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ABSTRACT 

A new finite difference formulation, referred to as the Cartesian cut-stencil finite difference 

method (FDM), for discretization of partial differential equations (PDEs) in any complex physical 

domain is proposed in this dissertation. The method employs unique localized 1-D quadratic 

transformation functions to map non-uniform (uncut or cut) physical stencils to a uniform 

computational stencil. The transformation functions are uniquely determined by the coordinates 

of the points on the physical stencil. In its basic formulation, 2
nd

-order central differencing is used 

to approximate derivatives in the transformed PDEs. The resulting finite difference equations can 

be solved by classical iterative methods. 

In the case of a boundary node with a Dirichlet boundary condition, the prescribed value can be 

used directly in the calculations on the corresponding stencil adjacent to the boundary. However, 

for Neumann boundary nodes, discretization of the normal derivative in the Neumann condition is 

accomplished using one-sided approximations, producing an approximate value for the solution 

variable at the boundary. Then, the cut-stencil method allows stencils adjacent to boundaries to be 

treated in the same way as interior stencils, thus enabling finite difference calculations on 

arbitrarily complex domains. 

This new formulation can be combined with the higher-order compact Padé-Hermitian method to 

produce higher-order cut-stencil schemes. Three different Cartesian cut-stencil formulations 

based on local 4
th
-order approximations are proposed and analyzed. It has been shown that global 

4
th
-order accuracy can be achieved when the same order of accuracy is implemented at Neumann 

boundaries. 

Comparison of numerical results for some manufactured problems with the exact solution verifies 

the capability of the cut-stencil method to deal with PDEs in regular and irregular shaped 

domains. Cartesian cut-stencil FDM solutions are also obtained for some classical engineering 

benchmark problems, including Prandtl’s stress function, steady or unsteady heat conduction and 

flow in a lid-driven cavity.  

This dissertation demonstrates that the Cartesian cut-stencil finite difference method has many 

desirable features of a high-end numerical simulation code including simplicity in formulation, 

meshing and coding, higher-order accuracy, high-fidelity solutions, reliable error estimator,  

applicable in different science and engineering fields, and can solve complicated nonlinear PDEs 

in complex geometries. 

 

 

 

 

 

 



   

v 

 

DEDICATION 

This thesis is dedicated, in loving memory, to my father, Mohammadjavad, who passed away on 

September 23, 2014, while I was in the middle of my Ph.D. program. The importance of his 

desire to see me graduate is clear for me, but I, unfortunately, could not get the chance to share 

this news with him. His continuous support in all aspects of my life, along with his beautiful 

warm heart, made him my hero and role model. I am forever indebted to his efforts and kindness. 

His memory will be with me in every moment of my life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

vi 

 

ACKNOWLEDGEMENTS 

I would first like to express my sincere thanks and deep sense of gratitude to my main supervisor 

and adviser Dr. Ronald Barron, for his expertise, knowledge, invaluable guidance and continuous 

support during the course of this research. He was always available and enthusiastic to discuss the 

topics of the research. I can remember times during the first steps of this research when he was 

available to meet twice a day. His deep knowledge, along with his patience and kindness, made 

this research possible. Like his former students, I would like to state that “I could not have 

imagined having a better advisor and mentor for my graduate study”. Dr. Barron, thank you for 

all your guidance, your help and your motivation, which supported and encouraged me to aim for 

this goal.  

I also was very fortunate to work on my research with Dr. Ram Balachandar as my co-advisor. I 

am extremely grateful to him for his constant interest, invaluable support and knowledge during 

the course of my Ph.D. study at University of Windsor.  

I would like to express my appreciation to my committee members for their time to review my 

research. Their comments and feedback have been appreciated.  

I express my deepest thanks to all my friends and office mates for providing a friendly collegial 

environment in our research lab and for our group. I wish them all the best in all aspects of their 

life and endeavours. 

I take the opportunity to thank all my relatives for their support and encouragement during my 

education. I particularly would like to express my acknowledgment to my uncle, 

Mohammadjafar, and his family for their excellent cooperation with my family and their patience, 

especially throughout my father’s terminal illness.              

My foremost appreciation and acknowledgment are reserved for my mother, Afkham, for her 

effort and spiritual support in all parts of my life and during the course of my Ph.D. study. Her 

effort and dedication during my father’s illness made it possible for me to stay away from home 

and continue my education. I always felt the power of her moral help here, far away from my 

home. No words can express how much I owe to my mother and my deceased father. I am also 

extremely grateful to my sole brother, Navid, and his wife, Nafiseh, for the continuous 

encouragement and faithful energy they offered me for my research work. I will never forget their 

endeavours, cooperation and sense of responsibility in taking care of our parents when I did my 

research work at University of Windsor. This accomplishment would not have been possible 

without them. 

 

 

 

 

 

 



    

vii 

 

TABLE of CONTENTS 

AUTHOR’S DECLARATION of ORIGINALITY ........................................................................ iii 

ABSTRACT .................................................................................................................................... iv 

DEDICATION ................................................................................................................................. v 

ACKNOWLEDGEMENTS ............................................................................................................ vi 

LIST of TABLES ........................................................................................................................... xii 

LIST of FIGURES ........................................................................................................................ xvi 

NOMENCLATURE ................................................................................................................... xxiii 

LIST of ABBREVIATIONS ........................................................................................................ xxv 

CHAPTER 1: INTRODUCTION to PARTIAL DIFFERENTIAL EQUATIONS and 

NUMERICAL METHODS.............................................................................................................. 1 

1.1 Objective of the Chapter ...................................................................................................... 1 

1.2 Partial Differential Equations ............................................................................................... 1 

1.3 Finite Difference Method: Basic Definitions, Strengths, Limitations ................................. 2 

1.3.1 Discretization of Derivatives in FDM .................................................................................. 3 

1.3.2 Iterative Solution Algorithms ............................................................................................... 4 

1.3.3 Ghost Node Method for Neumann Boundary Condition Treatment in TFDM .................... 5 

1.4 Transformation of PDEs ...................................................................................................... 7 

1.5 Cartesian Grid ...................................................................................................................... 8 

1.6 Finite Volume Method: Basic Definition and Fundamentals............................................... 9 

1.7 Thesis Layout ..................................................................................................................... 11 

CHAPTER 2: FUNDAMENTALS and FORMULATIONS of CARTESIAN CUT-STENCIL 

FINITE DIFFERENCE METHOD ................................................................................................ 12 

2.1 Objective of the Chapter .................................................................................................... 12 

2.2 Model Equation and General Transformation Functions ................................................... 12 

2.3 Arbitrary Domains and Cartesian Grid .............................................................................. 13 

2.4 Quadratic Form of the Transformation Functions ............................................................. 13 

2.4.1 Mapping of an Arbitrary 5-point Stencil ............................................................................ 14 

2.4.2 Transformation and Discretization of the Model Convection-Diffusion Equation ............ 15 

2.5 Treatment of Boundary Nodes and Conditions .................................................................. 16 

2.5.1 Implementation for Curved Boundaries with Neumann Condition ................................... 20 

2.5.2 Treatment of Regular Boundary Nodes ............................................................................. 21 

2.5.3 Treatment of Irregular Boundary Nodes ............................................................................ 25 



    

viii 

 

2.6 Higher-Order Differencing ................................................................................................ 29 

2.6.1 5+4-point (4 Auxiliary Nodes) Stencil Formulation .......................................................... 30 

2.6.1.1 Evaluation of Metrics at Auxiliary Nodes of 5+4-point Stencil Formulation .................... 32 

2.6.1.2 Evaluation of the Governing Function at Auxiliary Nodes in the 5+4-point Stencil 

Formulation .................................................................................................................................... 35 

2.6.2 Higher-Order (HO) Padé-Hermitian Compact Cut-Stencil FD Formulation ..................... 36 

2.6.2.1 Approximation of First Derivatives in Compact Padé-Hermitian Finite Differencing ...... 37 

2.6.2.2 Approximation of Second Derivatives in Compact Padé-Hermitian Finite Differencing . 38 

2.6.3 Comparison of the Stencil of Higher-Order Compact (Implicit) and Explicit Finite 

Difference Methods ....................................................................................................................... 39 

2.6.4 Higher-Order Cut-Stencil Finite Difference Method (HO Cut-Stencil FDM) for 

Convection-Diffusion Equation ..................................................................................................... 40 

2.6.5 Higher-Order Cut-Stencil Finite Difference Method for Boundaries Nodes ..................... 47 

2.7 Cut-Stencil FD Formulation of Unsteady Model Equation ............................................... 49 

2.7.1 Explicit Forward in Time and Central in Space (FTCS) Formulation of the Cut-Stencil 

FDM ............................................................................................................................................ 50 

2.7.1.1 Stability Analysis for FTCS Formulation of Cut-Stencil FDM ......................................... 51 

2.7.2 Cut-Stencil FDM Formulation for Second-Order Wave Equation .................................... 53 

2.7.2.1 1st
-Order Accurate Approximation for First Temporal Derivative at Initial Time for 

Second-Order Wave Equation ....................................................................................................... 54 

2.7.2.2 2nd
-Order Accurate Approximation for First Temporal Derivative at Initial Time for 

Second-Order Wave Equation ....................................................................................................... 55 

2.7.2.3 Stability Analysis for Cut-Stencil Formulation of Second-Order Wave Equation ............ 56 

2.8 Chapter Summary .............................................................................................................. 56 

CHAPTER 3: CARTESIAN CUT-STENCIL FDM SOLUTIONS to MANUFACTURED 

PROBLEMS .................................................................................................................................. 58 

3.1 Objective of the Chapter .................................................................................................... 58 

3.2 Definition of Method (Code) Verification ......................................................................... 58 

3.2.1 Method of Manufactured Solutions (MMS) ...................................................................... 58 

3.3 Local Truncation Error (LTE) ............................................................................................ 59 

3.3.1 Temporal Local Truncation Error for FTCS Formulation ................................................. 62 

3.3.2 Procedure for Calculation of Spatial Local Truncation Error (LTE) ................................. 63 

3.4 Verification of Formal Accuracy of the Numerical Scheme .............................................. 64 

3.5 Cut-Stencil FDM Solution to Sample Problems Using MMS ........................................... 65 



    

ix 

 

3.5.1 Problem 1: Solution of Poisson Equation on a Square Domain with Dirichlet Boundary 

Conditions Using the 2
nd

-Order 5-point Cut-Stencil Formulation ................................................. 65 

3.5.2 Problem 2: Solution of Poisson Equation on a Square Domain a with Neumann Boundary 

Condition Using the 2
nd

-Order 5-point Cut-Stencil Formulation ................................................... 66 

3.5.3 Problem 3: Solution of Poisson Equation on a Square Domain with Combination of 

Neumann Conditions on More Than One Boundary Using 2
nd

-Order 5-point Cut-Stencil 

Formulation .................................................................................................................................... 69 

3.5.4 Problem 4: Solution of Convection-Diffusion Equation on Rectangular Domain Using 2
nd

-

Order 5-point Cut-Stencil Formulation .......................................................................................... 71 

3.5.5 Problem 5: 2
nd

-Order 5-point Cut-Stencil FD Solution of Laplace Equation on an 

Arbitrary, Irregular Shaped Domain .............................................................................................. 76 

3.5.6 Problem 6: 2
nd

-Order 5-point Cut-Stencil FD Solution of Convection-Diffusion Equation 

on an Arbitrary, Irregular Shaped Domain .................................................................................... 78 

3.5.7 Problem 7: Comparison of 5-point 2
nd

-Order and 5+4-point Stencil Formulations of Cut-

Stencil FDM to Solution of Poisson Equation in a Rectangular Domain ...................................... 80 

3.5.8 Problem 8: HO Cut-Stencil FDM1 Solution of PDEs in Rectangular and Irregular Shaped 

Domains ......................................................................................................................................... 83 

3.5.9 Problem 9: HO Cut-Stencil FDM2 Solution of PDEs in Rectangular and Irregular Shaped 

Domains ......................................................................................................................................... 87 

3.5.10 Problem 10: Cartesian Cut-Stencil FDM Solutions for Unsteady PDEs on Rectangular and 

Irregular Shaped Domains ............................................................................................................. 93 

3.5.11 Problem 11: Cut-Stencil FDM Solution for Second-Order Wave Equation on Rectangular 

and Irregular Shaped Domains ....................................................................................................... 97 

3.6 Chapter Summary ............................................................................................................ 101 

CHAPTER 4: CARTESIAN CUT-STENCIL FDM SOLUTIONS to SOLID MECHANICS and 

HEAT TRANSFER PROBLEMS ............................................................................................... 102 

4.1 Objective of the Chapter .................................................................................................. 102 

4.2 Application of Cut-Stencil FDM in Elasticity ................................................................. 102 

4.2.1 Stress Function of Torsion for Straight Bars .................................................................... 102 

4.2.2 Stress Function for Bending of Bars ................................................................................ 106 

4.3 Application of Cut-Stencil FDM to Heat Transfer Problems on Regular and Irregular 

Shaped Domains .......................................................................................................................... 108 

4.3.1 Steady Conduction Heat Transfer in a Rectangular Domain ........................................... 108 

4.3.2 Steady Conduction Heat Transfer in an Irregular Domain .............................................. 112 

4.3.3 Unsteady Heat Conduction in a Rectangular Domain ..................................................... 114 

4.3.4 Unsteady Heat Conduction in an Irregular Domain ......................................................... 116 

4.4 Chapter Summary ............................................................................................................ 118 



    

x 

 

CHAPTER 5: CUT-STENCIL FD FORMULATION for the SOLUTION of LID-DRIVEN 

CAVITY FLOW .......................................................................................................................... 119 

5.1 Objective of the Chapter .................................................................................................. 119 

5.2 Primitive Variable Formulation of the Navier-Stokes Equations .................................... 119 

5.3 Streamfunction-Vorticity Equations ................................................................................ 120 

5.4 Mapped Form of Streamfunction-Vorticity Equations and Boundary Conditions for Lid-

Driven Cavity Flow ...................................................................................................................... 120 

5.4.1 2
nd

-Order Discretization of Streamfunction-Vorticity Equations .................................... 122 

5.4.2 Higher-Order (HO) Discretization of Streamfunction-Vorticity Equations..................... 123 

5.4.2.1 Higher-Order Cut-Stencil Finite Differencing Method 1 (HO Cut-Stencil FDM1) for 

Streamfunction-Vorticity Equations ............................................................................................ 123 

5.4.2.2 Higher-Order Cut-Stencil Finite Differencing Method 2 (HO Cut-Stencil FDM2) for 

Streamfunction-Vorticity Equations ............................................................................................ 124 

5.4.3 Vorticity Boundary Condition Approximation ................................................................ 125 

5.5 Numerical Results of Cut-Stencil FDM for Square Lid-Driven Cavity Flow ................. 128 

5.5.1 Numerical Results for 2
nd

-Order Discretization of Streamfunction-Vorticity Equations 129 

5.5.1.1 𝑅𝑒 = 100  with Non-Uniform 129*129 Grid; Boundary Vorticity Approximated by 

Briley’s Formula .......................................................................................................................... 129 

5.5.1.2 𝑅𝑒 = 1000  with Non-Uniform 129*129 Grid; Boundary Vorticity Approximated by 

Briley’s Formula .......................................................................................................................... 131 

5.5.1.3 𝑅𝑒 = 100 and  𝑅𝑒 = 1000 with Non-Uniform 129*129 Grid; Boundary Vorticity 

Approximated by Compact Method ............................................................................................. 135 

5.5.2 Higher-Order Cut-Stencil FD Solution to Lid-Driven Flow in a Square Cavity ............. 136 

5.5.2.1 Results of Higher-Order Discretization (𝑅𝑒 = 100) ....................................................... 136 

5.5.2.2 Results for 2
nd

-Order and Higher-Order Discretizations (𝑅𝑒 = 400) .............................. 141 

5.5.2.3 Results of Higher-Order Discretization (𝑅𝑒 = 1000) ..................................................... 149 

5.6 Cut-Stencil FDM Solution of Lid-Driven Cavity Flow in Irregular Shaped Domains .... 158 

5.6.1 Cut-Stencil FD Solution for the Lid-Driven Skewed Cavity Flow .................................. 158 

5.6.2 Cut-Stencil FD Solution for Lid-Driven Right-Side and Left-Side Aligned Right 

Triangular Cavity Flow ................................................................................................................ 168 

5.6.3 Cut-Stencil FD Solution for Lid-Driven L-Shaped Cavity Flow ..................................... 174 

5.7 Chapter Summary ............................................................................................................ 177 

CHAPTER 6: CONCLUDING REMARKS and RECOMMENDATIONS for FUTURE WORKS  

 .......................................................................................................................................... 178 

6.1 Summary and Concluding Remarks................................................................................. 178 



    

xi 

 

6.2 Recommendations for Future Work ................................................................................. 179 

REFERENCES ............................................................................................................................ 181 

APPENDIX I: SUMMARY OF MANUFACTURED PROBLEMS .......................................... 193 

APPENDIX II: DERIVATION of 2
nd

-ORDER ACCURATE APPROXIMATION for 

VORTICITY on a STRAIGHT WALL ....................................................................................... 194 

A.II.1 Derivation of Briley’s Formulation .................................................................................. 194 

A.II.2 Derivation of a Compact 2
nd

-Order Formulation ............................................................. 195 

APPENDIX III: CLUSTERING FUNCTION for NON-UNIFORM GRID GENERATION for 

LID-DRIVEN CAVITY FLOW in SQUARE DOMAIN ............................................................ 197 

APPENDIX IV: VORTICITY EVALUATION on SLOPED or CURVED WALLS ................. 199 

VITA AUCTORIS ....................................................................................................................... 202 



    

xii 

 

 

LIST of TABLES 

Table 2.1: Summary of the sign of normal vector components and corresponding differencing 

schemes for boundary nodes on curved boundaries ....................................................................... 25 

Table 2.2: Expressions for x- and y-coordinates of four auxiliary nodes on the physical stencil 

used in the 5+4-point cut-stencil formulation ................................................................................ 31 

Table 2.3: Metrics at four auxiliary nodes in 5+4-point stencil formulation ................................. 34 

Table 2.4: Taylor’s series expansion used to derive the first derivative approximation in HOC 

finite difference method ................................................................................................................. 37 

Table 2.5: Taylor’s series expansion used to derive the second derivative approximation in HOC 

finite difference method ................................................................................................................. 38 

Table 3.1: Relative error, LTE and RMS results for Problem 1 .................................................... 66 

Table 3.2: Relative error and LTE results for Problem 2 (west Neumann boundary condition) ... 67 

Table 3.3: Relative error and LTE results for Problem 2 (north Neumann boundary condition) .. 68 

Table 3.4: Relative error and LTE results for Problem 3 (west & east Neumann boundary 

conditions) ...................................................................................................................................... 69 

Table 3.5: Relative error and LTE results for Problem 3 (west & south Neumann boundary 

conditions) ...................................................................................................................................... 70 

Table 3.6: Relative error and LTE results for Problem 4 with Dirichlet boundary conditions 

( ν = 1, 𝑃 = 𝑄 = 0.02,  α = β = 0 ) ............................................................................................. 72 

Table 3.7: Relative error and LTE results for Problem 4 with east and north Neumann boundary 

conditions (ν = 1,  𝑃 = 𝑄 = 0.02, α = β = 0) ............................................................................ 73 

Table 3.8: Relative error and LTE results for Problem 4 with Dirichlet boundary conditions 

(ν = 1,  𝑃 = 𝑄 = 0.02, α = β = −1) ........................................................................................... 74 

Table 3.9: Relative error and LTE results for Problem 4 with Dirichlet boundary conditions 

(ν = 0.08,  𝑃 = 𝑄 = 1, α = β = 0,−1) ....................................................................................... 75 

Table 3.10: Relative error, RMS error and maximum LTE for Problem 5 (Laplace equation, 

Dirichlet boundary conditions) ...................................................................................................... 77 

Table 3.11: Relative error, RMS error and maximum LTE for Problem 5 (Laplace equation, 

Neumann boundary conditions) ..................................................................................................... 77 

Table 3.12: Relative error results for Problem 6 (convection-diffusion equation) ........................ 79 

Table 3.13: Comparison of results for 2
nd

-order 5-point stencil and 5+4-point cut-stencil 

formulations for Problem 6 (Dirichlet boundary condition) .......................................................... 81 

Table 3.14: Comparison of results for 2
nd

-order 5-point cut-stencil and 5+4-point cut-stencil 

formulations for Problem 7 (west and east Neumann boundary conditions) ................................. 81 



    

xiii 

 

Table 3.15: HO cut-stencil FDM1 solution to Problem 8.1 (Poisson equation, Dirichlet boundary 

conditions) ...................................................................................................................................... 83 

Table 3.16: Comparison of results for 2
nd

-order 5-point stencil and HO-FDM1 5-point stencil 

formulations for Problem 8.2 (diffusion equation) ........................................................................ 85 

Table 3.17: Comparison of results for 2
nd

-order 5-point stencil and the HO cut-stencil FDM1 for 

Problem 8.3 (convection-diffusion equation) ................................................................................ 86 

Table 3.18: Comparison of results for 2
nd

-order 5-point stencil and HO-FDM2 5-point stencil 

formulations for Problem 9 (diffusion equation) ........................................................................... 88 

Table 3.19: Errors from HO cut-stencil FDM2 solution for Problem 9.2 on irregular domain – 

(diffusion equation, Dirichlet boundary conditions) ...................................................................... 89 

Table 3.20: Comparison of results for 2
nd

-order 5-point stencil, HO-FDM1 5-point stencil and 

HO-FDM2 5-point stencil formulations for Problem 9.3 (convection-diffusion equation) ........... 90 

Table 3.21: Comparison of results of different schemes for Problem 9.4 (diffusion equation, 

different orders used for Neumann boundaries) ............................................................................. 92 

Table 3.22: Comparison of relative error, spatial and temporal truncation error and RMS error at 

𝑡 = 1.76  for Problem 10.1 (unsteady diffusion) ........................................................................... 95 

Table 3.23: Average and relative errors and LTEs at different time with Δ𝑡 = 0.0625  for 

Problem 10.2 (unsteady diffusion, irregular domain) .................................................................... 97 

Table 3.24: Comparison of relative and RMS errors at 𝑡 = 1.326  for Problem 11.1 (second-order 

wave equation) ............................................................................................................................... 99 

Table 3.25: Comparison of relative error at t = 1.42 for Problem 11.2 (wave equation, irregular 

shaped domain ............................................................................................................................. 100 

Table 4.1: Relative error for cut-stencil solution to Prandtl’s stress function for torsion of a bar 

with elliptical cross-section .......................................................................................................... 105 

Table 4.2: Absolute error for cut-stencil solution of Prandtl’s stress function for bending of a bar 

with elliptical cross-section beam ................................................................................................ 108 

Table 4.3: Numerical and analytical solution for 2-D steady conduction heat transfer in 

rectangular plate ........................................................................................................................... 111 

Table 4.4: Comparison of cut-stencil FDM and FVM for solution of steady conduction heat 

transfer in an irregular domain ..................................................................................................... 113 

Table 4.5: Comparison of cut-stencil FDM and TFDM for solution of unsteady conduction heat 

transfer in a rectangular domain ................................................................................................... 115 

Table 4.6: Comparison of cut-stencil FDM and TFDM steady-state solution of the transient 

conduction heat transfer with analytical solution ......................................................................... 116 

Table 4.7: Comparison of cut-stencil FDM and FVM for solution of unsteady conduction heat 

transfer in an irregular domain at 𝑡 = 2 (s) ................................................................................. 117 

Table 5.1: Comparison of 2
nd

-order accurate cut-stencil solution to results of Ghia et al. [150] and  

 .......................................................................................................................................... 129 



    

xiv 

 

Table 5.2: Independency of solution to relaxation factor 𝜎 for 2
nd

-order accurate solution (𝑅𝑒 =

1000, non-uniform 129*129 grid) ............................................................................................... 132 

Table 5.3: Comparison of 2
nd

-order accurate cut-stencil solution for lid-driven cavity flow 

(𝑅𝑒 = 1000, non-uniform 129*129 grid) .................................................................................... 133 

Table 5.4: Comparisons of 2
nd

-order accurate cut-stencil solution to lid-driven cavity flow using 

compact method for vorticity approximation on boundaries to results of Ghia et al. [150] (𝑅𝑒 =

100, 1000) ................................................................................................................................... 135 

Table 5.5: Comparison of higher-order cut-stencil solutions for lid-driven cavity flow (𝑅𝑒 = 100, 

non-uniform 41*41 grid) .............................................................................................................. 137 

Table 5.6: 2
nd

-order and higher-order cut-stencil solutions for lid-driven cavity flow (𝑅𝑒 = 100, 

different non-uniform grid sizes) ................................................................................................. 138 

Table 5.7: 2
nd

-order cut-stencil solutions and comparison to literature for lid-driven cavity flow 

(𝑅𝑒 = 400, different non-uniform grids) ..................................................................................... 141 

Table 5.8: HO-FDM1 solution to lid-driven cavity flow on a square using higher-order compact 

upwind scheme for approximation of convective terms (𝑅𝑒 = 400, non-uniform 65*65 grid) .. 143 

Table 5.9: Independency of solution to relaxation factor 𝜎 for HO-FDM1 (𝑅𝑒 = 400, non-

uniform 65*65 grid) ..................................................................................................................... 144 

Table 5.10: Solution for HO-FDM1 formulation to lid-driven cavity flow on a square using 

higher-order compact upwind scheme for approximation of convective terms (𝑅𝑒 = 400, non-

uniform 81*81 grid) ..................................................................................................................... 145 

Table 5.11: Higher-order cut-stencil FD solutions for lid-driven cavity flow (𝑅𝑒 = 400, different 

non-uniform grids) ....................................................................................................................... 145 

Table 5.12: Comparison of velocity components at midpoint of domain and vorticity at midpoint 

of moving wall for HO cut-stencil FD solutions with Ghia et al. [150] (𝑅𝑒 = 400) .................. 146 

Table 5.13: Solutions of HO cut-stencil formulations for lid-driven cavity flow on a square using 

higher-order compact upwind scheme for approximation of convective terms (𝑅𝑒 = 1000, non-

uniform grid) ................................................................................................................................ 149 

Table 5.14: Independency of solution to relaxation factor 𝜎 for HO-FDM1 solution (𝑅𝑒 = 1000, 

non-uniform 65*65 grid) .............................................................................................................. 150 

Table 5.15: Independency of solution to relaxation factor 𝜎 for HO-FDM2 solution (𝑅𝑒 = 1000, 

non-uniform 65*65 grid) .............................................................................................................. 151 

Table 5.16: Independency of solution to relaxation factor 𝜎 for HO-FDM1 solution (𝑅𝑒 = 1000, 

non-uniform 81*81 grid) .............................................................................................................. 151 

Table 5.17: Independency of solution to relaxation factor 𝜎 for HO-FDM2 solution (𝑅𝑒 = 1000, 

non-uniform 81*81 grid) .............................................................................................................. 152 

Table 5.18: HO cut-stencil FD solutions and comparison to other HO solutions for lid-driven 

cavity flow (𝑅𝑒 = 1000, different non-uniform grids) ............................................................... 153 



    

xv 

 

Table 5.19: Comparison of velocity components at midpoint of the domain and vorticity at 

midpoint of the moving wall for HO cut-stencil FD solutions with Ghia et al. [150] (𝑅𝑒 = 1000) .  

 .......................................................................................................................................... 154 

Table 5.20: Comparison of 2
nd

-order accurate cut-stencil solution to other studies for lid-driven 

cavity flow (𝑅𝑒 = 1000, non-uniform 101*101 grid) ................................................................. 157 

Table 5.21: Comparison of vorticity and velocity components at midpoint of domain and vorticity 

at midpoint of moving wall (𝑅𝑒 = 1000) .................................................................................... 158 

Table 5.22: Comparison of cut-stencil FD solutions to literature for skewed lid-driven cavity flow 

(𝑅𝑒 = 100, 𝛼 = 45˚) ................................................................................................................... 160 

Table 5.23: Cut-stencil FD solutions to skewed lid-driven cavity flow using upwind schemes 

(𝑅𝑒 = 1000, 𝛼 = 45˚, 4617 active nodes) .................................................................................. 161 

Table 5.24: Independency of skewed cavity solution to relaxation factor 𝜎 for 2
nd

-order cut-stencil 

formulation (𝑅𝑒 = 1000, 𝛼 = 45˚, 18193 active nodes)............................................................. 161 

Table 5.25: Comparison of cut-stencil FD solutions for skewed lid-driven cavity flow (𝑅𝑒 =

1000, 𝛼 = 45˚) ............................................................................................................................ 162 

Table 5.26: Comparison of cut-stencil FD solutions to Erturk and Dursun [187] for skewed lid-

driven cavity flow (𝑅𝑒 = 100, 𝛼 = 135˚) ................................................................................... 164 

Table 5.27: Cut-stencil FD solutions for skewed lid-driven cavity flow using upwind schemes for 

approximation of convective terms for (𝑅𝑒 = 1000, 𝛼 = 135˚, 4617 active nodes) .................. 165 

Table 5.28: Independency of skewed cavity solution to relaxation factor 𝜎 for cut-stencil HO-

FDM1 formulation (𝑅𝑒 = 1000,  𝛼 = 135˚, 18193 active nodes) .............................................. 165 

Table 5.29: Comparison of cut-stencil FD solutions with Erturk and Dursun [187] for skewed lid-

driven cavity flow (𝑅𝑒 = 1000,  𝛼 = 135˚) ................................................................................ 166 

Table 5.30: Comparison of cut-stencil FD solutions for lid-driven cavity flow in a left-side 

aligned right triangle (𝑅𝑒 = 500) ................................................................................................ 169 

Table 5.31: Comparison of cut-stencil FD solutions for lid-driven cavity flow in a left-side 

aligned right triangle (𝑅𝑒 = 1000) .............................................................................................. 170 

Table 5.32: Comparison of cut-stencil FD solutions for lid-driven cavity flow in a right-side 

aligned right triangle (𝑅𝑒 = 500) ................................................................................................ 172 

Table 5.33: Comparison of cut-stencil FD solutions to literature for lid-driven cavity flow in a 

right-side aligned right triangle at 𝑅𝑒 = 1000 ............................................................................ 173 

Table 5.34: Comparison of cut-stencil FD solutions for lid-driven cavity flow in an L-shaped 

domain (𝑅𝑒 = 1000) ................................................................................................................... 175 

Table A.I.1: Summary of manufactured problems studied in Chapter 3 ..................................... 193 

Table A.II.1: Taylor’s series expansions used to derive Briley’s equation to approximate the wall 

vorticity ........................................................................................................................................ 194 

Table A.II.2: Taylor’s series expansions used to derive the 2
nd

-order accurate approximation of 

the wall vorticity in the compact finite difference method .......................................................... 195 



    

xvi 

 

 

LIST of FIGURES 

Figure 1.1: Uniform grid system used for solution of Poisson equation ...................................... 4 

Figure 1.2: Schematic of grid system showing ghost node for approximation of imposed 

Neumann condition on the lower boundary ................................................................................. 6 

Figure 1.3: Sample of a 2-D grid transformation, a) physical domain, and b) computational 

domain.......................................................................................................................................... 7 

Figure 1.4: Schematic of Cartesian grid system for an arbitrary body ........................................ 9 

Figure 1.5: Schematic of control volume used for FVM solution to Laplace equation ............. 10 

Figure 2.1: Arbitrary complex domain with Cartesian grid and cut-stencils ............................. 13 

Figure 2.2: Mapping from an arbitrary physical stencil to a generic computational stencil in 2-

D ................................................................................................................................................. 14 

Figure 2.3: Mapping of (a) uncut physical stencil, and (b) cut physical stencil, to a uniform 

computational stencil ................................................................................................................. 15 

Figure 2.4: Boundary curve and normal vector at specific point ............................................... 17 

Figure 2.5: Uniform Cartesian grid used for one-sided differencing of Neumann boundary 

condition (TFD notation) ........................................................................................................... 17 

Figure 2.6: Sample grid used for one-sided differencing of Neumann boundary condition (cut-

stencil FD notation) .................................................................................................................... 18 

Figure 2.7: Illustration of two five-point stencils in neighbouring a) physical stencils, b) 

generic computational stencils ................................................................................................... 19 

Figure 2.8: Sample of five-point stencil with Neumann conditions at two endpoints ............... 20 

Figure 2.9: Illustration of regular and irregular boundary nodes ............................................... 21 

Figure 2.10: Regular boundary node at west node of physical stencil with 𝑛𝑦 < 0 .................. 22 

Figure 2.11: Regular node at west boundary node of physical stencil with 𝑛𝑦 > 0 .................. 23 

Figure 2.12: Regular node at south boundary node of physical stencil with 𝑛𝑥 < 0 ................. 23 

Figure 2.13: Regular node at south boundary node of physical stencil with 𝑛𝑥 > 0 ................. 24 

Figure 2.14: Irregular node at east boundary node of physical stencil with 𝑛𝑦 > 0 .................. 26 

Figure 2.15: Irregular node at east boundary node of physical stencil with 𝑛𝑦 < 0 .................. 27 

Figure 2.16: Irregular node at north boundary node of physical stencil with 𝑛𝑥 < 0 ............... 27 

Figure 2.17: Illustration of a regular boundary node with Neumann condition at the endpoints 

of two 5-point stencils ................................................................................................................ 28 

Figure 2.18: Sample of 9-point stencil with TFD notation used for 4
th
-order approximation ... 30 

Figure 2.19: Illustration of physical and computational 5+4-point (4 auxiliary nodes) stencils 31 



    

xvii 

 

Figure 2.20: 5+4-point main stencil along with four 5-point stencils at the auxiliary nodes, a) 

physical illustration, b) computational illustration ..................................................................... 33 

Figure 2.21: Mapping from 5-point physical stencil located at auxiliary node L to a uniform 5-

point computational stencil centred at auxiliary node l ............................................................. 33 

Figure 2.22: Mapping from 5-point physical stencil located at auxiliary node B to a uniform 5-

point computational stencil centred at auxiliary node b ............................................................. 34 

Figure 2.23: Cut-stencils not directly applicable to the 5+4-point cut-stencil formulation, a) 

intersection with straight oblique boundary line, b) intersection with curved boundary line .... 36 

Figure 2.24: Comparison of the stencil for 4
th
-order accurate approximations, a) compact FD 

(implicit) scheme, b) explicit FD scheme .................................................................................. 39 

Figure 2.25: Computational stencil for central or one-sided second-order approximations of 

derivatives at the endpoints of a stencil used in HO-FDM1 ...................................................... 43 

Figure 2.26: Computational stencil for central or one-sided first-order approximations of 

second derivatives at the endpoints of a stencil used in HO-FDM1 .......................................... 44 

Figure 2.27: Computational stencil for central or upwind 4
th
-order approximations of first 

derivatives at the endpoints of a stencil used in HO-FDM2 ...................................................... 45 

Figure 2.28: Computational stencil for 3
rd

-order approximations of first derivatives at the 

endpoints of a stencil used in HO-FDM2 .................................................................................. 46 

Figure 2.29: Schematic used for higher-order differencing at a boundary node with Neumann 

condition in TFD notation (in 𝑥 direction) ................................................................................. 48 

Figure 2.30: Schematic used for higher-order differencing at boundary node with Neumann 

condition in TFD notation (in 𝑦 direction) ................................................................................. 48 

Figure 2.31: Computational stencil for higher-order differencing at boundary nodes with 

Neumann condition (cut-stencil FD notation) ............................................................................ 49 

Figure 2.32: Illustration of stencil used for explicit FTCS formulation..................................... 50 

Figure 3.1: Verification plot for global order of accuracy for Problem 1 .................................. 66 

Figure 3.2: Verification plot for global order of accuracy for Problem 2 (west Neumann 

condition) ................................................................................................................................... 67 

Figure 3.3: Verification plot for global order of accuracy for Problem 2 (north Neumann 

condition) ................................................................................................................................... 68 

Figure 3.4: Verification plot for global order of accuracy for Problem 3 (west and east 

Neumann condition) ................................................................................................................... 70 

Figure 3.5: Verification plot for global order of accuracy for Problem 3 (west and south 

Neumann condition) ................................................................................................................... 71 

Figure 3.6: Variation of maximum relative error of internal and boundary nodes for different 

cell sizes (combination of Neumann boundary conditions) ....................................................... 71 

Figure 3.7: Verification plot for global order of accuracy for Problem 4, Dirichlet boundaries 

(ν = 1, 𝑃 = 𝑄 = 0.02, α = β = 0) .......................................................................................... 73 



    

xviii 

 

Figure 3.8: Verification plot for global order of accuracy for Problem 4, Neumann boundary 

conditions on east and north (ν = 1,  𝑃 = 𝑄 = 0.02,  α = β = 0) ............................................ 74 

Figure 3.9: Verification plot for global order of accuracy for Problem 4, Dirichlet boundaries 

(ν = 1,  𝑃 = 𝑄 = 0.02, α = β = −1) ....................................................................................... 75 

Figure 3.10: Verification plot for global order of accuracy for Problem 4, Dirichlet boundaries 

(ν = 0.08,  𝑃 = 𝑄 = 1, α = β = −1) ....................................................................................... 76 

Figure 3.11: Irregular shaped domain used for Problem 5 ......................................................... 77 

Figure 3.12: Verification of global order of accuracy for Problem 5 (Laplace equation) ......... 78 

Figure 3.13: Irregular shaped domain with non-uniform grid and cut-stencils for Problem 5 

(convection-diffusion equation) ................................................................................................. 79 

Figure 3.14: Ratio of maximum absolute error of 2
nd

-order 5-point stencil to 5+4-point stencil 

methods vs. 𝒽 for Problem 7 (Dirichlet boundary conditions) .................................................. 81 

Figure 3.15: Verification plot for global order of accuracy for Problem 7 (west and east 

Neumann boundary condition) ................................................................................................... 82 

Figure 3.16: Comparison of absolute errors along centrelines of domain of Problem 7 

(Neumann conditions on west and east boundaries), (a,b) 153 nodes, (c,d) 2145 nodes ........... 83 

Figure 3.17: Verification plot for global order of accuracy for Problem 8.1 and comparison 

with Problem 7 (Dirichlet boundary conditions) ....................................................................... 84 

Figure 3.18: Irregular domain illustration for Problem 8.2 (diffusion equation) ....................... 85 

Figure 3.19: Irregular shaped domain for Problem 8.3 (convection-diffusion equation) .......... 86 

Figure 3.20: Verification plot for global order of accuracy for Problem 9.1 (diffusion equation, 

Dirichlet boundary conditions) .................................................................................................. 88 

Figure 3.21: Verification plot for global order of accuracy for Problem 9.2 (diffusion equation 

on irregular domain, Dirichlet boundary conditions) ................................................................. 89 

Figure 3.22: Irregular shaped domain for Problem 9.3 (diffusion-convection equation) .......... 90 

Figure 3.23: Verification plot for global order of accuracy for Problem 9.4 (diffusion equation, 

Neumann boundary conditions) ................................................................................................. 93 

Figure 3.24: Exact solution 𝜙(𝑥, 𝑦, 5) for Problem 10.1 (unsteady diffusion) .......................... 94 

Figure 3.25: Cut-stencil FDM solution at 𝑡 = 5.0 for grid of 121 nodes for Problem 10.1, 

a) Δ𝑡 = 0.04 , b) Δ𝑡 = 0.05  (unsteady diffusion) ..................................................................... 94 

Figure 3.26: Verification plot for global order of accuracy for spatial discretization for Problem 

10.1 (unsteady diffusion) ........................................................................................................... 95 

Figure 3.27: Irregular shaped domain for Problem 10.2 (unsteady diffusion) ........................... 96 

Figure 3.28: Exact and cut-stencil FDM solutions at 𝑡 =  3.0 for grid of 67 nodes for Problem 

10.2, a) exact solution, b) Δ𝑡 = Δ𝑡𝑀𝑎𝑥, c) Δ𝑡 = 0.075  (unsteady diffusion, irregular domain)

 ................................................................................................................................................... 96 



    

xix 

 

Figure 3.29: Exact and cut-stencil FDM solutions at 𝑡 =  0.84 for grid of 441 nodes for 

Problem 11.1, a) exact solution, b) Δ𝑡 = 0.035, c) Δ𝑡 = 0.04 .................................................. 98 

Figure 3.30: Verification plot for global order of accuracy for initial time discretization for 

Problem 11.1 (second-order wave equation) ............................................................................. 99 

Figure 3.31: Irregular shaped domain for Problem 11.2 (second-order wave equation) ......... 100 

Figure 3.32: Absolute error at midpoint of the domain for two step sizes for Problem 11.2 

(wave equation, irregular shaped domain) ............................................................................... 100 

Figure 4:1: Cylindrical bar subjected to torsional torque ......................................................... 103 

Figure 4.2: Illustration of elliptical cross-section of a bar ....................................................... 104 

Figure 4.3: Schematic of grids used for elliptical cross-section, a) grid of 54 nodes, b) grid of 

38 nodes ................................................................................................................................... 105 

Figure 4.4: Illustration of half and quarter elliptical cross-sections with Neumann condition 

imposed, a) south, b) west, c) south and west boundaries ....................................................... 105 

Figure 4.5: Illustration of cantilever beam under bending moment at the end ........................ 106 

Figure 4.6: Two dimensional steady conduction heat transfer in a rectangular plate .............. 109 

Figure 4.7: Comparison of cut-stencil FDM with FVM and FEM for 2-D steady conduction 

heat transfer in a rectangular plate ........................................................................................... 110 

Figure 4.8: Irregular shaped domain used for steady conduction heat transfer ....................... 112 

Figure 4.9: Contours of isothermal lines in zone 0.6 ≤ x ≤ 0.9 of irregular shaped domain, a) 

cut-stencil FDM, b) ANSYS FLUENT FVM .......................................................................... 113 

Figure 4.10: Schematic of rectangular domain used for comparison of cut-stencil FDM and 

TFDM solutions to transient heat conduction .......................................................................... 114 

Figure 4.11: Irregular shaped domain used for unsteady conduction heat transfer ................. 117 

Figure 4.12: Comparison of cut-stencil FDM and FVM for temperature along the line 𝑦 = 0.5 

in an irregular domain at 𝑡 = 2 (s) .......................................................................................... 118 

Figure 5.1: Schematic of the boundary conditions used for the lid-driven cavity flow ........... 121 

Figure 5.2: Illustration of 9-point stencil normally used for HO schemes in streamfunction- 

vorticity formulation e.g. [158, 162] ........................................................................................ 123 

Figure 5.3: Illustration of vorticity computation on a boundary wall ...................................... 126 

Figure 5.4: Illustration of vorticity computation on a moving boundary wall ......................... 127 

Figure 5.5: Schematic of a lid-driven cavity flow configuration (from Moshkin and 

Poochinapan [173]) .................................................................................................................. 128 

Figure 5.6: Comparison of vorticity along moving wall from 2
nd

-order cut-stencil FD 

formulation and Ghia et al. [150] (𝑅𝑒 = 100, 129*129 grid) ................................................. 130 

Figure 5.7: Streamfunction contours of 2
nd

-order cut-stencil FD solution (𝑅𝑒 = 100, non-

uniform 129*129 grid) ............................................................................................................. 130 



    

xx 

 

Figure 5.8: Vorticity contours of 2
nd

-order cut-stencil FD solution (𝑅𝑒 = 100, non- uniform 

129*129 grid) ........................................................................................................................... 131 

Figure 5.9: Variation of number of iterations with relaxation factor σ for 2
nd

-order accurate 

solution (𝑅𝑒 = 1000, non-uniform 129*129 grid) .................................................................. 132 

Figure 5.10: Comparison of vorticity along moving wall from 2
nd

-order cut-stencil FD 

formulation and Ghia et al. [150] (𝑅𝑒 = 1000, non-uniform 129*129 grid) .......................... 133 

Figure 5.11: Streamfunction contours of 2
nd

-order cut-stencil FD formulation (𝑅𝑒 = 1000, 

non-uniform 129*129 grid) ...................................................................................................... 134 

Figure 5.12: Vorticity contours of 2
nd

-order cut-stencil FD formulation (𝑅𝑒 = 1000, non-

uniform 129*129 grid) ............................................................................................................. 134 

Figure 5.13: Comparison of vorticity along moving wall, approximated by Briley [171] and 

compact methods (𝑅𝑒 = 100) ................................................................................................. 136 

Figure 5.14: Comparison of vorticity along moving wall, approximated by Briley [171] and 

compact methods (𝑅𝑒 = 1000) ............................................................................................... 136 

Figure 5.15: Comparison of vorticity along the moving wall from 2
nd

-order and higher-order 

cut-stencil FD solutions (𝑅𝑒 = 100) ....................................................................................... 138 

Figure 5.16: Streamfunction contours of cut-stencil HO-FDM1 formulation (𝑅𝑒 = 100, non-

uniform grid of 41*41 nodes) .................................................................................................. 139 

Figure 5.17: Vorticity contours of cut-stencil HO-FDM1 formulation (𝑅𝑒 = 100, non-uniform 

grid of 41*41 nodes) ................................................................................................................ 139 

Figure 5.18: Streamfunction contours of cut-stencil HO-FDM2 formulation (𝑅𝑒 = 100, non-

uniform grid of 41*41 nodes) .................................................................................................. 140 

Figure 5.19: Vorticity contours of cut-stencil HO-FDM2 formulation (𝑅𝑒 = 100, non-uniform 

grid of 41*41 nodes) ................................................................................................................ 140 

Figure 5.20: Comparison of vorticity along moving wall from 2
nd

-order cut-stencil FD 

formulation to Ghia et al. [150] (𝑅𝑒 = 400, non-uniform 129*129 grid) ............................... 142 

Figure 5.21: Streamfunction contours of 2
nd

-order cut-stencil FD formulation (𝑅𝑒 = 400, non-

uniform 129*129 grid) ............................................................................................................. 142 

Figure 5.22: Vorticity contours of 2
nd

-order cut-stencil FD formulation (𝑅𝑒 = 400, non-

uniform 129*129 grid) ............................................................................................................. 143 

Figure 5.23: Variation of number of iterations with relaxation factor 𝜎 for HO-FDM1 solution 

(𝑅𝑒 = 400, non-uniform 65*65 grid) ...................................................................................... 144 

Figure 5.24: Streamfunction contours of HO-FDM1 solution (𝑅𝑒 = 400, non-uniform 81*81 

grid) .......................................................................................................................................... 147 

Figure 5.25: Vorticity contours of HO-FDM1 solution (𝑅𝑒 = 400, non-uniform 81*81 grid)

 ................................................................................................................................................. 147 

Figure 5.26: Streamfunction contours of HO-FDM2 solution (𝑅𝑒 = 400, non-uniform 81*81 

grid) .......................................................................................................................................... 148 



    

xxi 

 

Figure 5.27: Vorticity contours of HO-FDM2 solution (𝑅𝑒 = 400, non-uniform 81*81 grid)

 ................................................................................................................................................. 148 

Figure 5.28: Variation number of iterations with relaxation factor 𝜎 for HO-FDM1 solution 

(𝑅𝑒 = 1000, non-uniform 65*65 grid) .................................................................................... 150 

Figure 5.29: Variation number of iterations with relaxation factor 𝜎 for HO-FDM2 solution 

(𝑅𝑒 = 1000, non-uniform 65*65 grid) .................................................................................... 150 

Figure 5.30: Variation number of iterations with relaxation factor 𝜎 for HO-FDM1 solution 

(𝑅𝑒 = 1000, non-uniform 81*81 grid) .................................................................................... 151 

Figure 5.31: Variation number of iterations with relaxation factor 𝜎 for HO-FDM2 solution 

(𝑅𝑒 = 1000, non-uniform 81*81 grid) .................................................................................... 152 

Figure 5.32: Comparison of vorticity along the moving wall from HO cut-stencil FD solutions 

to Ghia et al. [150] (𝑅𝑒 = 1000) ............................................................................................. 154 

Figure 5.33: Streamfunction contours of HO-FDM1 formulation (𝑅𝑒 = 1000, non-uniform 

65*65 grid) ............................................................................................................................... 155 

Figure 5.34: Vorticity contours of HO-FDM1 formulation (𝑅𝑒 = 1000, non-uniform 65*65 

grid) .......................................................................................................................................... 155 

Figure 5.35: Streamfunction contours of HO-FDM2 formulation (𝑅𝑒 = 1000, non-uniform 

65*65 grid) ............................................................................................................................... 156 

Figure 5.36: Vorticity contours of HO-FDM2 formulation (𝑅𝑒 = 1000, non-uniform 65*65 

grid) .......................................................................................................................................... 156 

Figure 5.37: Schematic of domain for skewed lid-driven cavity, a) 𝛼 = 45˚ and b) 𝛼 = 135˚

 ................................................................................................................................................. 159 

Figure 5.38: Streamfunction contours of HO-FDM2 formulation for skewed lid-driven cavity 

(𝑅𝑒 = 100, 𝛼 = 45˚, 4617 active nodes) ................................................................................ 163 

Figure 5.39: Streamfunction contours of HO-FDM2 formulation for skewed lid-driven cavity 

(𝑅𝑒 = 1000, 𝛼 = 45˚, 18193 active nodes) ............................................................................ 163 

Figure 5.40: Streamfunction contours of HO-FDM2 solution for skewed lid-driven cavity 

(𝑅𝑒 = 100,  𝛼 = 135˚, 18193 active nodes) ........................................................................... 167 

Figure 5.41: Streamfunction contours of HO-FDM2 solution for skewed lid-driven cavity 

(𝑅𝑒 = 1000,  𝛼 = 135˚, 18193 active nodes) ......................................................................... 167 

Figure 5.42: Schematic of isosceles right triangular domains, a) left-side aligned, and b) right-

side aligned .............................................................................................................................. 168 

Figure 5.43: Streamfunction contours for HO-FDM2 formulation for left-side aligned right 

triangle lid-driven cavity, a) 𝑅𝑒 = 500 with grid of 5151 active nodes, b) 𝑅𝑒 = 1000 with grid 

of 8001 active nodes ................................................................................................................ 171 

Figure 5.44: Streamfunction contours for HO-FDM2 formulation for right-side aligned right 

triangle lid-driven cavity, a) 𝑅𝑒 = 500 with grid of 5151 active nodes, b) 𝑅𝑒 = 1000 with grid 

of 8001 active nodes ................................................................................................................ 174 



    

xxii 

 

Figure 5.45: Schematic of L-shaped domain ........................................................................... 174 

Figure 5.46: Streamfunction contours of HO-FDM2 solution to lid-driven cavity flow in L-

shaped domain (𝑅𝑒 = 1000, 12545 active nodes) .................................................................. 176 

Figure A.II.1: Schematic of uniform grid near a boundary node used to derive the 

approximation of Briley [171] ................................................................................................. 194 

Figure A.III.1: Schematic of nodes distribution using clustering function (total number of 

nodes = 51 and 𝐵 = 1.15) ....................................................................................................... 197 

Figure A.III.2: Schematic of non-uniform grid on unit square domain (used for lid-driven 

cavity flow in Chapter 5) ......................................................................................................... 198 

Figure A.IV.1: Schematic of orthogonal coordinate systems defined at a boundary point on an 

arbitrary wall ............................................................................................................................ 199 

Figure A.IV.2: Schematic of uniform grid near a boundary node on an arbitrary wall ........... 200 

Figure A.IV.3: Schematic of physical stencils with boundary endpoint on an arbitrary wall . 201 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

xxiii 

 

NOMENCLATURE 

Symbol Definition 

A, B, L, R Auxilliary nodes on 5+4-point physical stencil 

a, b, l, r Auxilliary nodes on 5+4-point computational stencil 

𝑎p, 𝑎𝑤, 𝑎𝑒, 𝑎𝑠, 𝑎𝑒 Coefficients in FD equation at interior node P 

𝑐𝑥, 𝑐𝑦 Courant numbers 

𝒞 Coefficient in second-order wave equation  

𝑑𝑥, 𝑑𝑦 Diffusion numbers 

℮ Difference between exact and numerical solution 

G, 𝑔 Functions in Neumann boundary condition 

𝐺 Modulus of elasticity in shear 

𝒽 Mesh size 

𝒽𝑐 Coarse mesh size 

𝒽𝑓 Fine mesh size 

𝒽1 Sides of a rectangular cell 

𝒽2 Diagonal of a rectangular cell 

𝐼 Moment of inertia 

𝐽 Jacobian of transformation 

𝑘, 𝑙 Parameters to switch between backward to forward differencing 

𝐿𝑐 Characteristic length 

𝑀 Total number of nodes for a grid  

�̂� = (𝑛𝑥, 𝑛𝑦) Unit normal vector at the boundary 

𝑃, 𝑄 Convection coefficients  

P, W, S, E, N Nodes on physical 5-point stencil 

P,𝑤, 𝑠, 𝑒, 𝑛 Nodes on generic computational 5-point stencil 

𝔭 Pressure 

𝑞 Order of discretization error 

𝓇 Refinement factor 

𝑅𝑒 Reynolds number 

𝑆, 𝑠 Source terms 

𝑇 Temperature (dimensional) 

t Time 
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𝒰, 𝒱 𝑋- and 𝑌-components of velocity (dimensional) 

𝑈𝑟𝑒𝑓 Reference velocity 

𝑢, 𝑣 𝑥- and 𝑦-components of velocity (non-dimensional) 

𝑋, 𝑌 Cartesian coordinates (dimensional) 

𝑥, 𝑦 Cartesian coordinates (non-dimensional) 

 

Greek letters 

𝛼, 𝛽 Parameters for finite differencing schemes for convective terms 

𝛾 Cell aspect ratio (Δ𝑥/Δ𝑦) 

∆𝑡 Time step 

Δ𝑡𝑀𝑎𝑥 Maximum allowable time step 

∆𝑥, ∆𝑦 Increments in x and y 

𝛿𝑘𝜉,P
𝑐  Difference operator, approximation of 𝜕𝑘𝜉|P

 

𝜕𝑘𝜉|P
 Derivative operator for k

th
-derivative with respect to 𝜉 

𝜂 Computational stencil axis 

𝜃 Angle of twist of a bar 

Θ Temperature (non-dimensional) 

𝜈 Diffusion coefficient, thermal diffusivity 

𝜉 Computational stencil axis 

ρ Density 

𝜎 Relaxation parameter 

𝜗 Poisson’s ratio, kinematic viscosity 

𝜙 Governing function, Prandtl’s stress function 

∅𝑒𝑥𝑐. Exact solution 

Ψ Streamfunction (dimensional) 

𝜓 Streamfunction (non-dimensional) 

Ω𝑧 𝑍-component of vorticity vector (dimensional) 

𝜔 𝑧-component of vorticity (non-dimensional) 
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LIST of ABBREVIATIONS 

Abbreviation Definition 

PDEs Partial differential equation(s) 

FDM Finite difference method 

TFDM Traditional finite difference method 

FVM Finite volume method 

FEM Finite element method 

SOR Successive over-relaxation 

SUR Successive under-relaxation 

P-J Point-Jacobi iterative method 

HO Higher-order 

HOC Higher order compact  

HO-FDM1 Higher-order Cartesian cut-stencil finite difference method 1 

HO cut-stencil FDM1 Higher-order Cartesian cut-stencil finite difference method 1 

HO-FDM2 Higher-order Cartesian cut-stencil finite difference method 2 

HO cut-stencil FDM2 Higher-order Cartesian cut-stencil finite difference method 2 

1(2)-D One (two) dimensional 

LTE Local truncation error 

FTCS Forward in time and central in space 

MMS Method of manufactured solutions 

RMS Root mean square error 

Rel. Relative (e.g. relative error) 

Abs.  Absolute (e.g. absolute error)  
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CHAPTER 1  

INTRODUCTION to PARTIAL DIFFERENTIAL EQUATIONS and NUMERICAL 

METHODS 

1.1 Objective of the Chapter 

The main goal of this thesis is to develop a new computational algorithm for the numerical 

solution of partial differential equations (PDEs) based on the finite difference method (FDM). 

This new approach will be referred to throughout this thesis as the Cartesian cut-stencil finite 

difference method, or cut-stencil method for brevity. The immediate question that arises is: Why 

develop a new FDM? The traditional FDM (TFDM) is a simple, powerful method for 

approximating the solution of PDEs, but it becomes prohibitively complicated when dealing with 

highly geometrically complex domains. The Cartesian cut-stencil method retains the simplicity 

and power of the traditional FDM while simultaneously providing a natural mechanism for 

handling complex boundaries. Additionally, as will become apparent, this new FDM exhibits 

many other important benefits such as (i) classical grid generation associated with traditional FD 

formulations is avoided; (ii) precise expressions for the local truncation (discretization) error can 

be developed, providing a reliable evaluation of numerical error and a criterion for mesh 

adaptivity, (iii) mesh files only need to contain simple nodal coordinate and connectivity 

information, and normal vectors only at boundary points, (iv) significant reduction in the use of 

low-order interpolations, which leads to more accuracy, (v) amenable to the development of 

higher-order schemes, and (vi) greater global order of accuracy is possible because near-boundary 

nodes can be treated in the same way and to the same order as interior nodes, thereby not 

degrading the overall accuracy. 

The complexity of PDEs or a set of PDEs, which normally are formulated to model real physical 

phenomena in engineering and science, prohibits development of analytical solutions. 

Consequently, numerical methods are applied to obtain approximate solutions to these PDEs [1]. 

The possibility of application to any type of domain, ease of implementation to define the 

mathematical and numerical model of the problem and potential of extending the method to 

higher-order approximations can be considered as other necessary features of any modern 

numerical method.        

Numerical methods for solution of PDEs in most fields of engineering are categorized with three 

well-known mesh-based methods, namely, finite difference method (FDM), finite volume method 

(FVM) and finite element method (FEM). Each of these three methods possesses their own 

inherent advantages and limitations when applied for solutions of PDEs. 

The main objectives of this chapter are to present some basic definitions, concepts and 

mathematical manipulations which are widely used in FDM, to highlight key differences between 

FDM and FVM and to assess the current state-of-the-art with respect to these discretization 

procedures. 

1.2 Partial Differential Equations  

The general second-order linear PDE in two space dimensions can be expressed as   
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A(𝑥, 𝑦, 𝑡)∅𝑡 + B(𝑥, 𝑦, 𝑡)∅𝑥𝑥 + C(𝑥, 𝑦, 𝑡)∅𝑦𝑦 + D(𝑥, 𝑦, 𝑡)∅𝑥 + E(𝑥, 𝑦, 𝑡)∅𝑦 + F(𝑥, 𝑦, 𝑡)∅ = S(𝑥, 𝑦, 𝑡) (1.1) 

where 𝑥, 𝑦 and 𝑡 are the independent variables, the unknown function ∅ and the coefficients A, B, 

C, D, E, F and source term S are functions of the independent variables only. For most PDEs, 

when the exact (analytical) solution is not easy to derive, a numerical method is used to 

approximate the continuous dependent variable with discrete variables and the approximation 

procedure is executed on a computer through the solution of a system of algebraic equations [2]. 

The order of a PDE is determined by the order of the highest derivative in the PDE. Second-order 

PDEs, which are common in engineering applications and are the type of PDEs discussed in this 

research, are classified as elliptic, parabolic or hyperbolic. The Poisson equation ∇2∅ = F(𝑥, 𝑦) is 

an example of an elliptic equation and the unsteady heat conduction equation in two spatial 

dimensions,  
𝜕∅

𝜕𝑡
= 𝐾∇2∅ introduces an example of a parabolic equation. The first-order wave 

equation defined by  
𝜕∅

𝜕𝑡
+ 𝑎

𝜕∅

𝜕𝑥
+ 𝑏

𝜕∅

𝜕𝑦
= 0 is a PDE of the hyperbolic type.  

1.3 Finite Difference Method: Basic Definitions, Strengths, Limitations   

The finite difference method approximates differential equations by replacing the derivatives by 

the difference of the solution at discrete nodes in the domain of interest. This discretization 

procedure leads to a system of algebraic equations which are solved after imposing the given 

boundary conditions. The results of this process give the value of the governing function(s) at 

each node of the solution domain [3].  

The FDM is considered to be simple in concept but it has traditionally only been applicable for 

uniform and rectangular meshes [3], and may encounter serious difficulties for complex domains, 

particularly at nodes near boundaries [4]. Fortunately, structured body-fitted curvilinear grids and 

multiblock techniques have allowed researchers to develop FDM to solve PDEs in complicated 

domains [5-9]. The initial step in using body-fitted curvilinear coordinates is the transformation 

of the irregular physical domain and governing equation(s) into a rectangular domain with a 

logical (structured) grid. The governing equations are also transformed from the physical to 

computational domain [6]. Unfortunately, generating a body-fitted grid system in highly complex 

domains is very labour-intensive and may be impractical from a cost perspective. The multiblock 

technique can alleviate some of these issues, but is somewhat difficult to implement and may 

require considerable experience to generate good quality grid systems. Nevertheless, the 

simplicity of FDM provides the possibility of extension to higher-order accurate approximations, 

development of good error estimates, analysis of the stability of a numerical scheme and 

reduction of the overall cost of the computation. Thus, FD is a popular discretization procedure 

for academic research codes, but generally not used for industrial applications, many of which 

involve highly complex geometries. 

FVM and FEM do not suffer from the grid limitations of the FDM and can handle complex 

domains since these methods can be formulated for a wide variety of mesh cells or elements such 

as tetrahedral, hexahedral, polyhedral, prismatic and hybrid. But they are not completely exempt 

from their own difficulties. Development of higher-order schemes is problematic, e.g., for 

triangular control volumes in FVM, second-order discretization is difficult to achieve [10]. 

Additionally, the FVM suffers from lack of an accurate definition of derivatives in the event that 

the mesh is not orthogonal and equally spaced. The absence of a weak formulation, as in FEM, to 
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convert higher-order derivatives into lower ones, makes the FVM more compatible for flow 

problems which are not dominated by viscous effects. The functional values or fluxes for cells 

located on curved boundaries, or for curved grid lines, are often represented by piecewise 

constant or linear functions in FVM. Although more accurate implementation for curved 

boundary cells or curved grid lines can be defined, it is a rather difficult task in FVM [11].  Most 

extrapolation techniques, which are heavily used in cell-centred FVM, lead to lower accuracy at 

boundary nodes than at internal nodes [12]. Numerical studies can be found in the literature that 

combine both FVM and FEM (referred to as FEVM) to exploit the merits of each method, 

particularly in fluid mechanics [13-15]. The cell-centred FVM was used in [13, 14] and the cell-

vertex FVM was used in the hybrid FEVM in [15].  

The creation of these types of hybrid numerical methods illustrate how, even though FVM is 

popular in Computational Fluid Dynamic (CFD) commercial software, it may not be able to cover 

a variety of problems without difficulties. So, any new numerical algorithm/formulation should 

be assessed in the context of facilitating the previous version of a numerical method of the same 

type. The focus of this thesis is the development of a FD-based method for solution of PDEs that 

retains all the advantages, and overcomes some of the main weaknesses, of current methods. 

1.3.1 Discretization of Derivatives in FDM 

The principles and details of FDM are explained in many texts, e.g., cf. [1, 16, 17]. For our 

purpose, a brief overview of the main FDM concepts and general governing procedure of this 

numerical method to achieve an approximate solution, relevant to the research described in this 

thesis, are addressed. An understanding of these fundamental topics is beneficial for later 

comparison with the same topics that will be discussed in the context of the cut-stencil finite 

difference formulation which is the primary object of this research.  

The general formulation for Taylor’s series expansion, for a single-valued function 𝜙(𝑥), at 

point (𝑥 + Δ𝑥), is given by 

 
𝜙(𝑥 + Δ𝑥) = ∅(𝑥) +∑

(∆𝑥)𝑛

𝑛!

∞

𝑛=1

𝜕𝑛∅

𝜕𝑥𝑛
 (1.2) 

  

Similar approximations using Taylor’s series expansion can be derived by replacing ∆𝑥 with the 

distance from other points to point 𝑥. By combining the Taylor’s series at different points and 

retaining expansion of the infinite series to a certain order of derivatives, one can approximate the 

derivatives of ∅ at point 𝑥 with different order of ∆𝑥. 

To illustrate the use of FD approximations, consider an elliptic PDE commonly encountered in 

computational mechanics (solid, fluid and heat transfer). Steady-state heat conduction, potential 

flow around a body, Prandlt’s stress function in an arbitrary bar and the streamfunction-vorticity 

formulation of the Navier-Stokes equations are some problems that are defined by elliptic PDEs.  

The 2
nd

-order accurate approximation of the elliptic Poisson equation ∇2∅ = 𝐹(𝑥, 𝑦) at an 

arbitrary node (i, j) of the uniform grid system shown in Figure 1.1 is written as 

 ∅(i−1,j) − 2∅(i,j) + ∅(i+1,j)

(∆𝑥)2
+
∅(i,j−1) − 2∅(i,j) + ∅(i,j+1)

(∆𝑦)2
= 𝐹(𝑥i, 𝑦j) (1.3) 
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Figure 1.1: Uniform grid system used for solution of Poisson equation 

The grid points used in this finite difference approximation of the Poisson equation at point (i, j), 

illustrated in Figure 1.1, constitute a five-point stencil. This stencil is the basic one for the cut-

stencil FDM which will be discussed in Chapter 2. The solution of the Poisson equation in the 

grid system of Figure 1.1, in the event of Dirichlet boundary conditions, requires the solution to a 

system on (M-2)(N-2) algebraic equations. This system of equations can be cast into a matrix 

form 𝐴Φ⃗⃗⃗ = �⃗� , in which 𝐴 is the matrix of coefficients, Φ⃗⃗⃗  is the vector of unknowns 𝜙(𝑖,𝑗) and �⃗�  is 

the vector which incorporates the boundary values and the right hand side for each equation. 

The solution algorithms for matrix equations are divided into two main approaches, namely direct 

and iterative methods. Cramer’s rule, Gaussian elimination and LU-decomposition are well-

known direct methods to solve a system of linear equations. Details for these direct solution 

algorithms can be found in Leslie and McAvaney [18] and in many textbooks on numerical linear 

algebra. Direct methods generally suffer from some disadvantages, especially when the matrices 

are not simple tridiagonal ones, and may not be computationally efficient. Additionally, the 

computational storage is huge especially for large size problems that are common in 

computational mechanics. Accumulation of round-off errors during the arithmetic calculations 

may also produce poor solutions and consequently a concerted effort should be made to reduce 

these errors [19, 20]. Due to these limitations, and non-linear coefficients for most PDEs of 

practical interest, direct methods, generally, are not used in the computational mechanics field. 

The following section presents a brief introduction to iterative methods which have been 

employed throughout this thesis to solve PDEs using the Cartesian cut-stencil FDM. 

1.3.2 Iterative Solution Algorithms 

Iterative methods initiate the solution procedure with an initial guess. The first guess is improved 

through a finite sequence of logical iterations to approach the exact solution. The pre-defined 

convergence criteria can control the trend of the iterations [21]. Some of the familiar iterative 

methods are the Point-Jacobi method, Gauss-Seidel method and Successive over-relaxation 

(under-relaxation) method (SOR or SUR). The main developments of iterative solution 

algorithms, over more than a century, have been outlined in Saad and van der Vorst [22]. In the 

solution for most of the manufactured problems presented in Chapter 3 and the practical problems 

from different fields in Chapter 4, the Point-Jacobi (P-J) scheme is used to generate the cut-stencil 
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FD solution to the PDEs. The cut-stencil FD solution for the streamfunction-vorticity formulation 

of the Navier-Stokes equation is presented in Chapter 5 by using the SUR method depending on 

the mesh size and Reynolds number. Thus, a brief explanation of these schemes is addressed here.  

