
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Linear-Phase FIR Digital Filter Design with
Reduced Hardware Complexity using Discrete
Differential Evolution
Muhammed Kunwar Rehan
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Rehan, Muhammed Kunwar, "Linear-Phase FIR Digital Filter Design with Reduced Hardware Complexity using Discrete Differential
Evolution" (2016). Electronic Theses and Dissertations. Paper 5763.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5763?utm_source=scholar.uwindsor.ca%2Fetd%2F5763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Linear-Phase FIR Digital Filter
Design with Reduced Hardware

Complexity using Discrete
Differential Evolution

by

Kunwar Muhammed Rehan

A Thesis
Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science
at the University of Windsor

Windsor, Ontario, Canada

2016

c© 2016 Kunwar M. Rehan

Linear-Phase FIR Digital Filter Design with Reduced Hardware Complexity
using Discrete Differential Evolution

by

Kunwar Muhammed Rehan

APPROVED BY:

Dr. Guoqing Zhang
Department of Mechanical, Automotive and Materials Engineering

Dr. Huapeng Wu
Department of Electrical and Computer Engineering

Dr. Hon Keung Kwan, Advisor
Department of Electrical and Computer Engineering

March 31, 2016

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyones

copyright nor violate any proprietary rights and that any ideas, techniques, quotations,

or any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such material(s)

in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iii

Abstract

Optimal design of fixed coefficient finite word length linear phase FIR digital filters for

custom ICs has been the focus of research in the past decade. With the ever increasing

demands for high throughput and low power circuits, the need to design filters with reduced

hardware complexity has become more crucial. Multiplierless filters provide substantial

saving in hardware by using a shift add network to generate the filter coefficients. In this

thesis, the multiplierless filter design problem is modeled as combinatorial optimization

problem and is solved using a discrete Differential Evolution algorithm. The Differential

Evolution algorithm’s population representation adapted for the finite word length filter

design problem is developed and the mutation operator is redefined for discrete valued

parameters. Experiments show that the method is able to design filters up to a length of

300 taps with reduced hardware and shorter design times.

iv

Dedication

Dedicated to my Parents and my siblings: Reesha, Saaim and Hamzah

v

Acknowledgements

I would like to thank my supervisor Prof. H.K. Kwan for introducing me the set-based

discrete Differential Evolution and for suggesting it for discrete-valued digital filter design

as the project of my thesis. Also, his guidance and support helped me to achieve successes.

I would also like to thank my committee members Dr. H. Wu and Dr. G. Zhang for their

valuable inputs. A special thanks goes to my colleagues Manpreet Malhi and Mohamed

Abdinur. They provided me with constant encouragement and the discussion that I had

with them prompted me to develop new ideas and provide breakthroughs.

vi

Table of Contents

Declaration of Originality iii

Abstract iv

Dedication v

Acknowledgements vi

List of Tables x

List of Figures xii

List of Acronyms xiv

1 Introduction to Digital Filter Design 1

1.1 Mathematical Representation of Digital Filters 2

1.2 Filter Design Methodology and Specifications 4

1.3 Motivation and Outline of Thesis . 8

2 Review of Filter Complexity Reduction Methods 11

2.1 Filter Complexity Reduction Technique . 11

2.2 Multiplierless Filter Design . 13

2.2.1 SPT Design . 14

vii

2.2.2 MCM Algorithms . 16

2.2.3 State of the Art . 20

Summary . 24

3 Optimization Methods 26

3.1 Selection of Optimization Method . 27

3.2 Linear Programming . 28

3.3 Differential Evolution Algorithm for Continuous Optimization 31

3.4 Variations of Differential Evolution . 34

3.4.1 Variation in Mutation . 34

3.4.2 Adaptive Control Parameters . 34

3.5 Differential Evolution for Discrete Filter Optimization 35

Summary . 38

4 Proposed Algorithm 39

4.1 Problem Formulation . 40

4.1.1 Joint Optimization Objective Function 40

4.1.2 DEFDO Algorithm . 42

4.2 Algorithms Used In DEFDO . 45

4.2.1 Linear Programs Used in Filter Design 45

4.2.2 Population Generation for Differential Evolution 47

4.2.3 Modified RAG-n Algorithm . 52

4.2.4 Selection Operator for Differential Evolution 53

4.2.5 Adaptive Search Space Reduction 54

4.2.6 Computation Cost Reduction . 55

Summary . 57

viii

5 Design Examples and Results 59

5.1 Comparison of Variations of DE Algorithms 59

5.2 Joint Optimization of Minimax Error and Hardware Complexity 63

5.2.1 Empirical Determination of Filter Order and Wordlength 63

5.2.2 Design Examples . 65

5.3 Hardware Synthesis . 81

5.3.1 Structure of Filter and Shift Add Network 81

5.3.2 Filter Adders’ Topology . 81

5.4 Result Comparison . 86

5.4.1 Adder Cost Comparison: Approximate Methods 86

5.4.2 Adder Cost Comparison: Deterministic Methods 89

5.5 Design Algorithm Complexity Analysis . 91

Summary . 94

6 Conclusion and Future Scope 95

6.1 Conclusion . 95

6.2 Contribution of Thesis . 96

6.3 Future Scope . 97

References 99

Vita Auctoris 104

ix

List of Tables

1.1 Amplitude Response of Linear Phase FIR Filters 5

1.2 FIR vs. IIR . 6

1.3 Automatic Zeros of Linear Phase FIR Filters 7

3.1 Linear Program Setup . 30

4.1 Range of Filter . 44

4.2 Quantized Range of Filter . 49

5.1 Filter Specifications . 65

5.2 Emperical Determination of Filter Order and Wordlength 66

5.3 Result For Filter G1 . 69

5.4 Result For Filter G1 . 70

5.5 Result For Filter Y1 . 71

5.6 Result For Filter Y1 . 72

5.7 Result For Filter A . 73

5.8 Result For Filter B . 74

5.9 Result For Filter L1 . 76

5.10 Result For Filter C . 77

5.11 Band Pass and Band Stop Specifications 78

5.12 Result For Band Pass Filter . 79

5.13 Result For Band Stop Filter . 80

x

5.14 Full Adder Count for Filters . 86

5.15 Comparison With Approximate Methods 89

5.16 Comparison With Deterministic Methods 90

5.17 Time Analysis for Small Length Filters . 92

5.18 Design Statistics for Large Filters . 93

5.19 Adder Saving From Base Solution . 93

xi

List of Figures

1.1 Filter Design Specifications . 6

2.1 Transposed Direct Form . 16

2.2 Shift and Add Network . 17

2.3 Filter Design Approach . 18

3.1 Pseudo Code for the Differential Evolution Algorithm 32

3.2 Pseudo Code for Discrete Differential Evolution 37

4.1 Pseudo Code for Population Generation(Small) 50

4.2 Pseudo Code for Decoding to Bits . 50

4.3 Pseudo Code for Population Generation(Large) 51

4.4 Gray Encoding for Base Solution Neighborhood 51

4.5 Pseudo Code for Synthesis Using RAG-n 52

4.6 Selection Operation Flowchart . 54

4.7 Pseudo Code for Extremal Points Using Newton’s Root Finding Algorithm 55

4.8 Pseudo Code for Newton’s Root Finding Algorithm 56

4.9 Pseudo Code for Differential Evolution with Adaptive Search Space Reduc-
tion and Pre-Calculated Objective Function 58

5.1 Convergence Curve for Different Value of F 60

5.2 Convergence Curve for Different Value of CR 60

xii

5.3 Convergence Curve for Adaptive and Fixed Control Parameters Before . . 61

5.4 Convergence Curve for Adaptive and Fixed Control Parameters After . . . 61

5.5 Convergence Curve for Different Variation of Mutation Operator 62

5.6 Bar Graph Showing Filter Orders . 66

5.7 EWL vs. Filter Length for A . 67

5.8 EWL vs. Filter Length for B . 67

5.9 EWL vs. Filter Length for C . 68

5.10 Amplitude Response of Filter G1 (EWL=6) 69

5.11 Amplitude Response of Filter G1 (EWL=7) 70

5.12 Amplitude Response of Filter Y1 (EWL=9) 71

5.13 Amplitude Response of Filter Y1 (EWL=10) 72

5.14 Amplitude Response of Filter A . 73

5.15 Amplitude Response of Filter B . 74

5.16 Amplitude Response of Filter L1 . 75

5.17 Amplitude Response of Filter C . 75

5.18 Amplitude Response of Band Pass Filter 79

5.19 Amplitude Response of Band Stop Filter 80

5.20 Transposed Direct Form of Linear Phase FIR Filter with Multipliers Re-
placed by Shift and Add Network . 81

5.21 Expanded Form of Filter G1 Synthesis . 82

5.22 Hardware Synthesis for Filter G1 (EWL=7) 83

5.23 Synthesis of Shift Add Network for Filter Y1 (EWL=10) 83

5.24 Ripple Carry Adder Topology for (a× 2n + b) for n = 2 84

5.25 Ripple Carry Adder Topology for (a× 2n − b) for n = 2 85

5.26 Comparison of Amplitude Response of Opitmal Finite Wordlength Design
With Infinite Precision Parks McClellan Design for Filter A 87

5.27 Comparison of Amplitude Response of Opitmal Finite Wordlength Design
With Simply Quantized Design for Filter A 87

xiii

List of Acronyms

ACO Ant Colony Optimization

ASIC Application Specific Integrated Circuit

CR Crossover Rate

CSD Canonic Signed Digit

CSE Common Subexpression Elimination

DE Differential Evolution

DEFDO Differential Evolution Filter Design Optimization

EA Evolutionary Algorithms

EWL Effective Word Length

F Mutation Factor

FA Full Adder

FIR Finite Impulse Response

GA Genetic Algorithm

GB Graph Based

HA Half Adder

IIR Infinite Impulse Response

xiv

LTI linear time invariant

MAD Maximum Adder Depth

MBA Multiplier Block Adders

MCM Multiple Constant Multiplication

MILP Mixed Integer Linear Programming

NPRM Normalized Peak Ripple Magnitude

PSO Particle Swarm Optimization

RAG-n Reduced Adder Graph-n

SA Structural Adders

SAN Shift and Add Network

TSP Travelling Salesman Problem

xv

Chapter 1

Introduction to Digital Filter Design

A digital filter is a system that alters an incoming signal in a desired way in order to extract

useful information and discard undesirable components. Digital filters are used pervasively

in wide ranging products. Some examples include:

• Communication Systems

• Digital Audio Systems

• Signal Processing Systems including applications in seismology, biology etc.

• Image Processing and enhancement systems

• Speech Synthesis

• Instrumentation and Control Systems

This chapter will introduce the digital filter design problem and the terminologies as-

sociated. The specification of the digital filter optimization problem and the solution

techniques will also be discussed. Lastly, the motivation for the research work and the

outline of the thesis are given.

1

1.1 Mathematical Representation of Digital Filters

The emergence of digital technology in the 1960s opened a new world of applications. It

was realized that digital filters have various advantages over their analog counterparts as

• Digital filters did not suffer from components tolerances and their response was in-
variant to temperature and time.

• Digital filters could be programmed easily on digital hardware

• Digital filters were insensitive to electrical noise to a great extent

• Digital filters are very versatile in the desired responses they can produce

A digital filter can be characterized as a linear time invariant (LTI) discrete system.

The LTI system can be described by a constant coefficient difference equation

y(n) =
N−1∑
k=0

a(k)x(n− k)−
M∑
k=1

b(k)y(n− k)

where a(k) and b(k) are the forward tap coefficients and feedback tap coefficients respec-

tively. Taking the z Transform of the above equation, and rearranging, we obtain the

transfer function of the system shown in Eq. 1.1.

H(z) =
Y (z)

X(z)
=

∑N−1
k=0 a(k)z−k

1 +
∑M

k=1 b(k)z−k
(1.1)

From the Eq. 1.1, two sub classes of digital filters can be defined: Finite Impulse Re-

sponse (FIR) filters, also called non recursive filters and Infinite Impulse Response (IIR)

filters, also called recursive filters. Mathematically, the distinction is made for the case

when poles are non existent in the transfer function. Hence, the denominator terms van-

ishes and the transfer function can be written as

H(z) =
N−1∑
k=0

a(k)z−k

2

The above transfer function exhibits a finite length impulse response and hence is called

the FIR filter transfer function.

Physically, the distinction is based on whether a feedback from the output exists or not.

Recursive filters have a feedback from the output and hence possess impulse responses that

are infinite in duration. A non-recursive or finite impulse response (FIR) digital filter, on

the other hand, exhibits a finite duration impulse response. For an FIR filter whose impulse

response of length1 N is given by h = [h0, h1, h2 · · ·hN−1]T the transfer function is found

using the Z transform given by Eq. 1.2.

H(z) =
N−1∑
n=0

hnz
−n (1.2)

The frequency response is defined as the transfer function evaluated at z = ejω. Hence,

the frequency response of a FIR digital filter can be written as in Eq. 1.3

H(ejω) =
N−1∑
n=0

hne
−jωn (1.3)

The frequency response can be re-written as

H(ejω) = Ha(ω)θ(ω) (1.4)

where Ha(ω) = |H(ejω)| is called the magnitude response and and θ(ω) = ∠H(ejω) is

called the phase response. The group delay (τg) of the filter is defined as

τg(ω) = −∂θ(ω)

∂ω
(1.5)

By introducing symmetry in the impulse response, a linear phase or constant group

delay can be insured in an FIR filter. Based on the type of symmetry, four types of linear

phase FIR filters can be categorized:

1The order of the filter is one less than the number of taps i.e. (N − 1)

3

1. Type 1: The impulse response has odd number of coefficients (order of filter being

even) and the coefficients are symmetric with respect to the midpoint.

2. Type 2: The impulse response has even number of coefficients (order of filter being

odd) and the coefficients are symmetric with respect to the midpoint (not an actual

point).

3. Type 3: The impulse response has odd number of coefficients (order of filter being

even) and the coefficients are anti-symmetric with respect to the midpoint.

