
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Efficient Multiplication Architectures for Truncated
Polynomial Ring
Ruiqing Dong
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Dong, Ruiqing, "Efficient Multiplication Architectures for Truncated Polynomial Ring" (2016). Electronic Theses and Dissertations.
Paper 5814.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72794939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5814?utm_source=scholar.uwindsor.ca%2Fetd%2F5814&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient Multiplication Architectures for Truncated

Polynomial Ring

by

Ruiqing Dong

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfilment of the Requirements for

the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

2016

c© 2016, Ruiqing Dong

Efficient Multiplication Architectures for Truncated Polynomial Ring

by

Ruiqing Dong

APPROVED BY:

Dr. L. Rueda

School of Computer Science

Dr. C. Chen

Department of Electrical and Computer Engineering

Dr. H. Wu, Advisor

Department of Electrical and Computer Engineering

September 21, 2016

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iii

ABSTRACT

In this thesis, four efficient multiplication architectures, named as Multipliers I, II,

III, and IV, respectively, for truncated polynomial ring are proposed. Their FPGA

implementation results are presented. All of the four proposed multipliers can be

used for implementation of NTRUEncrypt public key system.

All new multiplication architectures are based on certain extensions to Linear

Feedback Shift Register (LFSR). Multiplier I uses x2-net structure for LFSR, which

scans two consecutive coefficients in the control input polynomial r(x) during one

clock cycle. In Multiplier II, three consecutive zeros in the control input polyno-

mial r(x) can be processed during one clock cycle. Multiplier III takes advantage of

consecutive zeros in the control input polynomial r(x). Multiplier IV is resistant to

certain side-channel attacks through controlling the operations for each clock cycle.

An FPGA complexity comparison among the proposed multipliers and the existing

similar works is made, including number of adaptive logic modules (ALMs), number

of registers, number of cycles, maximum operating frequency (FMax) and latency.

The FPGA comparison results are given as follows. Multiplier I has smaller latency

than any existing works when the first set of parameters from every security level is

used (ees401ep1, ees449ep1, ees677ep1, ees1087ep2).

Multiplier II is the second best in speed compared to existing works, but has

better area-latency product compared to the fastest existing work for the first set of

parameters at security level 112-bit, 128-bit and 192-bit.

As an enhanced version of Multiplier II, Multiplier III is faster than any existing

works in comparison for all IEEE recommended parameter sets.

Multiplier IV, designed to be resistant to side channel attacks, also has high speed

property that it outperforms all the existing works in terms of latency for all three

parameter sets to which it is applicable.

iv

DEDICATION

To my loving parents:

Father: Shouqiang Dong

Mother: Liping Chen

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to everyone who

helped me make this thesis possible. First of all, I am deeply indebted to my supervi-

sor Dr. Huapeng Wu, who gave me a big help during my study for the master degree.

He guided me throughout the writing of this thesis. His broad knowledge and logical

thinking have been of great value. Without his detailed and constructive comments

on my research, none of this thesis would be possible. In addition, I would like to show

my gratitude to my committee members, Dr. Chunhong Chen and Dr. Luis Rueda,

for their attendance and advice in my seminar and defense. Additionally, I would like

to appreciate my loving parents. Without their support and encouragement, it is im-

possible for me to achieve such accomplishment. I also feel grateful to my colleagues

and friends, Bingxin Liu, Siyu Zhang, Yaqiong Xu, Huifeng Dong and Yu Shen for

their support and help to my research and thesis. Finally, I wish to extend my grat-

itude to everyone at UWindsor’s Faculty of Electrical and Computer Engineering for

their efforts during my study in the M.A.Sc. Program. Moreover, I gratefully thank

for the financial support from University of Windsor and my supervisor Dr. Huapeng

Wu.

Ruiqing Dong

vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ALGORITHM xiii

LIST OF ACRONYMS xiv

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Main Contributions . 4

1.3 Thesis Organization . 5

2 MATHEMATICAL PRIMITIVES 6

2.1 Truncated Polynomial Ring . 6

2.1.1 Addition . 6

2.1.2 Multiplication . 7

2.2 NTRUEncrypt Cryptosystem . 8

2.2.1 Parameter Selection . 8

2.2.2 Key Generation . 10

vii

2.2.3 Encryption . 11

2.2.4 Decryption . 11

3 AN OVERVIEW OF EXISTING WORKS 12

4 NTRU BASED HOMOMORPHIC ENCRYPTION AND ITS AP-

PLICATIONS IN CLOUD COMPUTING 15

4.1 Cloud Computing . 15

4.1.1 Development of Cloud Computing 15

4.1.2 Security Issues in Different Service Models 16

4.1.3 Security Challenges in Cloud Computing 17

4.1.4 Several Current Solutions . 18

4.2 Homomorphic Encryption . 19

4.2.1 Development of Homomorphic Encryption 20

4.2.2 Two Types of Homomorphic Encryption 21

4.3 The LTV Homomorphic Encryption Scheme 23

4.3.1 Somewhat Homomorphic Encryption Scheme 23

4.3.2 Fully Homomorphic Encryption Scheme 27

5 THREE PROPOSED MULTIPLIERS FOR NTRUENCRYPT 31

5.1 Proposed Multiplier I . 31

5.1.1 Linear Feedback Shift Register 31

5.1.2 Truncated Polynomial Ring Multiplier 32

5.1.3 Proposed x2-net Architecture 33

5.1.4 Proposed Arithmetic Unit . 35

5.1.5 Proposed Multiplier I for Encryption 37

5.1.6 Implementation of Multiplier I 39

5.2 Proposed Multiplier II . 43

5.2.1 General Idea . 43

viii

5.2.2 Proposed Arithmetic Unit . 46

5.2.3 Proposed Multiplier II for Encryption 48

5.2.4 Implementation of Multiplier II 49

5.3 Proposed Multiplier III . 52

5.3.1 General Idea . 52

5.3.2 Proposed Arithmetic Unit . 54

5.3.3 Proposed Multiplier III for Encryption 56

5.3.4 Implementation of Multiplier III 58

6 PROPOSED MULTIPLIER IV FOR NTRUENCRYPT 62

6.1 Side Channel Attacks . 62

6.2 General Idea . 63

6.3 Proposed Arithmetic Unit . 65

6.4 Proposed Multiplier IV for Encryption 67

6.5 Implementation of Multiplier IV . 68

7 CONCLUSIONS AND FUTURE WORKS 71

7.1 Conclusions . 71

7.2 Possible Future Works . 72

REFERENCES 73

APPENDIX A 77

VITA AUCTORIS 81

ix

LIST OF TABLES

2.1 Recommended Parameters for NTRUEncrypt [1] 10

4.1 Some Parameter Sets for the LTV Homomorphic Encryption [2] . . . 24

5.1 Operations Supported with the Arithmetic Unit 36

5.2 Simulation Results for Different Parameter Sets 40

5.3 Security Level 112 . 41

5.4 Security Level 128 . 42

5.5 Security Level 192 . 42

5.6 Security Level 256 . 43

5.7 Number of ‘0, 0, 0’ Pairs in Different Parameter Sets 45

5.8 Average Number of Cycles for Different Parameter Sets 45

5.9 Operations Supported with the Arithmetic Unit 46

5.10 Simulation Results for Different Parameter Sets 50

5.11 Security Level 112 . 50

5.12 Security Level 128 . 51

5.13 Security Level 192 . 51

5.14 Security Level 256 . 52

5.15 Average Number of Cycles for Different Parameter Sets 54

5.16 Operations Supported with the Arithmetic Unit 55

5.17 Simulation Results for Different Parameter Sets 59

5.18 Security Level 112 . 59

5.19 Security Level 128 . 60

5.20 Security Level 192 . 60

5.21 Security Level 256 . 61

6.1 Average Number of Cycles for Different Parameter Sets 64

6.2 Operations Supported with the Arithmetic Unit 65

6.3 Simulation Results for Different Parameter Sets 69

x

6.4 Security Level 112 . 69

6.5 Security Level 128 . 70

6.6 Security Level 192 . 70

A.1 FPGA Results for ees401ep1, Security Level 112-bit 77

A.2 FPGA Results for ees541ep1, Security Level 112-bit 77

A.3 FPGA Results for ees659ep1, Security Level 112-bit 77

A.4 FPGA Results for ees449ep1, Security Level 128-bit 78

A.5 FPGA Results for ees613ep1, Security Level 128-bit 78

A.6 FPGA Results for ees761ep1, Security Level 128-bit 78

A.7 FPGA Results for ees677ep1, Security Level 192-bit 79

A.8 FPGA Results for ees887ep1, Security Level 192-bit 79

A.9 FPGA Results for ees1087ep1, Security Level 192-bit 79

A.10 FPGA Results for ees1087ep2, Security Level 256-bit 80

A.11 FPGA Results for ees1171ep1, Security Level 256-bit 80

A.12 FPGA Results for ees1499ep1, Security Level 256-bit 80

xi

LIST OF FIGURES

5.1 Linear Feedback Shift Register . 32

5.2 Truncated Polynomial Ring Multiplier 33

5.3 x-net Architecture . 34

5.4 x2-net Architecture . 35

5.5 Proposed Arithmetic Unit . 35

5.6 Proposed Arithmetic Unit Architecture 37

5.7 Multiplier I Based NTRUEncrypt . 39

5.8 Proposed Arithmetic Unit . 46

5.9 Proposed Arithmetic Unit Architecture 47

5.10 Multiplier II Based NTRUEncrypt 49

5.11 Proposed Arithmetic Unit . 54

5.12 Proposed Arithmetic Unit Architecture 56

5.13 Multiplier III Based NTRUEncrypt 57

6.1 Proposed Arithmetic Unit . 65

6.2 Proposed Arithmetic Unit Architecture 66

6.3 Multiplier IV Based NTRUEncrypt 68

xii

LIST OF ALGORITHMS

2.1 Parameter Generation Function for NTRUEncrypt [3] 9

5.1 Multiplication in Truncated Polynomial Ring 32

5.2 Proposed Arithmetic Unit . 36

5.3 Encryption in NTRUEncrypt . 38

5.4 Proposed Arithmetic Unit . 47

5.5 Encryption in NTRUEncrypt . 48

5.6 Proposed Arithmetic Unit . 55

5.7 Encryption in NTRUEncrypt . 57

6.1 Proposed Arithmetic Unit . 66

6.2 Encryption in NTRUEncrypt . 67

xiii

LIST OF ACRONYMS

ALM Adaptive logic module

CCSSG Cloud Computing Standard Study Group

CRT Chinese Remainder Theorem

CSA Cloud Security Alliance

ECC Elliptic Curve Cryptosystem

FMax Maximum operating frequency

IaaS Infrastructure as a Service

IT Information Technology

LFSR Linear Feedback Shift Register

LUT Look-up table

LWE Learning with errors

NIST National Institute of Standards and Technology

NTRU Nth Degree Truncated Polynomial Ring Unit

PaaS Platform as a Service

SaaS Software as a Service

xiv

1 INTRODUCTION

1.1 Motivation

The Internet technology has an enormous impact on many aspects of our daily life.

One of the biggest advantages of the Internet is its easy access to information and

services. Rather than searching in libraries, users can get access to vast amounts of

information from their personal computers. In addition, the Internet offers differ-

ent kinds of services, sometimes for free. Such advantages make our life easier and

cheaper.

Since the Internet is accessible to all users, including the hackers, security breach

becomes a practical issue. Cyber security is a technology suite that provides protec-

tion for data from theft or damage as well as from disruption or unauthorized access

over cyber space including the Internet. Among a variety of technologies to provide

cyber security, cryptography is probably the most important and effective one.

Cryptography, as the core technology for cyber security, can provide many es-

sential and unique security services, such like confidentiality, authentication, data

integrity and non-repudiation. For example, confidentiality is a security service that

can prevent third parties from obtaining users’ private information during communi-

cation.

The modern cryptographic technology can be divided into two parts: symmetric-

key cryptography and public-key cryptography. A symmetrical-key cryptosystem

requires the same shared keys for both encryption and decryption. Since the shared

keys should be kept only by involved parties and not accessible to third parties, such

system requires a secure communication channel for the key exchange between senders

and receivers. This strict requirement becomes the main issue for symmetrical-key

cryptography.

Stream ciphers and block ciphers are two major types of symmetric-key cryptosys-

1

tem. Stream ciphers take plaintext input in the form of a stream of bits or digits and

have simple encryption and decryption operations. In addition, key size in stream

ciphers is very large and considered much larger than that in block ciphers. In block

ciphers, plaintext is encrypted in a multiple of blocks while the encryption/decryption

operations are more complicated. Examples for popular symmetric-key cryptosystems

can be Trivium for stream cipher and AES for block cipher.

Public-key cryptography, also called asymmetric-key cryptography, is a class of

cryptographic algorithms that use two different keys for encryption and decryption

respectively. A public-key cryptosystem has two keys: a public key and a private key.

The public key can be known to anyone including those who would like to send confi-

dential messages to the cryptosystem owner (the receiver) and the private key is only

known to the receiver. Public-key cryptography is proposed to address two main is-

sues: key distribution, which is used to exchange keys without having to trust a third

party, and digital signature, which is used to verify the intactness of a message from

a claimed sender. There are several public-key cryptosystems which are frequently

used currently, such as RSA and Elliptic Curve Cryptosystem (ECC). Compared with

symmetric-key cryptosystems, public-key cryptosystems usually have higher compu-

tational complexity while provide unique security services in key management and

digital signature, which makes them indispensable in cyber security.

However, with the emerging of quantum computing technology, some existing

public-key cryptosystems, such as RSA and ECC, have been shown to be insecure

[4]. Quantum computers are totally different from traditional electronic computers in

that the former use quantum-mechanical phenomena to perform operations on data

and have super faster computational speed. As quantum computers are expected

to be practically available in the near future, it is necessary for us to study on the

cryptographic technologies that can remain secure in the age of quantum computing.

This research field is called post-quantum cryptography, which includes cryptographic

2

algorithms that are considered to be secure under the attacks launched from quantum

computers [5].

One of the most popularly researched areas of post-quantum cryptography is

lattice-based cryptography, which depends on the worst-case hardness of lattice prob-

lems. Nth Degree Truncated Polynomial Ring Unit (NTRU), as one of the lattice-

based systems, is probably the most practical and widely researched existing post-

quantum cryptosystem.

NTRU was first proposed by J. Hoffstein et al. in 1996 [6]. In 2009, NTRU

was regulated in IEEE P1363.1 standard [1]. NTRU consists of two algorithms:

NTRUEncrypt and NTRUSign. NTRUEncrypt is used for encryption and decryption

while NTRUSign is applied to digital signature. In addition, due to its high speed

and low memory use, NTRU can be used in variety of applications such as mobile

devices and smart cards. Its efficiency, as well as its resistance to quantum computer

based attacks, makes NTRU and its efficient implementations a hot research topic in

public-key cryptography.

Recently some new requirements for cloud computing are proposed in which the

most critical one is that users prefer to delegate computations to untrusted com-

puters. In specific, users would like to give untrusted computers only an encrypted

version of data to process the computations. Considering confidentiality of the data,

it is necessary for untrusted computers to perform the computations on encrypted

data without knowing any part of the plaintext. The computation with untrusted

computers yields results in encrypted form, which is then sent to the user for decryp-

tion. For the correctness of the whole computation, the decrypted result has to be

equivalent to the intended value performed on the original data. This property is

called homomorphism and such encryption schemes are referred to as homomorphic

encryption.

Generally speaking, there are two main types of homomorphic encryption: partial

3

homomorphic encryption and fully homomorphic encryption. Partial homomorphic

encryption allows either addition or multiplication operation while fully homomor-

phic encryption supports arbitrary computations on ciphertext. Partial homomorphic

encryption, such as RSA and ElGamal, took the lead in study of homomorphic encryp-

tion until 2009. In 2009, C. Gentry proposed the first fully homomorphic encryption

scheme which showed a new path for the research of homomorphic encryption [7]. D.

Stehlé et al. proposed a revised NTRUEncrypt scheme which can provide higher level

of security in 2011 [8]. One year later, A. López-Alt et al. found the fully homomor-

phic property in the revised NTRUEncrypt scheme and proposed a multi-key fully

homomorphic encryption scheme called the LTV homomorphic encryption scheme

[9]. The application of NTRU to cloud computing security makes it one of the most

interested research topics in cryptography.

1.2 Main Contributions

In this thesis, several efficient truncated polynomial ring multiplication architectures

are proposed. Their FPGA implementations are presented and compared with exist-

ing similar works. A summary of the proposed works is given below.

