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 13 

Abstract 14 

Quantitative biomonitoring methods were applied to determine PCB concentrations in water from the 15 

Detroit River over a 17 year period.  During 2014, mussels were deployed for and extended duration (21-16 

364 d) and time dependent PCB concentrations were fit to a bioaccumulation model to estimate 17 

elimination coefficients (ktot) and provide site specific calibration of mussel toxicokinetics. The site 18 

specific calibration and different ktot versus KOW relationships from the literature were used to correct for 19 

steady state.  ∑PCB concentrations in water were not significantly dependent on the ktot values used 20 

indicating that individual variation exceeds error contributed by steady state correction factors. The 21 

model was then applied to estimate ∑PCB concentrations in water using the long term (1998-2015) 22 

data. ∑PCBs concentrations in water exhibited a significant decreasing trend with a half life of 9.12 years 23 

resulting in a drop in yearly geometric mean residues from 198.1 pg/L to 43.6 pg/L. 24 

Keywords:   Biomonitors, toxicokinetics, polychlorinated biphenyls, persistent organic pollutants, water 25 

concentrations 26 

 27 

Introduction 28 

 Mussels are considered ideal biomonitors of bioaccumulative pollutants in water as a 29 

result of their sessile nature, slow growth, low metabolic biotransformation capabilities and low 30 

trophic position (O'Connor, 2002).  Mussel biomontiors have been widely used to monitor 31 

polychlorinated biphenyl (PCB) and other organic contaminants in the Huron-Erie Corridor of 32 

the Laurentian Great Lakes since the 1980's (Kauss and Hamdy, 1985). A biomonitoring 33 

program that continues to operate is the long running City of Windsor Mussel Biomonitoring 34 

Program which commenced in 1996 (Drouillard et al., 2013). The program was developed to 35 

perform upstream and downstream sampling across the city's two wastewater treatment plant 36 

plumes in order to determine if the city's wastewater utilities and storm water overflows were 37 

contributing to elevated loads of persistent organic pollutants (POPs) to the Detroit River. The 38 

program uses a well calibrated freshwater mussel species, (Elliptio complanata), which are 39 

collected from a reference location and caged at each of the program's fixed monitoring sites 40 

over a set of defined deployment periods in each year. The study design makes the data 41 

amenable to quantitative biomonitoring approaches and as a result has made the program one of 42 

the most valuable data sets available for monitoring temporal trends of PCBs in water of the 43 

Detroit River. 44 

mailto:kgd@uwindsor.ca


 Quantitative biomonitoring requires the interpretation of biomonitoring data using 45 

bioaccumulation models with the goal of converting accumulated chemical residues in the 46 

biomonitor to a time integrated estimate of water concentrations for the target contaminants 47 

(Gewurtz et al., 2003; Drouillard et al., 2013).  This conversion requires three operational steps: 48 

1) perform control correction of reference site accumulated residues; 2) convert time-dependent 49 

chemical concentrations in the biomonitor to a steady state residue and 3) translate steady state 50 

biomonitor residues into a water concentration estimate.  Steps 1 and 2 rely on accurate 51 

information about chemical and animal specific toxicokinetics, most notably the whole body 52 

elimination rate coefficient (ktot) for the biomonitor species being used. Step 3 requires 53 

knowledge of the steady state animal/water bioconcentration factor (BCF).  Past studies have 54 

been performed using E. complanata to characterize organic contaminant ktot values under 55 

laboratory (Russell and Gobas, 1989; Gewurtz et al., 2002; O'Rourke et al., 2004; Drouillard et 56 

al., 2007) and field conditions (O'Rourke et al., 2004; Raeside et al., 2009). Raeside et al. (2009) 57 

performed in situ calibration of mussels deployed throughout the Huron-Erie corridor by pre-58 

dosing caged animals with non-environmental PCBs and tracking the rate at which dosed PCB 59 

