or a bell. At the nozzle, DC 

current with a high voltage and low current charges the output of the spray guns. 

2.1.1.2 Solvent borne and Waterborne: 

These two types of coatings differ from powder coat because they are in liquid form. 

Waterborne paint electrostatic application is challenging, because water is conductive. The 

charge that is given to the spray at the gun tip, then, tends to move back through the coating 

into the pump and to the ground. This means that none of the particles that will reach the car 

body surface will have an electrostatic charge, and the benefits of the electrostatic application 

vanish. A spray gun for waterborne paint has an isolation block that prevents the coating from 

“grounding out”. It is substantially easier to charge solvent borne paint electrostatically, but 

today the gap in performance between the two has been completely filled. 

It’s very important to point out that waterborne primers contain less Volatile Organic 

Compounds – VOCs – than solvent borne ones. Powder has null VOCs emissions, but since the 

film thickness obtained is usually double that given by the waterborne primer, getting a 
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satisfying uniformity of the surface is more difficult and its curing requires a higher temperature 

in the oven, leading to higher energy consumption. 

VOCs affect human health in several ways; they can cause skin, eye, nose and throat irritation, 

headaches, dizziness, visual disorders and memory impairment, and many of them are 

suspected to cause cancers in humans. Their concentration control is then extremely important 

especially in the case of manned stations, while when dealing with fully automated stations 

their presence can be tolerated, up to values that still guarantee that the booth VOC 

concentration is far from the Lower Explosion Limit – LEL. Moreover, there are regulations that 

limit the VOC emissions in the exhaust in many places in the world, and some companies are 

self-committed to improve the quality of their emissions. Any exhaust stream that has a high 

concentration of VOCs must be treated, with a consequence of energy consumption. Numerous 

strategies have been studied to reduce this impact. A normal system, supplied by companies 

such as Dürr, can easily achieve the 95% VOC abatement, and since one way of reducing them is 

to oxidize them – and the oxidation process is exothermal – the heat produced can be used to 

heat or pre-heat the air flow to the oxidizer. In order to reduce the amount of fresh air to be 

treated, a typical configuration is the recirculation of 75-85% of the air back to the booths after 

its conditioning in Air Recirculation Units – ARUs [14]. 

Curing waterborne coatings presents some difficulties compared to solvent borne: the different 

evaporative behavior of water and its different physical characteristics can lead to bubbles 

popping on the coating surface. This effect is usually called “blistering”. It is important to avoid 

nucleation of the water by maintaining the right temperature inside the oven and avoiding 

excess humidity in the spray booth [15]. 

2.1.2 Topcoats 

Topcoats have as their main purpose to provide stability to the coating system and to build an 

aesthetically appealing effect. Metallic or mica-pearlescent ones have a base, colored layer, 

called basecoat, and a top, transparent layer, called clearcoat. While solid color (“straight 

shade”) topcoats can be applied in a single layer, nowadays the standard is to have basecoat 

and clearcoat for any type of finishing. The thickness of the basecoat layer is usually lower than 

the clearcoat. 



11 
 

2.1.2.1 Solvent Borne Topcoats 

Pigments are the components that give color to the paint. Usually the effect is obtained with a 

uniform dispersion of powder-like crystalline particles that reflect parts of the light spectrum, 

giving the desired color appearance. The uniform dispersion of these particles is extremely 

important for an acceptable result. Particle size, distribution and structure influence the color 

shade and the effect of wetting of the particles by polymer solutions. 

Solvents give stability to the resin solution, and they affect the film building process and the 

viscosity of the paint. They have to be adjusted in order to get the right evaporation rates 

depending on the application, technology, and oven temperature. An error in the formulation of 

the paint can lead to poor results and paint film failures that can be immediate or that can 

happen later in the vehicle life. Their composition can vary depending on the manufacturer’s 

choice. Several types of organic compounds can be used: aromatic hydrocarbons, esthers of 

alkanols, alcohols, alkanol ethers, and so on. The use of some components has been restricted 

over the years in Europe and/or in North America. 

Traditionally, the metallic basecoats contain Cellulose AcetoButyrate (CAB) with a suspension of 

aluminum flakes that give the metallic appearance. This material is extremely suitable for this 

purpose because the topcoat is applied with a very short flash-off time between the basecoat 

and the clearcoat applications. As in any other type of paint, the basecoat has to be insoluble in 

the clearcoat without the need of an intermediate curing oven. The CAB is able to wet the 

aluminum flakes fixing them in the layer. The clearcoat is necessary because the basecoat itself 

has poor resistance to water and other agents, especially in the case of highly pigmented 

basecoats with aluminum flakes. 

In the case of mica paint, flake shaped particles derived from aluminosilicates are dispersed in 

the resin, and covering the mica particles with thin layers of heavy metal oxides gives them their 

particular pearlescent effect: the reflection of the light on the vehicle surface gives the car body 

different colors depending on the angle of incidence. 
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2.1.2.2 High-Solids Topcoats 

Increasing environmental awareness, starting from the 1970s, cleared the way for investments 

in eco-sustainability. The Volatile Organic Compounds that derive from solvents in paints began 

to be perceived as a problem and strategies to clean the exhaust of paint booths started to be 

developed. 

It is possible to catalytically oxidize the solvent vapors, but it is only part of the solution: the 

physical separation and recycling of the solvent is extremely expensive, due to their very low 

concentration in a very high air volume. Addressing the problem at its root, the companies 

started developing “cleaner” paints, with lower solvent contents. Two solutions are high-solids 

and waterborne topcoats. Conventional solid color topcoats contain 50-60% by weight solvents. 

Clearcoats are around 60%, while metallic basecoats can contain up to 90%. 

The solids content of a topcoat paint can be increased by keeping the molecular weight of the 

polymers low in order to maintain liquid viscosity. Depending on the formulation of the paint – 

alkyds, acrylic resins or melamine resins – there are different strategies that can be used. The 

durability of the paint, however, is usually worsened by shortening the polymers, so more resin-

resin bonds are needed. Good performances have been achieved with the use of two 

component paints, in which the base and the hardener are dispensed separately by the gun. The 

solids can increase from the 40-50% by weight in conventional paints to more than 60% for high 

solids topcoats. 

To raise the solids content of metallic basecoats, several strategies were studied, such as the 

substitution of part of the CAB with other resins or the employment of non-aqueous dispersions 

(NAD). These strategies can raise the solids content up to 20-25%. 

High-solids clearcoats are obtained by combining low molecular weight acrylic resins with 

abducts of polyisocyanates, and the product obtained guarantees more than 60% in solids 

content and a perfect compatibility with waterborne basecoats. 

2.1.2.3 Waterborne Topcoats 

High solids coatings show that the degrading of film properties limits the increase in solids 

content, and to overcome this limitation, water can be used in paint preparations. Water is very 
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difficult to deal with when used as paint base, because of its high boiling point, energy and time 

of vaporization, high density and surface tension. The major problem is that the polymers have 

to be modified to be used with water as a solvent or dispersion agent. 

Water presents a challenge for its compatibility with the aluminum flakes. They have to be 

stabilized with special surfactants and coatings in order to be used in a water-based paint. 

Waterborne basecoats can have a co-solvent that helps water in its duty as dispersion agent, but 

they still contain less VOCs than the high-solids basecoats. 

The main difficulty in this case is the evaporation of the water out of a rather thick paint film 

and its consequent stability. While usually the environmental sustainability of high solids solid 

color topcoats is considered acceptable, double layer waterborne solid color topcoats have been 

developed. In this latter case the solid color basecoat is developed with the same resins as the 

metallic one, with the challenge of achieving good hiding power in a thinner, aqueous film. 

It is very difficult to employ waterborne clearcoats, because of their inferior applicability, gloss 

and durability properties compared to the solvent-borne type. It is unusual to find waterborne 

clearcoats, while some attempts have been made to use powder and slurry clearcoats. 

2.2 Technological Challenges 

The paint shop is an area in which there have been major investments for improving the 

performances in terms of the energy and environmental impact. Even if a lot has been achieved 

in the past 40 years, the engineers have to deal with new technical challenges due to the 

increasing environmental awareness and regulations. 

One of the most important and toughest challenges of today is the lifecycle approach to the 

manufacturing process, intended as an integrated approach between product and process, 

taking into account raw materials, their production or extraction and all other environmental 

considerations. Prendi et al. [16] analyzed the paint process under this “new” light. They 

investigated the use of waterborne coatings, which are nowadays preferred to the solvent 

borne because of their lower VOCs. Their study weighed factors that are typical of LifeCycle 

Analysis – LCA – such as the production process of the paint itself and the process variables in 

the paint process. It is a complex matter, and the parameters to take into account are many and 



14 
 

some of them not easy to quantify. They concluded that, in reality, waterborne coatings are 

comparable to the solvent borne ones, considering their lifecycle and their impact on the car 

painting process. 

A greatly unexplored topic is the recycle of the exhaust flow enthalpy. It is the same concept as 

a vehicle’s turbocharging, in which the enthalpy contained in the exhaust is recovered to power 

the compressor at the engine inlet. Roelant et al. [8] created a model of a generic paint shop, 

predicting the energy consumption, operation cost and environmental impact of the 

manufacturing process. The environmental analysis was extremely refined and showed the 

same LCA approach of Prendi et al. [16]. They then identified a possible source of savings in 

utilizing the enthalpy of the exhaust of the RTO oxidizer to heat the process air for the spray 

booths. Their model was able to predict that the energy recovered is enough for the air 

treatment requirement, leading to a significant saving in fuel. They then suggested a heat 

exchanger network to effectively implement the solution in real plants, taking into account 

payback, environmental impact of their production and operating costs, to find an optimum for 

the design. The scheme in Figure 2.2 describes their idea of recovering exhaust enthalpy. 

 

Figure 2.2 – System to recovery paint shop exhaust enthalpy [8] 
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Dürr director Enregaard showed the trends in the automotive paint application technologies [6], 

highlighting the challenges that are possible to be overcome with new robots, new layouts and 

new methods for electrostatic application. One of the main targets of the actual automotive 

industry is the improvement of the transfer efficiency of the electrostatic powder application, 

that nowadays can reach 95%. The goal is to get as close as possible to 100% without significant 

cost increases. Another target for the paint booths is to automatize 100% of the operations, 

using highly flexible robots and cost effective strategies. New paint booths are close to this 

objective – and sometimes they have already achieved 100% automation – thanks to highly 

specialized anthropomorphic robots that are able to paint the interior and difficult spots 

without human intervention. A – minimal – manned station can still be present though, for 

details and hidden spots. 

Another way to dramatically reduce energy consumption is to make whole processes become 

unnecessary and consequently eliminate them: an example is the wet-on-wet coating 

deposition, in which the coating is not cured in between the application of two layers, thanks to 

special coating formulations and dehydrating processes. This results in the elimination of an 

oven and, as a consequence, in a big energetic improvement. Today, companies try when 

possible to make the painting process as lean as it can be, focusing on complying with high 

quality and productivity standards. 

2.3 Energy in Paint Shops 

The word “energy”, when used in a context like a manufacturing or assembly plant, is a simple 

term to describe a complex mix of energy carriers. These carriers can be natural gas, hot or cold 

water, electricity, and (dealing with industrial facilities) compressed air. An energy carrier is a 

substance or a phenomenon that carries the potential for doing work when used with the 

proper equipment. It does not create energy, it transports it. A well-known energy carrier is the 

electric battery. 

So, when analyzing the energy involvement in a manufacturing/assembly/paint process it is 

important to target the study to the analysis of the different carriers; typically, energy is 

purchased by companies as electricity, natural gas and hot/cold water, which are fed to the 

production processes in the forms of: 
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 Electricity 

 Hot water, that can be: 

o Heated on site with natural gas 

o Supplied by the utilities company 

 Hot steam 

o Created with natural gas 

 Compressed air 

o Usually compressed on site by a centralized compressor powered by electricity 

But the unit cost, normalized to the actual energy usable content, of the various carriers is 

different and varies depending on the location and on the utility company. In North America, 

every province or state has its own average rates, and Michigan electricity or natural gas costs 

are very different from Ontario ones. Moreover, where there is a big gap between natural gas 

and electricity cost – typical of some European countries or locations with scarcity of natural 

resources – this gap can affect the plant choices in terms of energy purchase or self-production. 

In Italy, it is not rare to find a power plant in a manufacturing facility: Fiat Mirafiori plant, in 

Torino, has a thermal-electric power station that supplies the whole complex. The cost of 

natural gas compared to the direct purchase of hot water from the utilities company can also 

determine whether the hot water will be produced on site or bought from the provider. Since 

the purpose of an energy model is usually the analysis and/or optimization of costs, all of these 

variables should be taken into account in the model. 

2.3.1 Users & Sinks 

With the purpose of creating a model of a paint process, one of the first phases of the process is 

to analyze for what the energy is actually used. Motors are the main electricity consumer in a 

vehicle assembly plant, because they are employed in a variety of systems: fans, pumps, robots, 

conveyors and lights. 

Fans are the most ubiquitous equipment along the paint process. They are essential to 

guarantee the workers’ health, to ensure optimal quality levels to every paint layer, to respect 

the air temperature set points, to ensure good air circulation in ovens and flash off booths, and 

contribute to the optimal heat transfer between the hot air and the painted body. Air flows are 
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crucial and not easy to design, and an audit with consequent tuning to align the actual flow to 

the design value is usually needed. 

Pumps are almost in every station of a paint shop, and they’re used to feed chemicals and/or 

water to the manned or robotic station, to circulate the paint in the tanks, to feed the powder 

to the powder guns, to send the paint to the spray guns, and to circulate coolant or hot water in 

the heat exchangers. A pump’s efficiency usually is around 65-75%, and its behavior is much 

more predictable than for fans. 

In some plants, robots have become the main tool for painting a car: they can apply sealant, 

prime the surface, spray the interior and the exterior, move parts and rinse the body. Manned 

stations in high-output and highly-automated plants are usually reduced to an essential finishing 

stage and quality check booths, in which workers compensate for the not-yet-full flexibility of 

the robots. Motors are used to move the parts around different axes of the robots, and usually 

each joint has a built-in electric motor: Obviously, the bigger the distance from the joint to the 

end effector, the bigger the inertia and the larger the energy required for the payload motion. 

Energy efficient programming of robot kinematics implies that the largest motions will be 

carried out by the closest motor to the end effector. 

Conveyors are the core of modern industrial processes. They’re responsible for the logistic flows 

inside plants and they move the car body throughout the whole manufacturing process. In a 

paint shop, conveyors and handling equipment are able to move, rotate and occasionally – as 

will be discussed in the subsequent sections – tilt the car body, so that it is able to enter every 

single station and be processed in it. In the data of Figure 1.1, that refer to a whole 

manufacturing plant and not just to the paint shop, the electricity load of the conveyors falls 

into Material Handling and it cannot be neglected when looking at the overall picture. 

Natural gas or any other fuel is used to heat the cold flows that interact with some of the 

processes. In the pre-treatment and e-coat phases, fuel can be used to maintain the 

temperature in the dip tank baths, while in the ovens it is used by burners to heat up the air 

flow. In the booths it plays an important role in the conditioning of the air, when the air needs 

to be re-heated after de-humidification or in the case of low winter external temperatures. 
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Hot water can be used directly in the heat exchangers as an alternative to heat cold water with a 

fuelled burner. As already discussed, the choice is made according to the energy carrier cost and 

the overall efficiency of each method. 

Compressed air is another very important carrier in every manufacturing plant. In a paint shop it 

is used to power some of the pumps, to move pieces of equipment and it has a fundamental 

role in the powder pumping equipment: a compressed air flow “pushes” the fluidized powder in 

the duct to the atomizer and a secondary compressed air jet atomizes the powder and disperses 

it in the air flow towards the car body. In the color booths, the compressed air plays a similar 

role in paint atomization and spray. 

2.4 Modelling a Paint Shop 

The development of simulation and modelling techniques, as well as the great availability of 

tools in the market, has contributed to the diffusion of what has become a revolution in the 

process/manufacturing engineering world. Moreover, the increasing awareness of the paint 

process role, in terms of perceived quality and of lifecycle impact on the final product, has 

brought some attention to the importance of the simulation and modeling of this part of the car 

manufacturing process. 

To model industrial processes, it is usual to employ software and methodologies of Discrete 

Events Simulation (DES), in which every single event produces a modification of the state of a 

station. In between the events, nothing is observable in the whole system, and it is “frozen”. 

This methodology is in contrast with Continuous Simulation, in which the simulation 

continuously tracks the dynamics of the system over time [17]. 

These approaches are extremely suitable for the analysis of a manufacturing system in terms of 

productivity, system variables, efficiency, asset utilization, and to have a generic idea of the 

energy involvement in the whole process. For a more specific energy analysis, with detailed 

resource utilization and the ability to use the simulation to predict different scenarios’ economic 

impact or foresee the effect of a major change in the manufacturing process, a different 

approach is required. Depending on the main goal of the model, the operation can be 
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performed in a specific way. In the following, some examples of different methodologies are 

reported, targeted to their aim. 

Arinez et al. [18] studied improvements in an automotive paint shop in terms of throughput. 

They considered the paint process as a Quality-Quantity Coupled operation, with nonperfect 

quality machines. Their approach was at first statistic, and they identify the throughput (TP) 

function to be dependent on the probability (p) to complete the job during a cycle time. 

Specifically, TP is a concave function of p. It is of interest to report their modeling approach, 

based on the work of Li and Meerkov [19]. It consists of four phases: 

 Layout modeling, i.e. the investigation of topological arrangements of the operations. 

 Structural modeling, i.e. the reduction of the layout to a standard analytically analyzable 

model, as is shown in Figure 2.3. 

 Parameter identification, i.e. the evaluation of productivity and quality parameters 

linked to the operations and to the buffers’ capacities. 

 Model validation 

 

Figure 2.3 - Layout (Top) and Structural Model (Bottom) of the [20] paint process 

It is possible to define this as a probabilistic model, and the authors are able to find quality-

quantity defective operations and suggest basic improvements that would raise the TP by more 

than 10% of the original value. Arinez et al.’s model [18] is then suitable for throughput and 

productivity analysis, but its lumped representation of the various stations and the absence of 
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any links with process variables such as temperatures, flows or physical dimensions make it not 

appropriate for the energy analysis in the scope of this work. 