Equation (1.3) is rewritten as  

 ∅(i−1,j) + ∅(i+1,j) − 2(1 + 𝛾
2)∅(i,j) + 𝛾

2(∅(i,j−1) + ∅(i,j+1)) = (Δ𝑥)
2𝑓(𝑥i, 𝑦j) (1.4.1) 

 

in which 𝛾 denotes Δ𝑥/Δ𝑦. Assuming that ∅(i,j) is known at a current iteration level k, i.e., ∅(i.j)
𝑘  is 

known, the new value of the dependent variable at new iteration level 𝑘 + 1 at node (i, j) is 

calculated from  

 
∅(i.j)
𝑘+1 =

∅(i−1,j)
𝑘 + ∅(i+1,j)

𝑘 + 𝛾2(∅(i,j−1)
𝑘 + ∅(i,j+1)

𝑘 ) − (Δ𝑥)2𝐹(𝑥i, 𝑦j)

2(1 + 𝛾2)
 (1.4.2) 

 

The iterative formulation (1.4.2) is known as the Point-Jacobi method, which is regarded as the 

simplest iterative formulation. It is noted that P-J retains all values of the dependent variable from 

the old level of iteration until the calculation at level 𝑘 + 1 ends. 

The point successive (under or over) relaxation version for calculation of the dependent variable 

at node (i, j) is expressed as   

 
∅(i.j)
𝑘+1 = (1 − 𝜎)∅(i.j)

𝑘 +
𝜎[∅(i−1,j)

𝑘+1 + ∅(i+1,j)
𝑘 + 𝛾2(∅(i,j−1)

𝑘+1 + ∅(i,j+1)
𝑘 ) − (Δ𝑥)2𝐹(𝑥i, 𝑦j)]

2(1 + 𝛾2)
 (1.4.3) 

In point successive relaxation methods, the updated values of the dependent variable at 

neighboring nodes are immediately used for calculation of the dependent variable at node (i, j). 

The parameter 𝜎 in equation (1.4.3) is referred to as the relaxation parameter and the Gauss-

Seidel method is recovered when 𝜎 = 1. The converged solution is obtained by implementing the 

condition 0 < 𝜎 < 2. The rate of convergence may be accelerated by changing the value of 𝜎. 

Computing an optimum value of relaxation parameter requires a procedure to solve an eigenvalue 

problem and it can only be applied to some limited cases, depending on the mesh scheme and 

type of boundary conditions. Some analytical suggestions and discussions for finding 𝜎𝑜𝑝𝑡 are 

available in numerical analysis literature [17, 23, 24].  

1.3.3 Ghost Node Method for Neumann Boundary Condition Treatment in TFDM  

The Neumann boundary condition is based on specification of the derivative, usually the first 

derivative of the dependent variable rather than on the value of the dependent variable itself. So 

the values of the dependent variable  𝜙 are unknowns and a special numerical scheme is needed 

to approximate the values of 𝜙 on the Neumann type of boundaries. It is common in traditional 

FDM (TFDM) to employ the ghost node (ghost cell) technique to write the differencing 

approximation for Neumann boundary nodes. Figure 1.2 illustrates a grid system with a Neumann 

condition imposed on the lower boundary, where G(𝑥, 𝑦) is the prescribed value of the derivative 

normal to the boundary, i.e., the first derivative of the dependent variable is known for all 

boundary nodes (i, 1) where i = 1, 2, …, M. The ghost node method inserts a fictitious node 

outside the domain, along the normal vector to the boundary, adjacent to node (i, 1), and at the 

same distance, Δ𝑦, as the first interior node in the domain.   
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Figure 1.2: Schematic of grid system showing ghost node for approximation of imposed 

Neumann condition on the lower boundary 

The 2
nd

-order central differencing approximation for the first derivative in the Neumann condition 

can be written using the fictitious node (i, 0). It is worth pointing out that in the grid system of 

Figure 1.2, values of 𝜙 at all the nodes located along the grid line j = 1 are unknown. To simplify 

the discussion, without losing generality, it is assumed that the outward normal vector to the 

boundary line, depicted in Figure 1.2, has a negative component along the 𝑦- direction, i.e., 

�̂� = −j,̂ where j ̂is the unit normal along the 𝑦-axis in the Cartesian coordinate system. Then, the 

Neumann condition can be approximated as 

 𝜕∅

𝜕𝑦
⃒(i,1) =

∅(i,2) − ∅(i,0)

2(∆𝑦)
= −G(𝑥, 𝑦)⃒(i,1) (1.5.1) 

Using the same central differencing format as for the interior nodes, the governing equation 

(Poisson equation) at a typical boundary node (i, 1) with Neumann condition is given by 

 ∅(i−1,1) − 2∅(i,1) + ∅(i+1,1)

(∆𝑥)2
+
2∅(i,2) − 2∅(i,1) + 2(∆𝑦)𝐺|(i,1)

(∆𝑦)2
= 𝐹(𝑥i, 𝑦1) (1.5.2) 

where equation (1.5.1) has been used to eliminate the value of 𝜙 at the ghost node (i, 0). Similar 

to the case of Dirichlet boundary conditions, any of the iterative methods can be employed to 

solve for the unknowns, including those at the discrete points along the lower boundary. 

The ghost node technique requires inclusion of the boundary unknowns in the solution vector and 

special entries in the expanded coefficient matrix of the linear system. In this thesis, to avoid this 

additional complexity, one-sided differencing approximations are employed in the cut-stencil 

FDM when a Neumann condition is imposed on any boundaries of the domain of interest. The 

details of this approach and more discussion related to the Neumann boundary condition are 

presented in Chapter 2.  
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1.4 Transformation of PDEs 

As mentioned above, the TFDM is primarily employed for the numerical approximation of PDEs 

within regular shaped domains with a uniform grid system. In the case of irregular shaped 

domains, transformation of the physical domain (x-y space) to a regular (mostly rectangular 

shape) computational domain (𝜉 − 𝜂 space) is required. To accomplish this transformation, two 

main categories of approaches have been developed; algebraic methods and partial differential 

equation methods. Each has its own advantages and drawbacks [25]. The conformal mapping 

technique that is based on complex variables is an alternative method to generate a grid, but is 

restricted to 2-D applications [17]. A 2-D physical grid transformation to a computational one is 

illustrated in Figure 1.3.  

 
Figure 1.3: Sample of a 2-D grid transformation, a) physical domain, and b) computational 

domain 

Besides generating the grid for the domain of interest, the parameters that determine the quality of 

the generated grid, such as smoothness, skewness and orthogonality must be examined to ensure 

the appropriate level of accuracy for the solution of the mapped equations [26]. In fact, grid 

generation plays a significant role in yielding an accurate solution of e.g., flow passing bodies 

with irregular and complex shapes. It is known that the computed values and the solution 

properties are affected by the metrics of the generated grid [27]. Algebraic grid generation, the 

simplest and fastest technique [17, 28], cannot guarantee the orthogonality of the generated grid 

[29]. Orthogonality of the grid is associated with a number of advantages such as less number of 

terms in the transformed equations and more accurate interpolations. Additionally, the numerical 

accuracy of differencing schemes is higher and implementation of boundary conditions is carried 

out in a simpler way on an orthogonal grid [30, 31].  

This implies that besides the computational and human effort that must be devoted to the grid 

generation procedure, each method may suffer from its own inherent difficulties. On the other 

hand, the Cartesian cut-stencil FDM, even in cases of complex and irregular shaped domains, 

does not depend on the grid generation in its formal and classical definition. This feature 

originates from a localized mapping of each physical stencil which may have uniform or non-

uniform arm lengths. The details of the localized mapping will be presented in Chapter 2.  

The remaining material of this section illustrates the transformation of a model governing PDE, 

the convection-diffusion equation ∇2∅ + 𝑃
𝜕∅

𝜕𝑥
+ 𝑄

𝜕∅

𝜕𝑦
= 𝐹(𝑥, 𝑦), and introduces the mapped form 

of the equation as employed in TFDM. The following expressions and discussions are presented 
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to reveal the differences between equation transformation in TFDM and in the Cartesian cut-

stencil FDM, which will be introduced in Chapter 2. Consider the transformation functions 

𝜉 = 𝜉(𝑥, 𝑦) and 𝜂 = 𝜂(𝑥, 𝑦) which, under the assumption that the Jacobian 𝐽 =
𝜕(𝑥,𝑦)

𝜕(𝜉,𝜂)
 is non-zero, 

uniquely map points from the x-y plane to points in the 𝜉-𝜂 plane. Using the chain rule for partial 

differentiation, the first derivative operators can be expressed as:  

 𝜕

𝜕𝑥
= 𝜉𝑥

𝜕

𝜕𝜉
+ 𝜂𝑥

𝜕

𝜕𝜂
 ,           

𝜕

𝜕𝑦
= 𝜉𝑦

𝜕

𝜕𝜉
+ 𝜂𝑦

𝜕

𝜕𝜂
 (1.6.1) 

where 𝜉𝑥 and 𝜉𝑦 denote the partial derivatives 
𝜕𝜉

𝜕𝑥
 and 

𝜕𝜉

𝜕𝑦
 respectively, and similarly for 𝜂𝑥 and 𝜂𝑦. 

The second derivative operators are transformed in the same fashion as: 

 𝜕2

𝜕𝑥2
= 𝜉𝑥𝑥

𝜕

𝜕𝜉
+ 𝜉𝑥 [𝜉𝑥

𝜕2

𝜕𝜉2
+ 𝜂𝑥

𝜕2

𝜕𝜉𝜕𝜂
]+ 𝜂𝑥𝑥

𝜕

𝜕𝜂
+ 𝜂𝑥 [𝜉𝑥

𝜕2

𝜕𝜉𝜕𝜂
+ 𝜂𝑥

𝜕2

𝜕𝜂2
] (1.6.2) 

 𝜕2

𝜕𝑦2
= 𝜉𝑦𝑦

𝜕

𝜕𝜉
+ 𝜉𝑦 [𝜉𝑦

𝜕2

𝜕𝜉2
+ 𝜂𝑦

𝜕2

𝜕𝜉𝜕𝜂
]+ 𝜂𝑦𝑦

𝜕

𝜕𝜂
+ 𝜂𝑦 [𝜉𝑦

𝜕2

𝜕𝜉𝜕𝜂
+ 𝜂𝑦

𝜕2

𝜕𝜂2
] (1.6.3) 

The transformed model equation, from physical domain (space) to computational domain (space), 

using equations (1.6.1)-(1.6.3), can be expressed in the form 

 
𝜉𝑥𝑥

𝜕∅

𝜕𝜉
+ 𝜉𝑥 [𝜉𝑥

𝜕2∅

𝜕𝜉2
+ 𝜂𝑥

𝜕2∅

𝜕𝜉𝜕𝜂
] + 𝜂𝑥𝑥

𝜕∅

𝜕𝜂
+ 𝜂𝑥 [𝜉𝑥

𝜕2∅

𝜕𝜉𝜕𝜂
+ 𝜂𝑥

𝜕2∅

𝜕𝜂2
] + 𝜉𝑦𝑦

𝜕∅

𝜕𝜉

+ 𝜉𝑦 [𝜉𝑦
𝜕2∅

𝜕𝜉2
+ 𝜂𝑦

𝜕2∅

𝜕𝜉𝜕𝜂
] + 𝜂𝑦𝑦

𝜕∅

𝜕𝜂
+ 𝜂𝑦 [𝜉𝑦

𝜕2∅

𝜕𝜉𝜕𝜂
+ 𝜂𝑦

𝜕2∅

𝜕𝜂2
]

+ 𝑃 [𝜉𝑥
𝜕∅

𝜕𝜉
+ 𝜂𝑥

𝜕∅

𝜕𝜂
] + 𝑄 [𝜉𝑦

𝜕∅

𝜕𝜉
+ 𝜂𝑦

𝜕∅

𝜕𝜂
] = 𝑓(𝜉, 𝜂) 

(1.6.4) 

From advanced calculus, one can write relationships between the metrics of the transformation: 

  

 𝜉𝑥 = 𝐽
−1𝑦𝜂 ,    𝜉𝑦 = −𝐽

−1𝑥𝜂 ,    𝜂𝑥 = −𝐽
−1𝑦𝜉 ,    𝜂𝑦 = 𝐽

−1𝑥𝜉 (1.6.5) 

The application of such 2-D transformation functions has been discussed extensively in numerical 

studies of grid generation methods [32-35]. 

The comparison of the transformed form of the model equation, stated in (1.6.4), and the equation 

obtained using the specific transformation functions of the cut-stencil FDM, which will be 

discussed in Chapter 2, shows the obvious simplicity of the Cartesian cut-stencil FDM. The main 

reason for the simplicity of the mapped model equations in the Cartesian cut-stencil FD 

formulation arises from independent 1-D transformation equations which exhibit the necessary 

features of the localized mapping of each stencil.   

1.5 Cartesian Grid  

Cartesian grids have been employed in many numerical studies of computational mechanics and 

specifically in CFD [36-39]. One of the main advantages associated with this type of grid is the 

relatively simple procedure for the grid generation and hence the time to mesh an irregular shaped 
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domain is not significant [39]. Additionally, no metric terms are needed [37], and this grid system 

does not suffer from the difficulties of interpolations which are normally associated with body-

fitted grid schemes [37, 40].  

The type of grid that is used in the cut-stencil FD solution to PDEs is the Cartesian grid system. A 

Cartesian grid generator
1
 has been developed to meet the necessary grid requirements for the 

Cartesian cut-stencil FDM. Figure 1.4 illustrates the Cartesian grid system for an arbitrary body, 

created by the Cartesian grid generation software. 

 
Figure 1.4: Schematic of Cartesian grid system for an arbitrary body 

The outputs of the Cartesian grid generator can be summarized as follows: 

 (𝑥, 𝑦) coordinate of all internal nodes and assignment of a corresponding node 

identification number 

 (𝑥, 𝑦) coordinate of all external nodes and assignment of a corresponding node 

identification number 

 (𝑥, 𝑦) coordinate of all boundary nodes and assignment of corresponding node 

identification numbers for each type of boundary node 

 the connectivity associated with each 5-point stencil 

 the components of the normal vector at each boundary node 

All the above-mentioned features are saved in text format files, which can be read by the 

Cartesian cut-stencil FDM computer code that has been written for this thesis. Due to the solver-

dominated context of this research rather than the grid generator used for this purpose, further 

details of the grid generation software are not discussed.  

1.6 Finite Volume Method: Basic Definition and Fundamentals 

The vast majority of commercial CFD packages are FV-based. This popularity can be attributed 

to fewer limitations of FVM with respect to irregular domains. This section of Chapter 1 presents 

a standard calculation procedure in FVM to highlight the differences between FVM and FDM.  

The Laplace equation ∇2∅ = 0 is studied as the model equation. Figure 1.5 shows the schematic 

of a typical control volume ABCD which is used to solve the model equation in a complex domain 

using FVM.  

                                                           
1
) The Cartesian grid generation code was written by J.W. Toth, under the supervision of Dr. R. Barron.     
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Figure 1.5: Schematic of control volume used for FVM solution to Laplace equation 

The integral form of the model equation over the control volume is stated as ∬ABCD (
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
) d𝑥d𝑦 = 0. Applying Green’s theorem, this area integral can be written as a line integral, 

replacing the Laplace equation by  

 
∮ (

𝜕∅

𝜕𝑥
d𝑦 −

𝜕∅

𝜕𝑦
d𝑥) = 0 (1.7.1) 

 

Equation (1.7.1) is then approximated as follows. The integral over each face of the control 

volume ABCD is approximated by the length of each segment times the value of the derivatives at 

the midpoint of the same segment. The line integration in equation (1.7.1) is expressed in the 

approximate form 

 𝜕∅

𝜕𝑥
⃒𝑝(∆𝑦AB) −

𝜕∅

𝜕𝑦
⃒𝑝(∆𝑥AB) +

𝜕∅

𝜕𝑥
⃒𝑞(∆𝑦BC) −

𝜕∅

𝜕𝑦
⃒𝑞(∆𝑥BC) +

𝜕∅

𝜕𝑥
⃒𝑟(∆𝑦CD)

−
𝜕∅

𝜕𝑦
⃒𝑟(∆𝑥CD) +

𝜕∅

𝜕𝑥
⃒𝑠(∆𝑦DA) −

𝜕∅

𝜕𝑦
⃒𝑠(∆𝑥DA) = 0 

(1.7.2) 

One approach to calculate the derivatives in equation (1.7.2), e.g., at the midpoint 𝑝, is to assign 

the average of the derivatives over the control volume which shares the same midpoint, as written 

in equations (1.7.3) and (1.7.4). In these equations, 𝒮 stands for the area of the control volume 

specified by the subscript. 

 𝜕∅

𝜕𝑥
⃒𝑝 ≃

1

𝒮𝑎𝑏𝑞𝑠
∮ ∅d𝑦 ≃

1

𝒮𝑎𝑏𝑞𝑠
[∅𝑚2(∆𝑦𝑎𝑏) + ∅B(∆𝑦𝑏𝑞) + ∅𝑚5(∆𝑦𝑞𝑠) + ∅A(∆𝑦𝑠𝑎)] (1.7.3) 

 𝜕∅

𝜕𝑦
⃒𝑝 ≃

−1

𝒮𝑎𝑏𝑞𝑠
∮ ∅d𝑥 ≃

1

𝒮𝑎𝑏𝑞𝑠
[∅𝑚2(∆𝑥𝑎𝑏) + ∅B(∆𝑥𝑏𝑞) + ∅𝑚5(∆𝑥𝑞𝑠) + ∅A(∆𝑥𝑠𝑎)] (1.7.4) 
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A similar procedure can be employed to approximate the derivatives at other midpoints of each 

segment. Furthermore, it is assumed that the value at corner nodes, such as A, is approximated by 

averaging the values of the four neighboring nodes, i.e., 

 
∅A =

∅𝑛1 + ∅𝑚2 + ∅𝑚5 + ∅𝑚1
4

 (1.7.5) 

These approximations yield a set of linear equations for the dependent variables. The iterative 

schemes described above can be applied to solve this system of linear equations. More details 

about how FVM can be applied for different types of mesh topologies, as well as different 

interpolation and approximation schemes used in this numerical method, are addressed in some 

numerical texts, e.g., [41, 42].  

The analysis, as stated above, shows the higher demand of calculations and requirements of 

interpolation schemes and approximations associated with FVM. Involvement of more grid nodes 

to increase the accuracy of the interpolation should be viewed in the context of more complexity 

associated with FVM. Providing a FD-based algorithm that can solve PDEs while enjoying key 

features of FVM, especially FVM’s flexibility in handling irregular shaped domains, would 

constitute significant advancement in numerical methods for PDEs. This is the primary goal of 

this thesis. 

1.7 Thesis Layout  

The thesis is arranged as follows: 

 The fundamental concepts and the mathematical manipulations of the Cartesian cut-

stencil FDM are presented in Chapter 2. The transformation functions used, the mapped 

format of model equations, boundary condition implementations, higher-order accurate 

formulations and unsteady formulations are also addressed in Chapter 2.  

 Verification of the proposed cut-stencil algorithm using the results of a number of 

manufactured problems in different types of physical domains is presented in Chapter 3. 

This chapter includes a brief summary of the method of manufactured solutions and its 

applications, especially in code verification. Also, Chapter 3 covers the definitions of 

local truncation error and formal order of accuracy, and results for these parameters are 

presented for the manufactured problems.  

 The application of the Cartesian cut-stencil FDM for solution of PDEs arising in 

advanced elasticity and heat transfer are discussed in Chapter 4. These problems mostly 

are offered in irregular shaped domains which normally create limitations for the 

traditional finite difference method. 

 The study of the streamfunction-vorticity formulation of the Navier-Stokes equations is 

the main subject of Chapter 5. The Cartesian cut-stencil FD formulation for the coupled 

non-linear streamfunction and vorticity equations and corresponding results of lid-driven 

cavity flow in different shapes of domain are presented in this chapter. Since this problem 

has been addressed as a benchmark flow problem in many numerical studies, Chapter 5 

can also be seen in the context of application of the Cartesian cut-stencil FDM to solve 

complex fluid flow problems. 
 Concluding remarks and suggestions for future work constitute Chapter 6, and 

Appendices are the final sections of the thesis. 
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CHAPTER 2 

FUNDAMENTALS and FORMULATIONS of CARTESIAN CUT-STENCIL FINITE 

DIFFERENCE METHOD 

2.1 Objective of the Chapter 

Chapter 2 considers the fundamentals and basic governing formulations of the Cartesian cut-

stencil FDM. Boundary condition implementation, unsteady formulation and higher-order 

schemes and associated equations of the cut-stencil FDM are discussed and their mathematical 

concepts are addressed in this chapter. To simplify the discussions, without missing the general 

concepts, Chapter 2 employs the convection-diffusion equation as the model equation since is 

often used to develop and demonstrate the utility of new numerical algorithms/formulations. In 

other words, researchers commonly use the convection-diffusion equation to develop and test the 

key features of the finite difference (FD), finite volume (FV) and finite element (FE) methods 

[42-47]. 

2.2 Model Equation and General Transformation Functions 

The linear second-order PDE (1.1) is also referred to as the 2-D unsteady convection-diffusion 

equation and serves as the model equation for this thesis. It can be rewritten in the form 

 𝜕∅

𝜕𝑡
=  𝜈∇2∅ + 𝑃

𝜕∅

𝜕𝑥
+ 𝑄

𝜕∅

𝜕𝑦
+ 𝑆 (2.1) 

The coefficients P, Q and the source term S are assumed to be independent of the 

solution 𝜙(𝑥, 𝑦, 𝑡). The diffusion coefficient 𝜈 is considered as constant. 

Consider the general 1-D transformation functions 𝑥 = 𝑥(𝜉) and 𝑦 = 𝑦(𝜂). In this case, the 

derivative operators given by (1.6.1)–(1.6.3) reduce to 

 𝜕

𝜕𝑥
=
𝑑𝜉

𝑑𝑥

𝜕

𝜕𝜉
 ,        

𝜕

𝜕𝑦
=
𝑑𝜂

𝑑𝑦

𝜕

𝜕𝜂
 (2.2.1) 

 𝜕2

𝜕𝑥2
=  (

𝑑𝜉

𝑑𝑥
)
2 𝜕2

𝜕𝜉2
+ 
𝑑2𝜉

𝑑𝑥2
𝜕

𝜕𝜉
 ,      

𝜕2

𝜕𝑦2
= (

𝑑𝜂

𝑑𝑦
)
2 𝜕2

𝜕𝜂2
+ 
𝑑2𝜂

𝑑𝑦2
𝜕

𝜕𝜂
 (2.2.2) 

Using equations (1.6.5) and 𝐽 =  𝑥′𝑦′,  where 𝑥′  ≡  
𝑑𝑥

𝑑𝜉
, 𝑦′  ≡  

𝑑𝑦

𝑑𝜂
,  these operators become 

 𝜕

𝜕𝑥
=
1

𝑥′
𝜕

𝜕𝜉
 ,      

𝜕

𝜕𝑦
=
1

𝑦′
𝜕

𝜕𝜂
 (2.3.1) 

 𝜕2

𝜕𝑥2
=  

1

(𝑥′)2
𝜕2

𝜕𝜉2
− 

𝑥′′

(𝑥′)3
𝜕

𝜕𝜉
 ,      

𝜕2

𝜕𝑦2
= 

1

(𝑦′)2
𝜕2

𝜕𝜂2
− 

𝑦′′

(𝑦′)3
𝜕

𝜕𝜂
 (2.3.2) 

As indicated above, the transformation Jacobian is 𝐽 =  𝑥′𝑦′ and, as long as the transformation 

functions 𝑥(𝜉) and 𝑦(𝜂) have non-zero derivatives with respect to ξ and η, respectively, the 

Jacobian will be non-zero. Reducing or eliminating the possibility of zero values for the 

transformation Jacobian is considered as a superior quality for any proposed transformation 

functions [48], and the transformation used in this thesis is chosen to ensure a non-zero Jacobian. 
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2.3 Arbitrary Domains and Cartesian Grid  

As discussed in Chapter 1 and also referencing the vast literature on numerical simulations for 

real-world applications, the need to solve PDEs in arbitrary domains with irregular (non-

rectangular) complex boundaries is obvious [47-51]. 

Figure 2.1 illustrates an arbitrarily shaped domain, Ω, on which the PDEs are to be solved, and a 

2-D Cartesian grid system which may, in general, have non-uniform spacing between grid lines. 

The nodes of the grid that are located inside the domain are referred to as active nodes and each 

active node has a 5-point stencil associated with it.  

Some of the 5-point stencils are cut by the boundary of the domain Ω and, as labelled in Figure 

2.1, are referred to as “cut-stencils”. For any cut-stencil, at least one of the end-nodes on the 

stencil lies on the boundary. Also, if none of the arms of a stencil are cut by the boundary of Ω, 

this type of stencil is called an “uncut-stencil”. In the case of a non-uniform Cartesian grid, or 

when any arm(s) of a 5-point stencil are cut by the boundary of Ω, the length of each arm may 

have different values. 

 
Figure 2.1: Arbitrary complex domain with Cartesian grid and cut-stencils 

2.4 Quadratic Form of the Transformation Functions 

The core idea of this thesis is to map any 5-point stencil in the physical domain to a generic 

computational 𝜉 − 𝜂 stencil. In particular, the transformation functions 𝑥(𝜉) and 𝑦(𝜂) are chosen 

to have a quadratic form with respect to 𝜉 and 𝜂, respectively. The general forms of these 

quadratic functions are 

 𝑥 = 𝑥(𝜉) = 𝑎2𝜉
2 + 𝑎1𝜉 + 𝑎0,    𝑦 = 𝑦(𝜂) = 𝑏2𝜂

2 + 𝑏1𝜂 + 𝑏0     (2.4) 

These two quadratic functions are the transformation functions which are used in the Cartesian 

cut-stencil finite difference (FDM). This transformation is applied at every active node P which is 

located at the centre of a 5-point stencil shown in Figure 2.1. For each 5-point stencil, the 

coefficients 𝑎𝑖  and 𝑏𝑖 can be expressed in terms of the coordinates of the nodes on the stencil. 
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2.4.1 Mapping of an Arbitrary 5-point Stencil 

Figure 2.2 illustrates the mapping of an arbitrary FD stencil centred at an active node P with 

different arm lengths to a generic uniform computational stencil with all arms of length one.  

 
Figure 2.2: Mapping from an arbitrary physical stencil to a generic computational stencil in 2-D 

The coefficients 𝑎𝑖 and 𝑏𝑖 in equations (2.4) are determined uniquely by requiring that the central 

node P is mapped to the point 𝜉 = 0, 𝜂 = 0, and the stencil endpoints W, S, E and N are mapped 

to (-1,0), (0,-1), (1,0) and (0,1) on the computational stencil, respectively. These conditions lead 

to: 

 
𝑎2 =

1

2
(𝑥w + 𝑥E) − 𝑥P, 𝑎1 =

1

2
(𝑥E − 𝑥W), 𝑎0 = 𝑥P (2.5.1) 

 
𝑏2 =

1

2
(𝑦S + 𝑦N) − 𝑦P, 𝑏1 =

1

2
(𝑦N − 𝑦S), 𝑏0 = 𝑦P (2.5.2) 

By substituting the coefficients from equations (2.5.1) and (2.5.2) into equations (2.4), the first 

and second derivatives of the quadratic functions 𝑥(𝜉) and 𝑦(𝜂) can be calculated analytically in 

terms of the physical coordinates of the nodes on the stencil. These derivatives, evaluated at node 

P of the physical FD stencil, are:  

 
𝑥𝑃
′ =

𝑑𝑥

𝑑𝜉
⃒@P,𝜉=0 = 𝑎1 =

1

2
(𝑥E − 𝑥W) (2.6.1) 

 
𝑥𝑃
′′ = 

𝑑2𝑥

𝑑𝜉2
⃒@P,𝜉=0 = 2𝑎2 = (𝑥E + 𝑥W) − 2𝑥P (2.6.2) 

 
𝑦𝑃
′ =

𝑑𝑦

𝑑𝜂
⃒@P,𝜂=0 = 𝑏1 =

1

2
(𝑦N − 𝑦S) (2.6.3) 

 
𝑦𝑃
′′ = 

𝑑2𝑦

𝑑𝜂2
⃒@P,𝜂=0 = 2𝑏2 = (𝑦N + 𝑦S) − 2𝑦P (2.6.4) 

It can be concluded from equations (2.6.2) and (2.6.4) that  𝑥′′ and 𝑦′′ are both zero if the physical 

stencil is uniform and, in this event, equations (2.6.1) and (2.6.3) imply that 𝑥′ = ∆𝑥 and 𝑦′ =

∆𝑦. 

Both uncut and cut stencils are mapped to the uniform 5-point computational stencil. The 

schematic of this mapping is presented in Figure 2.3. The only difference between cut and uncut 
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stencils is that a cut-stencil includes one or more boundary nodes at which a Dirichlet or 

Neumann boundary condition will be applied. 

 
Figure 2.3: Mapping of (a) uncut physical stencil, and (b) cut physical stencil, to a uniform 

computational stencil 

2.4.2 Transformation and Discretization of the Model Convection-Diffusion Equation 

The transformation to the uniform computational stencil allows 2
nd

-order accuracy for the 

discretization of the derivatives in the model equations. Therefore, the first and second derivatives 

of the solution variable ∅ can be approximated using 3-point central differencing with equally 

spaced neighbouring nodes on the computational stencil. Using equations (2.3.1) and (2.3.2), the 

cut-stencil formulation can easily be applied to the diffusion-convection equation (2.1). For 

steady convection-diffusion, the transformed governing equation is 

 
𝜐 [

1

(𝑥′)2
𝜕2∅

𝜕𝜉2
− 

𝑥"

(𝑥′)3
𝜕∅

𝜕𝜉
+ 

1

(𝑦′)2
𝜕2∅

𝜕𝜂2
−

𝑦"

(𝑦′)3
𝜕∅

𝜕𝜂
] +

𝑃

𝑥′

𝜕∅

𝜕𝜉
+
𝑄

𝑦′

𝜕∅

𝜕𝜂
= 𝑠(𝜉, 𝜂) (2.7) 

It is well-known that central differencing of the convective terms, particularly in equations with 

non-linear convective coefficients, may not model the physics of the problem correctly and may, 

therefore, produce an incorrect solution, or no solution at all. So, in general, upwind differencing 

is also recommended for discretization of the convective terms to overcome this issue [52-56]. 

To accommodate these possible options, parameters 𝛼 and 𝛽 can be introduced to produce a 1
st
-

order forward (𝛼 = 𝛽 = -1), 2
nd

-order central (𝛼 = 𝛽 = 0) or 1
st
-order backward (𝛼 = 𝛽 =1) 

differencing scheme in the x- and y-directions for the convective terms, respectively. Then, 

equation (2.7) is written in discretized form at the point P, located at the centre of the 

computational stencil, as: 

𝜐 [
𝜙𝑤− 2𝜙p+ 𝜙𝑒

(𝑥P
′ )
2 −

𝑥P
′′(𝜙𝑒− 𝜙𝑤)

2(𝑥P
′ )
3 +

𝜙𝑠− 2𝜙p+ 𝜙𝑛

(𝑦P
′ )
2 −

𝑦P
′′(𝜙𝑛− 𝜙𝑠)

2(𝑦P
′ )
3 ] +

𝑃[−(1+𝛼)𝜙𝑤 +2𝛼𝜙p+ (1−𝛼)𝜙𝑒 ]

2𝑥P
′ +

𝑄[−(1+𝛽)𝜙𝑠 +2𝛽𝜙p+ (1−𝛽)𝜙𝑛 ]

2𝑦P
′ = 𝑠P  

(2.8) 

Equation (2.8) can be cast in the standard form 

 𝑎p𝜙p + 𝑎𝑤𝜙𝑤 + 𝑎𝑒𝜙𝑒 + 𝑎𝑠𝜙𝑠 + 𝑎𝑛𝜙𝑛 = 𝑠P (2.9) 
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where the coefficients are defined as: 

 
𝑎p = −𝜈 (

2

(𝑥P
′ )2

+ 
2

(𝑦P
′ )2
) + (

𝛼𝑃

𝑥P
′ + 

𝛽𝑄

𝑦P
′ ) (2.10.1) 

 
𝑎𝑤 = 𝜈 (

1

(𝑥P
′ )2

+ 
𝑥P
′′

2(𝑥P
′ )3
) + ( 

−𝑃(1 + 𝛼)

2𝑥P
′  ) (2.10.2) 

 
𝑎𝑒 = 𝜈 (

1

(𝑥P
′ )2

− 
𝑥P
′′

2(𝑥P
′ )3
) + (

𝑃(1 − 𝛼)

2𝑥P
′ ) (2.10.3) 

 
𝑎𝑠 = 𝜈 (

1

(𝑦P
′ )2

+ 
𝑦P
′′

2(𝑦P
′ )3
) + (

−𝑄(1 + 𝛽)

2𝑦P
′ ) (2.10.4) 

 
𝑎𝑛 = 𝜈 (

1

(𝑦P
′ )2

− 
𝑦P
′′

2(𝑦P
′ )3
) + (

𝑄(1 − 𝛽)

2𝑦P
′ ) (2.10.5) 

Equation (2.9) can be solved using standard iterative procedures discussed in Chapter 1, such as 

Jacobi, Gauss-Seidel or successive over-relaxation (SOR) methods, repeatedly sweeping through 

all active nodes in the mesh. 

2.5 Treatment of Boundary Nodes and Conditions  

The treatment of boundary nodes in the Cartesian cut-stencil FD method is based on the type of 

boundary condition imposed at the node, which may be either a Dirichlet or Neumann boundary 

condition. In the case of a Dirichlet boundary node, since the boundary condition gives a known 

value of the solution, this value can be used directly in the calculations on the corresponding 

stencil adjacent to the boundary. Hence, the discussion in this section focuses on a scheme for 

Neumann boundary condition implementation in the cut-stencil FDM. This scheme uses a one-

sided approximation for the derivatives in the Neumann condition. 

The Neumann boundary condition 
𝜕∅

𝜕𝑛
⃒B = G(𝑥B, 𝑦B) specifies the value G(𝑥B, 𝑦B) of the normal 

derivative of the solution variable ∅ at a point B on a boundary curve S, as illustrated in Figure 

2.4. From vector calculus, the normal derivative of a function at a point B on the curve S can be 

written as: 

 
[𝑛𝑥

𝜕∅

𝜕𝑥
+ 𝑛𝑦

𝜕∅

𝜕𝑦
]
B

= G(𝑥B, 𝑦B) (2.11) 

 

The unit vector �̂� denotes the outward unit normal vector to S and the components of the normal 

vector along x- and y-directions are nx and ny, respectively. 
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Figure 2.4: Boundary curve and normal vector at specific point 

To simplify the discussion, consider a straight line boundary W with a Neumann condition at 

boundary node B, with corresponding equally-spaced Cartesian grid lines, as depicted in Figure 

2.5. It is assumed that for all the nodes along boundary W, the Neumann function G is a 

prescribed function of the (𝑥, 𝑦) coordinate of each point. The outward normal vector at point B 

is along the negative x-direction, i.e., �̂� = (−1,0), and therefore equation (2.11) reduces to 

−
𝜕∅

𝜕𝑥
|
B
= G(𝑥B, 𝑦B). Initially, the traditional FD notation is used to write the differencing 

approximation of the first derivatives and for this purpose, it is assumed that point B has the node 

indices (i, j). 

 
Figure 2.5: Uniform Cartesian grid used for one-sided differencing of Neumann boundary 

condition (TFD notation) 

One-sided 2
nd

-order accurate differencing is used to approximate the first derivative at point B. 

This method of approximation uses the nodes inside the domain of interest, unlike the ghost node 

method which introduces one node from outside the domain to define the difference 

approximation. Although there are no mathematical issues with the ghost node method, there may 

be a physical issue hidden in this method for real engineering problems. The ghost node method 

assumes that the ghost node, which is designed outside the domain and adjacent to the boundary 

line or node with Neumann boundary condition, carries the same properties as the nodes inside 

the domain of interest [57, 58]. However, the ghost node may require special treatment in order to 
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properly respect the different physics because they are located outside the domain, which may be 

surrounded by another medium and with a different set of governing equations.  

Using standard one-sided 2
nd

-order accurate differencing, the Neumann condition (2.11) becomes  

 𝜕∅

𝜕𝑥
⃒B =

−3∅(i,j) + 4∅(i+1,j) − ∅(i+2,j)

2(∆𝑥)
= −G(𝑥B, 𝑦B) (2.12) 

which can be rearranged to find the unknown boundary value at point (i,j) based on the value of 

neighbouring internal nodes and the value of the Neumann boundary function G: 

 
∅(i,j) =

4∅(i+1,j) − ∅(i+2,j) + 2(∆𝑥)G(𝑥B, 𝑦B)

3
 (2.13) 

Analogous to the TFDM, the Cartesian cut-stencil formulation for Neumann boundary nodes is 

illustrated in Figure 2.6(b). In Figure 2.6(a), the boundary line with the Neumann boundary 

condition may be located adjacent to a uniform or non-uniform physical grid. The boundary node 

W, in the physical domain, is a Neumann boundary node.  

 

Figure 2.6: Sample grid used for one-sided differencing of Neumann boundary condition (cut-

stencil FD notation) 

Since the computational stencil in Figure 2.6(b) is uniform, the 3-point approximation in equation 

(2.12) can be applied. Using the cut-stencil FD formulation and notation, the unknown boundary 

value at point w in the computational stencil can be obtained as: 

 1

𝑥W
′

𝜕∅

𝜕𝜉
⃒𝑤 =

−3∅𝑤 + 4∅P − ∅𝑒
2(𝑥W

′ )
 (2.14.1) 

 
∅𝑤 =

4∅P − ∅𝑒 + 2(𝑥W
′ )𝑔(𝜉, 𝜂)|𝑤

3
 (2.14.2) 

In the cut-stencil FDM and corresponding codes, the calculations using one of the iterative 

schemes is done to find the value of governing function 𝜙, at point P of each stencil. Referring to 

the concept of cut-stencil FD reveals that each endpoint of a stencil centred at point P, as long as 

it is not a boundary node, can be the centre point of another cut-stencil. This concept is shown 

schematically in Figure 2.7 which illustrates two five-point stencils in the vicinity of each other. 

In Figure 2.7(a) the points with subscript 1 (in red) are endpoints of the physical five-point stencil 

located at point P which is also depicted with subscript 1 (in red). The point W1 (in red) is also a 
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centre point P, shown with subscript 2 (in blue), of a physical stencil with endpoints shown with 

subscript 2 (in blue). It is clear from Figure 2.7(a) that P1 (in red) is the centre point of a stencil 

and simultaneously is the east point for another stencil for which the point P2 (in blue) is the 

centre point. Figure 2.7(b) conveys the same concept for two computational stencils with the 

same subscript (color) labelling. 

 
Figure 2.7: Illustration of two five-point stencils in neighbouring a) physical stencils, b) generic 

computational stencils 

Now consider an interior active node P which is adjacent to the Neumann boundary, as shown in 

Figure 2.6(b). Replacing ∅𝑤  in equation (2.9) with the expression in (2.14.2) will change the 

coefficients written in equations (2.10.1 – 2.10.5). In the event that the Neumann boundary node 

lies at the west node of a stencil, the coefficients and right hand side in the finite difference 

equation at interior node P are:   

 
𝑎p =  𝜈 (

−2

3(𝑥P
′ )2

+ 
−2

(𝑦P
′ )2

+
2𝑥P

′′

3(𝑥P
′ )3
) + (

(𝛼 − 2)𝑃

3𝑥P
′ + 

𝛽𝑄

𝑦P
′ ) (2.15.1) 

 𝑎𝑤 = 0 (2.15.2) 

 
𝑎𝑒 = 𝜈 (

2

3(𝑥P
′ )2

− 
2𝑥P

′′

3(𝑥P
′ )3
) + (

𝑃(2 − 𝛼)

3𝑥P
′ ) (2.15.3) 

 
𝑎𝑠 = 𝜈 (

1

(𝑦P
′ )2

+ 
𝑦P
′′

2(𝑦P
′ )3
) + (

−𝑄(1 + 𝛽)

2𝑦P
′ ) (2.15.4) 

 
𝑎𝑛 = 𝜈 (

1

(𝑦P
′ )2

− 
𝑦P
′′

2(𝑦P
′ )3
) + (

𝑄(1 − 𝛽)

2𝑦P
′ ) (2.15.5) 

 
RHS =  𝑠P +  𝜈 [−

𝑥P
′′

3(𝑥P
′ )3
𝑥W
′ 𝑔|𝑤 −

2

3(𝑥P
′ )2
𝑥W
′ 𝑔|𝑤] + [

𝑃(1 + 𝛼)

3𝑥P
′ 𝑥W

′ 𝑔|𝑤] (2.15.6) 

A similar procedure can be used to derive new sets of coefficients and expressions for the right 

hand side of equation (2.9) in the case of a Neumann boundary condition at other endpoints of the 

stencil. 

To illustrate the procedure when two endpoints of a five-point stencil have a Neumann condition, 

Figures 2.8(a) and (b) show a stencil centred at point P where both west and north endpoints have 

Neumann conditions.  
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Figure 2.8: Sample of five-point stencil with Neumann conditions at two endpoints 

Following the same procedure used to approximate the first derivative at point w as proposed in 

equation (2.14.1), the difference approximation for the first derivative at point n yields 

 1

𝑦N
′

𝜕∅

𝜕𝜂
⃒𝑛 =

3∅𝑛 − 4∅P + ∅𝑠
2(𝑦N

′ )
= 𝑔(𝜉, 𝜂)|𝑛 (2.16.1) 

 
∅𝑛 =

4∅P − ∅𝑠 + 2(𝑦N
′ )𝑔(𝜉, 𝜂)|𝑛

3
 (2.16.2) 

In this case, by substituting the values of ∅𝑤 and ∅𝑛 from equations (2.14.2) and (2.16.2) 

respectively, in the discrete form (2.9) of the convection-diffusion equation, the coefficients and 

right hand side of (2.9) can be written as: 

 
𝑎p =  𝜈 (

−2

3(𝑥P
′ )2

+ 
−2

3(𝑦P
′ )2

+
2𝑥P

′′

3(𝑥P
′ )3

−
2𝑦P

′′

3(𝑦P
′ )3
) + (

(𝛼 − 2)𝑃

3𝑥P
′ + 

(𝛽 − 2)𝑄

3𝑦P
′ ) (2.17.1) 

 𝑎𝑤 = 0 (2.17.2) 

 
𝑎𝑒 = 𝜈 (

2

3(𝑥P
′ )2

− 
2𝑥P

′′

3(𝑥P
′ )3
) + (

𝑃(2 − 𝛼)

3𝑥P
′ ) (2.17.3) 

 
𝑎𝑠 = 𝜈 (

2

3(𝑦P
′ )2

+ 
2𝑦P

′′

3(𝑦P
′ )3
) + (

−𝑄(2 + 𝛽)

3𝑦P
′ ) (2.17.4) 

 𝑎𝑛 = 0 (2.17.5) 

 
RHS =  𝑠P +  𝜈 [−

𝑥P
′′

3(𝑥P
′ )3

𝑥W
′ 𝑔|𝑤 −

2

3(𝑥P
′ )2

𝑥W
′ 𝑔|𝑤 +

𝑦P
′′

3(𝑦P
′ )3

𝑦N
′ 𝑔|𝑛 −

2

3(𝑦P
′ )2

𝑦N
′ 𝑔|𝑛]

+ [
𝑃(1 + 𝛼)

3𝑥P
′ 𝑥W

′ 𝑔|𝑤] − [
𝑄(1 − 𝛽)

3𝑦P
′ 𝑦N

′ 𝑔|𝑛] 
(2.17.6) 

2.5.1 Implementation for Curved Boundaries with Neumann Condition 

The concepts and approximations discussed in connection with Neumann boundary conditions 

has, thus far, been limited to consideration of a straight boundary line as shown in Figures 2.6 and 

2.8 to simplify the explanation of boundary nodes and conditions implementation. In reality, the 

boundaries of a complex domain may be any type of arbitrary curve. This fact, along with a 

Cartesian grid system, as the grid system used in the Cartesian cut-stencil FDM, may create two 

types of boundary nodes, referred to in this dissertation as “regular boundary nodesˮ and 

“irregular boundary nodesˮ. 
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Figure 2.9 illustrates an arbitrary domain Ω and a Cartesian grid, similar to Figure 2.1. As can be 

seen from Figure 2.9, both a horizontal and a vertical grid line may pass through some boundary 

nodes. This type of boundary node is called a “regular boundary node”. At a regular boundary 

node with a Neumann boundary condition, the data required for constructing one-sided difference 

formulas in both 𝜉 − and 𝜂 − directions are available. 

If only one horizontal grid line or one vertical grid line passes through a boundary node, this type 

of boundary node is called an “irregular boundary node”. For any irregular boundary node with a 

Neumann condition placed at an endpoint of any stencil, the data for a one-sided approximation 

in either 𝜉 − or 𝜂 − direction is available, but not in both directions. In this case, a weighted 

average method has been used to provide the conditions for the differencing approximation in the 

direction with missing data. The concepts and equations associated with these two types of 

boundary nodes are considered in the following sections. 

 
Figure 2.9: Illustration of regular and irregular boundary nodes 

2.5.2 Treatment of Regular Boundary Nodes 

As noted above, discretization of the first derivatives in the given Neumann condition, in both x- 

and y-directions, or correspondingly with respect to 𝜉 and 𝜂 , are required. Without loss of 

generality, assume that the boundary node lies at the west endpoint W, located on a curved 

boundary shown in Figure 2.10, for which the y-component of the normal vector is negative, i.e., 

𝑛𝑦 < 0. W is the west endpoint of the physical stencil associated with an internal node P which is 

adjacent to the boundary, and assume that a Neumann condition is imposed at node W. Boundary 

node W in Figure 2.10 is a regular boundary node. 
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Figure 2.10: Regular boundary node at west node of physical stencil with 𝑛𝑦 < 0 

Since both vertical and horizontal grid lines pass through node W, in general, enough nodes and 

corresponding 𝜙 values are available to construct the one-sided 2
nd

-order approximation for the 

first derivatives of 𝜙. Applying the Neumann boundary condition (2.11) at node W, mapping to 

the computational stencil and using 2
nd

-order approximations for the derivatives, the boundary 

condition at W, when 𝑛𝑦 < 0, can be written as: 

 𝜕∅

𝜕𝑛
⃒W = [

𝑛𝑥
𝑥′
𝜕∅

𝜕𝜉
+
𝑛𝑦

𝑦′
𝜕∅

𝜕𝜂
]
W

≈ (
𝑛𝑥
𝑥′
)
W
[
−3∅𝑤 + 4∅P − ∅𝑒

2
] + (

𝑛𝑦

𝑦′
)
W

[
−3∅𝑤 + 4∅𝑛𝑤 − ∅𝑛𝑛𝑤

2
] = 𝑔|𝑤 

(2.18) 

where nw and nnw refer to the north-west and north-north-west nodes relative to node P. The sign 

of one of the components of the normal vector to the curve at the boundary node with Neumann 

condition determines whether to use the backward or forward differencing scheme along that 

direction. For a west boundary node the sign of 𝑛𝑥 is always negative (or zero) while the 

𝑛𝑦 component of the normal vector could be negative, as shown in Figure 2.10, or positive as 

depicted in Figure 2.11. To be precise, if the normal vector at the west boundary node with 

Neumann condition has a negative y-component (Figure 2.10), the forward differencing scheme is 

used to approximate the derivatives in both 𝜉 − and 𝜂 − directions. Figure 2.11 presents the case 

of west boundary node when 𝑛𝑦 > 0, for which forward differencing is used to approximate 

𝜕∅

𝜕𝜉
 and backward differencing is used for 

𝜕∅

𝜕𝜂
, yielding 
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Figure 2.11: Regular node at west boundary node of physical stencil with 𝑛𝑦 > 0  

 𝜕∅

𝜕𝑛
⃒W = [

𝑛𝑥
𝑥′
𝜕∅

𝜕𝜉
+
𝑛𝑦

𝑦′
𝜕∅

𝜕𝜂
]
W

 

≈ (
𝑛𝑥
𝑥′
)
W
[
−3∅𝑤 + 4∅P − ∅𝑒

2
] + (

𝑛𝑦

𝑦′
)
W

[
3∅𝑤 − 4∅𝑠𝑤 + ∅𝑠𝑠𝑤

2
] = 𝑔|𝑤 

(2.19) 

To further clarify the concept, consider the case of a regular boundary node with Neumann 

boundary condition at the south of an internal node P. The sign of 𝑛𝑦 is always negative in this 

case, as illustrated in Figures 2.12 and 2.13, which means that forward differencing should be 

used for 
𝜕∅

𝜕𝜂
. However, for the 𝜉-derivative, forward or backward differencing is used depending 

on whether 𝑛𝑥 < 0 (Figure 2.12) or  𝑛𝑥 > 0 (Figure 2.13), respectively. 

 
Figure 2.12: Regular node at south boundary node of physical stencil with 𝑛𝑥 < 0 
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Figure 2.13: Regular node at south boundary node of physical stencil with 𝑛𝑥 > 0  

Thus, for south boundary nodes with Neumann conditions, 

 𝜕∅

𝜕𝑛
⃒S = [

𝑛𝑥
𝑥′
𝜕∅

𝜕𝜉
+
𝑛𝑦

𝑦′
𝜕∅

𝜕𝜂
]
S

 

≈ (
𝑛𝑥
𝑥′
)
S
[
−3∅𝑠 + 4∅𝑒𝑠 − ∅𝑒𝑒𝑠

2
] + (

𝑛𝑦

𝑦′
)
S

[
−3∅𝑠 − 4∅P + ∅𝑛

2
] = 𝑔|𝑠 

 if 𝑛𝑥 < 0  (2.20.1) 

 𝜕∅

𝜕𝑛
⃒S = [

𝑛𝑥
𝑥′
𝜕∅

𝜕𝜉
+
𝑛𝑦

𝑦′
𝜕∅

𝜕𝜂
]
S

 

≈ (
𝑛𝑥
𝑥′
)
S
[
3∅𝑠 − 4∅𝑤𝑠 + ∅𝑤𝑤𝑠

2
] + (

𝑛𝑦

𝑦′
)
S

[
−3∅𝑠 − 4∅P + ∅𝑛

2
] = 𝑔|𝑠 

if  𝑛𝑥 > 0 (2.20.2) 

For other boundary nodes at the north and east of an internal node P with Neumann conditions, 

similar conditions are valid with one of the components of the normal vector at the boundary 

node determining the differencing scheme. Table 2.1 gives a summary of the appropriate 

differencing scheme based on the sign of the components of the normal vector at boundary nodes 

at the west, south, east and north. 
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Boundary 

node on a 

curved 

boundary 

Sign of  x-

component of 

normal vector 

Sign of  y-

component of 

normal vector 

Differencing 

scheme along 𝜉- 

direction 

Differencing 

scheme along 𝜂- 

direction 

West Negative 
Negative or 

positive 
Forward 

Forward or 

backward 

South 
Negative or 

positive 
Negative 

Forward or 

backward 
Forward 

East Positive 
Negative or 

positive 
Backward 

Forward or 

backward 

North 
Negative or 

positive 
Positive 

Forward or 

backward 
Backward 

Table 2.1: Summary of the sign of normal vector components and corresponding differencing 

schemes for boundary nodes on curved boundaries 

2.5.3 Treatment of Irregular Boundary Nodes 

The discussion for boundary nodes on curved boundaries, so far, has dealt with the treatment of 

the regular type of boundary nodes at the west, south, east or north. The treatment of irregular 

type of boundary nodes, as identified in Figure 2.9, will be discussed in this section. Recall that 

grid lines do not intersect at an irregular boundary node, so there is either a horizontal grid line or 

a vertical grid line emanating from the boundary node, but not both. Some representative 

schematics of this situation are illustrated in Figures 2.14, 2.15 and 2.16. Consequently, there are 

no internal nodes along one of the grid line directions from the boundary node. For example, 

considering boundary node E in Figure 2.14, the condition for constructing a differencing scheme 

along the horizontal grid line is available, while it is not possible to write the differencing scheme 

along the vertical direction. In general, for any irregular boundary node, this problem is resolved 

by inserting an imaginary line emanating in the appropriate direction from the boundary node and 

imaginary nodes are defined as shown in Figures 2.14-2.16. The dashed lines and the nodes 

labelled by * are fictitious lines and nodes, respectively.   
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Figure 2.14: Irregular node at east boundary node of physical stencil with 𝑛𝑦 > 0 

Then, formulas that were derived for regular boundary nodes can be modified to treat irregular 

boundary nodes. It is simply a matter of replacing the off-stencil nodal values, such 

as ∅𝑛𝑤 and ∅𝑛𝑛𝑤 in equation (2.18) by the values at the fictitious nodes, i.e., ∅𝑛𝑤∗ and ∅𝑛𝑛𝑤∗. 

However, these nodes are not real nodes and the corresponding values are not part of the 

unknowns in the solution procedure. These fictitious nodal values must be defined in terms of the 

values at the actual nodes of the Cartesian mesh. 

To accomplish this, a distance weighted average method is applied to evaluate the values at the 

fictitious nodes. The averaging can be explained by referring to Figure 2.14. For the irregular 

boundary node at the east of internal node P, L1 is the distance between nodes S or SS and E, and 

L2 is the distance between nodes ES or ESS and E. The values at the fictitious nodes ES* and 

ESS*, or equivalently at es* and ess* on the computational stencil, are evaluated by weighted 

average equations as follows: 

 

∅𝑒𝑠∗ =

∅𝑠
L1
+
∅𝑒𝑠
L2

1
L1
+
1
L2

=
L2∅𝑠 + L1∅𝑒𝑠
L1 + L2

 (2.21.1) 

 

∅𝑒𝑠𝑠∗ =

∅𝑠𝑠
L1
+
∅𝑒𝑠𝑠
L2

1
L1
+
1
L2

=
L2∅𝑠𝑠 + L1∅𝑒𝑠𝑠

L1 + L2
 (2.21.2) 

 

Similar expressions can be derived for other cases where the irregular boundary node lies on the 

west, south or north endpoint of the stencil. Once these fictitious values have been computed, the 

Neumann boundary conditions corresponding to Figures 2.14, 2.15 and 2.16 are written 

respectively as: 

 𝜕∅

𝜕𝑛
⃒E = [

𝑛𝑥
𝑥′
𝜕∅

𝜕𝜉
+
𝑛𝑦

𝑦′
𝜕∅

𝜕𝜂
]
E

 

≈ (
𝑛𝑥
𝑥′
)
E
[
3∅𝑒 − 4∅P + ∅𝑤

2
] + (

𝑛𝑥
𝑦′
)
E

[
3∅𝑒 − 4∅𝑒𝑠∗ + ∅𝑒𝑠𝑠∗

2
] = 𝑔|𝑒 

(2.22.1) 
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 𝜕∅

𝜕𝑛
⃒E = [

𝑛𝑥
𝑥′
𝜕∅

𝜕𝜉
+
𝑛𝑦

𝑦′
𝜕∅

𝜕𝜂
]
E

 

≈ (
𝑛𝑥
𝑥′
)
E
[
3∅𝑒 − 4∅P + ∅𝑤

2
] + (

𝑛𝑦

𝑦′
)
E

[
−3∅𝑒 + 4∅𝑒𝑛∗ − ∅𝑒𝑛𝑛∗

2
] = 𝑔|𝑒 

(2.22.2) 

 𝜕∅

𝜕𝑛
⃒N = [

𝑛𝑥
𝑥′
𝜕∅

𝜕𝜉
+
𝑛𝑦

𝑦′
𝜕∅

𝜕𝜂
]
N

 

≈ (
𝑛𝑥
𝑥′
)
N
[
−3∅𝑛 + 4∅𝑛e∗ − ∅𝑛𝑒𝑒∗

2
] + (

𝑛𝑦

𝑦′
)
N

[
3∅𝑛 − 4∅P + ∅𝑠

2
] = 𝑔|𝑛 

(2.22.3) 

 

 
Figure 2.15: Irregular node at east boundary node of physical stencil with 𝑛𝑦 < 0 

 

 
Figure 2.16: Irregular node at north boundary node of physical stencil with 𝑛𝑥 < 0 

The details of Neumann boundary condition treatment at any boundary node on any curved 

boundary have been discussed in this section. Figures 2.10-2.16, along with the corresponding 

equations (2.18), (2.19), (2.20) and (2.22), consider representative cases of regular and irregular 

boundary nodes. Since the values of  ∅ at the boundary nodes are required in the solution 

algorithm, these equations are rearranged to produce an explicit expression for the unknown value 

at a Neumann boundary node. For example, the value at the irregular boundary node with 

Neumann condition at the east of internal node P, as depicted in Figure 2.15, is obtained using 

equation (2.22.2) in the following form:  
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∅𝑒 = (
3

2
((
𝑛𝑥
𝑥′
)
E
− (
𝑛𝑦

𝑦′
)
E

))

−1

[𝑔|𝑒 + 2(
𝑛𝑥
𝑥′
)
E
∅P −

1

2
(
𝑛𝑥
𝑥′
)
E
∅𝑤 − 2(

𝑛𝑦

𝑦′
)
E

∅𝑒𝑛∗

+
1

2
(
𝑛𝑦

𝑦′
)
E

∅𝑒𝑛𝑛∗] 

(2.22.4) 

The expression in equation (2.22.4) conveys the same concept as discussed in implementation of 

the Neumann boundary condition on a straight boundary and stated, e.g., in equation (2.14.2). A 

new set of coefficients in the finite difference equation for an internal node P, when a Neumann 

boundary node is located at one (or more) of the endpoints of its stencil, can be derived, similar to 

coefficients for a straight boundary given by equations (2.17.1-2.17.6). 

The concept of common nodes in neighbouring 5-point stencils has been mentioned in preceding 

sections and illustrated in Figure 2.7. Any regular boundary node on curved boundaries, which is 

located at the endpoint of more than one 5-point stencil, may have Dirichlet or Neumann 

boundary conditions. In fact, the concept of common nodes is applicable for treatment of regular 

boundary nodes.   

To simplify the discussion of common nodes, the study here is limited to one case with Neumann 

condition boundary node since the procedure is the same for other cases and can also cover the 

boundary node with a Dirichlet condition. It is assumed that regular node B on the curved 

boundary, as presented in Figure 2.17, has the Neumann boundary condition. The node B is 

located at the west end node and north end node of arbitrary internal nodes PW and PN, 

respectively. 

 
Figure 2.17: Illustration of a regular boundary node with Neumann condition at the endpoints of 

two 5-point stencils 

The differencing along the ξ − direction is performed using forward differencing and backward 

differencing is used for differencing along the η − direction. The difference approximation of the 

Neumann condition at regular boundary node B, as indicated in Figure 2.17, is written as: 

 𝜕∅

𝜕𝑛
⃒B = [

�̂�𝑥
𝑥B
′

𝜕∅

𝜕𝜉
+
�̂�𝑦

𝑦B
′

𝜕∅

𝜕𝜂
]
E

 

≈ (
𝑛𝑥
𝑥′
)
E
[
−3∅B + 4∅PW − ∅EPW

2
] + (

𝑛𝑦

𝑦′
)
E

[
3∅B − 4∅PN + ∅SPN

2
] = G(𝑥, 𝑦)⃒B 

(2.23) 
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Equation (2.23) is similar to equation (2.19) for a regular boundary node at west node with 

�̂�𝑦 > 0, and restated here by considering the values of the governing function from two 

neighbouring 5-point stencils. The condition illustrated in Figure 2.17 is applicable for any other 

combinations of identical Neumann boundary nodes as the common endpoint of two 5-point 

stencils.  

2.6 Higher-Order Differencing 

The order of discretization is one of the primary criteria used to assess the accuracy of a solution 

in a FD method. Higher-order methods (higher than 2) have generated intense interest in recent 

years in many application areas such as compressible and incompressible flow, computational 

aeroacoustics, geodynamic simulations, simulations in aerospace and other fields [59-63]. 

Clearly, a wider stencil typically used to achieve a higher-order discretization can offer more 

accurate solution of the governing PDEs for points in the domain interior, but this approach fails 

at near-boundary nodes, where lower-order schemes have to be implemented. Furthermore, wider 

stencils cannot be easily accommodated in complex domains and they lead to more matrix 

calculations [64, 65]. As an alternative, the compact Padé-Hermitian formulation, which uses a 

narrower stencil, has been used in many studies to propose higher-order formulations for the 

solution of PDEs, e.g. [64, 66-68].  

Undoubtedly, one of the main purposes of applying any higher-order formulation to the solution 

of PDEs is to obtain more accurate solutions compared to a lower-order formulation with the 

same size of mesh. So, in this research two main formulations, categorized as higher-order, have 

been proposed and investigated. These two formulations, which lead to more accurate solutions 

for “manufactured” problems and real physical problems, are referred to as 5+4-point cut-stencil 

and higher-order (HO) compact cut-stencil FD. The details of the formulations for each main 

higher-order scheme and combinations of these higher-order schemes with the cut-stencil FDM 

are studied in this chapter. Consideration of the real order of accuracy for the higher-order 

formulations and the corresponding results will be investigated later, especially in Chapter 3. 

The cut-stencil FDM, due to its simplicity, is well-suited for extension to higher-order 

formulations. The localized treatment of the physical stencil provides a simple framework for 

development of higher-order schemes. Furthermore, programming the higher-order formulations 

in complicated domains is possible with any type of boundary conditions and arbitrarily complex 

boundaries. The main aim in the development of higher-order methods proposed in this 

dissertation is to keep the size of stencil and number of nodes in each stencil as the original 5-

point stencil of the cut-stencil FDM, as depicted in Figure 2.2. Accordingly, the values of the 

governing function and its derivatives used to construct the higher-order methods are all 

expressed in terms of only the five points of the main stencil of the cut-stencil FDM. That is to 

say, the values and derivatives of the governing function at the nodes of the 5-point stencil are 

used explicitly in the higher-order formulations. However, it is worth noting that the values of the 

governing function at some neighbouring nodes outside the 5-point stencil may be used to 

approximate the derivatives in the HO compact formulations of the cut-stencil FDM, particularly 

near the boundary. This fact will be clearer when the formulation of each HO scheme is 

considered.   
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2.6.1 5+4-point (4 Auxiliary Nodes) Stencil Formulation 

The main issue associated with using higher-order formulation with a wider stencil, e.g. 9-point 

stencil, becomes apparent in differencing at the nodes near the boundaries [17]. Figure 2.18 

shows a sample 9-point stencil in the physical domain with TFD labelling which can be used to 

approximate first and second derivatives with 4
th
-order of accuracy. 

 
Figure 2.18: Sample of 9-point stencil with TFD notation used for 4

th
-order approximation 

Standard 5-point (in each direction) central differencing produces 4
th
-order approximations given 

by equations (2.24) for first
 
and second derivatives at node (i,j) using the stencil shown in Figure 

2.18. Obviously, the width and height of the 9-point stencil used to construct the differencing 

expressions are twice as large compared to the 5-point stencil. Thus, in the event that the point 

(i,j) is neighbouring to a boundary in any direction, equations (2.24) cannot be applied to find a 

4
th
-order accurate solution at point (i,j). The usual remedy for this issue is to use 3-point 2

nd
-order 

accurate approximations for nodes located next to boundaries, or construct an upwind 

differencing formulation with the same higher-order approximation as interior nodes, which also 

requires a wider stencil in one or two directions.   

 𝜕∅

𝜕𝑥
⃒(i,j) =

∅(i−2,j) − 8∅(i−1,j) + 8∅(i+1,j) − ∅(i+2,j)

12∆𝑥
 (2.24.1) 

 𝜕2∅

𝜕𝑥2
⃒(i,j) =

−∅(i−2,j) + 16∅(i−1,j) − 30∅(i,j) + 16∅(i+1,j) − ∅(i+2,j)

12(∆𝑥)2
 (2.24.2) 

 𝜕∅

𝜕𝑦
⃒(i,j) =

∅(i,j−2) − 8∅(i,j−1) + 8∅(i,j+1) − ∅(i,j+2)

12∆𝑦
 (2.24.3) 

 𝜕2∅

𝜕𝑦2
⃒(i,j) =

−∅(i,j−2) + 16∅(i,j−1) − 30∅(i,j) + 16∅(i,j+1) − ∅(i,j+2)

12(∆𝑦)2
 (2.24.4) 

 

In this thesis, to overcome the problem of reduced accuracy near the boundary while still 

preserving the goal of the cut-stencil method not to use points outside the 5-point stencil, a 9-

point stencil is created by inserting four auxiliary points along the arms of the original 5-point 

stencil. Figure 2.19 illustrates physical and computational stencils which are made by adding one 

node at the midpoint of each arm of the computational stencil, shown in Figure 2.2, and 
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corresponding location on the arms of the physical stencil, i.e., at l, r, b and a corresponding to 

𝜉, 𝜂 values of (-½, 0), (½, 0), (0, -½) and (0, ½) respectively. 

 

 
Figure 2.19: Illustration of physical and computational 5+4-point (4 auxiliary nodes) stencils  

The same quadratic functions in equation (2.4), which map an arbitrary physical 5-point stencil to 

a uniform computational 5-point stencil, are used for the process of mapping the 5+4-point 

physical stencil to a uniform 5+4-point computational stencil, as shown in Figure 2.19. As 

mentioned before, the auxiliary nodes l, r, a and b are the midpoints on the arms of the 

computational stencil. Under the quadratic mapping, these midpoints on the arms of the 

computational stencil do not map to midpoints on the physical stencil, unless the physical stencil 

is uniform. The value of 𝜉 and 𝜂 and the corresponding expressions for the x- and y-coordinates 

of the four auxiliary nodes on the physical stencil are summarized in Table 2.2.  