were lost from caged animals at each deployment site. The latter study demonstrated that field 60 

deployed mussels eliminated PCBs faster compared to laboratory held mussels as well as 61 

considerable variation in chemical toxicokinetics across different deployment locations 62 

indicating that mussel filtration rates were dependent on site specific conditions. Error in the 63 

magnitude of ktot used in steps (1) and (2) of the quantitative biomonitoring model process leads 64 

to incorrect water concentration estimates. It is therefore critical to understand what level of error 65 

is introduced as a result of steady state correction factors and how to minimize this error when 66 

interpreting biomonitoring extrapolated water concentrations. 67 

 During the 2014 implementation of the City of Windsor's Mussel Biomonitoring 68 

Program, the mussel deployment was extended from the normal 182 deployment period to a 364 69 

d deployment period. This provided a unique opportunity to apply non-linear regression methods 70 

to fit the time-dependent mussel data to a generalized bioaccumulation model allowing an 71 

alternative estimate of in situ ktot values for individual PCB congeners and to contrast this against 72 

previous calibration studies. Different ktot values from across the various calibration studies were 73 

then applied to estimate PCB concentrations in water (CW) to determine the level of error (or 74 

bias) that may occur when using non-site specific ktot estimates derived from the literature within 75 

the model. Finally, the fitted in-situ ktot values were extended to the full 17 year biomonitoring 76 

data base of mussel data from this field location to provide temporal trends of PCB 77 

concentrations in water of the Detroit River over the 1998 to 2015 study period. 78 

Methods 79 

 The Detroit River is designated as an International Joint Commission Great Lakes Area 80 

of Concern owing to assessed degraded status of a series of beneficial uses, many of which are 81 

tied to organic and metal pollutants present in sediments and water (Drouillard et al., 2006).  The 82 

City of Windsor Mussel Biomonitor Program routinely cages mussels at 9 locations that include 83 

effluent holding tanks of one of its wastewater treatment plants, two smaller tributaries of the 84 

Detroit River (Little River and Turkey Creek) and four locations within the Canadian waters of 85 

the Detroit River.  For purposes of this study, the focus was on the Riverside Marina location 86 

(42°20'27.93"N; 82°55'56.04"W) given this was the site where a 364 d deployment was 87 



collected. This station is located in the upstream portion of the Detroit River just downstream of 88 

the mixing zone between Little River and the Detroit River.  The site is likely jointly influenced 89 

by both the Little River and Detroit River inflow from Lake St. Clair. Mussels are collected each 90 

year from Balsam Lake, Lindsey, Ontario (typically in late April to early May) and retained at a 91 

local aquaculture farm until deployment.  Mussels are placed in wire minnow traps, with the 92 

ends crushed and suspended in the water column 1 m below the surface. Triplicate mussels are 93 

typically collected from each location after 21, 63, 126 and 182 days of deployment and stored 94 

frozen until chemical analysis. The exception was for 2014 where the 182 d time point became a 95 

364 d time point.  96 

 Shucked mussels were analyzed for PCBs, a suite of 18 organochlorine pesticides and 97 

PAHs according to the procedures described by Lazar et al. (1992). PCBs, the focus of this 98 

study, were determined by gas chromatography electron capture detector following liquid-liquid 99 

extraction, florisil clean-up and instrumental conditions as specified in Lazar et al. (1992).  The 100 

commonly detected PCB congeners were IUPAC #'s (28/31, 52, 49, 44, 74, 66/95, 101, 99, 87, 101 

110, 151, 149, 118, 153, 105, 138, 158, 182/187, 183, 171, 180, 170/190, 201, 195, 194 and 102 

206). Lipid content was determined gravimetrically as was moisture content following drying at 103 