• Multiplier I, which is presented in Chapter 5 Section 1 (§5.1), is a high-speed

polynomial multiplier. The FPGA results show that latency of the proposed

work is only 63.52%, 60.62%, 61.20%, and 93.53%, compared to the fastest

among the existing similar works for IEEE recommended parameter sets ees401ep1,

ees449ep1, ees677ep1, and ees1087ep2, respectively. Note that the above-

mentioned parameters sets are corresponding to different security levels, such

like 112-bit, 128-bit, 192-bit, and 256-bit.

• Multiplier II is presented in Chapter 5 Section 2 (§5.2). The architecture takes

advantage of three consecutive zeros in polynomial coefficients by re-coding the

4

polynomial r(x). It is the second best in speed compared to existing works,

but has better area-latency-product compared to the fastest existing work for

the first set of parameters ees401ep1, ees449ep1, ees677ep1, at security level

112-bit, 128-bit and 192-bit, respectively.

• Multiplier III is presented in Chapter 5 Section 3 (§5.3). The architecture

takes advantage of consecutive zeros in polynomial coefficients by re-coding the

polynomial r(x). Its FPGA results show that it is faster than any existing works

in comparison for all IEEE recommended parameter sets.

• A new efficient polynomial multiplier resistant to certain side channel attacks,

which we call it Multiplier IV, is presented in Chapter 6. It outperforms all

the existing works in terms of latency for all three parameter sets ees401ep1,

ees449ep1 and ees677ep1.

Note that a comprehensive list of comparisons of FPGA results of proposed mul-

tipliers with existing similar works is provided in Appendix A.

1.3 Thesis Organization

An organization of the rest of this thesis is as follows. Chapter 2 presents mathemat-

ical background of NTRUEncrypt system. A brief overview of existing works is given

in Chapter 3. Chapter 4 introduces a brief overview of cloud computing and homo-

morphic encryption, especially the LTV homomorphic encryption scheme. Chapter

5 proposes three new truncated polynomial multiplier architectures and their FPGA

results. In addition, a comparison of the proposed works with several existing works

is given. Chapter 6 proposes a highly efficient multiplication architecture, which is

also resistant to certain side channel attacks. Its FPGA simulation results are pre-

sented and a complexity comparison is made in the same chapter. In Chapter 7, a

few conclusional remarks are given and possible future works are discussed.

5

2 MATHEMATICAL PRIMITIVES

This chapter first introduces truncated polynomial ring, as the mathematical back-

ground of NTRUEncrypt system. Then an overview of NTRUEncrypt system is given,

which includes key generation, encryption, and decryption. The parameter selection

for NTRUEncrypt cryptosystem is also discussed.

2.1 Truncated Polynomial Ring

NTRUEncrypt system is defined over a special algebraic structure, the truncated

polynomial ring, which is denoted by R = Z[x]/(xN−1), where N is a prime number.

In this notation, Z[x] denotes the set of polynomials of arbitrary degree with integer

coefficients and xN − 1 is the modulo polynomial. It can be seen that the set of R

contains all the polynomials with integer coefficients of degree up to N − 1.

Let f(x) be a polynomial belonging to R. Then it can be represented as

f(x) = fN−1x
N−1 + fN−2x

N−2 + ...+ f1x+ f0, fi ∈ Z for i = 0, 1, ...,N− 1 (1)

Arithmetic operations on R = Z[x]/(xN − 1) includes addition and multiplication

which are discussed in the following two subsections.

2.1.1 Addition

Let a(x), b(x) ∈ R be given as

a(x) = aN−1x
N−1 + aN−2x

N−2 + ...+ a0 (2)

b(x) = bN−1x
N−1 + bN−2x

N−2 + ...+ b0 (3)

6

Then addition operation between a(x) and b(x) is given by

a(x) + b(x) = (aN−1 + bN−1)x
N−1 + (aN−2 + bN−2)x

N−2 + ...+ (a0 + b0) (4)

2.1.2 Multiplication

Let a(x), b(x) ∈ R be given as

a(x) = aN−1x
N−1 + aN−2x

N−2 + ...+ a0 (5)

b(x) = bN−1x
N−1 + bN−2x

N−2 + ...+ b0 (6)

Let c(x) be the product polynomial of a(x) and b(x). Then

a(x)× b(x) = c(x) = cN−1x
N−1 + cN−2x

N−2 + ...+ c0 (7)

where

ck =
∑

i,j=0,1,...,N−1
i+j=k mod N

aibj, k = 0, 1, ..., N − 1 (8)

Besides the limitation on the degree of polynomials, NTRUEncrypt system re-

quires a certain restriction on polynomial coefficients. The operations in NTRU-

Encrypt system are performed in the truncated polynomial ring R modulo a fixed

number q, which indicates that all polynomial coefficients should be from integer set

{0, 1, 2, ..., q − 1}.

Therefore, NTRUEncrypt cryptosystem works in the truncated polynomial ring

R with modulo q, which is denoted by Rq = Zq[x]/(xN − 1).

7

2.2 NTRUEncrypt Cryptosystem

NTRUEncrypt cryptosystem includes totally four parts: parameter selection, key

generation, encryption and decryption. Each part is discussed in this section in

detail.

2.2.1 Parameter Selection

Basically, the NTRUEncrypt is a parameterized cryptosystem where the truncated

polynomial ring R is determined by three integer parameters N , p and q. N is a

prime number which is used to determine the degree of the truncated polynomials

in R. p and q define two moduli where p << q. Additionally, p and q must be

relatively prime. Besides these three integer parameters, three more integers df , dg

and dr are selected to determine three corresponding polynomial sets Lf , Lg and Lr

for NTRUEncrypt system. All these three polynomial sets are denoted in the form

of L(d1, d2), which means that a polynomial in L(d1, d2) has d1 coefficients equal to

1, d2 coefficients equal to −1 and the rest coefficients equal to 0. In specific, we have

Lf = L(df , df − 1), Lg = L(dg, dg), Lr = L(dr, dr)

In 2009, a parameter generation function for NTRUEncrypt system were pro-

posed in [3], which is shown in Algorithm 2.1. In this algorithm, security level,

which represents the security strength, is taken as the input and the output is the

parameter set of N and df . Note that there are two functions used in this algo-

rithm. One is hybridSecurityEstimate(n, df), which is used to estimate the minimal

security over all attack strategies on certain parameter set while the other one is

decryptionFailureProb(n, df), which is used to estimate the chance of a decryption

failure on certain parameter set.

8

Algorithm 2.1 Parameter Generation Function for NTRUEncrypt [3]

Input: Security Level, k
Output: Parameter Set (n, df)
1: i← 1 {The variable i is used to index the set of acceptable primes P}
2: i∗ ← 0 {This will become the first index which can achieve the required security}
3: repeat
4: n← Pi
5: df ← [n/3] {We will try each df from [n/3] down to 1}
6: repeat
7: k1 ← hybridSecurityEstimate(n,df)
8: k2 ← log2(decryptionFailureProb(n,df))
9: if (k1 ≥ k and k2 < −k) then
10: (i∗,d∗f)← (i, df) {Record the first acceptable index i and the value of df}
11: end if
12: df ← df − 1
13: until i∗ > 0 or df < 1
14: i← i+ 1
15: until i∗ > 0
16: c∗ ← cost(Pi∗ , d∗f)
17: while an increase in N can potentially lower the cost do
18: n← Pi
19: df ← d∗f {Note that when n increases the cost must be worse for all df ≥ d∗f ,and

that the decryption failure probability is decreased both by an increase in n
and a decrease in df}

20: repeat
21: k1 ← hybridSecurityEstimate(n,df)
22: c← cost(n, df)
23: if (k1 ≥ k and c < c∗) then
24: (c∗,i∗,d∗f) ← (c, i, df) {Record the the improvement in cost and the corre-

sponding i, df}
25: end if
26: df ← df − 1
27: until df < 0
28: i← i+ 1
29: end while
30: return (Pi∗ ,d∗f)

A table of recommended parameters for NTRUEncrypt system can be generated

with Algorithm 2.1, which is given in Table 2.1. From the table, it can be seen that

there are totally four security levels for NTRUEncrypt system and in each security

level, three parameter sets are presented. Note that the parameter q is assigned 2048

9

for all the parameter sets. It is in the form of 2n to allow highly efficient computation

of the modular operation. Since the parameter p and the parameter q are coprime

and p has to be much smaller than q, p is selected as 3, which is the smallest odd

prime number. It is also worthy to note that df and dr are assigned to the same value.

The security level of NTRUEncrypt cryptosystem is determined by the parameters

N , df , dg and dr.

Table 2.1: Recommended Parameters for NTRUEncrypt [1]

Security
Level

Parameter set n p q df dg dr

112
ees401ep1 401 3 2048 113 133 113
ees541ep1 541 3 2048 49 180 49
ees659ep1 659 3 2048 38 219 38

128
ees449ep1 449 3 2048 134 149 134
ees613ep1 613 3 2048 55 204 55
ees761ep1 761 3 2048 42 253 42

192
ees677ep1 677 3 2048 157 225 157
ees887ep1 887 3 2048 81 295 81
ees1087ep1 1087 3 2048 63 362 63

256
ees1087ep2 1087 3 2048 120 367 120
ees1171ep1 1171 3 2048 106 390 106
ees1499ep1 1499 3 2048 79 499 79

2.2.2 Key Generation

As a public-key cryptosystem, NTRUEncrypt system requires the generation of a

public key and a private key. The public key is known to the public and the private

key is only known by the receiver. The detailed key generation process is given as

follows.

Step 1: Randomly choose a polynomial f(x), which is invertible in Rq and Rp, from

the polynomial set Lf .

Step 2: Randomly choose a polynomial g(x) from the polynomial set Lg.

10

Step 3: Calculate fq(x) and fp(x) which are the inverse of polynomial f(x) mod q

and f(x) mod p.

Step 4: Compute h(x) = p · fq(x)× g(x) mod q.

After the above four steps, the public key h(x) and the corresponding private key

pair (f(x), fp(x)) can be obtained.

2.2.3 Encryption

In order to prepare a confidential message m intended to be sent to the receiver, the

sender is supposed to follow the encryption steps which are listed below.

Step 1: Encode the messagem into a polynomialm(x) with coefficients from {−1, 0, 1}.

Step 2: Randomly choose a polynomials r(x) from the polynomial set Lr.

Step 3: Encrypt message by performing e(x) = h(x)× r(x) +m(x) mod q

After the above three steps, e(x) is the ciphertext to be sent to the receiver.

2.2.4 Decryption

After receiving the encrypted message e(x) from the sender, the receiver is supposed

to follow the decryption steps to obtain the original plaintext.

Step 1: Compute a(x) = f(x)× e(x) mod q.

Step 2: Shift coefficients of a(x) to the range
[
−q

2
,
q

2

]
Step 3: Compute m(x) = fp(x)× a(x) mod p

After the completion of the three steps, m(x) is the plaintext sent from the sender.

11

3 AN OVERVIEW OF EXISTING WORKS

Since NTRU cryptosystem was invented in 1996 by J. Hoffstein et al., it has been a

popularly researched area in the past twenty years. Compared with other popular

public-key cryptosystems, such as RSA and ECC, NTRUEncrypt system has been

shown more efficient in speed and memory usage [6]. In the last ten years, opti-

mizations have been made on NTRU cryptosystem in order to improve either area

efficiency or speed efficiency [10] [11] [12]. Meanwhile, several architectures focus

on the reduction of power consumption [13] [14]. In this chapter, we will give an

overview of the existing works on hardware architectures for NTRU system and their

implementations.

The first hardware based implementation of NTRU system was reported in [10].

In this work, NTRU was implemented in software running on several different con-

strained devices including the Palm Computing Platform, Advanced RISC Machines

ARM7TDMI and the Research in Motion Pager. In addition, it was implemented

in FPGA, which belongs to hardware implementation. In this implementation, the

parameter set (N, p, q) = (251, X + 2, 128) is used. The whole encryption process is

operated within the following steps. First of all, the operands h(x), r(x) and m(x)

are loaded serially. Then, the system begins to scan the bits of each coefficient of r(x)

consecutively and adds h(x) to the intermediate results for each non-zero coefficient.

After this procedure is done or for those coefficients equal to zero, h(x) is shifted to

left by one coefficient. After all the coefficients of r(x) are scanned, the engine adds

the message polynomial m(x) to the previous results to obtain the final encryption

results. Without using full coefficient multiplication, this implementation utilizes

repeated coefficient addition, which improves the efficiency of the whole system.

C. M. O’Rourke proposed three software and hardware designs for NTRU cryp-

tosystem in his master thesis [11]. The first implementation is based on software,

which shows the practicality of applying Chinese Remainder Theorem (CRT) to the

12

convolution algorithm. Although the result is not as good as the expectation, it indi-

cates the probability of applying CRT to the computation of inverse polynomials. The

second implementation uses a scalable NTRU multiplier, which can be used in the

procedures including key generation, encryption and decryption. The core technol-

ogy of such multiplier is the parallelism in the polynomial multiplication. The most

significant contribution of this design is that it provides a variety of time-area config-

urations. Either time or area consumption can be focused on in practical, depending

on the certain applications. Additionally, the multiplier can support arbitrary key

length to meet the requirements of different security level. Finally, another architec-

ture is presented by exploiting the Montgomery multiplication algorithm. Three kinds

of popular public-key cryptosystems, RSA, ECC and NTRU, are implemented. The

results indicate that for the same security level, NTRU shows the best performance

among three.

A new design of NTRUEncrypt system with FPGA implementation was pre-

sented in 2009 [12]. Specifically, this architecture uses the statistical properties of

the distance between the non-zero elements in the polynomials in both encryption

and decryption. In the decryption, two different methods are used for mod p opera-

tion. One is using Mersenne primes algorithm and the other is using look-up tables

(LUTs). This architecture also takes advantage of large number of zero coefficients in

certain polynomial. In order to speed up the whole system, it utilizes an s-bit shifter

to skip the zero coefficients, where s is much smaller than the parameter N . Through

modifying the value of s, this hardware implementation can offer different area-speed

trade-offs for the NTRUEncrypt system.

An efficient hardware architecture and FPGA implementation for NTRUEncrypt

was proposed in [15]. In this paper, a new breakthrough is made by using LFSR struc-

ture due to its compact circuitry and high speed. Firstly, a new truncated polynomial

ring multiplier is designed, which is based on the LFSR structure. Then, in order to

13

optimize the system, a new modular arithmetic unit is introduced, which takes advan-

tage of the property of coefficients in polynomial r(x). As a result, the multiplication

operations can be replaced with only shifting and addition operationsn. Then, a new

LFSR based NTRUEncrypt system is proposed. The FPGA implementation results

indicate that such architecture offers modest area consumption and relatively high

speed. Compared with several existing works, it shows the best performance in term

of area-latency product.

B. Liu proposed another efficient multiplication architecture over truncated poly-

nomial ring for NTRUEncrypt system [16]. The proposed architecture is based on an

extended LFSR. The general idea of this architecture is that a considerable reduction

in the number of clock cycles can be achieved if two consecutive zero coefficients in

the polynomial r(x) can be processed during one clock cycle. In order to increase

the utilization of each clock cycle, a new modular arithmetic unit is designed, where

the redundant state of the input from r(x) is used. Then, an extended LFSR based

NTRUEncrypt structure can be obtained. Although the implementation results show

that this design utilizes slightly more area resource, compared with the LFSR based

architecture, it has a higher speed. Moreover, the product of area and latency of this

architecture is the lowest among all the similar existing works.

14

4 NTRU BASED HOMOMORPHIC ENCRYP-

TION AND ITS APPLICATIONS IN CLOUD

COMPUTING

4.1 Cloud Computing

Currently cloud computing is a popularly researched field of Information Technology

(IT). According to the National Institute of Standards and Technology (NIST), cloud

computing is defined as a model for enabling convenient, on-demand network access to

a shared pool of configurable computing resources, such as networks, servers, storage,

applications, and services, which can be rapidly provisioned and released with minimal

management efforts or service provider interaction.

Compared with conventional computing models where end-user data and com-

puting power are located in users’ computer systems, cloud computing resources

are provided in massive, abstracted infrastructures managed by professional service

providers, which makes it simpler and more convenient for users to operate, store and

maintain their data.

4.1.1 Development of Cloud Computing

The first generation of cloud computing, which is called Cloud 1.0, originated from the

abstraction of TCP/IP layers, where network devices communicate with one another

by complying with TCP/IP protocol specifications without knowing exactly where

and who the other one is.

Cloud 2.0 came out from the abstraction of World Wide Web data, where docu-

ments can be published and retrieved by users from the web without knowing before-

hand exactly where they are located or who published them.