4. Type 4: The impulse response has even number of coefficients (order of filter being

odd) and the coefficients are anti-symmetric with respect to the midpoint (not an

actual point).

Due to the symmetry property of the linear phase FIR filters, their frequency response

can be characterized by M + 1 unique coefficients,where M = bN−1
2
c for an N tap filter.

Thus the amplitude response is given by Eq. 1.6

Ha(ω) = a0 +
limu∑
liml

anTrig(nω) (1.6)

Table 1.1 shows the form of the amplitude response of linear phase FIR filters for

each type of filter. The symmetric filters have a cosine term owing to the addition of

the duplicate frequency response terms and the resulting cosine term due to the Euler’s

formula. Anti-symmetric terms have a sine term due to the subtraction of the duplicate

terms.

1.2 Filter Design Methodology and Specifications

Finite Impulse Response filters are preferred over Infinite Impulse Response filter due to

their linear phase and guaranteed stability (Table 1.2). The filter design problem can be

4

Table 1.1: Amplitude Response of Linear Phase FIR Filters

Parameter Type 1 Type 2 Type 3 Type 4
a0 h(M) 0 0 0
an 2h(M − n) 2h(M − n) 2h(M − n) 2h(M − n)
liml n = 1 n = 0 n = 1 n = 0
limu n = M n = M n = M n = M

Trig(ω, n) cos(nω) cos(nω + 0.5) sin(nω) sin(nω + 0.5)

specified by a 4-tuple fspec (Fig. 1.1):

fspec = (ωp, ωs, δp, δs)

where ωp is the passband cutoff frequency, ωs is the stopband cutoff frequency, δp is the

maximum allowable passband ripple error and δs is the maximum allowable stopband ripple

error. The error specifications can either be given in decibels or in absolute error. The

cutoff frequency can be either given in radians per second or in normalized form. The

normalization is done either by diving by π or 2π. If the frequency is given in hertz,

than the sampling frequency must also be given. In that case the 2π radians/s correspond

to the sampling frequency and π radians/s to half the sampling frequency. Also, due to

the sampling theorem, frequencies up to half the sampling frequency can be completely

recovered in a sampled signal. Thus, if the specifications require higher frequencies than

half the sampling frequency, the sampling frequency must be increased to ensure all the

frequencies that are to be dealt with are less than half the sampling frequency.

Upon defining the specification, the filter order is estimated. The MATLAB function

“firpmord.m” gives a close approximation of the filter order. However, a few iterative

designs have to be done till the specifications are met exactly and the filter order is not

more than the minimum required for meeting the specifications.

Due to the automatic zeros of linear phase FIR filters, certain type of filters can not be

used for designing either highpass or lowpass filters. Table 1.3 summarizes the location of

the automatic zeros. Thus, high pass filters can not be designed using Type 2 and Type 3

filters and low pass filters can not be designed using Type 3 and Type 4 filters.

5

Table 1.2: FIR vs. IIR

Property IIR Filter FIR Filter

Phase or group delay hard to control linear phase always
possible

Stability Can exhibit unstable
behavior and limit cycles

Always stable

Order Required Small Long
Implementation No multirate or polyphase can be multirate and have

polyphase implementations

Figure 1.1: Filter Design Specifications

6

Table 1.3: Automatic Zeros of Linear Phase FIR Filters

Type Type 1 Type 2 Type 3 Type 4
Zeros None ω = π ω = 0, π ω = 0

The optimal filter design problem can be formulated in many ways depending on the

objective function. Taking only the frequency into consideration and not the group delay

the error can be defined as the Lp norm (Eq. 1.7) of the weighted difference between the

amplitude response (Eq. 1.6) and the desired frequency response.

||x||p = (
n∑
i=1

|xi|p)1/p (1.7)

Thus, among the many possible Lp norms, the two cases that are most often used are

when p = 2 and p = ∞. The Least Square design corresponds to p = 2 and its objective

function is given in Eq. 1.8.

ε =

∫ π

0

W (ω)|Ha(ω)−D(ω)|2dω (1.8)

where W (ω) is given in Eq. 1.9 and D(ω) is given in Eq. 1.10 and Ωp,Ωs are the passband

and stopband frequency points respectively.

W (ω) =

Wp if ω ∈ Ωp

Ws if ω ∈ Ωs

0 otherwise

(1.9)

D(ω) =

1 if ω ∈ Ωp

0 if ω ∈ Ωs

any number otherwise

(1.10)

The least square design tries to minimize the energy difference between the desired response

and the actual response.

The Minimax or Chebychev design corresponds to p = ∞ and its objective function

7

is given by 1.11. As the L∞ norm corresponds to the maximum value of the vector,

the minimax design tries to reduce the maximum difference between the actual frequency

response and the desired response (called ripple error).

ε = max [W (ω)|Ha(ω)−D(ω)|] (1.11)

For a detailed discussion of filter design techniques, the reader is referred to [1]. Also,

the applications of digital filters and their implementation techniques are discussed in detail

in [2].

1.3 Motivation and Outline of Thesis

Over the past decade portable electronic gadgets running on battery have become ubiqui-

tous. Many new biomedical applications have emerged that require minimal power con-

sumption. Thus, a new paradigm began in design of digital systems; one that accentuated

low power design. This paradigm also made its way into digital filter design and recent

researches have been focused on designing filters with low computational and hardware

complexity.

Digital design techniques have different level of abstractions: system, algorithm, ar-

chitecture, circuit and device. At each level, design techniques that underline low power

consumption or high throughput can be incorporated. Starting from the top low system

clocks can reduce power consumption and parallel processing and pipelining can be incor-

porated to increase throughput. At the other end of the spectrum, the device and circuit

level, implementation technology choice, transistor sizing and supply voltage reduction are

among many techniques employed for reduction of power consumption. For a DSP de-

signer, the middle level of design i.e. the algorithm and architecture level is of primary

concern. Minimizing the number of operations and the hardware required to carry out

a given task is the main goal at the algorithmic level and architecture level. Multiplier

less digital filters offer a substantial saving in power and area due to the elimination of

dedicated multipliers and utilize shift and adds to generate the products.

8

The current finite word length filter design techniques that minimize hardware suffer

from large design times or non optimal results. This thesis aims to develop a design

algorithm that can generate a high level filter architecture such that the chip area, the

computation cost and the power consumption are minimized. The proposed algorithm

produces results competent with the best deterministic methods and also cuts down the

run time of the algorithm.

The thesis is organized as follows. Chapter 2 gives the review of the literature present

on the design of finite word length digital filters and hardware complexity reduction tech-

niques. The techniques are broadly classified into multiplier less and with multipliers.

The techniques with multipliers are briefly reviewed. The multiplier less techniques are

reviewed in detail. The sum of power of two designs, the multiple constant multiplication

algorithms and their application to filter synthesis and the state of the art techniques in

minimal hardware filter designs are given.

Chapter 3 gives an overview of the optimization algorithms used throughout the the-

sis. The choice of selecting an optimization technique based on the objective is firstly

given. Next, the linear programming algorithm and its setup is given. Subsequently, the

Differential Evolution algorithm is given in detail along with the variations in the muta-

tion techniques, adaptive control parameters and the discrete variant of the Differential

Evolution algorithm proposed in this thesis.

Chapter 4 gives the proposed algorithm for the design of minimal hardware complexity

finite word length digital filters. The algorithm is referred to as Differential Evolution Filter

Design Optimization (DEFDO) algorithm. The problem is formulated in section 4.1 and

the DEFDO algorithm is given. Section 4.2 gives a detailed mathematical and analytical

discussion on the DEFDO algorithm. The various techniques employed at enhancing the

run time and search of the Differential Evolution algorithm are also discussed.

Chapter 5 gives the design examples and results. Firstly, in section 5.1 the working

of the discrete Differential Evolution is analyzed. The analysis is done for the control

parameters and the variation in mutation strategy of the algorithm and the test objective

function is the minimax error. In section 5.2, the joint optimization of minimax error

9

and hardware complexity is carried out to show the working of the algorithm. Six filters

from literature and two special filters have been implemented. An analysis of the filter

orders and word length for implementation is given prior to the design examples. Section

5.3 gives the examples of the hardware synthesis at a architecture level of abstraction

and for continuity of the design process the full adder counting technique is also discussed.

Section 5.4 gives the comparison of the proposed algorithm’s result with the state of the art

methods present in literature. Lastly, in section 5.5 the analysis of the DEFDO algorithm

is given with respect to the algorithm complexity, design time, and design scalability.

10

Chapter 2

Review of Filter Complexity

Reduction Methods

Filtering operation is central to all digital signal processing systems. Design of optimal

linear phase FIR filters has always been the focus of attention because of their marked

superiority over IIR filters. The design that guaranteed optimality for infinite precision FIR

filters was given by Parks-McClellan [3] which is to date the status quo in infinite precision

techniques. However, with advances in communication, demands for filters with narrow

transition width and high stopband attenuation requiring large orders prompted researchers

to develop hardware reduction techniques. This chapter will first give an overview of the

filter complexity reduction techniques. The multiplier less techniques will be discussed in

detail. A brief overview of techniques that utilize multipliers such as sparse filter designs

and frequency response masking approach would also be given.

2.1 Filter Complexity Reduction Technique

Among the notable techniques for reducing computational and hardware complexity of

FIR digital filters are: sparse filter design, frequency response masking, multi-rate tech-

niques, and multi stage decomposition. While sparse filters try to minimize the non-zero

11

coefficients, the other techniques involve cascading filters and other circuitry to reduce the

hardware complexity. However, for single stage filters, multiplier-less filters have proven

to be very effective.

1. Complexity Reduction with Multipliers

• Recursive running-sum prefilters

• Cyclotomic polynomial prefilters

• Interpolated FIR filters

• Frequency-response masking technique

• Multirate techniques

• Multi-Stage decomposition

• Sparse filter techniques

2. Multiplierless Filter Design

The most researched upon techniques in designs utilizing multipliers are sparse designs

and frequency response masking technique designs. They are briefly discussed here and

further information on these design techniques can be found in the references.

Sparse Filter Design

Sparse filter design techniques aim at minimizing the non-zero coefficients in a digital filter.

A zero coefficient implies no computation cost and thus maximizing the number of zero

coefficients or minimizing the number of non-zero coefficients reduce the computational

complexity of the digital filter.

A sparse filter design is an l0 minimization problem (Eq. 2.1).

minimize ‖x‖0 (2.1)

12

subject to: |H(ω)−D(ω)| ≤ ∆(ω), ∀ω ∈ ΩI

where x is the vector containing the unique filter coefficients, ∆(ω) is the tolerance in

the frequency response and D(ω) is the desired frequency response, ΩI is the set bands of

interest in frequency and H(ω) is the amplitude response of the filter.

Among the notable methods for sparse filter design are linear program techniques given

in [4] and a WLS relaxation approach is given in [5].

Frequency Response Masking

Lim, [6], introduced the frequency response masking technique for designing filters that

had a narrow transition width. Because of sharp frequency characteristics, a single stage

design required a huge number of taps for complying with commendable error constraints.

In sparse filter design, the filter with is wide transition width is upsampled by replacing the

delay element by M delay elements. Thus, the frequency response is a periodic and shrunk

version of the initial frequency response curve. The ratio that the frequency response

is shrunk by and the number of replicas that are generated depends on the factor M .

Subsequently, a mask filter whose transition width is much larger is cascaded to filter

out the unwanted replicas of the upscaled filter. Hence, a filter with a transition width

of ∆/M is obtained where ∆ was the original transition width. Even though the mask

involves extra hardware, however, compared to the hardware needed to design the narrow

transition width filter on its own there is a substantial saving in the hardware. For a

detailed discussion of frequency response masking the reader is reffered to [6] and [7].

2.2 Multiplierless Filter Design

Digital filters implemented in hardware are limited by the finite word length used in its

implementation. FIR filters have been the choice for implementation because of their

stability in finite wordlength designs. The effects of finite word length on the accuracy

of filtering operations has been extensively studied and it was shown that a substantial

13

loss in accuracy takes place in going from infinite precision to finite precision by simple

quantization to the nearest value. However, it was noted that the loss in accuracy can be

mitigated to a great extent by formulating the optimization problem that took into account

the discrete nature of the filter coefficients. Initially, two classes of optimization problems

that handled finite word length filters emerged: exact and approximate [8]. The exact

methods were based on search techniques that encompassed the entire space while the

approximate techniques utilized local search algorithm in the neighborhood of continuous

coefficients.

Many design techniques have evolved over time for designing discrete coefficient filters.

Among the most notable ones are the signed power of two (referred to as SPT, SOPOT

or POT), the Multiple Constant Multiplication and dynamically expanding subexpres-

sion space design techniques. The following sections discuss each of the following design

techniques and review their strengths and weaknesses.

2.2.1 Design of Discrete Filters in Sum of Power of Two Space

Design of discrete filters was first proposed by Kodek, [9]. He utilized a integer program-

ming package and upscaled the coefficients to fit into the integer subspace. The branch

and bound technique was proven to be successful in designing the discrete coefficient filter.

However, the gains in the error as compared to the simply quantized optimal infinite preci-

sion designs were not substantial. Thus, the amount of time required for design outweighed

the gain in the error.

To justify such long design times Lim et al, [10] proposed the design of the discrete

filter in the power of two subspace. Since a power of two did not require any hardware

for its implementation as it could be generated simply by hardwired shifts, the substantial

reduction in hardware complexity proved very attractive. In Lim’s design each coefficient

was represented as a sum of two powers of two (Eq. 2.2).

h(n) =
L∑
i=1

Si × 2gi(n) (2.2)

14

where L = 2, Si(n) ∈ −1, 0,+1 and −9 ≤ gi(n) ≤ 0. The method was suitable for

designing filter of length upto 40 using the computing resources available at that time.

The paper paved the way for future research in discrete filter optimal designs.