Node 𝜉 𝜂 x-coordinate y-coordinate 

L −1/2 0 
3

4
𝑥P +

3

8
𝑥W −

1

8
𝑥E 𝑦P 

R +1/2 0 
3

4
𝑥P −

1

8
𝑥W +

3

8
𝑥E 𝑦P 

B 0 −1/2 𝑥P 
3

4
𝑦P +

3

8
𝑦S −

1

8
𝑦N 

A 0 +1/2 𝑥P 
3

4
𝑦P −

1

8
𝑦S +

3

8
𝑦N 

Table 2.2: Expressions for x- and y-coordinates of four auxiliary nodes on the physical stencil 

used in the 5+4-point cut-stencil formulation  

The computational stencil in Figure 2.19 provides the opportunity to write 4
th
-order differencing 

expressions for first and second derivatives at point P, by taking into account that Δ𝜉 and Δ𝜂 are 

both equal to 1/2. Analogous to equations (2.24), these 4
th
-order accurate approximations at point 

P on the computational stencil are:  

 𝜕∅

𝜕𝜉
⃒P =

∅𝑤 − 8∅𝑙 + 8∅𝑟 − ∅𝑒

12∆𝜉⃒∆𝜉=1/2

 (2.25.1) 

 𝜕2∅

𝜕𝜉2
⃒P =

−∅𝑤 + 16∅𝑙 − 30∅P + 16∅𝑟 − ∅𝑒

12(∆𝜉)2⃒∆𝜉=1/2

 (2.25.2) 

 𝜕∅

𝜕𝜂
⃒P =

∅𝑠 − 8∅𝑏 + 8∅𝑎 − ∅𝑛

12∆𝜂⃒∆𝜂=1/2

 (2.25.3) 
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 𝜕2∅

𝜕𝜂2
⃒P =

−∅𝑠 + 16∅𝑏 − 30∅P + 16∅𝑎 − ∅𝑛

12(∆𝜂)2⃒∆𝜂=1/2

 (2.25.4) 

Then, the discrete form of the model equation, e.g. ∇2∅ = 𝐹(𝑥, 𝑦), in the cut-stencil FD 

formulation using 4
th
-order approximation for the derivatives at node P can be written as: 

 1

(𝑥P
′ )2
[
−∅𝑤 + 16∅𝑙 − 30∅P + 16∅𝑟 − ∅𝑒

3
] −

𝑥P
′′

(𝑥P
′ )3
[
∅𝑤 − 8∅𝑙 + 8∅𝑟 − ∅𝑒

6
] 

+
1

(𝑦P
′ )2
[
−∅𝑠 + 16∅𝑏 − 30∅P + 16∅𝑎 − ∅𝑛

3
] −

𝑦P
′′

(𝑦P
′ )3
[
∅𝑠 − 8∅𝑏 + 8∅𝑎 − ∅𝑛

6
] =  𝑓P 

(2.26) 

Equation (2.26) can be cast in the standard form: 

 𝑎p𝜙p + 𝑎𝑤𝜙𝑤 + 𝑎𝑒𝜙𝑒 + 𝑎𝑠𝜙𝑠 + 𝑎𝑛𝜙𝑛 + 𝑎𝑙𝜙𝑙 + 𝑎𝑟𝜙𝑟 + 𝑎𝑎𝜙𝑎 + 𝑎𝑏𝜙𝑏 = 𝑓P (2.27) 

where the coefficients are given by: 

 
𝑎p = −

10

(𝑥P
′ )2

−
10

(𝑦P
′ )2

 (2.28.1) 

 
𝑎𝑤 = −

1

3(𝑥P
′ )2

−
𝑥P
′′

6(𝑥P
′ )3

 (2.28.2) 

 
𝑎𝑒 = −

1

3(𝑥P
′ )2

+
𝑥P
′′

6(𝑥P
′ )3

 (2.28.3) 

 
𝑎𝑠 = −

1

3(𝑦P
′ )2

−
𝑦P
′′

6(𝑦P
′ )3

 (2.28.4) 

 
𝑎𝑛 = −

1

3(𝑦P
′ )2

+
𝑦P
′′

6(𝑦P
′ )3

 (2.28.5) 

 
𝑎𝑙 = 

16

3(𝑥P
′ )2

+
4𝑥P

′′

3(𝑥P
′ )3

 (2.28.6) 

 
𝑎𝑟 = 

16

3(𝑥P
′ )2

−
4𝑥P

′′

3(𝑥P
′ )3

 (2.28.7) 

 
𝑎𝑏 = 

16

3(𝑦P
′ )2

+
4𝑦P

′′

3(𝑦P
′ )3

 (2.28.8) 

 
𝑎𝑎 = 

16

3(𝑦P
′ )2

−
4𝑦P

′′

3(𝑦P
′ )3

 (2.28.9) 

It is beneficial to emphasize that the 5+4-point stencil scheme uses the same 5-point stencil as the 

original stencil of the cut-stencil FDM which was used to evaluate the PDEs with 2
nd

-order 

accuracy. Thus, the 5+4-point stencil can be applied to achieve higher-order accuracy at all nodes 

in the mesh without requiring special formulas for stencils that are adjacent to boundaries. 

2.6.1.1 Evaluation of Metrics at Auxiliary Nodes of 5+4-point Stencil Formulation 

Metrics used in the FD solutions at the four auxiliary nodes on a computational stencil can be 

written in terms of coordinates of the 5+4-point stencil similar to the metrics of the 5-point stencil 

scheme as presented in equations (2.6). Figure 2.20 shows a 5+4-point stencil containing four 
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stencils at the auxiliary nodes. The dash lines in Figure 2.20 show the horizontal or vertical arms 

of the stencils at the auxiliary nodes, while the solid lines are the arms of the original 5-point 

stencil.    

 
Figure 2.20: 5+4-point main stencil along with four 5-point stencils at the auxiliary nodes, a) 

physical illustration, b) computational illustration 

At first, consider the stencil centred at the auxiliary node L with endpoints at W, LS, P and LN. 

This stencil is mapped to a 5-point computational stencil with all arms of length one using the 

quadratic transformation functions 𝑥(𝜉) and 𝑦(𝜂) defined in equation (2.4). The schematic of this 

mapping is shown in Figure 2.21. 

 
Figure 2.21: Mapping from 5-point physical stencil located at auxiliary node L to a uniform 5-

point computational stencil centred at auxiliary node l 

The coefficients of the quadratic transformation functions 𝑥(𝜉) and 𝑦(𝜂) that map the physical 

stencil to the uniform computational stencil are found in terms of the coordinates of nodes W, L, 

P, LN and LS, as explained in previous sections. The metrics at auxiliary node L are given by: 

 
𝑥L
′ =

1

2
(𝑥P − 𝑥W) (2.29.1) 

 𝑥L
′′ = 𝑥W − 2𝑥L + 𝑥P (2.29.2) 
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𝑦L
′ =

1

2
(𝑦LN − 𝑦LS) (2.29.3) 

 𝑦L
′′ = 𝑦LS − 2𝑦L + 𝑦LN (2.29.4) 

where expressions for xL, yL, etc., are given in Table 2.2 in terms of the endpoints of the original 

5-point stencil. Similarly, from the schematic of the 5-point physical stencil centred at the 

auxiliary node B and the corresponding uniform computational stencil depicted in Figure 2.22, 

the metrics at B are given by: 

 
Figure 2.22: Mapping from 5-point physical stencil located at auxiliary node B to a uniform 5-

point computational stencil centred at auxiliary node b 

 
𝑥B
′ =

1

2
(𝑥BE − 𝑥BW) (2.30.1) 

 𝑥B
′′ = 𝑥BW − 2𝑥B + 𝑥BE (2.30.2) 

 
𝑦B
′ =

1

2
(𝑦P − 𝑦S) (2.30.3) 

 𝑦B
′′ = 𝑦S − 2𝑦B + 𝑦P (2.30.4) 

Noting that 𝑦L  =  𝑦R  =  𝑦P and 𝑥B  =  𝑥A  =  𝑥P, the expressions used to calculate the metrics at 

the four auxiliary nodes have been summarized in Table 2.3.  

Node x′ x′′ y′ y′′ 

L 
1

2
(𝑥P − 𝑥W) 𝑥W − 2𝑥L + 𝑥P 𝑦P

′  𝑦P
′′ 

R 
1

2
(𝑥E − 𝑥P) 𝑥P − 2𝑥R + 𝑥E 𝑦P

′  𝑦P
′′ 

B 𝑥P
′  𝑥P

′′ 
1

2
(𝑦P − 𝑦S) 𝑦S − 2𝑦B + 𝑦P 

A 𝑥P
′  𝑥P

′′ 
1

2
(𝑦N − 𝑦P) 𝑦P − 2𝑦A + 𝑦N 

Table 2.3: Metrics at four auxiliary nodes in 5+4-point stencil formulation 
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2.6.1.2 Evaluation of the Governing Function at Auxiliary Nodes in the 5+4-point Stencil 

Formulation 

As written in equations (2.27), to find the solution at an internal node P, the values of the function 

∅ at the four auxiliary nodes are required. The values of the function ∅ at these auxiliary nodes 

are expressed by 2
nd

-order accurate approximations. Referring to Figure 2.20 reveals that the 

conditions to write the 2
nd

-order accurate approximation for the first and second derivatives at the 

auxiliary nodes l, r, a and b are available. To simplify the discussion, consider the model Poisson 

equation ∇2∅ = 𝐹(𝑥, 𝑦). Then, for example, using 3-point central differencing, the discrete form 

of the model equation in the cut-stencil FD formulation at auxiliary node L is:  

 1

(𝑥L
′ )2
[𝜙𝑤 − 2𝜙𝑙 + 𝜙P] − 

𝑥L
′′

2(𝑥L
′ )3
[𝜙P − 𝜙𝑤] 

+
1

(𝑦L
′ )2
[𝜙𝑙𝑠 − 2𝜙𝑙 + 𝜙𝑙𝑛] −  

𝑦L
′′

2(𝑦L
′ )3
[𝜙𝑙𝑛 − 𝜙𝑙𝑠] = 𝑓𝑙 

(2.31) 

Rewriting equation (2.31) and collecting the same terms yields the explicit form of equation 

(2.31) for ∅𝑙:  

 
(
−2

(𝑥L
′ )2

+
−2

(𝑦L
′ )2
)∅𝑙

= 𝑓𝑙 − (
1

(𝑥L
′ )2

+
𝑥L
′′

2(𝑥L
′ )3
)∅𝑤 − (

1

(𝑥L
′ )2

−
𝑥L
′′

2(𝑥L
′ )3
)∅P

− (
1

(𝑦L
′ )2

+
𝑦L
′′

2(𝑦L
′ )3
)∅𝑙𝑠 − (

1

(𝑦L
′ )2

−
𝑦L
′′

2(𝑦L
′ )3
)∅𝑙𝑛  

(2.32.1) 

It is worth mentioning that the nodes 𝑙𝑠 and 𝑙𝑛 are the images of the L nodes on the physical 

stencils centred at nodes S and N, respectively. This connectivity between nodes in the cut-stencil 

FD formulation and the corresponding solver codes was previously explained and depicted in 

Figure 2.7 for the 5-point stencil formulation. The values of function ∅ at the auxiliary nodes are 

updated at each iteration when the standard iterative procedure sweeps through all nodes in the 

mesh.  The explicit expressions for the value of ∅ at the other auxiliary nodes, similar to equation 

(2.32.1) for ∅𝑙 , can be written as: 

 (
−2

(𝑥R
′ )
2 +

−2

(𝑦R
′ )
2) ∅𝑟 = 𝑓𝑟 − (

1

(𝑥R
′ )
2 +

𝑥R
′′

2(𝑥R
′ )
3) ∅P − (

1

(𝑥R
′ )
2 −

𝑥R
′′

2(𝑥R
′ )
3) ∅𝑒 −

 (
1

(𝑦R
′ )
2 +

𝑦R
′′

2(𝑦R
′ )
3) ∅𝑟𝑠 − (

1

(𝑦R
′ )
2 −

𝑦R
′′

2(𝑦R
′ )
3) ∅𝑟𝑛   

(2.32.2) 

 (
−2

(𝑥B
′ )
2 +

−2

(𝑦B
′ )
2) ∅𝑏 = 𝑓𝑏 − (

1

(𝑥B
′ )
2 +

𝑥B
′′

2(𝑥B
′ )
3) ∅𝑏𝑤 − (

1

(𝑥B
′ )
2 −

𝑥B
′′

2(𝑥B
′ )
3) ∅𝑏𝑒 −

(
1

(𝑦B
′ )
2 +

𝑦B
′′

2(𝑦B
′ )
3) ∅𝑠 − (

1

(𝑦B
′ )
2 −

𝑦B
′′

2(𝑦B
′ )
3) ∅P  

(2.32.3) 

 (
−2

(𝑥A
′ )
2 +

−2

(𝑦A
′ )
2) ∅𝑎 = 𝑓𝑎 − (

1

(𝑥A
′ )
2 +

𝑥A
′′

2(𝑥A
′ )
3) ∅𝑎𝑤 − (

1

(𝑥A
′ )
2 −

𝑥A
′′

2(𝑥A
′ )
3) ∅𝑎𝑒 −

 (
1

(𝑦A
′ )
2 +

𝑦A
′′

2(𝑦A
′ )
3)∅P − (

1

(𝑦A
′ )
2 −

𝑦A
′′

2(𝑦A
′ )
3) ∅𝑛  

(2.32.4) 
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The metrics at the auxiliary nodes appearing in equations (2.32) were introduced in Table 2.3. It 

is important to mention that the 5+4-point stencil formulation and corresponding calculations 

described above can be applied to any uncut or cut-stencil, as long as the stencil does not intersect 

with a curved or oblique boundary. Figure 2.23 presents two samples of cut-stencils for which the 

5+4-point stencil formulation must be modified to be applicable. These stencils are characterized 

by an oblique straight or curved boundary line passing from one node of the stencil. 

 
Figure 2.23: Cut-stencils not directly applicable to the 5+4-point cut-stencil formulation, a) 

intersection with straight oblique boundary line, b) intersection with curved boundary line 

As Figure 2.23(a) shows, the stencil at the internal node P is cut by a straight oblique boundary 

line at node N. In this event the y-coordinate of the node LN and node N are not the same so 𝑦L
′  , 

which is normally calculated as 
1

2
(𝑦LN − 𝑦LS), is not equal to 𝑦P

′ . This issue also occurs for the x-

coordinate of Aw, which does not have the same value as the x-coordinate of node W, meaning 

that 𝑥A
′  and 𝑥P

′  are not equal to each other. Figure 2.23(b) looks at another sample of a stencil for 

internal node P, cut by a curved boundary at node S. The y-coordinate of RS and S are different 

and consequently 𝑦R
′  and 𝑦P

′  are different. In the same way, 𝑥B
′  and 𝑥P

′  are not equal due to 

different values for the x-coordinates of nodes BE and E. 

The 5+4-point higher-order cut-stencil formulation has been implemented to analyse and 

demonstrate the potential of the cut-stencil FDM to generate more accurate solutions to PDEs 

compared to the 5-point 2
nd

-order scheme with the same mesh size. The results of applying both 

the 5+4-point and 5-point cut-stencil schemes to “manufactured” problems are compared and the 

real order of this method is discussed in Chapter 3. 

2.6.2 Higher-Order (HO) Padé-Hermitian Compact Cut-Stencil FD Formulation 

The compact FD formulation, as mentioned earlier, has been considered extensively in numerical 

studies for the solution of PDEs as well as in real physical problems [64, 66-72]. 

As a general definition, it can be said that the classical Padé-Hermitian compact finite difference 

technique treats the governing function and its derivatives as unknowns and a linear combination 

of the function values and the derivatives of the function, typically first and second derivatives, 

are used to obtain a higher-order solution of the PDE [66, 72-74].   

The compact Padé-Hermitian finite difference technique has been used in this research to develop 

a higher-order formulation of the cut-stencil FD method. The localized treatment of the physical 

stencil provides a simple framework for development of higher-order schemes. Furthermore, it 
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supports the possibility of programming the higher-order formulation in highly complex domains 

with any type of boundary conditions. The 4
th
-order compact Padé-Hermitian finite differencing 

approximations have been used to construct the combination of higher-order compact (HOC) 

scheme and the cut-stencil FDM in this study. To achieve this purpose, the discussion continues 

with the general description and formulation of the HOC scheme using Padé-Hermitian finite 

differencing approximations in TFD notation. 

2.6.2.1 Approximation of First Derivatives in Compact Padé-Hermitian Finite Differencing 

To initially simplify the concept, consider a one-dimensional uniform mesh with spacing ∆𝑥 and 

let ∅ be a function of independent variable 𝑥. A family of approximations of the first derivative of 

∅ at node 𝑥i is given by the expression: 

𝑎9∅i−2
′ +𝑎7∅i−2 + 𝑎5∅i−1

′ +𝑎3∅i−1+∅i
′+𝑎1∅i+𝑎2∅i+1 + 𝑎4∅i+1

′ +𝑎6∅i+2 + 𝑎8∅i+2
′ = 𝑂(∆𝑥𝑘) (2.33) 

Taking different values for the coefficients 𝑎i in equation (2.33) yields different orders of 

accuracy for approximation of ∅i
′ [75]. The essence of HO compact formulations is to use the 

narrowest possible stencil in approximation of the derivatives. Furthermore, in HO formulation of 

the cut-stencil FDM, to avoid any special formulas or stencils for internal nodes in the 

neighborhood of a boundary, all the approximation expressions in this research are written with at 

most one node in each direction adjacent to node i in TFDM (or node P in the cut-stencil FD 

method). Thus, the coefficients 𝑎6, 𝑎7, 𝑎8 and 𝑎9 are chosen as zero in equation (2.33), and the 

first derivative is approximated by an expression of the form: 

 𝑎5∅i−1
′ + 𝑎3∅i−1 + ∅i

′+ 𝑎1∅i + 𝑎2∅i+1 + 𝑎4∅i+1
′ = 𝑂(∆𝑥𝑘) (2.34.1) 

The parameter 𝑘 in equation (2.34.1) is introduced to identify the order of accuracy for the 

approximation of ∅i
′. The coefficients 𝑎j (j = 1,2,3,4,5) and k are calculated by expanding each 

term in (2.34.1) in Taylor’s series about 𝑥i. Table 2.4 is a convenient way to organize the terms in 

the Taylor’s series expansion which is used to find the coefficients and order of accuracy for 

equation (2.34.1). 

 ∅i ∅i
′ ∅i

′′ ∅i
′′′ ∅i

(4)
 ∅i

(5)
 

∅i
′ 0 1 0 0 0 0 

𝑎1∅i 𝑎1 0 0 0 0 0 

𝑎2∅i+1 𝑎2 𝑎2(∆𝑥) 𝑎2(∆𝑥)
2/2! 𝑎2(∆𝑥)

3/3! 𝑎2(∆𝑥)
4/4! 𝑎2(∆𝑥)

5/5! 
𝑎3∅i−1 𝑎3 𝑎3(−∆𝑥) 𝑎3(−∆𝑥)

2/2! 𝑎3(−∆𝑥)
3/3! 𝑎3(−∆𝑥)

4/4! 𝑎3(−∆𝑥)
5/5! 

𝑎4∅i+1
′  0 𝑎4 𝑎4(∆𝑥) 𝑎4(∆𝑥)

2/2! 𝑎4(∆𝑥)
3/3! 𝑎4(∆𝑥)

4/4! 
𝑎5∅i−1

′  0 𝑎5 𝑎5(−∆𝑥) 𝑎5(−∆𝑥)
2/2! 𝑎5(−∆𝑥)

3/3! 𝑎5(−∆𝑥)
4/4! 

∑ 0 0 0 0 0 𝑂(∆𝑥𝑘) 

Table 2.4: Taylor’s series expansion used to derive the first derivative approximation in HOC 

finite difference method 

The five coefficients 𝑎j are calculated from the system of five linear equations formed by 

summing the 2
nd

 to 6
th
 columns of Table 2.4 to zero, giving the values: 

 𝑎5 = 1/4, 𝑎3 = 3/4(∆𝑥), 𝑎1 = 0, 𝑎2 = −3/4(∆𝑥), 𝑎4 = 1/4 (2.34.2) 
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Substituting the coefficients from equation (2.34.2) in the last column of Table 2.4 reveals that 𝑘 

= 4 which means that the approximation proposed in equation (2.34.1) has 4
th
-order accuracy. 

The last column of Table 2.4 also provides the expression for the local truncation error (LTE) for 

this difference approximation, which will be discussed in more details in the section on LTE in 

Chapter 3. Using the coefficients listed in (2.34.2), the explicit expression for the 4
th
-order 

accurate approximation for ∅i
′, known as the standard central 4

th
-order Padé approximation and 

widely used in numerical studies and various applications, e.g. [64, 66, 74, 76], is: 

 
∅i
′ =

3(∅i+1 − ∅i−1)

4(∆𝑥)
−
∅i+1
′ + ∅i−1

′

4
+ 𝑂(∆𝑥4) (2.35) 

2.6.2.2 Approximation of Second Derivatives in Compact Padé-Hermitian Finite 

Differencing  

The same procedure as above can be used to derive a higher-order approximation for the second 

derivative of ∅ at node i. In this case, ∅i
′′ is written as a linear combination of ∅ and ∅′′ at the 

nodes i-1, i and i+1, i.e.,   

 𝑏5∅i−1
′′  + 𝑏3∅i−1 + ∅i

′′ + 𝑏1∅i + 𝑏2∅i+1 + 𝑏4∅i+1
′′ = 𝑂(∆𝑥𝑘) (2.36.1) 

The coefficients in equation (2.36.1) are calculated from a system of five linear equations which 

are constructed by summing the 2
nd

 to 6
th
 columns of Table 2.5 to zero. The LTE is determined by 

replacing the value of coefficients 𝑏i in the terms of the last column of Table 2.5. 

 
∅i ∅i

′ ∅i
′′ ∅i

′′′ ∅i
(4)

 ∅i
(5)

 ∅i
(6)

 

∅i
′′ 0 0 1 0 0 0 0 

𝑏1∅i 𝑏1 0 0 0 0 0 0 

𝑏2∅i+1 𝑏2 𝑏2(∆𝑥) 𝑏2(∆𝑥)
2/2! 𝑏2(∆𝑥)

3/3! 𝑏2(∆𝑥)
4/4! 𝑏2(∆𝑥)

5/5! 𝑏2(∆𝑥)
6/6! 

𝑏3∅i−1 𝑏3 𝑏3(−∆𝑥) 𝑏3(−∆𝑥)
2/2! 𝑏3(−∆𝑥)

3/3! 𝑏3(−∆𝑥)
4/4! 𝑏3(−∆𝑥)

5/5! 𝑏3(−∆𝑥)
6/6! 

𝑏4∅i+1
′′  0 0 𝑏4 𝑏4(∆𝑥) 𝑏4(∆𝑥)

2/2! 𝑏4(∆𝑥)
3/4! 𝑏4(∆𝑥)

4/4! 

𝑏5∅i−1
′′  0 0 𝑏5 𝑏5(−∆𝑥) 𝑏5(−∆𝑥)

2/2! 𝑏5(−∆𝑥)
3/4! 𝑏5(−∆𝑥)

4/4! 

∑ 0 0 0 0 0 0 𝑂(∆𝑥𝑘) 

Table 2.5: Taylor’s series expansion used to derive the second derivative approximation in HOC 

finite difference method  

Solving the resulting linear equations yields the coefficients for the 4
th
-order accurate 

approximation for ∅i
′′:   

 𝑏5 = 1/10, 𝑏3 = −6/5(∆𝑥)
2, 𝑏1 = 12/5(∆𝑥)

2, 𝑏2 = −6/5(∆𝑥)
2, 𝑏4 = 1/10 (2.36.2) 

which produces the commonly used explicit form of equation (2.36.1) for the 4
th
-order accurate 

approximation of the second derivative [64, 66, 74, 76]: 

 
∅i
′′ =

6(∅i+1 − 2∅i+∅i−1)

5(∆x)2
−
∅i+1
′′ + ∅i−1

′′

10
+ 𝑂(∆𝑥4) (2.37.1) 
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An alternative 4
th
-order approximation for ∅i

′′ can be formulated by expressing ∅i
′′ as a linear 

combination of ∅ and ∅′ at the nodes i-1, i and i+1. Proceeding as above gives the 4
th
-order 

approximation: 

 
∅i
′′ =

2(∅i+1 − 2∅i+∅i−1)

(∆𝑥)2
+
∅i−1
′ − ∅i+1

′

2(∆𝑥)
+ 𝑂(∆𝑥4) (2.37.2) 

The higher-order Cartesian cut-stencil finite difference formulation based on 

approximating ∅i
′′ using (2.37.1) will be referred to as HO-FDM1 in subsequent sections, and that 

based on (2.37.2) will be denoted by HO-FDM2. 

2.6.3 Comparison of the Stencil of Higher-Order Compact (Implicit) and Explicit Finite 

Difference Methods 

To simplify the discussion, HO approximations for first and second derivatives were developed 

for a 1-D uniform mesh in the previous sections. These 1-D results can be easily extended for a 2-

D non-uniform Cartesian mesh and provide a higher (hereon, 4
th
-order) approximation in both the 

x and y directions. The compact finite difference method is also introduced in the literature as an 

“implicit” scheme due to the use of nodal and derivative values to evaluate the derivatives of the 

governing function. On the other hand, the normal FD approximation, which uses only nodal 

function values for evaluation of the derivatives of the function, is called an “explicit” scheme 

[64]. The compact FD method can provide a more accurate solution compared to the explicit FD 

scheme with the same size of stencil. Figure 2.24 shows the stencils which are used for 4
th
-order 

accurate approximation of the first and second derivatives at node (i,j) in both implicit and 

explicit FD schemes, in a uniform mesh with spacing ∆𝑥 and ∆𝑦 in the x and y directions, 

respectively. 

 
Figure 2.24: Comparison of the stencil for 4

th
-order accurate approximations, a) compact FD 

(implicit) scheme, b) explicit FD scheme 

It can be seen from Figure 2.24 that the stencil for a 4
th
-order accurate approximation using the 

explicit FD scheme is twice as wide as the stencil used for the 4
th
-order accurate approximation in 

the compact FD scheme. The 5-point stencil, as indicated in Figure 2.24(a), also represents the 5-

point stencil of the Cartesian cut-stencil FDM. Thus, higher-order approximations for the first and 

second derivatives for 2-D Cartesian cut-stencils can be achieved using the 5-point stencil. 
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2.6.4 Higher-Order Cut-Stencil Finite Difference Method (HO Cut-Stencil FDM) for 

Convection-Diffusion Equation  

The simple but efficient localized treatment of a physical stencil in the Cartesian cut-stencil FDM 

provides the capability to combine this FD scheme with HOC FD schemes. The 4
th
-order Padé-

Hermitian approximations for first and second derivatives, as addressed in equations (2.35, 2.37.1 

or 2.37.2), are used to write globally 4
th
-order expressions for the derivatives in the model 

equations in the cut-stencil FDM formulations.  

Two different 4
th
-order approximations for second derivatives were proposed in equations 

(2.37.1) and (2.37.2), and the off-centre derivatives in each of these two expressions are different. 

So, the higher-order cut-stencil finite difference method 1 (HO cut-stencil FDM1) and the higher-

order cut-stencil finite difference method 2 (HO cut-stencil FDM2) are developed based on 

equations (2.37.1) and (2.37.2), respectively.  

For convenience, the mapped form of the 2-D steady convection-diffusion equation (2.7) is 

rewritten below as equation (2.38).  

𝜐 [
1

(𝑥’)2
𝜕2∅

𝜕𝜉2
− 

𝑥"

(𝑥’)3
𝜕∅

𝜕𝜉
+ 

1

(𝑦’)2
𝜕2∅

𝜕𝜂2
−

𝑦"

(𝑦’)3
𝜕∅

𝜕𝜂
] +

𝑃

𝑥’

𝜕∅

𝜕𝜉
+
𝑄

𝑦’

𝜕∅

𝜕𝜂
= 𝑠(𝜉, 𝜂) (2.38) 

As seen in (2.38), the diffusive part of the convection-diffusion equation contains first and second 

derivatives, while the convective part involves only first derivatives. Since the diffusive 

derivatives are always approximated by central differences, equations (2.35) and either (2.37.1) or 

(2.37.2) can be applied to achieve 4
th
-order accuracy. There is more flexibility in the choice of 

scheme used for the convective terms in (2.38). Besides the central scheme (2.35), an upwinding 

scheme is often used to correctly capture the physics, especially in convection-dominated flows, 

as well as stabilize the numerical solution. Thus, different schemes for upwind differencing of 

convection terms have been proposed and discussed in numerical studies of this model equation 

[17, 77-82]. 

Following the same procedure used to derive the compact Padé-Hermitian approximations (2.35), 

(2.37.1) and (2.37.2), higher-order upwind formulas can be obtained for the first-order convective 

derivatives. For example, 2
nd

-order accurate backward and forward approximations for the first 

derivative are respectively given by, 

 
∅i
′ =

2(∅i − ∅i−1)

(∆𝑥)
− ∅i−1

′ + 𝑂(∆𝑥2) (2.39.1) 

and 

 
∅i
′ =

2(∅i+1 − ∅i)

(∆𝑥)
− ∅i+1

′ + 𝑂(∆𝑥2) (2.39.2) 

It is worth noting that the higher-order approximations (2.35), (2.37.1), (2.37.2), (2.39.1) and 

(2.39.2) are symbolically written for the variable x, but they can be similarly written for any 

arbitrary variable, e.g. 𝜉 or 𝜂. A summary of the higher-order discretizations of the transformed 

convection-diffusion equation used in this thesis, taking into account the compact central and 

upwind schemes above, is represented by the following: 
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𝜈

[
 
 
 
 

1

(𝑥′)2
𝜕2∅

𝜕𝜉2
 

⏟      
 

approximate

 by eq.  (2.37.1) 
𝑜𝑟 (2.37.2)

−
𝑥"

(𝑥′)3
𝜕∅

𝜕𝜉⏟    
 

approximate
 by eq.  (2.35)

+
1

(𝑦′)2
𝜕2∅

𝜕𝜂2⏟      
 

approximate

 by eq.  (2.37.1) 
𝑜𝑟 (2.37.2)

  −
𝑦"

(𝑦′)3
𝜕∅

𝜕𝜂⏟    
 

approximate
 by eq.  (2.35)

]
 
 
 
 

+ 𝑃
1

𝑥′

𝜕∅

𝜕𝜉⏟  
 

approximate

 by eq.  (2.35) 𝑜𝑟
(2.39.1) 𝑜𝑟 (2.39.2)

+ 𝑄
1

𝑦′

𝜕∅

𝜕𝜂⏟  
 

approximate

 by eq.  (2.35) 𝑜𝑟
(2.39.1) 𝑜𝑟 (2.39.2)

 =  𝑠(𝜉, 𝜂) 

(2.40) 

HO-FDM1 utilizes equations (2.37.1) to discretize the second-order derivatives in the diffusion 

terms of equation (2.40). When central differencing (2.35) is implemented for the convective 

derivatives, the scheme is fully 4
th
-order accurate and the resulting finite difference equation is: 

 

𝜈

(𝑥P
′ )2

[
6𝜙𝑤 − 12𝜙P + 6𝜙𝑒

5
−
1

10
(
𝜕2∅

𝜕𝜉2
⃒𝑤 +

𝜕2∅

𝜕𝜉2
⃒𝑒)]

− 
𝜈𝑥P

′′

(𝑥P
′ )3

[
3𝜙𝑒 − 3𝜙𝑤

4
−
1

4
(
𝜕∅

𝜕𝜉
⃒𝑤 +

𝜕∅

𝜕𝜉
⃒𝑒)] 

+
𝜈

(𝑦P
′ )2
[
6𝜙𝑠 − 12𝜙P + 6𝜙𝑛

5
−
1

10
(
𝜕2∅

𝜕𝜂2
⃒𝑠 +

𝜕2∅

𝜕𝜂2
⃒𝑛)] 

− 
𝜈𝑦P

′′

(𝑦P
′ )3
[
3𝜙𝑛 − 3𝜙𝑠

4
−
1

4
(
𝜕∅

𝜕𝜂
⃒𝑠 +

𝜕∅

𝜕𝜂
⃒𝑛)]

+  𝑃
1

𝑥P
′ [
3𝜙𝑒 − 3𝜙𝑤

4
−
1

4
(
𝜕∅

𝜕𝜉
⃒𝑤 +

𝜕∅

𝜕𝜉
⃒𝑒)]

+ 𝑄
1

𝑦P
′ [
3𝜙𝑛 − 3𝜙𝑠

4
−
1

4
(
𝜕∅

𝜕𝜂
⃒𝑠 +

𝜕∅

𝜕𝜂
⃒𝑛)] = 𝑠P 

(2.41) 

In this case, the coefficients and right hand side in the standard equation (2.9) become: 

 
𝑎p = −

12𝜈

5
(
1

(𝑥P
′ )2

+
1

(𝑦P
′ )2
) (2.42.1) 

 
𝑎𝑤 = 

6𝜈

5(𝑥P
′ )2

+
3𝜈𝑥P

′′

4(𝑥P
′ )3

−
3𝑃

4𝑥P
′  (2.42.2) 

 
𝑎𝑒 = 

6𝜈

5(𝑥P
′ )2

−
3𝜈𝑥P

′′

4(𝑥P
′ )3

+
3𝑃

4𝑥P
′  (2.42.3) 

 
𝑎𝑠 = 

6𝜈

5(𝑦P
′ )2

+
3𝜈𝑦P

′′

4(𝑦P
′ )3

−
3𝑄

4𝑦P
′  (2.42.4) 

 
𝑎𝑛 = 

6𝜈

5(𝑦P
′ )2

−
3𝜈𝑦P

′′

4(𝑦P
′ )3

+
3𝑄

4𝑦P
′  (2.42.5) 
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RHS =  𝑠P − [−

𝜈

10(𝑥P
′ )2
(
𝜕2∅

𝜕𝜉2
⃒𝑤 +

𝜕2∅

𝜕𝜉2
⃒𝑒) +

𝜈𝑥P
′′

4(𝑥P
′ )3
(
𝜕∅

𝜕𝜉
⃒𝑤 +

𝜕∅

𝜕𝜉
⃒𝑒)

−
𝜈

10(𝑦P
′ )2
(
𝜕2∅

𝜕𝜂2
⃒𝑠 +

𝜕2∅

𝜕𝜂2
⃒𝑛) +

𝜈𝑦P
′′

4(𝑦P
′ )3
(
𝜕∅

𝜕𝜂
⃒𝑠 +

𝜕∅

𝜕𝜂
⃒𝑛)

−
𝑃

4𝑥P
′ (
𝜕∅

𝜕𝜉
⃒𝑤 +

𝜕∅

𝜕𝜉
⃒𝑒) −

𝑄

4𝑦P
′  (
𝜕2∅

𝜕𝜂2
⃒𝑠 +

𝜕2∅

𝜕𝜂2
⃒𝑛)] 

(2.42.6) 

Similarly, for HO-FDM2, if backward differencing (equation (2.39.1)) is used for the convective 

terms in (2.40), the finite difference form of the convection-diffusion equation (2.38) is: 

𝜈

(𝑥P
′ )2

[(2𝜙𝑤 − 4𝜙P + 2𝜙𝑒) +
1

2
(
𝜕∅

𝜕𝜉
⃒𝑤 −

𝜕∅

𝜕𝜉
⃒𝑒)]

− 
𝜈𝑥P

′′

(𝑥P
′ )3

[
3𝜙𝑒 − 3𝜙𝑤

4
−
1

4
(
𝜕∅

𝜕𝜉
⃒𝑤 +

𝜕∅

𝜕𝜉
⃒𝑒)] 

+
𝜈

(𝑦P
′ )2

[(2𝜙𝑠 − 4𝜙P + 2𝜙𝑛) +
1

2
(
𝜕∅

𝜕𝜂
⃒𝑠 −

𝜕∅

𝜕𝜂
⃒𝑛)]  

− 
𝜈𝑦P

′′

(𝑦P
′ )3
[
3𝜙𝑛 − 3𝜙𝑠

4
−
1

4
(
𝜕∅

𝜕𝜂
⃒𝑠 +

𝜕∅

𝜕𝜂
⃒𝑛)]

+ 𝑃
1

𝑥P
′ [2𝜙P − 2𝜙𝑤 −

𝜕∅

𝜕𝜉
⃒𝑤] + 𝑄

1

𝑦P
′ [2𝜙P − 2𝜙𝑠 −

𝜕∅

𝜕𝜂
⃒𝑠]  = 𝑠P 

(2.43) 

and the coefficients and right hand side in the standard equation (2.9) are: 

 
𝑎p = −(

4𝜈

(𝑥P
′ )2

+
4𝜈

(𝑦P
′ )2
) +  2(

𝑃

𝑥P
′ +

𝑄

𝑦P
′ ) (2.44.1) 

 
𝑎𝑤 = 

2𝜈

(𝑥P
′ )2

+
3𝜈𝑥P

′′

4(𝑥P
′ )3

−
2𝑃

𝑥P
′  (2.44.2) 

 
𝑎𝑒 = 

2𝜈

(𝑥P
′ )2

−
3𝜈𝑥P

′′

4(𝑥P
′ )3

 (2.44.3) 

 
𝑎𝑠 = 

2𝜈

(𝑦P
′ )2

+
3𝜈𝑦P

′′

4(𝑦P
′ )3

−
2𝑄

𝑦P
′  (2.44.4) 

 
𝑎𝑛 = 

2𝜈

(𝑦P
′ )2

−
3𝜈𝑦P

′′

4(𝑦P
′ )3

 (2.44.5) 

 
RHS = 𝑠P  − [

𝜈

2(𝑥P
′ )2

(
𝜕∅

𝜕𝜉
⃒𝑤 −

𝜕∅

𝜕𝜉
⃒𝑒) +

𝜈𝑥P
′′

4(𝑥P
′ )3

(
𝜕∅

𝜕𝜉
⃒𝑤 +

𝜕∅

𝜕𝜉
⃒𝑒)

+
𝜈

2(𝑦P
′ )2
(
𝜕∅

𝜕𝜂
⃒𝑠 −

𝜕∅

𝜕𝜂
⃒𝑛) +

𝜈𝑦P
′′

4(𝑦P
′ )3
(
𝜕∅

𝜕𝜂
⃒𝑠 +

𝜕∅

𝜕𝜂
⃒𝑛)

−
𝑃

𝑥P
′

𝜕∅

𝜕𝜉
⃒𝑤 −

𝑄

𝑦P
′

𝜕∅

𝜕𝜂
⃒𝑠 ] 

(2.44.6) 

All the terms containing the first and second derivatives at nodes 𝑤, 𝑒, 𝑠 and 𝑛 are transferred to 

the RHS of the equation, as indicated in equations (2.42.6) and (2.44.6), to form a new RHS. The 

derivatives of ∅ at nodes 𝑤, 𝑒, 𝑠 and 𝑛 are updated through the standard iteration scheme for each 

internal node P. 
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The derivatives of ∅ appearing in equations (2.42.6) and (2.44.6), which must be evaluated at the 

stencil endpoints, are approximated by central or one-sided 2
nd

-order approximations based on the 

location of the node P relative to the boundaries of the domain. An example of the central or one-

sided 2
nd

-order approximation of derivatives at the stencil end nodes is discussed here. Figure 

2.25 illustrates an arbitrary 5-point computational stencil centred at node P. The west node w is an 

internal node which is also the centre node of its own 5-point stencil. So, in the scenario shown in 

Figure 2.25, the west node of node w is available, and it might be located on a boundary or lie at 

another internal node. Figure 2.25 shows the situation when the node to the west of the west node 

w lies on the boundary. In fact, the west node of node w can also be referred to as the west node 

of the west node of node P, which is conveniently denoted by ww.   

 
Figure 2.25: Computational stencil for central or one-sided second-order approximations of 

derivatives at the endpoints of a stencil used in HO-FDM1 

For HO-FDM1, the derivatives 
𝜕2∅

𝜕𝜉2
 and 

𝜕∅

𝜕𝜉
 in (2.42.6) at the endpoint w can be approximated with 

central 2
nd

-order accuracy, given by,  

 𝜕2∅

𝜕𝜉2
⃒𝑤 = 𝜙𝑤𝑤 − 2𝜙𝑤 + 𝜙P  (2.45.1) 

 𝜕∅

𝜕𝜉
⃒𝑤 =

𝜙P − 𝜙𝑤𝑤
2

 (2.45.2) 

The south endpoint of the stencil centred in point P shown in Figure 2.25 is located on the 

boundary. It is assumed that node nn, representing the north node of the north node n of node P, is 

an internal or a boundary node so the value at node nn can be used in the calculations. Then, the 

derivatives 
𝜕2∅

𝜕𝜂2
 and 

𝜕∅

𝜕𝜂
 at the endpoint s can be approximated by one-sided 2

nd
-order accuracy:  

 𝜕2∅

𝜕𝜂2
⃒𝑠 = 2𝜙𝑠 − 5𝜙P + 4𝜙𝑛 − 𝜙𝑛𝑛  (2.45.3) 

 𝜕∅

𝜕𝜂
⃒𝑠 =

−3𝜙𝑠 + 4𝜙P − 𝜙𝑛
2

 (2.45.4) 
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In the event that both south and north nodes, or both west and east nodes, are located on the 

boundary as illustrated for node P in Figure 2.26, the second derivatives at the endpoints in 

equation (2.42.6) will be approximated by one-sided 1
st
-order FD expressions. 

 
Figure 2.26: Computational stencil for central or one-sided first-order approximations of second 

derivatives at the endpoints of a stencil used in HO-FDM1 

The second derivatives 
𝜕2∅

𝜕𝜉2
  at nodes w and e are approximated by the one-sided 1

st
-order FD 

expressions given in equations (2.46.1) and (2.46.2), whereas, one-sided 2
nd

-order accurate 

approximations can be written for the first derivatives at the same nodes for this condition.       

 𝜕2∅

𝜕𝜉2
⃒𝑤 = 𝜙𝑤 − 2𝜙P + 𝜙𝑒  (2.46.1) 

 𝜕2∅

𝜕𝜉2
⃒𝑒 = 𝜙𝑤 − 2𝜙P + 𝜙𝑒 (2.46.2) 

As mentioned previously, due to the simplicity of the cut-stencil FD formulation, all possible 

combinations for the location of an internal active node P relative to the boundaries of the domain 

can be considered and programmed with relative ease. Some of the results, in the form of 

solutions to “manufactured” problems or real physical problems, e.g. solution to streamfunction-

vorticity in lid-driven cavity flow, are presented in the following chapters. 

To gain the maximum potential of each grid to find the most accurate solution to the governing 

PDEs, the first derivatives at endpoints 𝑤, 𝑒, 𝑠 and 𝑛 are approximated by central, one-sided or 

upwind 4
th
, 3

rd
 or 2

nd
-order accurate FD expressions, depending on the locations of the node P.  

For HO-FDM2, only the first derivatives at 𝑤, 𝑒, 𝑠 and 𝑛 are needed as seen in equation (2.44.6). 

Figure 2.27 presents a part of an arbitrary domain and boundary lines which include a 5-point 

computational stencil, centred at node P, as well as a couple of other nodes, located near to node 

P, which may be regarded as centre points of other 5-point stencils.  
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Figure 2.27: Computational stencil for central or upwind 4

th
-order approximations of first 

derivatives at the endpoints of a stencil used in HO-FDM2 

The location of the node P and its 5-point stencil reveal that central 4
th
-order accurate 

approximation (2.24.1) for 
𝜕∅

𝜕𝜉
 at endpoint w can be applied, as given by equation (2.47.1). For the 

5-point stencil centred at node P shown in Figure 2.27, the values at two nodes on the left side of 

node w can be used to write the FD expression. In other words, the node www, which is west of 

west of west of node P, could be an internal node or be located on a boundary.  

The derivative 
𝜕∅

𝜕𝜉
 at the endpoint e can also be approximated to 4

th
-order accuracy, given by 

equation (2.47.2). In this case, the node ee, which can be regarded as the east node of node e from 

the perspective of the 5-point stencil centred at point e, is located on a boundary of the domain, 

meaning that only one point at the right side of endpoint e is available.  

 𝜕∅

𝜕𝜉
⃒𝑤 =

𝜙𝑤𝑤𝑤 − 8𝜙𝑤𝑤 + 8𝜙P − 𝜙𝑒
12

  (2.47.1) 

 𝜕∅

𝜕𝜉
⃒𝑒 =

−𝜙𝑤𝑤 + 6𝜙𝑤 − 18𝜙P + 10𝜙𝑒 + 3𝜙𝑒𝑒
12

 (2.47.2) 

The north node of node P, which is indicated by n in Figure 2.27, is located on the boundary and 

the node sss of node P is taken as an internal or boundary node, so the value of ∅ at node sss can 

be used to construct an appropriate FD expression. Therefore, 
𝜕∅

𝜕𝜂
 can be approximated to 4

th
-order 

accuracy at the north node of node P (node n), based on the location of node P and its 

corresponding 5-point stencil. Access of the value at node sss also provides the condition needed 

to write a central 4
th
-order accurate approximation for 

𝜕∅

𝜕𝜂
 at node s. These respective 

approximations are: 
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 𝜕∅

𝜕𝜂
⃒𝑛 =

3𝜙𝑠𝑠𝑠 − 16𝜙𝑠𝑠 + 36𝜙𝑠 − 48𝜙P + 25𝜙𝑛
12

  (2.48.1) 

 𝜕∅

𝜕𝜂
⃒𝑠 =

𝜙𝑠𝑠𝑠 − 8𝜙𝑠𝑠 + 8𝜙P − 𝜙𝑛
12

 (2.48.2) 

Figure 2.28 illustrates an example of a 5-point computational stencil centered at node P for which 

the location of node P relative to the boundaries provides the conditions for a 3
rd

-order accurate 

approximation for some of the derivatives at endpoints appearing in equations (2.42.6) and 

(2.44.6). 

 
Figure 2.28: Computational stencil for 3

rd
-order approximations of first derivatives at the 

endpoints of a stencil used in HO-FDM2 

For the 5-point stencil centred at node P shown in Figure 2.28, the south node s is located on the 

boundary, so a one-sided FD expression is applied to approximate 
𝜕∅

𝜕𝜂
 at node s. Furthermore, the 

north node of the north node of P (i.e., nn) is also a boundary node, which imposes the condition 

for writing a one-sided FD approximation of 
𝜕∅

𝜕𝜂
 at node s up to the node nn. Using the values of 

 ∅ at nodes s, P, n and nn to approximate the first derivative at endpoint s leads to a 3
rd

-order 

accurate FD expression, as written in equation (2.49.1).  

The north node of node P (n) is located adjacent to the boundary, so the value at the north node of 

this node (nn) can be used to write the FD expression to approximate 
𝜕∅

𝜕𝜂
 at node n. On the other 

side of node n, the values at nodes P and s are available and, in this case, the location of node P 

and its corresponding 5-point stencil, as illustrated in Figure 2.28, provides enough data to write a 

3
rd

-order accurate approximation for 
𝜕∅

𝜕𝜂
 at node n, as expressed in equation (2.49.2).  

 𝜕∅

𝜕𝜂
⃒𝑠 =

−11𝜙𝑠 + 18𝜙P − 9𝜙𝑛 + 2𝜙𝑛𝑛
6

  (2.49.1) 

 𝜕∅

𝜕𝜂
⃒𝑛 =

𝜙𝑠 − 6𝜙P + 3𝜙𝑛 + 2𝜙𝑛𝑛
6

 (2.49.2) 

In some situations, according to the location of the node P relative to the boundaries, the 

derivatives at the endpoints of the stencil appearing in equations (2.42.6) and (2.44.6) may be 
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approximated by 2
nd

-order accurate FD expressions. Due to the use of first derivatives to 

construct the HOC FD formulations, the order of approximation of derivatives never falls below 

2
nd

-order accuracy.  

2.6.5 Higher-Order Cut-Stencil Finite Difference Method for Boundaries Nodes 

Previous sections have considered the derivations and formulations for higher-order 

approximation of the solution of PDEs at an arbitrary internal node P and equations with globally 

4
th
-order accurate approximation were presented in equations (2.41) and (2.43). But as mentioned 

earlier, in the event of a Neumann boundary condition, the values at boundary nodes are also 

treated as unknown. The 2
nd

-order accurate approximation scheme was discussed and proposed 

for the solution at Neumann boundary nodes in Section 2.5. 

The Neumann boundary condition is typically given by specification of the normal 

derivative 
𝜕∅

𝜕𝑛
⃒B at nodes B on the boundary. The cut-stencil FD formula given by equation 

(2.35), due to its double-sided structure, cannot be applied as a higher-order approximation for the 

first derivative in the Neumann boundary condition. Normally, in the event of Neumann boundary 

nodes, the approximation used for these unknown boundary values is considered differently, and 

this numerical approximation at the boundary nodes may affect the overall accuracy of the 

solution [83]. It has been common in numerical analyses to use one order of accuracy lower (or 

the same order, if possible) for approximation of the boundary condition compared to the order of 

accuracy used for inner nodes [66, 70, 83, 84]. Reasons for using one order lower for boundary 

condition approximation are related to some concepts such as stability considerations [84] and, as 

might be expected, using accuracy of more than one order lower will reduced the overall order of 

accuracy of the solution [85]. Research has shown that a p
th
-order scheme for the interior nodes 

along with a (p-1)-order accurate scheme for the boundary nodes approximation can retain the 

global accuracy of the scheme used at the interior nodes [86]. As an example, 6
th
-order and 3

rd
-

order accurate approximation schemes for internal nodes and Neumann boundary conditions, 

respectively, have been shown to produce only a globally 4
th
-order scheme [87].   

In this dissertation a 3
rd

-order accurate formulation using HOC cut-stencil FDM is proposed for 

the higher-order differencing approximation at the boundary nodes with Neumann boundary 

conditions.  

To illustrate the concept while keeping the discussion simple, the boundary is taken as a straight 

line parallel to the y-axis, as shown in Figure 2.29, with Neumann condition at the boundary node 

(i, j), defined by 
𝜕∅

𝜕𝑛
⃒(i,j) = −

𝜕∅

𝜕𝑥
⃒(i,j) = G(𝑥(i,j), 𝑦(i,j)). 
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Figure 2.29: Schematic used for higher-order differencing at a boundary node with Neumann 

condition in TFD notation (in 𝑥 direction) 

One-sided differencing of the first derivative along the normal direction to the boundary line is 

achieved by expressing 
𝜕∅

𝜕𝑥
⃒(i,j) in terms of  ∅–values at (i+1,j) and (i+2,j), and 

𝜕∅

𝜕𝑥
⃒(i+1,j).   

The coefficients are calculated by the same Taylor series procedure as presented earlier, leading 

to the 3
rd

-order accurate approximation (in TFD notation),  

 𝜕∅

𝜕𝑥
⃒(i,j) =

−5∅(i,j) + 4∅(i+1,j) + ∅(i+2,j)

2(∆𝑥)
− 2

𝜕∅

𝜕𝑥
⃒(i+1,j) + 𝑂(∆𝑥

3) (2.50.1) 

Similar higher-order finite difference formulas can be derived for other boundary lines and in 

other coordinate directions, such as alignment with the y-axis as illustrated in Figure 2.30. For 

this boundary node (i,j), the Neumann condition is given by 
𝜕∅

𝜕𝑛
⃒(i,j) =

𝜕∅

𝜕𝑦
⃒(i,j) = G(𝑥(i,j), 𝑦(i,j)). 

The derivative in this condition can be approximated with the one-sided formula: 

 𝜕∅

𝜕𝑦
⃒(i,j) =

5∅(i,j) − 4∅(i,j−1) − ∅(i,j−2)

2(∆𝑦)
− 2∅(i,j−1)

′ + 𝑂(∆𝑦3) (2.50.2) 

 
Figure 2.30: Schematic used for higher-order differencing at boundary node with Neumann 

condition in TFD notation (in 𝑦 direction) 

These 3
rd

-order accurate expressions in equations (2.50.1) and (2.50.2) have also been proposed 

in other higher-order finite difference numerical studies [64]. 
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The Cartesian cut-stencil FD formulation equivalent of equations (2.50.1) and (2.50.2) is 

achieved by referring to an arbitrary 5-point computational stencil centred at node P which 

includes both a west and north boundary node with Neumann boundary conditions, as shown in 

Figure 2.31. 

 
Figure 2.31: Computational stencil for higher-order differencing at boundary nodes with 

Neumann condition (cut-stencil FD notation) 

These approximations are given by: 

 
∅𝑤 =

4∅P + ∅𝑒 + 2(𝑥W
′ )𝑔|𝑤

5
 −
4

5

𝜕∅

𝜕𝜉
⃒P  (2.51.1) 

 
∅𝑛 =

4∅P + ∅𝑠 + 2(𝑦N
′ )𝑔|𝑛

5
+
4

5

𝜕∅

𝜕𝜂
⃒P (2.51.2) 

The terms 
𝜕∅

𝜕𝜉
⃒P and 

𝜕∅

𝜕𝜂
⃒P in equations (2.51.1) and (2.51.2) are updated through the standard 

iterative scheme, using the same equations and conditions as explained for the higher-order 

accurate approximation at interior nodes. 

2.7 Cut-Stencil FD Formulation of Unsteady Model Equation 

To gradually convey the essential characteristics of the Cartesian cut-stencil FDM without 

introducing too much complexity, the formulations and expressions throughout this chapter have 

thus far been limited to spatial discretization and all the conceptual topics were discussed in the 

context of the steady formulation of the cut-stencil FDM. This section and corresponding 

subsections extend the analysis to the unsteady formulation of the Cartesian cut-stencil FDM. The 

unsteady convection-diffusion equation, introduced in equation (2.1), is broadly applied to 

describe various phenomena in science and engineering fields [88], such as unsteady Navier-

Stokes equations in fluid mechanics, cf. e.g. [89-91], or transient conduction heat transfer, which 

is modelled by the unsteady diffusion equation. Due to its importance as a model of physical 

phenomena, solution methods for the unsteady convection-diffusion equation have received much 

attention in numerical studies, e.g. [49, 88-93]. 
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2.7.1 Explicit Forward in Time and Central in Space (FTCS) Formulation of the Cut-

Stencil FDM 

In order to simplify the discussion, the unsteady diffusion equation,  
∂∅

∂t
= 𝜈∇2∅ + 𝑆, is 

considered and an explicit method is applied to numerically solve this parabolic equation. 

Although there are many well-established explicit and implicit methods for solving parabolic 

PDEs, cf. e.g. [94-96], the intent in this research is to investigate the basis and fundamentals of 

the Cartesian cut-stencil FD algorithm. Therefore, the discussion of the unsteady model equation 

(diffusion equation) is limited to the forward in time and central in space (FTCS) explicit 

formulation.     

The mapped form of the unsteady diffusion equation is written as:  

 𝜕∅

𝜕𝑡
= 𝜈 [

1

(𝑥’)2
𝜕2∅

𝜕𝜉2
− 

𝑥"

(𝑥’)3
𝜕∅

𝜕𝜉
+ 

1

(𝑦’)2
𝜕2∅

𝜕𝜂2
−

𝑦"

(𝑦’)3
𝜕∅

𝜕𝜂
] + 𝑠 (2.52.1) 

1
st
-order forward and 2

nd
-order central difference schemes are used to approximate the time and 

space derivatives, respectively. Then, the discrete form of equation (2.52.1), at point P of an 

arbitrary 5-point stencil, is given by: 

∅P
𝑛+1 − ∅P

𝑛

(∆𝑡)
= 𝜈 [

∅𝑤
𝑛 − 2∅P

𝑛 + ∅𝑒
𝑛

(𝑥P
′ )2

− 
𝑥P
′′

(𝑥P
′ )3
∅𝑒
𝑛 − ∅𝑤

𝑛

2
+ 
∅𝑠
𝑛 − 2∅P

𝑛 + ∅𝑛
𝑛

(𝑦P
′ )2

−
𝑦P
′′

(𝑦P
′ )3
∅𝑛
𝑛 − ∅𝑠

𝑛

2
] + 𝑠P

𝑛 (2.52.2) 

The superscript 𝑛 (recall that subscript 𝑛 refers to north) and ∆𝑡 represent time level (t = tn) and 

time step, respectively. An initial condition, which is the value of the function ∅ at initial time 

(𝑡0), is given along with specified boundary conditions to start the solution procedure. This 

standard time marching scheme is applied to solve equation (2.52.2). The value of function ∅ at 

time level 𝑛 + 1 is computed from the previous time level at which all values of ∅ are known. 

The only unknown in equation (2.52.2) is ∅P
𝑛+1 and clearly this equation can be solved to 

explicitly provide the value of the unknown [17]. Figure 2.32 illustrates the nodes used in the 

evaluation of  ∅P
𝑛+1 using the explicit FTCS formulation. 

 
Figure 2.32: Illustration of stencil used for explicit FTCS formulation 

The value ∅P
𝑛+1 is computed from the following form of equation (2.52.2),  

 ∅P
𝑛+1 = 𝑎P𝜙P

𝑛 + 𝑎𝑤𝜙𝑤
𝑛 + 𝑎𝑒𝜙𝑒

𝑛 + 𝑎𝑠𝜙𝑠
𝑛 + 𝑎𝑛𝜙𝑛

𝑛    + (∆𝑡)𝑆P
𝑛 (2.53) 
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where the coefficients are given by: 

 
𝑎P
𝑛 = −2𝜈(Δ𝑡) (

1

(𝑥P
′ )2

+
1

(𝑦P
′ )2
) + 1 (2.53.1) 

 
𝑎𝑤
𝑛 = 𝜈(Δ𝑡) (

1

(𝑥P
′ )2

+
𝑥P
′′

2(𝑥P
′ )3
) (2.53.2) 

 
𝑎𝑒
𝑛 = 𝜈(Δ𝑡) (

1

(𝑥P
′ )2

−
𝑥P
′′

2(𝑥P
′ )3
) (2.53.3) 

 
𝑎𝑠
𝑛 =  𝜈(Δ𝑡) (

1

(𝑦P
′ )2

+
𝑦P
′′

2(𝑦P
′ )3
) (2.53.4) 

 
𝑎𝑛
𝑛 = 𝜈(Δ𝑡) (

1

(𝑦P
′ )2

−
𝑦P
′′

2(𝑦P
′ )3
) (2.53.5) 

 

Explicit discretization of the unsteady convection-diffusion equation yields an algorithm that is 

easy to implement for unsteady problems involving heat diffusion [97], but it may suffer from 

numerical instability and show oscillatory solutions for large values of time step since this 

method is conditionally stable. Stable solution of the FTCS formulation is achieved by satisfying 

the stability requirements which are discussed in the following section. 

2.7.1.1 Stability Analysis for FTCS Formulation of Cut-Stencil FDM 

The stability requirements for the unsteady convection-diffusion equation have been addressed in 

many numerical analysis and CFD textbooks, as well as numerous journal papers, e.g. [17, 57, 58, 

98, 99]. Analysis of the stability conditions for 2-D convection-diffusion, even in TFDM, is 

relatively complicated and this task is beyond the main purpose of this research which is focused 

on proving the feasibility and showing the potential of the Cartesian cut-stencil FD formulation 

for the solution of PDEs on complex domains. Thus, the approach taken here is to find 

similarities or analogies between the stability conditions for the 2-D convection-diffusion 

equation in TFDM and the cut-stencil FD formulation, mostly with reference to the unsteady 

diffusion equation as the model equation. 

Many researchers have proposed stability criteria for the multidimensional unsteady convection-

diffusion equation for different FD approaches [99, 100]. Beckers [99] analysed stability criteria 

for the explicit formulation of the general convection-diffusion equation (2.54.1) by considering 

the amplification factor in the von Neumann method. All convection and diffusion coefficients in 

(2.54.1) were assumed to be constant. The discrete finite difference approximation of equation 

(2.54.1), as addressed in [99], is stated in equation (2.54.2).      

 𝜕∅

𝜕𝑡
+ 𝑈

𝜕∅

𝜕𝑥
+ 𝑉

𝜕∅

𝜕𝑦
= κ

𝜕2∅

𝜕𝑥2
+ 𝜇

𝜕2∅

𝜕𝑦2
 (2.54.1) 

 ∅i,j
𝑛+1 = ∅i,j

𝑛 −
𝑈(∆𝑡)

2(∆𝑥)
(∅i+1,j

𝑛 − ∅i−1,j
𝑛 ) −

𝑉(∆𝑡)

2(∆𝑦)
(∅i,j+1

𝑛 − ∅i,j−1
𝑛 ) +

𝜅(∆𝑡)

(∆𝑥)2
 (∅i−1,j

𝑛 − 2∅i,j
𝑛 + ∅i+1,j

𝑛 ) +
𝜇(∆𝑡)

(∆𝑦)2
 (∅i,j−1

𝑛 − 2∅i,j
𝑛 + ∅i,j+1

𝑛 )  
(2.54.2) 
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The physical parameters, which convey the definition of Courant and diffusion numbers as 

defined in Beckers [99], are defined by:  

 𝑐𝑥 =
𝑈(∆𝑡)

(∆𝑥)
 , 𝑐𝑦 =

𝑉(∆𝑡)

(∆𝑦)
 , 𝑑𝑥 =

𝜅(∆𝑡)

(∆𝑥)2
 , 𝑑𝑦 =

𝜇(∆𝑡)

(∆𝑦)2
  (2.54.3) 

Beckers [99] derived two general stability conditions for the explicit FTCS formulation of 

equation (2.54.1) and stated that these two conditions are sufficient conditions for the stability of 

the numerical algorithm. The two sufficient stability criteria, as proposed by Beckers [99], are: 

 
𝑑𝑥 + 𝑑𝑦 ≤

1

2
 ⇒ (

𝜅

(Δ𝑥)2
+

𝜇

(Δ𝑦)2
) (Δ𝑡) ≤

1

2
 (2.55.1) 

 (𝑐𝑥)
2

𝑑𝑥
+
(𝑐𝑦)

2

𝑑𝑦
≤ 2 ⇒ (

𝑈2

𝜅
+
𝑉2

𝜇
) (∆𝑡) ≤ 2 (2.55.2) 

Similar conditions as equations (2.55.1) and (2.55.2) were proposed by Chan [101] for the 1-D 

convection-diffusion model equation, which can be written as 
𝜕∅

𝜕 𝑡
= 𝑎

𝜕∅

𝜕𝑥
+ 𝑏

𝜕2∅

𝜕𝑥2
 . Chan [101] 

showed that the maximum allowable time step for stability of the FTCS formulation of the 1-D 

model equation is given by (∆𝑡)𝑀𝑎𝑥 ≤ 𝑀𝑖𝑛(
2𝑏

𝑎2
,
(∆𝑥)2

2𝑏
). Thompson et al. [102] also used von 

Neumann stability analysis to analyse the stability criteria for the FTCS algorithm of 2-D 

unsteady convection-diffusion equation and concluded the same conditions as written in 

equations (2.55.1) and (2.55.2).  

It is possible to draw an analogy between Beckers’ model convection-diffusion equation (2.54.1) 

and the cut-stencil FD equation for diffusion (2.52.1). Identifying the parameters in (2.54.1) as 

 𝜅 =
𝜈

(𝑥P
′ )
2 , 𝜇 =

𝜈

(𝑦P
′ )
2 , 𝑈 =

𝜈𝑥P
′′

(𝑥P
′ )
3 , 𝑉 =

𝜈𝑦P
′′

(𝑦P
′ )
3  (2.56) 

leads to the following stability conditions in the Cartesian cut-stencil FDM notation for a 5-point 

stencil centred at node P,  

 
𝜈 (

1

(𝑥P
′ )2

+
1

(𝑦P
′ )2
) (Δ𝑡) ≤

1

2
 (2.57.1) 

 
𝜈 (
(𝑥P
′′)2

(𝑥P
′ )4

+
(𝑦P
′′)2

(𝑦P
′ )4
) (∆𝑡) ≤ 2 (2.57.2) 

The conditions given by equations (2.57.1) and (2.57.2) should be satisfied for each stencil and 

the maximum allowable time step which can fulfil the stability requirement on the whole domain 

is obtained through this consideration. This situation is similar to that which occurs in TFDM 

when finite differencing is applied for approximation of equations with variable coefficients or on 

non-uniform meshes, where the stability criteria should be considered and satisfied at very node 

of the solution field [102, 103]. It is worth mentioning that in the event of a uniform mesh, the 

metrics 𝑥′′ and 𝑦′′ are both zero and only the first stability condition, as written in equation 

(2.57.1), should be considered and checked for each stencil.    
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The results for the unsteady formulation of the cut-stencil FDM using “manufactured” problems 

and examining the proposed stability criteria, similar to steady formulations of the cut-stencil 

FDM, will be discussed in Chapter 3. 

2.7.2 Cut-Stencil FDM Formulation for Second-Order Wave Equation  

The second-order wave equation is a hyperbolic equation that can be applied to model different 

phenomena such as vibrations of a thin membrane [50, 104] or the model equation for an acoustic 

wave [105]. The solution of the second-order wave equation needs two sets of initial conditions 

which are usually expressed as the initial value, i.e. the value of the governing function at initial 

time (𝑡0), and the first temporal derivative of the governing function at the initial time. The model 

second-order wave equation, which may include a source term S, is represented by:  

 𝜕2∅

𝜕𝑡2
= 𝒞2∇2∅ + 𝑆 = 𝒞2 [

𝜕2∅

𝜕𝑥2
+ 
𝜕2∅

𝜕𝑦2
] + 𝑆 (2.58.1) 

where 𝒞2 is taken to be constant. The mapped form of (2.58.1) is: 

 𝜕2∅

𝜕𝑡2
= 𝒞2 [

1

(𝑥′)2
𝜕2∅

𝜕𝜉2
− 

𝑥"

(𝑥′)3
𝜕∅

𝜕𝜉
+ 

1

(𝑦′)2
𝜕2∅

𝜕𝜂2
−

𝑦"

(𝑦′)3
𝜕∅

𝜕𝜂
] + 𝑠 (2.58.2) 

and applying central 2
nd

-order accurate finite difference expressions to approximate both the time 

and space derivatives, the discrete form of equation (2.58.2), at point P of an arbitrary 5-point 

stencil, is: 

 ∅P
𝑛−1−2∅P

𝑛+∅P
𝑛+1

(∆𝑡)2
= 𝒞2 [

∅𝑤
𝑛−2∅P

𝑛+∅𝑒
𝑛

(𝑥P
′ )2

− 
𝑥P
′′

(𝑥P
′ )3

∅𝑒
𝑛−∅𝑤

𝑛

2
+ 

∅𝑠
𝑛−2∅P

𝑛+∅𝑛
𝑛

(𝑦P
′ )2

−
𝑦P
′′

(𝑦P
′ )3

∅𝑛
𝑛−∅𝑠

𝑛

2
] + 𝑆P

𝑛
  (2.58.3) 

Rearrangement of equation (2.58.3) gives the direct formulation to calculate the unknown ∅P
𝑛+1 

as shown in equation (2.58.4). The solution for ∅P
𝑛+1 needs the value of the function from two 

previous time steps; therefore, as mentioned before, two initial conditions are defined for the 

second-order wave equation.  

 
∅P
𝑛+1 = 𝒞2(Δt)2 [(

−2

(𝑥P
′ )2

+
−2

(𝑦P
′ )2
)𝜙P

𝑛 + (
1

(𝑥P
′ )2

+
𝑥P
′′

2(𝑥P
′ )3
)𝜙𝑤

𝑛 + (
1

(𝑥P
′ )2

−
𝑥P
′′

2(𝑥P
′ )3
)𝜙𝑒

𝑛

+ (
1

(𝑦P
′ )2

+
𝑦P
′′

2(𝑦P
′ )3
)𝜙𝑠

𝑛 + (
1

(𝑦P
′ )2

−
𝑦P
′′

2(𝑦P
′ )3
)𝜙𝑒

𝑛] + 2∅P
𝑛 − ∅P

𝑛−1 + (Δt)2𝑆P
𝑛 

(2.58.4) 

The method used to discretize the first-order temporal derivative at the initial time, e.g. with 

either 1
st
- or 2

nd
-order accuracy, provides a different set of coefficients than in equation (2.58.4) 

and, consequently, can change the accuracy of the solution. The details of this matter are 

discussed in the following sections. Similar to other model equations already discussed, the 

discrete form of the second-order wave equation, as written in equation (2.58.3) or (2.58.4), can 

be cast in the standard format similar to equation (2.53). 
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2.7.2.1 1
st
-Order Accurate Approximation for First Temporal Derivative at Initial Time for 

Second-Order Wave Equation 

The two initial conditions for the mapped form of the model second-order wave equation at an 

arbitrary internal or boundary node 𝒫  are defined as ∅(𝒫, 𝑡0) = ∅0 and 
𝜕∅

𝜕𝑡
|
(𝒫,𝑡0)

= 𝑔0. For the 

first scheme used, the temporal derivative at 𝑡0 is approximated by a 1
st
-order accurate 

approximation in time, as shown in equation (2.59.1). 

 𝜕∅

𝜕𝑡
|
(𝒫,𝑡0)

=
∅𝒫
𝑡0 − ∅𝒫

𝑡0−∆t

(∆𝑡)
= 𝑔0 (2.59.1) 

For notational convenience, ∅𝒫
𝑡0−∆𝑡, ∅𝒫

𝑡0 and ∅𝒫
𝑡0+∆𝑡 are represented by ∅𝒫

−1, ∅𝒫
0  and ∅𝒫

1 , 

respectively. The function 𝑔0 in equation (2.59.1) is a known function which is taken from the 

exact solution in “manufactured” problems, or from the physics of the problem; therefore, ∅𝒫
−1 

can be calculated from equation (2.59.1), given by:         

 ∅𝒫
−1 = ∅𝒫

0 − (∆𝑡)𝑔0 (2.59.2) 

The value of ∅𝒫
−1 from equation (2.59.2) is substituted into equation (2.58.4), giving modified 

coefficients for the standard form of equation (2.58.4) for an arbitrary internal point 𝒫 of a 5-

point stencil and which are used for calculation of the function at the first time step (when 

superscript 𝑛 = 0). These coefficients are given in equations (2.60.1) to (2.60.5). The source term 

for 𝑛 = 0 is evaluated by (∆𝑡)2𝑠𝒫
0 + (∆𝑡)𝑔0.  