The current version of cloud computing is named Cloud 3.0, which is the abstrac-

15

tion of infrastructure complexities of servers, applications, data, and heterogeneous

platforms where infrastructure, servers or applications can be used without knowing

their exact location.

4.1.2 Security Issues in Different Service Models

Cloud computing utilizes three delivery models by which different types of services are

delivered to end users. The three delivery models are Software as a Service (SaaS),

Infrastructure as a Service (IaaS) and Platform as a Service (PaaS), which provide

software, infrastructure resources and application platforms to consumers respectively.

SaaS is a software deployment model where applications are remotely hosted by

service providers. It is available to customers on demand over the Internet. SaaS

offers numerous benefits to customers, such as operational efficiency and reduced

costs. These advantages make it as a dominant delivery model in some companies.

However, many enterprises still worry about its security levels and thus, hesitate to

put it into practice mainly due to the opacity of its data storage and security. In

SaaS, users have to rely on providers for proper security measures. Providers must

prevent multiple users from gathering others’ data. Therefore, it is difficult for users

to ensure that right security measures are in place and applications are available when

needed. A variety of security elements are supposed to be taken into consideration

before SaaS could be accepted more widely, such as data security, network security,

data locality, data integrity and data authentication.

Compared with SaaS, IaaS completely changes the way developers deploy their

applications. Instead of spending big efforts building their own data centers or deploy-

ing services, users can get access to an IaaS provider, such as Amazon Web Services,

to get access to a virtual server. Using the IaaS model, users no longer need to focus

on the maintenance and the management of infrastructure. On the other hand, secu-

rity responsibilities are divided into two parts between vendors and customers. The

16

former is responsible for the hardware layers while the later are supposed to control

the software security.

PaaS is a layer above IaaS. It offers developers a service which provides a complete

software development lifecycle management to build their own applications. Such

service is based on software platforms. Hence, the security below the platform should

be considered seriously by providers. Vulnerabilities are supposed to appear in both

web applications and machine-to-machine service-oriented architecture applications.

4.1.3 Security Challenges in Cloud Computing

Although cloud computing brings us great benefits, there are a variety of security

problems in cloud computing that need to be addressed.

Some traditional security challenges are required to be reconsider by cloud providers.

Firstly, working environment is required to be changed to fit the environment of cloud

computing, especially in terms of authentication and authorization, since in cloud

computing, users are unable to access to the system hardware physically. Addition-

ally, availability of cloud services is a big issue since the disruption of cloud services

is much more serious than that of traditional service models. Last but not least, as

virtual machines may also contain vulnerabilities, security of virtual machines should

be concerned about as well.

On the other hand, many new security challenges are springing out with the de-

velopment of cloud computing. Since end-users of cloud computing are supposed to

store their data in cloud providers’ infrastructure, the most critical security challenge

is data privacy and confidentiality. Cloud users would like to know where their infor-

mation is stored and who is in charge of their information. Meanwhile, they would

like to be guaranteed that their personnal information is unaccessible to others, even

to the cloud providers. Secondly, establishing a trusted security monitoring system

is another big issue. Compared with Internet monitoring management system, cloud

17

computing monitoring system requires three factors to be considered: rapid identifi-

cation, warning and protection of security attacks based on cloud computing, content

monitoring of cloud computing and identification and protection of cryptographic

crimes. In addition, cloud standards are required to be set up to achieve interop-

erability and stability. There are several groups working on cloud computing spec-

ifications, like IEEE Cloud Computing Standard Study Group (CCSSG) and Cloud

Security Alliance (CSA). Yet, no common standard has been set up and accepted

jointly.

4.1.4 Several Current Solutions

Regarding security requirements of cloud computing, data storage and sharing are

two main aspects which are concerned by cloud users, especially those companies

who require strict secure data processing in order to protect their business interests.

Several mechanisms and techniques have been proposed to solve these two trouble-

some security issues.

The key point of secure data storage is that data stored on the cloud should

be extremely private and no one can access to or control the data except the data

owners, even the providers have no rights to deal with the data. [17] suggests resource

isolation to ensure data security by isolating the processor caches in virtual machines

and isolating those virtual caches from the hypervisor cache. Another solution which

is stated to be widely used in UK business is to use in-house private clouds. A

private cloud is a software-defined data center that combines essential hardware and

other computing resources into a unified virtualized unit. A private cloud’s hardware

and networking abstraction layer, which is provided by software, enables companies

to scale and provide resources more dynamically. Compared with a public cloud, a

private cloud is hosted within a company’s firewall. A private cloud allows business to

save time on hardware-based deployments. It also provides greater flexibility, security

18

and privacy.

Secure data sharing is another critical issue in cloud computing. Homomorphic

encryption and incremental encryption can be utilized to ensure the confidentiality

during the transmission of users’ data. Homomorphic encryption is a form of encryp-

tion that allows computations to be carried out on ciphertext, thus generating an

encrypted result which, when decrypted, matches the result of operations performed

on the plaintext. Such encryption makes it possible for multiple parties to cooper-

atively generate a piece of ciphertext without knowing the plaintext that others are

working on. The general idea of incremental encryption is that if we have already

computed the function on a document, and this document is modified, then we update

the function value based on the old value rather than re-computing it from scratch. In

data sharing, the encrypted data is re-encrypted without being decrypted first. The

re-encrypted data is accessible only to the authorized users. This kind of encryption

has a great advantage that in sharing process, the data is always in its encrypted

form, which means there is no single stage that the data is decrypted before it is

delivered to the authorized users.

4.2 Homomorphic Encryption

Basically, the goal of encryption is to ensure confidentiality of the data in the process

transmission and storage. However, some new requirements for cloud computing are

proposed in which the most critical one is that users prefer to delegate computations to

untrusted computers. Specifically, users would like to give untrusted computers only

an encrypted version of data to process the computations. Considering confidentiality

of the data, it is necessary for untrusted computers to perform the computations on

encrypted data without knowing any part of the plaintext. The computation with

untrusted computers yields results in encrypted form, which is then sent to the user

for decryption. For the correctness of the whole computation, the decrypted result has

19

to be equivalent to the intended value performed on the original data. This property

is called homomorphism and such encryption schemes are referred to as homomorphic

encryption.

4.2.1 Development of Homomorphic Encryption

The notion of homomorphic encryption was first proposed by R. L. Rivest et al.

in 1978 [18]. They proposed the exponentiation function and the RSA function as

additive and multiplicative privacy homomorphism respectively, which made the first

generation of homomorphic encryption known to the world. However, the security

level of these functions was so low that they cannot even prevent the chosen plaintext

attack.

In 1982, S. Goldwasser et al. first proposed a homomorphic encryption scheme

satisfying semantic security [19]. After that, a number of homomorphic encryption

schemes were proposed, including ElGamal encryption scheme, Paillier encryption

scheme and so forth. All these encryption schemes support either additive homomor-

phism or multiplicative homomorphism. Therefore, they are called partial homomor-

phic encryption.

A new question rose in 1991 when J. Feigenbaum et al. proposed an important

idea that if there exists an encryption function E that is both additively and multi-

plicatively homomorphic [20]. Basically, such schemes are called fully homomorphic

encryption.

C. Gentry proposed the first fully homomorphic encryption scheme that enables

the computations of arbitrary functions on encrypted data and producing compact

ciphertexts in 2009 [7]. It showed a new path for study on fully homomorphic en-

cryption.

20

4.2.2 Two Types of Homomorphic Encryption

The definition of homomorphic encryption is as follows: an encryption scheme is said

to be homomorphic if for any given encryption key k, the encryption function E

satisfies Ek(m1 4 m2) = Ek(m1) � Ek(m2), where 4, � denote either addition or

multiplication, and m1, m2 stand for two messages.

Partial Homomorphic Encryption

In the early age of homomorphic encryption, several public key encryption schemes

were shown to meet the homomorphic properties in terms of either addition or mul-

tiplication. Such encryption schemes are called partial homomorphic encryption.

At first, RSA was immediately shown to satisfy the multiplicative homomorphism.

In 1984, T. ElGamal proposed a new public-key cryptosystem, which was shown to

be multiplicatively homomorphic as well [21].

Another well-known homomorphic encryption is Goldwasser-Micali whose homo-

morphism is based on XOR operation [19]. Goldwasser-Micali is an encryption al-

gorithm based on the problem of quadratic residue. In addition, along with this

encryption scheme, S. Goldwasser et al. proposed a rigorous definition of semantic

security. According to their definition, a cryptosystem is semantically secure if the

knowledge and the length of the ciphertext do not reveal any additional information

on the message that can be feasibly extracted. Furthermore, S. Goldwasser et al.

showed the equivalence of semantic security and indistinguishability under chosen

plaintext attack, which is considered as a basic requirement for secure public key

cryptosystems.

One of the most effective additive homomorphic encryption is Paillier. It was pro-

posed by P. Paillier in 1999 [22]. This cryptosystem is based on decisional composite

residuosity assumption. Furthermore, Paillier is shown to be semantically secure. It

is one of the most efficient additively homomorphic encryption schemes.

21

Partial homomorphic encryption is well-known for its high efficiency. Some par-

tial homomorphic encryption schemes are efficient enough for practical applications.

However, some restrictions still exist. The main problem is the limited circuits that

they support. Since partial homomorphic encryption schemes only support one type

of operation, basically either addition or multiplication, circuits’ evaluation is limited

in the range of single operation.

Fully Homomorphic Encryption

Partial homomorphic encryption took the lead in certain research field until 2009.

C. Gentry proposed the first fully homomorphic encryption scheme which can eval-

uate arbitrary additions and multiplications [7]. His fully homomorphic encryption

is based on three components: a somewhat homomorphic encryption scheme that

can evaluate a limited class of functions, a sufficiently powerful homomorphic en-

cryption scheme called bootstrappable encryption scheme and finally, to connect the

dots, a specialized method to turn the somewhat homomorphic scheme into a boot-

strappable scheme. In his construction, he uses ideal lattices to construct somewhat

homomorphic encryption scheme. Therefore, this scheme is also called a lattice-based

cryptosystem. However, this scheme is considered as impractical in that ciphertext

size and computation time increase rapidly with the growth of security level.

On the other hand, Gentry’s work created a new path for the development of fully

homomorphic encryption. Several optimizations on Gentry’s work were proposed in

[23], [24], [25] and [26]. Meanwhile, some more efficient schemes were proposed, such

as [27], [28], [29] and [30], most of which are based on the hardness of the learning

with errors (LWE) problem [31].

Compared with partial homomorphic encryption, fully homomorphic encryption

is advantageous in the evaluation of circuits. A practical and efficient fully homo-

morphic encryption scheme can support both additive and multiplicative operations

22

unlimitedly. Nevertheless, until nowadays, fully homomorphic encryption is still far

away from practical applications due to its low computation speed and large cipher-

text size.

4.3 The LTV Homomorphic Encryption Scheme

A. López-Alt et al. proposed a multikey fully homomorphic encryption scheme called

the LTV homomorphic encryption scheme in 2012, which is based on NTRU public-

key cryptosystem [9]. This scheme is capable of operating on inputs encrypted under

multiple, unrelated keys. A ciphertext resulting from a multikey evaluation can be

jointly decrypted using the secret keys of all the users involved in the computation.

A somewhat homomorphic encryption scheme based on NTRU is proposed at first.

Then such somewhat homomorphic encryption scheme is transformed to a fully ho-

momorphic encryption scheme. This scheme is expected to be a leading candidate

for a practical fully homomorphic encryption scheme.

For brevity, we focus on the single user case for the LTV scheme in the following

presentation.

4.3.1 Somewhat Homomorphic Encryption Scheme

In this section, the primitives of the somewhat homomorphic LTV encryption scheme

are introduced, including parameter selection, key generation, encryption and decryp-

tion. Besides, homomorphic properties of such scheme are discussed as well.

Parameter Selection

D. Cabarcas et al. proposed a method of parameter selection for NTRU based ho-

momorphic encryption, which can be applied to the LTV homomorphic encryption

scheme in 2014 [2].

The parameters required in the LTV homomorphic encryption are listed as follows.

23

• An integer n.

• A prime number q.

• A degree-n polynomial ϕ(x) = xn + 1.

• An error distribution χ, which is the truncated discrete Gaussian distribution

DZn,r for standard deviation r > 0.

It is pointed out that the message space for the LTV homomorphic encryption

is M = {0, 1} and all the operations are carried out in the ring Rq = Zq[x]/(ϕ(x)).

However, in order to prevent a wrap-around error, all the coefficients are required to

located in the range [−q/2, q/2].

Some specifications are required in parameter selection, which are listed as follows.

• Set n to be a power of two.

• Set q ∈ [dn6 ln(n), 2dn6 ln(n)], such that q ≡ 1 mod 2n. For d = 25830,

correctness of the scheme can be guaranteed.

• Set r =
√

2n/π.

Some parameter sets are listed in Table 4.1.

Table 4.1: Some Parameter Sets for the LTV Homomorphic Encryption [2]

Security
Level

n log2 q r

38 1024 71.90 25.53
144 2048 77.28 36.11
138 4096 83.30 51.06

Key Generation

The key generation process is shown as follows.

Step 1: Sample polynomials f
′

and g from χ.

24

Step 2: Compute f = 2f
′
+ 1 ∈ Rq.

Step 3: Compute h = 2gf−1 ∈ Rq.

After the above three steps, the public key h and the corresponding private key f can

be obtained.

Encryption

The encryption process is given as follows.

Step 1: Sample polynomials s and e from χ.

Step 2: Compute c = hs+ 2e+m ∈ Rq.

After the above two steps, polynomial c is generated as the ciphertext.

Decryption

The decryption process is proposed as follows.

Step 1: Compute µ = fc ∈ Rq.

Step 2: Compute m = µ mod 2.

After the completion of the two steps, m is output as the decrypted message.

Homomorphic Properties

Let c1 and c2 be two ciphertexts, which are the encryptions of messages m1 and m2

with the same secret key f .

Addition:

Define the sum of two ciphertexts as

cadd = c1 + c2 (9)

25

Then, we can have

f · cadd mod 2 = f · (c1 + c2) mod 2

= f · c1 + f · c2 mod 2

= µ1 + µ2 mod 2

= m1 +m2 mod 2

= m1 +m2

(10)

Hence, we can decrypt the sum of the two ciphertexts to recover the sum of the

two messages.

Multiplication:

Define the product of two ciphertext as

cmult = c1 · c2 (11)

Then, we can have

f 2 · cmult mod 2 = f 2 · (c1 · c2) mod 2

= (f · c1) · (f · c2) mod 2

= µ1 · µ2 mod 2

= m1 ·m2 mod 2

= m1 ·m2

(12)

Hence, we can decrypt the product of the two ciphertexts to recover the product

of the two messages.

26

Combination of Addition and Multiplication

As mentioned before, since

f = 2f
′
+ 1

We can have

f ≡ 1 mod 2

Thus,

fk ·m mod 2 = m

Therefore, we can decrypt a combination of additions and multiplications through

multiplying the result ciphertext by fk, where f is the secret key and k is the depth of

the longest chain of multiplications. This is one of the most significant improvements

from the NTRUEncrypt scheme to the LTV scheme, which makes the LTV scheme

somewhat homomorphic.

However, with the increasing of additions and multiplications, noise grows in result

ciphertexts. Specifically, noise grows linearly for addition and exponentially for mul-

tiplication. The noise makes the result ciphertext indecipherable ultimately, which is

a limitation for somewhat homomorphic encryption schemes.

4.3.2 Fully Homomorphic Encryption Scheme

In this section, we introduce how to convert the somewhat homomorphic LTV en-

cryption scheme to a fully homomorphic one. Two techniques, relinearization and

modulus reduction, are applied to the fully homomorphic LTV scheme.

Relinearization

As mentioned before, in order to decrypt a product of k ciphertexts, we are supposed

to multiply the product ciphertext by the secret key k times. Thus, we have to keep

track of the depth of the circuit. It turns out to be difficult when the circuit is

complex.

27

Relinearization makes it possible for us to decrypt any combination of additions

and multiplications of the ciphertext by multiplying the result ciphertext by the secret

key only once. In order to achieve this, an evaluation key is used, which is introduced

in Key Generation in Section 4.3.2.

Modulus Reduction

Modulus reduction is a kind of noise management technique which provides an expo-

nential gain on the depth of the circuit that can be evaluated. It controls the noise by

scaling the ciphertext after each operation. Applying it repeatedly can significantly

improve the maximum depth of the circuit. It is discussed in Evaluation in Section

4.3.2 in detail.

Parameter Selection

The parameter selection for the fully homomorphic LTV scheme is the same as that

for the somewhat version, which is referred to Parameter Selection in Section 4.3.1.