In [11], the filter design objective was modified to the Normalized Peak Ripple Mag-

nitude. This was owed to the fact that a filter’s purpose is to alter an incoming signal to

allow one set of frequencies while attenuating another set of frequencies. Thus, a gain of

unity was inconsequential. However, a constraint had to be set on the passband gain. A

high gain meant a better signal to noise ratio but it also caused overflow. In the discrete

power of two space, the upper bound and lower bound of the passband gain differed by

two i.e. the lower bound was always half the upper bound. This was because any other

gain could always be represented in the given range by multiplying or diving by a suitable

power of two and the NPRM would remain the same. To find a coefficient set with the op-

timal NPRM, passband gain sectioning was introduced. In the gain sectioning technique,

the gain range was divided into many fine gain sections and a discrete filter was designed

using the upper bound and lower bound constraints of the section on the gain. A simple

technique was to section the range [0.7, 1.4] and select the best solution found among all

the sections. A trade off was met between design quality and design time as more sections

led to a better design but with increased design time. A more involved technique based on

elimination was also given.

Samueli, [12], used a Canonic Signed Digit representation to represent the discrete FIR

filter coefficients. A canonic signed digit code a special representation of the non unique

signed digit code whereby the number of non zero digits is minimal and no two adjacent

digits are non zero. Since, an adder and a subtractor have the same hardware complexity,

the CSD form provides the most efficient representation scheme exhibiting 33% fewer non

zero terms than the 2-Complement representation. The CSD code for a number is unique.

Due to the non uniform spreading of the CSD codes using L power of two terms (as opposed

to the uniform 2s complement) and the fact that the density of the codes being much higher

among the small valued coefficients, an extra non zero digit was used to represent the filter

coefficients having a magnitude of 0.5 or greater. The justification given was that the

addition of an extra term improved the frequency response considerably while only having

15

Figure 2.1: Transposed Direct Form

a mild affect on the hardware complexity. Also, since impulse responses of low pass filters

exhibit a sinx/x sort of response, the percentage of large coefficients was small. The design

algorithm first determined the scaling factor and then ran a local bivariate neighborhood

search around the scaled and rounded coefficients.

In [13], a SPT term allocation scheme was developed where each coefficient is allotted

different number of SPT terms based on its sensitivity to the frequency response. After

assigining the SPT terms, an integer-programming algorithm was used to optimize the

coefficient values. This new technique produced designs that had a much better NPRM as

more emphasis was laid on coefficients with larger magnitudes.

2.2.2 MCM Algorithms

Bull and Horrocks, [14], introduced filtering operation as a multiple constant multiplication

problem of the form of Eq. 2.3 by using the transposed direct form of the FIR filter

structure (Fig. 2.1) where each output y(i) is the output of the corresponding multiplier.

They argued that the multiplication is the bottleneck of the entire operation in terms

of both chip area and throughput. They noted that an array multiplier has an area of

complexity of the order of O(B2) where B is the word length whereas an adder has an

area complexity of the order of O(B). Thus reducing the implementation cost of the

coefficient multiplier was a prime goal to reducing the overall implementation cost. For

fixed coefficient filters, the redundancies among the coefficients could be eliminated and

16

Figure 2.2: Shift and Add Network

the partial results generated could be utilized for multiple coefficients generation. This

work paved the way for further research in Multiple Constant Multiplication algorithms as

a means for implementing filtering and other DSP transforms.

y(i) = h(i)x i = 0, 1 · · ·N (2.3)

In defining the fixed coefficient filtering operation as a Multiple Constant Multiplication

problem, the multipliers in the transposed direct form filter structure are replaced by a Shift

and Add Network (SAN). The adders used for implementing the coefficients inside the SAN

are referred to as Multiplier Block Adders (MBAs). The adders summing the delayed and

weighted input are referred to as Structural Adders (SA). The MCM optimization problem

has been widely researched and is proved to be NP-complete problem justifying the use of

heuristic algorithms for solving the problem [15]. Figure 2.3 shows the comparison of the

three approaches to implementing the filter coefficients.

Two classes of algorithms exist for solving the MCM problem: Common Subexpression

Elimination (CSE) [16], [17] and Graph Based (GB) [18]. The Common Subexpression

17

(a) Multiplier Approach (b) SOPT Approach (c) MCM Approach

Figure 2.3: Filter Design Approach

Elimination algorithms first define the constants to be multiplied in a number represen-

tation e.g. Binary, CSD, or Minimal Signed Digit. After that the common subexpression

present in the numbers are obtained. The most common subexpression is used for sharing

among the coefficients. The graph based technique do not utilize any specific number rep-

resentation and represent the adder network as a graph and construct child tree branches

from the parent branches. The RAG-n algorithm [18] is the most notable graph based

algorithm. It consists of 2 parts: exact and heuristic. The exact part of the algorithm

outperforms all CSE algorithms, however its applicability to a given set of numbers is re-

stricted. It can only synthesize constants that can be represented as a sum of two other

coefficients using one adder and there exists at least one constant which is a cost one

constant [19]. The CSE algorithms have the disadvantage that they are specific to a num-

ber representation and only search the common subexpression space. The filter design

technique proposed in this thesis utilizes the exact part of RAG-n algorithm and is thus

explained in detail.

Reduced Adder Graph-n Algorithm

The Reduced Adder Graph-n (RAG-n) algorithm, [18], given by Dempster et al is a graph

based MCM algorithm. The following definitions are used in the paper:

18

Definition: Adder Cost

The adder cost of a set of constant integers is the number of adders and subtracters required

to perform multiplication by all those constants.

Definition: Fundamentals

The intermediate or final odd values (the vertices of the graph) used in synthesizing the

shift and add network.

The RAG-n algorithm utilizes the lookup tables generated by the MAG algorithm [19].

One lookup table gives the adder cost of multiplying by an integer and the other lookup

table gives the different set of fundamentals that can be used to implement the constant

multiplication optimally. The steps of the algorithm are enumerated for generating a shift

and add network of constants with word length B:

1. Obtain the odd fundamentals from the set by taking the odd numbers and diving

even numbers until an odd number results and delete the repeated numbers. Call

the set “incomplete set”

2. Find among the “incomplete set”, cost one fundamentals form the lookup table.

3. Add the cost one fundamentals to the “graph set” and remove them from the “in-

complete set”.

4. Examine pairwise sums of the form (a×2i±1) or (a×2i±b) where a, b ∈ “incomplete set”

and i is an index that is varied from 0, 1, · · ·B. If any coefficient from the “incomplete

set” is found, remove it from the “incomplete set” set and add it to the “graph set”.

5. Repeat until no more coefficients remain in the “incomplete set”.

The enumeration gives the exact part of the RAG-n algorithm. The following theorem

were proved in the paper and also provide useful insight into applicability of the exact part

of the algorithm:

Theorem 1: A set of n non repeated odd coefficients which each have a single coefficient

cost can not be synthesized using fewer than n adders.

19

Theorem 2: For a set to incur the minimal adder cost of n, at least one cost-1 coefficient

must be in the set.

The exact part of the algorithm may not always synthesize and a supplemental heuristic

algorithm is given in the paper. However, since in this thesis only the exact part is utilized,

the heuristic part is not explained.

2.2.3 State of the Art

The MCM problem was limited in the sense that it only optimized the already synthesized

coefficients. However, a coefficient set complying with a particular design constraint is not

unique. Thus, a coefficient set which in the representation sense was not minimal could

possibly have a better hardware implementation than the one with the minimal bit repre-

sentation. This problem was circumvented by including the synthesis of the shift and add

network in the optimization of the discrete coefficient representation. The latest research in

multiplierless design is focused on cutting the design time while maintain optimum perfor-

mance level. Since the exact techniques, which employ mixed integer linear programming

(MILP) branch and bound or tree search algorithms such as width recursive depth first

search, have exponential growth in complexity with the filter order thus they cannot be

used for designing higher order filters without proper pruning techniques.

A few new terms were defined in [20] for the discrete filter design problem. The concept

of bases or fundamentals was already in use in MCM designs, but [20] extended the defini-

tion to include subexpression space. The definitions are repeated here and used throughout

the thesis.

Definition: Basis Set

In the synthesis of the SAN, the intermediate or final odd values are called fundamentals

or bases. The set of all the bases needed to synthesize the SAN is the basis set.

Definition: Subexpression Space

The set of all possible bases is called the subexpression space. Mathematically, a discrete

20

subexpression space is defined as

n =
T−1∑
i=0

si2
mi (2.4)

where mi is a non-negative integer and si ∈ S and S is the basis set. For the SOPT space,

the basis set is S = {−1, 1}. Other examples of basis set are S1 = {0,±1,±3,±5}.
Definition: Contiguous Basis Set

A basis set if said to be contiguous if it contains all contiguous odd integers till the largest

odd integer present.

Definition: Order of Basis Set

The order of a basis set is defined as the number of adders required to construct the basis

set.

Branch and Bound MILP

The linear phase FIR filter design problem for continuous coefficients can be modeled

as a linear program. Thus, it can be solved easily using polynomial time algorithms for

linear programming. However, if the coefficients are forced to take discrete values than the

problem becomes NP-complete. By upscaling the coefficients, the problem can be modeled

as a Mixed Integer Linear Program. To tackle the problem, a linear relaxation approach is

developed whereby the discrete constraint is dropped and the problem is solved as a linear

program. However, simply quantizing the solution of the relaxed problem can result in

the solution lying very far away from the optimal discrete solution. Thus, a branch and

bound technique is developed to systematically solve relaxed linear programs and further

branches are created or fathomed depending on the feasibility of the solution of the relaxed

problem.

The branch and bound MILP is used in [20] to find the optimal coefficients from a

fixed subexpression space. An upper cap on the number of adders is obtained and the

frequency response ripple is minimized. Firstly, a continuous solution is obtained using

linear programming. Among the coefficients a coefficient, say xi, is selected for branching.

If the optimal value of xi is 5.4, than two sub-linear programs are created L1 and L2 with

21

the following bounds on xi are xi ≥ 6 and xi ≤ 5 respectively. The depth first search

progresses by keeping L2 aside and exploring L1 further. Another coefficient, say xj, is

chosen and the bounds of xj ≥ dxje and xj ≤ bxjc are imposed giving rise to subproblems

L3 and L4. L4 is kept aside and L3 is further explored. The process continues till all

the coefficients have been fixed and a discrete solution is obtained. Thus that branch is

terminated and the algorithm back traces to solve the adjacent problem. A node is also

terminated if it is seen that an optimal solution is not possible upon further exploration.

The algorithm suffered from the following problems:

1. Prefixing the Basis Set: The set of numbers and the space to search for the optimal

filter coefficients was fixed apriory. Thus, the choice limited the search space and

hence the optimal solution. A lot of effort had to be made to define a basis set that

would best serve the problem at hand.

2. Determining the closest approximation: The closest number that can be represented

in the subexpression space to serve as the bounds of the linear program was to be

determined. An exhaustive search or a greedy algorithm was utilized which slowed

down the process. A lookup table could be generated for static subexpression spaces

which cut short the time consumed in the search process.

3. Tradeoff Between Order of Basis Set and Number of Terms Per Coefficient: A trade-

off had to be met whereby choosing a small order basis set meant using more number

of terms to construct a coefficient or choosing a large order basis set and using less

number of bases for constructing the coefficients.

The use of MILP to solve the discrete coefficient linear phase FIR filter design problem

was based on first defining a basis set based on which a sub space was created. Thus, an

upper cap was done on the order of basis set and the number of terms used to construct

the basis set. Based on this upper cap, the coefficients were found that met frequency

response specifications. Hence, the hardware reduction problem was not dealt with in a

direct manner and rather the upper cap on hardware was established. Also, the design

procedure involved a lot of designer experience and design automation was marginalized.

22

Dynamically Expanding Subexpression Space Design

The optimality of the basis set can be obtained by dynamically expanding the basis set

based upon the need for discretizing the coefficients starting from the trivial basis set

0,±1. In this method, the coefficients that are likely to result from the usage of less

adders are discretized first. However, for solving the problem in a dynamically expanding

subexpression space, the branch and bound MILP cannot be used and hence in[21], [22],

[23] MILP with depth first width recursive search is used. In this method, a coefficient

is selected for discretization and it is branched to L different branches with the L closest

discrete values selected in each branch. With one coefficient fixed, the rest of the coefficients

are again optimized and another coefficient is selected for discretization. Again, a set of

L branches are formed. In the depth first search, only one among the L branches at each

stage is selected for further branching. When, all the coefficients have been discretized,

then the solution is stored and the algorithm back traces and solves the other branches at

the next upper level. Also, for expediting the search process, the solution of a branch is

compared with the current best obtained solution and if it cannot offer a better solution,

it is not further explored.

The complexity of the above algorithm depends highly on the number of braches (L)

that are created at each stage. In [21], L branches are created such that only one adder must

be used in the synthesis of the discrete value from the already existing subexpression space

and these L values are the closest to the continuous coefficient value. In [22], an exhaustive

search is made where all the possible discrete values are selected for branching based upon

a feasible range of that coefficients (calculated beforehand). Thus, the complexity of the

depth first width recursive search is exponential with L.

In [24], a two-step optimization process is proposed. In this method, firstly a set of

initial acceptable solutions is obtained for different passband gains using a polynomial time

algorithm (setting L = 1). The coefficients are synthesized using an MCM algorithm [16].

In the second stage, the coefficients are grouped into small and large coefficients. The

large group of coefficients is further optimized for low hardware cost using a dynamically

expanding subexpression space search technique with the initial basis set being the set

23

needed to synthesize the smaller group of coefficient.

Genetic Algorithm Based Filter Design

The paper [25] uses a genetic algorithm for designing the multiplier-less filter. In their

algorithm, a reduced search space is created around a base solution. The base solution is

obtained by discretizing a continuous solution for a corresponding gain. Also, they have

encoded the difference between the possible values the GA can take to the base solution

as the value the chromosomes of the GA represent leading to a shorter encoding scheme.