It is clear that the type of investigation for which the model is employed plays an important role 

in determining the form of simulation and the characteristics of the model itself. It is useless to 

waste time and resources on a complete model if it can be reduced to a partial one that gets to 

the same target. Adding useless complexity is a choice that has to be balanced against resources 

when dealing with simulations of industrial processes. 

The closest model to the scope of this work is the result of the work of Jlenia Puma [7], who has 

been part of a project that has produced a tool for energy estimation of a paint shop. It is an 

analytical model, based on several Microsoft Excel® documents and worksheets, with a user 

interface. A library of various FCA plants in the world is available for selection and it is possible 

to configure the process targets/variables to predict the effect of changes on the process. 

Weather average data are used to estimate the load on the HVAC system as well as on the air 

treatment units of the various booths and ovens. The energy required for the thermal 

management of the dip baths is computed with a convective-conductive analysis, considering 

the heat capacity of the car body and its carrier. 

Since it was in the aim of Puma’s model [7] to be as modular and user friendly as possible, and 

be able to be used for different plants and with moderate variability of the process, the 

complexity of the tool is extremely high. It also takes into account building HVAC that is out of 

the scope of this work. Puma’s model will in that case be used as reference for the results of this 

thesis, and some parts will be directly implemented, such as the computation of the energy 

consumption of the booth ATUs, since it would be worthless to re-think something that has 

already been done and realized without requiring any major changes and/or improvements. 

The aim of this thesis is then to produce a model that can predict the energy consumption of 

Sterling Heights Assembly Plant paint shop, with sufficient accuracy, and whose parameters can 

be set and modified according to different case scenarios.  
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3 Methodology 

3.1 Introduction 

The structure of the model has been heavily affected by the goals of the project, which tries to 

satisfy the needs of both the industrial and the academic worlds, these can be summarized as: 

 obtaining a model that can theoretically estimate energy consumption of an industrial 

process, which can be very important for companies that need more and more tools to 

support their strategic decisions in such a dynamic market, such as being able to: 

o evaluate the impact of a change in a system; 

o evaluate the impact of a change in the way the system is managed; 

o guarantee reliable results; 

 generating an actual picture of the current solutions employed in the process, which can 

be convenient for a more straightforward approach, and which is able to: 

o summarize the whole process technical data; 

o be directly used for some estimations. 

The idea behind this project is then to develop a tool that performs these two operations, in an 

integrated way. A theoretical model can be fed by the data retrieved from the plant, in which 

there would be a precise and complete picture of the process. Unfortunately, to reach this goal 

some limitations and difficulties may have to be overcome: 

 the large quantity of data that needs to be collected and organized to produce a 

“snapshot” of a whole process. An average paint shop consists of numerous pumps, 

fans, heat exchangers, tanks and much more, and each piece of equipment usually has a 

motor, and can interact with one or multiple flows. To collect and organize such a large 

quantity of information in a concise way is therefore one of the many difficulties that 

has been encountered in the development of this project; 

 the limited availability of the information that is needed for the completion of this kind 

of project. Especially in the case of old plants, it can happen that the majority of the 

data can be retrieved only by physically accessing the production site, and the actual 

production line. This latter scenario can make information collection impossible, or 
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limited to scheduled down times. Modern plants are usually equipped with several 

systems that can monitor the real time state of the various parts of a process, and have 

up-to-date documentation that can be used to get all the information about each piece 

of equipment involved in the process. Walking physically along the process is still 

generally required to check that all the data are correct and to acquire some details that 

are not retrievable from drawings and documentation, such as the temperature of a 

wall or the actual plant routines; 

 the intrinsic amount of work required to collect, organize and use all the information, 

can make such a project enormously inefficient and not feasible: the plant is subjected 

to changes in time, and it is quite possible once the work has been completed the actual 

situation could be different from the “virtual” one. 

In this chapter the methodology used to overcome these problems, as well as the actual model 

structure will be explained in detail. The modelling procedure has been divided in: 

 first phase: data collection; 

 second phase: initial computations; 

 third phase: calibration; 

 fourth phase: run alternative scenarios. 

The plant that has been chosen for the project is the FCA Sterling Heights Assembly Plant, often 

abbreviated as SHAP, in Sterling Heights, Michigan, United States. It produces the Chrysler 200, 

and all the operations that will be described in the following have been done with the SHAP as 

the reference and subject of the work. 

3.2 The Calendar 

One of the unique elements of this model is MS Excel® worksheet, which contains a calendar 

year, in which the user can set and manage the production shifts, vacations, and down time in a 

whole year. A day has 3 adjustable shifts – in another sheet, called model variables, the user can 

set the time in which the shifts start and end – and production is color coded for easier 

readability. A shift in which the production is normal appears orange, one in which assets are 

shut down is yellow, and down time with no shut down is white. The user can click on checkbox 
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buttons on the side of the calendar to use preset schedules, or can manually populate each shift 

of the year, for a more customized setting. 

Although MS Excel® does not have a function that returns the background color index of a cell, 

user defined functions (UDF) can be used. A function named BGColor() has been coded using 

Visual Basic® and integrated in the workbook. In this way, the color inputs by the users can be 

converted into indices that can be managed by MS Excel®. 

In the Model Variables sheet, moreover, the user can set which asset to shut down during 

weekends or vacations, using checkbox buttons. Using a slider it is possible to select the 

throughput in terms of jobs per hour (JPH), according to the plant production schedule, varying 

between 1 and a maximum that has been set according to the capacity of the SHAP plant, and 

that is not modifiable by the user. 

The outcome of the calendar module is a spreadsheet in which each row corresponds to an hour 

of a specific day along the year, and each column corresponds to a system in a phase of the 

process. For each of them a “1” is written if that system is working at that time of that day, and 

a “0” is inserted if that system is shut down. Additional columns regulate the start-up transient 

behavior for the systems with significant inertia. 

In Figure 3.1, a screenshot of an example of the calendar module operation is shown. The yellow 

cells refer to the shutdown of the process during vacation, and during the year the production is 

organized in two shifts, with the systems still operative in the third one and on the weekends. 

 

Figure 3.1 – Example of calendar 
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In Figure 3.2 a detail of the calendar module and a part of the panel that allows the user to 

select which asset to shut down during downtime is shown. The user acts on ActiveX buttons, 

and the cells background color changes depending on the selection. 

   

Figure 3.2 – Detail of the calendar module and part of the shutdown selection panel 

3.3 The Weather 

Some processes of the paint shop interact with the external environment, directly drawing fresh 

air from it. It is important then to consider the outside air conditions, in terms of dry bulb 

temperature and relative humidity, by making reference to a table of the average values for a 

typical year. We can identify two major fluctuations: the seasonal fluctuation with an annual 

frequency, and the one generated by the day/night cycle. It is important to remark that this 

model assumes that ovens and booths draw air directly from the outside and not through a 

cascade from the plant. This choice has been made because the estimation of the consumption 

of building HVAC – that usually would carry part of the load of heating and conditioning the air 

for booths and ovens – is not in the scope of this work. 

Therefore, the weather module for this project has to give information about temperature and 

humidity at different times during the day, averaged throughout a month. EnergyPlus® weather 

data have been found to be extremely suitable for this purpose, and have been directly 

implemented in the model [20]. 
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3.4 The Models 

To efficiently address the objective, this model has been developed as two parallel paths, one 

that refers to the real data of the plant and that provides a total energy consumption based on 

monitored energy consumptions of individual pieces of equipment, whose operations are 

simulated in a virtual environment, and the other one that models the process from basic 

principles and can be used to understand how the energy consumption would change in the 

case of modifications of the current situation (the analytical model). In Figure 3.3 the first path is 

on the left hand side, while the analytical model is on the right hand side. 

As shown in Figure 3.3, the operation of the left hand side is fed by the data of the pieces of 

equipment that are involved in the process. Some computations are performed, based on some 

assumptions that are also inputs for the model on the right hand side, and as a result an overall 

energy consumption value is obtained. This value can be trusted if the equipment data are 

reliable and the assumptions used don’t affect the result by a large extent and are used in the 

same way as they are in the model on the right hand side. 

The model on the right hand side was calibrated on the basis of the results of the left hand side 

computations and by comparing the outcome with the values that are present in the literature 

[4], [5], [6]. This operation is represented in Figure 3.3 by the orange curved arrow. Then, the 

user can manipulate the process parameters in the right hand side and calculate the energy 

consumption of the paint shop. 

 

Figure 3.3 –Representation of models used in this thesis 



26 
 

The model consists of several sub-models that for sake of simplicity, have been coded once and 

that are fed by the process requirements of each section. The fundamental blocks in Figure 3.4, 

dip processes, booths, and decks and ovens, are analytical models in which convection and 

conduction analysis, thermal flow balances and lighting computations are performed. 

 

Figure 3.4 – Fundamental blocks contained in the model 

The components that have been modeled for each one of the process types are shown in Table 

3.1. A check means that that element has been modeled, while a circle means that that element 

has been added to the sub-model as a constant. For the booths, air treatment has not been 

modeled, as already discussed in the previous sections, and the computation has been done by 

an external tool provided by FCA. The pump power for the dip processes has been added from 

the results of the computations on the left hand side of Figure 3.3, because of its constant 

characteristic and of the difficulties found in linking it to the process requirements. 

Table 3.1 – Modeled components in each of the sub-processes 

 Dip processes Booths and Decks Ovens 

Convection  -  

Fan power    

Pump power ○ - - 

Air heating - -  

Air treatment - ○ - 

Lighting -  - 
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3.5 First phase 

The data collection, which coincides with the input generation for the model, was the first 

operation that was performed, and the most important one. In approximately two months, all 

the necessary information was collected, checked and organized in a MS Excel® set of 

spreadsheets that are so organized: 

 Each sub-process has been given of a set of worksheets, in which a dedicated interface 

has been created for the input operation. The various sub-processes have been selected 

according to their organization in the SHAP documentation library, and are: 

o pre-treatment or phosphating 

o e-coat 

o ovens 

o powder booth 

o color booths 

o decks and booths. 

 Each sub-process has been organized in several worksheets, named steps, some of them 

open for the user to modify. These sheets are: 

o STEP 1, in which the user inputs the data of the equipment that is employed in 

the process. Instead of creating a mask, the user acts directly on the fields that 

are unlocked in the sheet, and is guided by an interface and color coded error 

warnings. 

There are six fundamental categories of equipment that can be inserted by the 

user: fans, pumps, heat exchangers, tanks, burners and air treatment units. Each 

piece of equipment that is put into the system is required to have a utilization 

factor, which acts as a correcting parameter for the elements whose use is not 

continuous, and a code that corresponds to its tag at SHAP. The input data for 

each category are: 

 fans and pumps: code, Utilization Factor (UF), motor HP, design power, 

actual power, ∆p or head, design and actual flow rate. Pump ∆p can be 

inserted as pressure in PSI, Pascal, or as head in feet. Power information 

is required to be in horsepower. 
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 tanks: tag code, physical dimensions, fluid type and temperature, wall 

material and thickness, insulation material and thickness, tag codes of 

the pumps used for recirculation of the fluid 

 heat exchangers: code, type, in and out cold fluid temperature and rate 

in operating conditions, in and out hot fluid temperature and rate in 

operating conditions, rating, hot and cold fluid temperatures and rates 

in bring-up conditions 

 burners: code, zone, type, fresh air flow, total air flow, outlet 

temperature set point, recirculation air temperature, supply fan 

characteristics 

 air treatment units (ATU): code, zone, fresh air intake, set point 

temperature, set point humidity, cascade and recirculation air intake, 

rating 

o STEP 2, invisible for the users, in which the information from STEP 1 is 

transformed into SI units, then checked and elaborated for the subsequent step. 

In some cases the user can insert values in different units – such as pressures in 

PSI or inches of water column – and the algorithms in STEP 2 separate the value 

from the units, read the units and apply the right conversion factor to bring 

everything in metric units 

o STEP 3, accessible by the user in read-only mode, in which diagrams and charts 

show the results for that specific sub-process 

o STEP 4, only for the sub-processes in which dip tanks are used, manages the 

information of the dip tanks separately from the rest of the equipment, and 

merges the information on the heat exchangers that are inserted by the user 

with a heat transfer estimation resulting from a convective analysis performed 

on the basis of the data in STEP 1 

 Each STEP sheet is divided by rows into the several sections that make up the sub-

process, in a logical process order, following the path of the Work In Progress – WIP. 

This allows the user to analyze the energy impact of every station along the whole 

process. 
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 In the STEP 1 worksheets the only interaction with the user is through a warning cell 

that is highlighted when the inserted data are wrong or incomplete. In the STEP 2 

worksheets some checks are performed: 

o completeness checks, in which the algorithms check if there is all the 

information to compute the energy consumption of each piece of equipment, 

and whether the data inserted are the most direct and complete ones. Taking a 

fan as an example, if the code detects that the only information about it is the 

power of the motor, it automatically computes the average ratio between 

motor horsepower and actual fluid power of all the other fans and applies the 

same ratio. Or, if the code detects that the user inserted a flow rate and 

pressure drop, it uses these values to refine its computation. If the code doesn’t 

have any information about the power of the fan and flow data are missing, 

then it sends a warning message to the STEP 1 sheet, highlighting the 

corresponding cell. 

o quality checks, in which the algorithm checks for values that are off of the 

average by 10 times: this choice has been made because of the nature of the 

input operation, in which it is likely to make a mistake and input a value that is 

one or more orders of magnitude higher or lower. 

In the STEP 2 sheets, the information is collected and converted in SI units. Then, some 

assumptions are applied, and for each piece of equipment a final power consumption value is 

computed. These values are then summed up and managed by the calendar module, to obtain 

the overall consumption of every section of the paint shop. 
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3.5.1 Assumptions 

It is not feasible to entirely model the real world in its complexity, and sometimes it is important 

to simplify the problem using the right assumptions. In this project the assumptions that have 

been made for the left hand side of Figure 3.3 are also used on the analytical model (right hand 

side) to avoid errors, and have been summarized in the following. 

 Utilization Factor (UF) is a correction factor that accounts for the intermittent use of 

some pieces of equipment, and was directly multiplied with the computed consumption 

of each element. It is assumed to be 1 in the case of continuous use, 0.6 for equipment 

whose use depends on production and 0.1 for equipment that is used for less than an 

hour during each shift. Moreover, if the user knows that a pump is used to feed a tank, 

it is possible to use the tank dimension and flow rate to calculate a utilization factor. 

 The heat transfer in the dip processes of phosphating and e-coat was assumed to be 

limited to evaporation heat transfer, heat exchange with the car body, kinetic energy 

from circulation pumps, and convection through sides, inclines, and roof, while the 

convection through the bottom and radiation heat transfer were neglected. 

 The temperature of the dip bath was assumed to drop by 5.5°C after 48 hours of 

inactivity (e.g. after the weekend). 

 The car body was assumed to not heat up to the bath temperature for its whole mass. 

This accounts for the fact that the car body doesn’t exit the dip tank at the same 

temperature as the bulk fluid, but there is a temperature gradient going from the 

surface of the car metal, which is at the same temperature as the bath, to the core of 

the car body panels. The fraction of the body that reached bath temperature was 

initially chosen to be around 30% considering previous works [7], and then it has been 

adjusted in the calibration phase. 

 The lighting along the whole length of the pretreatment was considered nonexistent. 

 The circulation pumps were assumed to work continuously, and could not be shut down 

during the weekend. Especially in the case of e-coat, without the continuous action of 

the agitator pumps the solid particles in the fluid would coagulate and the bath would 

need to be renewed. 
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 For the computation of the heat transfer coefficients, the external wall temperature of 

the dip tanks was assumed to be 5°C higher than the ambient temperature inside the 

plant, and the external wall temperature of the ovens to be 80°C. It was subsequently 

shown in the sensitivity analysis (Section 4.4) that these values don’t affect the heat 

transfer by a considerable amount, because of the predominance of the insulation layer 

thermal resistance. 

 The air infiltration through the oven air seals was assumed to be equal to the design 

value, because of the difficulty of measuring this value. This assumption affects 

considerably the computation of the heat loss of the ovens, being comparable to the 

convection heat transfer through the walls. Relative to the final result, instead, it is a 

low source of uncertainty due to the large quantity of energy required to heat up the 

fresh air and the heat transfer with the car body. 

 The ovens’ exhaust was assumed to not draw air flow directly from the intake flow, the 

intake air is assumed to remain in the oven for a whole air change cycle. 

 The car body was assumed to exit the ovens at the temperature of the air inside the 

furnaces, because of the long baking time – around half an hour. 

 Heat transfer through booth walls was assumed to be null because of the similarity of 

the booth temperature and plant air temperature. 
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3.6 Second phase 

Each of the three sub-models in Figure 3.4 is a set of equations that determine heat transfer and 

power consumption by devices such as fans, pumps and lights. In this section the general 

principles that govern these equations will be explained. 

3.6.1 Dip Processes 

A dip process is a section of the paint shop in which the car body is dipped into a bath, which 

can contain water, a cleaning solution, or a specific coating. Generally, in a paint shop the dip 

processes are confined to pretreatment, with some dip tanks in the phosphating phase and a 

main dip tank during the e-coat phase. If a dip process has the purpose of cleaning the car body 

surface, it is employed to reach the areas that cannot usually be cleaned easily in the spray 

processes. A dip cleaning, however, can be ineffective in the case of debris and weld balls that 

have neutral buoyancy, and a spray rinse is usually required. 

The bath of a dip process can be at ambient temperature or heated up. In the case of ambient 

temperature fluid, no energy is required to keep the operations going, except for conveyors, 

which are out of the scope of this project, and fans. When the bath has to be heated up and 

kept at a constant temperature, the power consumption of the process can be estimated using a 

model of the thermal exchanges. In the following, this last case will be investigated. As depicted 

in Figure 3.5, the tank can be modeled as a box with incoming and outgoing thermal flows, 

which balance out in steady state. 

 

Figure 3.5 – Dip tanks heat transfer schematics 
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The only flow that is directly regulated by the operator is the heat exchanger’s positive or 

negative heat flux. Depending on whether the temperature of the bath tends to increase or 

decrease, the heat exchangers that have to keep it constant can be either used to cool down the 

bath or to heat it up. The only other positive flow is the heat that comes from the agitator 

pumps. The increase of kinetic energy due to the action of these pumps ends in an increase of 

the internal energy of the bath, according to the first law of thermodynamics: the work done on 

the fluid increases the kinetic energy of the fluid up to the point in which the system is in a 

mechanical steady condition. When the system reaches that point, the work that is given to the 

fluid by the pumps is exactly equal to the work of the viscous forces, and the bath temperature 

increases. 