Key Generation

The key generation process is shown as follows.

Step 1: Choose a decreasing sequence of moduli q0 > q1 > ... > qddec , where ddec is

the depth of the circuit to be evaluated.

Step 2: For every i ∈ {0, ..., ddec}, sample g(i) and u(i) from χ.

Step 3: Compute f (i) = 2u(i) + 1 ∈ Rqi .

Step 4: Compute h(i) = 2g(i)(f (i))−1 ∈ Rqi .

Step 5: For all i ∈ [ddec] = {1, 2, ..., ddec} and τ ∈ {0, ..., blog qic}, sample s
(i)
τ and e

(i)
τ

from χ.

28

Step 6: Compute γ
(i)
τ = h(i)s

(i)
τ + 2e

(i)
τ + 2τf (i−1) ∈ Rqi−1

and ζ
(i)
τ = h(i)s

(i)
τ + 2e

(i)
τ +

2τ (f (i−1))2 ∈ Rqi−1
.

After the above six steps, the public key is h(0) ∈ Rq0 , the private key is f (ddec) ∈ Rqddec

and the evaluation key is
{
γ
(i)
τ , ζ

(i)
τ

}
i∈[ddec],τ∈{0,...,blog qic}

.

Encryption

The encryption process is given as follows.

Step 1: Sample polynomials s and e from χ.

Step 2: Compute c = h(0)s+ 2e+m ∈ Rq0 .

After the above two steps, polynomial c is generated as the ciphertext.

Decryption

Given a ciphertext c ∈ Rqddec
, the decryption process is proposed as follows.

Step 1: Compute µ = f (ddec)c ∈ Rqddec
.

Step 2: Compute m = µ mod 2.

After the completion of the two steps, m is output as the decrypted message.

Evaluation

We show how to evaluate a t-input circuit C, where all inputs ci are encrypted with

the same public key/private key pair (pk, sk) having corresponding evaluation key

ek, which is also publicly available.

Addition:

Given two ciphertexts c1, c2 ∈ Rqi

Step 1: Compute c = c1 + c2.

29

Step 2: For τ ∈ {0, ..., blog qic}, define c̃τ as c =
blog qic∑
τ=0

2τ c̃τ .

Step 3: Define c̃ =
blog qic∑
τ=0

c̃τγ
(i)
τ ∈ Rqi .

Step 4: Compute cadd =

[(
qi+1

qi

)
· c̃
]

mod 2.

The output cadd is the encryption of the sum of the corresponding messages.

Multiplication:

Given two ciphertexts c1, c2 ∈ Rqi

Step 1: Compute c = c1 · c2.

Step 2: For τ ∈ {0, ..., blog qic}, define c̃τ as c =
blog qic∑
τ=0

2τ c̃τ .

Step 3: Define c̃ =
blog qic∑
τ=0

c̃τζ
(i+1)
τ ∈ Rqi .

Step 4: Compute cmult =

[(
qi+1

qi

)
· c̃
]

mod 2.

The output cmult is the encryption of the product of the corresponding messages.

30

5 THREE PROPOSED MULTIPLIERS FOR NTRU-

ENCRYPT

5.1 Proposed Multiplier I

In this section, a new truncated polynomial ring multiplication architecture is pro-

posed for NTRUEncrypt cryptosystem. Its FPGA simulation results are obtained.

Firstly, basic concepts about linear feedback shift register (LFSR) are briefly intro-

duced. Secondly, the existing similar works are reviewed in detail. Then, we propose

a new x2-net architecture to speed up the system. Next, an optimized design for

arithmetic unit in the x2-net architecture is presented. After that, a high speed

multiplier architecture is proposed, which is called Multiplier I. Finally, the FPGA

implementation results and a comparison of the proposed work with several existing

works are given.

5.1.1 Linear Feedback Shift Register

Basically, an LFSR is a shift register whose input bit is a linear function of its previous

state. The initial value of an LFSR is called a seed. Since the operation of the register

is deterministic, the stream of values produced by the register is determined by its

previous state. An LFSR can generate periodic sequence if it starts with a non-zero

state and the maximal-length of an LFSR is 2n − 1, where n is the highest degree

of the characteristic polynomial. LFSR has a wide range of applications, including

generation of pseudo-random numbers, fast digital counters and cryptography.

An LFSR structure is given in Fig.5.1. It is determined by a characteristic poly-

nomial f(x), which can be expressed as

f(x) = xn + fn−1x
n−1 + ...+ f1x+ 1 (13)

31

In Fig.5.1, ⊕ refers to an adder and ⊗ refers to a multiplier. Besides, � represents

a register. If we suppose that the registers are loaded with the coefficients of a

polynomial a (x) = (an−1, ..., a0), a shift-to-right operation equals to perform a (x)×x

mod f (x), where x is the root of its characteristic polynomial f(x).

b

f1 f2 fn−1

bba0 a1 an−1

Fig. 5.1: Linear Feedback Shift Register

5.1.2 Truncated Polynomial Ring Multiplier

A truncated polynomial ring multiplier was proposed in [15]. Some modification is

made to the LFSR structure to realize this function.

Assume that a register content ek (k = 0, ..., N − 1) at clock cycle j is denoted by

e
(j)
k . The detailed steps to implement truncated polynomial multiplication are given

in Algorithm 5.1. In this algorithm, two inputs are polynomial h(x) and r(x), each

with N coefficients and the output is the result polynomial e(x) with N coefficients.

Algorithm 5.1 Multiplication in Truncated Polynomial Ring

Input: h = hN−1, ..., h0, r = rN−1, ..., r0
Output: e = hr = eN−1, ..., e0
1: e(0) := 0
2: for j := 1 to N do
3: for i := 0 to N − 1 do
4: e

(j)
i := e

(j−1)
i+1 mod N + hi+1 mod N × rj−1 mod q

5: end for
6: end for
7: return e := e(N)

An architecture for this multiplier is shown in Fig.5.2. In this multiplier, N

adders, N multipliers and N registers are required. Note that the parameter q is in

32

the form of 2n, modular q operation can be easily achieved by truncating the result

to n bits and all the operations including addition and multiplication are performed

without any carry. The registers e = (eN−1, ..., e0) are initially loaded with 0. The

coefficients of the polynomial h(x) are input to each multiplier in parallel while the

coefficients of the polynomial r(x) are input to all multipliers in a serial fashion. After

N clock cycles, the multiplication result of h(x)× r(x) will be stored in the registers

e = (eN−1, ..., e0).

b b beN−1 eN−2 e0

hN−1 hN−2 h1 h0

rN−1, rN−2, ..., r1, r0

Fig. 5.2: Truncated Polynomial Ring Multiplier

5.1.3 Proposed x2-net Architecture

The core architecture in the truncated polynomial ring multiplier is called x-net ar-

chitecture, which is presented in Fig.5.3. In x-net architecture, a register content

ek (k = 0, ..., N − 1) at clock cycle j is denoted by e
(j)
k . (hN−1, ..., h0) are the corre-

sponding coefficients of the polynomial h(x) and ri stands for the ith coefficient of

the polynomial r(x), which acts as a control input at clock cycle i+ 1. We treat one

adder and one multiplier as an arithmetic unit and totally there are N arithmetic

units required. In each arithmetic unit, there are three inputs and one output.

33

hN−1 hN−2 h0

b

e
(j−1)
N−1 e

(j−1)
N−2 e

(j−1)
1 e

(j−1)
0

e
(j)
N−1 e

(j)
N−2 e

(j)
1 e

(j)
0

e
(j)
N−3

b b b b b

b b b

b b b

hN−3 h1

e
(j−1)
N−3

ri

e
(j)
N−4

b b b

Arithmetic Unit

Fig. 5.3: x-net Architecture

In order to optimize x-net architecture, we propose a new design called x2-net

architecture, which is given in Fig.5.4. In x2-net architecture, a register content

ek (k = 0, .., N − 1) at clock cycle j is denoted by e
(j)
k and (hN−1, ..., h0) are the cor-

responding coefficients of the polynomial h(x). One difference is that this new design

keeps the input ri but also requires a new input ri−1, which is the (i−1)th coefficient

of the polynomial r(x). Moreover, the size of one arithmetic unit is doubled that two

adders and two multipliers are required. However, the total number of arithmetic

units remains N . In each arithmetic unit, totally five inputs are required, two more

than those in x-net architecture while the output is kept the same. Another mod-

ification is the shift-to-right operation. x-net architecture multiplies with x in one

shift-to-right operation while the x2-net architecture multiplies with x2 in one shift-

to-right operation. Two coefficients of the polynomial r(x) can be processed during

one clock cycle, thus, about half clock cycles can be saved.

34

hN−1 hN−2 h1 h0 h0 hN−1

b

b

b

b

e
(j−1)
N−1 e

(j−1)
N−2 e

(j−1)
1 e

(j−1)
0

e
(j)
N−1 e

(j)
N−2 e

(j)
1 e

(j)
0

e
(j)
N−3

b b b b b

b b b b b

b b b b b

b b b

ri

ri−1

Arithmetic Unit

b b b

Fig. 5.4: x2-net Architecture

5.1.4 Proposed Arithmetic Unit

In the encryption, since the coefficients of the polynomial r(x) are selected from the

set {−1, 0, 1}, the multiplication h(x) × r(x) can be evaluated without any integer

multiplication. More specific, these multiplication operations can be replaced with

only addition and subtraction operations. Meanwhile, as mentioned before, since the

parameter q is in the form of 2n, modular q operation can be achieved by truncat-

ing the result to n bits. An optimized design for the arithmetic unit in our x2-net

architecture is proposed in Fig.5.5.

2 2

hk hk−1
n n

n n

n

n

n

n

riri−1

4

ek−2

ek

hk

hk−1

riri−1

ek ek−2
n

Fig. 5.5: Proposed Arithmetic Unit

In this new design of arithmetic unit, the number of inputs are reduced to four.

35

hk, hk−1 and ek are encoded in n = [log2 q] bits. ri and ri−1 are combined and a new

input riri−1 is obtained, which is encoded in four bits and acts as the control input.

Binary representation ‘11’, ‘00’ and ‘01’ are used to represent the coefficients ‘−1’,

‘0’ and ‘1’ in r(x), respectively. The output ek−2 is also encoded in n = [log2 q] bits.

Table 5.1 shows the operations supported with this new arithmetic unit.

Table 5.1: Operations Supported with the Arithmetic Unit

Input riri−1 (r
(i)
1 r

(i)
0 r

(i−1)
1 r

(i−1)
0) Output ek−2

0000 ek
0001 ek + hk mod q
0011 ek − hk mod q
0100 ek + hk−1 mod q
0101 ek + hk + hk−1 mod q
0111 ek − hk + hk−1 mod q
1100 ek − hk−1 mod q
1101 ek + hk − hk−1 mod q
1111 ek − hk − hk−1 mod q

An algorithm that performs each step of this arithmetic unit is proposed in Algo-

rithm 5.2.

Algorithm 5.2 Proposed Arithmetic Unit

Input: ek = (e
(k)
n−1...e

(k)
0)2; hk = (h

(k)
n−1...h

(k)
0)2; hk−1 = (h

(k−1)
n−1 ...h

(k−1)
0)2; riri−1 =

(r
(i)
1 r

(i)
0 r

(i−1)
1 r

(i−1)
0)2;

Output: ek−2 = (e
(k−2)
n−1 ...e

(k−2)
0)2

1: if r
(i−1)
1 r

(i−1)
0 = 00 then

2: (h
(k)
n−1...h

(k)
0) := 0

3: else if r
(i−1)
1 r

(i−1)
0 = 11 then

4: (h
(k)
n−1...h

(k)
0) := −(h

(k)
n−1...h

(k)
0)

5: end if
6: if r

(i)
1 r

(i)
0 = 00 then

7: (h
(k−1)
n−1 ...h

(k−1)
0) := 0

8: else if r
(i)
1 r

(i)
0 = 11 then

9: (h
(k−1)
n−1 ...h

(k−1)
0) := −(h

(k−1)
n−1 ...h

(k−1)
0)

10: end if
11: (e

(k−2)
n−1 ...e

(k−2)
0) := (e

(k)
n−1...e

(k)
0) + (h

(k)
n−1...h

(k)
0) + (h

(k−1)
n−1 ...h

(k−1)
0)

The corresponding architecture for our proposed arithmetic unit is given in Fig.5.6.

36

h
(k)
n−1...h

(k)
0e

(k)
n−1...e

(k)
0 h

(k−1)
n−1 ...h

(k−1)
0

00 01 11
MUX

00 01 11
MUX

0 0

r
(i)
1 r

(i)
0r

(i−1)
1 r

(i−1)
0

n-bit Modular Carry Save Adder

n n n n n

n

n n

2 2

n n

e
(k−2)
n−1 ...e

(k−2)
0

b b b

b b b

b b b FAFA

HA

FA

FA

FA

FA

FA’

FA’

01n− 3n− 2n− 1

FA’

n-bit Modular Carry Save Adder

Fig. 5.6: Proposed Arithmetic Unit Architecture

5.1.5 Proposed Multiplier I for Encryption

Based on the proposed arithmetic unit, a new multiplier for encryption in NTRU-

Encrypt system can be proposed. In encryption, the ciphertext is computed by

e(x) = h(x)× r(x) + m(x) mod q, where h(x) is the public key, r(x) is a randomly

chosen polynomial whose coefficients are selected from the set {−1, 0, 1} and m(x) is

the message polynomial.

37

A detailed algorithm for Multiplier I based encryption is shown in Algorithm 5.3.

The inputs are three polynomials h(x), r(x) and m(x), each with N coefficients and

the output is an encrypted polynomial e(x) with N coefficients. The corresponding

structure is given in Fig.5.7.

Algorithm 5.3 Encryption in NTRUEncrypt

Input: m = mN−1, ...,m0; h = hN−1, ..., h0; r = rN−1, ..., r0;
Output: e = eN−1, ..., e0 = hr +m mod q;
1: e(0) := m
2: for j := 1 to

(
N+1
2

)
do

3: for i := 0 to N − 1 do
4: if r2j−1 = 00 then
5: if r2j−2 = 00 then

6: e
(j)
i := e

(j−1)
i+2 mod N

7: else if r2j−2 = 01 then

8: e
(j)
i := e

(j−1)
i+2 mod N + hi+2 mod N mod q

9: else
10: e

(j)
i := e

(j−1)
i+2 mod N − hi+2 mod N mod q

11: end if
12: else if r2j−1 = 01 then
13: if r2j−2 = 00 then

14: e
(j)
i := e

(j−1)
i+2 mod N + hi+1 mod N mod q

15: else if r2j−2 = 01 then

16: e
(j)
i := e

(j−1)
i+2 mod N + hi+2 mod N + hi+1 mod N mod q

17: else
18: e

(j)
i := e

(j−1)
i+2 mod N − hi+2 mod N + hi+1 mod N mod q

19: end if
20: else
21: if r2j−2 = 00 then

22: e
(j)
i := e

(j−1)
i+2 mod N − hi+1 mod N mod q

23: else if r2j−2 = 01 then

24: e
(j)
i := e

(j−1)
i+2 mod N + hi+2 mod N − hi+1 mod N mod q

25: else
26: e

(j)
i := e

(j−1)
i+2 mod N − hi+2 mod N − hi+1 mod N mod q

27: end if
28: end if
29: end for
30: end for
31: return e := e(

N+1
2)

38

eN−1 eN−2 e1 e0

hN−1 hN−2 h1 h0

hN−2 h0 hN−1hN−3

b b b

b b b

rNrN−1, ..., r1r0

Fig. 5.7: Multiplier I Based NTRUEncrypt

This architecture contains N registers and N arithmetic units in total. The reg-

isters e = (eN−1, ..., e0) are initially loaded with m = (mN−1, ...,m0). When the

operation starts, two consecutive coefficients of the polynomial r(x) are scanned dur-

ing one clock cycle. Since there are total N coefficients in the polynomial r(x), we

assume rN = 0 and encode it as ‘00’. After N+1
2

clock cycles, the encryption result

will be stored in the registers e = (eN−2, ..., e0, eN−1).

5.1.6 Implementation of Multiplier I

FPGA is used to implement the proposed Multiplier I architecture. Basically, FPGA

is an integrated circuit designed to be configured by a customer or a designer after

manufacturing. It consists of an array of programmable logic blocks, which can be

configured to perform either simple logic gates or complex combinational functions.

In addition, it contains reconfigurable interconnects that allow the blocks to be wired

together.