Thus, they have managed to reduce the search space and expedite the search process of

the GA. Also, the mutation and crossover operations have been modified and the rates

made adaptive.

The number of adders in the implementation has been set as the objective to minimize.

They make use of the RAG-n [18] algorithm for determining the number of adders. Since

for each passband gain the search process is independent, they have cast each problem to

a different machine and ran in parallel. However, since the RAG-n algorithm consumes a

substantial time, they formulate a fitness function that inhibits the algorithm for running

the RAG-n algorithm for solutions that do not meet the error constraints. For a filter

order of 324, their design time is around 3h49m when casted onto 20 machines or 37h9m

when completed on a single machine.

Summary

In this chapter the techniques that reduce the implementation complexity of digital filters

are discussed. Techniques such a sparse designs and frequency response masking approach

were briefly reviewed. The multiplier less techniques such a sum of power of two and MCM

algorithms’ utilization for filtering operation was discussed. The state of the art methods

were also examined. Designs utilizing dynamically expanding subexpression space have

seen a surge in recent literature on deterministic algorithms for finite word length digital

24

filter designs. Also, heuristic algorithms such as genetic algorithm and local search which

have been used for design of digital filters were reviewed.

25

Chapter 3

Optimization Methods

Optimization is the process of minimizing the cost or maximizing the gain of a process

or function. Optimization is performed in every field from economics to engineering. The

technique to approach a particular type of problem depends on the characteristics of the

problem whether the function is linear or nonlinear, convex or non-convex, constrained

or unconstrained. Also, a function maybe multi-objective where a number of objectives

need to be optimized simultaneously or multimodal where multiple equally good solutions

exists. The problem may be defined on the set of real number whereby the parameters are

continuous, or on a discrete set of number where the parameters take discrete values or

the problem may be mixed where some parameters can take continuous values while others

can only take discrete values.

The filter design problem is also modeled as an optimization problem in numerous ways

depending on the objective e.g. minimax design, least square design, least p-th design etc.

The gist of all filter design optimization problems is to reduce the weighted ripple error

(Eqs. 1.8, 1.11). In this chapter, the various optimization algorithms used in the proposed

algorithm are discussed. Firstly an overview of the types of optimization algorithms avail-

able is discussed along with paramters to measure computational complexity. Next, the

linear programming algorithm and its setup is given. After that the Differential Evolution

Algorithm is discussed. Lastly, the variations of the Differential Evolution Algorithm are

26

examined.

3.1 Selection of Optimization Method

The theory of continuous parameter optimization has been developed for centuries and is

at present very mature. Efficient algorithms exist for linear problems with linear inequality

and equality constraints. Quadratic unconstrained problems can be solved using gradient

based methods such Quasi Newton algorithm. A detailed discussion on optimization can

be found in [26].

While continuous parameter optimization is tractable however, situations arise when

the parameters can take values only from a finite set. If the finite set is the set of integers,

the problem is modeled as integer programming or if they belong to a mixed set consisting

of real numbers and integers then mixed integer programming models are used provided the

constraints are linear. However, if the constraints follow no general rule then the problem is

generally classified as a combinatorial optimization problem. In this problem, the possible

solution is a combination from a finite set of points with the objective function and the

constraints taking any form. The problems in combinatorial optimization are ranked based

on the computational complexity.

Definition: Computational Complexity of Algorithms

The complexity of an algorithm to solve a given problem is generally specified by the worst

case scenario. The O notation is used to denote the complexity which is defined as

f(n) = O(g(n)) (3.1)

if there exist positive constants a and b such that ∀n > a, f(n) ≤ b.g(n)

Among the set of problem classified based on order of complexity two special cases

are highly discussed: polynomial time and exponential time. A polynomial complexity is

defined as O(p(n)) where p(n) is a polynomial in n of degree k i.e. O(nk). On the other

hand, an exponential complexity is when the computation take the complexity of order

27

O(bn),b > 1. Problems for which polynomial time algorithms exist for solving them are

called tractable and if a polynomial time algorithm does not exist than they are intractable.

Two classes of algorithms exist for solving combinatorial optimization problems :

1. Exact Algorithms

2. Approximate Algorithms

The exact methods include branch and bound algorithms, graph based tree search

(breadth first or depth first) while approximate methods include approximation algorithms,

heuristics and metaheuristics. The choice of algorithm for approaching a certain problem

is dependent on whether it is a P problem or not. A P problem is a problem for which a

polynomial time algorithm exists for solving it. An NP problem is one whose solution can

be verified in polynomial time. A NP −Hard is problem which is as hard as the hardest

NP problem. NP − Hard problems which are also NP are known as NP − Complete

problems. Deterministic algorithms should be used if the problem is P and use of heuristics

is unjustified. Also for NP − Complete problems, the instance of the problem must be

considered as small instances can solved easily by exact algorithms. The justifiable use of

heuristics is in large instances of NP − Complete problems. If, however, the polynomial

time algorithm has high order index than use of heuristics might be favored.

3.2 Linear Programming

Linear Programming is a method for optimizing a linear functions subject to linear equali-

ties and inequalities. The generalized linear programming problem can be defined as: Find

x ∈ RN such that the function

func(x) = fTx =
N∑
i=1

fixi

where f ∈ RN , is minimized and is subject to M inequality constraints

28

a11x1 + a12x1 · · ·+ a1NxN ≤ b1

a21x1 + a22x1 · · ·+ a2NxN ≤ b2

...

aM1x1 + aM2x1 · · ·+ aMNxN ≤ bM

and P equality constraints

c11x1 + c11x1 · · ·+ c1NxN ≤ d1

c21x1 + c22x1 · · ·+ c2NxN ≤ d2

...

cP1x1 + cP2x1 · · ·+ cPNxN ≤ dP

and the following bounds on the variables

x1l ≤ x1 ≤ x1u

x2l ≤ x2 ≤ x2u

...

xNl ≤ xN ≤ xNu

Alternatively, a dual problem can also be defined which maximizes the function. The

optimal point, however, is the same for both the problems. The minimization problem

is explained as most available linear programming solvers utilize the minimization form.

29

Table 3.1: Linear Program Setup

min fTx
Aieqx ≤ bieq Inequality Constraint
Ceqx = deq Equality Constraint

xl ≤ x ≤ xieq Bounds on Variables

Rewriting the constraints in matrix form

Aieq =

a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

...
...

aM1 aM2 · · · aMN

M×N

bieq = [b1, b2, · · · bM]T

Ceq =

c11 c12 · · · c1N

c21 c22 · · · c2N

...
...

...
...

cP1 cP2 · · · cPN

P×N

deq = [d1, d2, · · · dP]T

Table 3.1 summarizes the linear program setup which is the most used format in most

available solvers (e.g. MATLAB). A linear programming problem’s constraints can be

viewed as a polyhedron with the vertices being one of the basic feasible points for the op-

timal point. The simplex method is very popular in solving linear programs. However, for

large problems, the interior point method is more efficient. The interior point method uti-

lizes non-linear algorithms modified for the linear problems. The simplex method searches

along the boundary of the polyhedron while interior point methods approach from inside

30

or outside the feasibility polyhedron. Many authors have proposed techniques for solving

problems.

The OPTI Toolbox, [27] is an open source collection of optimization algorithms made

available. The CSDP Algorithm by Borchers, [28], is utilized in this thesis for solving filter

design problems.

3.3 Differential Evolution Algorithm for Continuous

Optimization

Among the class of global optimization algorithms, Evolutionary Algorithms (EA) are

metaheuristic algorithms. The strategies employed in EAs are inspired by biological phe-

nomenon of evolution and survival of the fittest. Among the notable techniques are Ge-

netic Algorithm (GA) and Differential Evolution (DE). EAs create a random population

of parameter vectors in the search space representing all the landscape. The population

members interact with each other through operators such as crossover, mutation, and new

generations are produced using selection. Closely related to EAs are algorithms utilizing

swarm intelligence e.g. Particle Swarm Optimization (PSO), Ant Colony Optimization

(ACO) etc.

Given an objective function with D parameters to be optimized. The Differential Evo-

lution algorithm begins by creating a population of Np D-dimensional random vectors. The

simple DE employs three operators to evolve from one generation to the other: mutation,

crossover and selection (Figure 3.1).

Initialization

The population is initialized by selecting the values of the parameters so that they cover

the entire range. If the upper and lower bounds of each parameter are given in vector bu

31

Figure 3.1: Pseudo Code for the Differential Evolution Algorithm

process DE
1 initialization
2 do
3 mutation
4 crossover
5 selection
6 while (termination criteria)
end process

and bl respectively, then the values are generated according to Eq. (3.2).

xp,1j = bl,j + rj(bu,j − bl,j) (3.2)

where rj ∈ (0, 1) is a random number and j = 1, 2, D. The first generation (g = 1)

population is created by repeating the above process Np times. Let each member of the

population be represented as in Eq. (3.3).

xp,g = [xp,g1 , xp,g2 , ...xp,gD] (3.3)

where p = 1, 2,→ Np and g = 1, 2, gmax. Subsequently, the population can be repre-

sented as a NpD matrix (Eq. (3.4)).

Pg = [x1,g, x2,g, ...xNp,g]T (3.4)

Mutation

The mutation operator produces a population of trial vectors. For each member of the

population, called target vector of index p, the trial vector up,g+1 is generated using Eq.

(3.5).

up,g+1 = xr1,g + F.(xr2,g − xr3,g) (3.5)

32

The indices r1, r2, r3 are all distinct and also different from the target index p. F ∈
(0, 1) is a scaling factor and is one of the control parameters.

Crossover

The crossover operator combines parameters from the target vector xp,g and the trial vector

up,g+1 to generate the mutant vector yp,g+1. The parameters of the mutant are selected

according to Eq. (3.6).

yp,g+1
j =

{
up,g+1
j if r ≤ CR or j = jrand

xp,gj if r > CR
(3.6)

for j = 1, 2, D and r ∈ (0, 1) is a random number and jrand is a randomly selected integer

between 1 and D (both including). CR ∈ [0, 1] is the crossover probability and it reflects

the amount of information that is inherited from the trial population. A random number

index, jrand, is also checked for to ensure that the target vector is not replicated.

Selection

The selection operator is responsible for creating new generation from among the trial

vectors. For each target vector, if the objective function value is less corresponding to the

mutant vector, then the mutant vector replaces the target vector in the population. Thus,

selection can be done according to Eq. (3.7).

xp,g+1 =

{
xp,g if f(xp,g) ≤ f(yp,g+1)

yp,g+1 otherwise
(3.7)

The termination criteria for the DE can be the tolerance in the objective function, or

can be a maximum number of generations gmax.

33

3.4 Variations of Differential Evolution

3.4.1 Variation in Mutation

The DE algorithm described in section 3.3 is the most basic form. It is denoted as

DE/rand/1/bin as the base vector xr1,g in Eq. 3.5 is randomly chosen and there is only one

differential term F.(xr2,g − xr3,g) and the mutation operator exhibits a binomial distribu-

tion. There is another form of mutation called exponential but for brevity its definition is

omitted. Storm and Price, [29], have also given other variations which are described below.

They all differ in how the mutation operator takes place. Thus, the mutation equation for

each is given.

1. DE/best/1/bin

up,g+1 = xbest,g + F.(xr2,g − xr1,g) (3.8)

2. DE/best/2/bin

up,g+1 = xbest,g + F.(xr2,g − xr1,g) + F.(xr4,g − xr3,g) (3.9)

3. DE/rand/2/bin

up,g+1 = xr1,g + F.(xr2,g − xr3,g) + F.(xr4,g − xr5,g) (3.10)

4. DE/tar2best/1/bin

up,g+1 = xi,g + F.(xbest,g − xi,g) + F.(xr2,g − xr1,g) (3.11)

3.4.2 Adaptive Control Parameters

The DE algorithm has 3 control parameters viz., the scaling factor F , the crossover prob-

ability CR, and the population size P . While the choice of P can affect the quality of the

34

solution, it does not influence the convergence of the algorithm. The other two parameters

influence the convergence and must be properly set with trial and error. Brest et al, [30],

have proposed an adaptive control parameter adjustment technique. With slight modifi-

cations to their results, equations 3.12 and 3.13 are obtained to be used in the discrete

DE.

F p,g+1 =

{
Fl + r1 ∗ (Fu − Fl) if r2 < τ1

F p,g otherwise
(3.12)

CRp,g+1 =

{
CRl + r3 ∗ (CRu − CRl) if r4 < τ2

CRp,g otherwise
(3.13)

where r1, r2, r3, r4 ∈ (0, 1) are random numbers, τ1 = τ2 = 0.1 and Fl, Fu and CRl, CRu

are the lower and upper bounds of F and CR. The values used are Fl = 0.4, Fu = 1,

CRl = 0.05 and CRu = 0.2.

3.5 Differential Evolution for Discrete Filter Optimiza-

tion

The original Differential Evolution algorithm is used for real valued parameter optimiza-

tion. Due to its superior convergence characteristics, researchers have attempted to utilize

the differential approach for discrete parameter optimizations. Strategies based on trunca-

tion of the parameters for calculating the objective function value were proposed initially.

Other techniques involved defining the population member as a permutation of numbers.

However, the essence of the DE being the differential operator for mutation was not fol-

lowed in these methods.

Liu et al, [31], have proposed a set based approach for solving the Travelling Salesman

Problem using a discrete variant of the DE algorithm which is inspired by similar approach

for the Particle Swarm Optimization (PSO) is given in [32]. The PSO utilizes a fuzzy set

and crisp set technique to represent the velocity and position of a particle. The DE also

uses sets to represent parameters. The DE implements the mutation operation by using

35

four operators defined on the sets. In the crossover, the learn procedure is utilized whereby

the trial learns either from the target or the trial vector to obtain the mutant vector. In

both the papers a complex representation of the parameters for population generation and

evolution is given. Also, the concept of Hamiltonian circuit constraint satisfiability further

accentuates the complexity. However, such complex representation is not needed for the

filter design problem as each parameter can have only a single value and is selected from

a discrete set.