Due to the fluid’s higher-than-ambient temperature, without any external work done on the 

system, the net heat transfer between the bath and environment is negative, with the fluid 

decreasing its temperature. If the circulation pump’s work is lower than the heat loss, the heat 

exchangers will be used to add thermal power to the system. If the circulation pumps work is 

higher than the heat loss, as in the e-coat tank, the heat exchangers will be used to cool down 

the bath. In the unlikely case in which the energy added to the system by the agitator pumps is 

exactly equal to the total heat loss, no heat exchange would be required. 

3.6.1.1 Steady-state conditions 

In steady state conditions, the heat loss out of the tank can be summarized as: 

 convection through sides, inclines and top; 

 radiation, neglected due to the low emissivity of the water surface and the low 

difference in temperature between the water and walls; 

 latent heat of evaporation; 

 car body heat pickup. 

A scheme that represents the operations of the dip tank model is showed in Figure 3.6. The heat 

flows are the same as Figure 3.5, but the data inputs to the system are the process 

requirements, such as bath temperature, throughput, tank materials, and water flow rates and 

temperature, and the output is the energy consumption of the process. 
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Figure 3.6 – Dip tank model representation, with blue arrows representing the information flow and red arrows 
representing the heat flow 

The convection heat transfer analysis has been split according to the characteristics of the 

surfaces and of the fluids. In general, heat transfer can be expressed using the equation: 

 �̇�𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑈𝐴Δ𝑇 (4) 

in which �̇�𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is the heat transfer through a surface (W), with surface area 𝐴 (m2), between 

the temperatures 𝑇 and 𝑇 + Δ𝑇 (K). All of these values were known, except for the heat transfer 

coefficient 𝑈. The purpose of a convection analysis was therefore to compute the value of 𝑈. A 

very important concept is the analogy between thermal and electrical resistances. Considering 

the interface between the inside of the tank and the environment as a composition of three 

thermal resistances, which sum up to an overall value, as if they were electric resistors in series. 

In Figure 3.7, ℎ𝑖 represents the convective heat loss coefficient of the fluid inside the tank, 𝑘 the 

thermal conductivity of the tank walls and insulation, 𝑡 the wall thickness, and ℎ𝑜 the convective 

heat loss coefficient of the air outside the tank. The same concept can be applied at more 

detailed level, to find 𝑘 as the result of the composition of the layers of steel and insulation that 

make up the tank walls. 

 

Figure 3.7 – Thermal/electric resistance analogy 

The 𝑘 𝑡⁄  factor, which takes into account the whole wall, with insulation and steel, is then: 

 𝑘/𝑡 = [𝑡𝑠𝑡𝑒𝑒𝑙/𝑘𝑠𝑡𝑒𝑒𝑙 + 𝑡𝑖𝑛𝑠𝑢𝑙𝑎𝑛𝑡/𝑘𝑖𝑛𝑠𝑢𝑙𝑎𝑛𝑡]−1 (5). 
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ℎ𝑖 and ℎ𝑜 require a more complex estimation. On the outside and inside surfaces of the tanks 

convection occurs, and the heat transfer does not depend just on the material properties, but it 

is strongly influenced by the flow characteristics. Empirical relations between the heat transfer 

and the fluid properties and motion were needed. Geometrical characteristics as well as 

orientation of the surface and of the flow have a large impact on the heat transfer, therefore 

outside and inside heat transfer coefficients have been computed for each of the following 

surfaces: 

 sides; 

 inclines; 

 water top surface. 

The convection through the bottom has been conveniently neglected, because of the thickness 

of the material and the unfavorable orientation of the surface that does not promote heat 

transfer. In the following, for sake of simplicity, the fluid contained in the dip tank will be 

addressed as “water”, although it could be coating or any other type of liquid. 

The aim of this part of the model is to compute the thermal load on the heat exchangers, by 

calculating the heat losses. All the computations in the following are based on the convection 

heat transfer chapters of Cengel’s “Heat Transfer: a Practical Approach” [21]. 

3.6.1.1.1 Sides 

The air side heat transfer mechanism is natural convection. For this reason, the tank side has 

been treated as a vertical plate, surrounded by air at a constant, uniform temperature. The 

natural convection heat transfer coefficient can be computed using the relations for Rayleigh 

number, obtaining then the Nusselt number, which is the nondimensionalized heat transfer 

coefficient, as in Equations 6 and 7 [21]. 

 
 

Pr
2

3









 cw

L

LTTg
Ra o  (6) 



36 
 

where 𝛽 is the coefficient of volume expansion (1/K), 𝑇∞ is the undisturbed air temperature (K), 

𝑇𝑤𝑜
 is the temperature of the outside wall surface (K), 𝐿𝑐 is the characteristic length (m) and 𝜈 is 

the kinematic viscosity or momentum diffusivity (m2/s). 

 𝑁𝑢 = 0.1𝑅𝑎𝐿
1/3

 (7) 

The Prandtl number, 𝑃𝑟 in Equation 6, is a nondimensional coefficient that is also a property of 

the fluid, which means that it does not depend on the flow characteristics. The equation to 

relate Nusselt number to the heat transfer coefficient is: 

 ℎ = 𝑁𝑢 ∙ 𝑘/𝐿𝑐 (8) 

The water side heat transfer occurs by forced convection, since the fluid in every tank is kept in 

motion by agitator pumps. The previous equations could not then be used. It is possible to 

assume the flow to be turbulent across the whole length of the tank, and again to treat the side 

wall as a flat plate. The Nusselt number can be estimated with [21]: 

 𝑁𝑢 = 0.037𝑅𝑒0.8𝑃𝑟0.33 (9) 

Then, using Equation 8 it is possible to obtain ℎ𝑖. At this point, all the heat transfer coefficients 

for the sides have been computed. It is important to report that the shorter dimension of the 

side panels, the height, was chosen as the characteristic length 𝐿𝑐 (m). 

3.6.1.1.2 Inclines 

The two inclined surfaces whose purpose is to facilitate the entering and exiting of the car body 

in the dip tank have been considered as inclined plates, and all the considerations of the 

previous section are still valid. The position of the dip tank at the SHAP is such that the inclines 

are exposed directly to the air, and this facilitated the computations. The waterside fluid motion 

was assumed to be turbulent and the mechanism for the airside heat transfer was natural 

convection. The equation used for the waterside is Equation 9. 

For the airside, since the air motion depends exclusively on buoyancy, the inclination of the 

surface affects the heat transfer. Equation 6 has been used, but multiplying the acceleration of 

gravity by the cosine of the inclination angle from the vertical [21]. 
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3.6.1.1.3 Top 

The dip tanks’ water level is never close to the top panel. The heat transfer from the top of the 

bath, then, occurs via the air that circulates above the surface, instead of the plant air. 

Moreover, the air is pumped inside the dip tank air space by intake fans and withdrawn from it 

by exhaust fans. Therefore, the air that is on top of the water surface can be considered to be in 

turbulent motion. The heat transfer occurs only if the air that is blown in the dip tank 

environment is at a different temperature than the surface of the bath. If this does not happen, 

there will be no heat leaving the bath, but the heat transfer occurs exclusively between the air 

flow and the water, through the water surface. 

The waterside coefficient was again computed using Equation 10, with the width of the tank as 

the characteristic length. Since the air motion is turbulent, and assuming the air velocity to be 

high enough to give a suitable Reynolds number, the same equation has been used to compute 

the airside heat transfer. In this case, the only two thermal resistances that regulate the heat 

transfer are the airside and the waterside ones, because no material is between the bath and 

the air. 

3.6.1.1.4 Evaporation 

As shown in Figure 3.5, heat loss occurs because of convection, the effect of the car body heat 

capacity and evaporation. When a liquid is exposed to unsaturated air, which means that the 

air’s relative humidity is lower than 100%, its vapor pressure is lower than saturation, and the 

liquid tends to evaporate. But for this process to happen the vaporizing liquid molecules have to 

absorb a determined amount of energy, called latent heat. The specific latent heat, i.e. the 

latent heat per unit mass, is a property of the liquid. Trying to estimate the evaporation rate is 

then very important to compute the heat loss because of this process. 

Assuming that the air flow is large enough to renew the air above the dip tank at a rate that is 

orders of magnitude higher than the saturation rate due to evaporation, it is possible to 

consider the humidity of the air that is in contact with the top surface of the bath constant. In 

this way, it is possible to estimate the evaporation rate of the bath, using the equation [22]: 

 Φ𝑒𝑣 = (25 + 19𝑣)𝐴(𝑥𝑠 − 𝑥)/3600 (10) 
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in which Φ𝑒𝑣 is the mass of water (kg) that evaporates every second, 𝑣 is the air speed on the 

free surface (m/s), 𝐴 is the surface area of the fluid in contact with the air (m2), 𝑥𝑠 is the 

absolute humidity at saturation (kg/kg) and 𝑥 is the absolute humidity of the air (kg/kg). This 

equation, with the two empirical parameters, 25 and 19, is suitable for liquids that behave like 

water [22]. Once the evaporation rate has been computed, multiplying it by the specific latent 

heat allows the calculation of the heat loss due to evaporation. 

3.6.1.1.5 Car heat capacity 

The car body enters the first dip tank at the plant ambient temperature. The driving force of 

heat transfer is a temperature gradient, and since the fluid contained in the tank is warmer than 

the ambient, the car bodies draw heat from the bath. This is the only heat loss that depends 

directly on the throughput: the higher the production rate, the bigger the heat loss. 

However, this value is not easily estimated. The car body does not have enough time to heat up 

completely to the same temperature of the bath, therefore a complex study would be required 

to investigate the mechanisms of the heat transfer while the vehicle is submerged. Numerous 

parameters would play a role in this phenomenon, such as the velocity of the car body as it is 

moved in the bath, the shape of the vehicle, the amount of coating deposited up to the phase 

that is being analyzed, and so on. For the purpose of this work, under the given circumstances, 

the car body was assumed to heat up uniformly to the temperature of the bath, and a 

correction factor was multiplied by the value of the thermal power, accounting for all the effects 

of the considerations above. This parameter has been used to calibrate the model, in such a way 

that the energy consumption of the dip processes mirrored the results obtained from the 

computations of the left hand side of the model in Figure 3.3. Therefore, the equation used is 

simply: 

 �̇�𝑐𝑏,𝑑𝑖𝑝 = 𝐹𝑐𝑏(𝐽𝑃𝐻/3600) ∙ 𝑚𝑐𝑏 ∙ 𝑐𝑐𝑏(𝑇𝑏 − 𝑇𝑝𝑙𝑎𝑛𝑡) (11) 

where �̇�𝑐𝑏,𝑑𝑖𝑝 is the heat loss due to the car body heat capacity (W), 𝐹𝑐𝑏 is the correction factor, 

𝑐𝑐𝑏 is the specific heat capacity of steel (J/kg), 𝑚𝑐𝑏 is the mass of the car body (kg), JPH is the 

hourly production rate (car bodies/h), 𝑇𝑝𝑙𝑎𝑛𝑡 is the plant air temperature and 𝑇𝑏 is the bath 

temperature (K). 
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3.6.1.2 Bring-up 

Because of the continuous thermal losses, after a shutdown period in which the heat exchangers 

have not been operative, the bath temperature can drop significantly. Before the restart of 

production, the temperature of the fluid has to be brought to the set point level again. This 

means that every time that the plant shuts down for more than a shift, extra-consumption due 

to the start-up of the production process has to be considered. 

Moreover, after a certain number of vehicles are dipped into the bath, the fluid has to be 

renovated (drained and refilled). Usually, it is water or water-based, and the tank is filled with 

city water at a lower-than-ambient temperature before chemicals are added. In the case of a 

renovated bath, the start-up consumption is significant, and has to be taken into account. 

The temperature bring-up phase does not last for more than two hours. This allows the neglect 

of the thermal losses during this phase, that are negligible compared to the relatively huge 

amount of energy needed to heat up, on average, 300 cubic meters of water per tank. 

Considering the SHAP tanks, it is common that after a weekend shutdown the temperature of 

the bath drops by 5.5 °C, and to take it back to normal operative values, less than 40 minutes 

are needed. This model then, simply added to the consumption during normal operations the 

heat capacity of the bath, multiplied by a value around 5.5 °C if the shutdown lasted less than 

two days, or 10°C if the shutdown lasted for three to four days, and it assumed the bath to be at 

ambient temperature for longer shutdown periods. In case of a renewed bath, whose frequency 

can be programmed by the user, the energy was computed assuming the initial temperature of 

the bath to be at city water temperature. The general equation for the start-up consumption is: 

 𝑄𝑠𝑢 = 𝜌𝑏𝑎𝑡ℎVbath𝑐𝑏𝑎𝑡ℎΔ𝑇 (12) 

In which 𝑄𝑠𝑢 is the energy consumption for the start-up (J), 𝜌𝑏𝑎𝑡ℎis the bath fluid density 

(kg/m3), 𝑉𝑏𝑎𝑡ℎ is the volume of the dip tank (m3), 𝑐𝑏𝑎𝑡ℎ is the specific heat capacity of the bath 

fluid (J/kgK), and Δ𝑇 is the temperature difference between city water and the operating tank 

(K). 
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3.6.1.3 Other energy users: fans and pumps 

The thermal energy needed by the dip baths, supplied by the heat exchangers, is obtained by 

letting hot water, which has been previously heated up using natural gas, flow into the hot side 

of the device. Natural gas is then the energy carrier that is responsible for the dip tanks bath 

temperature regulation, and the amount consumed was the ultimate result of the model 

computations. To get to this value it was necessary to divide the heat load supplied by the heat 

exchangers by the efficiencies of the heat exchangers, the distribution network – i.e. considering 

the heat losses through the pipes that take hot water from the furnace to the heat exchanger – 

and of the furnace itself. These efficiencies are generally high. Gas furnaces have gone through 

much development during recent years, and nowadays their efficiency is fairly high. 

Although the main dip processes module accounts for natural gas consumption, in these 

processes a significant amount of energy is spent to run fans and pumps too, by means of 

electricity. One aim of this model was to differentiate the energy consumption by energy carrier; 

therefore the computations for this part have been carried separately. 

Pumps’ consumption data have simply been carried through from the equipment data – the left 

hand side of Figure 3.3. This choice is due to the difficulty in linking the pumps power 

consumption to the process variables, and to their intrinsic constant running characteristic, that 

does not depend on production rate or on some other external boundary conditions. Moreover, 

the number of pumps and the complexity of them wouldn’t allow for a simple analysis: each 

phase of the phosphating and e-coat has different pumps, with different pressures and large 

ranges of flow rates. With a toggle in the model the user can select whether to shut the pumps – 

as well as fans – down during the plant shutdown time or to keep them running. 

Fans consumption instead has been computed starting from the process requirements. Each 

operation requires a determined air flow rate, and multiplying the volume flow rate (�̇�, m3/s) by 

the pressure drop (Δ𝑝, Pa) that has to be overcome by the fan – the average of which has been 

computed using the equipment data, specifically the pressure drop across the filters – and 

taking into account a fan efficiency factor – which is due to the non-ideal flow on the fan blades 

and is approximately 75% – the equation used was then: 



41 
 

 𝑃 = Δ𝑝�̇�/𝜖𝑓𝑎𝑛 (13). 

Every motor in the plant has been assigned a mechanical efficiency value of 95%, according to 

the datasheet of the installed equipment. 

3.6.2 Ovens 

In a paint shop, after each layer is deposited on the car body surface, the coated vehicle is cured 

in an oven. The phases that need this baking process are: 

 e-coat 

 sealant and foam application 

 primer surfacer (powder) 

 basecoat 

 clearcoat. 

Recent developments allowed eliminating a baking phase between the basecoat and clearcoat, 

substituting it with a quick “heated flash off” that dehydrates the basecoat to a value of 80% 

solids. As previously discussed, eliminating a separate basecoat oven is an effective way to cut 

energy expenses. Modern high output and flexible plants, however, have multiple, parallel lines, 

especially for e-coat curing and topcoat application, which result in more than one oven per 

phase. This model manages the schedule through the calendar module in such a way that the 

user can always control and decide which ovens to activate, if the production rate does not 

exceed the production capacity of the lines that are activated. 

Oven technology can vary: “ordinary” convective ovens can be used, as well as radiant and 

infrared ones or any hybrid among these. Since this model has been created for the SHAP paint 

shop, the oven technology used in the model reflects the situation at the SHAP. 

The operative principle of a convective oven is rather simple; an air flow at a certain 

temperature is blown at the body, according to the design specifications, and part of this flow is 

recirculated, while a – usually – small part of it is exhausted and substituted with fresh air. The 

scheme in Figure 3.8 shows how a single zone oven works. Ovens usually have multiple zones, 

and each zone has its own heater box, fresh air intake and exhaust. 
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Figure 3.8 – Overall airflow in a coating oven 

To estimate the thermal energy that has to be supplied to an oven for its normal operations it 

was important to identify the correct thermal balance, treating the oven as an open system with 

mass transfer through the steady-state intake-exhaust flow and energy transfer through the 

walls, that will be referred as “heat losses” in the following. All the assumptions of Section 3.5.1 

are considered valid here. 

Considering that some enthalpy is wasted through the exhaust – usually directed through a post 

treatment device for pollution control – and that the same heater box adds thermal energy to 

both the fresh air flow and the recirculated air flow, it is possible to compute the thermal 

balance for the open system. In Figure 3.9, the schematic diagram exemplifies this concept. 

Other heat losses include: convection, the effect of the car body heat capacity – analogous to 

the analysis for the dip processes, but this time the car body was assumed to be heated up to 

the oven temperature before exiting it – and the air infiltration enthalpy loss. This latter is 

actually due to the infiltration of cooler air through the strong downdrafts that seal the oven 

chamber. Since the infiltration air temperature is almost equal to the plant temperature, its net 

effect is of subtracting thermal energy from the system, and adding mass to the exhaust flow: 

more hot air is exhausted to equal the cold infiltration air. The result of the computation of this 

overall balance was considered the heat added to the recirculation air. The heat added to the 
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intake air is an action that is outside the boundaries of the oven alone, and it has been taken 

into account in the thermal balance solution (Section 3.6.2.1.4). 