 
𝑎𝒫
0 = −2𝒞2(Δ𝑡)2 (

1

(𝑥𝒫
′ )2

+
1

(𝑦𝒫
′ )2
) + 1 (2.60.1) 

 
𝑎𝑤
0 = 𝒞2(Δ𝑡)2  (

1

(𝑥𝒫
′ )2

+
𝑥𝒫
′′

2(𝑥𝒫
′ )3
) (2.60.2) 

 
𝑎𝑒
0 = 𝒞2(Δ𝑡)2  (

1

(𝑥𝒫
′ )2

−
𝑥𝒫
′′

2(𝑥𝒫
′ )3
) (2.60.3) 

 
𝑎𝑠
0 = 𝒞2(Δ𝑡)2 (

1

(𝑦𝒫
′ )2

+
𝑦𝒫
′′

2(𝑦𝒫
′ )3
) (2.60.4) 

 
𝑎𝑛
0 = 𝒞2(Δ𝑡)2  (

1

(𝑦𝒫
′ )2

−
𝑦𝒫
′′

2(𝑦𝒫
′ )3
) (2.60.5) 

The coefficients for subsequent time steps (when superscript 𝑛 ≥ 1) are directly achieved from 

rearrangement of equation (2.58.4) and are expressed in equations (2.61.1) to (2.61.5). The source 

term for  𝑛 ≥ 1 is evaluated by (∆𝑡)2𝑆P
𝑛− ∅P

𝑛−1 where the term ∅P
𝑛−1 is calculated from the last 

time step.  

 
𝑎P
𝑛 = −2𝒞2(Δ𝑡)2 (

1

(𝑥P
′ )2

+
1

(𝑦P
′ )2
) + 2 (2.61.1) 
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𝑎𝑤
𝑛 = 𝒞2(Δ𝑡)2  (

1

(𝑥P
′ )2

+
𝑥P
′′

2(𝑥P
′ )3
) (2.61.2) 

 
𝑎𝑒
𝑛 = 𝒞2(Δ𝑡)2  (

1

(𝑥P
′ )2

−
𝑥P
′′

2(𝑥P
′ )3
) (2.61.3) 

 
𝑎𝑠
𝑛 = 𝒞2(Δ𝑡)2 (

1

(𝑦P
′ )2

+
𝑦P
′′

2(𝑦P
′ )3
) (2.61.4) 

 
𝑎𝑛
𝑛 = 𝒞2(Δ𝑡)2  (

1

(𝑦P
′ )2

−
𝑦P
′′

2(𝑦P
′ )3
) (2.61.5) 

2.7.2.2 2
nd

-Order Accurate Approximation for First Temporal Derivative at Initial Time 

for Second-Order Wave Equation 

The temporal derivative at initial time at an arbitrary node 𝒫 can be approximated to 2
nd

-order 

accuracy using central differencing:  

 𝜕∅

𝜕𝑡
|
(𝒫,𝑡0)

=
∅𝒫
𝑡0+∆𝑡 − ∅𝒫

𝑡0−∆t

2(∆𝑡)
= 𝑔0 (2.62.1) 

Using the same notation as above for ∅𝒫
𝑡0−∆𝑡and ∅𝒫

𝑡0+∆𝑡, the value of ∅𝒫
−1 is calculated from 

equation (2.62.1) as: 

 ∅𝒫
−1 = ∅𝒫

1 − 2(∆𝑡)𝑔0 (2.62.2) 

Substitution of ∅𝒫
−1 from equation (2.62.2) into (2.58.4) gives the coefficients of the standard 

form of equation (2.58.4) at node 𝒫 of an arbitrary 5-point stencil at the first time step (𝑛 = 0), 

expressed in equations (2.63.1) to (2.63.5). The source term expression when 𝑛 = 0 is written 

as 0.5(∆𝑡)2𝑆P
0 + (∆𝑡)𝑔0. 

 
𝑎𝒫
0 = −𝒞2(Δ𝑡)2 (

1

(𝑥𝒫
′ )2

+
1

(𝑦𝒫
′ )2
) + 1 (2.63.1) 

 
𝑎𝑤
0 = 0.5𝒞2(Δ𝑡)2  (

1

(𝑥𝒫
′ )2

+
𝑥𝒫
′′

2(𝑥𝒫
′ )3
) (2.63.2) 

 
𝑎𝑒
0 = 0.5𝒞2(Δ𝑡)2  (

1

(𝑥𝒫
′ )2

−
𝑥𝒫
′′

2(𝑥𝒫
′ )3
) (2.63.3) 

 
𝑎𝑠
0 =  0.5𝒞2(Δ𝑡)2 (

1

(𝑦𝒫
′ )2

+
𝑦𝒫
′′

2(𝑦𝒫
′ )3
) (2.63.4) 

 
𝑎𝑛
0 = 0.5𝒞2(Δ𝑡)2  (

1

(𝑦𝒫
′ )2

−
𝑦𝒫
′′

2(𝑦𝒫
′ )3
) (2.63.5) 

The coefficients for the other time steps (𝑛 ≥ 1) for this method are the same as the previous 

scheme shown in equations (2.61.1)-(2.61.5). 
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2.7.2.3 Stability Analysis for Cut-Stencil Formulation of Second-Order Wave Equation 

The stability condition for the model equation (2.58.3) is discussed only for a uniform physical 

mesh, implying that 𝑥′′ and 𝑦′′ both are zero. The discussion begins with the TFD formulation 

for the discrete form of equation (2.58.1):   

∅(i,j)
𝑛−1−2∅(i,j)

𝑛 +∅(i,j)
𝑛+1

(∆𝑡)2
= 𝒞2 [

∅(i−1,j)
𝑛 −2∅(i,j)

𝑛 +∅(i+1,j)
𝑛

(∆𝑥)2
+ 

∅(i,j−1)
𝑛 −2∅(i,j)

𝑛 +∅(i,j+1)
𝑛

(∆𝑦)2
] + 𝑠(i,j)

𝑛
  (2.64) 

The Fourier component is defined by ∅(i,j)
𝑛 = Φ𝑛𝑒𝐼𝜃𝑥𝑖𝑒𝐼𝜃𝑦𝑗 where the parameters 𝜃𝑥 and 𝜃𝑦 are 

phase angles, Φ stands for the Fourier amplitude and 𝐼 = √−1. Substituting the Fourier 

component into equation (2.64) and simplification of the resulting expression produces the 

equation 

 
Φ2 − 2 [1 − (

𝒞(∆𝑡)

(∆𝑥)
)

2

(1 − cos 𝜃𝑥) − (
𝒞(∆𝑡)

(∆𝑦)
)

2

(1 − cos𝜃𝑦)]Φ + 1 = 0 (2.65.1) 

To satisfy the stability requirement, the absolute value of both roots of the quadratic equation 

(2.65.1) should be less than unity. In this event, the term inside the brackets (in equation (2.65.1)) 

needs to satisfy the following condition:   

 
−1 ≤ [1 − (

𝒞(∆𝑡)

(∆𝑥)
)

2

(1 − cos 𝜃𝑥) − (
𝒞(∆𝑡)

(∆𝑦)
)

2

(1 − cos 𝜃𝑦)] ≤ 1 (2.65.2) 

The most severe condition occurs when the values of cos𝜃𝑥 and cos 𝜃𝑦 are both equal to -1, and 

this leads to the stability condition for the difference form of the 2-D second-order wave equation, 

written as: 

 

(
𝒞(∆𝑡)

(∆𝑥)
)

2

+ (
𝒞(∆𝑡)

(∆𝑦)
)

2

≤ 1 ⇒ 𝒞2 (
1

(Δ𝑥)2
+

1

(Δ𝑦)2
) (Δ𝑡)2 ≤ 1 (2.65.3) 

Correspondence between equation (2.61.1) and the cut-stencil form of the 2-D second-order wave 

equation for a uniform physical mesh gives the following stability condition for each 

computational stencil, centred at node P: 

 
𝒞2 (

1

(𝑥P
′ )2

+
1

(𝑦P
′ )2
) (Δ𝑡)2 ≤ 1⟹ (∆𝑡) ≤

1

𝒞√(
1

(𝑥P
′ )2

+
1

(𝑦P
′ )2
)

 

(2.65.4) 

2.8 Chapter Summary 

Generally speaking, the details of several mathematical formulations of the Cartesian cut-stencil 

FDM were presented in this chapter. The systematic development of this new numerical 
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formulation, beginning from the particular transformation functions (1-D quadratic functions) and 

the metrics of this transformation, was discussed. The uniform arms of the generic computational 

stencil provide the conditions for 2
nd

-order accurate approximations for the derivatives in the 

mapped form of the convection-diffusion equation, which is taken as the model equation. The 

mathematical formulations are developed using the same 5-point stencil for all cut and uncut 

stencils to cast the discretized form of the governing equation in the standard iterative form 

(equation (2.9)). The details of extension of the cut-stencil FDM from its basic 2
nd

-order accurate 

formulation to higher-order accurate approximation were addressed in this chapter. The higher-

order formulations include a 5+4-point stencil scheme which is constructed by adding 4 fictitious 

nodes to the 5-point stencil, and two families of compact Padé-Hermitian schemes using only the 

5-point stencil. The implementation of boundary conditions was considered and the formulation 

for higher-order accurate approximation of unknown boundary values was presented. The 

formulation of unsteady model equations using the Cartesian cut-stencil FDM and corresponding 

stability criteria were also discussed in this chapter. 
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CHAPTER 3 

CARTESIAN CUT-STENCIL FDM SOLUTIONS to MANUFACTURED PROBLEMS 

3.1 Objective of the Chapter 

Verification of the Cartesian cut-stencil FDM formulated in Chapter 2 will be undertaken in this 

chapter by employing the method of manufactured solutions (MMS). This chapter concentrates 

on verification of the cut-stencil method by computer implementation of the equations, schemes 

and methods proposed in Chapter 2 and presenting the solutions of a number of manufactured 

problems. A computer code has been written for this purpose. The problems in this chapter 

include the solution of PDEs on different shapes of domains and specific aspects of the cut-stencil 

FDM, such as 2
nd

-order accurate formulation, treatment of boundary conditions and HO methods. 

The unsteady formulation and the proposed stability criteria are also discussed through these 

manufactured problems. The manufactured problems, as discussed in this chapter, all have 

analytical solutions which are defined by mathematical functions such as trigonometric or 

logarithmic functions. Due to the fact that verification of methods (or codes) is a purely 

mathematical procedure, it is not necessary to choose problems with exact physical meaning [106, 

107]. One can say that verification reflects the solution of the PDE and does not deal with any 

real physics of the problem that may be associated with that PDE [108].   

3.2 Definition of Method (Code) Verification  

Researchers have made a distinction between calculation verification and code verification [109]. 

Roache [107] states that calculation verification is associated with estimation of errors, while 

code verification studies error evaluation which is devised from a benchmark problem for which 

the solution is known. The difference between calculation and code verification has been widely 

discussed in the literature [106, 107, 109, 110, 111, 112]. In this dissertation, verification conveys 

a more general meaning. The goal of presenting the numerical solution to the sample problems in 

this chapter is to survey the correctness of the proposed algorithms, formulations and schemes for 

the solution of PDEs. In other words, the verification process contained herein means assessing 

the correctness of the numerical solution to the equations, which can alternatively be expressed as 

correct numerical analysis [112]. In this context, verification aims at testing the accurate 

implementation for solution of a mathematical model [113]. Thus, the efforts of this chapter in 

terms of verification procedure is to show that the equations are solved correctly [114, 115, 116]. 

3.2.1 Method of Manufactured Solutions (MMS)   

The method of manufactured solutions (MMS) is regarded as an efficient tool for the verification 

procedure [108, 109, 114, 117, 118]. As mentioned above, the verification process is a purely 

mathematical exercise; therefore, the proposed manufactured problems do not need a realistic 

physical interpretation [117]. However, from the perspective of subsequent applications, one 

should chose or design manufactured problems that exhibit some of the key characteristics of 

real-world problems of current interest, cf. e.g. [119]. The MMS technique constructs the exact 

solution to a PDE or set of PDEs and, in general, if the manufactured solution does not satisfy the 

governing equation(s), source terms can be defined to correct the imbalance. These source terms 
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are determined by substituting the manufactured solution into the model PDE(s) [106], and is 

then applied within the solver (or code) [110]. The boundary conditions may be Dirichlet, 

Neumann, etc., and are defined from the manufactured solution by applying the solution on the 

boundaries of the domain [107]. The discrete form of the modified model equation(s) (governing 

equation(s)) is solved numerically and the solution is compared to the exact solution of the 

manufactured problem [110, 120]. 

This procedure has been used for the sample problems defined throughout this chapter, and 

begins with definition of a manufactured problem, followed by its exact solution ∅𝑒𝑥𝑎𝑐𝑡, where ∅ 

is a function of independent variables 𝑥 and 𝑦 for solution to steady equations and 𝑥, 𝑦 and 𝑡 for 

solution to unsteady problems. The first and second derivatives of function ∅ with respect to 

independent variables 𝜉 and 𝜂 in the computational stencil are calculated analytically and the 

source term is obtained from substitution of analytical derivatives into the corresponding PDE. 

After this mathematical manipulation, the discrete form of the manufactured equation gives the 

coefficients already defined in Chapter 2, such as equations (2.10) for the 2
nd

-order accurate 

solution. The boundary conditions are similarly taken from ∅𝑒𝑥𝑎𝑐𝑡 and solution of the discrete 

form of the manufactured equation provides the Cartesian cut-stencil FD solution which can be 

compared to ∅𝑒𝑥𝑎𝑐𝑡 at each node. 

3.3 Local Truncation Error (LTE) 

The local truncation error (LTE) in FDM, also referred to as discretization error, reveals how well 

the continuous differential equation is approximated by the discrete difference equation [58, 121]. 

In absence of the exact solution to the governing model equation, the LTE can be used to examine 

the accuracy of the differencing formulation. Additionally, the region of the domain with the 

largest value of LTE can be refined to reduce the overall error of the differencing method used. In 

other words, LTE can be used as a criterion for grid adaptation [122, 123, 124].   

The LTE is associated with the difference between the differential equation and the proposed 

differencing scheme. For example, for a 2
nd

-order accurate approximation of the second 

derivative of a 1-D function ∅, the mathematical definition of LTE, in TFD notation, is:  

 
LTE(i) =

𝜕2∅

𝜕𝑥2
⃒(i) −

∅(i−1) − 2∅(i) + ∅(i+1)

(∆𝑥)2
 (3.1.1) 

Note that, for later convenience when presenting the LTE for 2-D problems, the partial derivative 

notation has been used here, rather than the ordinary derivative  
𝑑2∅

𝑑𝑥2
 . The concept of the modified 

PDE can be exploited to determine the LTE using Taylor series expansions to convert the 

difference expression back to the continuous derivative form. This procedure is illustrated for the 

2
nd

-order approximation of  
𝜕2∅

𝜕𝑥2
 written in equation (3.1.1):  

 
LTE(i) =

𝜕2∅

𝜕𝑥2
⃒(i) − 

1

(∆𝑥)2
 { [∅(i) −

(∆𝑥)

1!

𝜕∅

𝜕𝑥
⃒(i) +

(∆𝑥)2

2!

𝜕2∅

𝜕𝑥2
⃒(i) −

(∆𝑥)3

3!

𝜕3∅

𝜕𝑥3
⃒(i) +

(∆𝑥)4

4!

𝜕4∅

𝜕𝑥4
⃒(i) +⋯] − 2∅(i) + [∅(i) +

(∆𝑥)

1!

𝜕∅

𝜕𝑥
⃒(i) +

(∆𝑥)2

2!

𝜕2∅

𝜕𝑥2
⃒(i) +

(∆𝑥)3

3!

𝜕3∅

𝜕𝑥3
⃒(i) +

(∆𝑥)4

4!

𝜕4∅

𝜕𝑥4
⃒(i) +⋯] }  

(3.1.2) 
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Cancelling out terms and rearranging equation (3.1.2) gives  

 
LTE(i) = −

(∆𝑥)2

12

𝜕4∅

𝜕𝑥4
⃒(i) −

(∆𝑥)4

360

𝜕6∅

𝜕𝑥6
⃒(i) +⋯ (3.1.3) 

The leading term of equation (3.1.3) includes (∆𝑥)2 which conveys the 2
nd

-order accuracy of the 

approximation. The other terms appearing after the leading term are suppressed and the LTE is 

evaluated as: 

 
LTE(i) = −

(∆𝑥)2

12

𝜕4∅

𝜕𝑥4
⃒(i) (3.1.4) 

The Cartesian cut-stencil FD formulation of the model expression in equation (3.1.1) on a 3-point 

computational stencil (since 1-D) centred at node P is obtained after mapping the second 

derivative 
𝜕2∅

𝜕𝑥2
  to  

1

(𝑥P
′ )2

𝜕2∅

𝜕𝜉2
−

𝑥P
′′

(𝑥P
′ )3

𝜕∅

𝜕𝜉
  as discussed in Chapter 2, e.g. in equation (2.7). This 

expression includes first and second derivatives which are normally approximated by 2
nd

-order 

accuracy using central differencing. Following the same procedure as above, the LTE in the 

transformed system is defined by: 

 
LTE(P) =

1

(𝑥P
′ )2

𝜕2∅

𝜕𝜉2
⃒P −

𝑥P
′′

(𝑥P
′ )3

𝜕∅

𝜕𝜉
⃒P − {

∅𝑤−2∅P+∅𝑒

(𝑥P
′ )2

−
𝑥P
′′

(𝑥P
′ )3

∅𝑒−∅𝑤

2
}  (3.2.1) 

Since ∆𝜉 = 1 on the computational stencil, the Taylor series expansion of the finite difference 

portion of (3.2.1) leads to: 

 
LTE(P) =

1

(𝑥P
′ )2

𝜕2∅

𝜕𝜉2
⃒P −

𝑥P
′′

(𝑥P
′ )3

𝜕∅

𝜕𝜉
⃒P − {   

1

(𝑥P
′ )2
[ (∅P −

𝜕∅

𝜕𝜉
⃒P +

1

2!

𝜕2∅

𝜕𝜉2
⃒P −

1

3!

𝜕3∅

𝜕𝜉3
⃒P +

1

4!

𝜕4∅

𝜕𝜉4
⃒P +⋯) − 2∅P + (∅P +

𝜕∅

𝜕𝜉
⃒P +

1

2!

𝜕2∅

𝜕𝜉2
⃒P +

1

3!

𝜕3∅

𝜕𝜉3
⃒P +

1

4!

𝜕4∅

𝜕𝜉4
⃒P +⋯) ] −

𝑥P
′′

2(𝑥P
′ )3
[ (∅P +

𝜕∅

𝜕𝜉
⃒P +

1

2!

𝜕2∅

𝜕𝜉2
⃒P +

1

3!

𝜕3∅

𝜕𝜉3
⃒P +

1

4!

𝜕4∅

𝜕𝜉4
⃒P +⋯) − (∅P −

𝜕∅

𝜕𝜉
⃒P +

1

2!

𝜕2∅

𝜕𝜉2
⃒P −

1

3!

𝜕3∅

𝜕𝜉3
⃒P +

1

4!

𝜕4∅

𝜕𝜉4
⃒P +⋯) ]   }  

(3.2.2) 

The final expression for the LTE is obtained after some algebraic manipulation as: 

 
LTEP = −

1

12(𝑥P
′ )2

𝜕4∅

𝜕𝜉4
⃒P +

𝑥P
′′

6(𝑥P
′ )3

𝜕3∅

𝜕𝜉3
⃒P (3.2.3) 

This procedure can be extended to construct the expression for the LTE for the 𝜂 − direction and, 

eventually, the LTE expression for the 2-D diffusion equation 𝜈 [
𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
] = 𝑆(𝑥, 𝑦) in the cut-

stencil FD formulation is achieved. The LTE expression for 2
nd

-order accurate approximation of 

the 2-D diffusion equation in the cut-stencil FD formulation, at the central node P of a 5-point 

stencil, is:  

LTEP
𝟓−𝐩𝐭 𝐬𝐭𝐞𝐧𝐜𝐢𝐥

= 𝜈 [
−1

12
(

1

(𝑥P
′ )2

𝜕4∅

𝜕𝜉4
⃒P +

1

(𝑦P
′ )2

𝜕4∅

𝜕𝜂4
⃒P) +

1

6
(
𝑥P
′′

(𝑥P
′ )3

𝜕3∅

𝜕𝜉3
⃒P +

𝑦P
′′

(𝑦P
′ )3

𝜕3∅

𝜕𝜂3
⃒P)]  (3.2.4) 
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Similarly, the expression for calculation of the LTE for the 2-D convection-diffusion 

equation 𝜈∇2∅ + 𝑃
𝜕∅

𝜕𝑥
+ 𝑄

𝜕∅

𝜕𝑦
= 𝑆(𝑥, 𝑦), which depends on whether central or backward/forward 

differencing is used for the convective terms, can be defined for the cut-stencil FDM.  Using the 

parameters 𝛼 and 𝛽 defined in Section 2.4.2, which yield the backward, forward or central 

differencing of the convective terms, the LTE for the convection-diffusion equation can be 

written as:  

LTEP
𝟓−𝐩𝐭 𝐬𝐭𝐞𝐧𝐜𝐢𝐥

= 𝜈 [
−1

12
(

1

(𝑥P
′ )2

𝜕4∅

𝜕𝜉4
⃒P +

1

(𝑦P
′ )2

𝜕4∅

𝜕𝜂4
⃒P) +

1

6
(
𝑥P
′′

(𝑥P
′ )3

𝜕3∅

𝜕𝜉3
⃒P +

𝑦P
′′

(𝑦P
′ )3

𝜕3∅

𝜕𝜂3
⃒P)] − [

1

6
(
𝑃

𝑥P
′

𝜕3∅

𝜕𝜉3
⃒P +

𝑄

𝑦P
′

𝜕3∅

𝜕𝜂3
⃒P)]           (central) 

(3.2.5.1) 

LTEP
𝟓−𝐩𝐭 𝐬𝐭𝐞𝐧𝐜𝐢𝐥

= 𝜈 [
−1

12
(

1

(𝑥P
′ )2

𝜕4∅

𝜕𝜉4
⃒P +

1

(𝑦P
′ )2

𝜕4∅

𝜕𝜂4
⃒P) +

1

6
(
𝑥P
′′

(𝑥P
′ )3

𝜕3∅

𝜕𝜉3
⃒P +

𝑦P
′′

(𝑦P
′ )3

𝜕3∅

𝜕𝜂3
⃒P)] + [

1

2
(
𝑃𝛼

𝑥P
′

𝜕2∅

𝜕𝜉2
⃒P +

𝑄𝛽

𝑦P
′

𝜕2∅

𝜕𝜂2
⃒P)] (backward: α = β = 1, forward: α = β = -1) 

(3.2.5.2) 

Expressions for the LTE can also be derived for other formulations of the cut-stencil FDM such 

as the 5+4-point (4 fictitious nodes) stencil, HO-FDM1 and HO-FDM2.  

For the 5+4-point stencil formulation, the general approach outlined above is used, noting that in 

this formulation ∆𝜉 and ∆𝜂 are both equal to 0.5. Using equations (2.24.1) and (2.24.2), the TFD 

expressions for the LTE for the 4
th
-order accurate approximations of  

𝜕2∅

𝜕𝑥2
 and  

𝜕∅

𝜕𝑥
 at point (i), in 

which ∅ is assumed as a 1-D function, are respectively:   

 
LTE(i) =

(∆𝑥)4

90

𝜕6∅

𝜕𝑥6
⃒(i) (3.3.1) 

 
LTE(i) =

(∆𝑥)4

30

𝜕5∅

𝜕𝑥5
⃒(i) (3.3.2) 

On the computational stencil, the difference between the continuous and discrete representation 

for the Laplacian ∇2∅ and for the LTE, using the 5+4-point stencil formulation, are:   

 
LTE(P) = [

1

(𝑥P
′ )2

𝜕2∅

𝜕𝜉2
⃒P −

𝑥P
′′

(𝑥P
′ )
3

𝜕∅

𝜕𝜉
⃒P +

1

(𝑦P
′ )2

𝜕2∅

𝜕𝜂2
⃒P −

𝑦P
′′

(𝑦P
′ )3

𝜕∅

𝜕𝜂
⃒P] −

{[
1

(𝑥P
′ )2
(
−∅𝑤+16∅𝑙−30∅P+16∅𝑟−∅𝑒

3
) −

𝑥P
′′

(𝑥P
′ )3
(
∅𝑤−8∅𝑙+8∅𝑟−∅𝑒

6
)] +

+
1

(𝑦P
′ )2
(
−∅𝑠+16∅𝑏−30∅P+16∅𝑎−∅𝑛

3
) −

𝑦P
′′

(𝑦P
′ )3
(
∅𝑠−8∅𝑏+8∅𝑎−∅𝑛

6
)}  

(3.4.1) 

 
LTEP

𝟓+𝟒−𝐩𝐭 𝐬𝐭𝐞𝐧𝐜𝐢𝐥
= [

1

1440
(

1

(𝑥P
′ )2

𝜕6∅

𝜕𝜉6
⃒P +

1

(𝑦P
′ )2

𝜕6∅

𝜕𝜂6
⃒P) −

1

480
(
𝑥P
′′

(𝑥P
′ )3

𝜕5∅

𝜕𝜉5
⃒P +

𝑦P
′′

(𝑦P
′ )3

𝜕5∅

𝜕𝜂5
⃒P)]  

(3.4.2) 

The LTEs for the higher-order methods introduced in Chapter 2, HO-FDM1 and HO-FDM2, are 

developed using the same definitions and procedures as above. As mentioned in Chapter 2, the 

LTE expressions of each of the compact differencing schemes for the first and second derivatives 

can be derived by inserting the coefficients of each method into the last column of the 

corresponding Taylor tables, i.e. Tables 2.4 and 2.5. This mathematical manipulation, for example 
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in the last column of Table 2.4, leads to the LTE for the compact 4
th
-order accurate approximation 

of the first derivative of a 1-D function 𝜙 as 
1

120
(Δ𝑥)4

𝜕5∅

𝜕𝑥5
,  as found in the literature [76]. 

The general expression for the LTE in the cut-stencil FD formulation HO-FDM1 for the 2-D 

Laplacian is given by (cf., equation (2.41)): 

 
LTE(P) = 𝜈 {  [

1

(𝑥P
′ )2

𝜕2∅

𝜕𝜉2
⃒P −

𝑥P
′′

(𝑥P
′ )
3

𝜕∅

𝜕𝜉
⃒P +

1

(𝑦P
′ )2

𝜕2∅

𝜕𝜂2
⃒P −

𝑦P
′′

(𝑦P
′ )3

𝜕∅

𝜕𝜂
⃒P] −

 [  
1

(𝑥P
′ )2
(
6𝜙𝑤−12𝜙P+6𝜙𝑒

5
−

1

10
(
𝜕2∅

𝜕𝜉2
⃒𝑤 +

𝜕2∅

𝜕𝜉2
⃒𝑒)) −

𝑥P
′′

(𝑥P
′ )
3 (

3𝜙𝑒−3𝜙𝑤

4
−

1

4
(
𝜕∅

𝜕𝜉
⃒𝑤 +

𝜕∅

𝜕𝜉
⃒𝑒)) +

1

(𝑦P
′ )
2 (

6𝜙𝑠−12𝜙P+6𝜙𝑛

5
−

1

10
(
𝜕2∅

𝜕𝜂2
⃒𝑠 +

𝜕2∅

𝜕𝜂2
⃒𝑛)) −

𝑦P
′′

(𝑦P
′ )
3 (

3𝜙𝑛−3𝜙𝑠

4
−
1

4
(
𝜕∅

𝜕𝜉
⃒𝑠 +

𝜕∅

𝜕𝜉
⃒𝑛))  ]  }  

(3.5) 

Additional convective terms can be added to this equation and rearranging the mathematical 

expression resulting from the Taylor series expansions yields the LTE for the 4
th
-order accurate 

approximation of the derivatives in the mapped form of the 2-D convection-diffusion equation 

using HO-FDM1:  

 
LTEP

𝐇𝐎−𝐅𝐃𝐌𝟏 = 𝜈 [
1

200
(

1

(𝑥P
′ )2

𝜕6∅

𝜕𝜉6
⃒P +

1

(𝑦P
′ )2

𝜕6∅

𝜕𝜂6
⃒P) −

1

120
(
𝑥P
′′

(𝑥P
′ )3

𝜕5∅

𝜕𝜉5
⃒P +

𝑦P
′′

(𝑦P
′ )3

𝜕5∅

𝜕𝜂5
⃒P)] +

1

120
(
𝑃

𝑥P
′

𝜕5∅

𝜕𝜉5
⃒P +

𝑄

𝑦P
′

𝜕5∅

𝜕𝜂5
⃒P)    (central) 

(3.6.1) 

 
LTEP

𝐇𝐎−𝐅𝐃𝐌𝟏 = 𝜈 [
1

200
(

1

(𝑥P
′ )2

𝜕6∅

𝜕𝜉6
⃒P +

1

(𝑦P
′ )2

𝜕6∅

𝜕𝜂6
⃒P) −

1

120
(
𝑥P
′′

(𝑥P
′ )3

𝜕5∅

𝜕𝜉5
⃒P +

𝑦P
′′

(𝑦P
′ )3

𝜕5∅

𝜕𝜂5
⃒P)] +

1

6
(
𝑃

𝑥P
′

𝜕3∅

𝜕𝜉3
⃒P +

𝑄

𝑦P
′

𝜕3∅

𝜕𝜂3
⃒P)           (upwind) 

(3.6.2) 

The LTE expression for the HO-FDM2 formulation uses the left hand side of equation (2.42).  

Since the only difference between the cut-stencil methods HO-FDM1 and HO-FDM2 is related to 

the finite difference approximation of second derivatives, the first derivative approximations used 

for equation (3.5.1) remain unchanged in the corresponding HO-FDM2 equation. Thus, to 

construct the LTE expression for the 2-D convection-diffusion equation using HO-FDM2, it can 

be shown that only the coefficient 
1

200
 in equations (3.6.1) and (3.6.2) should be replaced by  

1

360
 . 

3.3.1 Temporal Local Truncation Error for FTCS Formulation 

The previous derivations for the LTE considered only steady formulations and consequently 

discussed only the spatial LTE. For unsteady formulations, the LTE depends upon both the spatial 

and temporal discretizations. The temporal truncation error has been employed in numerical 

studies for different purposes, such as adaptive time-stepping by controlling the temporal 

truncation error [125]. The main time-dependent cut-stencil FD formulation in Chapter 2 dealt 

with the unsteady diffusion equation and its FTCS discretization.  
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The time derivative in FTCS is approximated by 1
st
-order accuracy, so the error should be 

truncated at the term which is 𝑂(∆𝑡). The basic definition used for the spatial LTE is also applied 

for the temporal LTE, i.e.,  

 LTEP
𝑛 =

𝜕∅P
𝑛

𝜕𝑡
− {

∅P
𝑛+1−∅P

𝑛

(∆𝑡)
}  (3.7.1) 

Using the Taylor series about 𝑡𝑛 in equation (3.7.1) gives the final expression for the temporal 

LTE for the unsteady diffusion equation:   

 LTEP
𝑛 = −

(∆𝑡)

2

𝜕2∅P
𝑛

𝜕𝑡2
  (3.7.2) 

The total LTE for the unsteady diffusion equation is the sum of the spatial LTE (3.2.4) and the 

temporal LTE (3.7.2). Similar results are obtained for the unsteady convection-diffusion equation. 

3.3.2 Procedure for Calculation of Spatial Local Truncation Error (LTE) 

As shown in equations (3.2.4), (3.2.5.1), (3.2.5.2), (3.4.2), (3.6.1) and (3.6.2), there are second, 

third, fourth, fifth and sixth derivatives in the expressions for the LTE depending on the particular 

cut-stencil formulation used. The flexibility and simplicity of the localized treatment of each 5-

point physical stencil in the Cartesian cut-stencil FDM give the facility to calculate these higher- 

order derivatives. One of the main factors to construct all the equations in this research is an 

attempt to define and construct the basic form of all FD approximations within a 5-point stencil. 

This feature avoids any problems in dealing with the nodes located near the boundaries. The 

procedure for calculation of derivatives in the LTE expressions is organized as described in the 

following.  

At first, after completion of the solution algorithm, the value at each node is used to approximate 

the second derivative at all nodes in the domain including all active nodes and boundary nodes 

which have a Neumann condition, using central or one-sided forward/backward 2
nd

-order accurate 

differencing schemes for internal or boundary nodes, respectively. Then, similarly, 2
nd

-order 

differencing formulas are applied to approximate the third through sixth derivatives for all nodes 

from the values of the second derivative. 

This procedure for evaluation of the terms in the LTE can be conveniently described by 

introducing difference operators as approximations to differential operators. In general, the 

differential operator representing the k
th
-derivative with respect to 𝜉, 𝜕𝑘𝜉|P

 , is approximated to 

2
nd

-order accuracy by the difference operator 𝛿𝑘𝜉,P
𝑐  , i.e., 𝜕𝑘𝜉|P

= 𝛿𝑘𝜉,P
𝑐 +𝑂(Δ𝜉2), where the 

superscript c denotes 3-point central differencing, the subscript 𝑘𝜉 refers to the order of derivative 

in the 𝜉 − direction and the operator is applied at point P. A similar expression can be written for 

differentiation with respect to 𝜂, simply by replacing 𝜉 with 𝜂. Further, when the difference 

operator operates on a function ∅(𝜉, 𝜂) at a point P, we use the notation 𝛿𝑘𝜉,P
𝑐 ∅ = ∅p

(𝑘𝜉)
. Then, all 

higher-order differences can be expressed in terms of the 2
nd

-order difference. For 

example, 𝛿3𝜉,P
𝑐 ∅ = 𝛿1𝜉,P

𝑐 ∅p
(2𝜉)

, 𝛿4𝜉,P
𝑐 ∅ = 𝛿2𝜉,P

𝑐 ∅p
(2𝜉)

, 𝛿5𝜉,P
𝑐 ∅ = 𝛿1𝜉,P

𝑐 ∅p
(4𝜉)

= 𝛿1𝜉,P
𝑐 (𝛿2𝜉,P

𝑐 ∅p
(2𝜉)

), etc. 

Denoting the identity operator by 𝛿0𝜉,P
𝑐 , these differences can be computed recursively as follows: 
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𝜕𝑘𝜉|P

≈ 𝛿𝑘𝜉,P
𝑐 = {

𝛿1𝜉,P
𝑐 (𝛿(𝑘−1)𝜉,P

𝑐 ),    if 𝑘 is odd 

𝛿2𝜉,P
𝑐 (𝛿(𝑘−2)𝜉,P

𝑐 ),    if 𝑘 is even
 (3.8.1) 

Using (3.8.1), the various formulas for the LTE derived above can be expressed in their finite 

difference form. For example, for the 2
nd

-order 5-point cut-stencil LTE, equation (3.2.4) at any 

internal point P can be written as: 

 LTEP
𝟓−𝐩𝐨𝐢𝐧𝐭 𝐬𝐭𝐞𝐧𝐜𝐢𝐥

≈

𝜈 { 
−1

12
[

1

(𝑥P
′ )
2 (𝛿4𝜉,P

𝑐 ∅P) +
1

(𝑦P
′ )
2 (𝛿4𝜂,P

𝑐 ∅P)] +

1

6
[
𝑥P
′′

(𝑥P
′ )
3 (𝛿3𝜉,P

𝑐 ∅P) +
𝑦P
′′

(𝑦P
′ )
3 (𝛿3𝜂,P

𝑐 ∅P)] } ≈ 𝜈 { 
−1

12
[

1

(𝑥P
′ )
2 (𝛿2𝜉,P

𝑐 ∅P
(2𝜉)

) +

1

(𝑦P
′ )
2 (𝛿2𝜂,P

𝑐 ∅P
(2𝜂)

)] +
1

6
[
𝑥P
′′

(𝑥P
′ )
3 (𝛿1𝜉,P

𝑐 ∅P
(2𝜉)

) +
𝑦P
′′

(𝑦P
′ )
3 (𝛿1𝜂,P

𝑐 ∅P
(2𝜂)

)] }  

(3.8.2) 

Expressions similar to equation (3.8.2) can be constructed to calculate the value of the LTE for 

other formulations of the Cartesian cut-stencil FDM, and at Neumann boundary nodes if 

necessary, which shows the potential of this method in the calculation of complicated PDEs 

formulas in any arbitrary irregular shaped domain. The values and trends of the LTE will be 

studied for the solution of different sample problems in later chapters. 

3.4 Verification of Formal Accuracy of the Numerical Scheme  

Computational efforts to find the numerical solution of PDEs in all fields of engineering are 

normally associated with some sources of errors [126]. The determination of a formal or global 

order of accuracy compared to a local order of accuracy for the method used is an underlying 

challenge for any discretization scheme [127]. In other words, it must be considered how well the 

theoretical order of discretization matches with the actual order of accuracy from the numerical 

solution [128, 129]. So, examination of the “real” order of accuracy for schemes used to find the 

numerical solution of PDEs has been a topic of discussion in the literature. In most cases, 

systematic grid refinement along with root mean square (RMS) error are applied to observe the 

real order of accuracy for the numerical simulation [58, 69, 130, 131].  

To develop a computational procedure for the real (formal or global) order of accuracy, it is 

assumed that the numerical solution and exact solution of the PDE(s) at arbitrary node P in the 

domain of interest are represented by ∅𝑛𝑢𝑚. and ∅𝑒𝑥𝑐., respectively. The difference between these 

two solutions gives the error  ℮ = ∅𝑒𝑥𝑐.−∅𝑛𝑢𝑚.. Referring to the concept of truncation error 

reveals that for finite differencing on a mesh of constant spacing 𝒽, the error term ℮ ∝ 𝒽𝑞, where 

 𝑞 means the order of the leading term of the truncation error. Then, the RMS error for a grid of 𝑀 

nodes is defined as [130, 132]: 

 
RMS = √

∑ ℮2𝑀
𝑖=1

𝑀
   (3.9.1) 

The proportional relation between the error ℮, the mesh size 𝒽 and the order of the leading term 

of the truncation error implies that equation (3.9.1) can be written as RMS ∝ 𝒽𝑞. The definition of 
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error ℮ and RMS error can be applied for two successively refined meshes, where the mesh size of 

the coarse and fine mesh and the factor of refinement are introduced by 𝒽𝑐, 𝒽𝑓 and 𝓇 = 𝒽𝑐/𝒽𝑓. 

One can write the ratio of RMS errors for coarse and fine mesh as 
RMS𝑐

RMS𝑓
= (

𝒽𝑐

𝒽𝑓
)𝑞. Then, taking the 

natural log on both sides, this equality gives the order of accuracy of the numerical solution for 

these two levels of grids [109, 116, 129, 130, 131, 133]. The slope of the line plotted from 

log(RMS) versus log(𝒽) for a series of successive refinements reveals the formal order of 

accuracy q that has been used in numerical analysis to observe the global order of accuracy for 

the chosen discretization method [130, 131, 132], i.e.,  

 

𝑞 =
log(

RMS𝑐
RMS𝑓

)

log(
𝒽𝑐
𝒽𝑓
)

   (3.9.2) 

3.5 Cut-Stencil FDM Solution to Sample Problems Using MMS 

The remaining sections of this chapter are devoted to the Cartesian cut-stencil FD solution of 

several sample problems using MMS. The rationale for selecting the specific sample problems is 

to evaluate various aspects of the cut-stencil FD method in the solution of PDEs, including the 

level of accuracy and potential for future applications. The list of all problems considered in this 

chapter is provided in Appendix I. 

3.5.1 Problem 1: Solution of Poisson Equation on a Square Domain with Dirichlet 

Boundary Conditions Using the 2
nd

-Order 5-point Cut-Stencil Formulation  

The purpose of this first problem is to validate the basic concept of the Cartesian cut-stencil 

method, without introducing the complexities associated with an irregular domain, Neumann 

boundary conditions, higher-order accuracy or convection effects. Problem 1 considers the 5-

point stencil solution of the manufactured Poisson equation, given in equation (3.10.1), on a 

square domain 0 ≤ 𝑥, 𝑦 ≤ 1.0. The exact solution of this problem is written in equation (3.10.2).  

   ∇2∅ = − [2 +
𝜋2

4
𝑥(1 − 𝑥)] 𝑐𝑜𝑠 (

𝜋

2
𝑦) (3.10.1) 

 ∅𝑒𝑥𝑐. = 𝑥(1 − 𝑥) 𝑐𝑜𝑠 (
𝜋

2
𝑦) (3.10.2) 

Several uniform grids with different number of nodes varying from 25 to 4225 have been used for 

comparison of the results from the 2
nd

-order 5-point stencil formulation, based on equation (2.9) 

and coefficients given in (2.10), with the exact solution. Dirichlet boundary conditions for this 

problem are taken from the exact solution. 

The average and maximum values of the relative errors, the maximum of the absolute values of 

LTE and the RMS error for each mesh studied are reported in Table 3.1. Equation (3.2.4) was 

used to calculate the LTE at every internal node for each grid size. The mapped form of equation 

(3.10.1) was discretized and solved iteratively at all internal nodes P and the solution was 

regarded as converged when the absolute difference between two successive iterations fell below 

10
-12

 at all internal nodes.  
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# of  

nodes 

Mesh size 

(𝒽) 
Rel. error (%) Max 

|LTE| 

RMS 

error Avg.  Max.  

25 0.250 0.17472 0.21425 5.525E-3 1.43E-4 

36 0.200 0.10927 0.13716 3.896E-3 9.54E-5 

81 0.125 0.04120 0.05432 1.817E-3 3.97E-5 

121 0.100 0.02605 0.03481 1.200E-3 2.60E-5 

289 0.0625 0.00999 0.01362 4.847E-4 1.05E-5 

441 0.050 0.00636 0.00872 3.126E-4 6.80E-6 

1089 0.03125 0.00246 0.00340 1.232E-4 2.70E-6 

1681 0.025 0.00156 0.00216 7.899E-5 1.73E-6 

4225 0.015625 0.00052 0.00071 3.092E-5 5.96E-7 

Table 3.1: Relative error, LTE and RMS results for Problem 1 

It is clear from the data in Table 3.1 that the average and maximum relative errors are reduced 

monotonically as the number of nodes is increased. The maximum values of |LTE| and RMS error 

follow the same trend. Figure 3.1 shows the plot of log(RMS) versus the log(𝒽) for all cases in 

Table 3.1. The slope of the line in this figure verifies that the 2
nd

-order 5-point formulation has 

close to real 2
nd

-order accuracy for the cut-stencil FD solution to PDE (3.10.1). 

 
Figure 3.1: Verification plot for global order of accuracy for Problem 1  

3.5.2 Problem 2: Solution of Poisson Equation on a Square Domain a with Neumann 

Boundary Condition Using the 2
nd

-Order 5-point Cut-Stencil Formulation  

This problem considers another Poisson equation on the same domain used in Problem 1, but with 

Neumann boundary conditions taken from the exact solution. The designed Poisson equation and 

corresponding exact solution for this problem are, respectively,  

  ∇2∅ =
𝜋2

4
(1 − 𝑥)𝑒

𝜋

2
𝑦 − 2𝜋𝑦 𝑐𝑜𝑠(𝜋𝑥𝑦) − 𝜋2[𝑥2 + 𝑦2] 𝑠𝑖𝑛(𝜋𝑥𝑦) (1 − 𝑥) (3.11.1) 

∅𝑒𝑥𝑐. = [𝑒
𝜋
2
𝑦 + 𝑠𝑖𝑛(𝜋𝑥𝑦) − 1] (1 − 𝑥) (3.11.2) 

The Neumann condition is applied on the west boundary of the domain, that is, the line 𝑥 = 0. 

Several uniform grids from 36 to 40401 nodes are used to consider average and maximum values 

of the relative errors for internal nodes as well as for the boundary nodes located on the west 

boundary. The results are given in Table 3.2. The RMS error and maximum |LTE| for each grid 
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are also available in the same table. The iterative procedure satisfied the convergence criterion 

when the absolute difference between the numerical values at each internal node from two 

successive iterations fell below 10
-12

.    

The study of relative errors for both internal and boundary nodes reveals the decreasing trend of 

all the error measures as the grid is refined.  

On the computational stencil, the normal derivative 
−1

𝑥W
′

𝜕∅

𝜕𝜉
 in the Neumann boundary condition on 

the west boundary is approximated by the one-sided 2
nd

-order accurate approximation given in 

equation (2.14.1). The unknown values at Neumann boundary nodes are calculated by equation 

(2.14.2).     

# of  

nodes 

Mesh size 

(𝒽) 

Rel. error at 

internal nodes (%) 

Rel. error at  

boundary nodes (%) 
Max 

|LTE|  

RMS  

error 
Avg.  Max.  Avg.  Max.  

36 0.200 1.10267 1.80647 1.70934 2.11168 1.792E-1 1.00E-2 

81 0.125 0.50360 0.99674 0.86532 1.11474 1.248E-1 5.00E-3 

121 0.100 0.33774 0.71200 0.59416 0.78114 9.319E-2 3.40E-3 

289 0.0625 0.14100 0.32606 0.25466 0.34638 4.472E-2 1.43E-3 

441 0.050 0.09216 0.21965 0.16756 0.23066 3.072E-2 9.37E-4 

1089 0.03125 0.03712 0.09246 0.06804 0.09537 1.380E-2 3.78E-4 

1681 0.025 0.02399 0.06062 0.04407 0.06215 9.499E-3 2.44E-4 

4225 0.015625 0.00947 0.02443 0.01747 0.02481 4.458E-3 9.65E-5 

6561 0.0125 0.00601 0.01561 0.01115 0.01580 3.169E-3 6.16E-5 

10201 0.010 0.00367 0.00956 0.00693 0.00966 2.281E-3 3.84E-5 

15876 0.008 0.00190 0.00492 0.00388 0.00496 1.662E-3 2.19E-5 

25921 0.00625 0.00154 0.00407 0.00285 0.00409 1.187E-3 1.57E-5 

40401 0.005 0.00071 0.00184 0.00148 0.00185 8.866E-4 8.36E-6 

Table 3.2: Relative error and LTE results for Problem 2 (west Neumann boundary condition) 

Figure 3.2 illustrates the real order of accuracy analysis for the PDE (3.11.1) with Neumann 

condition defined for the west boundary. The slope of the line in Figure 3.2 indicates almost 2
nd

-

order of accuracy for the global order of accuracy for this problem, confirming that the 

approximation scheme proposed for the Neumann boundary condition does not degrade the 

global order of accuracy.   

 
Figure 3.2: Verification plot for global order of accuracy for Problem 2 (west Neumann 

condition) 
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This problem is also studied when a Neumann condition is applied to the north boundary, which 

is the line 𝑦 = 1. Using the same uniform grids as used for the west Neumann condition, the 

accuracy of the cut-stencil FDM solution is assessed by comparison to the exact solution, as well 

as verification of the global order of accuracy for this boundary condition. The Neumann 

condition on the computational stencil contains the derivative 
1

𝑦N
′

𝜕∅

𝜕𝜂
 which is approximated by the 

one-sided 2
nd

-order accurate approximation (2.16.1). The unknown at boundary nodes in this 

condition are calculated by equation (2.16.2). Similar to Table 3.2, the average and maximum 

absolute error for internal and Neumann boundary nodes are given in Table 3.3, which also 

reports the maximum |LTE| error for the north Neumann condition of this problem.  

# of  

nodes 

Mesh size 

(𝒽) 

Rel. error at 

internal nodes (%) 

Rel. error at 

boundary nodes (%) 
Max 

|LTE| 

RMS 

error 
Avg.  Max.  Avg.  Max.  

36 0.200 1.79278 2.57979 2.30457 3.15756 1.644E-1 2.05E-2 

81 0.125 0.70872 1.12180 0.93710 1.37625 1.130E-1 8.28E-3 

121 0.100 0.45575 0.74638 0.60613 0.90162 8.239E-2 5.35E-3 

289 0.0625 0.17972 0.31185 0.24052 0.36065 3.921E-2 2.12E-3 

441 0.050 0.11549 0.20491 0.15482 0.23208 2.737E-2 1.36E-3 

1089 0.03125 0.04544 0.08386 0.06106 0.09129 1.211E-2 5.37E-4 

1681 0.025 0.02916 0.05467 0.03922 0.05855 8.102E-3 3.44E-4 

4225 0.015625 0.01144 0.02199 0.01541 0.02298 3.444E-3 1.35E-4 

6561 0.0125 0.00733 0.01422 0.00988 0.01474 2.298E-3 8.66E-5 

10201 0.010 0.00470 0.00918 0.00633 0.00945 1.540E-3 5.55E-5 

15876 0.008 0.00300 0.00591 0.00406 0.00605 1.037E-3 3.55E-5 

25921 0.00625 0.00184 0.00364 0.00248 0.00371 6.760E-4 2.17E-5 

40401 0.005 0.00089 0.00199 0.00141 0.00202 4.632E-4 1.19E-5 

Table 3.3: Relative error and LTE results for Problem 2 (north Neumann boundary condition) 

The trend of the variation of relative error and LTE in Table 3.3 shows monotonic reduction of 

these errors as the grid becomes finer. The slope of the line in Figure 3.3 indicates the 2
nd

-order 

accurate approximation for this condition, suggesting that the proposed differencing for a 

Neumann condition on the north boundary retains the global order of solution as 2
nd

-order 

accurate.  

 
Figure 3.3: Verification plot for global order of accuracy for Problem 2 (north Neumann 

condition) 
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3.5.3 Problem 3: Solution of Poisson Equation on a Square Domain with Combination of 

Neumann Conditions on More Than One Boundary Using 2
nd

-Order 5-point Cut-Stencil 

Formulation 

This problem examines the level of solution accuracy for a Poisson equation, solved by the cut-

stencil FDM when Neumann conditions are imposed on two boundaries of the domain. In this 

problem, similar to the previous problems, the 2
nd

-order 5-point cut-stencil formulation is used to 

solve the discrete form (2.9) and (2.10) of the mapped equations. The domain is a unit square. 

The manufactured Poisson equation and exact solution for Problem 3 are, respectively: 

   ∇2∅ = 2𝑒(𝑥+𝑦) + 𝑒𝑥[1 − 4𝜋2𝑦2] 𝑐𝑜𝑠(𝜋𝑦2) − 2𝜋𝑒𝑥 𝑠𝑖𝑛(𝜋𝑦2) (3.12.1) 

 ∅𝑒𝑥𝑐. = [𝑒
(𝑥+𝑦) + 𝑒𝑥 𝑐𝑜𝑠(𝜋𝑦2)] (3.12.2) 

At first, the Neumann condition is defined for both west and east boundaries. The mapped form 

of the Neumann condition at each node on the west and east boundaries involve the 

derivatives 
−1

𝑥W
′

𝜕∅

𝜕𝜉
 and 

1

𝑥E
′

𝜕∅

𝜕𝜉
 , respectively, which are approximated by (2.14.1) and an analogous 

expression for the east boundary. The average and maximum of relative error for internal and 

Neumann boundary nodes, maximum |LTE| and the value of RMS error for a group of uniform 

grids, varying from 36 to 25921 nodes, are shown in Table 3.4. 

# of  

nodes 

Mesh size 

(𝒽) 

Rel. error at 

internal nodes (%) 

Rel. error at 

boundary nodes (%) 
Max 

|LTE| 

RMS 

error 
Avg.  Max.  Avg.  Max.  

36 0.200 4.37072 6.61387 4.46633 7.50956 3.700 1.38E-1 

81 0.125 1.52419 2.64016 1.55552 2.86833 2.142 5.32E-2 

121 0.100 0.94236 1.73628 0.96170 1.85995 1.458 3.41E-2 

289 0.0625 0.35109 0.68212 0.35836 0.71372 6.098E-1 1.34E-2 

441 0.050 0.22146 0.43812 0.22607 0.45460 3.983E-1 8.61E-3 

1089 0.03125 0.08475 0.17281 0.08653 0.17698 1.610E-1 3.39E-3 

1681 0.025 0.05389 0.11090 0.05502 0.11306 1.042E-1 2.17E-3 

4225 0.015625 0.02085 0.04363 0.02129 0.04417 5.241E-2 8.52E-4 

6561 0.0125 0.01330 0.02799 0.01359 0.02827 3.692E-2 5.46E-4 

10201 0.010 0.00867 0.01794 0.00867 0.01809 2.540E-2 3.50E-4 

15876 0.008 0.00542 0.01150 0.00554 0.01157 1.717E-2 2.24E-4 

25921 0.00625 0.00331 0.00703 0.00338 0.00707 1.098E-2 1.37E-4 

Table 3.4: Relative error and LTE results for Problem 3 (west & east Neumann boundary 

conditions) 

The results summarized in Table 3.4 show a good level of accuracy since simulations with two 

Neumann conditions mean the presence of unknown values on the two boundaries, giving a 

maximum error of almost 6.6% on the coarsest (36 nodes) grid size. The reduction in average and 

maximum error and LTE at internal nodes and Neumann boundary nodes can be observed as the 

mesh becomes finer. This study also can show the accuracy of the proposed FD formulation for a 

Neumann condition imposed on the east boundary. Figure 3.4 plots the variation of RMS error 

versus cell size for PDE (3.12.1) with Neumann condition on the west and east. The slope of the 
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line in this figure verifies the 2
nd

-order accurate approximation of the proposed 5-point 2
nd

-order 

accurate cut-stencil FDM for this boundary value problem. 

 
Figure 3.4: Verification plot for global order of accuracy for Problem 3 (west and east Neumann 

condition) 

Another combination of Neumann conditions, including imposed Neumann conditions on the 

west and south boundaries, for the Poisson equation (3.12.1) is further investigated. Similar to 

other studies, the average and maximum of the relative error at both internal and boundary nodes 

and LTE at internal nodes are given in Table 3.5 for this case. The maximum relative errors on 

the coarsest grid (36 nodes) are slightly higher compared to other cases but this appears to be due 

to the quality of mesh since these maxima on the second grid studied (81 nodes) are much closer 

to the values given in Table 3.4 for the same mesh.  

# of  

nodes 

Mesh size 

(𝒽) 

Rel. error at 

internal nodes (%) 

Rel. error at 

boundary nodes (%) 
Max 

|LTE| 

RMS 

error 
Avg.  Max.  Avg.  Max.  

36 0.200 5.66892 9.09079 9.00580 11.53584 3.617 1.71E-1 

81 0.125 1.75116 3.18228 2.58816 3.53430 2.088 5.43E-2 

121 0.100 1.02614 1.96135 1.46737 2.12589 1.433 3.24E-2 

289 0.0625 0.34718 0.73587 0.46577 0.77334 6.030E-1 1.13E-2 

441 0.050 0.21103 0.46393 0.27570 0.48280 3.951E-1 7.00E-3 

1089 0.03125 0.07599 0.17732 0.09474 0.18178 1.606E-1 2.59E-3 

1681 0.025 0.04727 0.11279 0.05789 0.11506 1.040E-1 1.63E-3 

4225 0.015625 0.01763 0.04351 0.02095 0.04406 5.165E-2 6.21E-4 

6561 0.0125 0.01105 0.02763 0.01293 0.02791 3.640E-2 3.92E-4 

10201 0.010 0.00682 0.01735 0.00777 0.01749 2.504E-2 2.44E-4 

15876 0.008 0.00434 0.01111 0.00492 0.01118 1.694E-2 1.56E-4 

Table 3.5: Relative error and LTE results for Problem 3 (west & south Neumann boundary 

conditions) 

The solution of Problem 3, when Neumann conditions are imposed on both the west and south 

boundaries, is verified to be a 2
nd

-order accurate approximation as depicted by the slope of the 

line in Figure 3.5. 
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Figure 3.5: Verification plot for global order of accuracy for Problem 3 (west and south Neumann 

condition) 

The variation of the maximum relative error for internal and boundary nodes for both 

combinations of Neumann boundaries studied in this problem (west-east & west-south) for 

different cell sizes (𝒽) is plotted in Figure 3.6. This plot shows that the level of error for each cell 

size and for each combination of Neumann condition is almost the same and the only difference 

between these two combinations occurs for the coarsest grids.  

 
Figure 3.6: Variation of maximum relative error of internal and boundary nodes for different cell 

sizes (combination of Neumann boundary conditions)  

The first three problems have considered the cut-stencil FD solution of the steady diffusion 

equation using 5-point 2
nd

-order accurate approximation to write the difference expression for the 

discretized form of the PDE. Neumann boundary conditions were imposed on different 

boundaries and the proposed cut-stencil FD formulation for each case was tested. The trends of 

relative error and LTE confirm mesh convergence to the correct solution. 

3.5.4 Problem 4: Solution of Convection-Diffusion Equation on Rectangular Domain 

Using 2
nd

-Order 5-point Cut-Stencil Formulation 

The Cartesian cut-stencil FD solution of a manufactured convection-diffusion equation which was 

formulated on the computational stencil in equation (2.9), is discussed in this problem. The 

convection coefficients 𝑃 and 𝑄 are assumed as independent of the variables 𝑥 and 𝑦. The 
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manufactured PDE and the exact solution are stated in equations (3.13.1) and (3.13.2). The 

rectangular domain 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 1 along with a set of uniform grids are defined to 

compute the cut-stencil FD solution to the PDE (3.13.1). The cell dimensions in this problem 

have different value in each direction, with constant aspect ratio 2:1. In the event of different grid 

spacing in each direction, e.g. 𝒽𝑥 and 𝒽𝑦 , the cell size used to verify the real order of accuracy 

can be defined in terms of the sides of the rectangular cell and given by 𝒽1 = √𝒽𝑥𝒽𝑦 , or 

expressed as the diagonal of the rectangular cell which is given by 𝒽2 = √𝒽𝑥
2+𝒽𝑦

2   [133].  

  ν∇2∅ +  𝑃
𝜕∅

𝜕𝑥
+ 𝑄

𝜕∅

𝜕𝑦
= 𝜈𝑒𝑦 + 𝑃 [

𝜋

5
(𝑒

𝜋

5
𝑥𝑐𝑜𝑠 (

𝜋

5
𝑦) − 𝑒

𝜋

5
𝑦𝑠𝑖𝑛(

𝜋

5
𝑥))] +

𝑄 [𝑒𝑦 +
𝜋

5
(𝑒

𝜋

5
𝑦𝑐𝑜𝑠 (

𝜋

5
𝑥) − 𝑒

𝜋

5
𝑥𝑠𝑖𝑛(

𝜋

5
𝑦))] 

(3.13.1) 

∅𝑒𝑥𝑐. = 𝑒
𝜋
5
𝑥 𝑐𝑜𝑠 (

𝜋

5
𝑦) + 𝑒

𝜋
5
𝑦 𝑐𝑜𝑠 (

𝜋

5
𝑥) + 𝑒𝑦  (3.13.2) 

Table 3.6 gives the average and maximum of relative error and maximum |LTE| for the cut-stencil 

FD solution of equation (3.13.1) when 𝜈 = 1 and 𝑃 = 𝑄 = 0.02. These values were chosen to 

ensure the problem does not show convection-dominated behaviour and a diagonally dominant 

condition occurs [134]. In this case, divergence of the solution can be avoided when the central 

differencing scheme is applied for approximation of the convection terms to solve the PDE. The 

data in Table 3.6 are obtained from central difference approximation for both the diffusion and 

convection terms in equation (3.13.1), indicating that 𝛼 = 𝛽 = 0 in equation (2.8) and therefore 

in the coefficients defined in equations (2.10). All boundary conditions for data reported in Table 

3.6 are considered as Dirichlet, taken from the exact solution.  

# of  

nodes 

Mesh size Rel. error (%) Max 

|LTE| 

RMS 

error 𝒽𝑥 𝒽𝑦 Avg.  Max.  

36 0.40 0.20 0.02355 0.03281 1.436E-2 7.36E-4 

121 0.20 0.10 0.00515 0.00858 4.146E-3 2.07E-4 

441 0.10 0.05 0.00119 0.00216 1.106E-3 5.46E-5 

1681 0.05 0.025 0.00028 0.00054 2.856E-4 1.40E-5 

6561 0.025 0.0125 0.00007 0.00013 7.265E-5 3.32E-6 

Table 3.6: Relative error and LTE results for Problem 4 with Dirichlet boundary conditions 

( ν = 1, 𝑃 = 𝑄 = 0.02,  α = β = 0 ) 

Equation (3.2.5.1) was used to calculate the LTE at internal nodes for the cases reported in Table 

3.6. The real order of accuracy for this problem from the grids and RMS errors in Table 3.6 was 

investigated using both the sides and diagonal of rectangular cell definitions for the cell size. As 

seen in Figure 3.7, both cell size definitions give the same order of accuracy, verifying the 2
nd

-

order accuracy for the proposed cut-stencil FD central differencing for diffusion and convection 

terms. 
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Figure 3.7: Verification plot for global order of accuracy for Problem 4, Dirichlet boundaries 

(ν = 1, 𝑃 = 𝑄 = 0.02, α = β = 0) 

The PDE (3.13.1) was also solved with Neumann boundary conditions, taken from the exact 

solution, imposed on both the east and north boundaries. The diffusion and convection 

coefficients are the same as used for the Dirichlet boundary condition problem and central 

differencing was also applied for approximation of the convective terms. The same mesh sizes as 

indicated in Table 3.6 were used for this case. The average and maximum of relative errors for 

both internal nodes and Neumann boundary nodes and the maximum |LTE| for internal nodes, are 

recorded in Table 3.7.  

# of  

nodes 

Mesh size 
Rel. error at 

internal nodes (%) 

Rel. error at 

boundary nodes (%) 
Max 

|LTE| 

RMS 

error 
𝒽𝑥 𝒽𝑦 Avg.  Max.  Avg.  Max.  

36 0.4 0.2 0.54221 1.06456 0.93555 1.32602 1.501E-2 3.28E-2 

121 0.2 0.1 0.13684 0.32096 0.23740 0.35740 4.294E-3 8.67E-3 

441 0.1 0.05 0.03456 0.08816 0.06010 0.09302 1.392E-3 2.22E-3 

1681 0.05 0.025 0.00870 0.02311 0.01515 0.02374 5.836E-4 5.59E-4 

6561 0.025 0.0125 0.00218 0.00592 0.00381 0.00600 2.620E-4 1.40E-4 

Table 3.7: Relative error and LTE results for Problem 4 with east and north Neumann boundary 

conditions (ν = 1,  𝑃 = 𝑄 = 0.02, α = β = 0) 

The real order of the solution for this case was considered using both definitions of the cell 

size 𝒽, as shown by the slopes of the lines in Figure 3.8. This proves that the 2
nd

-order accurate 

approximation for the Neumann boundary nodes can preserve the real 2
nd

-order accuracy of the 

solution for the convection-diffusion equation. 
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Figure 3.8: Verification plot for global order of accuracy for Problem 4, Neumann boundary 

conditions on east and north (ν = 1,  𝑃 = 𝑄 = 0.02,  α = β = 0) 

The solution of PDE (3.13.1) using an upwind differencing scheme for the convection terms is 

now studied. The diffusion coefficient and convective velocities are set the same as those used for 

data in Table 3.6. To select upwind differencing for the convection terms the parameters 𝛼 and 𝛽 

are both set equal to -1. In this event, the convection terms are approximated by 1
st
-order of 

accuracy while 2
nd

-order accurate approximations are used for the diffusion terms. Maximum and 

average relative error and maximum LTE are shown in Table 3.8, when the boundaries of the 

domain have Dirichlet conditions taken from the exact solution.  

# of  

nodes 

Mesh size Rel. error (%) Max 

|LTE| 

RMS 

error 𝒽𝑥 𝒽𝑦 Avg.  Max.  

36 0.40 0.20 0.03027 0.04182 1.791E-2 9.48E-4 

121 0.20 0.10 0.00810 0.01347 6.702E-3 3.26E-4 

441 0.10 0.05 0.00255 0.00463 2.622E-3 1.18E-4 

1681 0.05 0.025 0.00093 0.00178 1.108E-3 4.64E-5 

6561 0.025 0.0125 0.00038 0.00075 5.011E-4 1.97E-5 

Table 3.8: Relative error and LTE results for Problem 4 with Dirichlet boundary conditions 

(ν = 1,  𝑃 = 𝑄 = 0.02, α = β = −1) 

Comparison of the data in Tables 3.6 and 3.8 shows the reduction of accuracy when an upwind 

scheme is applied for differencing of convective terms, but the average values of the maximum 

relative error are still at an acceptable level of accuracy even for the coarsest mesh. The LTE, as 

given in Table 3.8, is calculated from equation (3.2.5.2). It can also be seen that, for each case, 

the maximum LTE is higher in Table 3.8 compared to the similar case of Table 3.6.  

The real order of the method, based on the data in Table 3.8, can be observed in the plot of Figure 

3.9. The slope of lines in this figure shows the reduction of order of accuracy, to 1.4
th
-order 

compared to almost 2
nd

-order (1.95
th
-order) of accuracy in Figure 3.7.  
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Figure 3.9: Verification plot for global order of accuracy for Problem 4, Dirichlet boundaries 

(ν = 1,  𝑃 = 𝑄 = 0.02, α = β = −1) 

The upwind discretization of the convection terms is applied for the cut-stencil FD solution of 

Problem 4 with a stronger convection-dominated condition. Thus, for this purpose, the diffusion 

coefficient is changed to  𝜈 = 0.08 and the convective velocities are set to 𝑃 = 𝑄 = 1.0. This 

case is solved with both central and upwind differencing of the convection terms, corresponding 

to 𝛼 = 𝛽 = 0 and 𝛼 = 𝛽 = −1, respectively, Results are listed in Table 3.9. 

# of 

nodes 

Mesh size Rel. error (%) 
Max 

|LTE| 
RMS error 

𝒽𝑥 𝒽𝑦 
Central* Upwind** 

Central Upwind Central Upwind 
Avg. Max. Avg. Max. 

36 0.4 0.2 0.36293 0.89480 1.66534 2.54793 8.187E-2 2.078E-1 1.15E-2 5.11E-2 

121 0.2 0.1 0.07366 0.15903 0.82823 1.54014 2.988E-2 1.308E-1 2.89E-3 3.20E-2 

441 0.1 0.05 0.01558 0.03499 0.41161 0.84448 3.032E-3 7.432E-2 7.03E-4 1.80E-2 

1681 0.05 0.025 0.00781 0.09251 0.20400 0.43797 1.454E-3 4.015E-2 5.58E-4 9.51E-3 

6561 0.025 0.0125 0.03926 0.44697 0.08558 0.19686 2.439E-3 2.102E-2 3.16E-3 4.29E-3 

*: 𝛼 = 𝛽 = 0, **: 𝛼 = 𝛽 = −1 

Table 3.9: Relative error and LTE results for Problem 4 with Dirichlet boundary conditions 

(ν = 0.08,  𝑃 = 𝑄 = 1, α = β = 0,−1) 

The upwind scheme in Table 3.9 shows higher values of maximum relative error compared to the 

central difference formulation for the first grid studied, but the grid of 6561 nodes produces a 

relatively higher value of maximum error when central differencing is applied. Additionally, 

examination of the results for the central scheme reveals oscillation in the solution, as has also 

been mentioned in the literature, e.g. [134]. It is clear from the solution with the central difference 

scheme, from the grid of 1681 nodes, that the maximum relative error increases as the mesh 

become finer. This kind of behaviour also occurs in the trend of the maximum LTE for the central 

difference scheme. 

The real order of accuracy of this problem, from the upwind data in Table 3.9, can be observed in 

Figure 3.10. The more convection-dominated behaviour of the problem and the use of a 1
st
-order 

accurate approximation for the convection terms provide a solution with less than 1
st
-order 
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accuracy, as shown by the slopes of the lines. This condition of accuracy less than unity has been 

addressed in other numerical studies for convection-dominated problems, e.g. [134, 135].  