A new discrete Differential Evolution algorithm inspired by the set based algorithms is

proposed for the finite word length filter design. The algorithm utilizes a bit string and

integer population and a decode scheme is implemented for converting the one from the

other. Consider a function f(x) defined over the vector x = [x1, x2...xD]T ∈ ZD where

D is the number of parameters to be optimized and Z is the set of integers. This form

of the vector is employed in this thesis as the filter coefficients have been scaled up by

multiplying with a suitable power of two such that they can be represented as integers. So,

the minimization of the function is carried out in the integer subspace and each parameter

represents the unfixed filter coefficient.

To find the optimal discrete value of the filter coefficients, the mutation, crossover

and selection operators of the Differential Evolution are applied. For the crossover and

selection operators the equations given in section 3.3 (Eq. 3.6, 3.7) can be applied directly

and the resulting output would lie in the integer subspace. However, the mutation equation

(Eq. 3.5) will yield a result that lies outside the integer subspace. Thus, for the mutation

operator, each parameter is encoded into a bit string consisting of a total of N bits for

the D parameters. The actual encoding and bit allocation scheme is implemented taking

into account the problem to be solved. For the finite word length filter design problem it

is discussed later with the proposed algorithm. To summarize the scheme, the mutation

operation is performed on the N bits and is explained in the following paragraphs. The

crossover operation is performed on the D parameters and is the same as discussed in

section 3.3.

To obtain the trial vectors Eq. 3.5 is redefined and each of the N bit position (bi) is

determined according to Eqs. 3.14,3.15,3.16.

36

Figure 3.2: Pseudo Code for Discrete Differential Evolution

process discrete DE
1 generate population of P members ∈ Z with D parameters
2 encode each D parameter as a bit string
3 g=0
4 do {
5 for i = 1 : P
6 for j = 1 : N
7 mutation
8 end for
9 decode from bit to integer
10 for j = 1 : D
11 crossover
12 end for
13 for j = 1 : D
14 selection
15 end for
16 end for
17 g=g+1 }
18 while (g < gmax)
output: best solution
end process

bdi =

{
bx

r2

i if bx
r3

i = 0

0 if bx
r3

i = 1
(3.14)

bF.di =

{
bdi if rand(0, 1) < F

0 otherwise
(3.15)

bui =

{
1 if bx

r1

i = 1

bF.di otherwise
(3.16)

where i = 1, 2, ...N and rand(0, 1) ∈ (0, 1) is a random number.

Figure 3.2 shows the pseudo code for the proposed discrete Differential Evolution al-

37

gorithm. The algorithm is utilized along with adaptive control parameters (section 3.4.2)

for designing finite word length filters (Chapter 4). The discrete Differential Evolution

algorithm presented can also be used for optimizing functions where the coefficients are

independent of each other and belong to the set of integers.

Summary

In this chapter, the selection of a optimization routine for a particular problem and the

measures of computational complexity were discussed. After that the linear programming

algorithm for solving linear objective function with linear inequality and equality con-

straints was given. Lastly, the Differential Evolution algorithm and its variations were

given. Lastly, the proposed discrete Differential Evolution algorithm adapted for the finite

word length filter design problem was given. The methods discussed in this chapter are

utilized in the proposed algorithm.

38

Chapter 4

Proposed Algorithm

Chapter 2 discussed the various techniques for reducing the hardware complexity of finite

word length digital filters. Among the multiplierless techniques, the sum of power of two

design was successful in reducing the hardware complexity. However, large orders were

needed to meet stringent error constraints. The multiple constant multiplication algorithms

gave a new approach and focused on reducing the redundancy among the coefficients to

reduce the hardware complexity. However, the MCM did not take into account the design

procedure of the filter coefficients. The latest techniques jointly find the filter coefficients

and reduce the hardware. However, among the state of the art algorithms present, the

deterministic MILP based algorithms have an exponential computational complexity. The

heuristic methods are fast but give out inferior designs.

The proposed algorithm aims at developing an algorithm which is as fast as the heuris-

tic methods and also gives results comparable to the deterministic methods. For this, the

discrete Differential Evolution algorithm combined with a population generating mecha-

nism which utilizes linear programming is developed. In section 4.1, firstly the problem is

formulated and the objective function for minimization is defined. Next, the entire design

procedure is given. The algorithm is referred to as Differential Evolution Filter Design Op-

timization (DEFDO) Algorithm. Lastly, in section 4.2, each part of the DEFDO algorithm

is explained in detail.

39

4.1 Problem Formulation

In this section, the proposed filter design method is discussed. The proposed technique in-

volves a combination of linear programming and evolutionary algorithm. The evolutionary

method is a hybrid Differential Evolution method discussed in Chapter 3 in sections 3.4.2

and 3.5. The adaptive control parameters have been used and for the mutation operator,

a bit string method described in section 3.5 is implemented.

4.1.1 Minimax Error and Adder Cost Joint Objective Function

Calculation

For the discrete filter design problem, the problem can be divided into two parts: subject

and object (as refereed to in [33]). The object is the main aim of the problem i.e. minimize

the hardware complexity while the subject are the constraints that have to be satisfied i.e.

the maximum allowable ripple error. Hence, the optimization problem can be modeled as

in Eq. 4.1.

minimize
M∑
i=0

Cost(xi) (4.1)

subject to :

∆ ≤ δp (4.2)

where x is defined as the vector x = [x0, x1...xM]T ∈ ZM+1, ∆ is the weighted minimax

error (Eq. 4.3) and δp is the maximum allowable error in the passband as defined in the

filter specifications (fspec). The values of vector x are related to the filter coefficients as

hn = xM−n+1 = hN−n−1. The passband error (δp) is considered for comparison as the

weight of the pass band is fixed to be unity.

∆ = max[W (ω)|Ha(ω)

G
−D(ω)|] (4.3)

40

where Ha(ω) is the amplitude response of the filter, D(ω) is the desired function, W (ω) is

the weighting function and G is the passband gain. Eq. 4.4 and 4.5 give the expressions

for the weighting function W (ω) and the desired function D(ω). The value of passband

gain G is given by (4.6).

W (ω) =

1 if ω ∈ Ωp

δp
δs

if ω ∈ Ωs

0 otherwise

(4.4)

D(ω) =

1 if ω ∈ Ωp

0 if ω ∈ Ωs

any number otherwise

(4.5)

G =

{
Gp,max+Gp,min

2
if

Gp,max−Gp,min

2
> δp

δs
Gs,max

Gp,min + δp
δs
Gs,max if otherwise

(4.6)

where

Gp,max = max|Ha(ω)|ω∈Ωp

Gp,min = min|Ha(ω)|ω∈Ωp

Gs,max = max|Ha(ω)|ω∈Ωs

In Eqs. 4.4, 4.5, 4.6 Ωp is the set of frequencies belonging to the pass band, Ωs is the set

of frequencies belonging to the stop band.

Since in Eq. 4.3, the coefficients are represented in the integer subspace and Normalized

Peak Ripple Magnitude is used, hence the amplitude response is divided by the passband

gain, given by Eq. 4.6, in order to determine the error constraints which are given for unity

passband gain. Eq. 4.7 shows the expression for the amplitude response of a linear phase

filter.

Ha(ω) = vTc x (4.7)

where vc is a vector containing the appropriate trigonometric function values and depends

41

on the type of filter. Eq. 4.8 gives the expression for Type I and Type II filters for vc.

Similar expressions can be derived for Type III and Type IV filters.

vc =

{
[1, 2cos(ω), ...2cos((M − 1)ω), 2cos(Mω)]T for Type I

2cos(0.5), 2cos(ω + 0.5) · · · 2cos((M − 1)ω + 0.5), 2cos(Mω + 0.5) for Type II

(4.8)

4.1.2 The Differential Evolution Filter Design Optimization Al-

gorithm

In the previous section (4.1.1), the objective of the problem was defined along with the

constraints. In this section an algorithm that achieves the objective is given. The algorithm

if referred to as Differential Evolution Filter Design Optimization (DEFDO). The method

is summarized below and explained in detail in the next section.

1. The index of the coefficients that can be made zero, denoted as Z, is found first. For

small to medium length filters, Z is found by finding the range using Eq. 4.9.

minimize f = h(k) f = −h(k) (4.9)

for k = 0, 1...bN−1
2
c

subject to: (1− δp) ≤ Ha(ω) ≤ (1 + δp) for ω ∈ Ωp

−δs ≤ Ha(ω) ≤ δs for ω ∈ Ωs

where

Ha(ω) =

bN−1
2
c∑

n=0

h(n)Trig(ω, n)

42

Trig(ω, n) is the trigonometric function based on the type of FIR filter for an N

tap filter. Those coefficients whose range includes the zero crossing are possible

candidates for Z. The optimal infinite precision coefficients are found by solving the

linear program in Eq. 4.10 and setting Z = φ.

minimize f = δ (4.10)

subject to: (1− δ) ≤ Ha(ω) ≤ (1 + δ) for ω ∈ Ωp

−δ δp
δs
≤ Ha(ω) ≤ δ

δp
δs

for ω ∈ Ωs

Ha(ω) =

bN−1
2
c∑

n=0,n/∈Z

h(n)Trig(ω, n)

The coefficient, among the Z candidates, whose absolute value is the least is fixed

as zero and the linear program is again solved to find the minimax error (δ). The

process iterates by including the next candidate until the minimax error exceeds the

required error. Sometimes, it is needed to back trace the steps and include lesser

zeros in the coefficients than given by the algorithm in order to accommodate the

loss in precision due to quantization of the coefficients. The last optimal coefficient

values are denoted by the vector hc. The range is again calculated by fixing the

zero coefficients. Let the range of each unique coefficient be denoted by [ril , r
i
u] for

i = 0, 1 · · ·M . The expanded form and explanation of the linear programs is given

in section 4.2.1.

2. For a given effective word length (EWL), it is needed that the greatest coefficient

can be represented in the specified number of bits. So, if the coefficient set hc has a

gain of 1, then the maximum gain whose greatest coefficient can take a value up to

2EWL−1 is given by Gu, where Gu is defined as

Gu =
2EWL − 1

‖hc‖∞
(4.11)

43

Table 4.1: Range of Filter

Lower Limit (ril) Optimized Coefficient (hc) Upper Limit (riu)

0.3138 0.3300 0.3457
0.1964 0.2012 0.2051
0.0279 0.0430 0.0581
-0.0556 -0.0439 -0.0342
-0.0487 -0.0427 -0.0369
-0.0174 -0.0070 0.0026
0.0059 0.0124 0.0195
0.0020 0.0091 0.0147

Gl =
Gu

2
(4.12)

The gain range, [Gl, Gu], is divided into S equally spaced sections. For each section

the lower range is denoted as gs,l and the upper range is denoted as gs,u. The number

S is taken according to the hardware capability and the time constraint of the design

procedure. Thus, a trade-off is met between design time and design accuracy.

3. The optimization problem is solved by generating a population as explained in section

4.2.2 in the gain range and running a local search using the Differential Evolution al-

gorithm described in Chapter 3. The variant of the DE used is DE/rand/1/bin along

with adaptive control parameters. The algorithm also utilizes adaptive search space

reduction (section 4.2.5) and the selection operator given in section 4.2.4. Techniques

used for shortening the run time are also used (section 4.2.6). The synthesis of the

SAN is carried out by modifying the RAG-n algorithm (section 4.2.3).

Table 4.1 shows an example of the range of the filter (G1 of Table 5.1). The first column

shows the lower limit of each unique coefficient for unity gain while the third column shows

the upper limit. In the second column, the optimal infinite precision filter coefficients are

given. It is seen that the third last coefficient among them has the zero crossing in its

range. Thus, this coefficient is a possible candidate for the fixing to zero. In fact, for

44

EWL = 7 design shown in Chapter 5 this coefficient has been fixed to zero. However,

for EWL = 6, fixing this coefficient to zero renders the filter search space not to give out

feasible solutions.

4.2 Algorithms Used In DEFDO

In this section, the DEFDO algorithm and adjustments in the Differential Evolution al-

gorithm tailored for the filter design problem are discussed. Firstly, the linear programs

used in section 4.1 are explained in detail. Next, the population generation mechanism for

the DE algorithm is explained. After that the modified version of the RAG-n algorithm

which gives the hardware cost is explained. Subsequently, the selection operator of the DE

algorithm is explained. Lastly, enhancements for the DE algorithm are discussed which

include adaptive sub space reduction. Next, methods to cut short the computation time

are discussed. Lastly, the modified RAG-n algorithm for the synthesis of filters is given.

4.2.1 Linear Programs Used in Filter Design

The linear programs of Eqs. 4.9 and 4.10 are solved on a dense grid on frequencies in [0, π].

Let the frequency grid be represented as Ω = [ω1, ω2, ...ωn] and the filter coefficients as

hf = [h0, h1, · · ·hN−1] for an N tap filter. Also let M = bN−1
2
c. The inequality

W (ω)|Ha(ω)−D(ω)| ≤ δ

can be written as

Ha(ω)− δ

W (ω)
≤ D(ω)

−Ha(ω)− δ

W (ω)
≤ −D(ω)

45

where W (ω) and D(ω) are defined in Eqs. 4.4, 4.5 respectively. Since the linear program

is evaluated on Ω, the above inequalities are written as

h−wδ ≤ d

−h−wδ ≤ −d

where

h = [H(ω1), H(ω2), · · ·H(ωn)]T

w = [1/W (ω1), 1/W (ω2), · · · 1/W (ωn)]T

d = [D(ω1), D(ω2), · · ·D(ωn)]T

The vector h can be written as

h = Cg

where C is defined for Type I filter as

C =

1 2cos(ω1) · · · 2cos(Mω1)

1 2cos(ω2) · · · 2cos(Mω1)
...

...
...

...