 

Figure 3.9 – Oven heat loss diagram 

3.6.2.1 Steady-state conditions 

3.6.2.1.1 Convection analysis 

The convection heat transfer computation was similar to the one discussed in Section 3.6.1 for 

the dip processes. This time, convection through the bottom surface has been neglected as well, 

while the heat loss through the inlet and outlet apertures was due to air infiltration. Due to the 

high air motion inside the oven, the inside flow was considered to be turbulent, and Equation 9 

has been used to compute the inside heat transfer coefficient for both the sides and the roof. 

The walls are again a sandwich of metal sheets and an insulation layer; therefore Equation 5 has 

been used for the computation of the conduction heat transfer coefficient. The external heat 

transfer occurs by natural convection, since the air motion depends exclusively on buoyancy 

forces. Therefore, the external coefficient for the sides has been computed using Equations 6, 7 

and 8. 

The external heat transfer coefficient for the roof has been computed considering the surface as 

a flat plate, with natural convection on top of it [21]. In this case, the equation for the 

nondimensionalized coefficient – Nusselt number – is simply: 

 𝑁𝑢 = 0.15 ∙ 𝑅𝑎𝐿
1/3

 (14). 
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3.6.2.1.2 Car body heat capacity 

As previously discussed, one of the assumptions that has been made is that the car body gets 

heated up completely before exiting the oven. This is reasonable, due to the relatively long 

baking time, which is around 30 minutes. Moreover, since the carrier is completely inside the 

oven, the same consideration can be made about it. The car-carrier ensemble was assumed to 

enter the oven at the plant temperature, and the heat withdrawn from the oven chamber was 

computed as: 

 �̇�𝑐𝑏,𝑜𝑣 = (𝐽𝑃𝐻/3600) ∙ (𝑚𝑐𝑏𝑐𝑐𝑏 + 𝑚𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑐𝑎𝑟𝑟𝑖𝑒𝑟) ∙ (𝑇𝑜𝑣 − 𝑇𝑝𝑙𝑎𝑛𝑡) (15). 

𝑇𝑜𝑣 is the temperature inside the oven (K), and 𝑚𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑐𝑎𝑟𝑟𝑖𝑒𝑟 is the heat capacity of the 

carrier section associated with each car (J/K). 

3.6.2.1.3 Air infiltration 

An oven has to be sequenced in the assembly line after the process for which it needs to cure 

the output, and because of the continuous flow of material in and out of it, physical doors are 

not commonly used. Some solutions help to keep the internal volume of the oven sealed, such 

as the positioning of the oven at a higher level, with an enclosed incline before the entrance and 

a decline at its exit. Moreover, a strong air downdraft creates an “air door” that keeps the hot 

air inside the oven chamber, and it is usually called an “air seal”. Although these solutions are 

effective, since the ovens’ environment is usually at negative pressure, some air manages to 

break through the air seal and “infiltrate” the oven. 

To analytically estimate the infiltration flow is extremely complex, and not in the scope of this 

project. Moreover, design values for this phenomenon are available, and can be easily 

implemented in the model, considering a virtual steady-state flow that accounts for the higher 

exhaust volume, due to infiltration, and the low enthalpy inlet flow. 

3.6.2.1.4 Thermal balance 

The scheme in Figure 3.10 contains all the flows that are accounted in the thermal balance for 

the computation of the natural gas consumption of an oven. The solid, straight arrows represent 

mass transfers while the curved arrows represent heat transfers. The heat losses flux is the sum 

of the convective heat transfer and the effect of the heat capacity of the car bodies. The dashed 
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line encloses the control volume, whose boundaries are used to compute the mass and the 

energy balances in Equation 16 and 17. 

 

Figure 3.10 – Thermal balance scheme for an oven 

First, the mass balance equation can be written: 

 �̇�𝐹𝐴 + �̇�𝐼𝑁𝐹 = �̇�𝐸𝑋 (16) 

in which �̇�𝐹𝐴 and �̇�𝐼𝑁𝐹 are the fresh air and infiltration air mass flow rates (kg/s), and �̇�𝐸𝑋 is 

the exhaust mass flow rate (kg/s). Then, the balance of the energy flows can be computed: 

 �̇�𝐹𝐴𝑐𝑝𝑇𝑜𝑢𝑡 + �̇�𝐼𝑁𝐹𝑐𝑝𝑇𝑝 + �̇�𝑁𝐺 = �̇�𝐸𝑋𝑐𝑝𝑇𝑜𝑣 + �̇�𝑙𝑜𝑠𝑠 (17) 

where 𝑐𝑝 is the specific heat capacity of air (J/kg·K), 𝑇𝑜𝑢𝑡 is the outside air temperature (K), 𝑇𝑝 is 

the plant temperature (K), �̇�𝑁𝐺 is the heat added to the control volume by the natural gas (W), 

�̇�𝑙𝑜𝑠𝑠 is the heat lost by the control volume due to heat transfer through the oven’s walls and to 

the car body (and carrier) heat capacity (W). Substituting Equation 16 in Equation 17, Equation 

18 was obtained, to compute the required energy that comes from burning natural gas: 

 �̇�𝑁𝐺 = �̇�𝑙𝑜𝑠𝑠 + �̇�𝐹𝐴𝑐𝑝(𝑇𝑜𝑣 − 𝑇𝑜𝑢𝑡) + �̇�𝐼𝑁𝐹𝑐𝑝(𝑇𝑜𝑣 − 𝑇𝑝) (18). 
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𝑇𝑜𝑢𝑡 was taken from the previously discussed weather model, and it is affected by a variability 

due to the day/night cycle and to the seasonal fluctuation. Arranging the shifts and the 

production schedules can have an effect on the ovens’ natural gas consumption. 

3.6.2.2 Bring-up 

For the ovens’ start-up, all the considerations that have been made regarding the dip tanks, in 

Section 3.6.1.2, are valid. It is possible to divide the start-up period in two distinct phases, 

heating and stabilization. In the first one, the chamber inside the oven has to be brought to the 

operating temperature. Since this operation happens relatively quickly, heat losses were not 

considered. An air volume of twice the capacity of the oven chamber was considered to be 

heated up, to account for the capacity of the recirculation system. The air at the beginning was 

considered to be at the same temperature as the plant environment. The second phase, 

stabilization, is defined by the user, who can set the time period that has to be waited before 

the beginning of the production with the oven running at set point temperature. In this phase, 

heat losses were included. In the simulations that have been performed for this thesis, a 

stabilization time of 2 hours was used. 

3.6.2.3 Electrical consumption 

The ovens are among the biggest users of electricity in a paint shop. With no lights inside and no 

natural gas supply pumps, the electricity is used almost exclusively by the fan motors. This 

model considered the fans to be active whenever the oven was running, in any condition: bring-

up or normal operation. The user can toggle the deactivation of the fans when an oven is not 

operative. 

The air quantity that has to be moved by the fans inside the ovens can be obtained by the model 

in different ways, depending on the availability of the input data. It can be, in a decreasing 

preference: 

 inserted directly by the user; 

 retrieved from the equipment data, in the STEP 1 and STEP 2 sheets; 

Every zone of the oven has a supply and an exhaust fan. To estimate the energy consumption of 

the ovens’ fans, the pressure drop across the whole air loop – intake filters, kinetic energy 
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increase, recirculation filters and kinetic energy increase – has been taken into account. The 

equation that was used to estimate the fan motors’ consumption is Equation 13. The volume 

flow rate that was used for the computation was the actual volume flow rate, instead of the 

flow rate at standard conditions, which was used to compute the fresh air mass flow rate in 

Equation 18. 

3.6.3 Booths and decks 

In a paint shop there are some processes that require enclosed sections called booths. The 

purpose of the main booths is to guarantee that the environmental conditions reflect the strict 

needs of the spray processes, such as the primer surfacer, the basecoat and the clearcoat 

application. The air has to be treated and conditioned to guarantee the perfect quality of the 

outcome. As for the ovens, since the weather is variable during the year, the energy 

consumption of the booths is affected by daily and yearly fluctuations. 

Working decks were treated as booths. The requirements can change, but their structure is 

analogous, and that makes the sub-model of the booths applicable. The application of foam and 

sealer gel is performed in the main deck of the paint shop. This operation is usually carried out 

by humans. Secondary booths and decks exist in many places in the paint shop, and they’re used 

for rework, inspections and raw materials handling. 

Booths and decks use energy in several ways. The primary energy users are the air treatment 

units, ATUs, that heat and condition the incoming air. The fan motors use another large share of 

the energy, while pumps use almost no energy, by comparison. Lighting impact is negligible, 

compared to the air conditioning and fan consumptions, and it may have less impact than the 

uncertainty of the other two. However, it was decided to include lighting in the booths and 

decks sub-model, because while it does not add any significant result relative to the overall 

energy consumption, its absolute value can help in understanding what is the impact of light 

management in an automotive paint shop, and its result can be completely decoupled from the 

other energy expenses; this model can be then used to verify the savings brought by the 

shutdown of the lights in the booths, or the amount of waste when they are not turned off. 
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3.6.3.1 Air treatment 

As already mentioned, most booths and decks require that the supplied air condition be stable 

during production. This means that the air treatment units must work to satisfy the set point 

requirement regardless of the external conditions. Some months require mixing and heating, 

other months require cooling and dehumidification. Moreover, spray booths are usually wet 

booths, with water flowing under floor grates that are pervious to the air downdraft, washing 

the paint particles contained in it away from the air flow. A large part of the air is then 

recirculated, while some of it is exhausted, sometimes after going through a device for pollution 

control. The air that is extracted from the scrubber – i.e. the stream for which the water has 

washed paint or coating particles away from the airflow – has gained humidity, and cannot be 

recirculated as such. It has to be mixed with fresh air and re-treated in the air treatment units or 

air recirculation units (ARUs). 

Given the complexity of this analysis and the availability of a module, supplied by FCA, that has 

been studied and perfected during the years by CRF (Centro Ricerche Fiat), a FCA research and 

development facility in Orbassano, Italy the computations for this part have been “outsourced”. 

The FCA ATU module is a MS Excel® workbook with specific Visual Basic code used to solve 

psychrometric equations. The paint shop model has been created in such a way that it can 

communicate with the FCA ATU module, autonomously sending inputs and collecting the 

outputs. The inputs required are the volume of air that needs to be treated, the recirculation 

percentage, the set point temperature and humidity and the weather data – the weather 

module of this project has been set-up in such a way that it can work as input for an external 

block. The outputs of the FCA ATU module are the energy that has been supplied to the air 

during the heating days, the amount of cooling that has been provided to the air flow and the 

water used for humidification. 

The outputs of the ATU model are not the direct estimation of the electricity and natural gas 

consumptions. Specifically, the energy that is used to heat the air is given by a natural gas heater 

box that has an efficiency that is less than 100%, while the energy that is withdrawn from the 

airflow to cool it down is not the electrical consumption of the air conditioner compressor. The 

natural gas energy consumption is given by: 
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 �̇�𝐴𝑇𝑈,𝑁𝐺 = �̇�ℎ𝑒𝑎𝑡/𝜖𝐴𝑇𝑈,ℎ (19) 

where �̇�ℎ𝑒𝑎𝑡 is the output of the ATU module (W), and 𝜖𝐴𝑇𝑈,ℎ is the heating efficiency of the 

ATU. To compute the electrical consumption due to the cooling of the airflow, the concept of 

coefficient of performance has to be introduced. The refrigeration cycle describes the operation 

of a machine that, using external work, extracts heat from a cold source and sends it to a hot 

reservoir. Without the external work, the machine would violate the 2nd law of the 

thermodynamics. The efficiency of a machine is normally the ratio between the output quantity 

of the device and the “cost” of the operation. But a more useful way to measure its 

effectiveness is the simple ratio between the desired effect, the heat withdrawn from the cold 

source, and the external work. This value cannot be called efficiency, because it is usually 

consistently higher than 100%, and it is known as the coefficient of performance, COP. 

In an air conditioner, the external work is supplied to the refrigerant by the compressor, and the 

cold source that is further cooled is the ambient air. In this way, if two values in the COP 

equation (Equation 20), such as air flow cooling energy and external work, are known, it is 

possible to easily compute the third one. Therefore, to estimate the electrical power 

consumption of the compressor, considering the coefficient of performance to be 3.5, the 

following relation was used: 

 𝑃𝑐𝑜𝑚𝑝 =  �̇�𝑐𝑜𝑜𝑙/𝐶𝑂𝑃 (20). 

3.6.3.2 Fans 

The fan power consumption was estimated using Equation 13. To estimate the air volume flow 

rate for each booth or deck, the model could use several sources. 

 If the user inserts the desired volume flow rate manually for a booth or a deck, the 

model uses the user input as its primary source to compute the fan’s consumption. 

 If the user does not insert the flow rate information but inputs the booth or deck floor 

area and the air flow requirement per unit area, the model computes the total flow rate 

using a simple multiplication. 
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 If the user inserts the floor area and the type of the booth or deck, the model uses 

general values stored in its library or set by the user. 

 If the user does not insert any information about the floor area and the flow rate, the 

model computes the flow rate from the STEP 1 and STEP 2 sheets. 

Fan operation can be controlled by the user during downtime and plant shutdown. These 

controls interact with the booth management algorithm that is described in the following 

sections. 

3.6.3.3 Lighting 

The estimation of the lighting consumption is done using the information about the booths size. 

Through an interface, the user can select the type of the booth among 4 categories: 

 inspection 

 generic deck 

 generic booth 

 technical. 

For each category, the design specifications for the booths and decks report a required luminous 

power per unit area, or illuminance, depending on the purpose of the room, reported in Table 

3.2. The total luminous power can be computed multiplying by the floor area, and normalized 

values of luminous power per unit power consumption typical of fluorescence lamps for 

industrial use were utilized to calculate the electrical consumption. 50 lm/W has been chosen as 

a typical value [23], [24]. The default type set by the model was the generic booth or deck. 

Table 3.2 Illuminance levels for different types of booths 

Purpose Illuminance [ft-cd] 

Inspection 180 

Generic decks and booths 120 

Technical 50 
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Equation 21 shows the computation for the estimation of the lighting electrical consumption. 𝐸𝑣 

is the illuminance (ft-cd = lm/m2), and 𝐾 is the luminous efficacy of the fluorescent bulbs. 

 𝑃𝑙 = (𝐸𝑣 ∙ 𝐴)/𝐾 (21) 

3.6.3.4 Booths and decks management 

The model handles booths and decks as separate modules, using the same calendar and 

weather module as the other processes, but with an internal management of the production 

schedules. Since there are 3 color booths in parallel, the user can set and decide whether to 

deactivate individual booths according to the production rate and which to deactivate. 

Moreover, the color ovens are in line with the color booths, and their operation is strictly linked 

to the booths operation. In Figure 3.11, a screenshot of the interface for the color booths, it is 

possible to see the green panel for the selection of the booths to deactivate in case of low 

production rate, and the red cell that shows that color booth #1 is currently not in use. 

 

Figure 3.11 – Color booths interface 

The user can act on another interface, called Variables, in which it is possible to set values for 

the required air flow per unit area or air speed, tell the model whether a booth, a deck or a zone 

is to be conditioned or not through a checkbox, select the purpose of the booth, deck or zone 

with a drop-down selector, and visualize the corresponding surface area. Figure 3.12 is a 

screenshot of the Variables sheet for color booth #1. Everything is color coded for quick reading. 
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Figure 3.12 – Color booths variables set-up 

3.7 Scenarios 

The model has been generated to be able to run simulations of several scenarios, varying 

production rate, asset utilization, shift organization, and shutdown scheduling. The aim of this 

project was to run some test scenarios in order to understand the behavior of the paint shop as 

a response to the change of pre-determined parameters. The following variables have been 

controlled and changed according to the scenario purposes: 

 production rate; 

 operation of: 

o fans; 

o ATUs; 

o dip process heat exchangers; 

o lights; 

o agitator pumps; 

 shift organization; 

 shift length; 

 vacation scheduling. 
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3.7.1 Scenario 1 

The first scenario was a typical year of mass production. The manufacturing target was 180,000 

vehicles, produced in one 10-hour shift per weekday, starting at 6 in the morning. The plant was 

shut down on the weekend. Two vacations with complete shutdowns were included, for a total 

of three weeks. The plant throughput was close to its maximum capacity, at 74 jobs per hour, 

and all the parallel production lines were activated. This scenario has been used for high-level 

model calibration, and should mirror the current conditions of the plant. Some data are 

summarized in Table 3.3, and the calendar schedule is shown in Figure 3.13. 

Table 3.3 – Main parameters for Scenario 1 

Parameter Value 

JPH 74 

Total production 181,300 

Shifts per day 1, 10h 

Shutdown days 120 

 

 

Figure 3.13 – Scenario 1 calendar 
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3.7.2 Scenario 2 

Scenario 2 represents a completely different strategy to fulfil the same production requirement 

in a year. The production rate has been set to 53 jobs per hour, and the selective deactivation of 

the color booths has been utilized, using only color booths 2 and 3. A production day is 

organized in two shifts, 7 hours long, and during the weekends the systems are shut down. In 

Table 3.4 and Figure 3.14 some information is summarized. 

Table 3.4 – Main parameters for Scenario 2 

Parameter Value 

JPH 53 

Total production 181,790 

Shifts per day 2, 7h 

Shutdown days 120 

 

 

Figure 3.14 – Scenario 2 calendar 
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3.7.3 Scenario 3 

Scenario 3 had the same structure as scenario 1 but with no weekend shutdown, and its 

calendar schedule is shown in Figure 3.15. It has been included in this study, along with Scenario 

4, to evaluate the impact of systems shutdown during the weekend and of the Monday morning 

startup operations. Three weeks of summer and winter closure have been kept, and total 

production is the same as scenario 1, as reported in Table 3.5. 

Table 3.5 – Main parameters for Scenario 3 

Parameter Value 

JPH 74 

Total production 181,300 

Shifts per day 1, 10h 

Shutdown days 26 

 

 

Figure 3.15 – Scenario 3 calendar 
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3.7.4 Scenario 4 

Scenario 4 was a modification of scenario 2, without systems shutdown during the weekend. 