110oC for 12 h. Instrument detection limits for individual PCBs were determined using a signal 104 

to noise ratio of 10 for the equivalent peak width of the baseline signal determined for 7 blank 105 

samples. Method detection limits were verified by spiking a set of PCB congeners into synthetic 106 

triolein at the Instrument Detection limit for 5 samples and verifying that the spiked 107 

concentration was not significantly different from the spiked value. Detection limits ranged from 108 

0.01 to 0.06 ng/g wet weight for individual PCBs. Quality control measures include running a 109 

method blank and in-house reference homogenate (Detroit River Carp) along with each batch of 110 

six samples extracted. All reference homogenates PCB concentrations must be in compliance 111 

within the control chart values used by the quality control officer before release of the data, 112 

otherwise corrective actions are performed and the batch is re-run for analysis until QA 113 

compliance is achieved. Each sample was also spiked with a recovery standard to determine 114 

chemical recovery.  The recovery standard changed over the years of the program, originally it 115 

was 1,3,5-tribromobenzene and was later switched to PCB 34. The mean±standard error of 116 

recoveries for the data set at Riverside Marina was 88.9±0.07%.  Data were not recovery 117 

corrected. 118 

 For the 2014 data (which included the 364 d deployment), non-linear regression was 119 

performed to fit control corrected PCB concentrations in mussels according to the following 120 

equation: 121 

    𝐶𝑚𝑐𝑐(𝑡) = 𝐵𝐶𝐹 · 𝐶𝑊 · (1 − 𝑒−𝑘𝑡𝑜𝑡·𝑡)    (1) 122 

where Cmcc(t) is the control corrected time dependent mussel concentration (pg/kg lipid 123 

equivalent), BCF is the bioconcentration factor associated with animal lipids (kg/L) for a given 124 

PCB congener, CW is water concentration (pg/L), ktot is the whole body elimination rate 125 

coefficient (d-1) for a given PCB congener and t is the deployment time (d). Lipid equivalent 126 

concentrations are generated by establishing lean dry weight as having a partition capacity of 127 

0.05 of of lipids and adding this to the fraction of lipid in the sample (Drouillard et al. 2013). 128 

Control correction was performed according to: 129 

    𝐶𝑚𝑐𝑐(𝑡) = 𝐶𝑚(𝑡) − 𝐶𝑚(𝑜) · 𝑒−𝑘𝑡𝑜𝑡·𝑡    (2) 130 



Where Cm(t) is the time dependent mussel concentration (pg/kg lipid equivalent) and Cm(o) is the 131 

concentration in the non-deployed control mussels (pg/kg lipid equivalent).  BCF is set to the n-132 

octanol/water partition coefficient value of each PCB congener as reported by Hawker and 133 

Connell (1988). Non-linear regression solutions (and 95% confidence intervals) were generated 134 

for CW and ktot by least squares procedures fit to Eq. 2 using Systat 13 Statistical Software after 135 

providing estimates of initial starting Cw and ktot values used in the fitting procedure.  Several 136 

starting estimates were generated to ensure the best model solution was achieved. Initially, ktot 137 

values were assigned based on the Raeside et al. (2009) expression (see below) to establish 138 

control correction and solve Eq. 1. Once site specific ktot values were generated from Eq. 1, the 139 

process was repeated using the newly solved ktot in Eq. 2 and then the data were re-fit to Eq. 1. 140 

Only congeners where the model fit yielded an R2 greater than 0.25 were accepted as an 141 

adequate model fit. Linear regression analysis was subsequently performed on log ktot values 142 

against log KOW to generate a predictive relationship for site specific in situ ktot values.  Non-143 

linear regression model estimates of CW were not interpreted but rather estimated by the 144 

procedure below. 145 

 For the 2014 and the larger temporal data base consisting of 17 years of data generated at 146 