1 2cos(ωn) · · · 2cos(Mωn)

g = [hM , hM−1, · · ·h0]T

For the linear program of Eq. 4.9, the linear program setup as defined in Table 3.1 is given

46

in Eq. 4.13.

x = g

f = [0, 0, · · · ± 1, · · · 0]TM+1×1

Aieq =

[
C

−C

]
(4.13)

bieq =

[
d + w

−d + w

]

No equality constraints and bounds on the values of x are needed and the value of f

corresponding to the the kth coefficient is made 1 for finding the lower limit and -1 for the

upper limit. For the linear program of Eq. 4.10, the setup is given in Eq. 4.14. For setting

the Z constraint, the column in matrix C corresponding to that index is made zero. Also,

no equality constraints and bounds on variables are needed.

x = [gT , δ]T

f = [0, 0, · · · 0, 1]TM+2×1

Aieq =

[
C −w

−C −w

]
(4.14)

bieq =

[
d

−d

]

4.2.2 Population Generation for Differential Evolution

For the Differential Evolution Algorithm, a bit string population is generated and for each

unfixed coefficient the number of bits allocation is done according to its range (found

using Eq. 4.9) scaled by the gain called quantized range. The unfixed coefficients are

the coefficients that have not already been fixed to a value of zero using the sparse filter

technique. For finding the quantized range, the lower range limit is multiplied by the lower

gain limit and rounded to nearest integer to obtain the lower limit of the quantized range.

47

The upper limit is found in a similar fashion (Eqs. 4.15).

qil,s = dgs,l × rile (4.15)

qiu,s = bgs,u × riuc

and the values are stored in vector ql,s = [q0
l , q

1
l · · · qMl] and qu,s = [q0

u, q
1
u · · · qMu]. The

maximum number of bits to represent each coefficient is given by Eq. 4.16.

bi = log2dqiu − qil + 1e (4.16)

The bit information is saved in the vector b = [b0, b1 · · · bM]. The population is generated

uniformly in the quantized coefficient range and the lower end of the range is encoded by

string of zeros and the upper end is encoded accordingly. Thus, the actual number are

not encoded but instead the position of numbers in the range are encoded in gray codes.

The use of gray codes is done to minimize the offset created by the mutation operation

for which a large jump might cause the filter to become infeasible and selection of such

population member will not occur. For example, in the range [50, 53], the coefficient 50

will be given the code “00”, 51 be given “01” and so on. This way, the number of bits

needed to represent the entire population is substantially reduced. Figure 4.1 shows the

pseudo code for generating population for small filters. Also, Figure 4.2 shows the pseudo

code for converting the population into decoded bits using differential encoding.

Table 4.2 shows the quantized range of the filter G1 as an example. This range has

been calculated from the entries in Table 4.1 where ‖hc‖∞ = 0.3300 and Gu = 190.8979

and Gl = 95.4489. The range is divided into 10 sections and the section shown is the eight

section.

For large filters, a polynomial time algorithm similar to that given in [34, 36] is run to

get initial discrete solutions for each gain section. However, the algorithm is modified to

keep running the loop for each gain section even if the filter constraints fail to meet. The

algorithm is repeated here.

1. For each passband gain, set i = 0.

48

Table 4.2: Quantized Range of Filter

Lower Limit qil,s Optimized
Coefficient

Upper Limit qiu,s Bit Allocation (bi)

50 56 60 4
31 34 36 3
4 7 10 3

-10 -7 -5 3
-8 -7 -6 2
-3 -1 1 3
0 2 4 3
0 1 3 3

2. If i /∈ Z, find the range of the coefficient using Eq. 4.9 where

Ha(ω) =
i−1∑

n=0,n/∈Z

hf (n)Trig(ω, n) +

bN−1
2
c∑

n=i,n/∈Z

h(n)Trig(ω, n)

where hf (n) are the fixed coefficients.

3. Find the midpoint of the range and set hf (i) to the integer closest to the midpoint.

4. i = i+ 1 until all coefficients have been fixed ([hf (0), hf (1), · · ·hf (M)]T = hbase).

For each gain section, the discrete solution that are within 15% away from meeting the

specifications are saved: pseudo-viable (hbase) solutions. Half the population is generated

by perturbing a percentage of the base solution (Probpert) and the other half is generated

uniformly in the quantized range. For high word lengths the search space is capped and

the highest range coefficient is given the maximum number of bits and others are given

according to their range extent and a neighborhood is created around the base solution.

The decision of the maximum number of bits is a trade off between design time and design

quality. Figure 4.3 shows the pseudo code for generating the population for large filters.

Figure 4.4 shows the encoding scheme for the neighborhood of the base solution.

49

Figure 4.1: Pseudo Code for Population Generation(Small)

process popgensmall
if filtord < 60
1 find quant. range
2 find bits for each coeff
3 for i = 1 : P
4 for j = 1 : D
5 mi

j = qil + rand(0, 1) ∗ [qiu − qil]
6 end for
7 end for
decode to bits
end process

Figure 4.2: Pseudo Code for Decoding to Bits

process decode to bits
1 for i = 1 : P
2 for j = 1 : D
3 geneij = dec2bin(mi

j − qil)
4 if length(geneij) = bi : goto step 6
5 else prefix zeros to make equal length
6 chromosomei = horzconcat(chromosomei, geneij)
7 end for
8 pop = vertconcat(pop, chromosomei)
9 end for
end process

50

Figure 4.3: Pseudo Code for Population Generation(Large)

process popgenlarge
if filtord ≥ 60
1 decide bits for each coeff.
2 find quant. range
3 for i = 1 : P/2
4 for j = 1 : D
5 mi

j = qil + rand(0, 1) ∗ [qiu − qil]
6 end for
7 end for
8 for i = P/2 : P
9 for j = 1 : D
10 if rand(0, 1) < Probpert
11 mi

j = qil + rand(0, 1) ∗ [qiu − qil]
12 else mi

j = hbase,j
13 end for
14 end for
decode to bits
end process

Figure 4.4: Gray Encoding for Base Solution Neighborhood

51

Figure 4.5: Pseudo Code for Synthesis Using RAG-n

process RAG-n synthesis
input: coefficient set
1 generate fundamentals (F) from coefficient set
2 incomplete (I)=F, graphset(G) ={1}
3 generate all cost one numbers upto 2EWL

4 among incomplete find all costone (C1) numbers
5 G = G ∪C1, adder=size{C1}
6 I=I - C1
7 do find num ∈ I, num = a× 2i ± b

where a, b ∈ G, i = 0, 1 · · ·EWL
8 if a match is found:G = G ∪ num
9 I=I -num, adder=adder+1
10 while (I = φ or all combinations exhausted)
output: adder, F, G, I
end process

4.2.3 Modified RAG-n Algorithm

It was observed in literature that the minimal adder filter coefficients always had adders

equal to the number of fundamentals and thus required only one adders. The RAG-n

algorithm [18] uses the MAG [19] algorithm for generating the lookup table which is valid

up to a word length of 10 bits. We modify the RAG-n algorithm to not use the lookup

table, but instead generate cost one adders up to the required number of bits and utilize

those coefficients further synthesize the rest of the fundamentals. Figure 4.5 shows the

pseudo code for the modified RAG-n algorithm used in the thesis to synthesize the shift

and add network. If, however, the deterministic part of the RAG-n cannot synthesize all

the fundamentals, the algorithm is terminated and the number of adders is estimated using

Eq. 4.17. This estimate is all that is needed in directing the search process.

nadd = ‖F‖0 + ‖I‖0 (4.17)

52

where F and I are vectors containing the fundamentals and incomplete (un-synthesized)

fundamentals.

4.2.4 Selection Operator for Differential Evolution

In section 4.1.1, the objective is defined as the hardware cost to implement the filter. An

effective measure of hardware cost is the number of adders needed to represent the shift

and add network. The reason for this choice is that for a fixed word length and filter order,

the number of structural adders is fixed and the width of each adder is also fixed. Thus

after empirically determining the filter order and the word length for the design, the search

is for the coefficients that have the least adder count. Eq. 4.18 gives the calculation of

the objective function for driving the search for minimal adders as well as finding solutions

that satisfy the error constraints.

f(x) =

{
∆(α− β

nadd
) if ∆ > δp

δp(α− β
nadd

) ∆ ≤ δp
(4.18)

where δp is the error required by the filter specification fspec, and nadd is the number

of adders needed to synthesize the filter coefficients obtained using the RAG-n algorithm

described in section 4.2.3, and α, β are constants. The value of ∆ is calculated according

to Eq. 4.3 and the constants α, β are chosen to drive the filter search process. For large

filters, α = β = 1, but for small filters, different variations are tried.

To reduce the time for the objective function calculation, synthesis is not carried out at

every iteration for every member. Fig. 4.6 shows the flowchart for calculating the objective

function value. If the minimax error does not meet the specification, then the actual error

∆ is used and the number of fundamentals is used in equation (4.18) as nadd. If, however,

the minimax error meets the specification, then further reduction in minimax error is not

needed. Thus, the filter is synthesized using the modified RAG-n algorithm and its number

of adders is recorded. Also, at every iteration if the number of adders is found to be better

than the current best, then only is it synthesized. If not, then the number of fundamentals

is used as a count of the number of adders to drive the search process. The reason for

53

Figure 4.6: Selection Operation Flowchart

using the count of the number of fundamentals as an indicative of the number of adders

is because of the result given in [18] which states that the number of adders needed to

implement n fundamentals can not be less than n.

4.2.5 Adaptive Search Space Reduction

It was observed that the values of some small filter coefficients converged to the same value

in early generations for all the population members. Thus, the need to further optimized

those coefficients was eliminated. Thus an adaptive search space reduction technique is

implemented. The technique proceeds as follows. While running the algorithm, at every

54

Figure 4.7: Pseudo Code for Extremal Points Using Newton’s Root Finding Algorithm

process Ex points
input: coefficient vector h

1 Find dH(ω)
dω

at a grid of 3N points(Ω)

2 Find points where dH(ω)
dω

changes sign: SCP
3 Compute midvalue of each SCP; save in p
4 for i = 1 : size(p)
5 xout(i)=newton(p(i))
6 end for
output: xout(i)
end process

50th generation, the population is checked after decoding for each coefficient. If, for a

certain coefficient, the members of the entire population have converged to a single value

then that coefficient is not further optimized. The population is made to exclude the bits

corresponding to that coefficient. However, in the objective function, the fixed value of

that coefficient is considered. This way, the search space is reduced accelerating the search

process.

4.2.6 Computation Cost Reduction

To reduce the computation cost, two methods are employed. Firstly, for the linear pro-

gramming algorithms, taking a dense grid of frequencies amounts to large number of in-

equalities. The problem is aggravated for large filters. In [35], Samulei et al have found the

zero crossing points of the stopband. In a similar fashion, the extremal points of ripples of

the amplitude response can be found. The extremal points are usually of the order of half

the filter length and if the filter meets the specification at the extremal points, it is bound

to meet the specification elsewhere. Thus, the grid of frequencies for the linear program

consists of the extremal points and the band edges which significantly reduces the number

of inequalities.

For finding the extremal points of a Type I FIR filter with unique coefficients given by

55

Figure 4.8: Pseudo Code for Newton’s Root Finding Algorithm

process newton
input: x0

1 Compute f0 = dH(ω)
dω
|xin

2 Compute df0 = d2H(ω)
dω2 |xin

3 set i = 0, set tolerance=tol

4 do xi+1 = xi − fi
dfi

5 Compute fi+1 = dH(ω)
dω
|xi+1

6 Compute dfi+1 = d2H(ω)
d2ω
|xi+1

7 er = |xi+1 − xi|
8 i = i+ 1
9 while(er > tol)
output: xi
end process

vector x = [hM , hM−1 · · ·h0]T , the zero crossings of the derivative of the amplitude response

are found. The amplitude response H(ω) is given by:

H(ω) = [1, 2cos(ω1) · · · 2cos(Mω1)]x

Differentiating twice,

dH(ω)

dω
= [0,−2sin(ω),−2× 2sin(2ω) · · · − 2×Msin(Mω)]x

d2H(ω)

dω2
= [0,−2cos(ω),−2× 22cos(2ω) · · · − 2×M2cos(Mω)]x

To find the extremal point (minima or maxima), the derivative of the frequency response

is analyzed by Eq. 4.19.

sign(
dH(ω)

dω
|ω∈Ω) = [p1, p2 · · · pn] (4.19)

where Ω is a grid of frequencies evenly spaced containing n points (n = 3 times the fil-

ter order) and sign is the signum function. The two points where the above equation

56

changes sign are the points in between which the extremal point of the amplitude response

lies. Thus, this midpoint value is given as an initial starting point for the Newtons root

finding algorithm. Also, Newtons root finding algorithm is supplied with the function

f = (dH(ω))/dw and the derivative df = d2H(ω)/dω2. The above equations can similarly

be modified for Type II, III and IV FIR filters. Figure 4.7 and figure 4.8 show the pseudo

codes for finding the extremal points of the frequency response of an FIR filter using the

Newton’s root finding algorithm.

Secondly, for reducing the computation cost in calculating the minimax error for the

Differential Evolution algorithm, the amplitude response of the filter corresponding extreme

minima of the coefficient’s quantized range is calculated and stored as reference.

Hpre = vTc q
i
l,s (4.20)

Since, the amplitude response is a linear function, the amplitude response of difference

of the obtained filter coefficients from the reference is calculated and added to the stored

value. This minimizes the computation cost by 5 times

Summary

This chapter introduced the DEFDO algorithm for the design of finite word length FIR

filter with the aim of reducing the hardware cost of implementation. The objective of the

problem was defined mathematically as a joint optimization of minimax error and adder

cost. The supplemental techniques for adapting the optimization routines for the filter

design problem such as the modified RAG-n algorithm, the difference based population

generation mechanism, the selection operator for cutting short the objective function cal-

culation time, the adaptive search space reduction and the extremal point utilization for

linear programs were also given.