The vacation closures have been kept the same, as well as the total production and the shift 

organization. This scenario is used to evaluate the effect of the weekend shutdown in the case 

of different shift organization and asset utilization. In Table 3.6 the data relative to this scenario 

have been summarized, and Figure 3.16 shows the screenshot of the calendar. 

Table 3.6 – Main parameters for Scenario 4 

Parameter Value 

JPH 53 

Total production 181,790 

Shifts per day 2, 7h 

Shutdown days 26 

 

 

Figure 3.16 – Scenario 4 calendar 

  

January February March April May June July August September October November December

1 1 1 1 1 1 1 1 1 1 1 40 1 1

2 2 2 2 14 2 2 2 27 2 2 2 2 2

3 3 3 3 3 3 3 3 3 36 3 3 3 49

4 4 4 4 4 4 23 4 4 4 4 4 4

5 5 6 5 10 5 5 5 5 5 5 5 5 45 5

6 6 6 6 6 6 6 6 32 6 6 6 6

7 7 7 7 7 19 7 7 7 7 7 7 7

8 2 8 8 8 8 8 8 8 8 8 41 8 8

9 9 9 9 15 9 9 9 28 9 9 9 9 9

10 10 10 10 10 10 10 10 10 37 10 10 10 50

11 11 11 11 11 11 24 11 11 11 11 11 11

12 12 7 12 11 12 12 12 12 12 12 12 12 46 12

13 13 13 13 13 13 13 13 33 13 13 13 13

14 14 14 14 14 20 14 14 14 14 14 14 14

15 3 15 15 15 15 15 15 15 15 15 42 15 15

16 16 16 16 16 16 16 16 29 16 16 16 16 16

17 17 17 17 17 17 17 17 17 38 17 17 17 51

18 18 18 18 18 18 25 18 18 18 18 18 18

19 19 8 19 12 19 19 19 19 19 19 19 19 47 19

20 20 20 20 20 20 20 20 34 20 20 20 20

21 21 21 21 21 21 21 21 21 21 21 21 21

22 4 22 22 22 22 22 22 22 22 22 43 22 22

23 23 23 23 17 23 23 23 30 23 23 23 23 23

24 24 24 24 24 24 24 24 24 39 24 24 24 52

25 25 25 25 25 25 26 25 25 25 25 25 25

26 26 9 26 13 26 26 26 26 26 26 26 26 48 26

27 27 27 27 27 27 27 27 35 27 27 27 27

28 28 28 28 28 22 28 28 28 28 28 28 28

29 5 29 29 29 29 29 29 29 29 44 29 29

30 30 30 18 30 30 30 31 30 30 30 30 30

31 31 31 31 31 31 31
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3.7.5 Scenario 5 

Scenario 5 has been introduced determine how to minimize the losses that limit normal 

production efficiency. Although it is practically impossible to be applied as a production plan, 

the model has been tested to understand how far the efficiency margin can be pushed. The 

purpose of this scenario is to avoid having time in which the systems are operative but no 

vehicle is coated. Moreover, the production is organized to minimize the quantity of startup 

operations, requiring 1 major startup at the beginning of production, on December 16, as in 

Figure 3.17. The plant would be operative for 15 weeks and 5 days, as summarized in Table 3.7. 

This scenario, as already stated, is impossible to be actuated, because it considers the 

production rate to be equal to the maximum capacity. Moreover, this production strategy would 

create enormous inventory value at the end of the production period, potentially resulting in a 

considerable loss for the company. 

Table 3.7 – Main parameters for Scenario 5 

Parameter Value 

JPH 75 

Total production 180,000 

Shifts per day 3, 8h 

Shutdown days 265 

 

 

Figure 3.17 – Scenario 5 calendar  

January February March April May June July August September October November December

1 1 1 1 1 1 1 1 1 1 1 40 1 1

2 2 2 2 14 2 2 2 27 2 2 2 2 2

3 3 3 3 3 3 3 3 3 36 3 3 3 49

4 4 4 4 4 4 23 4 4 4 4 4 4

5 5 6 5 10 5 5 5 5 5 5 5 5 45 5

6 6 6 6 6 6 6 6 32 6 6 6 6

7 7 7 7 7 19 7 7 7 7 7 7 7

8 2 8 8 8 8 8 8 8 8 8 41 8 8

9 9 9 9 15 9 9 9 28 9 9 9 9 9

10 10 10 10 10 10 10 10 10 37 10 10 10 50

11 11 11 11 11 11 24 11 11 11 11 11 11

12 12 7 12 11 12 12 12 12 12 12 12 12 46 12

13 13 13 13 13 13 13 13 33 13 13 13 13

14 14 14 14 14 20 14 14 14 14 14 14 14

15 3 15 15 15 15 15 15 15 15 15 42 15 15

16 16 16 16 16 16 16 16 29 16 16 16 16 16

17 17 17 17 17 17 17 17 17 38 17 17 17 51

18 18 18 18 18 18 25 18 18 18 18 18 18

19 19 8 19 12 19 19 19 19 19 19 19 19 47 19

20 20 20 20 20 20 20 20 34 20 20 20 20

21 21 21 21 21 21 21 21 21 21 21 21 21

22 4 22 22 22 22 22 22 22 22 22 43 22 22

23 23 23 23 17 23 23 23 30 23 23 23 23 23

24 24 24 24 24 24 24 24 24 39 24 24 24 52

25 25 25 25 25 25 26 25 25 25 25 25 25

26 26 9 26 13 26 26 26 26 26 26 26 26 48 26

27 27 27 27 27 27 27 27 35 27 27 27 27

28 28 28 28 28 22 28 28 28 28 28 28 28

29 5 29 29 29 29 29 29 29 29 44 29 29

30 30 30 18 30 30 30 31 30 30 30 30 30

31 31 31 31 31 31 31
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4 Calibration and Results 

4.1 Calibration 

The third phase of the model generation was the calibration. At this point, the major uncertainty 

sources had been identified, and adjustable parameters in the analytic model (right hand side) 

had been configured to be able to slightly modify their values to make the result of the model 

closer to reality (left hand side). The following rules have been set. 

 The calibration has been performed using instantaneous power as a reference where 

possible. Trying to compare and tune the energy consumption per unit of production 

can induce some errors, because its value depends on the shift distribution, running 

time, and other process variables. Averaging in time has therefore been avoided. 

 The calibration was carried out preferably by isolating its effect on real equipment. This 

allowed one to calibrate the model at a lower level, on a detailed base, so the outcome 

of the model is more reliable. STEP 1 worksheets were used to perform this operation 

with as much detail as possible. 

 When it was not possible to isolate the effect of the calibration, or when several 

phenomena interacted for the energy load of a single element – such as for the heat 

exchangers of the dip tanks, whose thermal load is due to several types of heat loss – 

two scenarios that were likely to occur were: 

o each phenomenon that contributes to the element energy consumption had a 

constant characteristic, and was not linked to a parameter that was part of a 

case study analysis. 

o one of the phenomena that made up the element energy consumption 

depended on the production rate or was linked to a parameter that could be 

modified by the user – i.e. the heat transfer through walls is strictly related to 

the thickness of the insulation, which could be modified by the user with the 

purpose of evaluating its effect on the heat exchanger load. 

If the calibration was performed on a set of constant and not modifiable parameters, a 

simple correction factor can be implemented, without affecting the quality and 

reliability of the model outcome. In the case of some factors that depended on 
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production or on values that can be managed by the user, the other two scenarios that 

could occur were: 

o If it was possible to acquire secondary information and data from other sources, 

that can raise the level of knowledge of the result, and that can be used to 

investigate the energy consumption mechanisms of a determined sub-process, 

then the calibration procedure can be done according to this new information, 

without affecting the reliability of the model by a considerable extent. Taking 

the dip tanks as an example, the information that after a 48 hours shutdown the 

bath temperature dropped by 5.5 °C and that the bring-up lasts for 40 minutes 

has been used to estimate the total heat loss due exclusively to heat transfer 

through walls and to verify the heat exchangers’ ratings. 

o If it was not possible to acquire secondary information that would help in the 

calibration process, and the difference between the real equipment 

consumption and the model was lower than 50%, it has been decided to leave 

the model as it is, considering the low impact of this offset on the whole paint 

shop energy consumption result. If the difference was higher than 100%, then a 

correction factor was employed, but the result of the sub-process that had been 

calibrated lost some reliability for scenarios with heavy modifications of the 

actual conditions. For values higher than 50% and lower than 100%, common 

sense and hybrid solutions had to be used. 

 When the offset between a model sub-process energy carrier consumption and STEP 3 

worksheet computations was found to be less than 30%, no calibration was performed. 

This threshold has been decided due to the low impact of a single energy carrier 

consumption in a sub-process (phosphating, e-coat, powder booths, color booths, sealer 

decks, ovens and generic booths) on the consumption of the whole paint shop. 

The model has been calibrated at a low level, within the sub-processes, comparing the results of 

each phase to the value obtained in the worksheet STEP3. The overall energy consumption has 

then been compared to the values in the literature, considering the differences between the 

SHAP paint shop layout and the average. Moreover, the plant utility bills have been used to 

understand how the model predicted the annual cost of the SHAP paint shop. Before applying 
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the corrections, the targets for the calibration procedure have been identified, as reported in 

Table 4.1. 

Table 4.1 – Calibration parameters for sub-processes 

Sub-process Energy carrier Calibration parameters 

Phosphating Electricity Fan efficiencies 

Natural gas Correction factor for car 

body heat capacity 

Air speed for evaporation 

rate 

E-coat Electricity Fan efficiencies 

Cold water Correction factor for car 

body heat capacity 

Ovens Electricity Fan efficiencies 

Ventilation system pressure 

drop 

Natural gas Convection coefficients 

Powder booth Electricity Fan efficiencies 

FCA ATU module 

Natural gas FCA ATU module 

Color booths Electricity Fan efficiencies 

FCA ATU module 

Natural gas FCA ATU module 

Decks Electricity Fan efficiencies 

FCA ATU module 

Natural gas FCA ATU module 

Generic booths Electricity Fan efficiencies 

FCA ATU module 

Natural gas FCA ATU module 
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4.1.1 Phosphating 

4.1.1.1 Electrical consumption 

The phosphating process fan efficiencies have been set by averaging the ratio between the 

pumping work given to the air flow in the unit time and the power consumption of the fans in 

the STEP 1 and 2 worksheets, obtaining values between 60% and 75%. After comparing the 

power consumption obtained with the model to the computations using the equipment data 

there was no need for a calibration procedure. Pump energy consumption has been directly 

carried out in the STEP 3 worksheet, therefore it is assumed to mirror the real world value. 

4.1.1.2 Natural gas consumption 

The natural gas consumption is directly proportional to the heat loss of the dip tanks. The 

correction factor for the car body heat capacity was initially set to a value of 0.2, and the air 

velocity, contained in Equation 10, is known to be close to 1 m/s. 

Assuming the heat exchangers’ thermal loss to the environment to be the 5%, the values of 

energy consumption of the model were compared to the equipment data. Moreover, the 

convective heat transfer was verified using the information of the temperature drop after a 

weekend shutdown. After the comparison, the correction factor for the car body heat capacity 

was lowered to 0.17. In Table 4.2 and Table 4.3 the parameters for the calibration have been 

reported. Although the convective heat loss does not match the actual value perfectly, no 

corrections have been applied, because of the low impact on the overall pretreatment result. 

Table 4.2 - Phosphating cleaning dip calibration 

 Analytical Model Actual 

Convective heat loss 35 kW 39.7 kW 

Winter consumption, F=0.2 329 kW 294 kW 

Winter consumption, F=0.17 297 kW 294 kW 
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Table 4.3 - Phosphating dip calibration 

 Analytical Model Actual 

Convective heat loss 35 kW 39.7 kW 

Winter consumption, F=0.2 331 kW 299 kW 

Winter consumption, F=0.17 298 kW 299 kW 

 

4.1.2 E-coat 

4.1.2.1 Electrical consumption 

The assumptions for the phosphating electrical consumption were valid and used for e-coat, and 

no corrective actions have been required. 

4.1.2.2 Cold water consumption 

The same procedure as the phosphating process has been followed. The energy that is added 

through the recirculation pumps to the bath was larger than the heat loss. The first check was to 

verify the net heat transfer to be positive, based on the heat exchanger data. Then, the 

corrective factor for the car body heat capacity was carried through from the phosphating 

phase. In this case however, no information was available to validate the cold water 

consumption; therefore the result of the model could not be verified. The evaluation of the 

cooling water consumption is not one of the main targets of this project, and the problem was 

not further investigated. 

4.1.3 Ovens 

4.1.3.1 Electrical consumption 

The fans’ energy consumption was computed using the average efficiency from the equipment 

data. Therefore, no corrective factors have been used, as the model mirrors the actual values. 

4.1.3.2 Natural gas consumption 

The natural gas consumption, as previously discussed, can be split into a term that is relative to 

the fresh air intake heating, and another term relative to the recirculation re-heat. The first 

value uncertainty was relatively low, as the only parameter that can affect its result – apart from 
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the airflow characteristics – is the heater box efficiency, which was high enough (95 – 98%) to 

confidently assume the result to be reliable. The thermal energy added to the recirculation flow, 

instead, depends on the heat losses through the walls, and convection parameters can be 

adjusted. 

Baseline data about recirculation flow rate, inlet and outlet temperature of the return airflow 

are available and were used to compute the actual power that is required to re-heat the 

recirculation airflow. Moreover, natural gas readings for each burner are accessible through the 

FIS system, and have been used to verify the total consumption of each oven. 

In the following tables, the data relative to the ovens’ calibration are reported. It is possible to 

conclude that the estimation of the power required to heat the fresh air is reliable. Therefore, 

no corrective factor has been applied to the fresh air computation. However, the consumption 

linked to the recirculation air flow re-heating on average, is overestimated. As already discussed, 

the ovens were assumed to draw air directly from the outside, which reflects an overestimation 

of the ovens consumption. But the energy required to heat the intake air from the outside 

temperature to the oven set point temperature averages around 0.15 MW per oven, a value 

that is too low to justify the large error. Looking closely to the data in the tables, however, it can 

be noted that for the baking processes that are served by more lines in parallel, the error is 

smaller, while for the sealer oven, that alone cures the whole production of the paint shop, the 

error was close to 100%, suggesting that the shift is related to the ovens’ throughput. It is 

possible to state, with a certain level of confidence, that the cause of the offset was in the 

estimation of the thermal energy withdrawn by the car body and the carrier that raise their 

temperature along the curing process. Going deeper, trying to access the root cause, it is 

possible to notice that no information relative to the mass of the carrier has been found, and 

the model has been generated with an algorithm that, in case of a missing piece of information, 

the required data is gathered from the previous sub-process module. The e-coat carrier mass 

has then been used by the model, and its value is greater than 750 kg. Since the correct value 

was still unknown at the time in which this dissertation has been written, a correction factor, F, 

of 0.6 has simply been introduced and is multiplied only to the heat capacity term. Its results can 

be seen in the following tables.  
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Table 4.4 – Effect of calibration on e-coat ovens 

 Model Model F = 0.6 Actual 

Recirculation 1.64 MW 1.30 MW 1.38 MW 

Fresh air (average) 1.05 MW 1.05 MW 0.91 MW 

Total (average) 2.69 MW 2.35 MW 2.29 MW 

 

Table 4.5 – Effect of calibration on sealer oven 

 Model Model F = 0.6 Actual 

Recirculation 2.21 MW 1.74 MW 1.28 MW 

Fresh air (average) 0.32 MW 0.32 MW 0.33 MW 

Total (average) 2.53 MW 2.06 MW 1.61 MW 

 

Table 4.6 – Effect of calibration on powder ovens 

 Model Model F = 0.6 Actual 

Recirculation 1.58 MW 1.30 MW 1.68 MW 

Fresh air (average) 1.57 MW 1.57 MW 1.46 MW 

Total (average) 3.15 MW 2.87 MW 3.14 MW 

 

Table 4.7 – Effect of calibration on color ovens 

 Model Model F = 0.6 Actual 

Recirculation 2.14 MW 0.76 MW 0.74 MW 

Fresh air (average) 1.13 MW 1.13 MW 1.01 MW 

Total (average) 2.27 MW 1.89 MW 1.75 MW 
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4.1.4 Booths and decks 

4.1.4.1 Electrical consumption 

In booths and decks, electricity is used to power fan motors, lights and the air treatment units. 

The fan efficiency has been set, for each booth and each deck, averaging the efficiency of every 

fan obtained in the STEP 1 and 2 sheets, obtaining values between 60% and 75%, and the result 

mirrors the one computed using the equipment data. Light power consumption has not been 

calibrated, since there is no access to data for comparison, and, as already discussed, its value is 

extremely low compared to the other users, so it has not been considered an issue for the final 

result of the model. The air treatment units result was obtained using an external FCA module, 

and no data are available for comparison within the sub-processes. A verification procedure has 

then been carried out looking at the plant electricity bills and at some values contained in the 

literature. Although the literature does not provide precise information about it, in normal 

operating conditions, indicatively the electricity used in the paint booths accounts for 40% – 

50% of the total, including ventilation [7], [4], [12], [5]. Using the first scenario, described in the 

following sections, the model estimated an electricity consumption of the whole paint shop of 

42 GWh for a year of 365 days, of which 27 GWh was used by the color booths, the powder 

booth and the generic booths and decks, accounting for 65% of the total. If just the powder and 

color booths are considered (in order to match the “paint booths” as stated in the reference), 

their electricity share drops to 49%. These values can be considered acceptable, considering that 

the SHAP has a high output paint shop, with 3 color booths in parallel. 
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4.2 Results 

Scenarios 1 to 5 have been run for the energy consumption estimation of a year of production. 

In the following, the results of these simulations are reported and discussed, comparing diverse 

scenarios and relating differences to strategy changes. Scenarios 1 to 4 have been compared 

among them, since they can be realistically adopted by the SHAP paint shop, while scenario 5 

has been analyzed separately, because of its unique nature. 

To make the analysis more consistent with industrial needs, a price per unit for the electric 

energy and natural gas has been set, and total expenses have been calculated. Without these 

parameters, it is impossible to put together the consumption of natural gas and electricity, 

because of the lower cost of the first one, and hence it would not be possible to evaluate the 

scenarios’ benefit. The chosen values are reported in Table 4.8. 