 
Figure 3.10: Verification plot for global order of accuracy for Problem 4, Dirichlet boundaries 

(ν = 0.08,  𝑃 = 𝑄 = 1, α = β = −1) 

3.5.5 Problem 5: 2
nd

-Order 5-point Cut-Stencil FD Solution of Laplace Equation on an 

Arbitrary, Irregular Shaped Domain 

The previous problems were set up to validate some important aspects of the cut-stencil FD 

formulation. Due to the regular shape of the previous domains, i.e., rectangles or squares, and the 

use of Cartesian grids, the conditions for constructing cut stencils did not occur. The strength of 

the Cartesian cut-stencil method lies in its ability to handle arbitrarily irregular shaped domains, 

as will be discussed in this problem. 

The domain for this problem, depicted in Figure 3.11, is a cut-away section of the square 0 ≤

𝑥, 𝑦 ≤ 2. The 2
nd

-order 5-point cut-stencil FDM solution to the following manufactured problem 

for the Laplace equation is studied. The PDE and corresponding exact solution, which is used to 

set the boundary conditions, are respectively:  

   ∇2∅ = 0 (3.14.1) 

 ∅𝑒𝑥𝑐. = 𝑒
𝜋
5
𝑥 𝑐𝑜𝑠 (

𝜋

5
𝑦) + 𝑒

𝜋
5
𝑦 𝑐𝑜𝑠 (

𝜋

5
𝑥)  (3.14.2) 

Several uniform grids with number of nodes as shown in Table 3.10 were designed to test the 

accuracy of the solution, compared to the exact solution, in the irregular domain which includes 

several cut stencils. The number of active nodes listed in Table 3.10 is the sum of all internal 

nodes, corner nodes and boundary nodes of each grid. As illustrated in Figure 2.1, when a 

Cartesian grid is overlayed on an irregular shaped domain, a number of nodes will be located 

outside the domain. Thus, if the solution of the PDE(s) is intended for internal nodes and 

correspondingly for the boundary nodes, the nodes located outside the domain do not take part in 

the solution process. As an example, for the first case in Table 3.10, a Cartesian grid system with 

nine nodes in both the 𝑥 and 𝑦 direction was designed, creating a total of 81 nodes, of which only 

71 are active nodes. 
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Figure 3.11: Irregular shaped domain used for Problem 5  

The FD equation (2.9) with coefficients (2.10), with P = Q = 0 and sp = 0, was solved with 

Dirichlet boundary conditions specified from the exact solution. The values of average and 

maximum relative error, and the RMS error, are reported in Table 3.10. The results in Table 3.10 

also show the facility of calculating the relatively complicated high-order derivative expressions 

for the LTE on irregular domains. As seen in Table 3.10, all measures of the error show a 

reduction as the grid become finer. These results demonstrate the capability of the Cartesian cut-

stencil FD method to deal with the solution of PDEs on irregular domains with cut stencils. 

# of  

active 

nodes 

Mesh size 

𝒽 

Rel. error (%) 
Max 

|LTE| 

RMS 

error Avg.  Max.  

71 0.250 0.01419 0.02465 1.698E-2 3.20E-4 

245  0.125 0.00314 0.00629 1.701E-3 8.89E-5 

905 0.0625 0.00073 0.00159 5.475E-4 2.34E-5 

3473 0.03125 0.00018 0.00040 2.174E-4 5.99E-6 

8531 0.020 0.00007 0.00016 1.342E-4 2.48E-6 

Table 3.10: Relative error, RMS error and maximum LTE for Problem 5 (Laplace equation, 

Dirichlet boundary conditions) 

Equation (3.14.1) was also solved on the same domain shown in Figure 3.11 when Neumann 

conditions, taken from the exact solution, were imposed on both the west and east boundaries, 

correspond to the lines 𝑥 = 0 and 𝑥 = 2, respectively. Results for this simulation are shown in 

Table 3.11. 

# of  

active 

nodes 

Mesh size 

(𝒽) 

Rel. error at 

internal nodes (%) 

Rel. error at 

boundary nodes (%) 
Max 

|LTE| 
RMS error 

Avg.  Max.  Avg.  Max.  

71 0.25 0.06650 0.25652 0.20899 0.39927 1.287E-2 4.23E-3 

245  0.125 0.01829 0.08643 0.04877 0.10567 5.717E-3 1.05E-3 

905 0.0625 0.00474 0.02464 0.01179 0.02720 3.069E-3 2.62E-4 

3473 0.03125 0.00120 0.00656 0.00290 0.00689 1.794E-3 6.55E-5 

8531 0.020 0.00050 0.00275 0.00118 0.00283 1.299E-3 2.68E-5 

Table 3.11: Relative error, RMS error and maximum LTE for Problem 5 (Laplace equation, 

Neumann boundary conditions) 
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The slopes of the lines in Figure 3.12 indicate the real order of accuracy for the solution of 

equation (3.14.1) for the cases in Tables 3.10 and 3.11. Solution to this sample problem confirms 

2
nd

-order accuracy of the 5-point cut-stencil formulation for problems with cut stencils on 

irregular domains. 

 
Figure 3.12: Verification of global order of accuracy for Problem 5 (Laplace equation)  

3.5.6 Problem 6: 2
nd

-Order 5-point Cut-Stencil FD Solution of Convection-Diffusion 

Equation on an Arbitrary, Irregular Shaped Domain 

The next manufactured problem studies the solution of the convection-diffusion equation, as 

written in equation (3.15.1), on the irregular shaped domain illustrated in Figure 3.13. The 

variables 𝑥 and 𝑦 both lie in the range of 0 to 1 and the domain is constructed by cutting the 

corners with straight lines and circles. A non-uniform Cartesian mesh comprised of 242 active 

nodes was designed for this case study. The exact solution for the PDE (3.15.1) is given in 

equation (3.15.2).  

 
  ν∇2∅ + 𝑃

𝜕∅

𝜕𝑥
+ 𝑄

𝜕∅

𝜕𝑦
= 𝜈 [

2𝑒(𝑥+𝑦)

(𝑒𝑥+𝑒𝑦)2
− 𝜋2(𝑠𝑖𝑛 (𝜋𝑥) + 𝑠𝑖𝑛 (𝜋𝑦))] +

𝑃 [
𝑒𝑥

𝑒𝑥+𝑒𝑦
+ 𝜋 𝑐𝑜𝑠 (𝜋𝑥)] + 𝑄 [

𝑒𝑦

𝑒𝑥+𝑒𝑦
+ 𝜋 𝑐𝑜𝑠 (𝜋𝑦)] 

(3.15.1) 

 ∅𝑒𝑥𝑐. =  𝑙𝑛(𝑒
𝑥 + 𝑒𝑦) + 𝑠𝑖𝑛(𝜋𝑥) + 𝑠𝑖𝑛(𝜋𝑦)  (3.15.2) 

Several cut-stencils and regular and irregular boundary nodes are located along the angular cuts 

(denoted by L1 and L2) and circular cuts (denoted by C1 and C2) which are shown in Figure 

3.13. The equations of the angular cuts and the centres (c) and radii (R) of the circular cuts have 

been presented in the figure.  

Equation (3.15.1) was solved with different values of convection and diffusion coefficients, as 

well as parameters 𝛼 and 𝛽. Recall that values of 0, 1, -1 for 𝛼 and 𝛽 refer to central or one-sided 

differencing of the convective derivatives. The boundary conditions were set as Dirichlet or 

Neumann, specified from the exact solution. The average and maximum relative errors are 

reported in Table 3.12. The west and east boundaries correspond to the lines 𝑥 = 0 and 𝑥 = 1, 

respectively, and similarly the lines 𝑦 = 0 and 𝑦 = 1 are the south and north boundaries in the 

irregular shaped domain. 
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Figure 3.13: Irregular shaped domain with non-uniform grid and cut-stencils for Problem 5 

(convection-diffusion equation)  

Boundary  

conditions 
Equation and parameter settings 

Rel. error at 

internal nodes (%) 

Rel. error at 

boundary nodes (%) 

Avg.  Max.  Avg.  Max.  

Dirichlet 

(all) 

Diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0 
0.31084 0.52722 - - 

Convection-diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0.5, 𝛼 = 𝛽 = 0 
0.14130 0.25729 - - 

Convection-diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0.5, 𝛼 = 𝛽 = 1 
0.44059 0.78755 - - 

Convection-diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0.1, 𝛼 = 𝛽 = −1 
0.15329 0.31141 - - 

Convection-diffusion 

𝜈 = 0.56, 𝑃 = 𝑄 = 0.85, 𝛼 = 𝛽 = 0 
0.21070 0.56273 - - 

Convection-diffusion 

𝜈 = 0.56, 𝑃 = 𝑄 = 0.85, 𝛼 = 𝛽 = 1 
0.74734 1.49210 - - 

Convection-diffusion 

𝜈 = 0.56, 𝑃 = 𝑄 = 0.85, 𝛼 = 𝛽 = −1 
1.03642 1.86091 - - 

Neumann 

(west & east) 

Diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0 
0.47863 0.85479 0.81303 1.02782 

Convection-diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0.5, 𝛼 = 𝛽 = 0 
0.25921 0.80933 0.57358 1.00876 

Convection-diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0.5, 𝛼 = 𝛽 = 1 
0.62952 1.05336 0.90517 1.19316 

Convection-diffusion 

𝜈 = 0.56, 𝑃 = 𝑄 = 0.85, 𝛼 = 𝛽 = −1 
1.17832 2.55259 1.58426 2.81464 

Neumann 

(south & 

north) 

Diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0 
0.50949 0.87893 0.77585 1.08362 

Convection-diffusion 

𝜈 = 1, 𝑃 = 𝑄 = 0.5, 𝛼 = 𝛽 = 1 
0.68114 1.26248 0.90804 1.49146 

Convection-diffusion 

𝜈 = 0.56, 𝑃 = 𝑄 = 0.85, 𝛼 = 𝛽 = −1 
1.35184 2.63517 1.26932 2.80636 

Table 3.12: Relative error results for Problem 6 (convection-diffusion equation) 
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The results shown in Table 3.12 reveal the capability of the 2
nd

-order 5-point Cartesian cut-stencil 

FD formulation (2.8) for the convection-diffusion equation to solve the PDE in an irregular 

shaped domain with cut-stencils created by cutting the domain with angular or circular cuts. The 

proposed one-sided 2
nd

-order accurate approximations for derivatives at the Neumann boundary 

nodes, e.g. equations (2.19) and (2.20) for regular boundary nodes and (2.22) for irregular 

boundary nodes, have been implemented in these calculations. The results for the convection-

diffusion cases show smaller values for the average and maximum relative error when using 

𝛼 = 𝛽 = 0 which is associated with 2
nd

-order central differencing of the convective terms, 

compared to the one-sided 1
st
-order accurate approximation of these terms. 

3.5.7 Problem 7: Comparison of 5-point 2
nd

-Order and 5+4-point Stencil Formulations of 

Cut-Stencil FDM to Solution of Poisson Equation in a Rectangular Domain 

Problems 1 to 6 considered the solutions of several PDEs using the 2
nd

-order 5-point stencil 

formulation of the cut-stencil FDM and through each of these problems one or more aspects of 

the formulation were investigated. The schematic of the 5+4-point stencil of the cut-stencil FDM 

is illustrated in Figure 2.19, and the discrete form of the diffusion equation on the computational 

stencil is given by equation (2.26). The purpose of this problem is to test the capability of the 

5+4-point formulation to solve PDEs and compare the results to the 2
nd

-order 5-point cut-stencil 

solution using the same size of mesh. To achieve this purpose a manufactured diffusion equation, 

as written in equation (3.16.1), is solved using both the 2
nd

-order 5-point cut-stencil and the 5+4-

point cut-stencil formulations. The exact solution of equation (3.16.1) is given by equation 

(3.16.2). The domain is a rectangle with 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 0.5. 

∇2∅ = 𝑒𝑥+𝑦[ ( (1 − 𝜋2)𝑠𝑖𝑛(𝜋𝑥) + 2𝜋 𝑐𝑜𝑠(𝜋𝑥) ) 𝑠𝑖𝑛(𝜋𝑦)

+ ( (1 − 𝜋2)𝑠𝑖𝑛(𝜋𝑦) + 2𝜋 𝑐𝑜𝑠(𝜋𝑦) ) 𝑠𝑖𝑛(𝜋𝑥) ] 
(3.16.1) 

∅𝑒𝑥𝑐. = 𝑠𝑖𝑛(𝜋𝑥) 𝑠𝑖𝑛(𝜋𝑦) 𝑒
𝑥+𝑦 (3.16.2) 

The average and maximum relative error, the RMS error and maximum |LTE| of the cut-stencil 

FDM, using 2
nd

-order 5-point stencil and 5+4-point stencil formulations, are compared in Table 

3.13, for several uniform grids. The local truncation error is calculated by equations (3.2.4) and 

(3.4.2) for the 2
nd

-order 5-point stencil and the 5+4-point stencil schemes, respectively. The 

boundary conditions, for data reported in Table 3.13, are considered as Dirichlet conditions taken 

from the exact solution.  

As seen from the trend of data, for both methods the average and maximum relative errors, the 

RMS error and the absolute LTE are reduced as the number of nodes is increased. Additionally, 

for all of these error measures, the 5+4-point stencil formulation, for each grid studied, produces a 

relatively smaller error compared to the 2
nd

-order 5-point stencil method. One should note, in 

particular, that the maximum |LTE| when the 5+4-point stencil method is applied is about two 

orders of magnitude smaller than the |LTE| from the 2
nd

-order 5-point stencil method. 

Figure 3.14 demonstrates the ratio of maximum relative error of the 2
nd

-order 5-point stencil to 

the 5+4-point stencil versus the cell size 𝒽. This ratio varies between 2.20 and 2.30 for all grid 

sizes and expresses the fact that the maximum error of the 5+4-point stencil solution is smaller 

than half of the maximum error of the 2
nd

-order 5-point stencil solution for each grid size. 
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# of  

nodes 

Mesh size 

𝒽 
Method 

Rel. error (%) Max 

|LTE| 

RMS 

error Avg.  Max.  

45 0.125 
2

nd
-order 5-point stencil 0.23863 0.79483 3.834E-1 1.35E-3 

5+4-point stencil 0.10603 0.34644 4.317E-3 6.07E-4 

153 0.0625 
2

nd
-order 5-point stencil 0.06677 0.28577 1.378E-1 3.81E-4 

5+4-point stencil 0.03004 0.12730 1.256E-3 1.73E-4 

561 0.03125 
2

nd
-order 5-point stencil 0.01753 0.08428 3.824E-2 1.00E-4 

5+4-point stencil 0.00794 0.03794 3.271E-4 4.56E-5 

2145 0.015625 
2

nd
-order 5-point stencil 0.00448 0.02282 1.010E-2 2.57E-5 

5+4-point stencil 0.00204 0.01034 8.375E-5 1.17E-5 

Table 3.13: Comparison of results for 2
nd

-order 5-point stencil and 5+4-point cut-stencil 

formulations for Problem 6 (Dirichlet boundary condition) 

 

 
Figure 3.14: Ratio of maximum absolute error of 2

nd
-order 5-point stencil to 5+4-point stencil 

methods vs. 𝒽 for Problem 7 (Dirichlet boundary conditions) 

The solution of (3.16.1), using both the 5-point and 5+4-point methods, is further studied when 

the boundary conditions on the west and east boundaries are replaced by Neumann conditions 

taken from the exact solution. The error measures presented in previous tables for Neumann 

conditions, such as Tables 3.2-3.5, are addressed in Table 3.14. The exact solution at all boundary 

nodes is zero so the absolute error, which is defined as the absolute difference between the 

numerical and exact solutions, is reported in this table. The reducing trend of the absolute and 

relative errors the RMS error and LTE, as the meshes become finer, can be seen from the data.  

# of  

nodes 

Mesh size 

(𝒽) 
Method 

Rel. error at 

internal nodes (%) 

Abs. error at 

boundary nodes  
Max 

|LTE| 

RMS  

error 
Avg.  Max.  Avg.  Max.  

45 0.125 
M5-point* 0.98880 3.40496 0.02815 0.04121 4.174E-1 1.25E-2 

M5+4-point** 0.45226 1.73230 0.01954 0.02821 5.285E-3 8.02E-3 

153 0.0625 
M5-point 0.38289 2.47035 0.00684 0.01296 1.587E-1 3.28E-3 

M5+4-point 0.12107 0.68935 0.00344 0.00654 2.028E-3 1.39E-3 

561 0.03125 
M5-point 0.13648 1.57240 0.00168 0.00360 4.960E-2 8.41E-4 

M5+4-point 0.02641 0.24786 0.00054 0.00117 7.955E-4 2.11E-4 

2145 0.015625 
M5-point 0.04532 0.88386 0.00042 0.00095 1.581E-2 2.14E-4 

M5+4-point 0.00517 0.07236 0.00008 0.00018 3.471E-4 3.12E-5 

*: M5-point stencil : 2
nd

-order 5-point stencil, **:M5+4-point stencil : 5+4-point stencil 

Table 3.14: Comparison of results for 2
nd

-order 5-point cut-stencil and 5+4-point cut-stencil 

formulations for Problem 7 (west and east Neumann boundary conditions) 
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The real order of the method for the solution of equation (3.16.1) using the 2
nd

-order 5-point 

stencil and 5+4-point stencil formulations of the cut-stencil FDM have been verified in the plot of 

Figure 3.15. The slopes of the lines indicate almost 2
nd

-order and 2.7
th
-order accuracy for the 2

nd
-

order 5-point stencil and 5+4-point stencil formulations, respectively. Although 4
th
-order accurate 

finite difference formulas have been applied for approximation of first and second derivatives at 

node P on the computational stencil in the 5+4-point stencil formulation, the 2
nd

-order accurate 

approximation of the first and second derivatives at the four auxiliary nodes l, r, a and b, which 

were discussed in Chapter 2, reduces the global order of accuracy of the solution to 2.7.  

 
Figure 3.15: Verification plot for global order of accuracy for Problem 7 (west and east Neumann 

boundary condition)  

The absolute error along the vertical and horizontal centrelines of the domain for Neumann 

boundary conditions on west and east is plotted for grids of 153 and 2145 nodes in Figures 3.16. 

The difference in level for the absolute error along these centrelines, indicating the accuracy of 

the solutions from the two methods, is significant. This matter is especially apparent along the 

horizontal centreline where the solutions at the end nodes, corresponding to the west and east 

boundaries, should be zero. Clearly, the 5+4-point method gives a more accurate prediction at 

these Neumann boundaries, and shows much greater accuracy than the 5-point method, 

particularly as the mesh is refined. This is due to the fact that the 5+4-point method uses 4
th
-order 

accurate expressions for the derivatives, even for those near the boundaries. 

y = 1.96x - 0.13 

y = 2.67x + 0.34 

-4.70

-4.20

-3.70

-3.20

-2.70

-2.20

-1.70

-1.90-1.70-1.50-1.30-1.10-0.90

log(RMS) 

log(𝒽) 

2nd-order 5-point stencil method -

Neumann condition, west & east

boundaries -
5+4-point stencil method - Neumann

condition, west & east boundaries -
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Figure 3.16: Comparison of absolute errors along centrelines of domain of Problem 7 (Neumann 

conditions on west and east boundaries), (a,b) 153 nodes, (c,d) 2145 nodes  

3.5.8 Problem 8: HO Cut-Stencil FDM1 Solution of PDEs in Rectangular and Irregular 

Shaped Domains 

The higher-order method HO cut-stencil FDM1, which was introduced in Chapter 2, is 

considered for the solution of three manufactured problems in this section. The discrete form of 

the convection-diffusion equation, using HO cut-stencil FDM1, was presented in equation (2.41). 

Comparison of the accuracy of solutions to the manufactured problems, predicted by the schemes 

of 2
nd

-order 5-point cut-stencil, 5+4-point cut-stencil and HO cut-stencil FDM1, is studied in this 

problem. Furthermore, the capability of applying this method to irregular shaped domains to 

solve PDEs with more accuracy is illustrated. 

Problem 8.1: First, to make a comparison among the various cut-stencil FD schemes, the same 

manufactured diffusion equation defined for Problem 7, i.e., equation (3.16.1), is considered here. 

The same domain and grid sizes are used to solve the PDE using HO cut-stencil FDM1 and the 

results are recorded in Table 3.15. 

# of  

nodes 

Mesh size 

𝒽 

Rel. error (%) Max 

|LTE| 

RMS 

error Avg.  Max.  

45 0.125 0.19197 0.63831 2.713E-2 1.01E-3 

153 0.0625 0.01521 0.08919 7.816E-3 7.43E-5 

561 0.03125 0.00215 0.00859 2.026E-3 1.49E-5 

2145 0.015625 0.00072 0.00296 5.140E-04 4.73E-6 

Table 3.15: HO cut-stencil FDM1 solution to Problem 8.1 (Poisson equation, Dirichlet boundary 

conditions)   

Comparing the data in Table 3.15 with that in Table 3.13 reveals that for all grid sizes, the errors 

produced by HO-FDM1 are much smaller than the errors produced by the 2
nd

-order 5-point cut-
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stencil method, and that the difference becomes more pronounced as the number of nodes 

increases. Except for the grid of 45 nodes (coarsest grid), FDM1 yields average and maximum 

relative errors and RMS errors that are smaller compared to the 5+4-point stencil formulation. 

The ratio of maximum relative error of the 2
nd

-order 5-point stencil to HO cut-stencil FDM1 

varies between 1.2 and 9.8 or, in other words, the maximum relative error of the cut-stencil 

FDM1 for this problem is almost one-tenth that of the 2
nd

-order 5-point stencil method. The 

comparison of global order of accuracy for the grids used in Tables 3.13 and 3.15 is displayed in 

Figure 3.17. The slopes of lines suggest nearly 2
nd

-order accuracy for the 2
nd

-order 5-point stencil 

and 5+4-point stencil schemes and 2.55 order of accuracy for the HO cut-stencil FDM1. The 2
nd

-

order accurate approximations to derivatives in both the 5+4-point stencil and HO cut-stencil 

FDM1 schemes are likely the main reason for the reduced global accuracy.  Nevertheless, the 

comparison of these results clearly reveals a more precise solution to this problem than that 

predicted by the 2
nd

-order 5-point stencil formulation. This data provides evidence that, for a 

specific grid size and with the same boundary conditions, the 5+4-point cut-stencil and HO cut-

stencil FDM1 formulations, which have been considered thus far, are able to capture more 

accurate solutions, which is the main aims of higher-order numerical simulations. 

 
Figure 3.17: Verification plot for global order of accuracy for Problem 8.1 and comparison with 

Problem 7 (Dirichlet boundary conditions) 

Problem 8.2: As mentioned in Chapter 2, the 5+4-point cut-stencil scheme has limitations when 

applied to stencils which are cut with boundary lines, as illustrated in Figure 2.23. These 

restrictions for treating the cut stencil with a higher-order formulation are resolved by using HO 

cut-stencil FDM1, as explained in Chapter 2. To verify that FDM1 can handle boundary cuts 

which may create regular or irregular boundary nodes, consider the triangular domain shown in 

Figure 3.18 and the manufactured convection-diffusion equation:  

   ν∇2∅ +  𝑃 
𝜕∅

𝜕𝑥
+ 𝑄

𝜕∅

𝜕𝑦
= 𝜈 [

2𝑒𝑥+𝑦

(𝑒𝑥+𝑒𝑦)2
+ 𝑒𝑥𝑦(𝑥2 + 𝑦2)] + 𝑃 [

𝑒𝑥

𝑒𝑥+𝑒𝑦
+ 𝑦𝑒𝑥𝑦] +

𝑄 [
𝑒𝑦

𝑒𝑥+𝑒𝑦
+ 𝑥𝑒𝑥𝑦] 

(3.17.1) 

 ∅𝑒𝑥𝑐. = ln(𝑒𝑥 + 𝑒𝑦) + 𝑒𝑥𝑦  (3.17.2) 

y = 1.91x - 1.14 

y = 1.90x - 1.49 

y = 2.55x - 0.86 

-5.50

-5.00

-4.50

-4.00

-3.50

-3.00

-1.90-1.70-1.50-1.30-1.10-0.90

log(RMS) 

log(𝒽) 

2nd-order 5-point stencil method

5+4-point stencil method

HO cut-stencil FDM1
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Initially, for this problem, consider only diffusion with a source term by setting 𝜈 = 1 and 

𝑃 = 𝑄 = 0. The results of this study, for several grid sizes with different number of active nodes, 

are presented in Table 3.16.  

 
Figure 3.18: Irregular domain illustration for Problem 8.2 (diffusion equation) 

The data in Table 3.16 demonstrates a more accurate solution for FDM1 compared to the 2
nd

-

order 5-point cut-stencil method and the LTE also shows smaller values in the event of using HO 

cut-stencil FDM1.  

# of  

active 

nodes 

Mesh size 

𝒽 
Method 

Rel. error (%) 
Max 

|LTE| 

RMS  

error Avg.  Max.  

81 0.125 
2

nd
-order 5-point stencil 0.00440 0.00947 2.104E-2 1.71E-4 

HO cut-stencil FDM1 0.00143 0.00599 2.047E-3 8.75E-5 

121 0.100 
2

nd
-order 5-point stencil 0.00273 0.00606 2.056E-2 1.13E-4 

HO cut-stencil FDM1 0.00050 0.00304 2.001E-3 4.21E-5 

289 0.0625 
2

nd
-order 5-point stencil 0.00101 0.00240 1.491E-2 4.60E-5 

HO cut-stencil FDM1 0.00010 0.00064 1.453E-3 7.83E-6 

441 0.050 
2

nd
-order 5-point stencil 0.00063 0.00154 1.169E-2 2.99E-5 

HO cut-stencil FDM1 0.00007 0.00029 1.141E-3 4.06E-6 

676 0.040 
2

nd
-order 5-point stencil 0.00039 0.00099 8.800E-3 1.92E-5 

HO cut-stencil FDM1 0.00006 0.00015 8.592E-4 2.71E-6 

1089 0.03125 
2

nd
-order 5-point stencil 0.00023 0.00060 6.186E-3 1.15E-5 

HO cut-stencil FDM1 0.00005 0.00012 6.044E-4 2.30E-6 

Table 3.16: Comparison of results for 2
nd

-order 5-point stencil and HO-FDM1 5-point stencil 

formulations for Problem 8.2 (diffusion equation) 

Problem 8.3: The convection-diffusion equation (3.17.1) is solved in the irregular shaped domain 

shown in Figure 3.19. The equation of angular cuts L1 and L2, as well as the centre and radius of 

the circular cut are indicated in the figure. Results are presented for different values of the 

diffusion and convection coefficients. The solutions of the 2
nd

-order 5-point stencil method and 

HO cut-stencil FDM1 have been compared for two grid sizes of 30 and 100 nodes and the data 

for all cases are recorded in Table 3.17. The Dirichlet and Neumann boundary conditions are 

taken from the exact solution which is given in equation (3.17.2). The south and north boundaries 

correspond to the lines 𝑦 = 0 and 𝑦 = 2 of the domain.  
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Figure 3.19: Irregular shaped domain for Problem 8.3 (convection-diffusion equation) 

It is worth noting that for the cases of the convection-diffusion equation reported in Table 3.17, in 

event of using the 2
nd

-order 5-point stencil method, the convection terms are approximated by 

either globally 2
nd

- or 1
st
-order accurate approximations depending on the values of 𝛼 and 𝛽 set 

equal to 0 or 1, respectively. When HO cut-stencil FDM1 is applied, these same terms are 

approximated by globally 4
th
- or 2

nd
-order accuracy by setting the values of 𝛼 and 𝛽 to 0 or 1, 

respectively. Equation (2.41) is used for the 4
th
-order central approximations of HO cut-stencil 

FDM1, for the convection-diffusion equation, and a similar equation can be derived for 2
nd

-order 

backward differencing. Equation (3.6.2) was used to generate the LTE values for HO cut-stencil 

FDM1 in Table 3.17.  

Boundary 

Condition 
Equation 

# of 

active 

nodes 

Method 

Rel. error at 

internal nodes  

(%) 

Rel. error at 

boundary nodes 

(%) 

Max 

|LTE| 
Avg. Max. Avg. Max. 

Dirichlet 

(all) 

Diffusion 

𝜈 = 1, 

𝑃 = 𝑄 = 0 

30 
2

nd
-order

*
 0.64561 0.92459 - - 3.057E-1 

FDM1
**

 0.41677 0.56799 - - 3.286E-2 

100 
2

nd
-order 0.13616 0.23759 - - 2.100E-1 

FDM1 0.01249 0.04393 - - 1.420E-2 
Convection-

diffusion 

𝜈 = 1, 

 𝑃 = 𝑄 = 0.4, 

𝛼 = 𝛽 = 1 

30 
2

nd
-order 1.62835 2.46938 - - 2.369E-0 

FDM1 0.51783 0.81348 - - 3.008E-1 

100 

2
nd

-order 0.87068 1.54981 - - 1.778E-0 

FDM1 0.08381 0.16848 - - 1.406E-1 

Neumann 

(south & 

north) 

Diffusion 

𝜈 = 1, 

𝑃 = 𝑄 = 0 

30 
2

nd
-order 0.95284 1.67404 0.88935 1.81622 3.640E-1 

FDM1 0.58148 0.91450 0.60508 1.15059 3.674E-2 

100 
2

nd
-order 0.24052 0.55253 0.25834 0.54877 2.698E-1 

FDM1 0.04568 0.15044 0.12631 0.25517 1.901E-2 
Convection-

diffusion 

𝜈 = 1, 

 𝑃 = 𝑄 = 0.4, 

𝛼 = 𝛽 = 1 

30 
2

nd
-order 2.18574 3.10754 2.39475 3.71635 2.368E-0 

FDM1 0.75474 1.21349 0.67841 1.23137 3.009E-1 

100 
2

nd
-order 1.27602 1.95640 1.28138 1.71908 1.777E-0 

FDM1 0.09651 0.17552 0.13174 0.25075 1.429E-1 

*: 2
nd

-order 5-point stencil, **: HO cut-stencil FDM1 

Table 3.17: Comparison of results for 2
nd

-order 5-point stencil and the HO cut-stencil FDM1 for 

Problem 8.3 (convection-diffusion equation) 
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The data in Table 3.17 clearly shows smaller values for average and maximum absolute error as 

the mesh is refined from 30 to 100 nodes, which has also been observed in the previous problems 

and captured here in this irregular shaped domain for both formulations used. 

Additionally, for each case in Table 3.17, the average and maximum absolute error and maximum 

|LTE| for HO cut-stencil FDM1 is smaller than for the 2
nd

-order 5-point stencil scheme. The 

capability of the cut-stencil FDM to calculate the relatively complicated expression for LTE in 

irregular domains can be seen in this problem. In the situation when Neumann boundary 

conditions are applied with HO cut-stencil FDM1, the boundary nodes are approximated by 3
rd

-

order accuracy as, for example, in the case of north boundary nodes in equation (2.51.2), 

compared to the 2
nd

-order accurate approximation for the 2
nd

-order 5-point stencil scheme.  

3.5.9 Problem 9: HO Cut-Stencil FDM2 Solution of PDEs in Rectangular and Irregular 

Shaped Domains 

The HO cut-stencil FDM2, which was discussed in Chapter 2 and described by, e.g., equation 

(2.43), is studied here for three manufactured problems.  

Problem 9.1: The solution obtained from HO-FDM2 and comparison of results with the 2
nd

-order 

5-point cut-stencil scheme, as well as verification of real order of accuracy for the solution of 

equation (3.18.1), on a square domain 0 ≤ 𝑥, 𝑦 ≤ 1, with Dirichlet boundary conditions, are 

discussed. Equation (3.18.2) gives the exact solution of the Poisson equation (3.18.1).      

   ∇2∅ =
2𝑒𝑥+𝑦

(𝑒𝑥+𝑒𝑦)2
− 2𝜋2𝑠𝑖𝑛(𝜋(𝑥 + 𝑦)) (3.18.1) 

 ∅𝑒𝑥𝑐. = ln(𝑒
𝑥 + 𝑒𝑦) + 𝑠𝑖𝑛(𝜋(𝑥 + 𝑦)) (3.18.2) 

The solution of equation (3.18.1) was obtained using the 2
nd

-order 5-point cut-stencil FDM and 

the HO cut-stencil FDM2 and error results are presented in Table 3.18 for several uniform grids 

with number of nodes varying from 36 to 2601. The difference in solution accuracy of the 2
nd

-

order 5-point formulation and the HO cut-stencil FDM2 can be seen from comparison of the 

maximum relative error from both schemes. The ratio of these errors is greater than 5 for the 

coarsest mesh size (grid of 36 nodes) and reaches to nearly 923 for the finest mesh size (grid of 

2601 nodes). This suggests that the HO cut-stencil FDM2 solution to this boundary value 

problem is more than 900 times more accurate than the 2
nd

-order 5-point stencil solution. The 

|LTE| of HO cut-stencil FDM2, as reported in Table 3.18, has been calculated from equation 

(3.6.1) with the coefficient 
1

200
 replaced by 

1

360
. 

It is worthwhile to investigate the degree of mesh refinement required to achieve the same level 

of solution accuracy reported for FDM2 on the 2601 node mesh if the 2
nd

-order 5-point 

formulation is used. In this event, the average and maximum absolute error for a mesh of 25921 

nodes are 0.00089 and 0.00456, respectively, when the 2
nd

-order 5-point scheme is applied. This 

mesh size is about 10 times larger than the finest grid in Table 3.18 (2601 nodes) but it is still not 

able to capture the same level of solution accuracy as the FDM2 5-point stencil formulation. This 

example reveals one of the most beneficial effects of HO formulations, namely significant 

reduction of the demand on computational resources and time to achieve a desired level of 

accuracy. 
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# of  

nodes 

Mesh size 

𝒽 
Method 

Relative error (%) Max 

|LTE| 
RMS error 

Avg.  Max.  

36 0.200 
2

nd
-order 5-point stencil 0.98341 3.09980 3.646E-1 6.54E-3 

HO cut-stencil FDM2 0.20384 0.59951 1.931E-2 1.44E-3 

81 0.125 
`2

nd
-order 5-point stencil 0.35745 1.35536 2.490E-1 2.76E-3 

HO cut-stencil FDM2 0.01403 0.04878 8.950E-3 1.34E-4 

121 0.100 
2

nd
-order 5-point stencil 0.22139 0.89497 1.605E-1 1.81E-3 

HO cut-stencil FDM2 0.00650 0.02344 4.977E-3 5.83E-5 

289 0.0625 
2

nd
-order 5-point stencil 0.08172 0.35472 6.319E-2 7.31E-4 

HO cut-stencil FDM2 0.00111 0.00465 1.310E-3 1.02E-5 

441 0.050 
2

nd
-order 5-point stencil 0.05122 0.22792 4.051E-2 4.74E-4 

HO cut-stencil FDM2 0.00046 0.00201 7.038E-4 4.30E-6 

676 0.04 
2

nd
-order 5-point stencil 0.03222 0.14751 2.591E-2 3.06E-4 

HO cut-stencil FDM2 0.00019 0.00085 4.446E-4 1.79E-6 

1089 0.03125 
2

nd
-order 5-point stencil 0.01936 0.09001 1.586E-2 1.88E-4 

HO cut-stencil FDM2 0.00007 0.00032 2.686E-4 6.78E-7 

1681 0.025 
2

nd
-order 5-point stencil 0.01225 0.05755 1.015E-2 1.21E-4 

HO cut-stencil FDM2 0.00003 0.00012 1.710E-4 2.82E-7 

2601 0.020 
2

nd
-order 5-point stencil 0.00777 0.03689 6.499E-3 7.80E-5 

HO cut-stencil FDM2 0.00001 0.00004 1.090E-4 1.36E-7 

Table 3.18: Comparison of results for 2
nd

-order 5-point stencil and HO-FDM2 5-point stencil 

formulations for Problem 9 (diffusion equation) 

The global order of accuracy of these two schemes applied to solve the Poisson equation (3.18.1) 

has been investigated with the slopes of lines shown in Figure 3.20. These slopes suggest that the 

2
nd

-order 5-point stencil method and the FDM2 5-point stencil formulation have nearly 2
nd

 and 

4
th
-order accuracy, respectively. The effect of the 4

th
-order accurate approximation of first 

derivatives in the FDM2 5-point stencil formulation is apparent in successfully retaining a nearly 

globally 4
th
-order accurate solution to this problem. 

 
Figure 3.20: Verification plot for global order of accuracy for Problem 9.1 (diffusion equation, 

Dirichlet boundary conditions)  

Problem 9.2: The boundary value problem considered in Problem 8.2 is solved using the FDM2 

5-point cut-stencil formulation on the same triangular domain indicated in Figure 3.18. Similar 

grid sizes, as reported in Table 3.16, are used to generate the solution of equation (3.17.1) for the 

FDM2 5-point stencil scheme and the results are given in Table 3.19.  
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# of 

active 

nodes 

Mesh size 

𝒽 

Relative error (%) 
Max 

|LTE| 

RMS 

error Avg. Max. 

81 0.125 0.00062 0.00507 1.288E-3 6.07E-5 

121 0.100 0.00020 0.00250 1.259E-3 2.65E-5 

289 0.0625 0.00002 0.00050 9.153E-4 3.89E-6 

441 0.050 0.00001 0.00022 7.188E-4 1.47E-6 

676 0.040 0.00001 0.00010 5.415E-4 5.88E-7 

Table 3.19: Errors from HO cut-stencil FDM2 solution for Problem 9.2 on irregular domain – 

(diffusion equation, Dirichlet boundary conditions)  

The comparison of average and maximum relative errors, RMS errors and maximum |LTE| in 

Table 3.19 to the same values reported in Table 3.16 demonstrates that a more accurate solution 

to the PDE in equation (3.17.1) is obtained when using HO cut-stencil FDM2. The slopes of lines 

in Figure 3.21 indicate the real order of solution to equation (3.17.1) for the three schemes of 2
nd

-

order 5-point stencil, FDM1 5-point stencil and FDM2 5-point stencil. The solutions of 2
nd

-, 3
rd-

 

and 4
th
-order accurate approximations have been captured for each of these three formulations. It 

should be mentioned that round-off error affects the FDM2 solution after the grid size of 676 

nodes, so the solution procedure stopped after this grid size. The lines in Figure 3.21 are plotted 

for grid sizes with number of nodes varying from 81 to 676.     

 
Figure 3.21: Verification plot for global order of accuracy for Problem 9.2 (diffusion equation on 

irregular domain, Dirichlet boundary conditions)  

Problem 9.3: As a further example, the 2
nd

-order 5-point stencil, FDM1 5-point stencil and 

FDM2 5-point stencil solutions of a boundary value problem for the convection-diffusion 

equation (3.19.1) have been compared. The irregular shaped domain for this problem is depicted 

in Figure 3.22 and the solution is obtained with both Dirichlet and Neumann boundary conditions 

taken from the exact solution given in (3.19.2).  

  ν∇2∅ +  𝑃 
𝜕∅

𝜕𝑥
+ 𝑄

𝜕∅

𝜕𝑦
= 𝜈[𝑒𝑥 + 𝑒𝑦 − 2𝜋2 sin(𝜋(𝑥 + 𝑦))] + 𝑃[𝑒𝑥 +

𝜋 cos(𝜋(𝑥 + 𝑦))] + 𝑄[𝑒𝑦 + 𝜋 cos(𝜋(𝑥 + 𝑦))] 
(3.19.1) 

∅𝑒𝑥𝑐. = 𝑒
𝑥 + 𝑒𝑦 +  𝑠𝑖𝑛 (𝜋(𝑥 + 𝑦)) (3.19.2) 
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Figure 3.22: Irregular shaped domain for Problem 9.3 (diffusion-convection equation) 

Results for the solution of equation (3.19.1) on the domain shown in Figure 3.22, with different 

values of diffusion and convection coefficients, are given in Table 3.20. In the case of Neumann 

boundary conditions, the south and east boundaries correspond to the lines 𝑦 = 0 and 𝑥 = 1 of 

the domain, respectively.  

Boundary 

Condition 
Equation 

# of 

active 

nodes 

Method 

Relative error at 

internal nodes (%) 

Relative error at 

boundary nodes (%) 
Max 

|LTE| 
Avg. Max. Avg. Max. 

Dirichlet 

(all) 

Diffusion 

𝜈 = 1, 

𝑃 = 𝑄 = 0 

33 

2
nd

-order
*
 0.26235 0.42925 - - 3.736E-1 

FDM1
**

 0.14912 0.29482 - - 3.488E-2 

FDM2
***

 0.04646 0.09797 - - 2.005E-2 

110 

2
nd

-order 0.05470 0.11263 - - 1.624E-1 

FDM1 0.00552 0.01703 - - 7.482E-3 

FDM2 0.00144 0.00510 - - 5.033E-3 

Convection-

diffusion 

𝜈 = 1, 

 𝑃 = 𝑄 = 0.4,  

𝛼 = 𝛽 = 1 

33 

2
nd

-order 0.61876 1.10543 - - 1.238E-0 

FDM1 0.21714 0.42904 - - 1.676E-1 

FDM2 0.16822 0.30778 - - 1.631E-1 

110 

2
nd

-order 0.19796 0.45572 - - 7.315E-1 

FDM1 0.05269 0.11538 - - 4.381E-2 

FDM2 0.03033 0.06274 - - 4.297E-2 

Neumann 

(south & 

east) 

Diffusion 

𝜈 = 1, 

𝑃 = 𝑄 = 0 

33 

2
nd

-order 0.42684 0.95323 1.04301 2.08495 3.659E-1 

FDM1 0.28756 0.79823 0.86318 1.93104 3.358E-2 

FDM2 0.13960 0.37246 0.65436 0.80764 2.271E-2 

110 

2
nd

-order 0.11622 0.38171 0.33291 0.61565 1.798E-1 

FDM1 0.03512 0.24525 0.20036 0.52703 1.058E-2 

FDM2 0.00805 0.03750 0.04128 0.05510 5.023E-3 

Convection-

diffusion 

𝜈 = 1, 

 𝑃 = 𝑄 = 0.4,  

𝛼 = 𝛽 = 1 

33 

2
nd

-order 0.96949 2.05079 2.04092 2.98520 1.275E-0 

FDM1 0.35714 0.84769 0.86845 1.78963 1.687E-1 

FDM2 0.25381 0.62218 0.68507 0.92956 1.627E-1 

110 

2
nd

-order 0.33829 0.84659 0.71262 0.98542 8.037E-1 

FDM1 0.06659 0.20284 0.19017 0.49164 4.385E-2 

FDM2 0.03773 0.07229 0.04526 0.08090 4.297E-2 

*: 2
nd

-order 5-point stencil, **: HO cut-stencil FDM1, ***: HO cut-stencil FDM2 

Table 3.20: Comparison of results for 2
nd

-order 5-point stencil, HO-FDM1 5-point stencil and 

HO-FDM2 5-point stencil formulations for Problem 9.3 (convection-diffusion equation) 

It can be seen from the data in Table 3.20 that the FDM2 5-point stencil formulation gives the 

most accurate solution to the problem for all the cases studied. For the convection-diffusion 
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equation, the same central 2
nd

-order discretization has been used for the convection terms for both 

FDM1 and FDM2, although the fundamental difference comes back to using 2
nd

-order and 4
th
-

order accurate approximations of the derivatives in the equations for these two schemes (cf., 

(2.41) and (2.43)). The boundary nodes, in the event of Neumann conditions, are approximated by 

2
nd

-order and 3
rd

-order accurate formulas for the 2
nd

-order 5-point stencil method and the HO 

methods, respectively. The comparisons of results for Neumann boundary conditions show no 

significant change of relative error between 2
nd

-order 5-point stencil and FDM1 solutions for the 

diffusion equation. For all cases of Neumann conditions, FDM2 shows significant reduction in 

error compared to the other formulations.  

Problem 9.4: The effect of the order of approximation at Neumann boundary nodes is discussed 

here through the solution of equation (3.19.1) by setting 𝜈 = 1 and 𝑃 = 𝑄 = 0 on a square 

domain 0 ≤ 𝑥, 𝑦 ≤ 1. For this case the Neumann conditions are imposed on both west and east 

boundaries and several uniform grids are used to generate the data in Table 3.21. The results in 

this table can be analysed in two manners; the effect of higher-order method used for the solution 

of the given problem with Neumann boundary conditions and, the effect of order of accuracy 

used to approximate the unknown solution at Neumann boundary nodes. 

Comparison of the solution using the 2
nd

-order 5-point cut-stencil method to FDM1 shows no 

significant changes in the results and even for some grid sizes the value of maximum relative 

error at boundary nodes is higher for the FDM1 solution to the problem. This behaviour indicates 

that the 2
nd

-order accurate approximations used for first and second derivatives in the FDM1 

formulation cannot preserve the real order of accuracy for cases when Neumann conditions are 

imposed on the boundaries of the domain. 

Table 3.21 also surveys the FDM2 solutions with 2
nd

- and 3
rd

-order accurate approximations at 

the Neumann boundary nodes. The FDM2 solution, when the 3
rd

-order accurate approximation is 

applied at Neumann boundary nodes, indicates clear reduction in errors for both internal and 

boundary nodes, whereas the 2
nd

-order accurate approximation produces the same level of errors 

as the 2
nd

-order 5-point stencil scheme. Referring to the higher-order methods for the boundary 

nodes, as discussed in Chapter 2, one order of accuracy lower for approximation of derivatives at 

boundaries nodes, compared to the order used for internal nodes, can still retain the real (formal 

or global) order of accuracy of the solution for the whole domain. Consequently, the 2
nd

-order 

accurate approximation at boundaries nodes reduces the real order of the solution, which can be 

seen by comparing FDM2 5-point stencil solution along with 2
nd

-order accurate approximation at 

boundaries nodes to the solution of the 2
nd

-order 5-point stencil method for each grid sizes in 

Table 3.21. However, in the event of using 3
rd

-order accurate approximation at boundaries nodes, 

FDM2 captures a significantly more accurate solution than the 2
nd

-order 5-point cut-stencil 

method. 

The real orders of solutions, addressed in Table 3.21, are shown by the slopes of lines which are 

plotted in Figure 3.23. These slopes suggest 2
nd

-order (slope of 2.08) for the 2
nd

-order 5-point 

stencil method and 2.23
rd

-order (slopes of 2.23) for both solutions of FDM1 with 3
rd

-order 

accurate approximation at boundaries nodes and FDM2 with 2
nd

-order accurate approximation at 

boundaries nodes. Higher than 3
rd

-order accurate solution is achieved when FDM2 is used along 

with a 3
rd

-order accurate approximation at the Neumann boundary nodes. These slopes prove that 

the more accurate solution, for problems associated with Neumann boundary conditions, is 
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obtained from higher-order cut-stencil FD formulations when both higher-order approximation 

for the derivatives in their fundamental formulations (4
th
-order accurate approximation used in 

FDM2) and higher-order accurate approximation at nodes located on the Neumann boundaries are 

implemented. 

# of  

nodes 

(𝒽) 

Method 

Order of  

Neumann 

boundary  

approximation 

Rel. error at 

internal nodes (%) 

Rel. error at 

boundary nodes (%) RMS  

error 
Avg.  Max.  Avg.  Max.  

36 

(0.2) 

2
nd

-order* 2
nd

 0.55974 1.06083 1.54034 2.94196 3.28E-2 

FDM1** 3
rd

 0.48355 1.11992 1.70165 3.06855 3.45E-2 

FDM2*** 
2

nd
 0.46069 1.14318 1.68671 3.06340 3.45E-2 

3
rd

 0.32924 0.71648 0.94610 1.27847 1.85E-2 

81 

(0.125) 

2
nd

-order 2
nd

 0.20624 0.45617 0.54855 0.94457 1.06E-2 

FDM1 3
rd

 0.15600 0.54911 0.55253 1.02295 1.05E-2 

FDM2 
2

nd
 0.15421 0.56504 0.54738 1.04010 1.07E-2 

3
rd

 0.05112 0.15467 0.14746 0.22600 2.91E-3 

121 

(0.1) 

2
nd

-order 2
nd

 0.13150 0.35248 0.33663 0.59667 6.45E-3 

FDM1 3
rd

 0.09336 0.36980 0.33393 0.60816 6.11E-3 

FDM2 
2

nd
 0.09371 0.38986 0.33205 0.61573 6.21E-3 

3
rd

 0.02280 0.07502 0.06399 0.10165 1.26E-3 

289 

(0.0625) 

2
nd

-order 2
nd

 0.05195 0.17459 0.12599 0.24368 2.39E-3 

FDM1 3
rd

 0.03355 0.16058 0.11943 0.21955 2.05E-3 

FDM2 
2

nd
 0.03439 0.16462 0.11932 0.22390 2.08E-3 

3
rd

 0.00468 0.01652 0.01242 0.02000 2.43E-4 

441 

(0.050) 

2
nd

-order 2
nd

 0.03353 0.12160 0.07971 0.16037 1.52E-3 

FDM1 3
rd

 0.02102 0.10659 0.07422 0.13677 1.25E-3 

FDM2 
2

nd
 0.02170 0.10826 0.07432 0.13860 1.26E-3 

3
rd

 0.00230 0.00827 0.00597 0.00966 1.17E-4 

1089 

(0.03125) 

2
nd

-order 2
nd

 0.01332 0.05417 0.03070 0.06440 5.93E-4 

FDM1 3
rd

 0.00802 0.04416 0.02786 0.05182 4.55E-4 

FDM2 
2

nd
 0.00835 0.04397 0.02799 0.05172 4.56E-4 

3
rd

 0.00054 0.00199 0.00136 0.00218 2.64E-5 

1681 

(0.025) 

2
nd

-order 2
nd

 0.00859 0.03620 0.01959 0.04175 3.80E-4 

FDM1 3
rd

 0.00511 0.02886 0.01760 0.03286 2.85E-4 

FDM2 
2

nd
 0.00533 0.02856 0.01769 0.03258 2.85E-4 

3
rd

 0.00028 0.00102 0.00068 0.00110 1.33E-5 

4225 

(0.015625) 

2
nd

-order 2
nd

 0.00339 0.01518 0.00762 0.01658 1.49E-4 

FDM1 3
rd

 0.00199 0.01169 0.00676 0.01265 1.08E-4 

FDM2 
2

nd
 0.00208 0.01142 0.00680 0.01241 1.07E-4 

3
rd

 0.00007 0.00025 0.00016 0.00026 3.19E-6 

6561 

(0.0125) 

2
nd

-order 2
nd

 0.00218 0.00994 0.00487 0.01067 9.58E-5 

FDM1 3
rd

 0.00127 0.00757 0.00430 0.00807 6.82E-5 

FDM2 
2

nd
 0.00133 0.00737 0.00433 0.00787 6.78E-5 

3
rd

 0.00003 0.00013 0.00008 0.00014 1.63E-6 

*: 2
nd

-order 5-point stencil, **: HO cut-stencil FDM1, ***: HO cut-stencil FDM2 

Table 3.21: Comparison of results of different schemes for Problem 9.4 (diffusion equation, 

different orders used for Neumann boundaries) 

The data given in Table 3.21 accompanied by the data in Table 3.20 confirms the capability of the 

cut-stencil FDM to produce higher-order accurate solution of PDEs in complex irregular shaped 
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domains when Neumann conditions are imposed on boundaries of the domain. The unique 

localized treatment of the stencils provides the facility to offer higher-order accurate formulation 

for boundary nodes without requiring special stencils for the nodes that are located on the 

boundaries or those adjacent to the boundaries. The real order of FDM2 is also shown in Figure 

3.23 when 4
th
-order accurate approximation is applied for the Neumann boundaries nodes. This 

also indicates the potential of cut-stencil higher-order formulations to extend the same order of 

accuracy for internal nodes to the boundaries nodes.  

 
Figure 3.23: Verification plot for global order of accuracy for Problem 9.4 (diffusion equation, 

Neumann boundary conditions) 

3.5.10 Problem 10: Cartesian Cut-Stencil FDM Solutions for Unsteady PDEs on 

Rectangular and Irregular Shaped Domains  

The Cartesian cut-stencil method solutions to unsteady PDEs on a rectangular domain and an 

irregular shaped domain are studied by designing an unsteady manufactured problem. The results 

of the spatial and temporal LTEs are presented and the correctness of the proposed stability 

criteria is tested. 

Problem 10.1: The cut-stencil solution to the unsteady diffusion equation 
𝜕∅

𝜕𝑡
= 𝜈∇2∅ using the 

explicit FTCS formulation discussed in Section 2.7, on square domain 0 ≤ 𝑥, 𝑦 ≤ 1 is studied. 

The unsteady diffusion equation considered, and the corresponding exact solution, are given by 

equations (3.20.1) and (3.20.2), respectively. The initial condition at time 𝑡 = 0 and boundary 

conditions are taken from the exact solution.  

   
𝜕∅

𝜕𝑡
= 

1

16
(
𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
) (3.20.1) 

 
∅𝑒𝑥𝑐.(𝑥, 𝑦, 𝑡) =  𝑒

−
𝜋2

8
𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑠𝑖𝑛(𝜋𝑦) + 𝑥 + 𝑦 (3.20.2) 

The study begins with a grid size of 121 nodes to check the stability criteria. For this uniform 

mesh size,  𝑥′ = 𝑦′ = 0.1 and 𝑥′′ = 𝑦′′ = 0 at all nodes of the domain. Using these values of 
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transformation metrics and 𝜈 = 1 16⁄  in the stability criteria expressed by equalities (2.57.1) and 

(2.57.2), gives the maximum allowable time step as Δ𝑡𝑀𝑎𝑥 = 0.04 . Figure 3.24 indicates the 

contours of the exact solution (3.20.2) at 𝑡 = 5.0 . 

 
Figure 3.24: Exact solution 𝜙(𝑥, 𝑦, 5) for Problem 10.1 (unsteady diffusion) 

Figure 3.25 show the cut-stencil FTCS solutions to equation (3.20.1) at 𝑡 = 5.0  by taking two 

different time steps of Δ𝑡 = 0.04  and Δ𝑡 = 0.05 . The solution to equation (3.20.1) using Δ𝑡 =

0.04 , shown in Figure 3.25(a), is stable and qualitatively similar to the exact solution in Figure 

3.24. However, the contours in Figure 3.25(b) shows an unstable solution since the time step 

taken is larger than the maximum allowable time step calculated from the stability criteria. The 

maximum relative errors at 𝑡 = 5.0 are 0.02338% and 14.25537% for the solutions using 

Δ𝑡 = 0.04 and Δ𝑡 = 0.05 , respectively.    

 
Figure 3.25: Cut-stencil FDM solution at 𝑡 = 5.0 for grid of 121 nodes for Problem 10.1, a) Δ𝑡 =

0.04 , b) Δ𝑡 = 0.05  (unsteady diffusion) 

Four uniform grid sizes with different number of nodes varying from 36 to 1681 are used to 

analyze the cut-stencil FTCS solution to equation (3.20.1) by comparing the average and 

maximum relative errors, RMS errors and maximum spatial and temporal LTEs at an arbitrary 

time 𝑡 = 1.76, as given in Table 3.22. The time step for each grid size was chosen as the 

maximum allowable time step for that grid size. Table 3.22 shows a reducing trend of average 

and maximum errors as the mesh size becomes finer and accordingly, as the time step size 

becomes smaller. The maximum value of temporal |LTE| follows the same behaviour as the 

number of nodes increase, while the spatial |LTE| becomes nearly constant. The comparison of 
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temporal and spatial |LTE| shows a smaller value for temporal |LTE| since, for a reduction in grid 

size, the value of time step must be chosen small enough to guarantee the stability criteria is 

satisfied. The rate of time step reduction is faster than mesh size reduction, e.g. in Table 3.22 the 

mesh size becomes half between two successive grids while the time step is reduced by a factor of 

4 for the same grids. This suggests that the solution is more dependent on the choice of time step 

rather than mesh size, therefore the maximum spatial |LTE| shows an almost constant trend. 

# of  

Nodes 

Mesh size 

(𝒽) 

Relative error 

(%) 
Max. 

spatial |LTE| 

Max.  

temporal |LTE| 

RMS  

error 
Avg. Max. 

36 0.2 1.01404 1.68829 1.208E-2 1.169E-2 1.05E-2 

121 0.1 0.21049 0.41136 1.176E-2 3.452E-3 2.28E-3 

441 0.05 0.04786 0.10247 1.174E-2 8.670E-4 5.37E-4 

1681 0.025 0.01140 0.02565 1.173E-2 2.169E-4 1.31E-4 

Table 3.22: Comparison of relative error, spatial and temporal truncation error and RMS error at 

𝑡 = 1.76  for Problem 10.1 (unsteady diffusion)  

The spatial and temporal truncation errors, as given in Table 3.22, are calculated using equations 

(3.2.5.1) and (3.7.2), respectively. Verification of the global order of accuracy for spatial 

discretization can be observed in Figure 3.26. The slope of the line in this figure confirms the 2
nd

-

order accurate cut-stencil FTCS solution to equation (3.20.1).  

 
Figure 3.26: Verification plot for global order of accuracy for spatial discretization for Problem 

10.1 (unsteady diffusion)  

Problem 10.2: The unsteady diffusion equation (3.20.1) is solved in the complex irregular shaped 

domain illustrated in Figure 3.27, using a grid size of 67 nodes. The stability criteria give the 

maximum allowable time step as Δ𝑡𝑀𝑎𝑥 = 0.0625 . Similar to solution of equation (3.20.1) in the 

unit square domain, the exact solution and cut-stencil FTCS solution at 𝑡 = 3.0 using Δ𝑡 =

Δ𝑡𝑀𝑎𝑥. and Δ𝑡 = 0.075 , are presented in Figure 3.28 to verify the proposed stability requirements 

for an irregular shaped domain.  
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Figure 3.27: Irregular shaped domain for Problem 10.2 (unsteady diffusion) 

 
Figure 3.28: Exact and cut-stencil FDM solutions at 𝑡 =  3.0 for grid of 67 nodes for Problem 

10.2, a) exact solution, b) Δ𝑡 = Δ𝑡Max, c) Δ𝑡 = 0.075  (unsteady diffusion, irregular domain) 

The maximum relative errors for Δ𝑡𝑀𝑎𝑥 and Δ𝑡 = 0.075  are equal to 0.16% and 37.95%, 

respectively. This example shows the capability of the cut-stencil FDM to solve the unsteady 
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diffusion equation on a complex irregular domain and verifies the accuracy of the proposed 

stability criteria for the central in space, explicit Euler time marching scheme.  

The average and maximum relative errors and maximum spatial and temporal LTEs, for solution 

of equation (3.20.1) on the irregular shaped domain shown in Figure 3.27, for several sample 

times using Δ𝑡𝑀𝑎𝑥  as the time step, are presented in Table 3.23.  

Time 
Relative error 

(%) 
Max.  

spatial |LTE| 

Max.  

temporal |LTE| 
Avg. Max. 

1.0 0.38121 0.68863 1.064 1.427E-2 

3.5 0.04710 0.09275 1.003 6.029E-4 

4.0 0.02699 0.05327 1.002 3.226E-4 

8.25 0.00017 0.00034 1.000 1.700E-6 

10.5 0.00001 0.00002 1.000 1.000E-7 

11.6875 0.00000 0.00000 1.000 0.000 

11.75 0.00000 0.00000 1.000 0.000 

Table 3.23: Average and relative errors and LTEs at different time with Δ𝑡 = 0.0625  for 

Problem 10.2 (unsteady diffusion, irregular domain) 

The data in Table 3.23 shows that the unsteady solution is marching to steady-state condition 

almost after 𝑡 = 10.5 and, similar to solution of equation (3.20.1) on the unit square domain, the 

maximum temporal |LTE| is relatively smaller than maximum spatial |LTE|. Additionally, the 

variation of spatial |LTE| shows an almost constant trend while until time 𝑡 =  10.5, the temporal 

|LTE| is reducing. As the solution reaches the steady-state condition, both LTEs follow a constant 

trend. 

3.5.11 Problem 11: Cut-Stencil FDM Solution for Second-Order Wave Equation on 

Rectangular and Irregular Shaped Domains 

The manufactured problem method is used to test the capability of the cut-stencil FDM to solve 

the model second-order wave equation (2.58.1) and assess the accuracy of the discretization 

represented in equation (2.58.3). The stability requirement, as proposed in equation (2.65.4) for 

this model equation, is discussed through this sample problem. The effects of the two proposed 

methods of approximating the first time derivative at initial time (for the initial condition), i.e. 

equations (2.59.1) and (2.62.1), are also investigated. 

Problem 11.1: In this example the cut-stencil FD solution to the model equation 
𝜕2∅

𝜕𝑡2
= 𝒞2∇2∅ on 

a unit square domain is proposed. The second-order wave equation and the corresponding exact 

solution are written in equations (3.21.1) and (3.21.2), respectively. The initial conditions, i.e. 

including ∅(𝑥, 𝑦, 𝑡0) and 
𝜕∅

𝜕𝑡
⃒𝑡0, and boundary conditions are taken from the exact solution when 

the initial time is set as 𝑡 = 0. 

   
𝜕2∅

𝜕𝑡2
= 

𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
 (3.21.1) 

 ∅𝑒𝑥𝑐.(𝑥, 𝑦, 𝑡) =  𝑠𝑖𝑛(0.3𝜋𝑥 + 0.4𝜋𝑦 − 0.5𝜋𝑡) + 1.1 (3.21.2) 
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Figure 3.29 demonstrates the exact solution and the Cartesian cut-stencil FD solution of equation 

(3.21.1) at time 𝑡 = 0.84  for two time step sizes of  Δ𝑡 = 0.035  and Δ𝑡 = 0.04 for a grid of 441 

nodes. The stability criteria, as addressed in equation (2.65.4), gives the maximum allowable time 

step as Δ𝑡𝑀𝑎𝑥 = 0.035  for this grid size. The solution at a time of 0.84 obtained by taking 

Δ𝑡 = 0.04 , which exceeds the maximum allowable time step, is clearly unstable. The average 

and maximum relative errors, for the case of Δ𝑡 = 0.035 , are equal to 0.005% and 0.015%, 

respectively. These same errors are greater than 141% and, almost 1357%, for the (unstable) 

solution using Δ𝑡 = 0.04.   

 
Figure 3.29: Exact and cut-stencil FDM solutions at 𝑡 =  0.84 for grid of 441 nodes for Problem 

11.1, a) exact solution, b) Δ𝑡 = 0.035, c) Δ𝑡 = 0.04  

Several uniform grid sizes with number of nodes varying from 81 to 4225 are used to analyze the 

cut-stencil solution to equation (3.21.1) when a 1
st
-order accurate approximation and a 2

nd
-order 

accurate approximation are applied to approximate the first temporal derivative at initial time. 

The average and maximum relative error for each grid size and for each approximation scheme 

are given in Table 3.24, at a time 𝑡 = 1.326 . The time step for each grid size was chosen as the 

maximum allowable time step for grid size studied. The data in Table 3.24 shows significant 

reduction in the average and maximum relative errors in the event of using the 2
nd

-order accurate 

approximation for the temporal derivative at initial time. 
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# of  

Nodes 

Mesh size 

(𝒽) 

Order 

used for 
𝜕∅

𝜕𝑡
⃒𝑡0 

Relative error 

(%) RMS error  at  

internal nodes 
Avg. Max. 

81 0.125 
1

st
-order 2.79269 10.03626 7.66E-3 

2
nd

-order 0.05158 0.11301 1.64E-4 

289 0.0625 
1

st
-order 1.13484 5.20238 3.64E-3 

2
nd

-order 0.01183 0.03309 4.03E-5 

1089 0.03125 
1

st
-order 0.51847 2.84008 1.76E-3 

2
nd

-order 0.00273 0.00931 9.80E-6 

4225 0.015625 
1

st
-order 0.24988 1.47917 8.63E-4 

2
nd

-order 0.00066 0.00241 2.41E-6 

Table 3.24: Comparison of relative and RMS errors at 𝑡 = 1.326  for Problem 11.1 (second-order 

wave equation)  

The real order of the cut-stencil FD solutions to equation (3.21.1) can be observed in the plot of 

Figure 3.30, for the two methods used for approximation of the temporal derivative at initial time. 

The slopes of the lines in this figure indicate that the solution is 1
st
-order or 2

nd
-order accurate 

when that order of approximation is applied to approximate the first derivative at initial time. This 

suggests that the lower order of approximation, used to approximate the first derivative at initial 

time, propagates through the whole solution for this unsteady equation. On the other hand, when 

the time derivative at initial time is approximated by a 2
nd

-order accurate approximation, the 

overall solution retains its 2
nd

-order accuracy. Thus, it might be stated that the real order of 

accuracy for the solution of the unsteady model equation depends strictly on the order of 

approximation applied at initial time. 

 
Figure 3.30: Verification plot for global order of accuracy for initial time discretization for 

Problem 11.1 (second-order wave equation) 

Problem 11.2: The Cartesian cut-stencil FD solution of equation (3.21.1) on the irregular shaped 

domain depicted in Figure 3.31 with 79 nodes is considered in this final problem. The stability 

criteria produce the maximum allowable time step as Δ𝑡𝑀𝑎𝑥 = 0.142 . At first, the absolute errors 

(absolute difference between the numerical and exact solution) at the centre point of the domain, 

where 𝑥 = 𝑦 = 1, from initial time up to 1.92, for two time steps of Δ𝑡 = 0.12  and Δ𝑡 = 0.16, 

have been compared in Figure 3.32.  
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Figure 3.31: Irregular shaped domain for Problem 11.2 (second-order wave equation) 

The magnitude of the absolute error for the time step Δ𝑡 = 0.16  shows that the solution becomes 

unbounded, as expected since the time step is larger than the maximum allowable time step for 

stability. However, by choosing a step almost equal to the maximum allowable time step, the 

same parameter shows uniform behaviour as the solution proceeds with time. 

 
Figure 3.32: Absolute error at midpoint of the domain for two step sizes for Problem 11.2 (wave 

equation, irregular shaped domain)  

The relative error in the cut-stencil FD solutions of equation (3.21.1), at 𝑡 = 1.42 , using 1
st
-order 

and 2
nd

-order accurate approximation methods to approximate the first-order time derivative at 

initial time, have been recorded in Table 3.25. The time step was set as Δ𝑡 = 0.142 . The results 

verify the effect that higher-order approximation of the first-order time derivative at initial time 

has on the whole solution. Additionally, the results given in Table 3.25 show the capability of the 

Cartesian cut-stencil FDM to solve the second-order wave equation on irregular shaped domains.    

Order 

used for 
𝜕∅

𝜕𝑡
⃒𝑡0 

Relative error (%) 

Avg. Max. 

1
st
-order 3.12747 11.49735 

2
nd

-order 0.11337 0.47351 

Table 3.25: Comparison of relative error at t = 1.42 for Problem 11.2 (wave equation, irregular 

shaped domain 
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3.6 Chapter Summary 

Cartesian cut-stencil FDM solutions to the unsteady and steady convection-diffusion equations 

have been presented in this chapter. The main purpose of this chapter was to use the method of 

manufactured solutions (MMS) to verify the cut-stencil formulations and implementation of the 

various approximations developed in Chapter 2. 

The verification of the cut-stencil formulations and corresponding computer coding was carried 

out by comparing the cut-stencil FDM solutions to exact solutions for a variety of manufactured 

equations. The cut-stencil FDM solutions on rectangular domains were presented to verify the 

real order of accuracy of each formulation. A systematic grid refinement study along with the 

RMS error for each grid was employed to confirm the real order of accuracy. Solution of the 

convection-diffusion equation in irregular shaped domains exhibited the capabilities of the cut-

stencil FDM to solve PDEs in any type of complex domain. The solutions for a number of 

problems were presented for a non-uniform mesh, in domains much more complicated than 

rectangles and with different types of boundary conditions, i.e., Dirichlet or Neumann conditions. 