FPGA is widely used in different fields, such as digital signal processing and

cryptography. It can also be used to solve computable problems, as it is much faster

in some applications for their parallel nature and optimality in terms of the number

of gates used for a certain process. Meanwhile, another significant usage of FPGA is

hardware acceleration, especially the acceleration on certain parts of an algorithm.

39

In order to define the behavior of FPGA, a hardware description language is

provided to specify the FPGA configuration. The most common used hardware de-

scription language is VHDL and Verilog HDL. In our implementation, we use Verilog

HDL as our design language.

In specific, the following tools are used for our implementation.

• Quartus II v14.1 (64-bit) Software

• ModelSim-Altera Software

Our target device is Arria V 5AGXFB3H4F35I3. It belongs to Arria V FPGA fam-

ily that offer the highest bandwidth and deliver the lowest total power for midrange

applications.

Implementation Results

The simulation results are shown in Table 5.2.

Table 5.2: Simulation Results for Different Parameter Sets

Security
Level

Parameter set #ALM #Register #Cycles FMax Latency

112
ees401ep1 11,861 8,826 201 103.01 MHz 1.95 µs
ees541ep1 16,091 11,906 271 102.33 MHz 2.65 µs
ees659ep1 19,573 14,502 330 105.96 MHz 3.11 µs

128
ees449ep1 13,296 9,882 225 105.24 MHz 2.14 µs
ees613ep1 18,201 13,490 307 104.60 MHz 2.93 µs
ees761ep1 22,459 16,746 381 103.33 MHz 3.69 µs

192
ees677ep1 20,042 14,898 339 106.90 MHz 3.17 µs
ees887ep1 26,295 19,518 444 103.68 MHz 4.28 µs
ees1087ep1 32,241 23,918 544 96.43 MHz 5.64 µs

256
ees1087ep2 32,241 23,918 544 96.43 MHz 5.64 µs
ees1171ep1 34,648 25,766 586 99.50 MHz 5.89 µs
ees1499ep1 48,719 32,982 750 82.73 MHz 9.07 µs

For each parameter set, we mainly focus on five aspects of our proposed architec-

ture.

40

• #ALM, number of adaptive logic modules.

• #Register, number of registers.

• #Cycles, number of cycles.

• FMax, maximum operating frequency.

• Latency, required encryption time.

ALM is the basic building block of Arria V. In our simulation, the maximal num-

ber of ALMs on our target device Arria V 5AGXFB3H4F35I3 is 136880. Number of

registers indicates how many registers are required for the architecture. Area con-

sumption of an architecture is denoted by the combination of number of ALMs and

number of registers. Number of cycles shows how many clock cycles are required for

the computation. FMax means the maximum frequency that can be achieved during

the operation. It usually depends on the design as well as the chip. Latency reflects

the time required for the encryption. It is calculated by number of cycles divided by

FMax.

Comparison

For each security level, we choose one parameter set for comparison.

The comparison results for security level 112 are shown in Table 5.3.

Table 5.3: Security Level 112

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees401ep1 4,052 9,638 401 62.95 MHz 6.37 µs
[11] ees401ep1 837 1,165 3,617 67.69 MHz 53.43 µs
[12] ees401ep1 15,662 8,838 227 55.00 MHz 4.13 µs
[15] ees401ep1 4,636 8,826 401 121.62 MHz 3.30 µs
[16] ees401ep1 9,044 8,826 349 113.67 MHz 3.07 µs

Multiplier I ees401ep1 11,861 8,826 201 103.01 MHz 1.95 µs

41

It can be seen from the table that number of cycles of Multiplier I is the least,

compared to all the existing works. In addition, Multiplier I has the highest speed.

Latency of Multiplier I is only 63.52%, compared to the fastest among the existing

similar works.

The comparison results for security level 128 are shown in Table 5.4.

Table 5.4: Security Level 128

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees449ep1 4,523 10,793 449 56.99 MHz 7.88 µs
[11] ees449ep1 837 1,165 4,049 67.69 MHz 59.82 µs
[12] ees449ep1 17,527 9,884 269 53.95 MHz 4.99 µs
[15] ees449ep1 5,188 9,882 449 121.69 MHz 3.69 µs
[16] ees449ep1 10,124 9,882 398 112.90 MHz 3.53 µs

Multiplier I ees449ep1 13,296 9,882 225 105.24 MHz 2.14 µs

It can be seen from the table that number of cycles of Multiplier I is the least,

compared to all the existing works. Additionally, Multiplier I has the highest speed.

Latency of Multiplier I is only 60.62%, compared to the fastest among the existing

similar works.

The comparison results for security level 192 are shown in Table 5.5.

Table 5.5: Security Level 192

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees677ep1 6,740 16,266 677 60.24 MHz 11.24 µs
[11] ees677ep1 837 1,165 9,486 67.69 MHz 140.14 µs
[12] ees677ep1 26,423 14,900 317 49.74 MHz 6.37 µs
[15] ees677ep1 7,810 14,898 677 120.00 MHz 5.64 µs
[16] ees677ep1 15,254 14,898 551 106.30 MHz 5.18 µs

Multiplier I ees677ep1 20,042 14,898 339 106.90 MHz 3.17 µs

It can be seen from the table that Multiplier I has the highest speed. Latency of

Multiplier I is only 61.20%, compared to the fastest among the existing similar works.

The comparison results for security level 256 are shown in Table 5.6.

42

Table 5.6: Security Level 256

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees1087ep2 10,748 26,105 1,087 55.53 MHz 19.58 µs
[11] ees1087ep2 837 1,165 23,922 67.69 MHz 353.41 µs
[12] ees1087ep2 42,427 23,930 276 45.75 MHz 6.03 µs
[15] ees1087ep2 12,526 23,918 1,087 104.06 MHz 10.45 µs
[16] ees1087ep2 24,480 23,918 717 94.07 MHz 7.62 µs

Multiplier I ees1087ep2 32,241 23,918 544 96.43 MHz 5.64 µs

It can be seen from the table that Multiplier I has the highest speed. Latency of

Multiplier I is only 93.53%, compared to the fastest among the existing similar works.

5.2 Proposed Multiplier II

In this section, a truncated polynomial ring multiplication architecture is proposed

for NTRUEncrypt. Its FPGA simulation results are obtained. At first, we introduce

some basic idea for our proposed design. Next, we propose a new arithmetic unit.

After that, a multiplier architecture is proposed, which is called Multiplier II. Finally,

the FPGA implementation results and a comparison of the proposed work with several

existing works are given.

5.2.1 General Idea

In LFSR based architecture proposed in [15], the control input ri is encoded in two

bits, thus, it has three states, ‘11’, ‘00’ and ‘01’. Thus, the state ‘10’ is considered as

a redundant state in such design. The architecture is supposed to be more efficient if

we can make use of this redundant state.

According to the parameter selection of NTRUEncrypt system, as r(x) ∈ L(dr, dr)

and dr is much smaller than the parameter N , there are a large number of coefficients

equal to 0 in r(x).

43

Basically, our proposed architecture is based on the idea that a considerable re-

duction in number of cycles can be achieved if ‘0, 0, 0’ coefficient pairs in r(x) can be

processed during one clock cycle. Therefore, we are required to find out how many

‘0, 0, 0’ coefficient pairs appear consecutively in r(x).

The number of ‘1’ and ‘−1’ coefficients in r(x) is denoted by

n1 = n−1 = dr (14)

So the number of ‘0’ coefficients in r(x) can be calculated as

n0 = N − 2dr (15)

The maximum number of ‘0, 0, 0’ coefficient pairs in r(x) is calculated as

n000max = (N − 2dr)/3. (16)

The minimum number of ‘0, 0, 0’ coefficient pairs in r(x) is calculated as

n000min
=

0 n1 + n−1 >

n0

2
− 1

(N − 6dr)/3 n1 + n−1 ≤
n0

2
− 1

(17)

The average number of ‘0, 0, 0’ coefficient pairs in r(x) can be calculated as

n000avg =

n000max∑
k=n000min

k ·
2mCk+2m ·

(
bn−2m−3k

3
c∑

r=0

(−1)r · rC2m+1 · n−2m−3k−3rCn−3k−3r
)

n−2mCn

(18)

Table 5.7 shows the number of ‘0, 0, 0’ coefficient pairs in different parameter

sets. For each parameter set, we first calculate the total number of ‘0’ coefficients

44

which is listed in the column # ‘0’. In the column # ‘0, 0, 0’, three sub-columns

are separated, where Min, Max and Avg represent the minimum number of ‘0, 0, 0’

coefficient pairs, the maximum number of ‘0, 0, 0’ coefficient pairs and the average

number of ‘0, 0, 0’ coefficient pairs in r(x), respectively.

Table 5.7: Number of ‘0, 0, 0’ Pairs in Different Parameter Sets

Security
Parameter set N #“0”

#‘0, 0, 0’
Level Min Max Avg

112
ees401ep1 401 175 0 58 20.30
ees541ep1 541 443 82 147 119.03
ees659ep1 659 583 143 194 170.76

128
ees449ep1 449 181 0 60 18.62
ees613ep1 613 503 94 167 135.51
ees761ep1 761 677 169 225 199.54

192
ees677ep1 677 363 0 121 57.01
ees887ep1 887 725 133 241 194.59
ees1087ep1 1087 961 236 320 281.47

256
ees1087ep2 1087 847 122 282 215.22
ees1171ep1 1171 959 178 319 258.05
ees1499ep1 1499 1341 341 447 397.93

Hence, the average number of cycles required for different parameter sets can be

calculated and the results are given in Table 5.8.

Table 5.8: Average Number of Cycles for Different Parameter Sets

Security
Level

Parameter set N p q dr #Cycles

112
ees401ep1 401 3 2048 113 381
ees541ep1 541 3 2048 49 422
ees659ep1 659 3 2048 38 489

128
ees449ep1 449 3 2048 134 431
ees613ep1 613 3 2048 55 478
ees761ep1 761 3 2048 42 562

192
ees677ep1 677 3 2048 157 620
ees887ep1 887 3 2048 81 693
ees1087ep1 1087 3 2048 63 806

256
ees1087ep2 1087 3 2048 120 872
ees1171ep1 1171 3 2048 106 913
ees1499ep1 1499 3 2048 79 1102

45

5.2.2 Proposed Arithmetic Unit

In this new arithmetic unit, the inputs hk and ek are both encoded in n = [log2 q]

bits. Meanwhile, ti is the control input which is encoded in two bits. The output

ek−1 is also encoded in n = [log2 q] bits. The main difference is that we add ek+2 as

a new input in our arithmetic unit, which is encoded in n = [log2 q] bits as well. The

proposed arithmetic unit is given in Fig.5.8 and the operation table is shown in Table

5.9.

n

n

n

n

2

ek−1ek

hk

ek+2

ti

Fig. 5.8: Proposed Arithmetic Unit

Table 5.9: Operations Supported with the Arithmetic Unit

rj, rj+1, rj+2 Input ti (t
(i)
1 t

(i)
0) Output ek−1

0,×,× 00 ek
1,×,× 01 ek + hk mod q
0, 0, 0 10 ek+2

−1,×,× 11 ek − hk mod q

An algorithm that performs each step of this arithmetic unit is shown in Algorithm

5.4.

46

Algorithm 5.4 Proposed Arithmetic Unit

Input: ek = (e
(k)
n−1...e

(k)
0)2; ek+2 = (e

(k+2)
n−1 ...e

(k+2)
0)2; hk = (h

(k)
n−1...h

(k)
0)2; ti = (t

(i)
1 t

(i)
0)2;

Output: ek−1 = (e
(k−1)
n−1 ...e

(k−1)
0)2;

1: if t
(i)
1 t

(i)
0 = 00 then

2: (e
(k−1)
n−1 ...e

(k−1)
0) := (e

(k)
n−1...e

(k)
0)

3: else if t
(i)
1 t

(i)
0 = 01 then

4: (e
(k−1)
n−1 ...e

(k−1)
0) := (e

(k)
n−1...e

(k)
0) + (h

(k)
n−1...h

(k)
0)

5: else if t
(i)
1 t

(i)
0 = 10 then

6: (e
(k−1)
n−1 ...e

(k−1)
0) := (e

(k+2)
n−1 ...e

(k+2)
0)

7: else
8: (e

(k−1)
n−1 ...e

(k−1)
0) := (e

(k)
n−1...e

(k)
0)− (h

(k)
n−1...h

(k)
0)

9: end if

The corresponding architecture for our proposed arithmetic unit is given in Fig.5.9.

n-bit Modular Adder

e
(k)
n−1...e

(k)
0 e

(k+2)
n−1 ...e

(k+2)
0h

(k)
n−1...h

(k)
0

n

e
(k−1)
n−1 ...e

(k−1)
0

0001/11 10 t
(1)
i t

(0)
i

n

2

n

n

n

MUX

n

n

MUX0 1t
(1)
i

1

Fig. 5.9: Proposed Arithmetic Unit Architecture

47

5.2.3 Proposed Multiplier II for Encryption

Based on the new arithmetic unit, we propose a multiplier architecture for NTRUEn-

crypt. Note that this new architecture can process three consecutive zero coefficients

in r(x) during one clock cycle, before the computation, we are supposed to encode

r(x) = (rN−1, ..., r0) to obtain a new control input sequence (tu−1, ..., t0), where each

ti has two bits. If three consecutive zero coefficients occur in r(x), we encode them

as ‘10’. For the other coefficients ‘−1’, ‘0’ and ‘1’, we encode them as ‘11’, ‘00’ and

‘01’ correspondingly.

Algorithm 5.5 shows the encryption for our proposed architecture and the cor-

responding architecture is given in Fig.5.10. There are totally three inputs in this

architecture, including the public key h(x), the message polynomial m(x) and the

generated sequence (tu−1, ..., t0). The output is an encrypted polynomial e(x) with N

coefficients.

Algorithm 5.5 Encryption in NTRUEncrypt

Input: m = mN−1, ...,m0; h = hN−1, ..., h0; (tu−1, ..., t0);
Output: e = eN−1, ..., e0 = hr +m mod q;
1: e(0) := m
2: for j := 1 to u do
3: for i := 0 to N − 1 do
4: if tj−1 = 00 then

5: e
(j)
i := e

(j−1)
i+1 mod N

6: else if tj−1 = 10 then

7: e
(j)
i := e

(j−1)
i+3 mod N

8: else if tj−1 = 01 then

9: e
(j)
i := e

(j−1)
i+1 mod N + hi+1 mod N mod q

10: else
11: e

(j)
i := e

(j−1)
i+1 mod N − hi+1 mod N mod q

12: end if
13: end for
14: end for
15: return e := e(u)

48

eN−1 eN−2 e1 e0

hN−1 hN−2 h1 h0

b b b

b b b

b b b

tu−1, ..., t0

eN−3

hN−3

e3

e2

b b b b b

Fig. 5.10: Multiplier II Based NTRUEncrypt

This multiplier contains N registers and N arithmetic units in total. The registers

e = (eN−1, ..., e0) are initially loaded with m = (mN−1, ...,m0). When the operation

starts, each ti is scanned during one clock cycle. After u clock cycles, the encryption

result will be stored in the registers e = (eN−1, ..., e0).

5.2.4 Implementation of Multiplier II

In our FPGA implementation, the following tools are used.

• Quartus II v14.1 (64-bit) Software

• ModelSim-Altera Software

Our target device is Arria V 5AGXFB3H4F35I3 and we use Verilog HDL as our

design language.

Implementation Results

The implementation results are shown in Table 5.10.

49

Table 5.10: Simulation Results for Different Parameter Sets

Security
Level

Parameter set #ALM #Register #Cycles FMax Latency

112
ees401ep1 6,888 8,826 381 121.25 MHz 3.14 µs
ees541ep1 9,256 11,906 422 121.76 MHz 3.47 µs
ees659ep1 11,267 14,502 489 113.57 MHz 4.31 µs

128
ees449ep1 7,731 9,882 431 120.12 MHz 3.59 µs
ees613ep1 10,469 13,490 478 113.09 MHz 4.23 µs
ees761ep1 13,023 16,746 562 108.70 MHz 5.17 µs

192
ees677ep1 11,551 14,898 620 118.38 MHz 5.24 µs
ees887ep1 15,163 19,518 693 102.30 MHz 6.77 µs
ees1087ep1 18,613 23,918 806 103.01 MHz 7.82 µs

256
ees1087ep2 18,613 23,918 872 103.01 MHz 8.47 µs
ees1171ep1 19,964 25,766 913 103.79 MHz 8.80 µs
ees1499ep1 25,543 32,982 1,102 97.73 MHz 11.28 µs

Comparison

For each security level, we choose one parameter set for comparison.

The comparison results for security level 112 are shown in Table 5.11.