Table 4.8 – Specific energy cost 

Energy carrier Cost per kWh [$/kWh] 

Electricity 0.0614 

Natural gas 0.0128 

 

4.2.1 Scenario 1 

The first scenario consumption data are reported in Table 4.9. The chart in Figure 4.1 shows the 

trend of the electricity consumption throughout a year, while the one in Figure 4.2 reports 

natural gas use. 

Table 4.9 - Scenario 1 results overview 

 Energy Cost 

Electricity, total 42,702 MWh $ 2,621,915 

Natural gas, total 222,113 MWh $ 2,841,259 

Electricity, per car 235.53 kWh $ 14.46 

Natural gas, per car 1,225.11 kWh $ 15.67 
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Figure 4.1 – Monthly electric consumption for Scenario 1 

 

Figure 4.2 – Monthly natural gas consumption for Scenario 1 
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The expenditures for natural gas and electricity were very close to each other. Natural gas cost 

per car was slightly higher than electricity, mainly because of the assumption that the intake 

airflow of booths, decks and ovens is directly drawn from the outside, and not cascaded through 

the plant HVAC. The total energy cost per vehicle averages around $30, and the values of energy 

consumption per car match the literature values. In Figure 4.1 it is possible to notice that the 

electrical consumption has a variability that is directly proportional to the average outside 

temperature. Looking closer at the diagram, the yellow, blue and green bars – corresponding to 

all the booths and decks – appear to be the primary causes of this oscillation, while phosphating, 

e-coat and ovens show a constant trend. This is explained by the electricity users in each sub-

process: in the pretreatment and the ovens, electricity powers fans and pumps, that are not 

susceptible to the external conditions, while a big part of electrical energy is used in the booths 

for the air conditioning, during hot summer days. Since the booths set point is higher than the 

outside temperature except for the months of July to September, the electrical consumption 

increases just for these 4 months. August and December are affected by vacation downtime, 

and their total value is lower than the average. The color booths appear to be the most 

important electricity users in the whole paint shop. 

The timing for the natural gas consumption, as depicted in Figure 4.2, is opposite to that for 

electricity. Natural gas is used to heat the airflows coming from the outside, and to keep the dip 

tanks’ temperature constant in time. Heat loss from the dip tanks depends on the production 

rate and on the plant temperature – heat transfer from the bath to the plant is driven by a 

constant temperature gradient. These two factors are constant throughout the year, and, as 

expected, pretreatment natural gas consumption does not change. Being careful to not consider 

the consumption in the months of August and December, the ovens also do not show significant 

changes, even though part of the natural gas is used to heat the airflow from the outside to the 

oven set point temperatures. This can be explained by the composition of two factors: 

 oven set point temperatures (150 to 175 °C) are consistently higher than the average 

outside temperature, and the average temperature “jump” that the fresh air goes 

through (40 °C) makes the winter to summer difference less significant; 
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 only fresh air heating depends on the outside temperature, and fresh air intake 

accounts for a small part of the total airflow – depending on the oven, it can be lower 

than 7% – and is about the half of the ovens total consumption. 

Therefore, as it can be seen in Figure 4.2, there is variability in the booths’ and decks’ gas 

consumption, as with electricity. Since the booths set point is higher than the outside 

temperature in the majority of the year, a large amount of natural gas is used to heat the fresh 

air intake. The booths set point temperature however, different from the ovens case, falls within 

the annual range of outside temperatures. The result is that during hot summer hours, the 

intake airflow has to be cooled down, by expending electric energy, and not heated up, lowering 

significantly the natural gas consumption. Some energy is still used to reheat the air after being 

dehumidified, in the ATUs. In the winter months, the color booths are the main natural gas 

users, while in the summer they drop significantly. As reported in Figure 4.3, even though the 

values are averaged throughout the year, the color booths alone are responsible for 35% of the 

total energy cost, while the ovens to only 30%. 

 

Figure 4.3 – Energy cost proportion per sub-process for Scenario 1 
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Figure 4.4 and Figure 4.5 report the same diagrams as Figure 4.1 and Figure 4.2, but they have 

been scaled to show the relative proportions for each month. It is possible to notice that, 

regarding electrical consumption and especially in the winter months, the contribution of color 

booths, ovens, and phosphating together with e-coat is almost comparable. Acting on each of 

these areas, then, would have the same impact on energy cost per produced vehicle. In the 

summer, the contribution of the color booths increases consistently, and they become 45% of 

the total electrical consumption. 

Natural gas works similarly, with an almost equal distribution in the winter days. In the summer, 

however, because of the combined effect of the booths that do not need heating anymore, and 

of the ovens whose need for thermal energy does not change considerably, the ovens become 

the main natural gas users, averaging 65% in the months of June, July, August and September. 

The chart in Figure 4.6 shows the trend of the unit cost during the year. It is interesting that it 

changes by 31% of its value between the minimum and the maximum. The reasons for this large 

fluctuation can be summarized as: 

 a large fluctuation in the outside temperature, ranging from -20 °C (and lower) in the 

winter to 30 °C (and higher) in the summer; 

 an incomplete view of the energy involvement in the painting process: as already stated, 

some elements such as building HVAC, building lights, compressed air, and conveyors 

have not been considered; 

 the assumption of drawing air from the outside for booths, decks and ovens. 

We can see that the function that describes the unit cost has not just one fluctuation 

throughout a year, but interestingly it rises again in the mid-summer months, leaving two valleys 

representing the lowest unit cost in the months of May and September. Ideally, the production 

should be brought towards these months. 
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Figure 4.4 – Monthly electric energy share within paint shop for Scenario 1 

 

Figure 4.5 – Monthly natural gas energy share within paint shop for Scenario 1 
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Figure 4.6 – Unit cost throughout a year for Scenario 1 

4.2.2 Scenario 2 

In Scenario 2, the production target was fulfilled in 2 shifts per day, each of them 7 hours long. 

The production rate was slowed down to 53 jobs per hour, and color booth #1, as well as its 

oven, was not used. The plant was shut down on the weekend, and on Mondays, production 

started with a rapid start-up. In Table 4.10 an overview of the energy consumption is reported. 

Although the production strategy is different from Scenario 1, the average cost per unit 

computed by the model is almost the same. The low production rate does not affect the energy 

consumption to a great extent, because of the deactivation of the parallel lines, while some 

energy is recovered by better utilization of the daily 24 hours, leaving just the night shift without 

production. The difference between the two scenarios, normalized by the slight difference in 

the total car production, is approximately $ 285,000 in a year. It is interesting to notice that 

producing on two shifts lowers the consumption of natural gas, relative to electricity. It would 

be more suitable in places with a lower cost of electricity, to save on the vehicle production 

cost.  
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Table 4.10 – Scenario 2 results overview 

 Energy Cost 

Electricity, total 43,010 MWh $ 2,640,804 

Natural gas, total 199,369 MWh $ 2,550,318 

Electricity, per car 236.59 kWh $ 14.53 

Natural gas, per car 1,096.70 kWh $ 14.03 

 

In Figure 4.7 the electrical consumption is reported, for each sub-process, every month. The 

“shape” of the diagram is very similar to the previous scenario, with a less pronounced peak and 

valley in July and August because of shifting of the vacation downtime earlier, that affects 

equally July and August. All the considerations for the previous scenario are still valid. The load 

of the powder booth, decks and rework, inspection and technical booths has become slightly 

larger in the “booths family”, because of the deactivation of the color booth #1, which 

accounted for more than a third of the electrical energy of the color booths. 

 

Figure 4.7 – Monthly electric consumption for Scenario 2 
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Natural gas consumption, whose monthly trend is reported in Figure 4.8, is analogous to the 

previous scenario. The ovens’ natural gas consumption is constant throughout the year, being 

less sensitive to the external temperature, and the contribution of the color booths has 

decreased compared to Scenario 1. 

 

Figure 4.8 – Monthly natural gas consumption for Scenario 2 

The contribution of each sub-process to the energy cost is reported in Figure 4.9. The ovens’ 

contribution has lowered, while that of pretreatment and the booths have risen slightly. The 

color booths’ share of the energy cost, apparently in disagreement with the previous discussion, 

is almost the same as the previous scenario. This is because there are two factors that affect the 

energy consumption: asset utilization and active lines. The benefit of deactivating a line, 

decreasing the absolute power consumption of the color booths, and the increase of the 

utilization of the two booths that are still active, since the production rate is only slightly lower 

than the maximum capacity of the two booths in parallel, is balanced by the increase of 

production time and the shift of the vacation downtime. 
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Figure 4.9 – Energy cost proportion per sub-process for Scenario 2 

The charts in Figure 4.10 and Figure 4.11 show the relative proportions of the energy 

consumption of each sub-process in the paint shop. The effect on the booths and on the ovens 

of the variability of the external temperature is clearly visible, for both the electrical and the 

natural gas consumption. The trend for the monthly unit energy cost for a year, drawn in Figure 

4.12, is similar to the one obtained for Scenario 1, with a minimum in May and another in 

October. 
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Figure 4.10 – Monthly electric energy share within paint shop for Scenario 2 

 

Figure 4.11 – Monthly natural gas energy share within paint shop for Scenario 2 
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Figure 4.12 – Unit cost throughout a year for Scenario 2 

4.2.3 Scenario 3 

Scenario 3 was a modification of Scenario 1, with no shutdown during the weekend. Its result 

should give an idea of the impact of having the equipment running in the days in which 

production is null, and of avoiding start-up phases at the beginning of the production period. An 

overview of the consumption data is reported in Table 4.11. The first thing that can be noticed is 

that the average cost per unit has increased substantially, by approximately $ 10 per unit – in 

comparison with Scenario 1. The running cost for the paint shop, in a year, has risen by $ 2 

million, value that is significant in the plant budget. It is interesting to see that the electricity and 

natural gas usage have also increased by the same relative amount. 

Table 4.11 – Scenario 3 results overview 

 Energy Cost 

Electricity, total 59,369 MWh $ 3,645,266 

Natural gas, total 302,569 MWh $ 3,870,449 

Electricity, per car 327.46 kWh $ 20.11 

Natural gas, per car 1,668.88 kWh $ 21.35 
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The electrical consumption is plotted by month in Figure 4.13. It follows the trend of Scenario 1, 

with a uniform upward shift of approximately 1 GWh per month. The natural gas consumption is 

depicted in Figure 4.14. In both the diagrams it is possible to notice that the difference between 

summer and winter months is amplified relative to Scenario 1. This is because the systems are 

running also during the weekend, and they are subjected to the external conditions for, on 

average, 8 more days per month. 

The relative contribution of each sub-process does not change relative to the scenario with 

shutdown during the weekend. This is confirmed in Figure 4.15, in which the energy cost share is 

reported. The most significant result of keeping the systems running in the days in which no 

vehicle is produced is a uniform increase of the energy involved in the painting process, with 

relative proportions not affected. Although Scenario 1 is affected by the additional consumption 

due to the start-up operations every Monday, shutting the systems down on the weekend 

appears to be still the best solution for energy savings. 

 

Figure 4.13 – Monthly electric consumption for Scenario 3 
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Figure 4.14 – Monthly natural gas consumption for Scenario 3 

 

Figure 4.15 – Energy cost proportion per sub-process for Scenario 3 
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In Figure 4.16 and Figure 4.17 the diagrams of the relative consumption of natural gas and 

electricity by each sub-process throughout the year do not show considerable changes 

compared to Scenario 1, on which it is based. The trend of the total cost per unit, instead, 

changes significantly. As shown in Figure 4.18, the peak that in Scenario 1 was encountered in 

the central summer months, it has broken down in two minor peaks, with a smaller fluctuation, 

generated by the vacation schedule. The summer cost per unit is then generally more uniform. 

 

 

Figure 4.16 – Monthly electric energy share within paint shop for Scenario 3 
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Figure 4.17 – Monthly natural gas share within paint shop for Scenario 3 

 

Figure 4.18 – Unit cost throughout a year for Scenario 3 
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4.2.4 Scenario 4 

Scenario 4 was a modification of scenario 2. The plant is operative during the weekend, and no 

start-up operation was required at the beginning of the week. The scenario on which it is based 

had similar results to the one on which Scenario 3 was built; therefore, almost the same cost per 

unit as Scenario 3 was expected. Table 4.12 confirms the prediction. It is important to remark 

that a small saving on the production of a car could result in a considerable amount of money 

that is available for the company, because of the high numbers that characterize today’s mass 

production. 

The total energy cost per unit of the vehicles painted with scenario 4 production schedule 

averages at $39 per car. It is approximately two dollars cheaper than Scenario 3, and this 

situation reflects the effect of longer daily production. 

 

Table 4.12 – Scenario 4 results overview 

 Energy Cost 

Electricity, total 59,369 MWh $ 3,645,266 

Natural gas, total 274,448 MWh $ 3,510,733 

Electricity, per car 326.58 kWh $ 20.05 

Natural gas, per car 1,509.70 kWh $ 19.31 

 

Figure 4.19 and Figure 4.20 show the same trend as Scenario 2, with a constant upward shift of 

1 GWh for the electrical consumption. As in the previous case, the fluctuations given by the 

external temperature variation are amplified, and the proportions among the sub-processes are 

the same as in Scenario 2. As a confirmation, the chart in Figure 4.21 is identical to the diagram 

in Figure 4.9. 
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Figure 4.19 – Monthly electric consumption for Scenario 4 

 

Figure 4.20 – Monthly natural gas consumption for Scenario 4 
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Figure 4.21 – Energy cost proportion per sub-process for Scenario 4 

 

The considerations that have been made in the previous section, for Scenario 3, are still valid. 

The diagrams in Figure 4.22 and Figure 4.23, show the trend of the relative amount of energy 

spent by each sub-process along a year, while the trend of the total cost per unit in Figure 4.24 

shows the same behavior as Figure 4.18. 
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Figure 4.22 – Monthly electric energy share within paint shop for Scenario 4 

 

Figure 4.23 – Monthly natural gas share within paint shop for Scenario 4 
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Figure 4.24 – Unit cost throughout a year for Scenario 4 

4.2.5 Scenario 5 

The fifth scenario was completely different. It was conceived to optimize the asset utilization, 

and to have no time in which the equipment is running without painting cars. As already 

discussed, it is not a feasible and realistic scenario, but it can be analyzed to understand the 

amount of losses due to the production schedule for a plant like the SHAP, and to get a measure 

of the difference. In Table 4.13 the results of this strategy are reported. The total production is 

180,000 units per year, and the total painting energy cost per unit is slightly higher than $14. 

The cost per unit has then been cut to half of the best production strategy among Scenarios 1 to 

4. In a year, approximately $2.5 million would be saved. Naturally, this result hides the real cost 

of this strategic plan: inventory and other logistic expenses, unavoidable in case of a production 

schedule of this kind, could be higher than the saved amount. 
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Table 4.13 – Scenario 5 results overview 

 Energy Cost 

Electricity, total 15,330 MWh $ 941,285 

Natural gas, total 125,778 MWh $ 1,608,955 

Electricity, per car 85.17 kWh $ 5.23 

Natural gas, per car 698.77 kWh $ 8.94 

 

Since the systems are operative just for three full months, the diagrams in Figure 4.25 and 

Figure 4.26 do not carry much useful information. The chart in Figure 4.27 shows the energy 

share of each sub-process, and at first glance it is possible to notice that it is very close to the 

one generated by the scenarios in which the production is organized in 2 shifts, with slightly 

lower oven energy consumption and slightly higher booth energy use. This information, 

deprived of the context and the boundary conditions, could lead to a misinterpretation: actually, 

Scenario 5 is organized in such a way so as to complete the production in the months of 

December to March. As already discussed, in the case of low outside temperature, the oven 

natural gas consumption does not change significantly, while the booths natural gas 

consumption increases dramatically. Using this production strategy, the comparison has to be 

performed just on the months in which the two schedules overlap. 
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Figure 4.25 – Monthly electric energy consumption for Scenario 5 

 

Figure 4.26 – Monthly natural gas consumption for Scenario 5 
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Figure 4.27 – Energy cost proportion per sub-process for Scenario 5 

Figure 4.28 and Figure 4.29 contain the diagrams of the trend of the relative energy 

consumption for each process. Throughout the four months in which vehicles are produced, 

electrical energy shows a constant behavior, while natural gas starts to change due to the milder 

outside temperature typical of March. The total cost per unit, plotted in Figure 4.30, has not 

enough time to fluctuate, but shows a minimum for the month of March. 
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Figure 4.28 – Monthly electric energy share within paint shop 

 

Figure 4.29 – Monthly natural gas share within paint shop 
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Figure 4.30 – Unit cost throughout a year 

 

4.3 General considerations 

Table 4.14 – Results’ summary 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Production 181,300 181,790 181,300 181,790 180,000 

Unit cost $ 30.13 $ 28.56 $ 41.46 $ 39.36 $ 14.17 

Total expense $ 5,463,174 $ 5,191,122 $ 7,515,715 $ 7,155,999 $ 2,550,240 

 

From this set of results, we understand that the key for efficiently running an industrial asset is 

to maximize the utilization time. Especially in the case of a flexible plant, with multiple lines in 

parallel, trying to spread the production to the largest number of daily hours possible is more 

important that using the plant at its maximum capacity. Another important aspect to consider is 

that costs are minimized when, in case of lower-than-maximum production rate and of 

deactivation of one of the lines in parallel, the remaining lines are exploited near to their 

capacity limit. Therefore, in a paint shop in which there are three lines for the topcoat, with a 
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capacity of 30 JPH each, if possible the production schedule should be organized in such a way 

so as to optimize the use of one, two or three lines, keeping them close to 30 JPH. 

Booths and decks lights energy use accounts for 1.85% of the total electricity consumption, in 

the case of Scenario 1. The annual cost relative to only the lights inside the spray booths and the 

generic booths and decks is then around $ 50,000. 