57

Figure 4.9: Pseudo Code for Differential Evolution with Adaptive Search Space Reduction
and Pre-Calculated Objective Function

process DE
1 generate population
2 calc. Hpre, set g=1
3 do
4 mutation
5 decode bits to coeff.
6 crossover
7 selection
8 if g%50=0 check for convergence
9 if converged coeff found: Hpre = Hpre + vTc hc
10 remove bits of hc in pop.
11 end if end if
12 g=g+1
13 while (g < gmax)
end process

58

Chapter 5

Design Examples and Results

This chapter will show the effectiveness of the proposed Differential Evolution Filter De-

sign Algorithm for the design of finite word length linear phase FIR filters with minimal

hardware cost. Firstly, the convergence properties of the algorithm will be analyzed. Next,

the design results for prototype filters will be given. The design is carried out for the

joint optimization of minimax error and adder cost. Subsequently, the hardware synthesis

examples will be given to show the reduction in hardware. Lastly, the obtained results are

compared with the state of the art methods and an analysis of the algorithm complexity

is given.

5.1 Comparison of Variations of Differential Evolu-

tion Algorithms

Figure 5.1 and figure 5.2 show the convergence curves of different values of the mutation

factor F and crossover rate CR . On the x-axis is the generation number and on the y-axis

is the objective function value of the best trial vector in that generation. To differentiate

the curves, a median filter of window size 10 has been applied. The generation’s best trial

vector is an important characteristic of the Differential Evolution algorithm as it shows its

59

Figure 5.1: Convergence Curve for Different Value of F

Figure 5.2: Convergence Curve for Different Value of CR

60

Figure 5.3: Convergence Curve for Adaptive and Fixed Control Parameters Before

Figure 5.4: Convergence Curve for Adaptive and Fixed Control Parameters After

61

Figure 5.5: Convergence Curve for Different Variation of Mutation Operator

ability to search and come up with better trial vectors.

It can be seen in the figure 5.1 that the value of F = 0.75 shows better convergence

properties than other values. The convergence for F = 0.65 is much faster initially but

the terminal value is slightly higher than that of F = 0.75. In the figure 5.2 the value of

CR = 0.1 shows better convergence properties than other values. Even though CR = 0.05

has the better convergence initially, it is seen that the final convergence value is higher for

this case.

Figure 5.3 shows the convergence curve when fixed parameters of F = 0.85 and

CR = 0.2 are used as compared to when adaptive parameters are used. The adaptive

parameters have been defined in section 3.4.2. The values of CR and F have been taken

from the recommended values in literature. It can be seen that a marked difference exists

in the convergence properties of the fixed and adaptive control parameters. The adaptive

control parameters show faster convergence and also converge to a better value than fixed

parameters. Figure 5.4 shows the comparison again after obtaining the optimal values

of CR and F by going through many iterations. It can be seen that adaptive control

parameters still out perform fixed parameters slightly.

62

Figure 5.5 shows the convergence curve for the variation of the mutation parameter.

The two variations plotted as DE/rand/1 and DE/best/1. It is seen from the figure that

the DE/best/1 has a very fast convergence rate. However, it is very likely to converge

prematurely. The DE/rand/1 version has a slower convergence rate but it converges to a

better value. The reason for its better convergence is the presence of randomness in the

base vector which causes many different trials vectors to be generated.

5.2 Joint Optimization of Minimax Error and Hard-

ware Complexity

In this section, the results for the joint optimization of minimax error and adder cost for

filter implementation will be given. Firstly, the empirical determination of the filter order

and word length will be discussed. Once, the filter order and word length is fixed, an

optimization routine can be performed aimed at minimizing the adder cost while keeping

an upper tab on the maximum allowable ripple error as defined in section 4.1 of Chapter

4.

5.2.1 Empirical Determination of Filter Order and Wordlength

The filter design problem is given in Chapter 1, section 1.2 with a fspec as shown in figure

1.1. For a infinite precision design, the filter order can be estimated using many techniques

(e.g. firmpmord function of MATLAB). However, for a discrete design, the filter order

estimation is a difficult task. In addition, the word length for the design also needs to be

determined. In Table 5.1, the specifications of 10 filters found in literature are given. In

an attempt to find the order for designing the discrete filter, Table 5.2 list the orders for

various configurations. In column 2 of Table 5.2, the order given by the MATLAB function

firmpmord.m is given for the filters whose specifications are given in Table 5.1. In column

3, the actual order required to obtain a feasible infinite precision design is given. Thus,

in most cases the firmpmord.m function underestimates the filter order. In column 4 and

63

5, the filter orders required to satisfy a more stringent error constraint are given. Thus

0.9× δ implies that the stringent error constraint is 0.9 multiplied by the initial maximum

allowable error in the stop and passbands. In column 6, the actual filter order used in our

design and also in the most state of the art examples found in literature is listed. Finally,

in column 7, the effective word length of the filter coefficients corresponding to the order

in column 6 is listed.

Figure 5.6 gives a bar graph of the orders listed in Table 5.2 normalized by the minimum

EWL filter order. It can be seen from the figure that the filter order with the least possible

effective word length lies very close to the order of 0.8 × δ. The reason for this behavior

is that some relaxation must be given in moving from infinite precision to finite precision.

Also, the presence of sparsity further exacerbates the problem.

Figure 5.7, 5.8, 5.9 shows the results initially published in [36]. It is seen that an

inverse relation exists between filter order (or filter length as shown in the figure) and the

effective word length used for implementing the filter for a certain part of the curve. It

is seen that increasing the word length decreases the filter order needed to implement.

However, below a certain filter order, increasing the word length produces no feasible

results. Similarly, by increasing the filter length, the minimum word length needed for a

feasible result decreases. However, after a certain limit, no reduction in word length is

achievable upon further increase of filter length. Simulations results of the ASIC design

given in [36] show that the hardware complexity and power consumption are least for the

minimum word length design. To corroborate the findings, the analysis that an larger word

length amounts to a larger width of the adders and registers. Also, for the transposed form

of the filter, the latency is not dependent on the filter order but instead on the maximum

adder depth of the shift and add network. Thus, designs with the minimum word length

are the most preferred designs. The conclusion from the above discussion is that there is

no closed form formula to determine what is the minimum word length of implementation.

However, a good starting point is to design the filter with an order that satisfies the error

constraints between 0.8 × δ and 0.9 × δ. An EWL=8 is taken as an initial guess and if

the design process exhibits very far off error values, the filter order is incremented by 2-10

depending on the initial starting order. If, however, increasing the filter order has no effect

64

Table 5.1: Filter Specifications

Filter ωp ωs δp δs

G1 0.2π 0.5π 0.01 0.01
Y1 0.3π 0.5π 0.00316 0.00316
Y2 0.3π 0.5π 0.001 0.001
Y3 0.4π 0.51π 0.01 0.001

A 0.125π 0.225π 0.01 0.01
S2 0.042π 0.14π 0.012 0.001
L2 0.2π 0.28π 0.028 0.001

B 0.2π 0.24π 0.01 0.01
L1 0.8π 0.74π 0.0057 0.0001
C 0.125π 0.14π 0.005 0.005

than the EWL is increased by one and the process is repeated.

5.2.2 Design Examples

Design of Prototype Filters

In this section the effectiveness of the algorithm has been shown by designing benchmark

filters available in literature. All the algorithms have been designed in MATLAB . The

linear programs are solved using open source code available at [27]. Six filters (G1, Y1,

A, B, L1, C) from Table 5.1 have been designed to show the working of the algorithm.

The filters have been chosen in such a way that they cover all filter length ranges. The

programs are run on a laptop using an i5 2nd generation processor with 4 GB RAM on a

Windows 10 platform. The designs have been performed for adder minimization and no

constraint on adder depth has been considered.

Table 5.3 and Table 5.4 show the design results for filter G1. Two designs have been

done, one with EWL = 6 and another with EWL = 7. Design with EWL = 6 has a

total of 17 adders (2 MBAs and 15 SAs) while the design with EWL = 7 has a total of

15 adders (2 MBAs and 13 SAs). The total number of adders can be calculated using Eq.

65

Table 5.2: Emperical Determination of Filter Order and Wordlength

Filter MATLAB
firpm Est.

Order
Req.(δ)

0.9× δ
Order
Req.

0.8× δ
Order
Req.

Min.
EWL
Order

Min.
EWL

G1 12 14 14 14 15 6
Y1 25 27 27 28 29 9
Y2 32 33 33 36 37 10
Y3 46 48 49 49 49 11
A 51 55 56 57 58 10
S2 51 57 59 61 59 10
L2 55 60 61 62 62 10
B 97 99 102 104 104 8
L1 112 116 118 120 120 14
C 311 311 321 331 324 10

Figure 5.6: Bar Graph Showing Filter Orders

66

Figure 5.7: EWL vs. Filter Length for A

Figure 5.8: EWL vs. Filter Length for B

67

Figure 5.9: EWL vs. Filter Length for C

5.1.

CA = (N − 1) +NMBA − 2Nzero (5.1)

where NMBA is the number of MBAs, Nzero is the number of zero valued coefficients among

the unique coefficients.

The reason for the two designs is that both the designs have comparable hardware

complexity owing to the small number of filter coefficients. In the previous section (5.2.1)

it was mentioned that a minimum EWL is almost always preferred because increasing the

word length increases adder width and also the register lengths. However, in this case the

higher EWL design has fewer total adders and since there are very few coefficients the two

designs have comparable hardware complexity. To differentiate which design is better, an

actual ASIC synthesis must be done.

In row 1 of Table 5.3 and 5.4, the passband gain of the filter is given. The passband

gain has been calculated according to Eq. 4.6 and no downscaling of the coefficients has

been done for the calculation. Row 1 also gives the EWL, maximum adder depth (MAD),

the passband ripple error and the stopband ripple error of the design. Row 2 gives the

unique filter coefficients and the basis set for constructing the filter coefficients. Finally,

68

Figure 5.10: Amplitude Response of Filter G1 (EWL=6)

row 3 gives the synthesis of the basis set. Also, all the tables showing design results follow

the same pattern.

Table 5.5 and Table 5.6 show the design results for filter Y1. Two designs have been

done, one with EWL = 9 and another with EWL = 10. Similar to filter G1, the reason

for the two designs is that both the designs have comparable hardware complexity owing

to the small number of filter coefficients. Also, to differentiate which design is better, an

actual ASIC synthesis must be done. Filter with EWL = 9 has 7 MBAs and 23 SAs while

Table 5.3: Result For Filter G1

Passband Gain=169.062841
EWL=6 MAD=1 δp = 0.00876 δs = 0.00876
h(n) = h(15− n) for 0 ≤ n ≤ 7
1, 2,−1,−7,−7, 7, 34, 56

Basis Set= {7, 17}
7 = 1× 23 − 1 17 = 1× 24 + 1

69

Table 5.4: Result For Filter G1

Passband Gain=376.99733713731
EWL=7 MAD=2 δp = 0.00998 δs = 0.00998
h(n) = h(15− n) for 0 ≤ n ≤ 7
3, 6, 0,−16,−19, 12, 76, 128
Basis Set= {3, 19}

3 = 1× 21 + 1 19 = 1× 24 + 3

Figure 5.11: Amplitude Response of Filter G1 (EWL=7)

70

Figure 5.12: Amplitude Response of Filter Y1 (EWL=9)

the design with EWL = 10 has an equal number of SAs but has one less MBA. Table 5.7,

5.8, 5.9 and 5.10 show the design results for filter A, B, L1 and C respectively.

Table 5.5: Result For Filter Y1

Passband Gain=1372.11660988306
EWL=9 MAD=3 δp = 0.0030002 δs = 0.0030002
h(n) = h(29− n) for 0 ≤ n ≤ 14
−1,−4, 0, 9, 8,−11,−24, 0, 43, 35,−48,−106, 0, 271, 512
Basis Set= {3, 9, 11, 35, 43, 53, 271}

3 = 1× 21 + 1 9 = 1× 23 + 1 11 = 1× 23 + 3
35 = 1× 25 + 3 43 = 1× 25 + 11 53 = 1× 26 − 11

271 = 35× 23 − 9

71

Table 5.6: Result For Filter Y1

Passband Gain=1400.6574034897
EWL=10 MAD=3 δp = 0.003029 δs = 0.003029
h(n) = h(29− n) for 0 ≤ n ≤ 14
−1,−4, 0, 9, 8,−11,−24, 0, 44, 36,−48,−108, 0, 277, 523
Basis Set= {3, 9, 11, 27, 523, 277}

3 = 1× 21 + 1 9 = 1× 23 + 1 11 = 1× 23 + 3
27 = 1× 24 + 11 523 = 1× 29 + 11 277 = 1× 25 − 11

Figure 5.13: Amplitude Response of Filter Y1 (EWL=10)

72

Figure 5.14: Amplitude Response of Filter A

Table 5.7: Result For Filter A

Passband Gain=5930.41818372911
EWL=10 MAD=3 δp = 0.009851 δs = 0.00009218
h(n) = h(58− n) for n ≤ n ≤ 29
3, 5, 7, 6, 3,−4,−14,−24,−31,−31,−20, 0, 28, 55, 73, 73, 49, 0,−65,−130,−176,−179
−124,−4, 175, 392, 616, 812, 945, 992
Basis Set= {3, 5, 7, 31, 65, 11, 73, 77, 55, 179, 49, 203, 175, 945}

3 = 1× 21 + 1 5 = 1× 22 + 1 7 = 1× 23 − 1
31 = 1× 25 − 1 65 = 1× 26 + 1 11 = 1× 23 + 3
73 = 1× 23 + 65 77 = 1× 22 + 73 55 = 1× 26 − 73
179 = 1× 28 − 77 49 = 3× 24 + 1 203 = 3× 26 + 11
175 = 7× 25 − 49 945 = 7× 27 + 49