Table 5.11: Security Level 112

Work
Parameter

Set
#ALM(S1) #Register(S2) Latency(T) (S1 + S2)× T

[10] ees401ep1 4,052 9,638 6.37 µs 176.74%
[11] ees401ep1 837 1,165 53.43 µs 216.79%
[12] ees401ep1 15,662 8,838 4.13 µs 205.07%
[15] ees401ep1 4,636 8,826 3.30 µs 90.03%
[16] ees401ep1 9,044 8,826 3.07 µs 111.19%

Multiplier II ees401ep1 6,888 8,826 3.14 µs 100%

It can be seen from the table that latency of Multiplier II is the second lowest

in comparison. Although [16] performs better than Multiplier II in terms of latency,

Multiplier II has better area-latency-product. Area-latency-product of Multiplier II

is only 89.94%, compared to [16].

The comparison results for security level 128 are shown in Table 5.12.

50

Table 5.12: Security Level 128

Work
Parameter

Set
#ALM(S1) #Register(S2) Latency(T) (S1 + S2)× T

[10] ees449ep1 4,523 10,793 7.88 µs 190.87%
[11] ees449ep1 837 1,165 59.82 µs 189.40%
[12] ees449ep1 17,527 9,884 4.99 µs 216.32%
[15] ees449ep1 5,188 9,882 3.69 µs 87.95%
[16] ees449ep1 10,124 9,882 3.53 µs 111.69%

Multiplier II ees449ep1 7,731 9,882 3.59 µs 100%

It can be seen from the table that latency of Multiplier II is the second lowest in

comparison. Though [16] outperforms Multiplier II in terms of latency, Multiplier II

has better area-latency-product. Area-latency-product of Multiplier II is only 89.53%,

compared to [16].

The comparison results for security level 192 are shown in Table 5.13.

Table 5.13: Security Level 192

Work
Parameter

Set
#ALM(S1) #Register(S2) Latency(T) (S1 + S2)× T

[10] ees677ep1 6,740 16,266 11.24 µs 186.58%
[11] ees677ep1 837 1,165 140.14 µs 202.44%
[12] ees677ep1 26,423 14,900 6.37 µs 189.93%
[15] ees677ep1 7,810 14,898 5.64 µs 92.41%
[16] ees677ep1 15,254 14,898 5.18 µs 112.70%

Multiplier II ees677ep1 11,551 14,898 5.24 µs 100%

It can be seen from the table that latency of Multiplier II is the second lowest

in comparison. Although [16] performs better than Multiplier II in terms of latency,

Multiplier II has better area-latency-product. Area-latency-product of Multiplier II

is only 88.73%, compared to [16].

The comparison results for security level 256 are shown in Table 5.14.

51

Table 5.14: Security Level 256

Work
Parameter

Set
#ALM(S1) #Register(S2) Latency(T) (S1 + S2)× T

[10] ees1087ep2 10,748 26,105 19.58 µs 200.31%
[11] ees1087ep2 837 1,165 353.41 µs 196.41%
[12] ees1087ep2 42,427 23,930 6.03 µs 111.07%
[15] ees1087ep2 12,526 23,918 10.45 µs 105.72%
[16] ees1087ep2 24,480 23,918 7.62 µs 102.37%

Multiplier II ees1087ep2 18,613 23,918 8.47 µs 100%

It can be seen from the table that latency of Multiplier II is the third lowest

in comparison. Though [12] and [16] outperform Multiplier II in terms of latency,

Multiplier II has better area-latency-product. Area-latency-product of Multiplier II

is only 90.03% and 97.68%, compared to [12] and [16], respectively.

5.3 Proposed Multiplier III

In this section, a truncated polynomial ring multiplication architecture is proposed

for NTRUEncrypt. Firstly, we introduce some basic idea for our proposed archi-

tecture. Then, we propose an arithmetic unit. Next, a multiplier architecture is

proposed, which is called Multiplier III. Finally, the FPGA implementation results

and a comparison of the proposed work with several existing works are given.

5.3.1 General Idea

In Multiplier II, we use two bits to encode the control input ti and four encoding

states of two bits are fully used.

In this new design, we extend the control input ti from two bits to three bits, thus,

we can obtain eight encoding states in total.

Basically, our proposed architecture is based on the idea that a considerable re-

duction in number of cycles can be achieved if different coefficient pairs in r(x) can

be processed during one clock cycle. Hence, we are required to find out how many co-

52

efficient pairs meet the certain requirement. Specifically, we are supposed to compute

the number of cycles for different parameter sets.

The detailed encoding of ti is shown in Table 5.16. In such encoding, rj represents

the jth coefficient in r(x) and we are supposed to scan each coefficient in r(x) when

we encode ti. Note that such encoding does not contain coefficients of one zero or

two consecutive zeros in r(x), we are required to calculate a phase-shift value during

the last scan. There are totally three circumstances. If the last scan is one zero, no

clock cycle will be utilized and the phase-shift value will be one. If the last scan is

two consecutive zeros, no clock cycle will be utilized and the phase-shift value will be

two. For the rest, number of cycles will be added by one and the phase-shift value

will be zero. The phase-shift value will be used when the final result is read out and

it will decide the location of the most significant coefficient of the encryption result

polynomial.

According to Table 5.16, we can compute the number of cycles for each parameter

set. Several steps are supposed to be followed. First, we randomly generate one

hundred sets of polynomial r(x) for a certain parameter set. Then, for each generated

polynomial r(x), we start to encode r(x) = (rN−1, ..., r0) to obtain (tu−1, ..., t0). Next,

we count the number of ti for each polynomial set. At last, we compute the average

of the number of ti, which is the number of cycles we are looking for.

Applying these steps to each parameter set, we can obtain the number of cycles

for all parameter sets, which is given in Table 5.15.

53

Table 5.15: Average Number of Cycles for Different Parameter Sets

Security
Level

Parameter set N p q dr #Cycles

112
ees401ep1 401 3 2048 113 246
ees541ep1 541 3 2048 49 196
ees659ep1 659 3 2048 38 213

128
ees449ep1 449 3 2048 134 286
ees613ep1 613 3 2048 55 222
ees761ep1 761 3 2048 42 243

192
ees677ep1 677 3 2048 157 367
ees887ep1 887 3 2048 81 323
ees1087ep1 1087 3 2048 63 350

256
ees1087ep2 1087 3 2048 120 420
ees1171ep1 1171 3 2048 106 424
ees1499ep1 1499 3 2048 79 473

5.3.2 Proposed Arithmetic Unit

In this new design of arithmetic unit, the inputs ek+1, ek+2, ek+3, ek+4 and hk+1 are

all encoded in n = [log2 q] bits while the control input ti is encoded in three bits. The

output ek is also encoded in n = [log2 q] bits. The proposed arithmetic unit is shown

in Fig.5.11 and the operation table is given in Table 5.16. There is no redundant

state in such design, as eight states of three bits are fully used.

n

n

n

n

3

ek

ek+1

hk+1

ek+2

ti

n
ek+3

n
ek+4

Fig. 5.11: Proposed Arithmetic Unit

54

Table 5.16: Operations Supported with the Arithmetic Unit

rj, rj+1, rj+2, rj+3 Input ti (t
(i)
2 t

(i)
1 t

(i)
0) Output ek

0, 0, 0, 0 000 ek+4

0, 0, 0,±1 001 ek+3

0, 0, 1,× 010 ek+3 + hk+1 mod q
0, 0,−1,× 011 ek+3 − hk+1 mod q
0, 1,×,× 100 ek+2 + hk+1 mod q

0,−1,×,× 101 ek+2 − hk+1 mod q
1,×,×,× 110 ek+1 + hk+1 mod q
−1,×,×,× 111 ek+1 − hk+1 mod q

The corresponding algorithm for this arithmetic unit is proposed in Algorithm

5.6.

Algorithm 5.6 Proposed Arithmetic Unit

Input: el = (e
(l)
n−1...e

(l)
0)2 (l = k + 1, k + 2, k + 3, k + 4); hk+1 = (h

(k+1)
n−1 ...h

(k+1)
0)2;

ti = (t
(i)
2 t

(i)
1 t

(i)
0)2;

Output: ek = (e
(k)
n−1...e

(k)
0)2;

1: if t
(i)
2 t

(i)
1 = 00 then

2: if t
(i)
0 = 0 then

3: (e
(k)
n−1...e

(k)
0) := (e

(k+4)
n−1 ...e

(k+4)
0)

4: else
5: (e

(k)
n−1...e

(k)
0) := (e

(k+3)
n−1 ...e

(k+3)
0)

6: end if
7: else
8: if t

(i)
0 = 1 then

9: (h
(k+1)
n−1 ...h

(k+1)
0) := −(h

(k+1)
n−1 ...h

(k+1)
0)

10: end if
11: if t

(i)
2 t

(i)
1 = 01 then

12: (e
(k)
n−1...e

(k)
0) := (e

(k+3)
n−1 ...e

(k+3)
0) + (h

(k+1)
n−1 ...h

(k+1)
0)

13: else if t
(i)
2 t

(i)
1 = 11 then

14: (e
(k)
n−1...e

(k)
0) := (e

(k+1)
n−1 ...e

(k+1)
0) + (h

(k+1)
n−1 ...h

(k+1)
0)

15: else
16: (e

(k)
n−1...e

(k)
0) := (e

(k+2)
n−1 ...e

(k+2)
0) + (h

(k+1)
n−1 ...h

(k+1)
0)

17: end if
18: end if

The corresponding architecture for this arithmetic unit is shown in Fig.5.12.

55

MUX 01

MUX0 1 MUX 011110

n-bit Modular Adder

MUX 0001/11/10

e
(k+4)
n−1 ...e

(k+4)
0h

(k+1)
n−1 ...h

(k+1)
0 e

(k+3)
n−1 ...e

(k+3)
0e

(k+1)
n−1 ...e

(k+1)
0e

(k+2)
n−1 ...e

(k+2)
0

t
(i)
2 t

(i)
1t

(i)
0

t
(i)
2 t

(i)
1

t
(i)
0

e
(k)
n−1...e

(k)
0

n

n

n

n

n

n

n n n n

n

1 2

1

2

Fig. 5.12: Proposed Arithmetic Unit Architecture

5.3.3 Proposed Multiplier III for Encryption

Based on our proposed arithmetic unit, we propose a multiplier architecture to im-

plement NTRUEncrypt. Before the computation, we are required to encode r(x) =

(rN−1, ..., r0) to obtain (tu−1, ..., t0), where each ti is encoded in three bits. Then, each

ti is treated as a control input for one clock cycle.

The detailed encryption algorithm is shown in Algorithm 5.7. Three inputs, in-

cluding the public key h(x), the message polynomial m(x) and the generated sequence

(tu−1, ..., t0), are required to obtain the encryption result e(x) with N coefficients. The

corresponding architecture is shown in Fig.5.13.

56

Algorithm 5.7 Encryption in NTRUEncrypt

Input: m = mN−1, ...,m0; h = hN−1, ..., h0; (tu−1, ..., t0);
Output: e = eN−1, ..., e0 = hr +m mod q;
1: e(0) := m
2: for j := 1 to u do
3: for i := 0 to N − 1 do
4: if tj−1 = 000 then

5: e
(j)
i := e

(j−1)
i+4 mod N

6: else if tj−1 = 001 then

7: e
(j)
i := e

(j−1)
i+3 mod N

8: else if tj−1 = 010 then

9: e
(j)
i := e

(j−1)
i+3 mod N + hi+1 mod N mod q

10: else if tj−1 = 011 then

11: e
(j)
i := e

(j−1)
i+3 mod N − hi+1 mod N mod q

12: else if tj−1 = 100 then

13: e
(j)
i := e

(j−1)
i+2 mod N + hi+1 mod N mod q

14: else if tj−1 = 101 then

15: e
(j)
i := e

(j−1)
i+2 mod N − hi+1 mod N mod q

16: else if tj−1 = 110 then

17: e
(j)
i := e

(j−1)
i+1 mod N + hi+1 mod N mod q

18: else
19: e

(j)
i := e

(j−1)
i+1 mod N − hi+1 mod N mod q

20: end if
21: end for
22: end for
23: return e := e(u)

eN−1 eN−2 e1 e0

hN−1 hN−2 h1 h0

tu−1, ..., t0

e2
e3
e4

b b b

b b b

b b b

b b b

b b

b

b b

b

b

b

b

b

b b

Fig. 5.13: Multiplier III Based NTRUEncrypt

57

Basically, this design requires N registers and N arithmetic units. The registers

e = (eN−1, ..., e0) are initially loaded with m = (mN−1, ...,m0). When the operation

starts, each ti is scanned during one clock cycle. After u clock cycles, the phase-

shift value is used to decide the location of the most significant coefficient of the

encryption result. If the phase-shift value is one, the encryption result will be stored

in the registers e = (e0, eN−1, ..., e1). If the phase-shift value is two, the encryption

result will be stored in the registers e = (e1, e0, eN−1, ..., e2). If the phase-shift value

is zero, the encryption result will be stored in the registers e = (eN−1, ..., e0).

5.3.4 Implementation of Multiplier III

In our FPGA implementation, the following tools are used.

• Quartus II v14.1 (64-bit) Software

• ModelSim-Altera Software

Our target device is Arria V 5AGXFB3H4F35I3 and we use Verilog HDL as our

design language.

Implementation Results

The implementation results are shown in Table 5.17.

58

Table 5.17: Simulation Results for Different Parameter Sets

Security
Level

Parameter set #ALM #Register #Cycles FMax Latency

112
ees401ep1 9,029 8,826 246 110.53 MHz 2.23 µs
ees541ep1 12,185 11,906 196 106.04 MHz 1.85 µs
ees659ep1 14,880 14,502 213 110.47 MHz 1.93 µs

128
ees449ep1 10,155 9,882 286 111.26 MHz 2.57 µs
ees613ep1 13,799 13,490 222 106.18 MHz 2.09 µs
ees761ep1 17,147 16,746 243 105.54 MHz 2.30 µs

192
ees677ep1 15,343 14,898 367 108.93 MHz 3.37 µs
ees887ep1 19,982 19,518 323 100.50 MHz 3.21 µs
ees1087ep1 24,469 23,918 350 103.04 MHz 3.40 µs

256
ees1087ep2 24,469 23,918 420 103.04 MHz 4.08 µs
ees1171ep1 26,363 25,766 424 101.65 MHz 4.17 µs
ees1499ep1 33,749 32,982 473 98.98 MHz 4.78 µs

Comparison

For each security level, we choose one parameter set for comparison.

The comparison results for security level 112 are shown in Table 5.18.

Table 5.18: Security Level 112

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees401ep1 4,052 9,638 401 62.95 MHz 6.37 µs
[11] ees401ep1 837 1,165 3,617 67.69 MHz 53.43 µs
[12] ees401ep1 15,662 8,838 227 55.00 MHz 4.13 µs
[15] ees401ep1 4,636 8,826 401 121.62 MHz 3.30 µs
[16] ees401ep1 9,044 8,826 349 113.67 MHz 3.07 µs

Multiplier III ees401ep1 9,029 8,826 246 110.53 MHz 2.23 µs

It can be seen from the table that latency of Multiplier III is the lowest among all

these similar works. Latency of Multiplier III is only 72.64%, compared to the fastest

among the existing similar works.

The comparison results for security level 128 are shown in Table 5.19.

59

Table 5.19: Security Level 128

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees449ep1 4,523 10,793 449 56.99 MHz 7.88 µs
[11] ees449ep1 837 1,165 4,049 67.69 MHz 59.82 µs
[12] ees449ep1 17,527 9,884 269 53.95 MHz 4.99 µs
[15] ees449ep1 5,188 9,882 449 121.69 MHz 3.69 µs
[16] ees449ep1 10,124 9,882 398 112.90 MHz 3.53 µs

Multiplier III ees449ep1 10,155 9,882 286 111.26 MHz 2.57 µs

It can be seen from the table that latency of Multiplier III is the lowest among all

these similar works. Latency of Multiplier III is only 72.80%, compared to the fastest

among the existing similar works.

The comparison results for security level 192 are shown in Table 5.20.

Table 5.20: Security Level 192

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees677ep1 6,740 16,266 677 60.24 MHz 11.24 µs
[11] ees677ep1 837 1,165 9,486 67.69 MHz 140.14 µs
[12] ees677ep1 26,423 14,900 317 49.74 MHz 6.37 µs
[15] ees677ep1 7,810 14,898 677 120.00 MHz 5.64 µs
[16] ees677ep1 15,254 14,898 551 106.30 MHz 5.18 µs

Multiplier III ees677ep1 15,343 14,898 367 108.93 MHz 3.37 µs

It can be seen from the table that latency of Multiplier III is the lowest among all

these similar works. Latency of Multiplier III is only 65.06%, compared to the fastest

among the existing similar works.