It has been also shown that the start-up operations have an energetic cost that is much lower 

than keeping the systems running during the night or general production downtime, although 

not all the energy users in a paint shop were considered in the model. While energetically it 

could be considered as an advantage to shut all the systems down every time that the lines are 

not running, it adds logistical expenses that are not in the scope of this work. These costs can be 

related to: 

 manpower: start-up operations have to be carried out before the start of the 

production, to bring all the process variables at set point conditions before the 

beginning of the shift. These operations are usually performed or supervised by 

workers, and this results in an extension of the working hours for a sub-set of the total 

work force; 

 plant operation: as a consequence of the previous point, systems like lighting, HVAC, 

oxidizers and fixed-consumption equipment have to be operative during start-up, even 

though they are not directly involved in the procedures; 

 quality: as already discussed in the introduction, the coating of a vehicle is one of the 

main quality indicators that the customer perceives. Therefore, the outcome of the 

painting process has to respect strict standards and to go through severe inspections. 

One of the ways to achieve and maintain repeatability, and to obtain a flawless coating 

is to respect the set points in dip processes, decks, booths, ovens, to prevent incomplete 

surface covering, paint blistering, gloss and color non-uniformities. Therefore, especially 

for the most delicate and sensitive processes, a stabilization phase, in which the 

parameters that control the production are carefully monitored is necessary; 
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 protocols: a start-up operation usually means following a written procedure, conceived 

to minimize the probability of a human mistake, that can be complex and time-

consuming. 

However, while production strategies that use one or two shifts per day are almost equivalent, 

when it comes to achieve a production target at the end of the year, scenario 5 shows that there 

could be an improvement made, but solutions need to be possible and enlightened. Although 

the cost savings per unit does not seem excessive, a small improvement, on a large scale, can 

make a large difference. 

The results, that show that the energy consumption is approximately 200 – 300 kWh of 

electricity and 1 – 1.5 MWh of natural gas per car are in line with the literature [15], [6], [4], [7], 

[25], [12]. The suggested values, a result of the numerous studies on the subject, are slightly 

higher, due to the choice of not considering some areas in the model. Moreover, SHAP paint 

shop is a very modern and modular plant, which was conceived in the early 2010s, while the 

literature is based on the average of North American and European plants, sometimes with 

more than 30 years of service. 

4.4 Sensitivity analysis 

The sensitivity of the model to some parameters has been tested with a sensitivity analysis; 

input values and some boundary conditions have been changed in a limited range, to evaluate 

the model robustness and the actual impact of these parameters on the outcome. The 

parameters that have been studied are: 

 dip processes: 

o heat transfer 

 insulation material and thickness 

 waterside fluid velocity 

 wall external temperature 

 fans: 

o efficiency 

o pressure drop 
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 ovens: 

o heat transfer 

 insulation material and thickness 

 inside air velocity 

 wall external temperature 

 color booths: 

o set point. 

The sensitivity analysis has been performed comparing the variation of a parameter with its 

effects on the power consumption of the equipment that is directly affected by its value and on 

the unit energy cost running Scenario 1. The parameters have been varied according to their 

physical characteristics, avoiding extreme changes that would not be obtainable in the real 

world. 

4.4.1 Dip processes 

4.4.1.1 Insulation material and thickness 

The heat transfer through the tank walls depends on many parameters. One of the most 

important ones is the insulant properties, the conductivity k and the thickness t. Table 4.15 

reports the values of these properties, valid for each tank in the model. Varying thickness and 

conductivity of the insulation layer, causing a variation in the heat exchange, and consequently 

in the natural gas consumption is expected. As shown in Table 4.16, both the conductivity and 

the thickness were varied by an increment and a decrement of 20%. The effect of these two 

modifications on the instantaneous power that has to be delivered to the bath and on the total 

energy cost per coated vehicle have been then separately accounted, to verify the sensitivity of 

the model to these parameters. The resulting variation of the instantaneous power for both the 

parameters was significant but low. Moreover, as expected, to reduce the energy consumption, 

the material is slightly more important than the layer thickness. This is due to the position of 

each factor in the ratio for the conductive heat transfer coefficient – the thickness is in the 

denominator. 
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Table 4.15 – Original values for insulation layer 

Insulant k [W/m∙K] 0.04 

Insulant thickness [mm] 50.80 

Power consumption (kW) 1780.47 

Unit cost ($) 30.21 

 

Table 4.16 – Parameters variation 

Parameter Variation Power Consumption Unit Cost  Significant? 

Insulant k +20% +3.3% +0.2% no 

 -20% -3.6% -0.21% no 

Insulant t +20% -3.4% -0.2% no 

 -20% +3.8% +0.22% no 

 

4.4.1.2 Waterside average fluid velocity and wall external temperature 

As already discussed, the heat transfer through the dip tank walls depends mainly on the 

insulation. Since the internal and external heat transfer coefficients are considerably higher than 

the one that is given by the insulant, and the total heat transfer coefficient is obtained by the 

inverse of the sum of the thermal resistances in series, the dominant factor is the resistance of 

the wall. The water average speed influences the waterside heat transfer coefficient, while the 

temperature difference between external wall and the plant air influences the airside heat 

transfer coefficient. The original values are shown in Table 4.17. The outcome of the model is 

expected to be not sensitive to the variables that can influence the waterside and airside heat 

transfer coefficients. This expectation was confirmed as shown in Table 4.18. 

Table 4.17 – Original values for fluid velocity and wall temperature 

Average speed [m/s] 0.1 

∆T [K] 5.55 

Power consumption (kW) 1780.47 

Unit cost ($) 30.21 
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Table 4.18 – Parameters variation 

Parameter Variation Power Consumption Unit Cost  Significant? 

Average Speed +20% +0.09% +0.005% no 

 -20% -0.2% -0.01% no 

∆T +100% +2.3% +0.13% no 

 -50% -2.8% -0.16% no 

 

4.4.2 Ovens 

4.4.2.1 Insulation material and thickness 

As for the dip processes, the heat transfer through the walls of the ovens depends mainly on the 

insulation layer characteristics. The sensitivity analysis has been performed in the same way, but 

because of the variability induced by the weather it has not been possible to analyze the 

variation of the instantaneous power; instead, the total energy delivered to the ovens has been 

evaluated. In Table 4.19 the insulation layer properties are reported, and in Table 4.20 it is 

possible to notice that the variations in the ovens’ consumptions are similar to the ones 

experienced in the dip processes. However, since the ovens account for the 30% of the total 

energy of the paint shop, the variations in the ovens insulation layer affect more the final unit 

cost than in the previous case. It is possible to say that the energy cost per unit produced is not 

very sensitive to the ovens insulation layer properties, but more sensitive than in the case of the 

dip tanks. 

Table 4.19 – Original values for oven insulation layer 

Insulant k [W/m∙K] 0.04 

Insulant thickness [mm] 76.20 

Ovens consumption (GWh) 109.094 

Unit cost ($) 30.21 
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Table 4.20 – Parameters variation 

Parameter Variation Ovens Consumption Unit Cost  Significant? 

Insulant k +20% +4.7% +1.41% no 

 -20% -5.1% -1.53% no 

Insulant t +20% -2.4% -0.72% no 

 -20% +3.2% +0.96% no 

 

4.4.2.2 Inside air velocity and walls external temperature 

The same considerations that have been made for the dip tanks are valid for the ovens. The 

energy consumption of the ovens is not expected to be very sensitive to the parameters that 

influence the inside and outside heat transfer coefficients. A sensitivity analysis has then been 

performed on the two terms that most influence the outcome. These values, analogous to the 

ones that have been tested in Section 4.4.1, are the air velocity on the inside wall surfaces and 

the outside wall temperature difference. The range of variation is relatively high, due to the high 

uncertainty that characterizes the two parameters; as expected, the model outcome shows a 

low sensitivity to the variation of these terms, as shown in Table 4.22. This suggests that the 

ovens’ energy consumption, despite the uncertainty embedded in some estimations, can be 

trusted as reliable. 

Table 4.21 – Original values for air velocity and wall temperature 

Average speed [m/s] 0.6 

∆T [K] 53.3 

Ovens consumption (GWh) 109.094 

Unit cost ($) 30.21 
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Table 4.22 – Parameters variation 

Parameter Variation Ovens Consumption Unit Cost  Significant? 

Average Speed +100% +2% +0.61% no 

 -50% -2.5% -0.75% no 

∆T +50% +0.24% +0.07% no 

 -50% -0.4% -0.12% no 

 

4.4.3 Fans 

4.4.3.1 Efficiency and pressure drop 

Fans are employed in every unit of the painting process, and their efficiency and pressure drop 

values are different, depending on the use, location, and type of fan. Therefore, there is not just 

one value that can be taken and modified. To solve this problem and perform the sensitivity 

analysis, a factor has simply been multiplied by the efficiency or the pressure drop in each 

ventilation power computation. However, it is not practical to evaluate the variation of the fans 

energy consumption alone, since ventilation is required in each sub-process. Consequently, just 

the sensitivity of the unit cost to the variation of efficiency and pressure drop has been 

evaluated. The parameter that has been incremented is not the efficiency, because it could lead 

to a situation in which it would have had grown beyond 100%. The complement of the 

efficiency, in Table 4.23 referred as efficiency loss, has then been used for the computations. 

From the results, it is possible to see that the model sensitivity to the efficiency loss is low, while 

the pressure drop has a much more important role. It is then important to clean the filters 

periodically, to ensure the lowest pressure drop that must be overcome by the fan motors. 

Table 4.23 – Parameters variation 

Parameter Variation Unit Cost  Significant? 

Efficiency loss +30% +1.4% no 

 -30% -1.2% no 

Pressure drop +30% +8.2% yes 

 -30% -7.7% yes 
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4.4.4 Color booths 

4.4.4.1 Set point temperature 

The color booths’ natural gas consumption was modeled and evaluated through the ATU 

module provided by FCA. The paint shop model sends inputs of external temperature, set point 

temperature and humidity, requested air flow rate, percentage of recirculation and production 

schedule to the external module, and collects as output the energy given or subtracted to the air 

flow by the air treatment units. Therefore, the sensitivity of these outputs to the set point 

temperature has been investigated. 

When working with absolute temperature, a problem occurs: the three most used scales – 

Kelvin, Fahrenheit and Celsius – are not proportional. Specifically, the zero is not at the same 

temperature. Since a sensitivity analysis is usually performed on relative increments (and 

decrements) of a parameter, its result would change according to the scale that has been used. 

To solve this problem, in Sections 4.4.1 and 4.4.2 the parameter that has been varied is the 

difference between the plant temperature and the inspected one. Since in that case the 

parameter to be varied was a difference, and not an absolute temperature, the absolute 

variation of the difference corresponding to the relative variation dictated by the sensitivity 

analysis was not affected by the position of the zero, and consequently by the scale used. 

In this section a new parameter may be introduced: the temperature difference between the 

booths’ set point and the average external temperature. Due to the high seasonal variability 

typical of Michigan, however, it has been chosen to not pursue this path. The set point 

temperature, in degrees Celsius, has been instead used and varied for the sensitivity 

investigation. In Table 4.24 the original values are reported, with the color booths annual 

consumption in GWh. Table 4.25 shows the effects of the parameter variation. It is clear that the 

color booths consumption can be described as sensitive to the set point temperature, since the 

amplitude of its variation is larger than the parameter. The unit cost variation is moderate, 

because of the effect of the other sub-processes in the paint shop. Formulating coatings with a 

larger tolerance to different working conditions can be then the key to achieve considerable 

savings in the expense of coating a car, through minimizing the energy required to treat the 

airflow that is blown into the paint booths. 
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Table 4.24 – Original values for color booths temperature 

T [°C] 18.33 

Color booths consumption (GWh) 82.25 

Unit cost ($) 30.21 

 

Table 4.25 – Parameters variation 

Parameter Variation Color Booths Consumption Unit Cost  Significant? 

T +10% +11.24 % +1.27% yes 

 -10% -10.61% -1.20% yes 
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5 Conclusions and Recommendations 

5.1 Conclusions 

This project’s main goals were: 

 the generation of an analytical model able to compute the energy consumption of a 

paint shop, allowing the user change parameters and adjust the production schedule to 

evaluate the system response to his or her inputs; 

 the creation of a virtual environment in which the data relative to the equipment 

installed into a paint shop can be inserted, and the operation of a specific plant, in a 

specific configuration, can be simulated. 

The SHAP paint shop energy model satisfies these needs, with sufficient robustness and 

precision, as discussed in Sections 4.1 and 4.4, and offers to the company a tool that could help 

in decisions, although endless work can be done in the future to improve and integrate it. The 

final goal is the mutual reduction of energy and vehicle manufacturing costs. In general, the 

complexity of a car manufacturing plant is such that optimal solutions cannot be the result of 

study of a single area, but they are usually the outcome of an integrated investigation across the 

major areas of the plant, and it can be important to be able to use a simple tool to evaluate the 

effect of the changes applied to other zones on the energy consumption of the paint shop. 

The values that have been found in the literature, were confirmed by the model results, for both 

electricity (200-300 kWh/vehicle) and natural gas (1-1.5 MWh/vehicle) consumption. The 

proportions of the sub-process consumption values reproduce the results of investigations 

performed by the authors discussed in the literature review of this thesis. 

From the results of the scenarios, it can be noticed that it is possible to reduce the energy 

consumption of a paint shop simply by managing the production schedule. With continuous 

production for 4 months and 8 months shutdown, savings of 50% on the unit cost can be 

achieved. Moreover, analyzing the unit cost trend throughout a year it is possible to identify the 

spring and the fall as the periods in which the energy cost for the vehicles coating is minimized. 

Naturally, this result is valid specifically for Sterling Heights climate data. As obtained with 
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Scenarios 1 to 4, realistic variations of the production schedule, consisting of working shifts 

arrangement and vacation downtime planning can affect the unit cost in a minor but consistent 

way. In general, the key is the maximization of the asset utilization, and the exploitation of the 

spring and fall months, that minimize the energy consumption of the paint booths. The 

production schedule organized in two shifts, 7 hours long, with a light shift of the vacation 

downtime shows low but consistent savings compared to having one shift, 10 hours long and 

higher production rate, achieving 3% lower unit cost. The rescheduling operation, if performed 

with common sense, could generate beneficial effects with minimal side costs. 

5.2 Recommendations 

This project has been carried out during the candidate’s study at the University of Windsor. 

Time is a limited and precious resource, and the model has been developed respecting a strict 

timeline. Since the beginning, the winning choice has been to conceive the whole project as the 

integration of several modules that communicate and cooperate to generate the total result. 

This modularity can be used in the future to integrate and improve the model, adding new parts 

and refining the existent ones, without having to reshape the structure of the whole model [27]. 

Being able to benefit from more time and resources, some suggestions for future works are as 

follows. 

 One of the improvements that would allow the model to predict the energy 

consumption of a paint shop in a more refined way is the simulation of the building 

HVAC. Unfortunately, it is a complex issue, because many parameters influence its 

result: internal buoyancy, physical dimensions of the plant, equipment volume 

occupancy, heat flows from and to the equipment in different conditions – as an 

example, the equipment in a machining plant emits considerable amounts of heat 

during production, because of the friction of the tool on the raw materials. 

 Air Treatment Units energy consumption relies on an external module. A major step in 

the improvement of the paint shop energy model would be the generation of a leaner, 

less generic module, which would speed up the simulations. 
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 With further study, the pumping power in the pretreatment can be linked to the process 

requirements; the user would then be able to access and modify all the parameters of 

the pretreatment process. 

 The air infiltration in the ovens is now considered as a constant value, which reflects the 

design requirements. It would be important to try and model the airflow through the air 

seals, linking its value to the air seal flow rate, aperture size, oven temperature, and 

incline and decline slopes. In this way, the infiltration air flow would be not be an input 

anymore, but another result of the model, and its value could be analyzed and 

optimization actions could be simulated to minimize it. 

 An important improvement can be the refining of the calendar module. It has been 

conceived with a limitation: the production rate is assumed to be constant throughout 

the whole year and cannot be adjusted on a daily basis. A suggestion for an 

intermediate step would be the introduction of low-rate days, in which the production is 

slowed down to a certain value; this would be easy to integrate into the existing 

calendar module, and would give more freedom in the production schedule. 

 In Michigan, the composition of the natural gas can vary considerably, leading to 

variations up to 30% of its heating value [28]. For the aims of this project, the average 

value of 35,000 kJ/m3 has been considered, but further investigation could improve the 

accuracy of the result. Season, utilities company, and external temperature are among 

the parameters that affect the composition of the natural gas, and a detailed analysis 

was out of the scopes of this project. 
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A. Appendix A 

The Painting Process 

In the following, a brief overview of the major steps of an automotive painting process will be 

illustrated, using where needed processes in the Sterling Heights Assembly Plant paint shop. 

Pre-Treatment 

The car body is usually delivered by the body shop to the paint shop, where it is transferred to a 

different carrier, since the paint accumulates on it. At the end of the process, before the delivery 

to the final assembly, the carrier is returned back and washed in a specific station. 

The car body, as it arrives from the body shop, can be covered in dust and impurities that can be 

microscopic and non-detectable by naked eye. Ideally, to be painted, the surface has to be as 

clean and uniform as possible. Any kind of impurities can lead to a disastrous effect after the 

deposition of several layers of paint. Failures can be immediate or be detected by the customer 

just after the purchase. Keeping in mind that the paint is the most recognizable quality factor in 

a car, the importance of the pre-treatment is evident. 

Initially, especially after summer shutdowns, difficult-to-clean car bodies are sprayed with a pre-

clean mist that then recirculates to a tank and is then re-applied to subsequent car bodies, after 

which the car is pre-wiped by a small group of workers. The job is then rinsed off with automatic 

spray nozzles. 

The subsequent stage is the deluge. It washes the car body exterior and the floor pan. Body 

shop debris (weld balls) of low buoyancy are removed from the car body. The job is washed with 

an alkaline cleaner solution, then it is sent down to a steep incline, in which the body interior is 

washed letting the water flow out of the front. At the bottom a series of spray nozzles washes 

the car while it is level and then it starts to rise into another incline, where the body interior is 

washed out letting the water flow out of the rear. 

Then, the car body is chemically washed, being dipped into a tank filled with the same alkaline 

cleaner solution, and weld balls of neutral buoyancy are removed in this phase. The immersion 
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can last up to several minutes, usually around two. The fluid used by both the deluge wash and 

dip desired temperature is around 52°C, so one or more heat exchangers are used to heat it. 

It is very important, in the case of massive use of a process fluid, to have a system for its 

recirculation. This acquires a bigger importance when the process fluid is not simple water. 