It was confirmed that the 2
nd

-order 5-point stencil formulation retained this order as the real order 

of accuracy. The higher-order formulations showed different real order of accuracy depending on 

the type of boundary condition, order of approximation employed to approximate Neumann 

conditions and the order of approximation of derivatives at the endpoints of the computational 

stencil. HO cut-stencil FDM solutions to a sample problem, with Neumann conditions 

approximated by 2
nd

-, 3
rd

- and 4
th
-order accuracy, were discussed. The higher-order 

approximation of the Neumann condition shows that order of accuracy higher than 3
rd

 and 4
th
 can 

be captured using HO cut-stencil FDM2 when 3
rd

- and 4
th
-order accurate approximations were 

employed to approximate the Neumann condition. 

The effect of central or upwind differencing of convective terms on the real order of accuracy was 

discussed and illustrated through several examples. Also, for most cases, the maximum local 

absolute truncation error (|LTE|) was presented for each grid size which demonstrated the 

potential of the Cartesian cut-stencil FDM to calculate high-fidelity solutions of very complicated 

PDEs in any type of domain and quantitatively assess the numerical error.   

For the unsteady problems, the validity of suggested stability criteria and level of accuracy for the 

cut-stencil FDM solutions were studied through solution of manufactured unsteady diffusion 

equations in regular and irregular shaped domains. Similarly, these features were also discussed 

for the solution of the model second-order wave equation. 
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CHAPTER 4 

CARTESIAN CUT-STENCIL FDM SOLUTIONS to SOLID MECHANICS and HEAT 

TRANSFER PROBLEMS 

4.1 Objective of the Chapter 

The sample problems discussed in Chapter 3 demonstrated the capabilities and potential of the 

Cartesian cut-stencil FDM to solve PDEs on regular and irregular domains for manufactured 

problems which may not define any real physical problem. The aim of this chapter is to discuss 

and solve a number of PDEs which model real phenomenon in science and engineering. In the 

event that the analytical solution is not available for a specific problem, the cut-stencil FD 

solution is compared to other numerical results obtained from commercial software. The cut-

stencil FD solution to some basic problems of advanced elasticity that are associated with solid 

mechanics and problems in heat transfer are considered in this chapter.  

The problems of solid mechanics, e.g. in civil engineering, fracture mechanics and contact 

problems of solid bodies, have been widely analyzed and solved for several decades by applying 

the finite element method (FEM). This numerical method is the most popular approach in these 

fields [136, 137, 138]. The specific advantage of FEM for problems in solid mechanics field 

arises from the fact that FEM can easily be applied to complex domains, e.g. with curved 

boundaries. However the TFDM, as mentioned in Chapter 1, has a serious restriction in that it 

cannot easily accommodate a complex and irregular domain. The sample problems discussed in 

Chapter 3 were selected to provide proof that, in spite of the straightforward formulation and 

coding procedure of the cut-stencil FDM, it is able to solve PDEs on complex and irregular 

shaped domains.  

The main body of this chapter covers some basic PDEs in advanced elasticity and heat transfer 

and the Cartesian cut-stencil FDM solutions to the governing equations are presented in the 

context of some numerical examples.  

Due to the developing nature of the cut-stencil method/algorithm, which is the main focus of this 

research, only the 2
nd

-order 5-point cut-stencil solution scheme for steady problems and FTCS 

formulation for unsteady problems will be discussed through this chapter. Higher-order solutions 

of these problems, in either space or time, are left as the future research.  

4.2 Application of Cut-Stencil FDM in Elasticity 

The Saint-Venant’s torsional problem for a bar with elliptical cross-section, as a classical problem 

in the field of elasticity, is discussed in this section. The torsional problem can be stated by the 

use of Prandtl’s stress function [139]. The cut-stencil FDM formulation and solution for Prandtl’s 

stress function for torsion of an irregular shaped cross-section, e.g. elliptical cross-section of bar 

are considered, as well as the solution for the stress function for bending of a cantilever beam 

with the same cross-section. 

4.2.1 Stress Function of Torsion for Straight Bars 

Consider a uniform cylindrical bar of an arbitrary cross-section that is fixed at plane 𝑧 = 0, as 

depicted in Figure 4.1. It is assumed that the bar is subjected to no body and external forces on its 
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lateral surfaces. The bar is twisted by a couple in the plane 𝑧 = 𝑙 and the moment of the couple is 

directed along the axis of the bar. 

 
Figure 4:1: Cylindrical bar subjected to torsional torque  

The deformation of the twisted shaft, according to Saint-Venant’s assumptions, includes rotations 

and warping of the cross-section. The displacement of any point in the 𝑥𝑦-plane corresponding to 

the rotation of the cross-section can be defined by 𝑢 = −𝜃𝑧𝑦 and 𝑣 = −𝜃𝑧𝑥 where 𝑢 and 𝑣 

represent the displacement along 𝑥 and 𝑦 axes, respectively, and 𝜃𝑧 is the angle of rotation of the 

cross -section at distance 𝑧 from the origin. The parameter 𝜓 is considered as function of 𝑥 and 𝑦 

to define the warping (𝜔) of the cross-section by 𝜔 = 𝜃𝜓(𝑥, 𝑦) where 𝜃 is angle of twist of the 

bar. It can be shown that, to satisfy the equilibrium equation, the function 𝜓(𝑥, 𝑦) should satisfy 

the Laplace equation 

 𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
= 0 (4.1.1) 

Considering the fact that the system of stresses must satisfy the boundary conditions of the 

equilibrium equation on the lateral surface of the cross-section, along with some mathematical 

manipulations, will lead to expressions for the shearing stresses 𝜏𝑥𝑧 and 𝜏𝑦𝑧:  

 𝜏𝑥𝑧 =
𝜕∅

𝜕𝑦
 ; 𝜏𝑦𝑧 = −

𝜕∅

𝜕𝑦
 (4.1.2) 

where ∅(𝑥, 𝑦) is called the Prandtl’s stress function. This function satisfies Poisson’s equation 

given in equation (4.1.3), in which the constant 𝐺 is called the “modulus of elasticity in shear” or 

the “modulus of rigidity”.   

 𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
= 𝐹 = −2𝐺𝜃 (4.1.3) 

The boundary conditions for the equilibrium equation declares that the stress function must be 

constant along the boundary of the solid bar cross-section. This condition is normally stated as 

𝜓(𝑥, 𝑦) = 0 along the boundary of the cross-section and this will be used in the following 

discussion. The derivation procedure and comprehensive concepts of the stress function for 

torsion have been stated in mathematical and theoretical elasticity texts such as [140, 141] and 
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also in numerical studies [142]. The discussion above has been adopted from these references or 

similar texts.  

If the boundary of the cross-section, as shown in Figure 4.2, is defined by the equation of an 

ellipse, that is 
𝑥2

𝑎2
+
𝑦2

𝑏2
− 1 = 0, one can prove that equation (4.1.3) can be satisfied by taking the 

function in equation (4.1.4) as Prandtl’s stress function. Equation (4.1.4) also satisfies the 

boundary conditions of the equilibrium equation and is equal to zero along the boundary. 

 
Figure 4.2: Illustration of elliptical cross-section of a bar 

 
𝜙 =

𝑎2𝑏2𝐹

2(𝑎2 + 𝑏2)
(
𝑥2

𝑎2
+
𝑦2

𝑏2
− 1) (4.1.4) 

The mapped form of equation (4.1.3) under the transformation equation  𝑥 = 𝑥(𝜉) and 𝑦 = 𝑦(𝜂) 

introduced by equations (2.4) is given in equation (4.2.1). Central differencing for the derivatives 

in equation (4.2.1), at point P of the computational stencil, gives the 2
nd

-order accurate 

approximation for equation (4.2.1), which has been written in equation (4.2.2).  

 1

(𝑥′)2
𝜕2∅

𝜕𝜉2
− 

𝑥"

(𝑥′)3
𝜕∅

𝜕𝜉
+ 

1

(𝑦′)2
𝜕2∅

𝜕𝜂2
−

𝑦"

(𝑦′)3
𝜕∅

𝜕𝜂
= 𝐹  (4.2.1) 

 1

(𝑥P
′ )2

[𝜙𝑤 − 2𝜙P + 𝜙𝑒] − 
𝑥P
′′

2(𝑥P
′ )3

[𝜙𝑒 − 𝜙𝑤] 

+
1

(𝑦P
′ )2
[𝜙𝑠 − 2𝜙P +𝜙𝑛] − 

𝑦P
′′

2(𝑦P
′ )3
[𝜙𝑛 − 𝜙𝑠] = 𝐹 

(4.2.2) 

The irregularity of the domain causes creation of irregular boundary nodes on the boundary. This 

type of node is created even if a uniform Cartesian grid is designed to mesh this cross-section, as 

seen for the grids depicted in Figure 4.3. The unique localized one-dimensional mappings used in 

the cut-stencil FDM provides the facility to treat these boundary nodes and offers a fully 2
nd

-order 

accurate solution, even for a non-uniform mesh, as illustrated in Chapter 3.  

The cut-stencil solution of equation (4.1.3) with 𝐹 = −1, by taking 𝑎 = 5 and 𝑏 = 2.5 for the 

elliptical cross-section shown in Figure 4.2, is reported in Table 4.1. A number of Cartesian grids 

were constructed for this problem, as indicated by the corresponding numbers of nodes in Table 

4.1. Schematics of a grid of 54 nodes for the full elliptical cross-section and a grid of 38 nodes for 

the half cross-section are illustrated in Figure 4.3. Several regular and irregular types of boundary 

nodes and the corresponding cut stencils are clearly seen along the boundaries. 
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Figure 4.3: Schematic of grids used for elliptical cross-section, a) grid of 54 nodes, b) grid of 38 

nodes 

The symmetry of the elliptical cross-section provides the opportunity to impose Neumann 

boundary conditions on the major and minor axes. To do this, the half and quarter elliptical cross-

sections were chosen, as depicted in Figure 4.4, and Neumann conditions taken from the exact 

solution were imposed on the south boundary corresponding to 𝑦 = 0 for one case, the west 

boundary corresponding to 𝑥 = 0 for another case, as well as on both south and west boundaries.  

 
Figure 4.4: Illustration of half and quarter elliptical cross-sections with Neumann condition 

imposed, a) south, b) west, c) south and west boundaries  

Boundary 

condition 

# of 

nodes 

Rel. error at 

internal nodes (%) 

Rel. error at 

boundary nodes (%) 

Avg. Max. Avg. Max. 

Dirichlet 

(full domain) 

54 0.80437 2.89997 - - 

97 0.19255 0.98111 - - 

Neumann 

(south - half domain) 
38 0.44322 0.92870 0.28950 0.34655 

Neumann 

(west - half domain) 
38 0.20448 0.32780 0.16137 0.32780 

Neumann 

(south & west – 

quarter domain) 

21 0.41934 0.91663 0.30808 0.47767 

Table 4.1: Relative error for cut-stencil solution to Prandtl’s stress function for torsion of a bar 

with elliptical cross-section 

The data in Table 4.1 shows good agreement of the cut-stencil FD solution with the exact solution 

of Prandtl’s stress function for torsion of an elliptical cross-section. Grid refinement for the case 
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of Dirichlet boundary conditions demonstrates that the error decreases as the number of grid 

points increases. The cases with imposed Neumann conditions on the boundaries confirms the 

accuracy of the differencing formula for this type of boundary, as already discussed for the 

manufactured problems, for this type of real engineering application. 

4.2.2 Stress Function for Bending of Bars 

In the case when a bar is bent in one of its principal planes and subjected to two equal and 

opposite couples at the ends, only the normal stress parallel to the axis of the bar will be non-zero 

[140]. Figure 4.5 displays a cantilever beam with constant cross-section of arbitrary shape while a 

force of magnitude 𝑃 is applied at the end and parallel to one of the principal axes of the bar 

cross-section. In case of pure bending, the normal stress is calculated by 𝜎𝑧 = −
𝑃(𝑙−𝑧)𝑥

𝐼
  where 𝐼 

is the moment of inertia of the cross-section. 

 
Figure 4.5: Illustration of cantilever beam under bending moment at the end  

It can be shown that the three components of stresses 𝜎𝑧, 𝜏𝑥𝑧 and 𝜏𝑦𝑧 are non-zero. Taking this 

assumption along with neglecting body forces, one can conclude from the equilibrium equation 

that these stresses are not dependent on 𝑧, i.e. they are the same in all cross-sections of the bar. 

The compatibility equations are cast in the form ∇2𝜏𝑦𝑧 = 0 and ∇2𝜏𝑥𝑧 = −
𝑃

𝐼(1+𝜗)
 in which 𝜗 is 

Poisson’s ratio. Therefore, the solution of bending of a prismatic cantilever beam requires finding 

functions of 𝑥 and 𝑦 which satisfy the equilibrium equation, the boundary conditions and the 

reduced form of compatibility equations [140].  

The solution procedure benefits from the definition of the stress function ∅(𝑥, 𝑦). The stress 

function can be determined from the equilibrium equations, which are satisfied by taking 𝜏𝑥𝑧 and 

𝜏𝑦𝑧 as: 

 𝜏𝑥𝑧 =
𝜕∅

𝜕𝑦
−
𝑃𝑥2

2𝐼
+ 𝑓(𝑦)  (4.3.1.1) 

 
𝜏𝑦𝑧 = −

𝜕∅

𝜕𝑥
 (4.3.1.2) 

where 𝑓(𝑦) is only a function of 𝑦. These determined forms of 𝜏𝑥𝑧 and 𝜏𝑦𝑧 are substituted in the 

compatibility equations and, taking zero for the constant of integration, it can be shown that the 

stress function is governed by the Poisson equation  

 𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
=

𝜗

1 + 𝜗

𝑃𝑦

𝐼
−
𝑑𝑓

𝑑𝑦
 (4.3.2) 
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Function 𝑓 is determined from the boundary conditions and, similar to the case of stress function 

for torsion, 𝜙 is constant along the boundary and normally set as zero. For the case of an elliptical 

cross-section with boundary equation  
𝑥2

𝑎2
+
𝑦2

𝑏2
− 1 = 0, the function 𝑓(𝑦) can be chosen as in 

equation (4.3.3) to satisfy the boundary conditions of the equilibrium equation. Substituting 𝑓(𝑦) 

in equation (4.3.2) gives the Poisson equation (4.3.4) for the stress function of bending for the bar 

of elliptical cross-section: 

 
𝑓(𝑦) = −

𝑃

2𝐼
(
𝑎2

𝑏2
𝑦2 − 𝑎2) (4.3.3) 

 𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
=
𝑃𝑦

𝐼
(
𝑎2

𝑏2
+

𝜗

1 + 𝜗
) (4.3.4) 

The analytical solution of equation (4.3.4), along with the condition of 𝜙 = 0 at the boundary, 

yields the stress function   

 
𝜙 =

(1 + 𝜗)𝑎2 + 𝜗𝑏2

2(1 + 𝜗)(3𝑎2 + 𝑏2)

𝑃

𝐼
(𝑥2 +

𝑎2

𝑏2
𝑦2 − 𝑎2)𝑦 (4.3.5) 

On the computational 5-point stencil, the mapped form of equation (4.3.4) and its corresponding 

discrete form, using 3-point central differencing of first and second derivatives at point P, are 

given by:  

 1

(𝑥’)2
𝜕2∅

𝜕𝜉2
− 

𝑥"

(𝑥’)3
𝜕∅

𝜕𝜉
+ 

1

(𝑦’)2
𝜕2∅

𝜕𝜂2
−

𝑦"

(𝑦’)3
𝜕∅

𝜕𝜂
=
𝑃𝑦

𝐼
(
𝑎2

𝑏2
+

𝜗

1 + 𝜗
)  (4.4.1) 

 1

(𝑥P
′ )2

[𝜙𝑤 − 2𝜙P + 𝜙𝑒] − 
𝑥P
′′

2(𝑥P
′ )3

[𝜙𝑒 − 𝜙𝑤] 

+
1

(𝑦P
′ )
2 [𝜙𝑠 − 2𝜙P + 𝜙𝑛] − 

𝑦P
′′

2(𝑦P
′ )
3 [𝜙𝑛 − 𝜙𝑠] =

𝑃𝑦P

𝐼
(
𝑎2

𝑏2
+

𝜗

1+𝜗
)  

(4.4.2) 

The results for the bending stress function of a bar of elliptical cross-section with 𝑎 = 5, 𝑏 = 2.5  

and 𝜗 = 0.35 𝑃 = 1000, are reported in Table 4.2. For those cases involving Neumann boundary 

conditions, the value of the normal derivative of the stress function was taken from equation 

(4.3.5).The Neumann condition is imposed on the north boundary, corresponding to the line x= 0 

(referring to Figure 4.5) where the lower half of the ellipse was taken as the domain of the 

problem. Comparison of results for cases with Neumann condition on south and north boundaries 

verifies the symmetry of the solution captured by the cut-stencil solution procedure and confirms 

the accuracy of the calculations and the corresponding code. 
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Boundary 

condition 

# of 

nodes 

Abs. error at 

internal nodes  

Abs. error at 

boundary nodes  

Avg. Max. Avg. Max. 

Dirichlet 

(full domain) 

54 0.13689 0.35617 - - 

97 0.05499 0.18960 - - 

Neumann 

(south – half 

domain) 

38 0.07609 0.17225 0.10204 0.22966 

Neumann 

(west – half 

domain) 

38 1.12580 2.22102 4.67888 5.43839 

54 0.54749 1.31315 1.91955 2.30357 

Neumann 

(north – half 

domain) 

38 0.07609 0.17225 0.10204 0.22966 

Table 4.2: Absolute error for cut-stencil solution of Prandtl’s stress function for bending of a bar 

with elliptical cross-section beam 

4.3 Application of Cut-Stencil FDM to Heat Transfer Problems on Regular and 

Irregular Shaped Domains 

A large number of research studies have been done to consider heat transfer and related subjects 

due to its wide range of applications in several areas of engineering and science [97, 143, 144, 

145, 146]. The complexity of heat transfer phenomena and the various geometries studied 

precludes the development of analytical solutions for these problems, so numerical methods must 

be applied to solve such heat transfer problems. 

The cut-stencil FDM, which has been shown to accurately solve PDEs in irregular shaped 

domains, can be used to solve heat transfer problems in any type of domain. For this purpose, the 

cut-stencil solution of steady and unsteady conduction heat transfer will be discussed in the 

following sub-sections. The cut-stencil FDM results are compared to the exact analytical solution, 

if available, or to the results from commercial software.  

4.3.1 Steady Conduction Heat Transfer in a Rectangular Domain      

The Laplace equation (4.5.1) is a model for steady state 2-D heat conduction provided the thermal 

conductivity is assumed to be constant and no heat is generated in the domain. 

 𝜕2𝑇

𝜕𝑥2
+ 
𝜕2𝑇

𝜕𝑦2
= 0 (4.5.1) 

The analytical solution of equation (4.5.1) can be derived using the separation of variable 

technique for limited cases of boundary conditions on a rectangular domain. It is assumed that the 

temperature 𝑇(𝑥, 𝑦) can be written as the product of two functions, one depending only on 𝑥 and 

the other depending only on 𝑦. The rectangular plate shown in Figure 4.6 is considered with three 

sides of the plate maintained at constant temperature 𝑇1 and the fourth side held at 𝑇2. 
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Figure 4.6: Two dimensional steady conduction heat transfer in a rectangular plate 

The non-dimensional variable Θ, defined by 

 
Θ =

𝑇 − 𝑇1
𝑇2 − 𝑇1

 (4.5.2) 

also satisfies the Laplace equation and holds the temperature between 0 and 1. The boundary 

conditions for this variable are described in Figure 4.6. 

One can seek a solution of Θ as the product of two functions, i.e., Θ(𝑥, 𝑦) = X(𝑥)Y(𝑦). Using this 

form of function, the governing equation can be separated as: 

 
−
1

X

𝜕2X

𝜕𝑥2
=
1

Y

𝜕2Y

𝜕𝑦2
= 𝜆2 (4.5.3.1) 

where 𝜆 is a constant. The general solutions of these two ordinary differential equations are:  

 𝑋 = 𝐴1 cos(𝜆𝑥) + 𝐴2 sin(𝜆𝑥)  (4.5.3.1) 

 𝑌 = 𝐵1𝑒
𝜆𝑦 + 𝐵2𝑒

−𝜆𝑦 (4.5.3.2) 

and the function Θ is given by the product 

 Θ = (𝐴1 cos(𝜆𝑥) + 𝐴2 sin(𝜆𝑥))(𝐵1𝑒
𝜆𝑦 + 𝐵2𝑒

−𝜆𝑦) (4.5.4.1) 

The proposed form of Θ in equation (4.5.4.1) must satisfy the boundary conditions shown in 

Figure 4.6, yielding the values of the coefficients 𝐴1, 𝐴2, 𝐵1 and 𝐵2. Replacing these coefficients 

in equation (4.5.4.1), along with some mathematical concepts such as the property of orthogonal 

functions or expansion of unity in a Fourier series, determines the final form of Θ as a convergent 

infinite series, as written in equation (4.5.4.2). Detail for this solution technique has been 

discussed in most heat transfer text books such as [147, 148].   

 
Θ =

2

𝜋
∑

(−1)𝑛+1 + 1

𝑛

∞

𝑛=1

𝑠𝑖𝑛 (
𝑛𝜋𝑥

L
)
𝑠𝑖𝑛ℎ(𝑛𝜋𝑦/L)

𝑠𝑖𝑛ℎ(𝑛𝜋W/L)
 (4.5.4.2) 
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The cut-stencil solution of the steady heat conduction in a rectangular plate with L = W = 1, and 

with boundary conditions 𝑇1 = 300 and 𝑇2 = 310, as displayed in Figure 4.6, is presented and 

the results are compared to exact solution (4.5.4.2) and two commercial software. A Cartesian 

grid of 81 nodes was designed to solve this problem by the cut-stencil FDM. Finite volume and 

finite element grids with the same number of nodes were also constructed for ANSYS FLUENT 

as a finite volume FV-based solver and ANSYS Mechanical as a finite element FE-based solver. 

Figure 4.7 shows a plot of the numerical solutions at internal nodes versus the corresponding 

number of nodes which are listed in Table 4.3. 

 
Figure 4.7: Comparison of cut-stencil FDM with FVM and FEM for 2-D steady conduction heat 

transfer in a rectangular plate  

Figure 4.7 demonstrates that there is good agreement between the cut-stencil FDM solution and 

that obtained from FVM and FEM. Figure 4.7 gives a qualitative comparison of the different 

numerical methods while the value of temperature at each node predicted by each of the three 

numerical methods are given in Table 4.3, along with the analytical solution at each of these 

nodes, calculated from the first nine terms of the series (4.5.4.2). It is evident from this table that 

the cut-stencil FD method provides the same level of accuracy as the well-established FV and FE 

methods. 
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Node 

no. 

Coordinate FDM* 

cut-stencil 

FVM** 

ANSYS FLUENT 

FEM*** 

ANSYS Mechanical 
Analytical 

solution 𝑥 𝑦 

1 0.125 0.125 300.17 300.17 300.17 300.17 

2 0.125 0.25 300.38 300.38 300.36 300.37 

3 0.125 0.375 300.64 300.64 300.62 300.63 

4 0.125 0.5 301.03 301.03 300.99 301.01 

5 0.125 0.625 301.64 301.64 301.55 301.59 

6 0.125 0.75 302.69 302.69 302.54 302.63 

7 0.125 0.875 304.83 304.83 304.83 304.85 

8 0.25 0.125 300.32 300.32 300.31 300.31 

9 0.25 0.25 300.69 300.69 300.67 300.68 

10 0.25 0.375 301.17 301.17 301.14 301.15 

11 0.25 0.5 301.84 301.84 301.80 301.82 

12 0.25 0.625 302.82 302.82 302.78 302.80 

13 0.25 0.75 304.31 304.31 304.33 304.32 

14 0.25 0.875 306.61 306.61 306.79 306.68 

15 0.375 0.125 300.42 300.42 300.40 300.41 

16 0.375 0.25 300.89 300.89 300.87 300.88 

17 0.375 0.375 301.50 301.50 301.48 301.49 

18 0.375 0.5 302.33 302.33 302.32 302.33 

19 0.375 0.625 303.50 303.50 303.52 303.51 

20 0.375 0.75 305.12 305.12 305.21 305.16 

21 0.375 0.875 307.31 307.31 307.42 307.36 

22 0.5 0.125 300.45 300.45 300.44 300.44 

23 0.5 0.25 300.96 300.96 300.94 300.95 

24 0.5 0.375 301.62 301.62 301.60 301.61 

25 0.5 0.5 302.50 302.50 302.50 302.50 

26 0.5 0.625 303.71 303.71 303.76 303.73 

27 0.5 0.75 305.36 305.36 305.45 305.41 

28 0.5 0.875 307.49 307.49 307.59 307.55 

29 0.625 0.125 300.42 300.42 300.4 300.41 

30 0.625 0.25 300.89 300.89 300.87 300.88 

31 0.625 0.375 301.50 301.50 301.48 301.49 

32 0.625 0.5 302.33 302.33 302.32 302.33 

33 0.625 0.625 303.50 303.50 303.52 303.51 

34 0.625 0.75 305.12 305.12 305.21 305.16 

35 0.625 0.875 307.31 307.31 307.42 307.36 

36 0.75 0.125 300.32 300.32 300.31 300.31 

37 0.75 0.25 300.69 300.69 300.67 300.68 

38 0.75 0.375 301.17 301.17 301.14 301.15 

39 0.75 0.5 301.84 301.84 301.80 301.82 

40 0.75 0.625 302.82 302.82 302.78 302.80 

41 0.75 0.75 304.31 304.31 304.33 304.32 

42 0.75 0.875 306.61 306.61 306.79 306.68 

43 0.875 0.125 300.17 300.17 300.17 300.17 

44 0.875 0.25 300.38 300.38 300.36 300.37 

45 0.875 0.375 300.64 300.64 300.62 300.63 

46 0.875 0.5 301.03 301.03 300.99 301.01 

47 0.875 0.625 301.64 301.64 301.55 301.59 

48 0.875 0.75 302.69 302.69 302.54 302.63 

49 0.875 0.875 304.83 304.83 304.83 304.85 

*: Cut-stencil FD method, **: Finite volume method,***: Finite element method 

Table 4.3: Numerical and analytical solution for 2-D steady conduction heat transfer 

in rectangular plate 



    

112 

 

4.3.2 Steady Conduction Heat Transfer in an Irregular Domain 

The cut-stencil solution of 2-dimensional steady conduction heat transfer in an irregular shaped 

domain, as shown in Figure 4.8, is considered in this sub-section. The dimensions of the domain 

and the temperature boundary condition for each wall are given in the figure. The homogeneous 

Neumann boundary condition, which simulates an insulated wall, is imposed on the east 

boundary that corresponds to the vertical line 𝑥 = 1. 

 
Figure 4.8: Irregular shaped domain used for steady conduction heat transfer 

A Cartesian grid of 93 active nodes was constructed to solve the Laplace equation (4.5.1) for this 

heat transfer problem and the solution has been compared with FVM results obtained from 

ANSYS FLUENT. The Cartesian grid created a number of regular and irregular boundary nodes 

on the curve boundary of the domain shown in Figure 4.8. A combination of triangular and 

quadrilateral cells is used to design the mesh for the FVM analysis. A triangular mesh was used in 

the zone located between 0 ≤ 𝑥 < 0.5 and quadrilateral cells were used for 0.5 ≤ 𝑥 ≤ 1, creating 

a mesh of 91 nodes for the ANSYS FLUENT simulation.  

Table 4.4 indicates the value of temperature at a number of internal nodes and Neumann 

boundary nodes located along east boundary. The comparison of these results verifies good 

agreement between the cut-stencil FD solution and values of temperature taken from popular 

CFD commercial software. In particular, the results in Table 4.4 confirm the accuracy of the 

proposed 2
nd

-order one-sided differencing scheme for boundary nodes with a Neumann condition. 
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Coordinate FDM 

cut-stencil 

FVM 

ANSYS FLUENT 

Coordinate FDM 

cut-stencil 

FVM 

ANSYS FLUENT 𝑥 𝑦 𝑥 𝑦 

0.1 0.5 305.628 306.927 0.5 0.2 305.750 300.246 

0.1 0.6 313.682 314.398 0.5 0.3 305.856 304.851 

0.1 0.7 312.322 312.413 0.6 0.1 318.232 316.621 

0.2 0.5 303.376 301.435 0.6 0.9 315.534 315.869 

0.2 0.6 306.779 307.523 0.8 0.3 317.957 317.493 

0.2 0.7 305.607 304.781 1 0.1 326.078 325.817 

0.3 0.5 303.039 302.749 1 0.2 322.630 322.257 

0.3 0.6 304.452 303.945 1 0.3 320.011 319.667 

0.3 0.7 303.324 303.014 1 0.4 318.372 318.136 

0.4 0.4 302.699 302.781 1 0.5 317.752 317.642 

0.4 0.5 304.326 304.554 1 0.6 318.171 318.161 

0.4 0.6 304.666 304.721 1 0.7 319.671 319.699 

0.4 0.7 303.239 303.343 1 0.8 322.275 322.277 

0.5 0.1 306.863 300.496 1 0.9 325.852 325.820 

Table 4.4: Comparison of cut-stencil FDM and FVM for solution of steady conduction heat 

transfer in an irregular domain  

Contours of isothermal lines in the zone 0.6 ≤ 𝑥 ≤ 0.9 of the irregular shaped domain in Figure 

4.8 are presented in Figure 4.9 for both the cut-stencil FDM and ANSYS FLUENT’s FV solution. 

This figure shows that these two methods predict the same temperature distribution in this region 

of the domain. 

This sample heat transfer problem has shown the capability of the Cartesian cut-stencil FD 

algorithm/method to solve heat transfer problems on irregular shaped domains. This FD scheme 

can solve PDEs on the cut stencils associated with nodes which are located near the boundaries of 

the domain without any special formulation at these nodes and, consequently, the programming 

does not become complicated. 

 
Figure 4.9: Contours of isothermal lines in zone 0.6 ≤ x ≤ 0.9 of irregular shaped domain, a) cut-

stencil FDM, b) ANSYS FLUENT FVM 
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 4.3.3 Unsteady Heat Conduction in a Rectangular Domain 

The governing equation for 2-D transient heat conduction, assuming constant material property 

and no heat generation, is given by equation (4.6.1), in which 𝜈 is introduced as thermal 

diffusivity. The analytical solution for this equation can be derived only for some limited cases 

under specific initial and boundary conditions and for regular domains.  

 𝜕𝑇

𝜕𝑡
= 𝜈 (

𝜕2𝑇

𝜕𝑥2
+ 
𝜕2𝑇

𝜕𝑦2
) (4.6.1) 

The mapped and discrete forms of equation (4.6.1) at node P of an arbitrary 5-point stencil were 

introduced in equations (2.52.1) and (2.52.2) in which the terms RHS and RHSP
𝑛 are considered as 

zero. 

At first, the FTCS cut-stencil solution to equation (4.6.1) is presented for the rectangular domain 

shown in Figure 4.10, with temperature boundary conditions as prescribed. The thermal 

diffusivity and the initial temperature (at initial time 𝑡0 (𝑠)) are specified as 𝜈 = 11.234𝐸 −

5 m2/s and 𝑇0 = 0℃, respectively. This transient problem with the same initial and boundary 

conditions as well as thermal diffusivity and dimensions was solved in Hoffmann’s textbook 

using TFDM [17].  

 
Figure 4.10: Schematic of rectangular domain used for comparison of cut-stencil FDM and 

TFDM solutions to transient heat conduction  

A uniform Cartesian grid of 1271 nodes with ∆𝑥 = ∆𝑦 = 0.01, or 𝑥′ = 𝑦′ = 0.01  in terms of the 

metrics of transformation, was designed for studying this problem. This is the same as the grid 

defined by Hoffmann for the TFD study. The maximum allowable time step to satisfy the stability 

criteria, as discussed in Chapter 2, is Δ𝑡𝑀𝑎𝑥. = 0.2225 (𝑠). The time step taken in the TFD 

calculation was ∆𝑡 = 0.2 (𝑠) which is also used in the cut-stencil FD scheme. Table 4.5 reports 

the predicted value of temperature at a number of internal nodes at two different times 𝑡 = 10 (𝑠) 

and 𝑡 = 40 (𝑠). The cut-stencil solution to this transient heat transfer problem agrees well with 

the TFD solution at these two available time steps. The stability criteria proposed in Chapter 2 

which provides a stable solution is also in good agreement with the suggested maximum 

allowable time step by TFDM. 
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Coordinate 𝑡 = 10 (𝑠) 𝑡 = 40 (𝑠) 

𝑥 𝑦 
Cut-stencil 

FDM 

TFDM 

(Hoffmann) 

Cut-stencil 

FDM 

TFDM 

(Hoffmann) 

0.05 

0.01 32.381 32.381 34.224 34.224 

0.05 10.051 10.051 16.765 16.765 

0.10 1.116 1.116 6.505 6.505 

0.20 0.001 0.001 0.808 0.808 

0.25 0.012 0.012 0.711 0.711 

0.35 2.513 2.513 4.195 4.195 

0.39 8.095 8.095 8.556 8.556 

0.10 

0.01 33.311 33.311 36.143 36.143 

0.05 11.657 11.657 22.039 22.039 

0.10 1.394 1.394 9.898 9.898 

0.20 0.001 0.001 1.336 1.336 

0.25 0.015 0.015 1.155 1.155 

0.35 2.914 2.914 5.516 5.516 

0.39 8.328 8.328 9.036 9.036 

0.15 

0.01 33.351 33.351 36.436 36.436 

0.05 11.750 11.750 23.096 23.096 

0.10 1.415 1.415 10.798 10.798 

0.20 0.001 0.001 1.508 1.508 

0.25 0.015 0.015 1.294 1.294 

0.35 2.938 2.938 5.781 5.781 

0.39 8.338 8.338 9.110 9.110 

0.20 

0.01 33.311 33.311 36.143 36.143 

0.05 11.657 11.657 22.039 22.039 

0.10 1.394 1.394 9.898 9.898 

0.20 0.001 0.001 1.336 1.336 

0.25 0.015 0.015 1.155 1.155 

0.35 2.914 2.914 5.516 5.516 

0.39 8.328 8.328 9.036 9.036 

0.25 

0.01 32.381 32.381 34.224 34.224 

0.05 10.051 10.051 16.765 16.765 

0.10 1.116 1.116 6.505 6.505 

0.20 0.001 0.001 0.808 0.808 

0.25 0.012 0.012 0.711 0.711 

0.35 2.513 2.513 4.195 4.195 

0.39 8.095 8.095 8.556 8.556 

Table 4.5: Comparison of cut-stencil FDM and TFDM for solution of unsteady conduction heat 

transfer in a rectangular domain 

The analytical solution for the steady-state condition of this transient heat transfer problem is 

given by [17]: 
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𝑇 = 2 ∗ 40∑
1− 𝑐𝑜𝑠(𝑛𝜋)

𝑛𝜋

∞

𝑛=1

𝑠𝑖𝑛 (
𝑛𝜋𝑥

0.3
)
𝑠𝑖𝑛ℎ (

𝑛𝜋(0.4 − 𝑦)
0.3 )

𝑠𝑖𝑛ℎ (
0.4𝑛𝜋
0.3

)
+ 2

∗ 10∑
1− 𝑐𝑜𝑠(𝑛𝜋)

𝑛𝜋

∞

𝑛=1

𝑠𝑖𝑛 (
𝑛𝜋𝑥

0.3
)
𝑠𝑖𝑛ℎ (

𝑛𝜋𝑦
0.3 )

𝑠𝑖𝑛ℎ (
0.4𝑛𝜋
0.3

)
 

(4.6.2) 

For the purpose of our discussion, the solution is said to be steady when for all nodes, the total of 

the absolute difference of temperature between one time level and the next is less than 0.01. The 

total difference of temperature between 𝑡 = 410.4 (𝑠) and 𝑡 = 410.6 (𝑠) is equal to 0.02, while 

for time between 𝑡 = 410.6 (𝑠) and 𝑡 = 410.8 (𝑠) and between 𝑡 = 410.8 (𝑠) and 𝑡 = 411 (𝑠), 

this difference is equal to 0.01. So, one can say that the solution reaches to steady-state condition 

at about 𝑡 = 410.8 (𝑠). 

Cut-stencil FDM and TFDM solutions at steady-state condition for the transient conduction 

problem in Figure 4.10 are compared to the analytical solution (4.6.2) in Table 4.6.  

Coordinate 
Cut-stencil 

FDM 

TFDM 

(Hoffmann) 

Analytical 

solution 

(Hoffmann) 

Coordinate 
Cut-stencil 

FDM 

TFDM 

(Hoffmann) 

Analytical 

solution 

(Hoffmann) 
𝑥 𝑦 𝑥 𝑦 

0.05 0.01 34.693 34.693 34.961 0.15 0.25 6.145 6.145 6.145 

0.05 0.02 29.800 29.800 29.898 0.15 0.35 7.648 7.648 7.652 

0.05 0.05 18.935 18.935 18.937 0.15 0.38 8.998 8.998 8.996 

0.05 0.10 9.934 9.934 9.921 0.15 0.39 9.495 9.495 9.457 

0.05 0.25 3.142 3.142 3.140 0.20 0.01 36.954 36.954 37.038 

0.05 0.35 5.131 5.131 5.131 0.20 0.02 33.964 33.964 33.989 

0.05 0.38 7.603 7.603 7.627 0.20 0.05 25.788 25.788 25.809 

0.05 0.39 8.749 8.749 8.816 0.20 0.10 15.822 15.822 15.827 

0.10 0.01 36.954 36.954 37.038 0.20 0.25 5.360 5.360 5.359 

0.10 0.02 33.964 33.964 33.989 0.20 0.35 7.134 7.134 7.139 

0.10 0.05 25.788 25.788 25.809 0.20 0.38 8.756 8.756 8.762 

0.10 0.10 15.822 15.822 15.827 0.20 0.39 9.370 9.370 9.391 

0.10 0.25 5.360 5.360 5.359 0.25 0.01 34.693 34.693 34.961 

0.10 0.35 7.134 7.134 7.139 0.25 0.02 29.800 29.800 29.898 

0.10 0.38 8.756 8.756 8.762 0.25 0.05 18.935 18.935 18.937 

0.10 0.39 9.370 9.370 9.391 0.25 0.10 9.934 9.934 9.921 

0.15 0.01 37.371 37.371 37.221 0.25 0.25 3.142 3.142 3.140 

0.15 0.02 34.772 34.772 34.763 0.25 0.35 5.131 5.131 5.131 

0.15 0.05 27.419 27.419 27.436 0.25 0.38 7.603 7.603 7.627 

0.15 0.10 17.630 17.630 17.641 0.25 0.39 8.749 8.749 8.816 

Table 4.6: Comparison of cut-stencil FDM and TFDM steady-state solution of the transient 

conduction heat transfer with analytical solution 

The comparison of results in Table 4.6 confirms the good agreement between both numerical 

methods and the analytical solution. The average and maximum absolute difference between the 

cut-stencil FD solution and the analytical solution are 0.038 and 0.268, respectively. 

4.3.4 Unsteady Heat Conduction in an Irregular Domain 

In this final example, the unsteady conduction heat transfer problem is simulated in the irregular 

shaped domain depicted in Figure 4.11. The cut-stencil FD solution is compared to a FV solution 
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using the commercial software ANSYS FLUENT. The thermal diffusivity 𝜈 in equation (4.6.1) is 

taken as 11.105𝐸 − 3 m2/s and 𝑇0 = 273 𝐾 is the value of temperature at initial time. A 

uniform Cartesian grid comprised of 100 nodes was used for the cut-stencil FD solution, while a 

mesh system including triangular and quadrilateral cells, totalling 101 nodes, was designed to 

conduct the FV analysis. The maximum allowable time step, by taking into account that 𝑥′ =

𝑦′ = 0.1 for this case, is about 0.225 (𝑠).  

 
Figure 4.11: Irregular shaped domain used for unsteady conduction heat transfer 

The temperature (in degrees kelvin) at the circular and angular cut boundaries of the domain in 

Figure 4.11 is kept constant, similar to the condition for the south and north boundaries. 

However, the temperature along the west boundary of the domain, corresponding to the line 𝑥 =

0, is varied linearly with the 𝑦 coordinate. The comparison of the values of temperature resulting 

from the cut-stencil FD and commercial software FV methods, at 𝑡 = 2 (s), is reported in Table 

4.7.   

Coordinate FDM 

cut-stencil 

FVM 

ANSYS FLUENT 

Coordinate FDM 

cut-stencil 

FVM 

ANSYS FLUENT 𝑥 𝑦 𝑥 𝑦 

0.1 0.1 304.866 303.982 0.5 0.9 303.281 303.789 

0.1 0.3 298.156 296.620 0.6 0.3 290.643 291.770 

0.1 0.9 312.559 311.548 0.6 0.4 285.516 286.481 

0.2 0.1 303.610 302.428 0.6 0.7 290.223 291.742 

0.2 0.4 288.266 287.327 0.7 0.2 308.891 308.098 

0.2 0.8 298.977 297.323 0.7 0.4 294.066 293.599 

0.3 0.2 292.061 290.925 0.7 0.6 293.890 293.508 

0.3 0.3 285.390 284.770 0.7 0.8 308.648 308.291 

0.3 0.9 303.288 302.357 0.8 0.3 310.562 308.967 

0.4 0.1 302.078 301.437 0.8 0.4 305.301 303.814 

0.4 0.3 283.623 283.591 0.8 0.6 305.201 304.530 

0.4 0.6 279.563 280.346 0.8 0.7 310.454 309.945 

0.5 0.2 293.217 292.957 0.9 0.4 316.004 316.834 

0.5 0.8 292.846 293.142 0.9 0.6 315.982 317.038 

Table 4.7: Comparison of cut-stencil FDM and FVM for solution of unsteady conduction heat 

transfer in an irregular domain at 𝑡 = 2 (s)  

The results in Table 4.7 reveal good agreement between the solution from the cut-stencil FDM 

and the FVM. The average and maximum absolute difference for all the internal nodes are 
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0.95856 and 3.01582, respectively. The values of temperature along the horizontal mid-line of the 

domain (𝑦 = 0.5), are plotted in Figure 4.12 for both the cut-stencil FDM and FVM.  

 
Figure 4.12: Comparison of cut-stencil FDM and FVM for temperature along the line 𝑦 = 0.5 in 

an irregular domain at 𝑡 = 2 (s) 

4.4 Chapter Summary 

The application of the Cartesian cut-stencil FDM for a number of real engineering problems was 

addressed in this chapter through the solution to some boundary value problems in advanced 

elasticity and heat transfer. Apart from verification for formulations and coding, results of this 

chapter show the broad capabilities of the cut-stencil FDM to solve PDEs that are commonly 

encountered in many fields of science and engineering.  

The cut-stencil FDM solutions for the stress function of torsion and bending for a bar were 

obtained and results were compared to the analytical solutions. Neumann boundary conditions 

taken from the analytical solution were applied along the symmetry lines of domains studied. The 

results confirmed the accuracy of formulations used for treatment of Neumann boundary 

conditions which may be defined for real engineering problems. 

The solution of steady and unsteady heat conduction on regular and irregular complex domains 

were considered in this chapter. The results were compared with available analytical solutions or 

to simulation results from commercial software. For one of the cases studied, the cut-stencil 

solution was compared to two common commercial FV-based and FE-based packages and good 

agreement was observed between the results. The simulations included heat conduction in a 

domain with a Neumann boundary condition, which may interpreted as an insulated wall, and for 

a wall with variable temperature.      
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CHAPTER 5 

CUT-STENCIL FD FORMULATION for THE SOLUTION of LID-DRIVEN CAVITY 

FLOW 

5.1 Objective of the Chapter 

The material in previous chapters examined fundamental concepts of the Cartesian cut-stencil 

finite difference algorithm/formulations and corresponding results for some mathematical sample 

problems and some engineering problems from advanced elasticity and heat transfer fields. This 

chapter discusses implementation of the cut-stencil method for lid-driven cavity flow. As one of 

the most popular benchmark problems in the area of fluid mechanics, the 2-D lid-driven cavity 

flow has been studied widely in the field of fluid mechanics [149] and researchers have used this 

problem to test different numerical methodologies e.g. FDM [150], FVM [151], FEM [152] or the 

Lattice Boltzmann method [153]. Several significant numerical studies will be referenced in this 

chapter and used for verification purposes. From the mathematical point-of-view, the cavity flow 

problem exhibits the most difficult numerical challenges of solving PDEs; highly non-linear 

governing equations, convection-diffusion type of transport equations, strongly coupled system of 

PDEs and lack of appropriate boundary conditions. These complex mathematical features are due 

to the complex physics associated with this flow, such as strong vortices and flow separation and 

reattachment. Numerical solutions of this problem must be able to predict the strength and 

location of vortices appearing at the corners of the cavity. Hence, this test problem has often been 

employed to verify and test the accuracy of new numerical schemes. 

The formulation and implementation of the cut-stencil FDM to 2-D steady lid-driven cavity flow 

on rectangular and non-rectangular domains, e.g., skewed quadrilateral and triangular cross-

sections, will be considered in this chapter for different values of Reynolds numbers. Due to the 

lack of a general analytical solution, results are compared to similar numerical studies for this 

benchmark problem. 

5.2 Primitive Variable Formulation of the Navier-Stokes Equations 

The equations of fluid motion can be derived from conservation principles for mass, linear 

momentum and energy, associated with continuity, Newton’s second law and the first law of 

thermodynamics, respectively. The resulting system of equations is called the Navier-Stokes 

equations [17].  

For an incompressible flow, the energy equation can be decoupled from the system of equations. 

Then, the Navier-Stokes equations for 2-D steady incompressible laminar flow in Cartesian 

coordinates (𝑋, 𝑌), in dimensional and non-conservative form, are: 

 𝜕𝒰

𝜕𝑋
+
𝜕𝒱

𝜕𝑌
= 0 (5.1.1) 

 
𝒰
𝜕𝒰

𝜕𝑋
+ 𝒱

𝜕𝒰

𝜕𝑌
+
1

𝜌

𝜕𝔭

𝜕𝑋
= 𝜗 (

𝜕2𝒰

𝜕𝑋2
+
𝜕2𝒰

𝜕𝑌2
) (5.1.2) 

 
𝒰
𝜕𝒱

𝜕𝑋
+ 𝒱

𝜕𝒱

𝜕𝑌
+
1

𝜌

𝜕𝔭

𝜕𝑌
= 𝜗 (

𝜕2𝒱

𝜕𝑋2
+
𝜕2𝒱

𝜕𝑌2
) (5.1.3) 
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where 𝒰, 𝒱, ρ, 𝔭 and ϑ denote 𝑋 and 𝑌-components of velocity, density, pressure and kinematic 

viscosity of the fluid, respectively. Additionally, for a 2-D incompressible flow, the 

streamfunction Ψ and the 𝑍-component Ω𝑧 of the vorticity vector, in a Cartesian coordinate 

system, are defined as   

 𝜕Ψ

𝜕𝑌
= 𝒰 (5.2.1) 

 𝜕Ψ

𝜕𝑋
= −𝒱 (5.2.2) 

 
Ω𝑧 = (

𝜕𝒱

𝜕𝑋
−
𝜕𝒰

𝜕𝑌
) (5.2.3) 

5.3 Streamfunction-Vorticity Equations  

The streamfunction-vorticity formulation of the Navier-Stokes equations is obtained by 

differentiating the momentum equations (5.1.2) and (5.1.3) with respect to 𝑌 and 𝑋, respectively, 

and subtracting the resulting equations to eliminate the pressure.  

The non-dimensional form of streamfunction and vorticity are defined as 𝜓 =
Ψ

𝑈𝑟𝑒𝑓𝐿𝑐
 and 𝜔 =

Ω𝑧L𝑐

𝑈𝑟𝑒𝑓
, respectively, where 𝐿𝑐 is a characteristic length and 𝑈𝑟𝑒𝑓 is a reference velocity. The 

components of velocity, similarly, can be stated in non-dimensional form and related to 𝜓 by 

defining 𝑢 =
𝒰

𝑈𝑟𝑒𝑓
=
𝜕𝜓

𝜕𝑦
 and 𝑣 =

𝒱

𝑈𝑟𝑒𝑓
= −

𝜕𝜓

𝜕𝑥
, where 𝑥 = 𝑋 𝐿𝑐⁄ , 𝑦 = 𝑌 𝐿𝑐⁄ . Thus, the non-

dimensional and non-conservative form of the governing equations for streamfunction and 

vorticity, in Cartesian coordinates, can be expressed as:  

 𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
= −ω (5.3.1) 

 
𝑢
𝜕ω

𝜕𝑥
+ 𝑣

𝜕ω

𝜕𝑦
=
1

𝑅𝑒
(
𝜕2ω

𝜕𝑥2
+
𝜕2ω

𝜕𝑦2
) (5.3.2) 

where 𝑅𝑒 =
𝑈𝑟𝑒𝑓 𝐿𝑐

𝜗
 is the Reynolds number. One can see that, using the streamfunction-vorticity 

definition, the Navier-Stokes equations are split into a convection-diffusion transport equation for 

vorticity and a Poisson equation for streamfunction. One of the advantages of this formulation is 

that the pressure has been eliminated from the calculation, but can be determined from a Poisson 

equation once the velocity field has been obtained from (5.3.1) and (5.3.2).  

5.4 Mapped Form of Streamfunction-Vorticity Equations and Boundary Conditions for 

Lid-Driven Cavity Flow 

The mapped form of the non-dimensional streamfunction-vorticity equations under the 

transformation 𝑥 = 𝑥(𝜉), 𝑦 = 𝑦(𝜂), which were introduced in equation (2.4) and illustrated in 

Figure 2.2, are given by: 



    

121 

 

 1

(𝑥′)2
𝜕2𝜓

𝜕𝜉2
−

𝑥"

(𝑥′)3
𝜕𝜓

𝜕𝜉
+

1

(𝑦′)2
𝜕2𝜓

𝜕𝜂2
−

𝑦"

(𝑦′)3
𝜕𝜓

𝜕𝜂
= −𝜔 (5.4.1) 

 −1

𝑅𝑒
(
1

(𝑥′)2
𝜕2𝜔

𝜕𝜉2
−

𝑥"

(𝑥′)3
𝜕𝜔

𝜕𝜉
+

1

(𝑦′)2
𝜕2𝜔

𝜕𝜂2
−

𝑦"

(𝑦′)3
𝜕𝜓

𝜕𝜂
) + 

𝑢

𝑥′

𝜕𝜔

𝜕𝜉

+
𝑣

𝑦′

𝜕𝜔

𝜕𝜂
= 0 

(5.4.2) 

Now consider a rectangular cavity of width L and height H, with the top wall (Y = H, 0 ≤ X ≤ L) 

sliding in the X direction with velocity 𝑈𝑙𝑖𝑑. The typical boundary conditions for viscous flow at a 

solid wall (or boundary) are described by the physical requirements of no-slip and no-penetration, 

meaning that both the tangential and normal components of fluid velocity must agree with the 

same components of the wall motion. The values of velocity components are set as zero for 

stationary walls while, for a moving wall, the no-slip and no-penetration conditions are the 

governing boundary conditions [130, 154, 155]. This implies that, if the moving wall of the cavity 

is the top wall and is parallel to the 𝑋-axis, the 𝑋 component on the wall velocity provides the 

prescribed value 𝑈𝑙𝑖𝑑, which is normally considered as 𝑢 = 1 for the non-dimensional form, i.e., 

the reference velocity is taken as 𝑈𝑙𝑖𝑑. The normal component of velocity (𝑣) is equal to zero on 

the moving wall. Since the velocity components are related to derivatives of the streamfunction, 

the velocity boundary conditions (in non-dimensional variables) lead to a Neumann condition 

for 𝜓, i.e., 
𝜕𝜓

𝜕𝑛
= 0 on the walls, where n represents the normal direction to the wall at each point. 

Along the walls, the streamfunction can be taken as an arbitrary constant which is usually set 

equal to zero. The boundary conditions on vorticity can be defined by applying equation (5.3.1) 

on the boundaries, producing Dirichlet boundary conditions for 𝜔. Similar approaches for 

definition of boundary conditions for lid-driven cavity flow, as discussed herein, have been 

addressed and used widely in other numerical studies [156-159]. Figure 5.1 provides a schematic 

of the boundary conditions used for the lid-driven cavity flow problem in the non-dimensional 

𝑥 − 𝑦 coordinate system. 

 
Figure 5.1: Schematic of the boundary conditions used for the lid-driven cavity flow 
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For cavity flow, the non-dimensional parameter Reynolds number is defined by 𝑅𝑒 =
𝑈𝑙𝑖𝑑𝐿 

𝜗
 where 

the characteristic length 𝐿𝑐  is the width L of the cavity. 

5.4.1 2
nd

-Order Discretization of Streamfunction-Vorticity Equations 

Initially, the 5-point 2
nd

-order cut-stencil FD formulation is used to approximate equations (5.4.1) 

and (5.4.2) in difference form. The second-order derivatives in equations (5.4.1) and (5.4.2) are 

approximated by 3-point central differencing, while either upwind or central differencing is used 

to approximate the derivatives in the convective terms in equation (5.4.2) depending on Reynolds 

number. The formulations associated with upwind discretization of the convective terms in the 

model convection-diffusion equation were discussed in Chapter 2. In the event that the 

convection terms of equations (5.4.1) are approximated by 2
nd

-order differences, the discrete 

approximation of the streamfunction-vorticity equations (5.4.1) and (5.4.2) at point P of an 

arbitrary 5-point computational stencil are:   

 𝜓𝑤 − 2𝜓P + 𝜓𝑒
(𝑥P
′ )2

−
𝑥P
′′

(𝑥P
′ )3

𝜓𝑒 − 𝜓𝑤
2

+
𝜓𝑠 − 2𝜓P +𝜓𝑛

(𝑦P
′ )2

−
𝑦P
′′

(𝑦P
′ )3
𝜓𝑛 − 𝜓𝑠
2

= −𝜔P (5.5.1) 

 −1

𝑅𝑒
(
𝜔𝑤 − 2𝜔P +𝜔𝑒

(𝑥P
′ )2

−
𝑥P
′′

(𝑥P
′ )3

𝜔𝑒 −𝜔𝑤
2

+
𝜔𝑠 − 2𝜔P +𝜔𝑛

(𝑦P
′ )2

−
𝑦P
′′

(𝑦P
′ )3

𝜔𝑛 −𝜔𝑠
2

)

+ 𝑢P (
𝜔𝑒 −𝜔𝑤
2𝑥P

′ ) + 𝑣P (
𝜔𝑛 −𝜔𝑠
2𝑦P

′ ) = 0 

(5.5.2) 

The condition for switching to any upwind schemes, i.e., backward or forward discretization, for 

convection terms is based on the sign of velocity components at point P. The discretization of 

equation (5.4.2), using the cut-stencil FD formulation and applying upwind differencing for 

convective terms, is addressed in equation (5.5.3). The parameters 𝑘 and 𝑙  take values 0 or 1, 

based on the sign of 𝑢P and 𝑣P, to switch from backward to forward differencing or vice versa. 

For example, if at any solution iteration the sign of 𝑢P is positive, the value of 𝑘 will be equal to 

zero and the corresponding convective term is approximated by 𝑢P
𝜔P−𝜔𝑤

𝑥P
′  . In event of 

negative 𝑢P, the value of 𝑘 will be equal to one and the corresponding convective term is 

approximated by 𝑢P
𝜔𝑒−𝜔P

𝑥P
′ . Hence, in both cases of 𝑘 = 0 or 1, the differencing scheme is 

associated with backward or forward differencing, respectively, which represents a 1
st
-order 

accurate approximation. The same conditions can be imagined for the value of 𝑙, which will be 

equal to 0 or 1 depending on the sign of 𝑣P. Thus, the discrete approximation of the flow 

equations with upwinding for the convective terms is: 

−1

𝑅𝑒
(
𝜔𝑤−2𝜔P+𝜔𝑒

(𝑥P
′ )2

−
𝑥P
′′

(𝑥P
′ )
3

𝜔𝑒−𝜔𝑤

2
+
𝜔𝑠−2𝜔P+𝜔𝑛

(𝑦P
′ )
2 −

𝑦P
′′

(𝑦P
′ )
3

𝜔𝑛−𝜔𝑠

2
) +

 𝑢P (
(−1)𝑘𝜔P−(1−𝑘)𝜔𝑤+𝑘𝜔𝑒

𝑥P
′ ) + 𝑣P (

(−1)𝑙𝜔P−(1−𝑙)𝜔𝑠+𝑙𝜔𝑛

𝑦P
′ ) = 0  

(5.5.3) 
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5.4.2 Higher-Order (HO) Discretization of Streamfunction-Vorticity Equations 

Higher-order discretization schemes for the streamfunction-vorticity formulation of the Navier-

Stokes equations have been reported in literature. For example, Erturk [160] compared wide and 

compact 4
th
-order schemes. The higher-order compact FD formulations, generally, have been 

developed using a nine-point stencil, as depicted in Figure 5.2. Some examples of this type of 

methodology for streamfunction-vorticity formulation of Navier-Stokes equation can be seen in 

[158, 161, 162, 163]. The stencil shown in Figure 5.2 encounters difficulty to treat a cut stencil if 

a Cartesian grid is used and a number of different types of stencils must be defined depending on 

the location of central point of the stencil, say node (i, j), relative to the boundaries. Hence, with a 

Cartesian grid, the stencil shown in Figure 5.2 is more applicable for a regular type of domain, 

e.g. the cavity flow problem in a rectangle. Nevertheless, this stencil has been used to construct 

higher-order differencing of the streamfunction-vorticity form of the Navier-Stokes equations on 

irregular shaped domains in [162], for a constricted channel using a non-orthogonal grid. 

However, this condition needs 2-D transformation functions 𝑥 = 𝑥(𝜉, 𝜂) and 𝑦 = 𝑦(𝜉, 𝜂) which 

makes the transformation procedure much more complicated compared to the 1-D mapping 

functions used in the Cartesian cut-stencil FDM.  

 
Figure 5.2: Illustration of 9-point stencil normally used for HO schemes in streamfunction- 

vorticity formulation e.g. [158, 162]  

The higher-order formulations of the cut-stencil FDM, introduced in Chapter 2 and referred to as 

HO cut-stencil FDM1 and HO cut-stencil FDM2, can be used to construct the higher-order 

methods for the streamfunction-vorticity equations. The first and second derivatives in equations 

(5.4.1) and (5.4.2) can be approximated by the compact Padé-Hermitian finite differencing 

technique. 

5.4.2.1 Higher-Order Cut-Stencil Finite Differencing Method 1 (HO Cut-Stencil FDM1) for 

Streamfunction-Vorticity Equations   

The HO cut-stencil FDM1 formulation of equations (5.4.1) and (5.4.2), at point P of an arbitrary 

5-point computational stencil, are given in equations (5.6.1) and (5.6.2), respectively. The scheme 

used in equation (2.41) for approximation of the first and second derivatives in the HO-FDM1 

formulation, has been used in these equations. Equation (5.6.2) is obtained when the central 

difference approximation is applied for the derivatives in the convective terms.    
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(5.6.2) 

As explained in Chapter 2, all derivatives at endpoints of a 5-point stencil appearing in equation 

(5.6.1) and (5.6.2), are approximated by a central or one-sided 2
nd

-order approximation. However 

if both endpoints 𝑤 and 𝑒 or 𝑠 and 𝑛 are located on the boundary, a one-sided 1
st
-order accurate 

approximation is used for evaluation of the second derivatives at corresponding endpoint. This 

situation was depicted in Figure 2.26. The global order of accuracy associated with the convective 

term approximations in (5.6.2) is 4
th
-order, while these terms are approximated to 2

nd
-order of 

accuracy when the central scheme in equation (5.5.2) is used. 

The HO upwind discretization of the convective terms in equation (5.5.3), when the HO cut-

stencil FDM1 formulation is applied to construct the higher-order differencing, is illustrated in 

equation (5.6.3). The methodology for approximation of derivatives at endpoints in equation 

(5.6.3) is the same as the procedure explained above.  
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(5.6.3) 

The values of parameters 𝑘 and 𝑙 in equations (5.6.3) are set as 1 or -1 based on the sign of 𝑢P 

and 𝑣P to construct backward or forward differencing schemes for the HO formulation, 

respectively. The convective terms are approximated by one-sided 2
nd

-order accurate formulas for 

equation (5.6.3) while the same terms are approximated by 1
st
-order accurate expressions in 

equation (5.5.3). 

5.4.2.2 Higher-Order Cut-Stencil Finite Differencing Method 2 (HO Cut-Stencil FDM2) for 

Streamfunction-Vorticity Equations   

The equations for streamfunction and vorticity, equations (5.4.1) and (5.4.2), can also be 

evaluated using the HO cut-stencil FDM2 formulation that was discussed in Chapter 2 for the 

convection-diffusion model equation, e.g. equation (2.43). In this case, discretization of equations 

(5.4.1) and (5.4.2), using HO cut-stencil FDM2 formulation with central differencing to 

approximate the convective terms of equation (5.4.2), yields: 
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1

(𝑥P
′ )2

[(2𝜓𝑤 − 4𝜓P + 2𝜓𝑒) +
1

2
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(5.7.1) 
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(5.7.2) 

Referring to the discussion of HO cut-stencil FDM2 in Chapter 2, all the first derivatives in 

equations (5.7.1) and (5.7.2) at endpoints of the 5-point stencil are approximated by either central, 

one-sided or upwind 4
th
, 3

rd
 or 2

nd
-order accurate differencing depending on the location of point 

P relative to the boundaries. Samples of the situations for these orders of accuracy were shown in 

Figures 2.27 and 2.28. The global order of accuracy of HO-FDM2 for the discretization of the 

convective terms in equation (5.7.2) is 4
th
-order.    

Upwind discretization of the convective terms in equation (5.4.2) using HO cut-stencil FDM2 to 

approximate the derivatives produces equation (5.7.3). Approximation of first derivatives at 

stencil endpoints is the same as for FDM1.   
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(5.7.3) 

The values of 𝑘 and 𝑙 in equation (5.7.3) are decided to be 1 or -1 based on the sign of 𝑢P and 𝑣P, 

determining whether HO backward to forward differencing of the convective terms is used at 

point P at each iteration. This formulation provides the condition of globally 2
nd

-order upwind 

approximation for the convective terms. 

5.4.3 Vorticity Boundary Condition Approximation 

The boundary condition for vorticity has been a topic of much debate and finite difference 

derivations of this subject date back to the 1930s [164]. Thom [165,166] proposed the 1
st
-order 

accurate approximation formula 𝜔𝑠 = 
2(𝜓𝑠+1−𝜓𝑠)

(Δℎ)2
 for calculation of vorticity (𝜔𝑠) on a stationary 

surface, where 𝜓𝑠 and 𝜓𝑠+1 stand for streamfunction value on the stationary surface and at the 

first node at the distance Δℎ normal to the surface, respectively. A summary of differencing 

expressions for higher-order accurate approximation of vorticity on the walls has been presented 

by Orszag and Israeli [167]. Roache [168] has provided details about this issue and analyzed 

results from the corresponding literature. The idea of no computation or calculation of the 

vorticity on the surfaces and consequently, no boundary condition for the vorticity, can also be 

found in numerical studies of the streamfunction-vorticity problem [130, 156, 158, and 169]. The 

prevailing belief in this category of numerical study of this formulation expresses that no physical 
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boundary condition is defined for vorticity and consequently, no numerical boundary condition 

should be imposed on vorticity. This type of study calculates the vorticity at the distance of cell 

size from the boundary [130], or by shrinking the actual physical domain mostly by the size of 

one cell [158, 169]. Spotz postulated that the vorticity is generated physically on the walls, so no 

computation of this parameter on the boundaries is required [130]. However, as mentioned above, 

a large numbers of studies can be found in which differencing expressions with different order of 

accuracy similar to Thom’s equation were utilized to calculate the vorticity on the boundary walls 

[149, 170]. 

In the present study, the vorticity on the boundary walls is computed with different orders of 

accuracy using the compact finite difference method, accounting for the fact that equation (5.3.1) 

and its mapped form (5.4.1), are valid on the boundary. It is worth to note, again, that the value of 

streamfunction 𝜓 has been considered constant on the walls. The vorticity on the wall can be 

approximated using Taylor’s series expansion of streamfunction on the corresponding wall, as 

detailed below.  

To simplify the discussion, consider a boundary wall as shown in Figure 5.3, with boundary node 

W and uniform grid spacing. The fact that the values of streamfunction at nodes NW, W and SW 

are all equal to the same constant value leads to  
𝜕2𝜓

𝜕𝑦2
⃒W = 0. Thus, the value of vorticity on the 

wall is computed from 𝜔W = −
𝜕2𝜓

𝜕𝑥2
⃒W. 

 
Figure 5.3: Illustration of vorticity computation on a boundary wall  

The Taylor’s series expansion of the streamfunction 𝜓 at point (i + 1, j) about the point (i, j) in 

the Cartesian coordinate system and in TFD notation is:   

 
𝜓(i+1,j) = 𝜓(i,j) + Δ𝑥

𝜕𝜓

𝜕𝑥
⃒(i,j) +

(Δ𝑥)2

2

𝜕2𝜓

𝜕𝑥2
⃒(i,j) +𝑂(Δ𝑥)

3 (5.8.1.1) 

Rearranging equation (5.8.1.1) gives a 1
st
-order approximation for the second derivative of 𝜓 with 

respect to x at the point (i, j), 

 𝜕2𝜓

𝜕𝑥2
⃒(i,j) =

2(𝜓(i+1,j) − 𝜓(i,j))

(Δ𝑥)2
−

2

(Δ𝑥)

𝜕𝜓

𝜕𝑥
⃒(i,j) + 𝑂(Δ𝑥) (5.8.1.2) 

The second term on the right hand side of equation (5.8.1.2) denotes the 𝑣-component of velocity, 

which is zero for the no-slip condition on stationary walls. At a boundary node on a moving wall, 



    

127 

 

this term, and a similar term involving 
𝜕𝜓

𝜕𝑦
, would be equal to the same velocity component of the 

moving wall. Thus, for uniform spacing ∆𝑥, the vorticity at point (i, j) on the wall, 𝜔W =

−
𝜕2𝜓

𝜕𝑥2
⃒W, can be approximated using the 1

st
-order accurate expression (5.8.1.2). 

Using equation (2.3.2) to transform the second derivative, noting that grid spacing on the 

computational stencil is uniform (∆𝜉 = 1) and that 𝑣W = −
𝜕𝜓

𝜕𝑥
⃒𝑤 = −

1

𝑥W
′

𝜕𝜓

𝜕𝜉
⃒𝑤 , a 1

st
-order 

accurate expression for vorticity on the wall, on the computational stencil, is given as: 

 
𝜔𝑤 = −[

2(𝜓P −𝜓𝑤)

(𝑥W
′ )2

− (
2

𝑥W
′ +

𝑥W
′′

(𝑥W
′ )2

) (−𝑣W)] (5.8.1.3) 

If the wall in Figure 5.3 is stationary, the no-slip boundary condition implies that 𝑣W = 0 in 

equation (5.8.1.3). The same procedure as above can be used to write a differencing scheme for 

computing vorticity at an arbitrary node (i, j) on a horizontal moving wall, depicted in Figure 5.4.  