Riverside Marina (inclusive of 2014), the below model was used to extrapolate water 147 

concentration estimates for each mussel analyzed.  The model is given by: 148 

    𝐶𝑊 =
𝐶𝑚(𝑡)−𝐶𝑚(𝑜)·𝑒−𝑘𝑡𝑜𝑡·𝑡

(1−𝑒−𝑘𝑡𝑜𝑡·𝑡)
·

1

𝐵𝐶𝐹
     (3) 149 

The ktot values used with Eq. 3 were derived from 3 different predictive relationships. The first 150 

was based on the site-specific in situ ktot relationship generated for ktot values fitted against 151 

chemical hydrophobicity as generated using the approach described in Eq. 1. The second was 152 

based on the ktot relationship for PCBs measured in laboratory held E. complanata (O'Rourke et 153 

al., 2004): 154 

    𝑘𝑡𝑜𝑡 =  −0.59 · 𝐾𝑂𝑊 + 2.05     (4) 155 

The third was based on the combined in-situ relationship for E. complanata deployed in the 156 

Huron-Erie corridor reported by Raeside et al. (2009): 157 

    𝑘𝑡𝑜𝑡 =  −0.34 · 𝐾𝑂𝑊 + 1.13     (5) 158 

CW was estimated for each individual PCB congener detected in the database. Sum PCBs 159 

(∑PCB) are designated as the sum of CW concentrations across the detected congeners identified 160 

in methods. Non-detected values were censored and not included in the ∑PCB estimate. Linear 161 

regression analysis was performed on ln Cw (∑PCBs) versus Julian date to examine for temporal 162 

trends at the biomonitoring station. Analysis of variance (ANVOA) was used to determine if the 163 

above slope was significantly different from zero. The water concentration half life was 164 

estimated from the slope of the above relationship, where t1/2 = ln (2)/slope.  Analysis of 165 

covariance (ANCOVA) was performed to determine if the slope of sum PCB concentration with 166 

time differed when temporal trends were determined using the full data set or when the data were 167 

truncated to include only the longest deployment time in each year. Two way ANOVA was 168 

performed on log-transformed ∑PCB Cw data to test for difference in CW estimates with 169 

deployment time for the 2014 data set and also to determine if significant differences in CW 170 

occurred depending on which ktot versus KOW relationship was used within the bioaccumulation 171 

model. 172 



Results and Discussion 173 

 Satisfactory fit to Eq. 1 was obtained for 21 of 26 congeners measured using the 2014 174 

dataset where the R2 of model fit to the empirical mussel data exceeded the criteria (R2>0.25) 175 

used to specify adequate model prediction.  The R2 values of successfully fitted congeners 176 

ranged from 0.27 to 0.76.  Congeners excluded due to lack of satisfactory model fit (R2<0.25) 177 

included PCB 31/28, 52, 66/95, 158 and 183. The bioaccumulation pattern and model fit for four 178 

selected PCB congeners (PCBs 49, 110, 138 and 180) to the 2014 data are presented in Figure 1. 179 

Goodness of fit tests (observed vs predicted linear regression relationship) were significant for 180 

PCB 110 (p<0.05) and highly significant for PCBs 138 and 180 (p<0.01).  The goodness of fit 181 

test was not significant for PCB 49 given that range of concentrations was low across time points 182 

owing to rapid achievement of steady state for low KOW compounds.  Most congeners exhibited 183 

linear uptake over the first 30 days and approached steady state by 122 days. Model estimated 184 

ktot values for individual PCBs demonstrated a highly significant decreasing trend with 185 

increasing hydrophobicity described by: 186 

 log 𝑘𝑡𝑜𝑡 =  −0.31 ± 0.05 · log 𝐾𝑂𝑊 + 0.54 ± 0.034;  𝑅2 = 0.66; 𝑝 < 0.001 (6) 187 

Figure 2 presents the model fitted congener specific ktot values as well as ktot versus KOW 188 

relationships described by Eqs. 4, 5 and 6.  Model fitted ktot values were generally bracketed by 189 

ktot predictions generated by Eqs. 4 and 5. The slope from Eq. 6 was most consistent (± 1 190 

standard error) for the slope reported by Eq. 5, although the intercept was lower. This is likely 191 

due to the fact that both Raeside's ktot relationship (Eq. 5) and those generated from the present 192 

research reflect in-situ calibrated measures whereas O'Rourke's study (Eq. 4) was conducted 193 

under laboratory conditions. Mussel filtration rates are known to be affected by site specific 194 

characteristics including temperature, dissolved oxygen, food quality and quantity characteristics 195 