Moreover, in case of contamination of the process fluid, it is fundamental to have a system that 

separates the contaminant from the liquid before recirculating it. The alkaline solution of the 

deluge processes carries weld balls and other residues that accumulated on the car body and 

that the pre-wash has not been able to wash away. They must be removed before recirculating 

the solution back for the subsequent jobs, and there are several ways to perform this operation: 

 Gravity settling was the first method that has been used for solids removal from liquids, 

but it is very slow. Since the flow of process fluid is usually very high in a manufacturing 

process phase, a slow solids separation would mean having big settling basins to meet 

the process requirements. 

 Filtration, using semi-permeable membranes. 

 Use of hydrocyclones [29], conical vessels that operate by pressure drop, as shown in 

Figure A.1. The contaminated liquid enters the cone and starts to spin in a radial vortex 

pattern. Centrifugal forces act on the solid particles and make them discharge through 

the apex, while the liquid, because of the cone convergence, reverses its direction and 

discharge through the overflow stream. The particle size that is separated depends on 

the pressure drop through the hydrocyclone, which in turn depends on the inlet flow 

rate. Usually, particles can be separated if their size is larger than 10 μm. 

 

Figure A.1 - Hydrocyclone 
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After the deluge wash and dip, the car body is further spray rinsed and then dipped into city 

water, to rinse the body sections that cannot be sprayed. Before the phosphating dip, the car 

body is submerged into a conditioning bath, that creates a multitude of uniformly distributed 

starting points for phosphate coating crystal formation. The body is then rinsed with chemically 

treated alkaline “titanated” conditioner material in city water. 

The car is then transferred to the phosphate dip tank; the purpose of which is to cover the car 

body with complex crystalline zinc phosphate conversion coating. It develops on the exterior, 

interior and all the enclosed sections to effectively protect the steel from corrosion. It is the first 

corrosion protection of the car body. Temperature, pH and chemical concentration must be well 

controlled and close to the ideal values to obtain a good quality coating. 

The vehicle body is then rinsed with warmer than ambient city water, and then dipped in it. This 

is a very common pattern throughout the whole process, and it helps to reach all the surfaces 

that cannot be sprayed effectively. The car body is coated with a sealing agent to even and seal 

the rough crystalline phosphate coating. Formerly, the process involved the use of chromic acid, 

but now it is usually chrome-free and fluoro-zirconic acid may be used. That is because chrome 

is a polluting agent, and very difficult to treat as a waste product. After the sealing agent 

coating, the body is rinsed with warm water filtered by a reverse osmosis process. First it is 

sprayed then it is dipped in RO water.  
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Electro-Coat 

The first stage of this sub-process is the electro-coat dip. Unlike the pre-treatment, there is no 

need to wash and rinse the surface before applying the coating. A gray epoxy water based paint, 

is deposited on the surface exploiting a voltage differential between the bath and the body. 

Reverse Osmosis processed water is used to totally wet the car body before entering the tank. A 

partially wet car body would show a wet-dry line after the coating process. The vehicle then 

enters the tank for a determined amount of time – it can be around 3 minutes. The paint inside 

the tank must be continuously circulated by big pumps to avoid coagulation. The car body is 

rinsed as it exits the dip, to get rid of excess “cream”. 

The energy added by the circulating pumps results in a temperature rise of the bath. Since the 

conditions of the paint have to be extremely well-controlled to ensure a correct deposition – 

and being electricity deployed, the temperature is particularly important for the good quality of 

the outcome – one or more heat exchangers remove excess heat from the bath. 

Several anodes are mounted along the sides of the tank to provide a strong DC charge to the 

paint. The body is grounded, and the voltage differential is exploited to deposit the paint on it. 

The anodes position is fundamental for the quality of the coating: enclosed sections and the 

floor can get a thinner and insufficient layer of paint deposited onto them compared to external 

panels. The anodes are usually fed with water called anolyte that carries excess acid from the 

painting process back to the anolyte tank. 

The car body is further spray-rinsed and dipped, sometimes more than one time. The rinsing 

water is treated with an ultra-filtration method, which provides continuously clean rinse water 

and eliminates waste. It removes the paint from the dirty water, and it is also able to take the 

salts that originate from the evaporation away. The SHAP paint shop UF system can produce 100 

gallons of UF rinse per minute. 

De-Ionized water is then used to ultimately rinse the car body without leaving any salt residuals 

before the body enters the oven for curing. At this stage, the vehicle enters an e-coat oven, in 

which the deposited layer is cured. The temperature inside the chamber is usually around 180°C 

and the car body can stay inside for about half an hour. Its length is proportioned to the speed 
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of the carrier, to reach the target time of curing. The SHAP paint shop has a dual pass e-coat 

oven, with the North and South passes that can work independently, and each of them is 

around 450 ft long. The ovens usually have an initial part in which the car body is increasing its 

temperature up to the desired value, then there is a stabilization zone in which its temperature 

stabilizes around the design value and then the car body enters the zone in which the actual 

curing occurs, called Convection-Hold. Strong air motion is usually needed inside the oven, to 

expose the painted surface to continuously renewed air and to reduce the solvent 

concentrations. 

Several burners use fuel to heat up the air that circulates into the oven. They can be direct-fired 

or indirect-fired heaters, depending on their design. In a direct-fired burner the products of the 

combustion are mixed with the air in the output flow, while in an indirect-fired burner the 

products of the combustion are sent to a heat exchanger that heats up the air stream, leaving it 

free of combustion products. Usually in the first zones of the ovens, where the paint is still wet, 

the burners are indirect, to avoid to leaving impurities in the fresh coating. 

The fresh air that circulates into the oven is usually a mixture of fresh and recirculated air. SHAP 

paint shop e-coat ovens use 20/80 fresh/recirculated air in the bring-up zone, while they use a 

30/70 proportion in the hold section. 

After the oven, the car body enters the condensate tunnel and a cooling tunnel in which colder 

air reduces the vehicle temperature prior to the next manned station. 

Sealing 

After the Electro Coat deposition and the curing of the e-coat, sealing and foams are applied on 

the car, to provide a barrier against water infiltration and to attenuate the noise in the cabin. 

This operation can be performed by men and/or automated stations. Usually, some robots work 

in series with 2-6 men. 

The foam and sealant have to be cured into an oven right after their application, at a 

temperature that can be around 150°C. This baking cycle is typically shorter than the other ones, 

and the process variables are less strictly controlled. The SHAP paint shop sealer oven has four 

zones, all served by direct fired heaters. It has entry and exit air seals to keep the hot air inside 
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the oven. The ratio between fresh and recirculated air is 15/85. After the oven, there is a cooling 

tunnel to lower the temperature of the car body before the next manned station. 

Spray application 

The subsequent processes are the application of the primer surfacer, basecoat and clearcoat. 

They are sprayed on the vehicle, and paint state and composition can vary according to the 

manufacturer choice, as already discussed in Section 2.1.1. 

Powder Surfacer 

After the application of the sealant, the vehicle is ready for the spray processes. The first step is 

the electrostatic deposition of a powder surfacer, that forms the second and last primer layer, 

and that guarantees further protection against corrosion and provides chip protection for the 

substrate. 

The car body first enters the blow off zone, in which strong air flows blow residual particles off 

of the surface. It then goes into the main zone of the powder booth, in which vertical and 

overhead robots spray the powder surfacer towards the surface. The powder is pigmented, and 

it is possible to adapt its color to the final coating appearance: for dark colors, it is possible to 

spray gray powder, for lighter ones white powder is more suitable. 

The SHAP paint shop powder booths have four couples of robots and one couple of manual guns 

that electrostatically spray the car body with gray or white powder. The pumps and the feeding 

systems are able to switch between the two colors without interruptions. The electrostatic 

deposition, as already discussed in the previous chapter, is fundamental to ensure the 

adherence of the paint on the surface and to avoid materials waste and uneven layering. 

The pumps are one of the key elements that guarantee the operations of the powder 

application system; typically, the powder is fluidized and sent to small diameter delivery ducts, 

in which it behaves as a fluid and it becomes easier to direct to the applicators. Usually, a pump 

supplies more than one gun. 

After the powder application, the car body is transferred to an oven for the curing of the 

coating. Typically, the baking temperature for powder is relatively high, and it is significant when 
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modelling energy consumption. Depending on the manufacturer choice, the oven technology 

used can vary: it is possible to find radiation or convection ovens, and combinations of the two. 

Moreover, the air velocities in an oven for powder curing have to be low enough to not blow the 

coating off of the vehicle body, especially in the first part of the baking, but the air flow must be 

high enough to maintain the atmosphere within the oven below the LEL of the gases being 

released in the oven. Usually acceptable values are around 3 − 6   𝑓𝑡/𝑠 [30]. 

SHAP paint shop has two 33-minute powder ovens that cure the output of a single powder 

booth. They are capable of 205°C and are heated by a combination of direct and indirect heater 

boxes. Each oven has seven zones, the first four being radiant, the fifth convection stabilization 

and the last two being convection hold zones. The incline and the decline have heated ceilings 

to prevent condensation. Both North and South ovens work with 25% fresh air in the radiant 

zones and 30% fresh air in the convection ones. 

Powder Applicator 

The applicator operation is governed by several compressed air flows. The main one is the 

dilution air, in which the powder is atomized and reaches the car body surface. A pushback or 

pilot flow generates the counter pressure that allows the powder to return back to the pump 

when the trigger on the gun is closed, and the shaping flow “wraps” the jet into a conical 

envelope and helps give directionality to the powder spray. The shaping air flow is usually 

generated by an external ring. The applicator operation can be schematized in different phases: 

Spraying 

The spray phase is initiated by the activation of the trigger. The powder flows towards the 

applicator, and the pinch valve, opened by cutting the pushback flow, opens the dilution air 

duct. In this way the powder is atomized into the dilution flow and it is sprayed out of the 

nozzle. Figure A.2 shows the operation of a spray applicator that uses compressed air. 
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Figure A.2 - Spraying phase [31] 

In Figure A.3 there is a 3D model of a round nozzle, with central electrode and air-cleaned front 

face. The low voltage of the power network is transformed into a high voltage input that is 

transferred to the central electrode on the front face, which is responsible for the powder 

charge. The powder deposits on the front face because of the electrostatic attraction, causing 

conductivity problems and poor spray quality. To solve this complication, a compressed air jet 

rinses the surface, keeping it clean and without powder deposits. 

 

Figure A.3 – Nozzle [32] 

Pushback 

When the operator or the automatized process terminates the spraying operation, the pushback 

air duct is pressurized and closes the pinch valve. The powder trigger is maintained open to let 

the powder flow back to the pump, moved by the pushback pilot air pressure, as shown in 

Figure A.4. The dilution air flow is obstructed by the closure of the pinch valve. 
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Figure A.4 - Pushback phase [31] 

Wait 

After all the powder has returned to the pump, the applicator changes its state autonomously 

into a wait condition. It is the only state in which the powder trigger is closed. The pushback air 

is again cut off and the pinch valve opens to let in the dilution air flow, in this case without 

carrying any powder. The applicator is ready for a new spraying cycle. 

Topcoat 

Nowadays, it is usual to apply the topcoat in two layers, basecoat and clearcoat, using a single, 

integrated booth and in a continuous process with a flash off – heated or at ambient 

temperature – between the two phases. 

After the powder coating deposition and curing, the vehicle enters the Tack Off/Inspection 

booth, in which the vehicle body is inspected and prepared for the basecoat application. A blow 

off phase, similar to the one previous to the powder coating but more complex and usually 

multi-stage, removes dust particles and impurities that have deposited on the surface during the 

transfer time. The SHAP paint shop features a three-phase featherdust and blow off booth, in 

which the first two zones are fed with High-Efficiency Particulate Aerosol (HEPA) filtered air, and 

the third one uses the same air as the basecoat. 

Following the blow off, the car body goes through the basecoat robotic application area, in 

which the first layer of the topcoat is applied, first on the interior and then on the exterior of the 

car. The length and complexity of this part of the booth depend on the type of paint that is 
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applied on the car body and on the level of flexibility that is required; it’s not uncommon to find 

multi-zone basecoat booths that allow for the quick basecoat color switch and for the 

application of mica and metallic paint. The transfer zones – blow off to basecoat, interior to 

exterior, basecoat to flash off – are usually pressurized, to avoid spread of impurities, and they 

can be called “air seals”. The booths have floor grates with a wet scrubber underneath them, 

that uses water to remove paint particles from the air. 

After the basecoat application, the vehicle goes into a flash off enclosure, in which air – which 

may be heated – is blown onto the surface to initiate the drying process of the paint layer. 

Usually the solids content of the coating is increased from approximately 50% prior the flash off 

to 80% after it. Humidity gained during the flash off process has to be removed by a 

dehumidification operation in the ATU. 

Then, the vehicle goes through an air seal and a manual observation section, to get to the 

interior clearcoat robotic zone. The air that circulates during the whole clearcoat application is 

usually controlled and filtered: this last layer of coating, that gives the car the “glossy” finish – in 

the automotive lingo the clearcoat is called “shine” – is the most important element for 

aesthetic perception, and the air flow must be as pure as possible to obtain a virtually flawless 

result. An air seal section closes the clearcoat interior zone. 

The car body enters then the clearcoat exterior robotic zone, in which several robots apply the 

last layer of coating onto its external surface, and it is transferred through a further air seal to 

the manual inspection area. 

Typically, the air flow into the topcoat booths is made of 15% fresh air and 85% recirculated. As 

already discussed in the Paint chapter, nowadays a common choice is to employ a waterborne 

basecoat with solvent borne clearcoat. The exhaust of the clearcoat has then to be treated 

differently than that of the basecoat, and sent to an RTO or any other exhaust treatment 

system. 

After the manual observation zone, the vehicle goes through an ambient flash and reaches the 

color oven, in which the topcoat is cured and after which the car appearance will be definitive. 
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The temperature required to cure the topcoat is around 150°C, much lower than the 

temperature inside the powder oven. 

The SHAP paint shop has three parallel color booths that work simultaneously during full rate 

conditions. The first one is a multi-zone for mica application and special jobs, and it’s longer 

than the other two, that are single-zone. Each booth has its own oven, all identical. The ovens 

use a combination of radiant and convection zones, and the baking cycle is around 33 minutes. 

The first two zones are radiant, the third is the convection stabilization and the final two zones 

are for the convection hold. A cooling tunnel at the end of the oven lowers the temperature of 

the car body before the next manned station. 

Minor and Parallel processes 

At this stage, the car is ready to be taken by the final assembly shop. The process that has been 

described in this chapter, however, is just the main stream, and the side/accessory processes 

have not been described. Ideally, to paint a car the phases that have been described up to this 

paragraph are enough for the completion of the process. But for every inspection zone along the 

whole process there is a side stream in which defective jobs are repaired, with dedicated 

booths, manpower, and equipment. This affects the energy consumption and the floor space 

occupation by a non-negligible amount. 
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B.  Appendix B 

The SHAP paint shop energy model, as discussed in the previous sections, accounts several 

variables, each of them being more or less important for the final result. It is important to 

highlight that part of the value of this project was given by the “virtual environment” described 

by the left hand side of the diagram in Figure 3.3, hence some of the variables that are reported 

below had been inserted in the model with the sole aim of completing the inventory operation. 

The paint shop data that can be input into the model is summarized in the following. 

 Weather 

o hourly temperature, averaged for every month 

o hourly humidity, averaged for every month 

 pumps: 

o power readings from meters and/or energy studies 

o motor HP 

o information about flow rate and head pressure 

o tag and location 

o information on use during production 

 fans: 

o power readings from meters and/or energy studies 

o motor HP 

o information about airflow and pressure drop 

o tag and location 

o information on use during production 

 tanks: 

o external and internal dimensions 

o bath temperature 

o information about recirculation pumps actual power 

o tag and location 

o information about walls temperature 

 a rough estimate is acceptable 

o carrier/car body mass and material properties 

 heat exchangers: 

o rating 

o information on flow rates of hot and cold fluids 

o in and out temperature of hot and cold fluids 

 phosphating and e-coat 

o plant temperature 
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o cold water temperature out of distribution network 

 ovens 

o set point temperature 

o zone temperatures 

o air flow information 

 fresh air and recirculation air 

o external and internal dimensions 

o walls material properties 

o insulant layer properties 

o inside air velocity at walls 

 a rough estimate is acceptable 

o outside walls temperature 

 a rough estimate is acceptable 

o ovens’ carrier mass and material properties 

o infiltration airflow 

o maximum allowed production rate for each oven 

 booths and decks 

o set point temperature and humidity 

o airflow requirements for every zone 

o recirculation requirements for every zone 

o external and internal dimensions 

o lighting requirements for every zone 

o maximum allowed production rate 

To obtain the energy consumption of a paint shop, however, not all of these variables are 

necessary. To be able to use the paint shop energy model on another plant, only a few steps are 

required: 

- information regarding the weather of the location in which the plant has been built 

must be retrieved, preferably using the EnergyPlus® website [20]. 

- Tanks dimensions and capacities for pretreatment and e-coat have to be input in the 

model, and can be found in the specific paint shop documentation (usually provided by 

the paint shop manufacturer and residing at the plant), along with bath temperature 

requirements, and information about the car body and carrier mass, tanks’ throughput, 

and materials of the tanks’ walls. Pumps actual energy consumption data need to be 

collected using the STEP1 worksheet, and usually the paint shop documentation 

contains all the information for it. It is suggested then to walk along the line to check the 

tags of the pumps for correspondence. Information about the plant temperature during 

winter and summer seasons is required for a more accurate computation of the heat 
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transfer through the tanks’ walls. Data on operating values can also be obtained from 

the FIS. 

- Ovens: set point temperatures, dimensions, walls’ material and thickness, required 

airflow and recirculation, infiltration airflow, carrier mass and material, and admitted 

throughput are required, and are usually easily retrieved from the paint shop 

documentation. Outside wall temperatures and inside wall air velocities can be 

estimated without considerably affecting the accuracy of the model. 

- Booths: set point temperature and humidity, dimensions, airflow and recirculation 

requirements for each zone, lighting, and admitted production rate can be usually found 

in the documentation relative to the paint shop. 

Using these pieces of information in the paint shop energy model allows the computation of the 

energy consumption of any paint shops that use the same coating process as described in 

Appendix A. Considering the modularity of the model, to adapt this tool to a plant with a 

different coating process a minimal amount of modifications should be needed. 
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Block diagram of the paint shop energy model 
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