 
Figure 5.4: Illustration of vorticity computation on a moving boundary wall 

The vorticity for this condition, written on the computational stencil, is: 

 
𝜔𝑛 = −[

2(𝜓P −𝜓𝑛)

(𝑦N
′ )2

+ (
2

𝑦N
′ −

𝑦N
′′

(𝑦N
′ )2
) (𝑢𝑤𝑎𝑙𝑙)] (5.8.1.4) 

Both equations (5.8.1.3) and (5.8.1.4) compute the vorticity at boundary nodes by 1
st
-order 

accurate approximation. Higher-order accurate approximation can be obtained using compact 

FDM and the physical relation between streamfunction and components of velocity. This leads to 

HO formulas for vorticity proposed by Briley [171] by introducing imaginary nodes outside the 

domain and differentiating cubic splines. Briley’s approximation has been used in several 

numerical studies based on the streamfunction-vorticity formulation, e.g., [168, 170, 172]. For 

example, using 1-sided compact differencing and the relation between physical parameters and 

streamfunction, the 2
nd

-order accurate approximation on the computational stencil for vorticity at 

boundary nodes W (Figure 5.3) and N (Figure 5.4) are, respectively,         

 
𝜔𝑤 = −[

−7𝜓𝑤 + 8𝜓P−𝜓𝑒
2(𝑥W

′ )2
− (

3

𝑥W
′ +

𝑥W
′′

(𝑥W
′ )2

) (−𝑣W)] (5.8.2.1) 
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𝜔𝑛 = −[

−7𝜓𝑛 + 8𝜓P + 𝜓𝑠
2(𝑦N

′ )2
+ (

3

𝑦N
′ −

𝑦N
′′

(𝑦N
′ )2
) (𝑢𝑤𝑎𝑙𝑙)] (5.8.2.2) 

The 2
nd

-order accurate approximation for calculating vorticity on the walls can also be given by 

equations (5.8.2.3) and (5.8.2.4) for boundary nodes W and N, in Figures 5.3 and 5.4, 

respectively. These formulations are even more compact compared to equations (5.8.2.1) and 

(5.8.2.2). The detailed derivation of these equations is presented in Appendix II. 

 
𝜔𝑤 = −[

−6𝜓𝑤 + 6𝜓P
(𝑥W
′ )2

− (
4

𝑥W
′ +

𝑥W
′′

(𝑥W
′ )2

) (−𝑣W) −
2

(𝑥W
′ )2

(−𝑥P
′ 𝑣P)] (5.8.2.3) 

 
𝜔𝑛 = −[

−6𝜓𝑛 + 6𝜓P
(𝑦N
′ )2

+ (
4

𝑦N
′ −

𝑦N
′′

(𝑦N
′ )2
) (𝑢𝑤𝑎𝑙𝑙) +

2

(𝑦N
′ )2

(𝑦P
′𝑢P)] (5.8.2.4) 

Implementations of equations (5.8.1.3) to (5.8.2.4) for boundary wall vorticity calculations are 

discussed through the Cartesian cut-stencil FDM results of the cavity problem.  

5.5 Numerical Results of Cut-Stencil FDM for Square Lid-Driven Cavity Flow 

The remainder of this chapter will focus on assessing the capabilities and numerical results of the 

Cartesian cut-stencil FD formulation for the solution of lid-driven cavity flow as a fluid 

mechanics benchmark problem. The results for each case are compared to numerical results from 

the literature to verify the methods and formulations that are used in coding of the cut-stencil 

method. 

Figure 5.5 is a schematic of the lid-driven cavity flow problem. For validation purposes, 

properties such as such strength and locations of streamfunction and vorticity at the primary and 

secondary vortices, streamfunction and vorticity contours and the plots of velocity components 

along certain lines, e.g. vertical and horizontal mid-lines, are commonly used for comparison. 

 
Figure 5.5: Schematic of a lid-driven cavity flow configuration (from Moshkin and Poochinapan 

[173]) 

Some results presented in this chapter are obtained from simulations on a non-uniform grid. The 

clustering function employed to generate the non-uniform grids for the cavity flow in a square 

domain are discussed in Appendix III.  
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5.5.1 Numerical Results for 2
nd

-Order Discretization of Streamfunction-Vorticity 

Equations 

Initially, the 2
nd

-order accurate discretization method is considered for the solution of lid-driven 

cavity flow in a square domain. The domain and corresponding boundary conditions were shown 

in Figure 5.1 in non-dimensional form. The non-dimensional form of the flow equations (5.5.1), 

(5.5.2) and (5.5.3) are solved for two values of Re = 100 and Re = 1000. 

5.5.1.1 𝑹𝒆 = 𝟏𝟎𝟎 with Non-Uniform 129*129 Grid; Boundary Vorticity Approximated by 

Briley’s Formula 

Table 5.1 gives the cut-stencil FD results for lid-driven cavity flow at 𝑅𝑒 = 100 when the 2
nd

-

order accurate approximations introduced in equations (5.5.1) and (5.5.2) are used. A non-

uniform grid of 129*129 nodes was designed for this case, to match the grid size used by Ghia et 

al. [150] and Bruneau and Jouron [174] which are used for comparison. The value of Reynolds 

number for this case is low enough that central differencing for the convective terms can be used. 

The vorticity on the boundaries is approximated with equations (5.8.2.1) and (5.8.2.2) for the 

stationary walls and the moving lid, respectively.  

The results have been compared with other numerical predictions with the same grid size and 

good agreement between the cut-stencil solution and other numerical results can be seen from the 

data reported in Table 5.1. Comparison of vorticity along the moving wall from Ghia’s study and 

the present work shows very good agreement, as observed from the plot in Figure 5.6. The 

absolute value of 𝜔 at point (0.5, 1), which is located on the moving lid, predicted by Ghia et al. 

[150] and the cut-stencil FD simulations are equal to 6.575 and 6.568, respectively. The velocity 

at the centre of the cavity is (−0.209, 0.057) from the cut-stencil FD solution and 

(−0.206, 0.055) from Ghia et al. [150]. 

𝑅𝑒 = 100 

Study 

(Grid) 

Ghia et al. 

 [150] 

Bruneau and Jouron 

 [174] 

Cut-stencil 

 FDM 

Primary 

vortex 

Abs. (𝜓) 0.1034 0.1026 0.1035 

Location 
𝑥 0.6172 0.6172 0.6179 

𝑦 0.7344 0.7344 0.7363 

Abs. (𝜔) 3.16646 N.A. 3.17681 

B.L* 

vortex 

Abs. (𝜓) 1.75E-6 1.63E-6 1.79E-6 

Location 
𝑥 0.0313 0.0313 0.0350 

𝑦 0.0391 0.0391 0.0350 

Abs. (𝜔) 1.555E-2 N.A. 1.589E-2 

B.R** 

vortex 

Abs. (𝜓) 1.25E-5 1.23E-5 1.25E-5 

Location 
𝑥 0.9453 0.9453 0.9425 

𝑦 0.0625 0.0625 0.0625 

Abs. (𝜔) 3.307E-2 N.A. 3.622E-2 

*: Bottom left, **: Bottom right   

Table 5.1: Comparison of 2
nd

-order accurate cut-stencil solution to results of Ghia et al. [150] and 

Bruneau and Jouron [174] for lid-driven cavity flow at 𝑅𝑒 = 100 with non-uniform grid size of 

129*129 
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Figure 5.6: Comparison of vorticity along moving wall from 2

nd
-order cut-stencil FD formulation 

and Ghia et al. [150] (𝑅𝑒 = 100, 129*129 grid) 

The contours of streamfunction and vorticity obtained from the 2
nd

-order accurate cut-stencil 

FDM with non-uniform grid of size 129*129 are shown in Figures 5.7 and 5.8, respectively. Both 

of these contour plots compare well, quantitatively and qualitatively, with those reported in other 

studies [150, 153].  

 
Figure 5.7: Streamfunction contours of 2

nd
-order cut-stencil FD solution (𝑅𝑒 = 100, non-uniform 

129*129 grid)  
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Figure 5.8: Vorticity contours of 2

nd
-order cut-stencil FD solution (𝑅𝑒 = 100, non- uniform 

129*129 grid) 

5.5.1.2 𝑹𝒆 = 𝟏𝟎𝟎𝟎 with Non-Uniform 129*129 Grid; Boundary Vorticity Approximated by 

Briley’s Formula 

A non-uniform Cartesian grid of 129*129 nodes is used to solve lid-driven cavity flow using the 

2
nd

-order formulation of the cut-stencil FDM, for 𝑅𝑒 = 1000. Initially equations (5.5.1) and 

(5.5.2) were applied for this case using the Point-Jacobi scheme, which was the iterative method 

used for most of the previous simulations presented in this thesis. Like the 𝑅𝑒 = 100 case, 

vorticity on the boundaries is approximated with equations (5.8.2.1) and (5.8.2.2) for the 

stationary walls and moving lid, respectively. Since the Reynolds number in this case is relatively 

high, central differencing of the convective terms causes numerical instability and the simulation 

diverges. 

Convergent computations for this case can be performed by choosing the point successive under-

relaxation (SUR) method as the iterative scheme. The computations were repeated with different 

values of under-relaxation factor (𝜎) starting from 0.725 since the simulation diverged for 𝜎 =

0.75. The optimum value of 𝜎 is that which takes the least computational effort, measured by the 

number of iterations for each value of under-relaxation factor. The independency of the solution 

from 𝜎 and, consequently, from the number of iterations, is observed by comparing three 

parameters of the solution, namely, absolute value of 𝜓 at the location of the primary vortex, 

components of velocity (𝑢, 𝑣) at the midpoint (𝑥 = 0.5, 𝑦 = 0.5) of the domain and absolute 

value of 𝜔 at location of the bottom left vortex. Table 5.2 reports the values of these flow 

parameters for each value of under-relaxation factor.  
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𝜎 
Abs. 𝜓 

(Primary vortex) 
(𝑢, 𝑣) 

(mid-point) 

Abs. 𝜔 

(Bottom left vortex) 

0.725 0.1179 (-0.06172,0.02618) 3.503E-1 

0.70 0.1179 (-0.06172,0.02618) 3.503E-1 

0.60 0.1179 (-0.06170,0.02620) 3.502E-1 

0.45 0.1179 (-0.06168,0.02621) 3.502E-1 

0.25 0.1179 (-0.06165,0.02622) 3.501E-1 

Table 5.2: Independency of solution to relaxation factor 𝜎 for 2
nd

-order accurate solution (𝑅𝑒 =
1000, non-uniform 129*129 grid)   

As seen in Table 5.2, the value of relaxation factor (within the range for convergence) has only 

negligible effect on the solution. The effect of taken 𝜎 on computational effort is shown in Figure 

5.9 which confirms 0.725 as the optimal value of 𝜎 for this simulation. This value exhibits good 

agreement with the same parameter for 𝑅𝑒 = 1000 in the literature, such as the values of 0.7 and 

0.6 reported by Bruneau and Jouron [174] and Vanka [175], respectively. 

 
Figure 5.9: Variation of number of iterations with relaxation factor σ for 2

nd
-order accurate 

solution (𝑅𝑒 = 1000, non-uniform 129*129 grid)   

The results of the cut-stencil FD method using the SUR iterative scheme (with 𝜎 = 0.725) on a 

non-uniform 129*129 grid and comparison with a number of published results are summarized in 

Table 5.3.  
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𝑅𝑒 = 1000 

Study 

(Grid) 

Ghia et al.  

[150] 

(129*129) 

Bruneau and  

Jouron [174] 

(256*256) 

Goyon  

[176] 

(129*129) 

Cut-stencil FDM 

(129*129) 

Primary 

vortex 

Abs. (𝜓) 0.1179 0.1163 0.1157 0.1179 

Location 
𝑥 0.5313 0.5313 0.5312 0.5358 

𝑦 0.5625 0.5586 0.5625 0.5714 

Abs. (𝜔) 2.04968 N.A. N.A. 2.05270 

B.L.* 

vortex 

Abs. (𝜓) 2.31E-4 3.25E-4 2.11E-4 2.30E-4 

Location 
𝑥 0.0859 0.0859 0.0859 0.0839 

𝑦 0.0781 0.0820 0.0781 0.0783 

Abs. (𝜔) 0.36175 N.A. N.A. 0.35031 

B.R.** 

vortex 

Abs. (𝜓) 1.75E-3 1.91E-3 1.63E-3 1.71E-3 

Location 
𝑥 0.8594 0.8711 0.8671 0.86482 

𝑦 0.1094 0.1094 0.1171 0.11459 

Abs. (𝜔) 1.15465 N.A. N.A. 1.12668 

*: Bottom left, **: Bottom right   

Table 5.3: Comparison of 2
nd

-order accurate cut-stencil solution for lid-driven cavity flow 

(𝑅𝑒 = 1000, non-uniform 129*129 grid) 

The absolute value of vorticity at point (0.5, 1), located on the moving lid, is calculated as 

14.8901 in Ghia et al. [150] and as 14.9692 in the present study. Figure 5.10 plots the comparison 

of vorticity along the moving wall and results of 2
nd

-order formulation of cut-stencil FDM both 

for. The velocity (𝑢, 𝑣) at the midpoint of the domain is equal to (-0.06172, 0.02618) and (-

0.06080, 0.02526) from the cut-stencil FD solution and from Ghia et al. [150], respectively. The 

contours of streamfunction and vorticity are also shown in Figures 5.11 and 5.12, respectively. 

 
Figure 5.10: Comparison of vorticity along moving wall from 2

nd
-order cut-stencil FD 

formulation and Ghia et al. [150] (𝑅𝑒 = 1000, non-uniform 129*129 grid)    
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Figure 5.11: Streamfunction contours of 2

nd
-order cut-stencil FD formulation (𝑅𝑒 = 1000, non-

uniform 129*129 grid) 

 
Figure 5.12: Vorticity contours of 2

nd
-order cut-stencil FD formulation (𝑅𝑒 = 1000, non-uniform 

129*129 grid) 
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5.5.1.3 𝑹𝒆 = 𝟏𝟎𝟎 and 𝑹𝒆 = 𝟏𝟎𝟎𝟎 with Non-Uniform 129*129 Grid; Boundary Vorticity 

Approximated by Compact Method 

The solution from the 2
nd

-order formulation of the cut-stencil FDM to lid-driven cavity flow for 

𝑅𝑒 = 100  and 𝑅𝑒 = 1000 using Briley’s equation [171] for approximation the vorticity on the 

boundaries, demonstrates the accuracy of this method for this benchmark problem. In this section, 

the 2
nd

-order cut-stencil FD formulation is discussed when the vorticity on stationary walls and a 

moving boundary are approximated by equations (5.8.2.3) and (5.8.2.4), respectively. The 

purpose of this study is to examine the accuracy of these wall vorticity approximations that are 

believed to be more applicable for irregular shaped domains since they are more compact than 

Briley’s expression. This study considers Reynolds numbers of 𝑅𝑒 = 100 and 𝑅𝑒 = 1000, with 

the same non-uniform 129*129 grid as used in previous examples, and the simulation results are 

revealed in Table 5.4. 

Re 100 1000 

 Study 
Cut-stencil 

FDM  

Ghia et al. 

[150] 

Cut-stencil 

FDM 

Ghia et al. 

[150] 

Primary 

vortex 

Abs. (𝜓) 0.1035 0.1034 0.1180 0.1179 

Location 
𝑥 0.6179 0.6172 0.5358 0.5313 

𝑦 0.7363 0.7344 0.5714 0.5625 

Abs. (𝜔) 3.17896 3.16646 2.05399 2.04968 

B.L.* 

vortex 

Abs. (𝜓) 1.84E-6 1.75E-6 2.32E-4 2.31E-4 

Location 
𝑥 0.0350 0.0313 0.0839 0.0859 

𝑦 0.0350 0.0391 0.0783 0.0781 

Abs. (𝜔) 1.563E-2 1.555E-2 0.35087 0.36175 

B.R.** 

vortex 

Abs. (𝜓) 1.28E-5 1.25E-5 1.71E-3 1.75E-3 

Location 
𝑥 0.9425 0.9453 0.8648 0.8594 

𝑦 0.0625 0.0625 0.1146 0.1094 

Abs. (𝜔) 3.574E-2 3.307E-2 1.12679 1.15465 

*: Bottom left, **: Bottom right   

Table 5.4: Comparisons of 2
nd

-order accurate cut-stencil solution to lid-driven cavity flow using 

compact method for vorticity approximation on boundaries to results of Ghia et al. [150] (𝑅𝑒 =
100, 1000) 

Comparison of the results reported in Table 5.4 and the results in Tables 5.1 and 5.3 exhibits the 

good agreement between the solutions obtained using Briley’s approximation [171] for the wall 

vorticity and the compact scheme, Figures 5.13 and 5.14 illustrate the vorticity along the moving 

wall, resulting from both wall vorticity approximation methods, for 𝑅𝑒 = 100 and 𝑅𝑒 = 1000, 

respectively. As Figures 5.13 and 5.14 indicate, no meaningful difference is observed for the 

vorticity approximation using these two methods. 
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Figure 5.13: Comparison of vorticity along moving wall, approximated by Briley [171] and 

compact methods (𝑅𝑒 = 100) 

 
Figure 5.14: Comparison of vorticity along moving wall, approximated by Briley [171] and 

compact methods (𝑅𝑒 = 1000) 

5.5.2 Higher-Order Cut-Stencil FD Solution to Lid-Driven Flow in a Square Cavity  

The solutions from higher-order formulations of the cut-stencil FDM for the lid-driven cavity 

flow are considered for 𝑅𝑒 = 100, 400 and 1000. The verification of the proposed higher-order 

formulas introduced in equations (5.6) and (5.7) is associated with demonstrating the capability of 

these higher-order formulations to accurately capture the flow features and quantitative 

parameters with a coarser mesh compared to that used for the 2
nd

-order accurate schemes. Also, 

the higher-order cut-stencil FDM solutions will be compared to solutions from some higher-order 

formulations in the literature. 

In the following sections, HO cut-stencil FDM1 and HO cut-stencil FDM2 refer to discretization 

of the streamfunction-vorticity equations on the computational stencil using equations (5.6.1) to 

(5.6.3) and (5.7.1) to (5.7.3), respectively. 

5.5.2.1 Results of Higher-Order Discretization (𝑹𝒆 = 𝟏𝟎𝟎) 

Table 5.5 reveals the comparison of the higher-order cut-stencil FD solution to lid-driven flow on 

a square cavity to other numerical studies for 𝑅𝑒 = 100. A non-uniform grid of 41*41 nodes was 

used to compute the data shown in Table 5.5. The HO cut-stencil FDM1 and HO cut-stencil 
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FDM2 both exhibit good agreement with literature for the value of streamfunction at the primary 

vortex. Comparison of the data for the bottom left and right vortices to Ghia et al. [150], Gupta 

and Kalita [161] and Pandit [177] indicates that the higher-order cut-stencil methods yield more 

accurate solutions, and that HO cut-stencil FDM2 shows more precise data in comparison with 

Ghia et al. [150]. 

𝑅𝑒 = 100 

Study 

(Grid) 

Gupta and  

Kalita [161] 

(41*41) 

Pandit 

 [177] 

(41*41) 

Cut-stencil 

HO-FDM1 

 (41*41)  

Cut-stencil 

HO-FDM2 

 (41*41)  

Primary 

vortex 

Abs. (𝜓) 0.103 0.104 0.103 0.103 

Location 
𝑥 0.6125 0.6184 0.6133 0.6133 

𝑦 0.7375 0.7273 0.7501 0.7501 

Abs. (𝜔) N.A. N.A. 3.20415 3.19331 

B.L.* 

vortex 

Abs. (𝜓) 1.83E-6 2.28E-6 1.78E-6 1.72E-6 

Location 
𝑥 0.0375 0.0316 0.0333 0.0333 

𝑦 0.0375 0.0439 0.0333 0.0333 

Abs. (𝜔) N.A. N.A. 1.370E-2 1.350E-2 

B.R.** 

vortex 

Abs. (𝜓) 1.45E-5 1.60E-5 1.33E-5 1.22E-5 

Location 
𝑥 0.9375 0.9425 0.9376 0.9376 

𝑦 0.0625 0.0575 0.0625 0.0625 

Abs. (𝜔) N.A. N.A. 3.991E-2 4.020E-2 
 *: Bottom left, **: Bottom right   

Table 5.5: Comparison of higher-order cut-stencil solutions for lid-driven cavity flow (𝑅𝑒 = 100, 

non-uniform 41*41 grid) 

The components of velocity at the centre of the domain were obtained as (−0.20838, 0.05574) 

and (−0.20726, 0.05578) from the solutions of HO cut-stencil FDM1 and HO cut-stencil 

FDM2, respectively, which are in good agreement with the value (−0.20581, 0.05454) from 

Ghia et al. [150]. The sum of relative errors of the velocity components compared to reported data 

in [150] are 3.45% and 2.98% for HO cut-stencil FDM1 and HO cut-stencil FDM2, respectively.    

Table 5.6 gives the data from the 2
nd

-order cut-stencil solution with grid sizes relatively coarser 

than the previous study (129*129 nodes) for 𝑅𝑒 = 100, to show the fundamental accuracy of the 

cut-stencil FDM. Also, data for one finer mesh than previously used for the higher-order cut-

stencil FDMs recorded in Table 5.5 are reported in Table 5.6 to show the grid convergence for 

these solutions. All the grids for the results in Table 5.6 are non-uniform. The 2
nd

-order data in 

this table shows close values of key quantities compared to those reported in Table 5.1. The 2
nd

-

order solution for grid size of 81*81 nodes is almost the same as the solution with 129*129 nodes 

in Table 5.1, which indicates mesh independency of the solution. The higher-order solutions 

obtained from the two grids of 41*41 and 51*51 nodes provide further evidence of grid 

independence. Figure 5.15 demonstrates the variation of vorticity along the moving wall and 

compares this parameter with data from Ghia et al. [150]. This plot suggests that Briley’s formula 

[171] for vorticity approximation on walls can match accuracy with the higher-order cut-stencil 

schemes. Quantitatively, the absolute of vorticity at the centre of the moving wall (𝑥 = 0.5, 𝑦 =

1) with a grid size of 41*41 nodes are 6.52285 and 6.54359 from HO cut-stencil FDM1 and HO 

cut-stencil FDM2, respectively, in comparison with the value 6.57451 in Ghia et al. [150]. 
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𝑅𝑒 = 100 

Study 

(Grid) 

2
nd

-order 

cut-stencil 

(41*41) 

2
nd

-order 

cut-stencil 

(51*51) 

2
nd

-order 

cut-stencil 

(81*81) 

Cut-stencil 

HO-FDM1 

 (51*51)  

Cut-stencil 

HO-FDM2 

 (51*51) 

Primary 

vortex 

Abs. (𝜓) 0.1024 0.1028 0.1032 0.1035 0.1033 

Location 
𝑥 0.61332 0.6207 0.6133 0.6207 0.6207 

𝑦 0.75008 0.7311 0.7343 0.7311 0.7311 

Abs. (𝜔) 3.15676 3.16327 3.13028 3.19442 3.18636 

B.L.* 

vortex 

Abs. (𝜓) 1.76E-6 1.77E-6 1.79E-6 1.77E-6 1.73E-6 

Location 
𝑥 0.0333 0.0360 0.0333 0.0360 0.0360 

𝑦 0.0333 0.0360 0.0333 0.0360 0.0360 

Abs. (𝜔) 1.306E-2 1.677E-2 1.340E-2 1.728E-2 1.712E-2 

B.R.** 

vortex 

Abs. (𝜓) 1.12E-5 1.21E-5 1.24E-5 1.31E-5 1.26E-5 

Location 
𝑥 0.9376 0.9407 0.9454 0.9407 0.9407 

𝑦 0.0625 0.0593 0.0625 0.0593 0.0593 

Abs. (𝜔) 4.121E-2 3.501E-2 3.308E-2 3.416E-2 3.437E-2 

*: Bottom left, **: Bottom right   

Table 5.6: 2
nd

-order and higher-order cut-stencil solutions for lid-driven cavity flow (𝑅𝑒 = 100, 

different non-uniform grid sizes) 

 
Figure 5.15: Comparison of vorticity along the moving wall from 2

nd
-order and higher-order cut-

stencil FD solutions (𝑅𝑒 = 100) 

The contours of streamfunction and vorticity of HO cut-stencil FDM1 and HO cut-stencil FDM2 

solutions, on a grid size of 41*41 nodes, are shown in Figures 5.16 to 5.19. These figures exhibit 

good agreement with contours of the 2
nd

-order cut-stencil solution on a grid size of 129*129, as 

shown in Figures 5.7 and 5.8, and with the contours produced by other numerical studies. 
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Figure 5.16: Streamfunction contours of cut-stencil HO-FDM1 formulation (𝑅𝑒 = 100, non-

uniform grid of 41*41 nodes) 

 
Figure 5.17: Vorticity contours of cut-stencil HO-FDM1 formulation (𝑅𝑒 = 100, non-uniform 

grid of 41*41 nodes) 
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Figure 5.18: Streamfunction contours of cut-stencil HO-FDM2 formulation (𝑅𝑒 = 100, non-

uniform grid of 41*41 nodes) 

 
Figure 5.19: Vorticity contours of cut-stencil HO-FDM2 formulation (𝑅𝑒 = 100, non-uniform 

grid of 41*41 nodes) 
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5.5.2.2 Results for 2
nd

-Order and Higher-Order Discretizations (𝑹𝒆 = 𝟒𝟎𝟎) 

The cut-stencil FD solutions for 𝑅𝑒 = 400 using 2
nd

-order and higher-order schemes are 

compared to other available numerical data in this section. The 2
nd

-order cut-stencil FD solutions 

at 𝑅𝑒 = 400  for several non-uniform Cartesian grids are reported in Table 5.7, along with other 

2
nd

-order accurate solutions and a mesh-free smooth particle hydrodynamics solution. The cut-

stencil FD solutions in Table 5.7 signify good agreement even for the coarsest mesh size (81*81 

grid) compared to other available data, especially in comparison with the generally regarded most 

reliable study [150]. The difference between the cut-stencil solution and other numerical data 

becomes smaller as the grid size increases for almost all key features of the solutions. 

Comparison of the cut-stencil FD solutions between grid size of 101*101 nodes and grid size of 

129*129 nodes demonstrates that the differences of strength of vorticity in the primary vortex and 

the bottom left and right vortices are negligible, a sign of grid independency of the solution.           

𝑅𝑒 = 400 

Study 

(Grid) 

Ghia et al. 

[150] 

(129*129) 

 Schreiber 

and Keller 

[178] 

(141*141) 

Khorasan-

izade and 

Sousa 

[179] 

MFM
(i)

 

2
nd

-order 

cut-stencil 

FDM 

(81*81) 

2
nd

-order 

cut-stencil 

FDM 

(101*101) 

2
nd

-order 

cut-stencil 

FDM 

(129*129) 

Primary 

vortex 

Abs. (𝜓) 0.1139 0.1130 0.1088 0.1128 0.1132 0.1135 

Locati

on 

𝑥 0.5547 0.5571 0.5568 0.5572 0.5610 0.5596 

𝑦 0.6055 0.6071 0.6066 0.6133 0.6059 0.6064 

Abs. (𝜔) 2.29469 2.28100 2.2793 2.27841 2.27985 2.28453 

B.L.* 

vortex 

Abs. (𝜓) 1.42E-5 1.45E5 9.42E-6 1.37E-5 1.40E-5 1.41E-5 

Locati

on 

𝑥 0.0508 0.0500 0.0692 0.0546 0.0531 0.052698 

𝑦 0.0469 0.0429 0.0422 0.0471 0.0471 0.048051 

Abs. (𝜔) 5.697E-2 4.710E-2 5.514E-2 6.232E-2 6.040E-2 6.206E-2 

B.R.** 

vortex 

Abs. (𝜓) 6.42E-4 6.44E-4 5.89E-4 6.28E-4 6.34E-4 6.39E-4 

Locati

on 

𝑥 0.8906 0.8857 0.8815 0.8814 0.8814 0.8854 

𝑦 0.1250 0.1143 0.1262 0.1186 0.1186 0.1213 

Abs. (𝜔) 4.335E-1 3.940E-1 4.232E-1 4.445E-1 4.479E-1 4.418E-1 

*: Bottom left, **: Bottom right, (i): Mesh-free method 

Table 5.7: 2
nd

-order cut-stencil solutions and comparison to literature for lid-driven cavity flow 

(𝑅𝑒 = 400, different non-uniform grids) 

The velocity components at the midpoint of the domain were calculated from the cut-stencil FD 

solutions for grid sizes of 81*81, 101*101 and 129*129, yielding values of 

(−0.11594, 0.05307), (−0.11562, 0.05271) and (−0.11541, 0.05246), respectively. The 

relative errors between these values and that of Ghia et al. [150] are 3.35%, 2.38% and 1.71%, 

respectively. Additionally, the absolute value of vorticity at the centre of the sliding lid (𝑥 =

0.5, 𝑦 = 1) is equal to 10.17987, 10.12931 and 10.09345 from the cut-stencil solutions on these 

same grids, producing relative errors of 1.25%, 0.75% and 0.39%, confirming correctness of the 

vorticity approximation formula for this moderate value of Reynolds number. Comparison of the 

vorticity along the moving wall from the solution on 129*129 nodes with Ghia et al, [150] is 

plotted in Figure 5.20. All the data from this analysis provides further evidence of the precision of 

the formulations and programming approach of the 2
nd

-order cut-stencil FDM.  
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Figure 5.20: Comparison of vorticity along moving wall from 2

nd
-order cut-stencil FD 

formulation to Ghia et al. [150] (𝑅𝑒 = 400, non-uniform 129*129 grid) 

The contours of streamfunctions and vorticity for the 2
nd

-order cut-stencil solution at 𝑅𝑒 = 400 

are depicted in Figures 5.21 and 5.22, based on a grid size of 129*129 nodes.  

 
Figure 5.21: Streamfunction contours of 2

nd
-order cut-stencil FD formulation (𝑅𝑒 = 400, non-

uniform 129*129 grid) 
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Figure 5.22: Vorticity contours of 2

nd
-order cut-stencil FD formulation (𝑅𝑒 = 400, non-uniform 

129*129 grid) 

The data from the HO cut-stencil FDM1 and HO cut-stencil FDM2 solutions using two non-

uniform grids of sizes 65*65 and 81*81 nodes, and comparison with other available higher-order 

solutions for lid-driven cavity flow on a square at 𝑅𝑒 = 400 are reported here. The initial 

simulation, which used HO-FDM1 with Point-Jacobi as the iterative scheme and central 

differencing for the convective terms, failed to converge. Possible reasons of this condition in 

convective-dominated flows have been pointed out in the literature, along with different answers 

to resolve this issue, as discussed in Chapter 2, e.g. [56] and in other research [180, 181,182]. 

But, the HO cut-stencil FDM1 formulation with Point-Jacobi method and using the upwind 

higher-order compact discretization method in equation (5.6.3) to approximate the convective 

terms, gives the key features of the solution as indicated in Table 5.8 for a non-uniform grid of 

size 65*65 nodes. 

𝑅𝑒 = 400 

 Primary vortex B.L.*
 
vortex B.R.** vortex 

Abs. (𝜓) 0.1154 1.44E-5 7.10E-4 

Location 
𝑥 0.5477 0.0527 0.8787 

𝑦 0.5948 0.0436 0.1213 

Abs. (𝜔) 2.33753 5.461E-2 4.758E-1 

*: Bottom left, **: Bottom right 

Table 5.8: HO-FDM1 solution to lid-driven cavity flow on a square using higher-order compact 

upwind scheme for approximation of convective terms (𝑅𝑒 = 400, non-uniform 65*65 grid) 
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Although comparison of data in Table 5.8 to other researchers’ results [150, 177] shows good 

agreement for most key features of this case, the streamfunction at the centre of the bottom right 

vortex is not very accurate. To resolve this problem, the HO cut-stencil FDM1 formulation is 

tested on the same grid size when the point successive under-relaxation (SUR) method is chosen 

as the iterative scheme. Numerical tests show that this iterative method converges with higher-

order central differencing of the convective terms when the under-relaxation factor (𝜎) is chosen 

below 0.85. The solution is shown to be independent of 𝜎 by comparing three parameters of the 

solutions, the value of 𝜓 at the location of the primary vortex, components of velocity at midpoint 

of the domain and absolute value of 𝜔 at location of bottom left vortex. Table 5.9 reports the 

values of these parameters for each value of under-relaxation factor.   

𝜎 
Abs. 𝜓 

(Primary vortex) 

(𝑢, 𝑣) 
(midpoint) 

Abs. 𝜔 

(Bottom left vortex) 

0.850 0.1143 (-0.11621,0.05122) 5.368E-2 

0.825 0.1143 (-0.11623,0.05123) 5.367E-2 

0.800 0.1143 (-0.11623,0.05123) 5.367E-2 
0.750 0.1143 (-0.11623,0.05123) 5.367E-2 
0.725 0.1143 (-0.11623,0.05123) 5.367E-2 
0.685 0.1143 (-0.11623,0.05123) 5.367E-2 

Table 5.9: Independency of solution to relaxation factor 𝜎 for HO-FDM1 (𝑅𝑒 = 400, non-

uniform 65*65 grid)  

The optimum value of  𝜎 is determined by considering the number of iterations for each under-

relaxation factor as the variation of iterations versus 𝜎 is demonstrated in Figure 5.23. The 

optimum value of 𝜎 is found to be 0.825, requiring the minimum number of iterations to complete 

the solution.    

 
Figure 5.23: Variation of number of iterations with relaxation factor 𝜎 for HO-FDM1 solution 

(𝑅𝑒 = 400, non-uniform 65*65 grid) 

The HO-FDM1 formulation with a non-uniform grid of 81*81 nodes suffers from divergence if 

Point-Jacobi and higher-order central differencing are used. This issue, similar to the grid size of 

65*65 nodes for the same formulation, is resolved when the upwind higher-order compact 
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discretization method in equation (5.6.3) is used to approximate the convective terms. The results 

for this case are summarized in Table 5.10.   

𝑅𝑒 = 400 

 Primary vortex B.L.*
 
vortex B.R.** vortex 

Abs. (𝜓) 0.1150 1.45E-5 6.86E-4 

Location 
𝑥 0.5572 0.0546 0.8814 

𝑦 0.6133 0.0471 0.1186 

Abs. (𝜔) 2.31252 6.529E-2 4.491E-1 

*: Bottom left, **: Bottom right 

Table 5.10: Solution for HO-FDM1 formulation to lid-driven cavity flow on a square using 

higher-order compact upwind scheme for approximation of convective terms (𝑅𝑒 = 400, non-

uniform 81*81 grid) 

The HO-FDM1 solution for 𝑅𝑒 = 400, along with central higher-order compact approximation 

for convective terms, for a non-uniform grid of 81*81 nodes, can be obtained when SUR is used 

as the iterative scheme. The optimum value of  𝜎 for this case is found as 0.98. 

The issue of divergence of the Point-Jacobi method when the central higher-order compact 

scheme is used to approximate convective terms does not occur when the HO-FDM2 formulation 

is used for both non-uniform grid sizes of 65*65 and 81*81 nodes. The higher-order solutions for 

lid-driven cavity flow in a square, for 𝑅𝑒 = 400, from both HO cut-stencil FD formulations and 

from other numerical studies are reported in Table 5.11. The HO-FDM1 solutions in Table 5.11 

are obtained from the SUR iterative method along with central higher-order compact 

approximation for convective terms, with 𝜎 = 0.825 and 𝜎 = 0.98 for the non-uniform grids of 

65*65 and 81*81 nodes, respectively.  

𝑅𝑒 = 400 

Study 

(Grid) 

Gupta and Kalita 

[161] 

(81*81) 

Pandit 

[177] 

(61*61) 

Cut-stencil 

HO-FDM1 

Cut-stencil 

HO-FDM2  

(65*65)  (81*81)  (65*65)  (81*81)  

Primary 

vortex 

Abs. (𝜓) 0.113 0.114 0.114 0.114 0.114 0.114 

Location 
𝑥 0.5500 0.5532 0.5477 0.5572 0.5477 0.5572 

𝑦 0.6125 0.6055 0.5948 0.6133 0.5948 0.6133 

Abs. (𝜔) N.A. N.A. 2.31378 2.29800 2.30684 2.29282 

B.L* 

vortex 

Abs. (𝜓) 1.30E-5 1.49E-5 1.43E-5 1.43E-5 1.40E-5 1.41E-5 

Location 
𝑥 0.0500 0.0528 0.0527 0.0546 0.0527 0.0546 

𝑦 0.0500 0.0439 0.0436 0.0471 0.0436 0.0471 

Abs. (𝜔) N.A. N.A. 5.367E-2 6.432E-2 5.288E-2 6.367E-2 

B.R** 

vortex 

Abs. (𝜓) 6.48E-4 6.35E-5 6.67E-4 6.60E-4 6.51E-4 6.49E-4 

Location 
𝑥 0.8875 0.8908 0.8787 0.8814 0.8787 0.8814 

𝑦 0.1250 0.1384 0.1213 0.1186 0.1213 0.1186 

Abs. (𝜔) N.A. N.A. 4.817E-1 4.511E-1 4.789E-1 4.492E-1 

*: Bottom left, **: Bottom right 

Table 5.11: Higher-order cut-stencil FD solutions for lid-driven cavity flow (𝑅𝑒 = 400, different 

non-uniform grids) 

Initially, the results of HO-FDM1 shown in Tables 5.9 to 5.11 reveal better agreement with other 

numerical solutions for data in Table 5.11. This close agreement is due to the higher-order 

accurate differencing used to approximate the convective terms, since the formal order of 



    

146 

 

accuracy for the approximation of the convective terms are  4
th
 and 2

nd
-order for equations (5.6.2) 

and (5.6.3), respectively. Comparisons of both cut-stencil higher-order formulations exhibit no 

meaningful difference between the key features of the solution for each grid size, except for the 

value of 𝜓 at the bottom right vortex, where HO-FDM2 predicts a value that is closer to the 

results reported in Table 5.11 and to Ghia et al. [150]. HO-FDM2 also gives a value closer to 

Ghia et al. [150] for 𝜓 at the bottom left vortex with a non-uniform grid of 65*65 nodes 

compared  to the predictions of Gupta and Kalita [161] and Pandit [177] which use 81*81 and 

61*61 nodes, respectively.   

More quantitative confirmation of the higher-order accuracy of HO-FDM1 and HO-FDM2 for 

𝑅𝑒 = 400 is provided by comparison of the components of velocity at the centre of the domain 

and the vorticity at the midpoint of the moving wall with Ghia et al [150]. This comparison is 

presented in Table 5.12. 

Study 

(Grid) 

Ghia et al. 

[150] 

(129*129) 

Cut-stencil 

HO-FDM1 

Cut-stencil 

HO-FDM2 

(65*65)  (81*81)  (65*65)  (81*81)  

(𝑢, 𝑣) 
at midpoint*

 

of domain 

(-0.11477, 

0.05186) 

(-0.11623, 

0.05123) 

(-0.11579, 

0.05152) 

(-0.11633, 

0.05198) 

(-0.11589, 

0.05202) 

Abs. (𝜔) 
at midpoint** 

of moving wall 

10.0542 9.9356 9.9702 10.0171 10.0239 

*: (𝑥 = 0.5, 𝑦 = 0.5), **: (𝑥 = 0.5, 𝑦 = 1) 

Table 5.12: Comparison of velocity components at midpoint of domain and vorticity at midpoint 

of moving wall for HO cut-stencil FD solutions with Ghia et al. [150] (𝑅𝑒 = 400) 

The contours of streamfunction and vorticity for the higher-order cut-stencil solutions are shown 

in Figures 5.24 to 5.27, for a non-uniform grid of 81*81 nodes. The comparison of contours from 

HO-FDM1 and HO-FDM2 to the contours of the 2
nd

-order cut-stencil method that were presented 

in Figures 5.21 and 5.22 for 129*129 nodes, tells same qualitative accuracy captured by relatively 

coarser mesh from higher order solutions.     
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Figure 5.24: Streamfunction contours of HO-FDM1 solution (𝑅𝑒 = 400, non-uniform 81*81 

grid)  

 
Figure 5.25: Vorticity contours of HO-FDM1 solution (𝑅𝑒 = 400, non-uniform 81*81 grid) 
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Figure 5.26: Streamfunction contours of HO-FDM2 solution (𝑅𝑒 = 400, non-uniform 81*81 

grid) 

 
Figure 5.27: Vorticity contours of HO-FDM2 solution (𝑅𝑒 = 400, non-uniform 81*81 grid) 
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5.5.2.3 Results of Higher-Order Discretization (𝑹𝒆 = 𝟏𝟎𝟎𝟎) 

The 2
nd

-order cut-stencil solution for 𝑅𝑒 = 1000 using a grid size of 129*129 was presented in 

section 5.5.1.2 and the corresponding results were used for overall validation of the cut-stencil FD 

formulation for the cavity flow problem.  

The higher-order formulations (5.6) and (5.7) are implemented for 𝑅𝑒 = 1000 in this section and 

compared to other available higher-order numerical results.  

The initial computations using higher-order central difference approximation of the convective 

terms for two grids of 65*65 and 81*81 nodes, for both HO cut-stencil FD formulations, failed to 

converge. Results for the higher-order formulations, using higher-order upwind approximations 

of the convective terms are summarized in Table 5.13. 

𝑅𝑒 = 1000 

Study 

(Grid) 

Cut-stencil 

HO-FDM1 

Cut-stencil 

HO-FDM2  

(65*65)  (81*81)  (81*81)  

Primary 

vortex 

Abs. (𝜓) 0.1214 0.1207 0.1222 

Location 
𝑥 0.5239 0.5382 0.5191 

𝑦 0.5713 0.5761 0.5572 

Abs. (𝜔) 2.14188 2.11547 2.13616 

B.L.* 

vortex 

Abs. (𝜓) 2.18E-4 2.27E-4 2.41E-4 

Location 
𝑥 0.0839 0.0794 0.0794 

𝑦 0.0728 0.0794 0.0794 

Abs. (𝜔) 3.195E-1 3.455E-1 3.542E-1 

B.R.** 

vortex 

Abs. (𝜓) 1.94E-3 1.87E-3 1.87E-3 

Location 
𝑥 0.8501 0.8590 0.8590 

𝑦 0.1081 0.1186 0.1081 

Abs. (𝜔) 1.138 1.198 1.112 

*: Bottom left, **: Bottom right 

Table 5.13: Solutions of HO cut-stencil formulations for lid-driven cavity flow on a square using 

higher-order compact upwind scheme for approximation of convective terms (𝑅𝑒 = 1000, non-

uniform grid) 

The SUR method was used to perform the computations for the higher-order FDMs and similar to 

previous Reynolds numbers, the optimum value of the relaxation factor 𝜎 can be defined for each 

grid size and each higher-order formulation. HO-FDM1 for a non-uniform grid size of 65*65 

nodes failed to converge for values of 𝜎 greater than or equal to 0.325. The variation of number of 

iterations versus the value of 𝜎 starting from 0.30 is shown in Figure 5.28, indicating that the 

minimum computational effort is obtained by choosing 𝜎 = 0.30. Table 5.14 examines the 

independency of the solution from the value of 𝜎 for a non-uniform grid of 65*65 nodes, by 

reporting the same three features of the solution used for the analysis for other values of 𝑅𝑒. 



    

150 

 

 
Figure 5.28: Variation number of iterations with relaxation factor 𝜎 for HO-FDM1 solution 

(𝑅𝑒 = 1000, non-uniform 65*65 grid) 

𝑅𝑒 = 1000 

𝜎 
Abs. 𝜓 

(Primary vortex) 

(𝑢, 𝑣) 
(mid-point) 

Abs. 𝜔 

(B.L vortex) 

0.300 0.1195 (-0.06361, 0.02442) 3.209E-1 

0.250 0.1195 (-0.06361, 0.02442) 3.210E-1 

0.185 0.1195 (-0.06361, 0.02442) 3.210E-1 

0.150 0.1194 (-0.06300, 0.02457) 3.216E-1 

0.125 0.1194 (-0.06299,0.02457) 3.215E-1 

0.080 0.1194 (-0.06298,0.02458) 3.215E-1 

Table 5.14: Independency of solution to relaxation factor 𝜎 for HO-FDM1 solution (𝑅𝑒 = 1000, 

non-uniform 65*65 grid) 

The minimum computational effort for the HO-FDM2 solution on a non-uniform grid of 65*65 

nodes, using SUR as the iterative scheme and higher-order central compact approximation of the 

convective terms, is achieved by taking 𝜎 = 0.3. The higher-order computations diverged for any 

value of 𝜎 ≥ 0.45. The variation of the number of iterations versus the value of 𝜎 is depicted in 

Figure 5.29. The independency of the HO-FDM2 solution from the number of iterations is 

verified by the data reported in Table 5.15. The optimum value for 𝜎 for this grid size for both 

cut-stencil higher-order formulations can be taken as 0.3. 

 
Figure 5.29: Variation number of iterations with relaxation factor 𝜎 for HO-FDM2 solution 

(𝑅𝑒 = 1000, non-uniform 65*65 grid) 

19000

27000

35000

43000

51000

59000

0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33

No. of  

iterations 

Under-relaxation  

factor 

HO cut-stencil FDM1 formulation

20000

26000

32000

38000

44000

50000

0.12 0.17 0.22 0.27 0.32 0.37 0.42

No. of  

iterations 

Under-relaxation  

factor 

HO cut-stencil FDM2 formulation



    

151 

 

Table 5.15 records the data to verify the independency of the solution from the value of the 

relaxation factor for HO-FDM2, with the same key features of the solution as used previously, 

e.g. in Table 5.14. The optimum value of 𝜎 for the non-uniform grid of 65*65 nodes takes the 

same value of 0.3 for both cut-stencil HO formulations. 

𝑅𝑒 = 1000 

𝜎 
Abs. 𝜓 

(Primary vortex) 
(𝑢, 𝑣) 

(midpoint) 

Abs. 𝜔 

(B.L. vortex) 

0.425 0.1185 (-0.06306, 0.02516) 3.139E-1 

0.375 0.1185 (-0.06306, 0.02516) 3.139E-1 

0.325 0.1185 (-0.06306, 0.02516) 3.139E-1 

0.300 0.1184 (-0.06227, 0.02520) 3.161E-1 

0.275 0.1184 (-0.06227, 0.02520) 3.161E-1 

0.150 0.1184 (-0.06224, 0.02522) 3.159E-1 

Table 5.15: Independency of solution to relaxation factor 𝜎 for HO-FDM2 solution (𝑅𝑒 = 1000, 

non-uniform 65*65 grid) 

Higher-order central differencing of the convective terms using HO-FDM1 and a non-uniform 

81*81 grid converges for values of 𝜎 less than 0.375 and the computational cost is minimum by 

taking 𝜎 = 0.35, as shown in Figure 5.30. The data in Table 5.16 shows that the solution is 

independent of the values of 𝜎 for this grid size. 

 
Figure 5.30: Variation number of iterations with relaxation factor 𝜎 for HO-FDM1 solution 

(𝑅𝑒 = 1000, non-uniform 81*81 grid) 

𝜎 
Abs. 𝜓 

(Primary vortex) 

(𝑢, 𝑣) 
(mid-point) 

Abs. 𝜔 

(B.L vortex) 

0.350 0.1192 (-0.06249,0.02503) 3.432E-1 

0.300 0.1192 (-0.06249,0.02504) 3.431E-1 

0.240 0.1192 (-0.06246,0.02505) 3.431E-1 

0.185 0.1192 (-0.06245,0.02505) 3.430E-1 

0.125 0.1192 (-0.06243,0.02506) 3.430E-1 

0.090 0.1192 (-0.06243,0.02507) 3.429E-1 

Table 5.16: Independency of solution to relaxation factor 𝜎 for HO-FDM1 solution (𝑅𝑒 = 1000, 

non-uniform 81*81 grid) 

Choosing a value of 𝜎 greater or equal to 0.55 leads to divergence for the HO-FDM2 formulation, 

for a non-uniform grid of 81*81 nodes, when central higher-order differencing is used to 
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approximate the convective terms. The variation of the number of iterations versus 𝜎 for the HO-

FDM2 solution on this non-uniform grid is plotted in Figure 5.31. The number of iterations 

reaches a minimum when the value of 𝜎 is taken as 0.465. The data in Table 5.17 addresses the 

independency of the solution from 𝜎.  

 
Figure 5.31: Variation number of iterations with relaxation factor 𝜎 for HO-FDM2 solution 

(𝑅𝑒 = 1000, non-uniform 81*81 grid) 

𝜎 
Abs. 𝜓 

(Primary vortex) 

(𝑢, 𝑣) 
(midpoint) 

Abs. 𝜔 

(B.L. vortex) 

0.500 0.1186 (-0.06271,0.02538) 3.370E-1 

0.465 0.1185 (-0.06180,0.02527) 3.415E-1 

0.425 0.1185 (-0.06179,0.02528) 3.414E-1 

0.350 0.1185 (-0.06177,0.02529) 3.413E-1 

0.250 0.1186 (-0.06271,0.02538) 3.370E-1 

0.185 0.1185 (-0.06173,0.02532) 3.411E-1 

0.145 0.1185 (-0.06173,0.02532) 3.411E-1 

0.085 0.1185 (-0.06172,0.02533) 3.410E-1 

Table 5.17: Independency of solution to relaxation factor 𝜎 for HO-FDM2 solution (𝑅𝑒 = 1000, 

non-uniform 81*81 grid) 

Some published higher-order (mostly 4
th
-order) results for lid-driven cavity flow at 𝑅𝑒 = 1000 

are summarized in Table 5.18. These results are compared with solutions of the cut-stencil 

higher-order formulations. All the cut-stencil FDM results reported in Table 5.18 are from 

simulations carried out using the optimum 𝜎 of each method and corresponding mesh size. 

Comparing the cut-stencil FD solutions in Tables 5.13 and 5.18 shows that the results given in 

Table 5.18 are closer to the results from other numerical methods, especially with the benchmark 

results of Ghia et al. [150]. This observation can be seen clearly for the values of streamfunction 

in the primary, bottom left and right vortices, demonstrating the effect of the proposed higher-

order approximations for convective terms (equations (5.6.2) or (5.7.2)) as used for the data 

reported in Table 5.18. In other words, for these higher-order schemes, the suggested higher-order 

central differencing to approximate convective terms can be applied even for relatively high 

Reynolds number. 
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Study 

(Grid) 

Primary 

vortex 
B.L.* 

vortex 
B.R.** 

vortex 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Gupta and  

Kalita [161] 

(81*81) 
0.117 

(0.5250, 

0.5625) 

N. 

A. 

2.02 

E-4 

(0.0875, 

0.0750) 

N. 

A. 

1.70 

E-3 

(0.8625, 

0.1125) 

N. 

A. 

Pandit 

[177] 

(61*61) 

0.118 
(0.5266, 

(0.5532) 

N. 

A. 

2.31 

E-4 

(0.0840, 

0.0840) 

N. 

A. 

1.72 

E-3 

(0.8577, 

0.1092) 

N. 

A. 

Nishida and  

Satofuka [183] 

(65*65) 

0.118 
(0.5313, 

0.5625) 
2.05692 

2.24 

E-4 

(0.0781, 

0.0781) 

3.134 

E-1 

1.67 

E-3 

(0.8594, 

0.1094) 
1.125 

Nishida and  

Satofuka [183] 

(129*129) 

0.119 
(0.5313, 

0.5625) 
2.06616 

2.32 

E-4 

(0.0859, 

0.0781) 

3.671 

E-1 

1.72 

E-3 

(0.8594, 

0.1094) 
1.144 

Cut-stencil 

HO-FDM1 

(65*65) 

0.120 
(0.5239, 

0.5714) 
2.08386 

2.30 

E-4 

(0.0839, 

0.0728) 

3.209 

E-1 

1.81 

E-3 

(0.8648, 

0.1213) 
1.175 

Cut-stencil 

HO-FDM1 

(81*81) 
0.119 

(0.5382, 

0.5572) 
2.07696 

2.35 

E-4 

(0.0794, 

0.0794) 

3.432 

E-1 

1.78 

E-3 

(0.8590, 

0.1081) 
1.121 

Cut-stencil 

HO-FDM2 

(65*65) 

0.118 
(0.5239, 

0.5714) 
2.06372 

2.30 

E-4 

(0.0839, 

0.0728) 

3.161 

E-1 

1.76 

E-3 

(0.8648, 

0.1081) 
1.031 

Cut-stencil 

HO-FDM2 

(81*81) 

0.119 
(0.5382, 

0.5572) 
2.06270 

2.33 

E-4 

(0.0794, 

0.0794) 

3.415 

E-1 

1.74 

E-3 

(0.8590, 

0.1081) 
1.127 

*: Bottom left, **: Bottom right 

Table 5.18: HO cut-stencil FD solutions and comparison to other HO solutions for lid-driven 

cavity flow (𝑅𝑒 = 1000, different non-uniform grids) 

Comparison of cut-stencil solutions in Table 5.18 to studies of Gupta and Kalita [161], Pandit 

[177], Nishida and Satofuka [183] with grid size of 129*129 and Ghia et al. [150] indicate close 

agreement for almost all key features of the solution, except for the value of streamfunction at the 

bottom right vortex predicted by HO-FDM1 with a non-uniform 65*65 grid. This issue has been 

resolved by the HO-FDM2 solution with the same grid or by HO-FDM1 formulation with a finer 

grid (81*81 nodes). The more accurate solution can be obtained by HO-FDM2, even with a 

coarser mesh, which originates from the more accurate approximation of derivatives at endpoints 

of the 5-point stencil, as discussed in Chapter 2. Analysis of other numerical results reveals that 

the higher-order solution in [161] was not able to capture the streamfunction value at the bottom 

left corner as accurately as other studies. Furthermore, the streamfunction values at both corner 

vortices reported in [183] with a 65*65 grid are somewhat different from other studies, such as 

[149], [150] and [177]. Comparison of velocity from HO-FDM1 and HO-FDM2 at the centre of 

the domain and vorticity at the midpoint of the moving wall to data of Ghia et al. [150] is 

exhibited in Table 5.19. A relative difference of 7.95% for velocity components from HO-FDM1 

with a non-uniform 65*65 grid is reduced to 2.66% for the same grid when HO-FDM2 is applied. 

A similar reduction in relative difference is seen for vorticity at the midpoint of the moving wall, 

from 2.87% for HO-FDM1 with the non-uniform 65*65 grid to 0.87% for HO-FDM2 with the 

same grid size. Generally speaking, the data in Table 5.19 indicates good quantitative agreement 
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between both cut-stencil FD higher-order formulations for 𝑅𝑒 = 1000, while the precision of 

HO-FDM2 predicts slightly more accurate results compared to Ghia et al. [150]. It should be 

noted that the higher-order results in Table 5.19 correspond to coarser non-uniform grids than 

used by Ghia et al. [150]. Furthermore, the HO-FDM2 predictions are closer to Ghia's than HO-

FDM1 due to the implementation of more accurate approximations of the derivatives at the 

endpoints of the stencil in the HO-FDM2 formulation. The plot in Figure 5.32 also demonstrates 

the qualitative comparison of vorticity along the moving wall to Ghia et al. [150] for 𝑅𝑒 = 1000, 

verifying the accuracy of the approximation for vorticity for this rather high value of Reynolds 

number. The coarser grid sizes used for the higher-order cut-stencil solutions produces good 

agreement with the Ghia et al. data, where a relatively finer mesh has been used to predict the 

values of vorticity along the moving wall.  

Study 

(Grid) 

Ghia et al. 

[150] 

(129*129) 

Cut-stencil 

HO-FDM1 

Cut-stencil 

HO-FDM2 

(65*65)  (81*81)  (65*65)  (81*81)  

(𝑢, 𝑣) 
at midpoint*

 

of domain 

(-0.06080, 

0.02526) 

(-0.06361,  

0.02442) 

(-0.06249, 

0.02503) 

(-0.06227, 

0.02520) 

(-0.06180, 

0.02527) 

Abs. (𝜔) 
at midpoint** 

of moving wall 

14.8901 14.4625 14.5943 14.7604 14.7827 

*: (𝑥 = 0.5, 𝑦 = 0.5), **: (𝑥 = 0.5, 𝑦 = 1) 

Table 5.19: Comparison of velocity components at midpoint of the domain and vorticity at 

midpoint of the moving wall for HO cut-stencil FD solutions with Ghia et al. [150] (𝑅𝑒 = 1000) 

 

 
Figure 5.32: Comparison of vorticity along the moving wall from HO cut-stencil FD solutions to 

Ghia et al. [150] (𝑅𝑒 = 1000) 

The streamfunction and vorticity contours for both higher-order cut-stencil FD solutions with the 

non-uniform 65*65 grid are shown in Figures 5.33 to 5.36, providing a good qualitative 

comparison between the higher-order solutions, the results from other numerical studies and the 

2
nd

-order solution of the present study, depicted in Figures 5.11 and 5.12.  

11.00

20.00

29.00

38.00

47.00

56.00

65.00

74.00

0.05 0.16 0.27 0.38 0.49 0.6 0.71 0.82 0.93

Abs.  

(vorticity) 

x coordinate 

Comparison of absolute of vorticity  

along moving wall  

Ghia et.al. [150]

Cut-stencil HO-FDM1 -

grid [65*65] -

Cut-stencil HO-FDM2 -

grid [65*65] -
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Figure 5.33: Streamfunction contours of HO-FDM1 formulation (𝑅𝑒 = 1000, non-uniform 

65*65 grid) 

 
Figure 5.34: Vorticity contours of HO-FDM1 formulation (𝑅𝑒 = 1000, non-uniform 65*65 grid) 
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Figure 5.35: Streamfunction contours of HO-FDM2 formulation (𝑅𝑒 = 1000, non-uniform 

65*65 grid) 

 
Figure 5.36: Vorticity contours of HO-FDM2 formulation (𝑅𝑒 = 1000, non-uniform 65*65 grid) 
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Key features of the 2
nd

-order cut-stencil solution to lid-driven cavity flow on a square with 

𝑅𝑒 = 1000 have been discussed in section 5.5.1.2, and comparisons have been made with the 

results from other researchers using roughly the same grid of 129*129 nodes. Tables 5.3 and 5.4 

show that there is little difference between the Briley and compact 2
nd

-order approximations for 

the wall vorticity. In fact, the 2
nd

-order cut-stencil method provides a solution that is in good 

agreement with other results obtained on much finer grids. This is illustrated in Table 5.20 by 

using a non-uniform grid of 101*101 nodes and comparing to other methods of the same order on 

grids as fine as 601*601 [184]. Central differencing with 2
nd

-order accuracy for the convective 

terms is possible with the cut-stencil method if SUR is chosen as the iterative scheme. The 

optimum value of the relaxation factor 𝜎  is found to be 0.6. For any values of 𝜎 equal or higher 

than 0.625, the solution diverges for this case study. Since the results of Ghia et al. [150] are 

regarded as the benchmark, their data has been repeated in Table 5.12 for a more convenient 

comparison.  

Study 

(Grid) 

Ghia et al.  

[150] 

(129*129) 

Schreiber and Keller  

[178] 

(141*141) 

Erturk et al.  

[184] 

(601*601) 

2
nd

-order  

cut-stencil 

(101*101) 

Primary 

vortex 

Abs. (𝜓) 0.1179 0.1160 0.1188 0.1174 

Location 
𝑥 0.5313 0.5286 0.5300 0.5306 

𝑦 0.5625 0.5643 0.5650 0.5610 

Abs. (𝜔) 2.04968 2.02600 2.06553 2.04487 

B.L.* 

vortex 

Abs. (𝜓) 2.31E-4 2.17E-4 2.33E-4 2.25E-4 

Location 
𝑥 0.0859 0.0857 0.0833 0.0794 

𝑦 0.0781 0.0714 0.0783 0.0794 

Abs. (𝜔) 3.618E-1 3.020E-1 3.535E-1 3.276E-1 

B.R.** 

vortex 

Abs. (𝜓) 1.75E-3 1.70E-3 1.73E-3 1.70E-3 

Location 
𝑥 0.8594 0.8643 0.8633 0.8637 

𝑦 0.1094 0.1071 0.1117 0.1102 

Abs. (𝜔) 1.15465 0.9990 1.11551 1.079 

*: Bottom left, **: Bottom right 

Table 5.20: Comparison of 2
nd

-order accurate cut-stencil solution to other studies for lid-driven 

cavity flow (𝑅𝑒 = 1000, non-uniform 101*101 grid)  

Analysis of the data in Table 5.20 suggests that the 2
nd

-order accurate formulation of the cut-

stencil FDM is capable of producing almost the same values for key features of the solution as 

those reported in the literature using relatively finer meshes. Most results of the 2
nd

-order cut-

stencil method are in better agreement with Ghia et al. [150] than other reported results, e.g. [178, 

184] that were generated using a finer mesh. The accuracy of the 2
nd

-order accurate formulation 

of the cut-stencil FDM can be further supported by comparison with data from Bruneau and Saad 

[185], as given in Table 5.21. It is worthwhile to note that Bruneau and Saad [185] has employed 

a 3
rd

-order accurate upwind scheme for approximation of the convective terms with the cavity lid 

sliding right to left, as well as using a much finer mesh as indicated in Table 5.21. 
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Study 

(Grid) 

Ghia et al.  

[150] 

(129*129) 

Bruneau and Saad  

[185] 

(1024*1024) 

2
nd

-order  

cut-stencil 

(101*101) 

(𝑢, 𝑣) 
at midpoint*

  

of domain
 

(-0.06068, 

0.02526) 

(0.06205, 

0.02580) 

(-0.06184, 

0.02631) 

Abs. (𝜔) 
at midpoint*

 

 
of domain

 
N.A. 2.0669 2.0439 

Abs. (𝜔) 
at midpoint**  

of moving wall 

14.8901 N.A. 15.0852 

*: (𝑥 = 0.5, 𝑦 = 0.5), **: (𝑥 = 0.5, 𝑦 = 1) 

Table 5.21: Comparison of vorticity and velocity components at midpoint of domain and vorticity 

at midpoint of moving wall (𝑅𝑒 = 1000) 

5.6 Cut-Stencil FDM Solution of Lid-Driven Cavity Flow in Irregular Shaped Domains 

The remainder of this chapter is devoted to application of the cut-stencil FDM for lid-driven 

cavity flow in several irregular domains. Typically, these irregular domains contain cut stencils 

which are created by intersection of the grid lines and the boundaries of the domain of interest. 

The domains include skewed, triangular and L-shaped cavities found in other numerical studies 

which are used here to verify the solutions obtained by the Cartesian cut-stencil methods. 

5.6.1 Cut-Stencil FD Solution for the Lid-Driven Skewed Cavity Flow 

The schematic of the skewed lid-driven cavity flow is depicted in Figure 5.37. Two skew angles, 

𝛼 = 45° and 𝛼 = 135°, are considered. This flow problem has been studied by several 

researchers using different numerical methods. For example, Oosterlee et al. [186] proposed the 

solution for this problem with FVM using general curvilinear coordinates and Erturk and Dursun 

[187] solved skewed cavity flow with FDM and in general curvilinear coordinates with a non-

orthogonal skewed grid system. Erturk and Dursun [187] applied 2-D transformation functions, as 

discussed in Chapter 1, to map a non-orthogonal grid in the physical domain to an orthogonal 

uniform mesh in the computational domain. This approach causes more complexity in the 

transformed governing equations compared to the Cartesian grid system with the 1-D 

transformation functions used in the cut-stencil FDM.  

The vorticity along the skewed walls is approximated with 1
st
-order of accuracy, details of which 

are provided in Appendix IV. The vorticity along the regular boundaries (aligned with the 

Cartesian axes) are approximated with 2
nd

-order of accuracy using equations (5.8.2.3) or (5.8.2.4) 

which have been shown to have the same accuracy as Briley’s formulation [171] for lid-driven 

cavity in a square domain. However, equations (5.8.2.3) and (5.8.2.4) are even more compact and 

this condition is a necessary key feature in complex domains, especially for the internal nodes 

located adjacent to the sloped or skewed boundaries.  
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Figure 5.37: Schematic of domain for skewed lid-driven cavity, a) 𝛼 = 45˚ and b) 𝛼 = 135˚ 

The Reynolds number is defined by taking L and 𝑈Lid as the characteristic length and velocity, to 

retain consistency with other numerical studies. The flow field in a skewed cavity exhibits a large 

vertical motion in the central or upper part of the cavity and, depending on Reynolds number, 

other smaller vortices in the upper and/or lower parts of the cavity. 

The 2
nd

-order and higher-order results of the cut-stencil FD formulations for the case of 𝛼 = 45˚ 

and 𝑅𝑒 = 100 are compared to results from other numerical studies in Table 5.22. In Table 5.22, 

vortex centre refers to the locations with maximum and minimum streamfunction values, which 

are reported in absolute format to keep consistency for all reported results. Examination of the 

data reported in Table 5.22 reveals that all cut-stencil FD results are in good agreement with other 

numerical studies, while the cut-stencil FDM predicts these solutions on a relatively coarser 

mesh. Due to the small value of Reynolds number for this case, no significant differences are 

observed between cut-stencil 2
nd

-order accurate solutions and higher-order formulations. The 

same observation can be made for the cut-stencil FDMs for cavity flow in a unit square domain in 

Table 5.6. The comparison of these key features for the two grid sizes used for the cut-stencil FD 

solution, verifies the grid independence since no significant changes are observed between the 

results. 

 

 

 

 

 

 

 

 

 

 

 



    

160 

 

Study 

(Grid) 

Properties of  

vortex centre-1 

Properties of  

vortex centre-2 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
 Oosterlee et al. 

[186] 

(256*256) 
7.0238E-2 

(1.1100, 

0.5469) 
N.A. 3.69E-5 

(0.3390, 

0.1409) 
N.A. 

Erturk and Dursun 

[187] 

(513*513) 

7.0232E-2 
(1.1119, 

0.5455) 
4.615 3.67E-5 

(0.3392, 

0.1422) 
1.825E-2 

Demirdzic et al. 

[188] 

(320*320) 

7.0226E-2 
(1.1100, 

0.5464) 
N.A. 3.68E-5 

(0.3387, 

0.1431) 
N.A. 

Shkyar and Arbel  

[189] 

(320*320) 

7.0129E-2 
(1.1146, 

0.5458) 
N.A. 3.93E-5 

(0.3208, 

0.1989) 
N.A. 

2
nd

-order 

cut-stencil 

 (1189*) 

6.8618E-2 
(1.1250,  

0.5500) 
4.919 3.81E-5 

(0.3500,  

0.1250) 
1.896E-2 

Cut-stencil 

HO-FDM1 

(1189*) 

6.9654E-2 
(1.1000,  

0.5500) 
4.789 3.81E-5 

(0.3250,  

0.1500) 
1.652E-2 

Cut-stencil 

HO-FDM2 

(1189*) 

6.9313E-2 
(1.1250,  

0.5500) 
4.954 3.77E-5 

(0.3500,  

0.1250) 
1.969E-2 

2
nd

-order 

cut-stencil 

 (4617*) 

6.9716E-2 
(1.1125,  

0.5375) 
4.629 3.72E-5 

(0.3375,  

0.1375) 
1.742E-2 

Cut-stencil 

HO-FDM1 

(4617*) 

7.0052E-2 
(1.1000,  

0.5375) 
4.555 3.73E-5 

(0.3375,  

0.1375 
1.778E-2 

Cut-stencil 

HO-FDM2 

(4617*) 

6.9945E-2 
(1.1000,  

0.5375) 
4.551 3.73E-5 

(0.3375,  

0.1375 
1.758E-2 

*: Number of active nodes 

 Table 5.22: Comparison of cut-stencil FD solutions to literature for skewed lid-driven 

cavity flow (𝑅𝑒 = 100, 𝛼 = 45˚) 

At higher Reynolds numbers the Point-Jacobi iterative scheme fails to converge for all the cut-

stencil formulations when the convective terms are approximated by central differences. For such 

convection-dominated flows, the Point-Jacobi iterations converge if the convective derivatives in 

the vorticity equation are upwinded which, of course, reduces the overall accuracy of the method. 