The comparison results for security level 256 are shown in Table 5.21.

60

Table 5.21: Security Level 256

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees1087ep2 10,748 26,105 1,087 55.53 MHz 19.58 µs
[11] ees1087ep2 837 1,165 23,922 67.69 MHz 353.41 µs
[12] ees1087ep2 42,427 23,930 276 45.75 MHz 6.03 µs
[15] ees1087ep2 12,526 23,918 1,087 104.06 MHz 10.45 µs
[16] ees1087ep2 24,480 23,918 717 94.07 MHz 7.62 µs

Multiplier III ees1087ep2 24,469 23,918 420 103.04 MHz 4.08 µs

It can be seen from the table that latency of Multiplier III is the lowest among all

these similar works. Latency of Multiplier III is only 67.66%, compared to the fastest

among the existing similar works.

61

6 PROPOSED MULTIPLIER IV FOR NTRUEN-

CRYPT

In this chapter, a truncated polynomial ring multiplication architecture is proposed

for NTRUEncrypt. Firstly, we give a brief introduction to side channel attacks.

Then, some basic idea for our proposed architecture is discussed. Next, we propose an

arithmetic unit for our design. After that, a multiplier architecture is proposed, which

is called Multiplier IV. Finally, the FPGA implementation results and a comparison

of the proposed work with several existing works are given.

6.1 Side Channel Attacks

With the development of modern cryptography, cryptosystems are facing unprece-

dented challenges in terms of security. Security attacks are one of the most crucial

challenges of all. There are mainly three types of attacks to NTRU based systems:

brute force key search, mathematical attacks and side channel attacks.

In cryptography, a side channel attack is any attack based on information gained

from the physical implementation of a cryptosystem, rather than brute force or the-

oretical weaknesses in the algorithms. Side channel attacks consist of several classes:

• Timing attack. It is an attack that measuring how much time various compu-

tations take to perform.

• Power monitoring attack. It is an attack that measuring power consumption by

the hardware during computation.

• Electromagnetic attack. It is an attack that measuring leaked electromagnetic

radiation.

• Differential fault analysis. It is an attack that secrets are discovered by intro-

ducing faults in a computation.

62

Among all these side channel attacks, power monitoring attack is supposed to be

the most common in hardware implementation of cryptosystems. Power monitoring

attack, also called power analysis attack, is a form of side channel attack in which

the attacker studies the power consumption of a cryptographic hardware device.

There are two kinds of power monitoring attacks: simple power analysis and dif-

ferential power analysis. Simple power analysis involves visually interpreting power

traces or graphs of electrical activity over time. Differential power analysis is a more

advanced form of power analysis which can allow an attacker to compute the in-

termediate values within cryptographic computations by statistically analyzing data

collected from multiple cryptographic operations.

6.2 General Idea

Since our proposed works are all based on hardware implementation, the power mon-

itoring attack is considered as the most threatening attack to our proposed archi-

tectures. In specific, in each clock cycle of our previous proposed works, operations

include shifting and addition (subtraction). Therefore, power consumption varies with

different clock cycles, which makes our architectures vulnerable to power monitoring

attacks.

In order to prevent architectures from power monitoring attacks, especially the

simple power analysis, we propose a new structure, which is called Multiplier IV.

In this new design, three bits are used to encode the control input ti and thus, eight

encoding states can be obtained. The major difference is that in this architecture,

computation in each clock cycle only contains one addition (subtraction) operation.

Therefore, the power cost for each clock cycle is supposed to be the same and it

is difficult for attackers to study the power consumption. Such design makes this

proposed work resistant to power monitoring attacks.

The detailed encoding of ti is shown in Table 6.2. In this scheme, we assume that

63

r(x) does not contain more than three consecutive zeros. In such encoding, rj repre-

sents the jth coefficient in r(x) and we are supposed to scan each coefficient in r(x)

when we encode ti. Note that such encoding does not contain coefficients of one zero,

two consecutive zeros and three consecutive zeros in r(x), we are required to calculate

a phase-shift value during the last scan. There are totally four circumstances. If the

last scan is one zero, no clock cycle will be utilized and the phase-shift value will be

one. If the last scan is two consecutive zeros, no clock cycle will be utilized and the

phase-shift value will be two. If the last scan is three consecutive zeros, no clock cycle

will be utilized and the phase-shift value will be three. For the rest, clock cycles will

be added by one and the phase-shift value will be zero. The phase-shift value will

be used when the final result is read out and it will decide the location of the most

significant coefficient of the encryption result polynomial.

Then, we are supposed to compute the number of cycles for different parameter

sets. However, since we have a prerequisite for the number of consecutive zeros

in r(x), most of the parameter sets are not qualified due to their large number of

zero coefficients. Specifically, only three of twelve can be used for our new design:

ees401ep1, ees449ep1 and ees677ep1. According to Table 6.2, since each encoding is

ended with a non-zero coefficient, the number of cycles is equivalent to the number

of non-zero coefficients in r(x). Hence, we can obtain the number of cycles for these

three parameter sets, which is given in Table 6.1.

Table 6.1: Average Number of Cycles for Different Parameter Sets

Security
Level

Parameter set N p q dr #Cycles

112 ees401ep1 401 3 2048 113 226
128 ees449ep1 449 3 2048 134 268
192 ees677ep1 677 3 2048 157 314

64

6.3 Proposed Arithmetic Unit

In our new arithmetic unit, the inputs ek+1, ek+2, ek+3, ek+4 and hk+1 are all encoded

in n = [log2 q] bits while the control input ti is encoded in three bits. The output ek

is also encoded in n = [log2 q] bits. The proposed arithmetic unit is shown in Fig.6.1

and the operation table is given in Table 6.2. There is no redundant state in such

design, as eight states of three bits are fully used.

n

n

n

n

3

ek

ek+1

hk+1

ek+2

ti

n
ek+3

n
ek+4

Fig. 6.1: Proposed Arithmetic Unit

Table 6.2: Operations Supported with the Arithmetic Unit

rj, rj+1, rj+2, rj+3 Input ti (t
(i)
2 t

(i)
1 t

(i)
0) Output ek

0, 0, 0, 1 000 ek+4 + hk+1 mod q
0, 0, 0,−1 001 ek+4 − hk+1 mod q
0, 0, 1,× 010 ek+3 + hk+1 mod q

0, 0,−1,× 011 ek+3 − hk+1 mod q
0, 1,×,× 100 ek+2 + hk+1 mod q

0,−1,×,× 101 ek+2 − hk+1 mod q
1,×,×,× 110 ek+1 + hk+1 mod q
−1,×,×,× 111 ek+1 − hk+1 mod q

The corresponding algorithm for this arithmetic unit is proposed in Algorithm

6.1.

65

Algorithm 6.1 Proposed Arithmetic Unit

Input: el = (e
(l)
n−1...e

(l)
0)2 (l = k + 1, k + 2, k + 3, k + 4); hk+1 = (h

(k+1)
n−1 ...h

(k+1)
0)2;

ti = (t
(i)
2 t

(i)
1 t

(i)
0)2;

Output: ek = (e
(k)
n−1...e

(k)
0)2;

1: if t
(i)
0 = 1 then

2: (h
(k+1)
n−1 ...h

(k+1)
0) := −(h

(k+1)
n−1 ...h

(k+1)
0)

3: end if
4: if t

(i)
2 t

(i)
1 = 00 then

5: (e
(k)
n−1...e

(k)
0) := (e

(k+4)
n−1 ...e

(k+4)
0) + (h

(k+1)
n−1 ...h

(k+1)
0)

6: else if t
(i)
2 t

(i)
1 = 01 then

7: (e
(k)
n−1...e

(k)
0) := (e

(k+3)
n−1 ...e

(k+3)
0) + (h

(k+1)
n−1 ...h

(k+1)
0)

8: else if t
(i)
2 t

(i)
1 = 11 then

9: (e
(k)
n−1...e

(k)
0) := (e

(k+1)
n−1 ...e

(k+1)
0) + (h

(k+1)
n−1 ...h

(k+1)
0)

10: else
11: (e

(k)
n−1...e

(k)
0) := (e

(k+2)
n−1 ...e

(k+2)
0) + (h

(k+1)
n−1 ...h

(k+1)
0)

12: end if

The architecture for this arithmetic unit is shown in Fig.6.2.

MUX0 1 MUX00 01 11 10

n-bit Modular Adder

t
(i)
0 t

(i)
2 t

(i)
1

e
(k)
n−1...e

(k)
0

e
(k+4)
n−1 ...e

(k+4)
0 e

(k+3)
n−1 ...e

(k+3)
0 e

(k+1)
n−1 ...e

(k+1)
0 e

(k+2)
n−1 ...e

(k+2)
0h

(k+1)
n−1 ...h

(k+1)
0

n

1 2

n

n

n

n n n n

n

Fig. 6.2: Proposed Arithmetic Unit Architecture

66

6.4 Proposed Multiplier IV for Encryption

Based on our proposed arithmetic unit, a multiplier architecture is proposed to im-

plement NTRUEncrypt. Before the computation, we are required to encode r(x) =

(rN−1, ..., r0) to obtain (tu−1, ..., t0), where each ti has three bits. Then, each ti is

treated as a control input for one clock cycle.

The detailed encryption algorithm is shown in 6.2. Three inputs, including the

public key h(x), the message polynomialm(x) and the generated sequence (tu−1, ..., t0),

are required to obtain the encryption result e(x) with N coefficients. The correspond-

ing architecture is given in Fig.6.3.

Algorithm 6.2 Encryption in NTRUEncrypt

Input: m = mN−1, ...,m0; h = hN−1, ..., h0; (tu−1, ..., t0);
Output: e = eN−1, ..., e0 = hr +m mod q;
1: e(0) := m
2: for j := 1 to u do
3: for i := 0 to N − 1 do
4: if tj−1 = 000 then

5: e
(j)
i := e

(j−1)
i+4 mod N + hi+1 mod N mod q

6: else if tj−1 = 001 then

7: e
(j)
i := e

(j−1)
i+4 mod N − hi+1 mod N mod q

8: else if tj−1 = 010 then

9: e
(j)
i := e

(j−1)
i+3 mod N + hi+1 mod N mod q

10: else if tj−1 = 011 then

11: e
(j)
i := e

(j−1)
i+3 mod N − hi+1 mod N mod q

12: else if tj−1 = 100 then

13: e
(j)
i := e

(j−1)
i+2 mod N + hi+1 mod N mod q

14: else if tj−1 = 101 then

15: e
(j)
i := e

(j−1)
i+2 mod N − hi+1 mod N mod q

16: else if tj−1 = 110 then

17: e
(j)
i := e

(j−1)
i+1 mod N + hi+1 mod N mod q

18: else
19: e

(j)
i := e

(j−1)
i+1 mod N − hi+1 mod N mod q

20: end if
21: end for
22: end for
23: return e := e(u)

67

eN−1 eN−2 e1 e0

hN−1 hN−2 h1 h0

tu−1, ..., t0

e2
e3
e4

b b b

b b b

b b b

b b b

b b

b

b b

b

b

b

b

b

b b

Fig. 6.3: Multiplier IV Based NTRUEncrypt

Our new design requires N registers and N arithmetic units totally. The registers

e = (eN−1, ..., e0) are initially loaded with m = (mN−1, ...,m0). When the operation

starts, each ti is scanned during one clock cycle. After u clock cycles, the phase-

shift value is used to decide the location of the most significant coefficient of the

encryption result. If the phase-shift value is one, the encryption result will be stored

in the registers e = (e0, eN−1, ..., e1). If the phase-shift value is two, the encryption

result will be stored in the registers e = (e1, e0, eN−1, ..., e2). If the phase-shift value is

three, the encryption result will be stored in the registers e = (e2, e1, e0, eN−1, ..., e3).

If the phase-shift value is zero, the encryption result will be stored in the registers

e = (eN−1, ..., e0).

6.5 Implementation of Multiplier IV

In our FPGA implementation, the following tools are used.

• Quartus II v14.1 (64-bit) Software

• ModelSim-Altera Software

68

Our target device is Arria V 5AGXFB3H4F35I3 and we use Verilog HDL as our

design language.

Implementation Results

The implementation results are shown in Table 6.3.

Table 6.3: Simulation Results for Different Parameter Sets

Security
Level

Parameter set #ALM #Register #Cycles FMax Latency

112 ees401ep1 9,026 8,826 226 118.41 MHz 1.91 µs
128 ees449ep1 10,105 9,882 268 117.81 MHz 2.27 µs
192 ees677ep1 15,235 14,898 314 119.50 MHz 2.63 µs

Comparison

The comparison results for security level 112 are shown in Table 6.4.

Table 6.4: Security Level 112

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees401ep1 4,052 9,638 401 62.95 MHz 6.37 µs
[11] ees401ep1 837 1,165 3,617 67.69 MHz 53.43 µs
[12] ees401ep1 15,662 8,838 227 55.00 MHz 4.13 µs
[15] ees401ep1 4,636 8,826 401 121.62 MHz 3.30 µs
[16] ees401ep1 9,044 8,826 349 113.67 MHz 3.07 µs

Multiplier IV ees401ep1 9,026 8,826 226 118.41 MHz 1.91 µs

It can be seen from the table that compared to all the existing works, Multiplier

IV has the least number of cycles. Furthermore, the highest speed can be achieved

by Multiplier IV. Latency of Multiplier IV is only 62.21%, compared to the fastest of

existing works.

The comparison results for security level 128 are given in Table 6.5.

69

Table 6.5: Security Level 128

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees449ep1 4,523 10,793 449 56.99 MHz 7.88 µs
[11] ees449ep1 837 1,165 4,049 67.69 MHz 59.82 µs
[12] ees449ep1 17,527 9,884 269 53.95 MHz 4.99 µs
[15] ees449ep1 5,188 9,882 449 121.69 MHz 3.69 µs
[16] ees449ep1 10,124 9,882 398 112.90 MHz 3.53 µs

Multiplier IV ees449ep1 10,105 9,882 268 117.81 MHz 2.27 µs

It can be seen from the table that compared to all the existing works, Multiplier

IV has the least number of cycles. Moreover, the highest speed can be achieved.

Latency of Multiplier IV is only 64.31%, compared to the fastest of existing works.

The comparison results for security level 192 are presented in Table 6.6.

Table 6.6: Security Level 192

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees677ep1 6,740 16,266 677 60.24 MHz 11.24 µs
[11] ees677ep1 837 1,165 9,486 67.69 MHz 140.14 µs
[12] ees677ep1 26,423 14,900 317 49.74 MHz 6.37 µs
[15] ees677ep1 7,810 14,898 677 120.00 MHz 5.64 µs
[16] ees677ep1 15,254 14,898 551 106.30 MHz 5.18 µs

Multiplier IV ees677ep1 15,235 14,898 314 119.50 MHz 2.63 µs

It can be seen from the table that compared to all the existing works, Multiplier

IV has the least number of cycles. Moreover, the highest speed can be achieved.

Latency of Multiplier IV is only 50.77%, compared to the fastest of existing works.

70

7 CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In this thesis, four efficient multiplication architectures for truncated polynomial ring

are proposed. All these architectures can be applied to NTRUEncrypt based systems.

First of all, Multiplier I is proposed to implement NTRUEncrypt. Multiplier I

takes advantage of x2-net architecture, which makes it possible to handle two con-

secutive coefficients in the control input polynomial during one clock cycle. Thus,

number of cycles for this architecture is fixed. Another merit of this architecture is

that we are not required to scan and encode the control input polynomial before the

computation. The FPGA simulation results show that compared with all the existing

works, Multiplier I has the best performance in terms of latency. For different security

levels 112-bit, 128-bit, 192-bit, and 256-bit, the latency of the proposed multiplier is

only 63.52%, 60.62%, 61.20%, and 93.53%, compared to the lowest latency among

the existing similar works.

Then, we propose Multiplier II to implement NTRUEncrypt. It takes advantage

of three consecutive zeros in polynomial coefficients by re-coding the polynomial r(x).

It can be seen from the FPGA simulation results that Multiplier II is the second best

in speed compared to existing works, but has better area-latency-product compared

to the fastest existing work for the first set of parameters ees401ep1, ees449ep1,

ees677ep1, at security level 112-bit, 128-bit and 192-bit, respectively.

Next, Multiplier III is given to implement NTRUEncrypt. It takes advantage of

consecutive zeros in polynomial coefficients by re-coding the polynomial r(x). It can

be seen from the FPGA simulation results that it is faster than any existing works in

comparison for all IEEE recommended parameter sets.