(Björk and Gilek, 1997; Heinonen et al., 1996).  Across the various biomonitor calibration 196 

studies, field deployed mussels consistently appeared to exhibit higher filtration rates and 197 

chemical toxicokinetics compared to laboratory held animals (O'Rourke et al., 2001; Raeside et 198 

al., 2009).  The lower intercept associated with Eq. 6 relative Eq. 5 is probably related to 199 

overwintering temperatures which would have slowed mussel filtration rates during this period. 200 
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  Figure 1. Bioaccumulation rates of PCBs 49 (●), 110 (■),  202 

  138 (▲) and 180 (◊) in mussels biomonitors during 2014. 203 

  Lines represent model fit to equation 1.  204 

 205 

 PCB concentrations in water were subsequently estimated for the 2014 data using Eq. 2 206 

and predictive ktot relationships generated from either Eqs. 4, 5 or 6.  Results are presented in 207 

Figure 3 as mean±standard error concentrations at each deployment period and as yearly average 208 

water concentration estimates denoted by horizontal lines. All three methods generated the same 209 

water concentration for the 364 d deployment because each of the ktot relationships predict that  210 
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 211 
  Figure 2. Whole body elimination coefficients of PCBs from 212 

  in mussels biomonitors as a function of chemical hydrophobicity. 213 

  Symbols (●) represent fitted model estimates of ktot.  Solid line is the 214 

  linear regression fit to the data (Eq. 6; p<0.001), dashed lines are  215 

  predicted ktot values based on Eqs. 4 and 5. 216 

 217 

mussels fully achieve steady state over this time frame. Water concentrations for the 21 d  218 

deployment were the most variable across ktot algorithms because shorter deployments 219 

necessitate the largest steady state correction factors. For example, the Eq. 4 ktot expression 220 

generated a mean 21 d ∑PCB water concentration that was 20.3% higher than that that derived 221 

from the ktot relationship using Eq 6. Use of Eq. 5. yielded a mean concentration estimate 13% 222 

lower compared to that using Eq. 6. By day 63, Eq. 5 produced a mean ∑PCB water 223 

concentration that was within 3.3% of that generated by the site specific expression (Eq. 6), 224 

while Eq. 4 yielded a water concentration within 17.2% of the Eq. 6 generated value. The yearly 225 

mean ∑PCB concentrations from Eq. 4 and 5 were within 2.8 and 8.4% of the yearly mean 226 

generated from Eq. 6, respectively. 227 

 An ANOVA was performed to determine the effect of deployment time and estimation 228 

procedure (ktot relationship utilized) on ∑PCB water concentrations generated for the 2014 data. 229 

PCB concentrations in water were significantly different across the deployment periods 230 



(F1,41=5.11; p<0.05) but not significantly dependent (F2,41=0.16; p>0.8) on the ktot relationship 231 

utilized.  This implies that between replicate variability of mussel accumulated residues was 232 

greater than the error introduced by using different correction factors associated with different 233 

ktot relationships.  234 

 The ktot relationship from Eq 6. was subsequently applied to estimate congener specific 235 

and ∑PCB water concentrations for full temporal data set generated at the Riverview Marina 236 

(1998-2015; n = 209 observations). The geometric mean ∑PCB concentration in water across 237 

years was 108.4 pg/L and ranged from 6.4 to 826.2 pg/L across individual measurements. Figure 238 

4 presents mean sum PCB concentrations as a function of time. There was a highly significant 239 