Thus, for 𝑅𝑒 = 1000, the results of upwind discretization in each of the cut-stencil methods are 

initially considered for the grid size of 4617 active nodes, through the data reported in Table 5.23.  
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Study 

(Grid) 

Properties of  

vortex centre-1 

Properties of  

vortex centre-2 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
2

nd
-order 

cut-stencil 

 (4617*) 

4.1069E-2 
(1.3375,  

0.5875) 
5.660 4.24E-3 

(0.7625,  

0.3500) 
3.577E-1 

Cut-stencil 

HO-FDM1 

(4617*) 

6.1438E-2 
(1.2500,  

0.5375) 
5.866 9.31E-3 

(0.7625,  

0.4000) 
6.506E-1 

Cut-stencil 

HO-FDM2 

(4617*) 

5.7905E-2 
(1.2750,  

0.5500) 
6.29109 9.79E-3 

(0.7625,  

0.4000) 
6.556E-1 

*: Number of active nodes  

Table 5.23: Cut-stencil FD solutions to skewed lid-driven cavity flow using upwind schemes 

(𝑅𝑒 = 1000, 𝛼 = 45˚, 4617 active nodes)  

Although the higher-order data in Table 5.23 shows reasonable agreement with other published 

numerical solutions, especially the HO-FDM2 solution, relatively better agreement can be 

achieved at this Reynolds number with central differencing of the convective terms. Iterative 

convergence with central differencing of the convective terms is achieved by using SUR. To 

achieve this purpose, the optimum SUR factor, which corresponds to the minimum computational 

effort, is determined for each formulation and grid size. This procedure is carried out by changing 

𝜎 in a range whose upper limit is the border between divergence and the converged solution. The 

independency of the solution on the value of 𝜎 is investigated by comparison of two key features 

of the solution, as illustrated in Table 5.24 for the 2
nd

-order cut-stencil FD formulation for a mesh 

with 18193 active nodes. 

𝜎 
𝜓 

vortex centre-1 
𝜔 

vortex centre-2 

0.890 5.1531E-2 6.216E-1 

0.800 5.1531E-2 6.216E-1 
0.700 5.1531E-2 6.216E-1 
0.580 5.1531E-2 6.216E-1 
0.500 5.1531E-2 6.216E-1 

Table 5.24: Independency of skewed cavity solution to relaxation factor 𝜎 for 2
nd

-order cut-stencil 

formulation (𝑅𝑒 = 1000, 𝛼 = 45˚, 18193 active nodes)  

The results in Tables 5.23 and 5.25 indicate that better agreement between the present cut-stencil 

solutions and other numerical results when central differencing is used for the convective 

derivatives for each formulation. Also, the capability of the higher-order formulations to produce 

values closer to those from other numerical studies is more obvious for this higher value of 

Reynolds number and, between the two higher-order cut-stencil FD formulations, HO-FDM2 

appears to yield slightly better agreement with other data. Additionally, the Point-Jacobi method 

converges for HO-FDM2 on a finer mesh (18193 nodes) with central differencing of the 

convective terms, as recorded in Table 5.25. Results for the skewed cavity flow at 𝑅𝑒 =

1000 and with 𝛼 = 45˚ are summarized and compared with numerical results of other researchers 

in Table 5.25. 
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Study 

(Grid) 

Properties of  

vortex centre-1 

Properties of  

vortex centre-2 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
 Oosterlee et al. 

[186] 

(256*256) 
5.3523E-2 

(1.3128, 

0.5745) 
N.A. 1.0039E-2 

(0.7775, 

0.4005) 
N.A. 

Erturk and Dursun 

[187] 

(513*513) 

5.3423E-2 
(1.3148, 

0.5745) 
6.955 1.0024E-2 

(0.7780, 

0.3991) 
6.269E-1 

Demirdzic et al 

[188] 

(320*320) 

5.3507E-2 
(1.3130, 

0.5740) 
N.A. 1.0039E-2 

(0.7766, 

0.3985) 
N.A. 

Shklyar and Arbel 

[189] 

(320*320) 

5.2553E-2 
(1.3120, 

0.5745) 
N.A. 1.0039E-2 

(0.7766, 

0.3985) 
N.A. 

Louaked et al. 

[190] 

(120*120) 

5.4690E-2 
(1.3100, 

0.5700) 
N.A. 1.0170E-2 

(0.7760, 

0.3980) 
N.A. 

2
nd

-order 

cut-stencil 

 (4617*) 

4.6779E-2 

(0.400 ≤ 𝜎 ≤ 0.660)i 
(𝜎Opt. = 0.565)

ii 

(1.3500,  

0.5875) 
7.961 9.45E-3 

(0.7875,  

0.3875) 
5.756E-1 

Cut-stencil 

HO-FDM1 

(4617*) 

5.6464E-2 

(0.450 ≤ 𝜎 ≤ 0.550) 
(𝜎Opt. = 0.512) 

(1.2875,  

0.5625) 
6.510 1.01E-2 

(0.7750, 

0.4000) 
6.454E-1 

Cut-stencil 

HO-FDM2 

(4617*) 

5.3191E-2 

(0.470 ≤ 𝜎 ≤ 0.656) 
(𝜎Opt. = 0.656) 

(1.3125,  

0.5625) 
6.992 1.01E-2 

(0.7750, 

0.4000) 
6.404E-1 

2
nd

-order 

cut-stencil 

 (18193*) 

5.1531E-2 

(0.500 ≤ 𝜎 ≤ 0.890) 
(𝜎Opt. = 0.890) 

(1.3186,  

0.5750) 
7.214 9.87E-3 

(0.7750,  

0.3938) 
6.216E-1 

Cut-stencil 

HO-FDM1 

(18193*) 

5.4278E-2 

(0.650 ≤ 𝜎 ≤ 0.840) 
(𝜎Opt. = 0.830) 

(1.3000, 

0.5625) 
6.849 1.00E-2 

(0.7688, 

0.3938) 
6.389E-1 

Cut-stencil 

HO-FDM2 

(18193*) 

5.3438E-2 
(1.3063, 

0.5688) 
6.968 1.00E-2 

(0.7750, 

0.3938) 
6.270E-1 

*: Number of active nodes 
(i): Study range of under-relaxation factor, (ii): Optimum value of under-relaxation factor 

Table 5.25: Comparison of cut-stencil FD solutions for skewed lid-driven cavity flow (𝑅𝑒 =
1000, 𝛼 = 45˚) 

The contours of streamfunction from the cut-stencil HO-FDM2 fine mesh solutions to the skewed 

cavity problem, for both Reynolds numbers of 100 and 1000, are depicted in Figures 5.38 and 

5.39, respectively. The contours of streamfunction show good qualitative agreement with those 

from other numerical studies, such as [187, 188]. 
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Figure 5.38: Streamfunction contours of HO-FDM2 formulation for skewed lid-driven cavity 

(𝑅𝑒 = 100, 𝛼 = 45˚, 4617 active nodes) 

 
Figure 5.39: Streamfunction contours of HO-FDM2 formulation for skewed lid-driven cavity 

(𝑅𝑒 = 1000, 𝛼 = 45˚, 18193 active nodes) 

A similar analysis as above can be conducted for skewed cavity flow with a skew angle of 𝛼 =

135˚. The results for cut-stencil FD formulations and comparison to numerical results by Erturk 
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and Dursun [187] for 𝑅𝑒 = 100 are reported in Table 5.26. Again, there are no significant 

changes between the results of different cut-stencil FD formulations. Comparison between the 

solutions of the same formulation for the two grids listed in Figure 5.26 reveals the grid 

independence since the changes in all the key features of the solution are negligible. Additionally, 

the results of the present study show good agreement with those of Erturk and Dursun [187], 

whose solution was carried out with a relatively finer mesh. 

Study 

(Grid) 

Properties of  

vortex centre-1 

Properties of  

vortex centre-2 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 𝜔 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Erturk and Dursun  

[187] 

(513*513) 
8.3704E-2 

(0.1055, 

0.4999) 
4.065 1.08E-4 

(0.6708, 

0.1436) 
5.742E-2 

2
nd

-order 

cut-stencil 

 (4617*) 

8.3509E-2 
(0.1125,  

0.4875) 
4.011 1.10E-4 

(0.6750,  

0.1375) 
5.635E-2 

Cut-stencil 

HO-FDM1 

(4617*) 

8.3503E-2 
(0.1125,  

0.4875) 
4.017 1.07E-4 

(0.6750,  

0.1375) 
5.707E-2 

Cut-stencil 

HO-FDM2 

(4617*) 

8.3541E-2 
(0.1125,  

0.4875) 
4.018 1.08E-4 

(0.6750,  

0.1375) 
5.693E-2 

2
nd

-order 

cut-stencil 

 (18193*) 

8.3623E-2 
(0.1125,  

0.4938) 
4.081 1.07E-4 

(0.6750, 

 0.1438) 
5.861E-2 

Cut-stencil 

HO-FDM1 

(18193*) 

8.3611E-2 
(0.1125,  

0.4938) 
4.083 1.07E-4 

(0.6750,  

0.1438) 
5.878E-2 

Cut-stencil 

HO-FDM2 

(18193*) 

8.3620E-2 
(0.1125,  

0.4938) 
4.083 1.07E-4 

(0.6750,  

0.1438) 
5.874E-2 

*: Number of active nodes  

Table 5.26: Comparison of cut-stencil FD solutions to Erturk and Dursun [187] for skewed lid-

driven cavity flow (𝑅𝑒 = 100, 𝛼 = 135˚) 

The solutions for skew angle of 135˚ for 𝑅𝑒 = 1000 are summarized in Tables 5.27-5.29. Since 

central differencing of the convective terms leads to divergence with the Point-Jacobi method, the 

results of upwind discretization for each formulation of the cut-stencil FDM, with a mesh of 4617 

active nodes, are presented in Table 5.27.  
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Study 

(Grid) 

Properties of  

vortex centre-1 

Properties of  

vortex centre-2 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
2

nd
-order 

cut-stencil 

 (4617*) 

7.4631E-2 
(0.1375,  

0.4000) 
2.516 2.07E-3 

(0.5625,  

0.1500) 
7.197E-1 

Cut-stencil 

HO-FDM1 

(4617*) 

9.6500E-2 
(0.1625,  

0.3750) 
3.036 3.04E-3 

(0.6000,  

0.1375) 
1.106 

Cut-stencil 

HO-FDM2 

(4617*) 

9.4886E-2 
(0.1500,  

0.3875) 
3.003 3.29E-3 

(0.5875,  

0.1500) 
1.134 

*: Number of active nodes 

Table 5.27: Cut-stencil FD solutions for skewed lid-driven cavity flow using upwind schemes for 

approximation of convective terms for (𝑅𝑒 = 1000, 𝛼 = 135˚, 4617 active nodes)  

SUR iterations converge for all the cut-stencils formulations discussed in this thesis when central 

differencing is employed for 𝑅𝑒 = 1000. As an example of the independency of the solution on 

the under-relaxation factor, two key features of the cut-stencil HO-FDM1 solution and 

corresponding 𝜎, for mesh of 18193 active nodes, are reported in Table 5.28.  

𝜎 
𝜓 

(vortex centre-1) 
𝜔 

(vortex centre-2) 

0.815 9.3817E-2 1.237 

0.785 9.3817E-2 1.237 

0.765 9.3817E-2 1.237 

0.680 9.3817E-2 1.237 

0.600 9.3817E-2 1.237 

Table 5.28: Independency of skewed cavity solution to relaxation factor 𝜎 for cut-stencil HO-

FDM1 formulation (𝑅𝑒 = 1000,  𝛼 = 135˚, 18193 active nodes)  

The results of different cut-stencil FD formulations, when central differencing is applied to 

discretize the convective terms and SUR is used as the iterative scheme to solve the finite 

difference equations, are given in Table 5.29. The range of variation of 𝜎 that is studied for each 

formulation and the optimum value of 𝜎 are stated in the table, and it is further noted that central 

differencing of the convective terms along with the Point-Jacobi iterative scheme can be 

employed for the HO-FDM2 formulation with the finer mesh of 18193 nodes. 

Analysis of the data in Tables 5.27 and 5.29 shows that, for 4617 active nodes, discretizing the 

convective derivatives with central differencing yields better agreement with the numerical data 

of Erturk and Dursun [187] than upwind discretization of the convective terms. The data in Table 

5.29 demonstrates that the higher-order cut-stencil formulations produce accurate results for 

almost all key features of the solution, particularly for the coarser mesh. This supports the idea 

that the higher-order formulations have the capability to generate accurate results even by 

employing coarse meshes. Between the two proposed cut-stencil higher-order formulations, the 

HO-FDM2 formulation shows greater capability to capture the key features more accurately 

compared to the HO-FDM1 formulation.  
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Study 

(Grid) 

Properties of  

vortex centre-1 

Properties of  

vortex centre-2 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Erturk and Dursun 

[187] 

(513*513) 

9.3512E-2 
(0.1390, 

0.3922) 
2.992 3.78E-3 

(0.5554, 

0.1478) 
1.197 

2
nd

-order 

cut-stencil 

 (4617*) 

9.4407E-2 

 (0.425 ≤ 𝜎 ≤ 0.570)i 
(𝜎Opt. = 0.570)

ii 

(0.1375,  

0.3875) 
3.109 4.30E-3 

(0.5375,  

0.1500) 
1.349 

Cut-stencil 

HO-FDM1 

(4617*) 

9.4753E-2 

 (0.380 ≤ 𝜎 ≤ 0.515) 
(𝜎Opt. = 0.515) 

(0.1500, 

 0.3875) 
3.003 3.50E-3 

(0.5750,  

0.1375) 
1.262 

Cut-stencil 

HO-FDM2 

(4617*) 

9.4036E-2 

 (0.525 ≤ 𝜎 ≤ 0.785) 
(𝜎Opt. = 0.785) 

(0.1500, 

 0.3875) 
3.013 3.69E-3 

(0.5625,  

0.1375) 
1.279 

2
nd

-order 

cut-stencil 

 (18193*) 

9.3445E-2 

 (0.550 ≤ 𝜎 ≤ 0.840) 
(𝜎Opt. = 0.840) 

(0.1438, 

 0.3875) 
3.025 3.85E-3 

(0.5563,  

0.1500) 
1.220 

Cut-stencil 

HO-FDM1 

(18193*) 

9.3817E-2 

 (0.600 ≤ 𝜎 ≤ 0.815) 
(𝜎Opt. = 0.765) 

(0.1438,  

0.3875) 
3.010 3.66E-3 

(0.5625,  

0.1438) 
1.237 

Cut-stencil 

HO-FDM2 

(18193*) 

9.3774E-2 
(0.1438,  

0.3875) 
3.017 3.73E-3 

(0.5625,  

0.1438) 
1.200 

*: Number of active nodes 
(i): Study range of under-relaxation factor, (ii): Optimum value of under-relaxation factor 

Table 5.29: Comparison of cut-stencil FD solutions with Erturk and Dursun [187] for skewed lid-

driven cavity flow (𝑅𝑒 = 1000,  𝛼 = 135˚) 

The contours of streamfunction of the cut-stencil HO-FDM2 solution for both 𝑅𝑒 = 100 and 

𝑅𝑒 = 1000 for 𝛼 = 135˚ using the finer mesh of 18193 active nodes are plotted in Figures 5.40 

and 5.41, respectively. The quantitative and qualitative comparison of the aforementioned 

contours to available plots from Erturk and Dursun [187], show more evidence of the accuracy of 

the methods and algorithms developed in this research, particularly noting that the data in [187] 

has been obtained with a much finer mesh (~ 260,000) than those used in present study. 
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Figure 5.40: Streamfunction contours of HO-FDM2 solution for skewed lid-driven cavity 

(𝑅𝑒 = 100,  𝛼 = 135˚, 18193 active nodes) 

 
Figure 5.41: Streamfunction contours of HO-FDM2 solution for skewed lid-driven cavity 

(𝑅𝑒 = 1000,  𝛼 = 135˚, 18193 active nodes) 
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5.6.2 Cut-Stencil FD Solution for Lid-Driven Right-Side and Left-Side Aligned Right 

Triangular Cavity Flow 

The cut-stencil solutions to lid-driven cavity flow for the domains shown in Figure 5.42 are 

considered in this section, to investigate the capability of the cut-stencil FDM for solution of fluid 

flow problems in any irregular shaped domains. The definition of Reynolds number uses L as the 

characteristic length and 𝑈Lid as the characteristic velocity.     

 
Figure 5.42: Schematic of isosceles right triangular domains, a) left-side aligned, and b) right-side 

aligned 

Erturk and Gokcol [191] have considered 2-D incompressible cavity flow inside different 

triangular cross-sections including those depicted in Figure 5.42. Their study [191] used FDM 

and a general arbitrary triangle, as the physical domain, was mapped to an isosceles right triangle 

as the computational domain. The mapping function used in [191] is solely applicable to carry out 

the transformation for triangular domains. The solution of lid-driven cavity flow for different 

cross-sections, such as cavity flow in skewed or trapezoidal or triangular cross-sections, has been 

mostly presented in numerical studies using FVM, such as [182]. However, in case of employing 

FDM, different mapping functions can be defined for each geometry, e.g. [187, 191, 192]. 

Additionally, semi 2-D transformation functions in [191] produced cross derivatives in the 

mapped form of the streamfunction-vorticity equations and made it more complex and hence 

more difficult to discretize. It is important to note that in this research and thesis, the mapping 

process is performed with same transformation functions for every geometrical cross-section, 

which also generates the mapped form of the governing equation(s) in relatively simple form. The 

flows inside the triangular cavities shown in Figure 5.42 have also been studied using other 

numerical schemes such as FEM [193] and the Lattice Boltzmann method (LBM) [194].  

Table 5.30 looks at the cut-stencil FD solution for lid-driven flow in the triangular cavity 

illustrated in Figure 5.42(a), and presents a comparison to a number of available numerical 

studies, for 𝑅𝑒 = 500.  
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Study 

(Grid) 

Properties of  

primary vortex centre 

Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
 Erturk and Gokcol 

[191] 

(512*512)/2 
0.06065 (0.5469, 0.8496) 5.737 

Ahmed and Kuhlmann 

[193] 

(100 subspaces) 

0.06072 (0.5486, 0.08482) 5.759 

Munir et al. 

[194] 

(300*300) 

N.A. (0.5550, 0.8500) N.A. 

2
nd

-order 

cut-stencil 

 (2145*) 

0.05584 

 (0.600 ≤ 𝜎 ≤ 0.830)i 
(𝜎Opt. = 0.830)

ii 

(0.5781, 0.8594) 6.215 

Cut-stencil 

HO-FDM1 

(2145*) 

0.06213 

(0.600 ≤ 𝜎 ≤ 0.830) 
(𝜎Opt. = 0.825) 

(0.5313, 0.8438) 5.534 

Cut-stencil 

HO-FDM2 

(2145*) 

0.06010 (0.5469, 0.8438) 5.824 

2
nd

-order 

cut-stencil 

 (3321*) 

0.05674 (0.5625, 0.8500) 5.783 

Cut-stencil 

HO-FDM1 

(3321*) 

0.06167 

(0.650 ≤ 𝜎 ≤ 0.940) 
(𝜎Opt. = 0.940) 

(0.5375, 0.8500) 5.552 

Cut-stencil 

HO-FDM2 

(3321*) 

0.06045 (0.5500, 0.8500) 5.754 

2
nd

-order 

cut-stencil 

 (5151*) 

0.05858 (0.5600, 0.8500) 5.986 

Cut-stencil 

HO-FDM1 

(5151*) 

0.06140 (0.5400, 8500) 5.605 

Cut-stencil 

HO-FDM2 

(5151*) 

0.06132 (0.5400, 8500) 5.515 

*: Number of active nodes 
(i): Study range of under-relaxation factor, (ii): Optimum value of under-relaxation factor 

Table 5.30: Comparison of cut-stencil FD solutions for lid-driven cavity flow in a left-side 

aligned right triangle (𝑅𝑒 = 500)  

Examination of the cut-stencil FD data given in table 5.30 shows good agreement of the higher-

order cut-stencil FD formulations with numerical data reported in [191, 193, 194], which are 

obtained with much finer grids. The relative differences of 𝜓 and 𝜔 at the primary vortex 

between HO-FDM2 and the data of Erturk and Gokcol [191] are equal to 0.91% and 1.52%, 

respectively, for the mesh of 2145 active nodes. These differences are 3.41% and 4.34% for the 

2
nd

-order cut-stencil FD formulation on a mesh of 5151 active nodes. This provides strong 

evidence that the cut-stencil FD methods, especially the higher-order methods, can accurately 
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simulate complex flow phenomena on a coarse mesh, in addition to a similar observation based 

on previous results for irregular shaped domains. 

The results of the cut-stencil FDM for cavity flow inside the triangular cross-section shown in 

Figure 5.42(a) for 𝑅𝑒 = 1000, as well as comparison to other numerical studies, are presented 

through the data in Table 5.31.  

Study 

(Grid) 

Properties of primary vortex center 

Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Erturk and Gokcol  

[191] 

(512*512)/2 
0.05306 (0.6094, 0.8691) 7.022 

Ahmed and Kuhlmann 

[193] 

(100 subspaces) 

0.05325 (0.6081, 0.8678) 6.997 

Munir et al. 

[194] 

(300*300) 

N.A. (0.6050, 0.8650) N.A. 

2
nd

-order 

cut-stencil 

 (3321*) 

0.04647 

 (0.350 ≤ 𝜎 ≤ 0.575)i 
(𝜎Opt. = 0.575)

ii 

(0.6500,  0.8875) 8.036 

Cut-stencil 

HO-FDM1 

(3321*) 

0.05614 

(0.325 ≤ 𝜎 ≤ 0.515) 
(𝜎Opt. = 0.515) 

(0.5875, 0.8625) 6.565 

Cut-stencil 

HO-FDM2 

(3321*) 

0.05291 

(0.470 ≤ 𝜎 ≤ 0.665) 
(𝜎Opt. = 0.665) 

(0.6125, 0.8625) 7.051 

2
nd

-order 

cut-stencil 

 (5151*) 

0.04865 

(0.425 ≤ 𝜎 ≤ 0.665) 
(𝜎Opt. = 0.665) 

(0.6400, 0.8800) 7.669 

Cut-stencil 

HO-FDM1 

(5151*) 

0.05510 

(0.400 ≤ 𝜎 ≤ 0.600) 
(𝜎Opt. = 0.600) 

(0.6000, 0.8600) 6.703 

Cut-stencil 

HO-FDM2 

(5151*) 

0.05305 

(0.400 ≤ 𝜎 ≤ 0.700) 
(𝜎Opt. = 0.700) 

(0.6100, 0.8700) 7.032 

2
nd

-order 

cut-stencil 

 (8001*) 

0.05014 

(0.550 ≤ 𝜎 ≤ 0.790) 
(𝜎Opt. = 0.790) 

(0.6320, 0.8800) 7.389 

Cut-stencil 

HO-FDM1 

(8001*) 

0.05449 

(0.475 ≤ 𝜎 ≤ 0.700) 
(𝜎Opt. = 0.700) 

(0.6000, 8640) 6.813 

Cut-stencil 

HO-FDM2 

(8001*) 

0.05310 

(0.600 ≤ 𝜎 ≤ 0.725) 
(𝜎Opt. = 0.725) 

(0.6080, 8720) 7.015 

*: Number of active nodes 
(i): Study range of under-relaxation factor, (ii): Optimum value of under-relaxation factor 

Table 5.31: Comparison of cut-stencil FD solutions for lid-driven cavity flow in a left-side 

aligned right triangle (𝑅𝑒 = 1000)  

The data, as reported in Table 5.31, shows that there is good agreement between cut-stencil HO-

FDM1 solutions and data from other numerical work for all grid sizes studied. There is even 
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better agreement in the event that cut-stencil HO-FDM2 is employed. The relative difference of 𝜓 

and 𝜔 at the primary vortex between the HO-FDM2 results and reported data in [191] can be seen 

as 0.28% and 0.41%, respectively, for the coarser mesh studied in Table 5.31. These values are 

equal 5.50% and 5.23% for  𝜓 and 𝜔 at the primary vortex, respectively, when the 2
nd

-order cut-

stencil formulation is employed on the finer grid (8001 active nodes). This shows that in irregular 

shaped domains, even when the Reynolds number increases, more accurate solutions can be 

obtained by apply the higher-order formulations. Additionally, the benefit of central differencing 

of the convective terms can be achieved by employing SUR as the iterative method when 

necessary. This supports the proposition that the cut-stencil FDM is a powerful new numerical 

formulation with known features of traditional well-established numerical methods and, even 

though it is a pure finite difference method, it can be used to solve complex PDEs in irregular 

shaped domains.  

Figure 5.43 illustrates the contours of streamfunction for 𝑅𝑒 = 500 and 𝑅𝑒 = 1000, for lid-

driven cavity flow in a left-side aligned right triangle employing cut-stencil HO-FDM2 and using 

the finer grid size studied for each Reynolds number.   

 
Figure 5.43: Streamfunction contours for HO-FDM2 formulation for left-side aligned right 

triangle lid-driven cavity, a) 𝑅𝑒 = 500 with grid of 5151 active nodes, b) 𝑅𝑒 = 1000 with grid of 

8001 active nodes 

The results of cut-stencil FDM solutions for lid-driven cavity flow in a right-side aligned right 

triangle cross-section for 𝑅𝑒 = 500 and other available numerical data are reported in Table 5.32. 

Analysis of the data in Table 5.32 reveals good agreement between the cut-stencil FDM solutions 

and other numerical data from [191, 193], for all cut-stencil FD formulations, while all the grids 

used in the present study are coarser than the ones used by other researchers. Also, the agreement 

is even better when higher-order formulations of the cut-stencil FDM are employed. 
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Study 

(Grid) 

Properties of  

primary vortex centre 

Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
 Erturk and Gokcol 

[191] 

(512*512)/2 
0.08106 (0.7070, 0.7676) 4.121 

Munir et al. 

[194] 

(300*300) 

N.A. (0.7100, 0.7650) N.A. 

2
nd

-order 

cut-stencil 

 (2145*) 

0.07729 

(0.380 ≤ 𝜎 ≤ 0.580)i 
(𝜎Opt. = 0.580)

ii 

(0.7031, 0.7656) 4.051 

Cut-stencil 

HO-FDM1 

(2145*) 

0.08132 

(0.350 ≤ 𝜎 ≤ 0.520) 
(𝜎Opt. = 0.520) 

(0.7031, 0.7656) 4.184 

Cut-stencil 

HO-FDM2 

(2145*) 

0.08154 

(0.365 ≤ 𝜎 ≤ 0.570) 
(𝜎Opt. = 0.550) 

(0.7031, 0.7656) 4.182 

2
nd

-order 

cut-stencil 

 (3321*) 

0.07856 

(0.585 ≤ 𝜎 ≤ 0.750) 
(𝜎Opt. = 0.750) 

(0.7125, 0.7750) 4.015 

Cut-stencil 

HO-FDM1 

(3321*) 

0.08092 

(0.625 ≤ 𝜎 ≤ 0.727) 
(𝜎Opt. = 0.727) 

(0.7125, 0.7750) 4.107 

Cut-stencil 

HO-FDM2 

(3321*) 

0.08064 (0.7125, 0.7750) 4.116 

2
nd

-order 

cut-stencil 

 (5151*) 

0.07951 (0.7100, 0.7700) 4.052 

Cut-stencil 

HO-FDM1 

(5151*) 

0.08098 

(0.750 ≤ 𝜎 ≤ 0.940) 
(𝜎Opt. = 0.940) 

(0.7100, 0.7700) 4.110 

Cut-stencil 

HO-FDM2 

(5151*) 

0.08082 (0.7100, 0.7700) 4.104 

*: Number of active nodes 
(i): Study range of under-relaxation factor, (ii): Optimum value of under-relaxation factor 

Table 5.32: Comparison of cut-stencil FD solutions for lid-driven cavity flow in a right-side 

aligned right triangle (𝑅𝑒 = 500)  

The solution of lid-driven cavity flow inside the right-side aligned right triangle for 𝑅𝑒 = 1000 is 

presented in Table 5.33. The relative difference for streamfunction and vorticity of the 2
nd

-order 

cut-stencil FD solution compared to the same data in [191] are 2.68% and 2.30%, respectively, 

for the finest mesh shown in Table 5.33. These differences are reduced to 0.13% and 0.26% for 

streamfunction and vorticity, respectively, in the event of applying cut-stencil HO-FDM1 for the 

same mesh. This comparison shows only 0.03% and 0.12% of relative differences for 

streamfunction and vorticity, respectively, for the cut-stencil HO-FDM2 solution. Although the 

Reynolds number is increased, the methods of the present study are able to generate accurate 

solutions for lid-driven cavity flow with the cross-section depicted in Figure 5.42(b), while the 
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finest mesh used in Table 5.33 is much coarser than the ones employed in other numerical 

studies. It is worthwhile, again, to point out that despite the different cross-sections used for 

reporting data in Tables 5.30-5.33, the transformation functions and mapping methodology are 

the same for all irregular domains, as discussed in Chapter 2. 

Study 

(Grid) 

Properties of  

primary vortex centre 

Abs. 

 (𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Erturk and Gokcol  

[191] 

(512*512/2) 
0.08318 (0.6992, 0.7559) 3.925 

Munir et al. 

[194] 

(300*300) 

N.A. (0.7000, 0.7550) N.A. 

2
nd

-order 

cut-stencil 

 (4186*) 

0.07939 

 (0.225 ≤ 𝜎 ≤ 0.374)i 
(𝜎Opt. = 0.374)

ii 

(0.7000, 0.7556) 3.785 

Cut-stencil 

HO-FDM1 

(4186*) 

0.08415 

(0.180 ≤ 𝜎 ≤ 0.280) 
(𝜎Opt. = 0.280) 

(0.7000, 0.7556) 3.994 

Cut-stencil 

HO-FDM2 

(4186*) 

0.08453 

(0.060 ≤ 𝜎 ≤ 0.165) 
(𝜎Opt. = 0.144) 

(0.7000, 0.7556) 3.994 

2
nd

-order 

cut-stencil 

 (5151*) 

0.07992 

(0.300 ≤ 𝜎 ≤ 0.427) 
(𝜎Opt. = 0.427) 

(0.7000, 0.7600) 3.802 

Cut-stencil 

HO-FDM1 

(5151*) 

0.08372 

(0.225 ≤ 𝜎 ≤ 0.340) 
(𝜎Opt. = 0.325) 

(0.7000, 0.7600) 3.972 

Cut-stencil 

HO-FDM2 

(5151*) 

0.08385 

(0.100 ≤ 𝜎 ≤ 0.290) 
(𝜎Opt. = 0.275) 

(0.7000, 0.7600) 3.967 

2
nd

-order 

cut-stencil 

 (8001*) 

0.08095 

(0.400 ≤ 𝜎 ≤ 0.560) 
(𝜎Opt. = 0.560) 

(0.7040, 0.7600) 3.835 

Cut-stencil 

HO-FDM1 

(8001*) 

0.08329 

(0.350 ≤ 𝜎 ≤ 0.510) 
(𝜎Opt. = 0.510) 

(0.6960, 0.7520) 3.935 

Cut-stencil 

HO-FDM2 

(8001*) 

0.08316 

(0.340 ≤ 𝜎 ≤ 0.432) 
(𝜎Opt. = 0.400) 

(0.7040, 0.7520) 3.930 

*: Number of active nodes 
(i): Study range of under-relaxation factor, (ii): Optimum value of under-relaxation factor 

Table 5.33: Comparison of cut-stencil FD solutions to literature for lid-driven cavity flow in a 

right-side aligned right triangle at 𝑅𝑒 = 1000 

The contours of streamfunction for 𝑅𝑒 = 500 and 𝑅𝑒 = 1000, for lid-driven cavity flow in a 

right-side aligned right triangle employing cut-stencil HO-FDM2 and using the finest grid size 

studied for each Reynolds number, are presented in Figure 5.44.   
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Figure 5.44: Streamfunction contours for HO-FDM2 formulation for right-side aligned right 

triangle lid-driven cavity, a) 𝑅𝑒 = 500 with grid of 5151 active nodes, b) 𝑅𝑒 = 1000 with grid of 

8001 active nodes 

5.6.3 Cut-Stencil FD Solution for Lid-Driven L-Shaped Cavity Flow 

Cut-stencil FD solution to lid-driven cavity flow in the L-shaped domain depicted in Figure 5.45 

is investigated in this section. The lid-driven cavity flow in an L-shaped domain has been 

addressed in other numerical studies to verify domain decomposition methods [186, 195], as well 

as checking discretization techniques [186]. The characteristic length is defined by L and 𝑈Lid is 

taken as the characteristic velocity. 

 
Figure 5.45: Schematic of L-shaped domain 

Table 5.34 reports the cut-stencil FD solutions for lid-driven cavity flow in the L-shaped domain 

and makes comparison to available solutions in literature for 𝑅𝑒 = 1000. The same 

transformation functions and mapping procedure that have been used for other irregular shaped 

domains is employed for the L-shaped domain. This point, again, confirms the generality of the 

Cartesian cut-stencil FD procedure to solve PDEs in any type of domain without requiring any 

changes in the mapping procedure. 
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Basically, three primary vortices occur at 𝑅𝑒 = 1000 in the L-shape domain, as also tabulated by 

Oosterlee et al. [186]. One of the extrema of streamfunction occurs in the region 𝑥 < 0.5 and 

another extrema occurs in the region 𝑥 > 0.5. The absolute value of streamfunction and vorticity 

at the three primary vortices are given in Table 5.33 along with the coordinates of each. The finest 

mesh in numerical study [186] is the grid of 512*512 nodes, but independency of the solution 

from the grids used can be observed between the grids of 256*256 and 512*512 nodes. So, the 

key features of the solution on the grid of 256*256 nodes in [186] are shown in Table 5.33. 

Additionally, four grid sizes, varying from 1.25E5 to 8.00E6 are employed in [196] but due to 

negligible difference between reported key features of each mesh, the available key features of 

the coarse mesh are given in Table 5.34. The central differencing of convective terms has been 

employed using the SUR iterative method.  

Study 

(Grid) 

Properties of primary vortex centre 

Min. (𝜓) 
Extrema (𝜓) 
(𝑥 < 0.5) 

Extrema (𝜓) 
(𝑥 > 0.5) 

Abs. 

(𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

(𝜔) 
Abs. 

(𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 
Abs. 

(𝜓) 
Location 
(𝑥, 𝑦) 

Abs. 

 (𝜔) 

 Oosterlee  

et al. [186] 

(256*256) 
0.08539 

(0.6947, 

0.7488) 
N.A. 

6.20 

E-3 

(0.1819, 

0.7505) 
N.A. 

6.25 

E-3 

(0.6877, 

0.3069) 
N.A. 

Ahusborde and 

Glockner 

[196] 

(125000*) 

N.A. 
(0.6944, 

0.7511) 
3.877 N.A. 

(0.1842, 

0.7508) 
1.211 N.A. 

(0.6874, 

0.3094) 

9.61 

E-1 

2nd-order 

cut-stencil 

 (12545**) 

0.08377 

(0.485 ≤ 𝜎
≤ 0.600)i 

(𝜎Opt. = 0.575)
ii 

(0.6953, 

0.7500) 
3.767 

5.87 

E-3 

(0.1797, 

0.7500) 
1.130 

5.95 

E-3 

(0.6875, 

0.3047) 

9.16 

E-1 

Cut-stencil 

HO-FDM1 

(12545**) 

0.08592 

(0.485 ≤ 𝜎
≤ 0.590) 

(𝜎Opt. = 0.590) 

(0.6875, 

0.7500) 
3.862 

6.16 

E-3 

(0.1797, 

0.7500) 
1.187 

6.34 

E-3 

(0.6875, 

0.3047) 

9.48 

E-1 

Cut-stencil 

HO-FDM2 

(12545**) 

0.08576 

 (0.460 ≤ 𝜎
≤ 0.570) 

(𝜎Opt. = 0.569) 

(0.6875, 

0.7500) 
3.852 

6.15 

E-3 

(0.1797, 

0.7500) 
1.175 

6.30 

E-3 

(0.6875, 

0.3047) 

9.48 

E-1 

2nd-order 

cut-stencil 

 (19521**) 

0.08441 

(0.670 ≤ 𝜎
≤ 0.775) 

(𝜎Opt. = 0.775) 

(0.6938, 

0.7500) 
3.799 

6.04 

E-3 

(0.1813, 

0.7500) 
1.153 

6.07 

E-3 

(0.6875, 

0.3063) 

9.35 

E-1 

Cut-stencil 

HO-FDM1 

(19521**) 

0.08580 

(0.670 ≤ 𝜎
≤ 0.780) 

(𝜎Opt. = 0.780) 

(0.6938, 

0.7500) 
3.861 

6.21 

E-3 

(0.1813, 

0.7500) 
1.189 

6.32 

E-3 

(0.6875, 

0.3063) 

9.56 

E-1 

Cut-stencil 

HO-FDM2 

(19521**) 

0.08566 

(0.785 ≤ 𝜎
≤ 0.885) 

(𝜎Opt. = 0.850) 

(0.6938, 

0.7500) 
3.849 

6.21 

E-3 

(0.1813, 

0.7500) 
1.183 

6.27 

E-3 

(0.6875, 

0.3063) 

9.54 

E-1 

*: Number of nodes, **: Number of active nodes 

(i): Study range of under-relaxation factor, (ii): Optimum value of under-relaxation factor 

Table 5.34: Comparison of cut-stencil FD solutions for lid-driven cavity flow in an L-shaped 

domain (𝑅𝑒 = 1000) 
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Comparison of the 2
nd

-order cut-stencil FD solutions and other published numerical results show 

good agreement for the key features of the solution, where previous numerical studies have used 

much finer meshes than those in the present research work. The finer meshes used with the cut-

stencil FD methods gives 1.15% relative difference for the minimum value of 𝜓 compared to the 

value in [186]. This difference reaches to 1.90% when the grid of 12545 active nodes is 

employed. Same comparison of the extrema of 𝜓, in the region 𝑥 < 0.5, gives the reduction of 

8.39% to 2.58% for the grids of 12545 and 19251 nodes, respectively, for the 2
nd

-order cut-stencil 

FD solution. 

The sum of relative differences for minimum and extremes of 𝜓 in the present study, compared to 

the same values in [186], gives 15.08%, 2.71% and 2.08% for 2
nd

-order, HO-FDM1 and HO-

FDM2, respectively, for the grid of 12545 active nodes. These differences are reduced to 6.61%, 

1.75% and 0.79%, respectively, when the grid of 19521 active nodes is employed. One can see 

that, regardless of the good accuracy for all cut-stencil formulations of the present study, the 

higher-order methods can predict accurate solutions on the grid of 12545 active nodes since the 

solution on the finer grid, for the same methods, just verifies the independency of the solution 

from the grid size. The solution of the 2
nd

-order formulation of cut-stencil FDM shows significant 

changes in the key features of the solutions, especially in the extrema of 𝜓 in region 𝑥 < 0.5 that 

implies that the grid of 19521 active nodes or even a finer grid can generate the solution of the 

2
nd

-order formulation. The contours of streamfunction for  cut-stencil HO-FDM2 solution for lid-

driven cavity flow in an L-shaped domain, using the grid of 12545 active nodes, is plotted in 

Figure 5.46. 

 
Figure 5.46: Streamfunction contours of HO-FDM2 solution to lid-driven cavity flow in L-shaped 

domain (𝑅𝑒 = 1000, 12545 active nodes) 
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5.7 Chapter Summary 

The simulation of lid-driven cavity flow, as a fluid flow benchmark problem, was explored in this 

chapter using the Cartesian cut-stencil FDM. The 2
nd

-order accurate formulation of the cut-stencil 

FDM was initially solved for Reynolds numbers of 100 and 1000, and compared to other 

available numerical results for the same size grid. This step confirmed that the cut-stencil 

formulations can be applied to coupled sets of non-linear PDEs to solve complex fluid flows such 

as those described by the streamfunction-vorticity equations. Good agreement with relatively fine 

mesh results from the literature was obtained using a coarser mesh when the 2
nd

-order accurate 

cut-stencil formulation was employed. Higher-order formulations of the cut-stencil FDM were 

tested, initially in a regular square domain, for streamfunction-vorticity equations and results 

were compared to higher-order results in other numerical studies. Solutions using both HO cut-

stencil FDM1 and FDM2 show good agreement with data from other researchers. All the grids for 

the unit square cavity were designed to be non-uniform with the nodes clustered near the walls.  

The Cartesian cut-stencil FDM solution of the streamfunction-vorticity equations in several 

irregular shaped domains was also presented in this chapter. Unlike other finite difference studies 

for irregular shaped domains, the Cartesian cut-stencil FDM does not require specialized grid 

generation for each different geometry of the domain. For all the domains, the quadratic 

transformation functions introduced in Chapter 2 provide the computational stencil on which the 

numerical solution algorithm is based. The 2
nd

-order accurate formulation of the cut-stencil FDM 

showed good agreement with previously published results, even with relatively coarser meshes. 

This agreement is improved in the event of employing higher-order formulations.   

The Point-Jacobi method was chosen as the default iterative scheme and, for cases when the flow 

problem was dominated by convection, central differencing of the convective terms led to 

divergence of the iterations. Upwinding schemes for each cut-stencil FDM were able to resolve 

this issue and provide a converged solution for convective-dominant flow. Additionally, the SUR 

iterative formulation for streamfunction and vorticity equations gave a converged solution for 

central differencing of the convective terms which yielded more accurate results compared to the 

lower order upwind approximation. 
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CHAPTER 6  

CONCLUDING REMARKS and RECOMMENDATIONS for FUTURE WORKS 

6.1 Summary and Concluding Remarks 

The development of a new formulation and numerical algorithm for the solution of partial 

differential equations (PDEs), referred to as the Cartesian cut-stencil finite difference method 

(FDM), are the principal themes of this thesis. Generally, any numerical method to solve PDEs 

should have several key features, including ease of implementation, ability to produce accurate 

solutions and capability of application to any type of complex domain. Most researchers regard 

the first two characteristics to be more closely associated with the finite difference method, while 

other numerical schemes such as the finite volume method (FVM) and finite element method 

(FEM) cover the last feature. The Cartesian cut-stencil FDM proposed in this thesis exhibits all 

the desirable features to solve PDEs from many areas of engineering and science, modeling a 

variety of physics on any type of domain, while at the same time being very simple to formulate.  

A summary of the Cartesian cut-stencil FDM and its special features that have been investigated 

in this thesis are: 

 This thesis is the first comprehensive research using this new cut-stencil numerical 

method and due to the programme-based nature of the research, the verification of 

the codes and formulations was considered as one of the main aims of the thesis. 

Verification was carried out by comparing the cut-stencil results with the exact 

solution of a number of manufactured problems. 

 The Cartesian cut-stencil FDM uses a unique localized mapping of each 5-point 

stencil in the physical domain to a generic uniform computational stencil. The 1-D 

quadratic transformation functions make the form of the mapped governing 

equations relatively simple compared to the complicated form of the same 

equations when 2-D transformation functions are used, as is the case if numerical 

grid generation is necessary to achieve finite difference solutions in a complex 

domain.  

 The Cartesian cut-stencil method, even when dealing with highly complex 

domains, does not require any formal or classical grid generation techniques. The 

localized mapping of each physical stencil, regardless of uniform or non-uniform 

arm lengths, eliminates the grid generation aspect of the solution process.       

 No special formulation is needed when the physical stencil is cut by a boundary, 

so the same mapping procedure is carried out for cut stencils as well as uncut 

stencils. This feature makes the cut-stencil method easy to programme, regardless 

of the complexity of the solution domain. 

 The details of boundary node treatment, in particular, in the event of Neumann 

boundary conditions, are presented. One-sided 2
nd

-order accurate approximation of 

the Neumann boundary condition is the basic differencing method to evaluate the 

solution at boundary nodes. Higher-order accurate approximations for this type of 

node are also feasible and details and corresponding results are presented in this 

thesis.  
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 Formulations of the unsteady convection-diffusion and wave equations are studied 

using a forward in time and central in space (FTCS) scheme and stability 

requirements are developed and tested.  

 The Cartesian cut-stencil FDM can be combined with the higher-order compact 

Padé-Hermitian method to produce higher-order schemes for the numerical 

solution of PDEs. It is shown that the higher-order formulations can significantly 

reduce the demand on computational resources and time to achieve a desired level 

of accuracy.  

 The details of formulations for one-sided 3
rd

-order and 4
th
-order accurate 

approximations of the derivative at Neumann boundary nodes, using the same 5-

point stencil as the 2
nd

-order accurate approximation, are developed and numerical 

tests show the potential of the Cartesian cut-stencil FDM to approximate the 

unknown values at boundary nodes with the same global order of accuracy as 

internal nodes.        

 Another advantage of the Cartesian cut-stencil FDM is the availability of the local 

truncation error (LTE). LTE provides a reliable measure of the numerical accuracy 

and can be used for mesh adaption. The simple formulation of the Cartesian cut-

stencil FDM makes it possible to easily calculate the complex mathematical 

expression of LTE at each point in the domain of interest.  

 The Cartesian cut-stencil FD solution of lid-driven cavity flow problem, as a 

benchmark problem in the field of fluid flow, is discussed in Chapter 5. The 

solutions of 2
nd

-order and higher-order formulations are obtained for different 

values of Reynolds number in a square cavity as well as a number of irregular 

shaped domains. The results show good agreement compared to other reported 

results. 

The characteristics of the Cartesian cut-stencil FDM, as summarized above, illustrate the ability 

of the method to yield high-fidelity solutions of PDEs in irregular shaped domain and from many 

fields of science and engineering. The method exhibits many desirable features demonstrated in 

commercial simulation packages which are based on FVM and FEM. This dissertation 

demonstrates that the Cartesian cut-stencil FDM can be considered as a viable alternative to 

commercial packages for the solution of complex physics-based phenomena in complicated 

domains. 

6.2 Recommendations for Future Work 

Some recommendations to continue this research are:  

 Due to the 3-dimensional nature of most engineering problems or physical 

phenomenon, a 3-D version of the Cartesian cut-stencil FDM can be regarded as 

one of the most important steps in the future of this research. The idea of 1-D 

quadratic transformation functions can be easily defined for each direction on a 3-

D physical stencil. To accomplish this purpose, the Cartesian grid software needs 

to be updated to provide all the requirements of a 3-D version of the code.   
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 The possibility of implementing other differencing schemes for the unsteady 

formulation, particularly for temporal discretization, is another potential option to 

solve unsteady PDEs in regular or irregular shaped domains with higher accuracy.  

 Putting additional effort to resolve the issues with cut stencils of the 5+4-point 

stencil formulation, as mentioned in Chapter 2, may lead to differencing schemes 

with order of accuracy higher than methods used in this thesis. A hybrid 

formulation could be developed in which the 5+4-point formulation is employed 

for the solution for PDEs on stencils when none of their arms are cut, while other 

higher-order formulations discussed in this thesis are applied for the stencils with 

boundary cuts. 

 Studying the combination of the Cartesian cut-stencil FD formulation with other 

higher-order compact Padé-Hermitian methods, e.g. globally 6
th
-order accurate 

approximation of first and second derivatives, will lead to more accurate solutions 

of PDEs. 

 2
nd

-order and higher-order Cartesian cut-stencil FD schemes can be formulated and 

tested for flows with high gradient regions such as turbulent flows, or for flows 

with strong discontinuities, e.g. shock waves in compressible flow.      

The simple formulation of the Cartesian cut-stencil FD and ease of writing the differencing 

formulas using this method can provide the condition to solve PDEs in two mediums, 

simultaneously. Examples of this type of phenomenon can be seen in fluid-solid interaction or 

conjugate heat transfer problems. The complexity of the domains for each of the mediums does 

not create any limitations for this method. 
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APPENDIX I: SUMMARY OF MANUFACTURED PROBLEMS 

Problem 

# 

Section 

# 

Equation  

used 

Domain  

studied 

Type of  

BCs 

Cut-stencil FD  

scheme used 

1 3.5.1 Poisson Square Dirichlet 2
nd

-order 

2 3.5.2 Poisson Square  (1) Neumann 2
nd

-order 

3 3.5.3 Poisson Square (2) Neumann 2
nd

-order 

4 3.5.4 
Convection-

diffusion 
Rectangular 

Dirichlet or  

Neumann 
2

nd
-order 

5 3.5.5 Laplace Irregular 
Dirichlet or  

Neumann 
2

nd
-order 

6 3.5.6 
Convection-

diffusion 
Irregular 

Dirichlet or  

Neumann 
2

nd
-order 

7 3.5.7 Poisson Rectangular 
Dirichlet or  

Neumann 

2
nd

-order & 

5+4-point stencil 

8.1 3.5.8 Poisson Rectangular Dirichlet HO-FDM1 

8.2 3.5.8 Diffusion 
Irregular 

(triangular) 
Dirichle 

2
nd

-order &  

HO-FDM1 

8.3 3.5.8 
Convection-

diffusion 
Irregular 

Dirichlet or  

Neumann 

2
nd

-order &  

HO-FDM1 

9.1 3.5.9 Diffusion Square Dirichlet 
2

nd
-order &  

HO-FDM2 

9.2 3.5.9 Diffusion 
Irregular 

(triangular) 
Dirichlet HO-FDM2 

9.3 3.5.9 
Convection-

diffusion 
Irregular 

Dirichlet or  

Neumann 

2
nd

-order &  

HO-FDM1 & 2 

9.4 3.5.9 Diffusion Square Neumann 
2

nd
-order &  

HO-FDM1 & 2 

10.1 3.5.10 
Unsteady 

diffusion 
Square - FTCS 

10.2 3.5.10 
Unsteady 

diffusion 
Irregular - FTCS 

11.1 3.5.11 

Second-

order wave 

equation 

Square - 
Cut-stencil  

FDM 

11.2 3.5.11 

Second-

order wave 

equation 

Irregular - 
Cut-stencil  

FDM 

Table A.I.1: Summary of manufactured problems studied in Chapter 3 
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APPENDIX II: DERIVATION of 2
nd

-ORDER ACCURATE APPROXIMATION for 

VORTICITY on a STRAIGHT WALL 

A.II.1 Derivation of Briley’s Formulation  

An approximation for the second derivative of streamfunction 𝜓 along the 𝑦 direction at node (i,j) 

on a horizontal wall can be derived for a uniform grid depicted in Figure A.II.1. 

 
Figure A.II.1: Schematic of uniform grid near a boundary node used to derive the approximation 

of Briley [171] 

A 3-point one-sided difference approximation for 
𝜕2𝜓

𝜕𝑦2
|
(i,j)

can be expressed as: 

 𝜕2𝜓

𝜕𝑦2
|
(i,j)

+ 𝑎1𝜓(i,j) + 𝑎2𝜓(i,j−1) + 𝑎3𝜓(i,j−2) + 𝑎4
𝜕𝜓

𝜕𝑦
|
(i,j)

= 𝑂(∆𝑦𝑘) (A.II.1) 

The coefficients 𝑎j (j = 1,2,3,4) and k are calculated from Taylor’s series expansions about point 

(i,j) and in the 𝑦 direction, which can be conveniently tabulated using Table A.II.1.  

 𝜓(i,j) 
𝜕𝜓

𝜕𝑦
|
(i,j)

 
𝜕2𝜓

𝜕𝑦2
|
(i,j)

 
𝜕3𝜓

𝜕𝑦3
|
(i,j)

 
𝜕4𝜓

𝜕𝑦4
|
(i,j)

 

𝜕2𝜓

𝜕𝑦2
|
(i,j)

 0 0 1 0 0 

𝑎1𝜓(i,j) 𝑎1 0 0 0 0 

𝑎2𝜓(i,j−1) 𝑎2 𝑎2(−∆𝑦) 𝑎2(∆𝑦)
2/2! 𝑎2(−∆𝑦)

3/3! 𝑎2(∆𝑦)
4/4! 

𝑎3𝜓(i,j−2) 𝑎3 𝑎3(−2∆𝑦) 𝑎3(2∆𝑦)
2/2! 𝑎3(−2∆𝑦)

3/3! 𝑎3(2∆𝑦)
4/4! 

𝑎4
𝜕𝜓

𝜕𝑦
|
(i,j)

 0 𝑎4 0 0 0 

∑ 0 0 0 0 𝑂(∆𝑦𝑘) 

Table A.II.1: Taylor’s series expansions used to derive Briley’s equation to approximate the wall 

vorticity 

The four coefficients 𝑎j (j = 1,2,3,4) are calculated from the system of four linear equations 

formed by summing the 2
nd

 to 5
th
 columns of Table A.II.1 to zero, giving the value of these 

coefficients: 
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 𝑎1 = 7/2(Δ𝑦)
2, 𝑎2 = −4/(Δ𝑦)

2, 𝑎3 = 1/2(Δ𝑦)
2, 𝑎4 = −3/4(∆𝑦) (A.II.2) 

Using the coefficients listed in (A.II.2), and evaluating the coefficient of  
𝜕4∅

𝜕𝑦4
|
(i,j)

in the 6
th
 column 

yields the explicit expression for the 2
nd

-order accurate approximation for  
𝜕2∅

𝜕𝑦2
|
(i,j)

: 

 𝜕2𝜓

𝜕𝑦2
|
(i,j)

=
−7𝜓(i,j) + 8𝜓(i,j−1) − 𝜓(i,j−2)

2(Δ𝑦)2
+

3

(Δ𝑦)

𝜕𝜓

𝜕𝑦
|
(i,j)

+ 𝑂(∆𝑦2) (A.II.3) 

For the lid-driven cavity problem the term  
𝜕𝜓

𝜕𝑦
|
(i,j)

 has the physical meaning of non-dimensional 𝑢 

component of velocity 𝑢(i,j) which is equal to 0 or 1 on a stationary or moving wall, respectively. 

The cut-stencil FD format of equation A.II.3, at the north endpoint of the 5-point stencil, is given 

in (5.8.2.2).  

A.II.2 Derivation of a Compact 2
nd

-Order Formulation 

Similar to the above, an alternative 2
nd

-order expression to approximate vorticity on the wall can 

be obtained. This is accomplished by assuming that the second derivative of 𝜓 along the 𝑦 

direction at node (i,j) on the wall can be written in terms of 𝜓 values at (i,j) and (i,j-1), i.e., 

 𝜕2𝜓

𝜕𝑦2
|
(i,j)

+ 𝑏1𝜓(i,j) + 𝑏2𝜓(i,j−1) + 𝑏3
𝜕𝜓

𝜕𝑦
|
(i,j)

+ 𝑏4
𝜕𝜓

𝜕𝑦
|
(i,j−1)

= 𝑂(∆𝑦𝑘) (A.II.4) 

The coefficients 𝑏m (m = 1,2,3,4) and k are calculated from Taylor’s series expansions about 

point (i,j) and in the 𝑦 direction. Table A.II.2 records the details of the mathematical 

manipulations.   

 𝜓(i,j) 
𝜕𝜓

𝜕𝑦
|
(i,j)

 
𝜕2𝜓

𝜕𝑦2
|
(i,j)

 
𝜕3𝜓

𝜕𝑦3
|
(i,j)

 
𝜕4𝜓

𝜕𝑦4
|
(i,j)

 

𝜕2𝜓

𝜕𝑦2
|
(i,j)

 0 0 1 0 0 

𝑏1𝜓(i,j) 𝑏1 0 0 0 0 

𝑏2𝜓(i,j−1) 𝑏2 𝑏2(−∆𝑦) 𝑏2(∆𝑦)
2/2! 𝑏2(−∆𝑦)

3/3! 𝑏2(∆𝑦)
4/4! 

𝑏3
𝜕𝜓

𝜕𝑦
|
(i,j)

 0 𝑏3 0 0 0 

𝑏4
𝜕𝜓

𝜕𝑦
|
(i,j−1)

 0 𝑏4 𝑏4(−∆𝑦) 𝑏4(∆𝑦)
2/2! 𝑏4(−∆𝑦)

3/3! 

∑ 0 0 0 0 𝑂(∆𝑦𝑘) 

Table A.II.2: Taylor’s series expansions used to derive the 2
nd

-order accurate approximation of 

the wall vorticity in the compact finite difference method 

Solution of the four linear equations formed by summing the 2
nd

 to 5
th
 columns of Table A.II.2 to 

zero, leads to the value of the coefficients 𝑏m as: 
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 𝑏1 = 6/(Δ𝑦)
2, 𝑏2 = −6/(Δ𝑦)

2, 𝑏3 = −4/(∆𝑦), 𝑏4 = −2/(∆𝑦) (A.II.5) 

Using the coefficients listed in (A.II.5), an explicit expression for the 2
nd

-order accurate 

approximation for  
𝜕2∅

𝜕𝑦2
|
(i,j)

, is: 

 𝜕2𝜓

𝜕𝑦2
|
(i,j)

=
−6𝜓(i,j) + 6𝜓(i,j−1)

(Δ𝑦)2
+

4

(Δ𝑦)

𝜕𝜓

𝜕𝑦
|
(i,j)

+
2

(Δ𝑦)

𝜕𝜓

𝜕𝑦
|
(i,j−1)

+ 𝑂(∆𝑦2) (A.II.6) 

As mentioned above, for the lid-driven cavity flow problem 
𝜕𝜓

𝜕𝑦
|
(i,j)

is 0 or 1. In this 

approximation, 
𝜕𝜓

𝜕𝑦
|
(i,j−1)

 is the 𝑢 component of velocity at the internal node (i,j-1)  adjacent to the 

wall. The mapped form of equation (A.II.6), in the cut-stencil FD notation, for the north endpoint 

of the 5-point stencil is given by equation (5.8.2.4).  
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APPENDIX III: CLUSTERING FUNCTION for NON-UNIFORM GRID GENERATION 

for LID-DRIVEN CAVITY FLOW in SQUARE DOMAIN 

The non-uniform grid, as utilized for the cases of lid-driven cavity flow in unit the square domain, 

was designed by clustering toward 𝑥 = 0, 𝑥 = 1 and similarly towards 𝑦 = 0, 𝑦 = 1. The 

clustering function 𝛿, e.g. for the 𝑥 direction, is defined as: 

 

𝛿(𝑥) =  
1

2
+
1

2
[
𝑙𝑛 |
𝐵 − 1 + 2𝑥
𝐵 + 1 − 2𝑥|

𝑙𝑛 |
𝐵 + 1
𝐵 − 1|

] (A.III.1) 

where 1 < 𝐵 < 2. The parameter 𝐵 controls the clustering rate. As 𝐵 → 1 clustering increases at 

the endpoints and, for all cases of non-uniform domain, as studied in Chapter 5, 𝐵 = 1.15. 

Solving (A.III.1) for 𝑥(𝛿) gives:  

 
𝑥(𝛿) =

1

2
[
(𝐵 + 1)2𝛿 − (𝐵 − 1)2𝛿

(𝐵 + 1)2𝛿−1 + (𝐵 − 1)2𝛿−1
] (A.III.2) 

It should be noted that 0 ≤ 𝛿 ≤ 1 which leads to 0 ≤ 𝑥 ≤ 1. A sample of nodes’ distribution 

from equation (A.III.2), for 51 total nodes, is presented in Figure A.III.1.  

 
Figure A.III.1: Schematic of nodes distribution using clustering function (total number of nodes = 

51 and 𝐵 = 1.15) 

Also, the expressions for ∆𝛿  and ∆𝑥 are defined by: 

 
∆𝛿 =

2𝐵

𝑙𝑛 |
𝐵 + 1
𝐵 − 1|

∆𝑥

[𝐵2 − (1 − 2𝑥)2]
 (A.III.3) 

 

∆𝑥 =
𝑙𝑛 |
𝐵 + 1
𝐵 − 1|

2𝐵
[𝐵2 − (1 − 2𝑥)2]∆𝛿 

(A.III.4) 
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A similar methodology, as above, is employed for clustering the grid in 𝑦 direction. The 

schematic of a sample of a non-uniform grid in the unit square, using 129*129 grid nodes, is 

depicted in Figure A.III.2.  

 
Figure A.III.2: Schematic of non-uniform grid on unit square domain (used for lid-driven cavity 

flow in Chapter 5) 
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APPENDIX IV: VORTICITY EVALUATION on SLOPED or CURVED WALLS 

 

First, the procedure to calculate the vorticity at point W on an arbitrary wall, illustrated by the 

dashed curve in Figure A.IV.1, is presented. The orthogonal coordinate system aligned along the 

tangential direction (𝑡) and normal direction (𝑛) is constructed as shown in Figure A.IV.1. The 

orthogonal (𝑥, 𝑦) coordinate system is also assumed to have its origin located at W, while 𝜃 

introduces the angle between the 𝑥 axis and tangential direction at point W. 

 
Figure A.IV.1: Schematic of orthogonal coordinate systems defined at a boundary point on an 

arbitrary wall  

Since the (𝑡, 𝑛) system is simply a rotation of the (𝑥, 𝑦) system through the angle 𝜃, the 

derivatives of 𝜓 in these two systems are related by  

 
∇𝜓⃗⃗⃗⃗  ⃗(𝑥, 𝑦) = (cos(𝜃)

𝜕𝜓

𝜕𝑡
+ sin(𝜃)

𝜕𝜓

𝜕𝑛
) 𝑖̂ + (− sin(𝜃)

𝜕𝜓

𝜕𝑡
+ cos(𝜃)

𝜕𝜓

𝜕𝑛
) 𝑗̂ (A.IV.1) 

The invariant property of the Laplacian operator with respect to orthogonal coordinate systems 

[197, 198] yields: 

 𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
=
𝜕2𝜓

𝜕𝑡2
+
𝜕2𝜓

𝜕𝑛2
 (A.IV.2) 

The second derivative of 𝜓 with respect to 𝑥 and 𝑦 are written as: 

 𝜕2𝜓

𝜕𝑥2
=
𝜕

𝜕𝑥
(
𝜕𝜓

𝜕𝑥
) = (cos(𝜃)

𝜕

𝜕𝑡
+ sin(𝜃)

𝜕

𝜕𝑛
) (cos(𝜃)

𝜕𝜓

𝜕𝑡
+ sin(𝜃)

𝜕𝜓

𝜕𝑛
)

= (𝑐𝑜𝑠(𝜃))
2 𝜕2𝜓

𝜕𝑡2
+ (𝑠𝑖𝑛(𝜃))

2 𝜕2𝜓

𝜕𝑛2
+ 2𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃)

𝜕2𝜓

𝜕𝑡𝜕𝑛
 

(A.IV.3) 

 𝜕2𝜓

𝜕𝑦2
=
𝜕

𝜕𝑦
(
𝜕𝜓

𝜕𝑦
) = (− sin(𝜃)

𝜕

𝜕𝑡
+ cos(𝜃)

𝜕

𝜕𝑛
) (− sin(𝜃)

𝜕𝜓

𝜕𝑡
+ cos(𝜃)

𝜕𝜓

𝜕𝑛
)

= (𝑠𝑖𝑛(𝜃))
2 𝜕2𝜓

𝜕𝑡2
+ (𝑐𝑜𝑠(𝜃))

2 𝜕2𝜓

𝜕𝑛2
− 2𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃)

𝜕2𝜓

𝜕𝑡𝜕𝑛
 

(A.IV.4) 
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Since the no-slip condition on the wall implies that 
𝜕2𝜓

𝜕𝑡2
= 0 and the no-penetration condition 

leads to 
𝜕2𝜓

𝜕𝑡𝜕𝑛
= 0, on the wall, equations (A.IV.3) and (A.IV.4) reduced to the following 

equations, respectively: 

 𝜕2𝜓

𝜕𝑥2
|
W

= (𝑠𝑖𝑛(𝜃))
2 𝜕2𝜓

𝜕𝑛2
|
W

 (A.IV.5) 

 𝜕2𝜓

𝜕𝑦2
|
W

= (𝑐𝑜𝑠(𝜃))
2 𝜕2𝜓

𝜕𝑛2
|
W

 (A.IV.6) 

Therefore, the vorticity at point W on the wall (𝜔W) can be written as: 

 
𝜔W = −

𝜕2𝜓

𝜕𝑛2
|
W

= −
1

2
[(

1

𝑠𝑖𝑛(𝜃)
)
2 𝜕2𝜓

𝜕𝑥2
+ (

1

𝑐𝑜𝑠(𝜃)
)
2 𝜕2𝜓

𝜕𝑦2
]
W

 (A.IV.7) 

An approximation of the second derivative of 𝜓 at node (i,j), shown in Figure A.IV.2, assuming a 

uniform grid, can be expressed by: 

 𝜕2𝜓

𝜕𝑥2
|
(i,j)

+ 𝑎1𝜓(i,j) + 𝑎2𝜓(i+1,j) + 𝑎3
𝜕𝜓

𝜕𝑥
|
(i,j)

= 𝑂(∆𝑥𝑘) (A.IV.8) 

 
Figure A.IV.2: Schematic of uniform grid near a boundary node on an arbitrary wall   

Using Taylor’s series about (i,j), similar to procedures of the compact differencing method, yields 

a 1
st
-order accurate approximation of 

𝜕2𝜓

𝜕𝑥2
|
(i,j)
:  

 𝜕2𝜓

𝜕𝑥2
|
(i,j)

=
−2𝜓(i,j) + 2𝜓(i+1,j)

(∆𝑥)2
−

2

(∆𝑥)

𝜕𝜓

𝜕𝑥
|
(i,j)

+𝑂(∆𝑥1) (A.IV.9) 

Similarly, a 1
st
-order accurate approximation of 

𝜕2𝜓

𝜕𝑦2
|
(i,j)

can be stated as: 
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 𝜕2𝜓

𝜕𝑦2
|
(i,j)

=
−2𝜓(i,j) + 2𝜓(i,j−1)

(∆𝑦)2
+

2

(∆𝑦)

𝜕𝜓

𝜕𝑦
|
(i,j)

+ 𝑂(∆𝑦1) (A.IV.10) 

The terms 
𝜕𝜓

𝜕𝑥
|
(i,j)

 and  
𝜕𝜓

𝜕𝑦
|
(i,j)

 are zero in the event of a stationary wall. Noting the fact that nodes 

W and (i,j) in Figures A.IV.1 and A.IV.2 denote the same point, the differencing approximations 

in equations (A.IV.9) and (A.IV.10) can be used in (A.IV.7) and gives: 

𝜔W = −
𝜕2𝜓

𝜕𝑛2
|
W
= −

1

2
[(

1

𝑠𝑖𝑛(𝜃)
)
2 −2𝜓(i,j)+2𝜓(i+1,j)

(∆𝑥)2
+ (

1

𝑐𝑜𝑠(𝜃)
)
2 −2𝜓(i,j)+2𝜓(i,j−1)

(∆𝑦)2
]
W

  (A.IV.11) 

Roache [168] has proposed a similar result in the case when  𝜃 = 45° (see [168], p. 158). 

Figure A.IV.3 shows physical stencils near a boundary node WN located on an arbitrary wall. 

The boundary node WN is simultaneously the west node of the 5-point physical stencil centred at 

node P1 and the north node of the 5-point physical stencil centred at node P2. 

 
Figure A.IV.3: Schematic of physical stencils with boundary endpoint on an arbitrary wall 

The 1
st
-order accurate approximation of vorticity at boundary node WN on an arbitrary stationary 

wall in the cut-stencil FD notation on the computational stencil, is  

 
𝜔𝑤𝑛 = −

1

2
[(

1

𝑠𝑖𝑛(𝜃)
)
2−2𝜓𝑤𝑛 + 2𝜓P1

(𝑥WN
′ )2

+ (
1

𝑐𝑜𝑠(𝜃)
)
2−2𝜓𝑤𝑛 + 2𝜓P2

(𝑦WN
′ )2

] (A.IV.12) 

where all the terms including 
1

𝑥WN
′

𝜕𝜓

𝜕𝜉
|
𝑤𝑛

and 
1

𝑦WN
′

𝜕𝜓

𝜕𝜂
|
𝑤𝑛

 are set to zero since these terms are the 

velocity components at a stationary wall node.  
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