Finally, we propose Multiplier IV to implement NTRUEncrypt. It has an advan-

tage in resistance to side channel attacks. From the FPGA simulation results, it can

71

be seen that Multiplier IV outperforms all the existing works in terms of latency for

all three parameter sets ees401ep1, ees449ep1 and ees677ep1.

A comprehensive comparison list for all IEEE recommended parameter sets is

given in Appendix A.

7.2 Possible Future Works

Based on the research works on truncated polynomial ring multipliers presented in

this thesis, we propose the following research topics as possible future works.

• Multiplier IV can be applied to only three parameter sets due to some restric-

tions on the control input polynomial. Further improvement can be achieved if

we can extend this architecture to a new one that can be applied to all parameter

sets.

• Since the LTV homomorphic encryption scheme is regarded as a potential prac-

tical fully homomorphic encryption in cloud computing, it is possible for us to

propose a hardware implementation for such scheme.

72

REFERENCES

[1] W. G. of the C/MM Committee, “IEEE p1363.1 standard specification for public-

key cryptographic techniques based on hard problems over lattices,” 2009.

[2] D. Cabarcas, P. Weiden, and J. Buchmann, “On the efficiency of provably secure

NTRU,” in International Workshop on Post-Quantum Cryptography. Springer

International Publishing, 2014, pp. 22–39.

[3] P. S. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, and W. Whyte, “Choos-

ing NTRUEncrypt parameters in light of combined lattice reduction and mitm

approaches,” in International Conference on Applied Cryptography and Network

Security. Springer Berlin Heidelberg, 2009, pp. 437–455.

[4] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332,

1999.

[5] D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-quantum cryptography.

Springer Science & Business Media, 2009.

[6] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public

key cryptosystem,” in International Algorithmic Number Theory Symposium.

Springer Berlin Heidelberg, 1998, pp. 267–288.

[7] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stan-

ford University, 2009.

[8] D. Stehlé and R. Steinfeld, “Making NTRU as secure as worst-case problems

over ideal lattices,” in Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques. Springer Berlin Heidelberg, 2011, pp.

27–47.

73

[9] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty com-

putation on the cloud via multikey fully homomorphic encryption,” in Proceed-

ings of the forty-fourth annual ACM symposium on Theory of computing. ACM,

2012, pp. 1219–1234.

[10] D. V. Bailey, D. Coffin, A. Elbirt, J. H. Silverman, and A. D. Woodbury, “NTRU

in constrained devices,” in International Workshop on Cryptographic Hardware

and Embedded Systems. Springer Berlin Heidelberg, 2001, pp. 262–272.

[11] C. M. ORourke, “Efficient NTRU implementations,” Master’s thesis, Worcester

Polytechnic Institute, 2002.

[12] A. A. Kamal and A. M. Youssef, “An fpga implementation of the NTRUEn-

crypt cryptosystem,” in 2009 International Conference on Microelectronics-ICM.

IEEE, 2009, pp. 209–212.

[13] J.-P. Kaps, “Cryptography for ultra-low power devices,” Ph.D. dissertation,

Worcester Polytechnic Institute, 2006.

[14] A. C. Atici, L. Batina, J. Fan, I. Verbauwhede, and S. B. O. Yalcin, “Low-cost

implementations of NTRU for pervasive security,” in 2008 International Con-

ference on Application-Specific Systems, Architectures and Processors. IEEE,

2008, pp. 79–84.

[15] B. Liu and H. Wu, “Efficient architecture and implementation for NTRUEncrypt

system,” in 2015 IEEE 58th International Midwest Symposium on Circuits and

Systems (MWSCAS). IEEE, 2015, pp. 1–4.

[16] B. Liu, “Efficient architecture and implementation for NTRU based systems,”

Master’s thesis, University of Windsor, 2015.

74

[17] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management for iso-

lation enhanced cloud services,” in Proceedings of the 2009 ACM workshop on

Cloud computing security. ACM, 2009, pp. 77–84.

[18] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy

homomorphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169–

180, 1978.

[19] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental

poker keeping secret all partial information,” in Proceedings of the fourteenth

annual ACM symposium on Theory of computing. ACM, 1982, pp. 365–377.

[20] J. Feigenbaum and M. Merritt, “Open questions, talk abstracts, and summary

of discussions,” 1991.

[21] T. ElGamal, “A public key cryptosystem and a signature scheme based on dis-

crete logarithms,” in Workshop on the Theory and Application of Cryptographic

Techniques. Springer Berlin Heidelberg, 1984, pp. 10–18.

[22] P. Paillier, “Public-key cryptosystems based on composite degree residuosity

classes,” in International Conference on the Theory and Applications of Crypto-

graphic Techniques. Springer Berlin Heidelberg, 1999, pp. 223–238.

[23] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively

small key and ciphertext sizes,” in International Workshop on Public Key Cryp-

tography. Springer Berlin Heidelberg, 2010, pp. 420–443.

[24] C. Gentry and S. Halevi, “Fully homomorphic encryption without squashing

using depth-3 arithmetic circuits,” in Foundations of Computer Science (FOCS),

2011 IEEE 52nd Annual Symposium on. IEEE, 2011, pp. 107–109.

75

[25] C. Gentry and S. Halevi, “Implementing gentrys fully-homomorphic encryption

scheme,” in Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer Berlin Heidelberg, 2011, pp. 129–148.

[26] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,” De-

signs, codes and cryptography, vol. 71, no. 1, pp. 57–81, 2014.

[27] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic

encryption without bootstrapping,” in Proceedings of the 3rd Innovations in The-

oretical Computer Science Conference. ACM, 2012, pp. 309–325.

[28] Z. Brakerski, “Fully homomorphic encryption without modulus switching from

classical gapsvp,” in Advances in CryptologyCRYPTO 2012. Springer Berlin

Heidelberg, 2012, pp. 868–886.

[29] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning

with errors: Conceptually-simpler, asymptotically-faster, attribute-based,” in

Advances in CryptologyCRYPTO 2013. Springer Berlin Heidelberg, 2013, pp.

75–92.

[30] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption

from (standard) lwe,” SIAM Journal on Computing, vol. 43, no. 2, pp. 831–871,

2014.

[31] O. Regev, “On lattices, learning with errors, random linear codes, and cryptog-

raphy,” Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

76

APPENDIX A

The complete comparison results among our proposed works and some existing

works are listed as follows.

Table A.1: FPGA Results for ees401ep1, Security Level 112-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees401ep1 4,052 9,638 401 62.95 MHz 6.37 µs
[11] ees401ep1 837 1,165 3,617 67.69 MHz 53.43 µs
[12] ees401ep1 15,662 8,838 227 55.00 MHz 4.13 µs
[15] ees401ep1 4,636 8,826 401 121.62 MHz 3.30 µs
[16] ees401ep1 9,044 8,826 349 113.67 MHz 3.07 µs

Multiplier I ees401ep1 11,861 8,826 201 103.01 MHz 1.95 µs
Multiplier II ees401ep1 6,888 8,826 381 121.25 MHz 3.14 µs
Multiplier III ees401ep1 9,029 8,826 246 110.53 MHz 2.23 µs
Multiplier IV ees401ep1 9,026 8,826 226 118.41 MHz 1.91 µs

Table A.2: FPGA Results for ees541ep1, Security Level 112-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees541ep1 5,425 12,995 541 61.50 MHz 8.80 µs
[11] ees541ep1 837 1,165 5,959 67.69 MHz 88.03 µs
[12] ees541ep1 21,124 11,918 121 52.87 MHz 2.29 µs
[15] ees541ep1 6,246 11,906 541 122.02 MHz 4.43 µs
[16] ees541ep1 12,194 11,906 342 116.14 MHz 2.94 µs

Multiplier I ees541ep1 16,091 11,906 271 102.33 MHz 2.65 µs
Multiplier II ees541ep1 9,256 11,906 422 121.76 MHz 3.47 µs
Multiplier III ees541ep1 12,185 11,906 196 106.04 MHz 1.85 µs

Table A.3: FPGA Results for ees659ep1, Security Level 112-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees659ep1 6,572 15,832 659 59.43 MHz 11.09 µs
[11] ees659ep1 837 1,165 9,234 67.69 MHz 136.42 µs
[12] ees659ep1 25,726 14,514 107 51.08 MHz 2.09 µs
[15] ees659ep1 7,603 14,502 659 114.53 MHz 5.75 µs
[16] ees659ep1 14,850 14,502 386 106.92 MHz 3.61 µs

Multiplier I ees659ep1 19,573 14,502 330 105.96 MHz 3.11 µs
Multiplier II ees659ep1 11,267 14,502 489 113.57 MHz 4.31 µs
Multiplier III ees659ep1 14,880 14,502 213 110.47 MHz 1.93 µs

77

Table A.4: FPGA Results for ees449ep1, Security Level 128-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees449ep1 4,523 10,793 449 56.99 MHz 7.88 µs
[11] ees449ep1 837 1,165 4,049 67.69 MHz 59.82 µs
[12] ees449ep1 17,527 9,884 269 53.95 MHz 4.99 µs
[15] ees449ep1 5,188 9,882 449 121.69 MHz 3.69 µs
[16] ees449ep1 10,124 9,882 398 112.90 MHz 3.53 µs

Multiplier I ees449ep1 13,296 9,882 225 105.24 MHz 2.14 µs
Multiplier II ees449ep1 7,731 9,882 431 120.12 MHz 3.59 µs
Multiplier III ees449ep1 10,155 9,882 286 111.26 MHz 2.57 µs
Multiplier IV ees449ep1 10,105 9,882 268 117.81 MHz 2.27 µs

Table A.5: FPGA Results for ees613ep1, Security Level 128-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees613ep1 6,124 14,730 613 61.62 MHz 9.95 µs
[11] ees613ep1 837 1,165 7,977 67.69 MHz 117.85 µs
[12] ees613ep1 23,931 13,502 135 50.92 MHz 2.65 µs
[15] ees613ep1 7,075 13,490 613 115.12 MHz 5.32 µs
[16] ees613ep1 13,814 13,490 387 111.08 MHz 3.48 µs

Multiplier I ees613ep1 18,201 13,490 307 104.60 MHz 2.93 µs
Multiplier II ees613ep1 10,469 13,490 478 113.09 MHz 4.23 µs
Multiplier III ees613ep1 13,799 13,490 222 106.18 MHz 2.09 µs

Table A.6: FPGA Results for ees761ep1, Security Level 128-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees761ep1 7,571 18,282 761 59.53 MHz 12.78 µs
[11] ees761ep1 837 1,165 12,184 67.69 MHz 180.00 µs
[12] ees761ep1 29,707 16,758 120 49.61 MHz 2.42 µs
[15] ees761ep1 8,776 16,746 761 110.92 MHz 6.86 µs
[16] ees761ep1 17,144 16,746 443 109.14 MHz 4.06 µs

Multiplier I ees761ep1 22,459 16,746 381 103.33 MHz 3.69 µs
Multiplier II ees761ep1 13,023 16,746 562 108.70 MHz 5.17 µs
Multiplier III ees761ep1 17,147 16,746 243 105.54 MHz 2.30 µs

78

Table A.7: FPGA Results for ees677ep1, Security Level 192-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees677ep1 6,740 16,266 677 60.24 MHz 11.24 µs
[11] ees677ep1 837 1,165 9,486 67.69 MHz 140.14 µs
[12] ees677ep1 26,423 14,900 317 49.74 MHz 6.37 µs
[15] ees677ep1 7,810 14,898 677 120.00 MHz 5.64 µs
[16] ees677ep1 15,254 14,898 551 106.30 MHz 5.18 µs

Multiplier I ees677ep1 20,042 14,898 339 106.90 MHz 3.17 µs
Multiplier II ees677ep1 11,551 14,898 620 118.38 MHz 5.24 µs
Multiplier III ees677ep1 15,343 14,898 367 108.93 MHz 3.37 µs
Multiplier IV ees677ep1 15,235 14,898 314 119.50 MHz 2.63 µs

Table A.8: FPGA Results for ees887ep1, Security Level 192-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees887ep1 8,788 21,305 887 60.12 MHz 14.75 µs
[11] ees887ep1 837 1,165 15,974 67.69 MHz 235.99 µs
[12] ees887ep1 34,622 19,530 198 47.70 MHz 4.15 µs
[15] ees887ep1 10,226 19,518 887 106.24 MHz 8.35 µs
[16] ees887ep1 19,980 19,518 562 99.98 MHz 5.62 µs

Multiplier I ees887ep1 26,295 19,518 444 103.68 MHz 4.28 µs
Multiplier II ees887ep1 15,163 19,518 693 102.30 MHz 6.77 µs
Multiplier III ees887ep1 19,982 19,518 323 100.50 MHz 3.21 µs

Table A.9: FPGA Results for ees1087ep1, Security Level 192-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees1087ep1 10,748 26,105 1,087 55.53 MHz 19.58 µs
[11] ees1087ep1 837 1,165 23,922 67.69 MHz 353.41 µs
[12] ees1087ep1 42,427 23,930 177 47.19 MHz 3.75 µs
[15] ees1087ep1 12,526 23,918 1,087 104.06 MHz 10.45 µs
[16] ees1087ep1 24,480 23,918 637 94.07 MHz 6.77 µs

Multiplier I ees1087ep1 32,241 23,918 544 96.43 MHz 5.64 µs
Multiplier II ees1087ep1 18,613 23,918 806 103.01 MHz 7.82 µs
Multiplier III ees1087ep1 24,469 23,918 350 103.04 MHz 3.40 µs

79

Table A.10: FPGA Results for ees1087ep2, Security Level 256-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees1087ep2 10,748 26,105 1,087 55.53 MHz 19.58 µs
[11] ees1087ep2 837 1,165 23,922 67.69 MHz 353.41 µs
[12] ees1087ep2 42,427 23,930 276 45.75 MHz 6.03 µs
[15] ees1087ep2 12,526 23,918 1,087 104.06 MHz 10.45 µs
[16] ees1087ep2 24,480 23,918 717 94.07 MHz 7.62 µs

Multiplier I ees1087ep2 32,241 23,918 544 96.43 MHz 5.64 µs
Multiplier II ees1087ep2 18,613 23,918 872 103.01 MHz 8.47 µs
Multiplier III ees1087ep2 24,469 23,918 420 103.04 MHz 4.08 µs

Table A.11: FPGA Results for ees1171ep1, Security Level 256-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees1171ep1 11,568 28,121 1,171 59.28 MHz 19.75 µs
[11] ees1171ep1 837 1,165 28,112 67.69 MHz 415.31 µs
[12] ees1171ep1 45,703 25,778 261 44.60 MHz 5.85 µs
[15] ees1171ep1 13,491 25,766 1,171 108.31 MHz 10.81 µs
[16] ees1171ep1 26,370 25,766 740 93.48 MHz 7.92 µs

Multiplier I ees1171ep1 34,648 25,766 586 99.50 MHz 5.89 µs
Multiplier II ees1171ep1 19,964 25,766 913 103.79 MHz 8.80 µs
Multiplier III ees1171ep1 26,363 25,766 424 101.65 MHz 4.17 µs

Table A.12: FPGA Results for ees1499ep1, Security Level 256-bit

Work
Parameter

Set
#ALM #Register #Cycles FMax Latency

[10] ees1499ep1 14,755 35,989 1,499 51.87 MHz 28.90 µs
[11] ees1499ep1 837 1,165 44,978 67.69 MHz 664.47 µs
[12] ees1499ep1 58,507 32,994 228 42.95 MHz 5.31 µs
[15] ees1499ep1 17,263 32,982 1,499 103.68 MHz 14.46 µs
[16] ees1499ep1 33,750 32,982 866 96.99 MHz 8.93 µs

Multiplier I ees1499ep1 48,719 32,982 750 82.73 MHz 9.07 µs
Multiplier II ees1499ep1 25,543 32,982 1,102 97.73 MHz 11.28 µs
Multiplier III ees1499ep1 33,749 32,982 473 98.98 MHz 4.78 µs

80

VITA AUCTORIS

NAME: Ruiqing Dong

PLACE OF BIRTH: Shanghai, China

YEAR OF BIRTH: 1990

EDUCATION: East China Normal University, Shanghai, China
Bachelor of Engineering, Software Engineering 2009-
2013

University of Windsor, Windsor, ON, Canada
Master of Applied Science, Electrical and Computer En-
gineering 2014-2016

81

	University of Windsor
	Scholarship at UWindsor
	2016

	Efficient Multiplication Architectures for Truncated Polynomial Ring
	Ruiqing Dong
	Recommended Citation

	tmp.1477499409.pdf.8JdGn