21 63 126 364

0

20

40

60

80

100

120

140

160

s
u
m

 P
C

B
 C

o
n
c
e
n
tr

a
ti
o
n
 i
n
 W

a
te

r 
(p

g
/L

)

Deployment Time

 k
tot

 from Eq. 6

 k
tot

 from Eq. 5

 k
tot

 from Eq. 4

 240 
  Figure 3. Biomonitor estimated sum PCB water concentrations at  241 

  the Riverside Marina site during 2014 over different deployment periods 242 

 243 

 (F1,207 = 86.78; p<0.001) decreasing trend in ln PCB concentrations in water across years 244 

described by: 245 

 ln 𝐶𝑤𝑎𝑡 = −0.076 ± 0.008 · 𝑌𝑒𝑎𝑟 + 156.6 ± 16.3;   𝑅2 = 0.29   (7). 246 

 247 

Based on Eq. 7, the half life of ∑PCBs in water at this location in the Detroit River is 9.12 years.  248 

As a cross check against the temporal trend outlined in Eq. 7, a second regression was performed 249 

omitting the early time points and limiting the data to only the longest deployment time in each 250 

year.  This was performed in order to reduce potential error associated with steady state 251 

correction factors. The second regression yielded a slope of -0.057±0.012 that was not 252 

significantly different (ANCOVA; F1,262; p>0.2) from the regression generated using the full data 253 

set. On the truncated data set, the estimated half life was somewhat slower at 12.1 years. 254 

 This research demonstrates that chemical toxicokinetics in deployed biomonitors will 255 

vary spatially and are also likely to vary at the same location in different years due to changing in 256 

situ conditions.  However, the impact of this variation on PCB water concentration estimates will 257 

likely be small except in cases where mussels are deployed for only short periods of time (e.g. 21 258 

days or less). When mussels are deployed for 60 d or longer, the potential error in PCB water 259 

concentration estimates using an assumed ktot relationship will not likely to exceed 20%, even 260 



when laboratory as opposed to in-situ calibration of the biomonitor is performed.  Additional 261 

sources of error not considered in this research may be generated as a result of error in the BCF 262 

expression used within the model.  For examples, setting the BCF = KOW in Eq. 1 and 3 assumes 263 

that mussel lipids achieve equilibrium with dissolved water concentrations.  However, mussels 264 

may also accumulate and potentially biomagnify PCBs from ingested seston along with 265 

exchange of water contaminants across their gills.  E. complanata is a size selective filter feeder 266 

which consumes only small algal particles (<10 µm in size; Mueller et al., 2004). Small 267 

phytoplankton are typically assumed to be in equilibrium with the water, but can also achieve 268 

much lower chemical fugacity relative to water during high growth (Swackhamer and Scoglund, 269 

1993). Thus the depression of ingested phytoplankton fugacity during growth would offset 270 

biomagnification taking place by the mussels owing to their exposure to this diluted food source.  271 

However, further research is necessary to verify this is the case for the study species. 272 
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 273 
  Figure 4.  Biomonitor estimated sum PCB water concentrations at  274 

  Riverside Marina as a function of time.  Solid line represents linear  275 

  regression fit (Eq. 6).  Dashed lines are the upper and lower  276 

  confidence intervals of the regression fit. 277 

 278 

 The present research also demonstrated that PCB concentrations in water at one location 279 

in the Detroit River are undergoing significant declines with time and the estimated half life of 280 

PCBs was approximately 9 years. Over the period of 1998 to 2015, the seasonal geometric mean 281 

PCB concentration declined from 198.1 pg/L to 43.6 pg/L representing a 454% decrease in 282 

measured residues. Based on Eq. 7, geometric mean residues at the biomonitoring station were 283 

predicted to have dropped 362% over this period of time.  Thus, the Canadian waters of the 284 

Detroit River are exhibiting long term improvements with respect to PCB contamination in 285 

water.   286 
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