73

Figure 5.15: Amplitude Response of Filter B

Table 5.8: Result For Filter B

Passband Gain=1042.956759041683
EWL=8 MAD=4 δp = 0.00999 δs = 0.00989
h(n) = h(104− n) for 0 ≤ n ≤ 52
−2, 0, 0, 2, 3, 2, 1, 0,−2,−3,−2, 0, 2, 4, 4, 2,−1,−4,−6,−4, 0, 3, 7, 7, 4
−2,−7,−10,−8,−2, 6, 12, 13, 8,−2,−12,−19,−16,−5, 10, 23, 27, 19,−2,−28,−46
−46,−20, 30, 97, 163, 211, 230

Basis Set= {3, 5, 7, 15, 13, 23, 27, 97, 19, 115, 211, 163}
3 = 1× 21 + 1 5 = 1× 22 + 1 7 = 1× 23 − 1
9 = 1× 23 + 1 15 = 1× 24 − 1 13 = 3× 22 + 1
23 = 3× 23 − 1 27 = 3× 23 + 3 97 = 3× 25 + 1

115 = 3× 25 + 19 211 = 3× 26 + 19 163 = 3× 24 + 115

74

Figure 5.16: Amplitude Response of Filter L1

Figure 5.17: Amplitude Response of Filter C

75

Table 5.9: Result For Filter L1

Passband Gain=51380.59748058755
EWL=10 MAD=6 δp = 0.005368 δs = 0.00009417598
h(n) = h(120− n) for 0 ≤ n ≤ 60
3,−8, 14,−18, 16,−7,−9, 26,−36, 31,−9,−24, 54,−65, 47, 0,−58, 101,−104, 58, 24
−106, 147,−117, 20, 107,−203, 212,−115,−58, 230,−313, 249,−46,−214, 406,−421, 221
126,−466, 622,−484, 72, 449,−829, 846,−423,−307, 1028,−1363, 1049,−89,−1189, 2210
−2350, 1187, 1297,−4650, 8056,−10589, 11525

Basis Set= {3, 5, 7, 9, 31, 63, 65, 257, 13, 29, 27, 23, 121, 249, 47, 449, 115, 101, 233
313, 117, 147, 53, 203, 89, 423, 221, 307, 311, 107, 421, 1189, 1175, 1187, 1105, 1297, 1007, 829
1049, 2325, 10589, 1363, 11525}

3 = 121 + 1 5 = 122 + 1 7 = 123− 1
9 = 123 + 1 31 = 125− 1 63 = 126− 1
65 = 126 + 1 257 = 128 + 1 13 = 124− 3
29 = 125− 3 27 = 125− 5 23 = 124 + 7
121 = 127− 7 249 = 128− 7 47 = 124 + 31
449 = 129− 63 115 = 127− 13 101 = 127− 27
233 = 128− 23 313 = 126 + 249 117 = 121 + 115
147 = 125 + 115 53 = 324 + 5 203 = 128− 53

89 = 325− 7 423 = 129− 89 221 = 326 + 29
307 = 326 + 115 311 = 122 + 307 107 = 321 + 101
421 = 526 + 101 1189 = 328 + 421 1175 = 927 + 23

1187 = 322 + 1175 1105 = 927− 47 1297 = 326 + 1105
1007 = 928− 1297 829 = 6325− 1187 1049 = 6524 + 9

2325 = 25722 + 1297 10589 = 2322 + 1187 1363 = 4722 + 1175
11525 = 11723 + 10589

76

Table 5.10: Result For Filter C

Passband Gain=5057.21580045042
EWL=10 MAD=3 δp = 0.00498 δs = 0.00498
h(n) = h(324− n) for 0 ≤ n ≤ 162
−4,−3, 0, 0, 1, 2, 3, 0, 3, 3, 0, 0, 0, 0,−3,−3,−3, 0, 0, 0, 2, 3, 4, 3, 2, 3, 0, 0,−3,−4,−4,−3
−30, 0, 3, 4, 5, 5, 4, 3, 0, 0,−4,−5,−6,−5,−4,−2, 0, 3, 5, 7, 7, 6, 4, 0,−2,−5,−7,−8,−8
−6,−3, 0, 4, 7, 9, 10, 8, 6, 2,−3,−7,−10,−12,−11,−9,−5, 0, 5, 10, 13, 14, 13, 9, 3,−3,−9
−14,−16,−16,−13,−8, 0, 7, 14, 18, 20, 18, 13, 5,−3,−12,−19,−23,−23,−20,−12,−2
8, 19, 26, 28, 27, 19, 9,−3,−17,−27,−34,−35,−29,−19,−4, 12, 27, 39, 44, 43, 32, 16,−4
−26,−43,−55,−59,−51,−35,−10, 19, 47, 71, 83, 82, 67, 36,−4,−50,−94,−128,−144,
−137,−100,−38, 52, 160, 280, 400, 509, 596, 651, 670

Basis Set= {3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 35, 39, 41, 43, 47, 51, 55, 59, 67, 71, 83, 137
149, 335, 509, 651}

3 = 1× 21 + 1 5 = 1× 22 + 1 7 = 1× 23 − 1
13 = 3× 22 + 1 9 = 1× 23 + 1 17 = 1× 24 + 1
23 = 3× 23 − 1 11 = 3× 22 − 1 25 = 3× 23 + 1
51 = 3× 24 + 3 27 = 3× 23 + 3 47 = 3× 24 − 1
43 = 3× 24 − 5 29 = 17× 21 + 115 19 = 3× 23 − 5
39 = 3× 24 − 9 55 = 3× 24 + 7 41 = 3× 24 − 7
59 = 3× 24 + 11 35 = 3× 24 − 13 83 = 59× 25 − 13
149 = 3× 26 − 43 71 = 3× 25 − 25 67 = 3× 25 − 25
335 = 9× 25 + 47 137 = 3× 26 − 55 651 = 5× 27 + 11
509 = 9× 26 − 67

77

Table 5.11: Band Pass and Band Stop Specifications

Filter Ωp Ωs δp δs

Band Pass [0.24π, 0.5π] [0, 0.2π] ∪
[0.55π, π]

0.01 0.005, 0.005

Band Stop [0, 0.06π] ∪
[0.25π, π]

[0.1π, 0.2π] 0.01,0.01 0.01

Self Design Examples

In this subsection, two design examples are given to show the robustness of the algorithm.

One example is a bandpass filter and the other is a bandstop filter. The specifications are

given in Table 5.11 for the filters.

For the bandpass filter, the number of filter coefficients is 113 and the EWL=9. These

order and word length were decided after going through many iterations of designs. It

was observed no feasible solution existed for EWL=8. For EWL=10, filter lengths of 112

gave feasible solutions. However, since minimum EWL design is preferred, the filter was

implemented with EWL=9 and filter length of 113. The number of MBAs= 16 and the

number of SAs=104 as there are 4 zero valued coefficients. Thus, the total number of

adders are 120.

For the bandstop filter, the number of filter coefficients is chosen to be 105 and the

EWL=10. The number of MBAs=13 and the number of SAs=98 as 3 coefficients among

the unique coefficients are zero valued. Thus, the total number of adders for the bandstop

filter is 111.

78

Table 5.12: Result For Band Pass Filter

Passband Gain= 1617.61973197782
EWL=9 MAD=2 δp = 0.00100 δs = 0.0050
h(n) = h(112− n) for 0 ≤ n ≤ 56
−3,−2, 1, 2, 2, 3, 2,−3,−5,−2, 0,−2, 1, 8, 6,−3,−4,−1,−6,−10, 1, 13, 7, 0
6, 3,−16,−20, 0, 10, 0, 8, 27, 11,−24,−22,−1,−13,−21, 22, 55, 17,−20, 2,−3
−70,−66, 42, 80, 10, 32, 126,−3,−315,−296, 183, 495

Basis Set= {1, 3, 5, 7, 17, 33, 63, 11, 13, 35, 21, 37, 27, 55, 183, 315, 495}
3 = 1× 21 + 1 5 = 1× 22 + 1 7 = 1× 23 − 1
17 = 1× 24 + 1 33 = 1× 25 + 1 63 = 1× 26 − 1
11 = 1× 23 + 3 13 = 1× 24 − 3 35 = 1× 25 + 3
21 = 1× 24 + 5 37 = 1× 25 + 5 27 = 1× 25 − 5
55 = 3× 24 + 7 183 = 1× 27 + 55 315 = 5× 26 − 5

495 = 33× 24 − 33

Figure 5.18: Amplitude Response of Band Pass Filter

79

Table 5.13: Result For Band Stop Filter

Passband Gain= 1125.913228724032
EWL=10 MAD=4 δp = 0.00979387 δs = 0.00979387
h(n) = h(104− n) for 0 ≤ n ≤ 52
3, 2, 1, 0,−2,−4,−5,−4,−2,−1, 0,−1,−2,−4,−5,−4, 0, 5, 9, 12, 11, 7, 2,−1,−1
2, 7, 10, 8, 1,−10,−22,−29,−28,−20,−7, 3, 7, 2,−9,−19,−19,−5, 26, 64, 98, 111, 95
48,−19,−90,−144, 962

Basis Set= {1, 3, 5, 7, 9, 11, 19, 13, 29, 45, 49, 95, 111, 481}
3 = 1× 21 + 1 5 = 1× 22 + 1 7 = 1× 23 − 1
9 = 1× 23 + 1 11 = 1× 23 + 3 19 = 1× 24 + 3
13 = 1× 24 − 3 29 = 1× 25 − 3 45 = 1× 26 − 19
49 = 1× 22 + 45 95 = 3× 25 − 1 111 = 1× 24 + 95
481 = 9× 26 − 95

Figure 5.19: Amplitude Response of Band Stop Filter

80

Figure 5.20: Transposed Direct Form of Linear Phase FIR Filter with Multipliers Replaced
by Shift and Add Network

5.3 Hardware Synthesis

5.3.1 Structure of Filter and Shift Add Network

The hardware for the filters is synthesized in the transposed direct form. In the transposed

direct form, the multiplier array is replaced by a shift and add network (Figure 5.20).

Figure 5.21 shows the expanded form of the filter coefficients with the synthesis mechanism

of filter G1 whose design is given in Table 5.4. Figure 5.22 shows the synthesis of the shift

and add network. Similarly, figure 5.23 shows the synthesis of the shift and add network of

filter Y1 whose design is given in Table 5.6. From the figures, it is seen that the latency of

the filter is dependent on the maximum adder depth and not on the filter order. Thus the

use of increasing the filter order in order to decrease the effective word length is justified.

5.3.2 Filter Adders’ Topology

The circuit topology at a lower abstraction level is described in [38]. For generating the

fundamentals, an multiplier block adders are employed as shown in figures 5.22 and 5.23.

However, each adder has a different structure based on the fundamental and the generating

81

Figure 5.21: Expanded Form of Filter G1 Synthesis

h(0)= 1× 21 + 1 =h(15)
h(1)= 3× 21 =h(14)
h(2)= 0 =h(13)
h(3)= −(1)× 24 =h(12)
h(4)= −(1× 24 + 3) =h(11)
h(5)= 3× 22 =h(10)
h(6)= 19× 22 =h(9)
h(7)= 1× 28 =h(8)

mechanism. The width of output (Bout) is calculate according to equation 5.2.

Bout = Bin + dlog2|fj|e (5.2)

where Bin is the word length of the input and fj is the fundamental being generated.

Figure 5.24 shows the ripple carry adder topology for the case when the fundamental is

generated in the form (a × 2n + b). It is seen that in this case, the first n outputs are

directly obtained from the non-scaled input. Thus in this case, the number of full adders

(FA) is given by Eq. 5.3.

N j
FA,MBA = Bin + dlog2|fj|e − nj (5.3)

where nj is the index of the power of two for the jth fundamental.

Figure 5.25 shows the ripple carry adder topology for the case when the fundamental

is generated in the form (a × 2n − b). It is seen that in this case, the first n outputs

are obtained using a half adder and also each bit of the input b is inverted and a 1 is

added a carry in to represent the number in 2s complement form. In this case, there is

an additional hardware overhead in the form of n half adders (HA) and Bout NOT gates.

To overcome the extra HAs, the fundamental can be implemented in negative form i.e.

(−a×2n+b). The negative output can either be negated to obtain the actual fundamental

or the next adder utilizing this fundamental can take into account its negation and form

further fundamental accordingly. In either case, the cost of using HAs is eliminated and

82

Figure 5.22: Hardware Synthesis for Filter G1 (EWL=7)

Figure 5.23: Synthesis of Shift Add Network for Filter Y1 (EWL=10)

83

Figure 5.24: Ripple Carry Adder Topology for (a× 2n + b) for n = 2

as estimate on the number of FAs for both the (a× 2n + b) and (a× 2n − b) topologies is

given by Eq. 5.3. For the shift and add network given in Figure 5.22, the number of FAs

for the MBAs is calculated as follows assuming an input bit width of 8.

N3
FA = 8 + dlog2(3)e − 1 = 9

N19
FA = 8 + dlog2(19)e − 4 = 9

The structural adders also employ ripple carry adders for accumulating the scaled and

delayed inputs. For the SAs, at each stage, the width of the output increases. For each SA

corresponding to a filter coefficient h(k), the number of FAs needed is given by Eq. 5.4.

Nk
FA,SA = Bin + dlog2

k∑
i=0

|h(i)|e − nk (5.4)

where nk is the index of the power of two needed to generate the filter coefficient from the

84

Figure 5.25: Ripple Carry Adder Topology for (a× 2n − b) for n = 2

corresponding fundamental.

Table 5.14 gives the FA count for the designed examples from literature. NFA,MBA is

the number of FAs used in all the MBAs, NMBA is the number of MBAs in the shift and

add network, NFA,SA is the number of the FAs used in building all the structural adders,

NSA is the count of the number of structural adders used, and NFA,T is the total number

of FAs used in constructing the entire filter. It is to be noted that the first coefficient does

not use a SA and zero valued coefficients also don’t employ a SA.

From Table 5.14 it is seen that the length of MBA is independent of the length of the

filter and depends on the input bit width (taken as 8). It is found that on average, the

number of FAs per MBA is 9. For SAs, the length is heavily dependent on the position of

the SA as the length progressively increases. The average length of each adder is highly

dependent on the number of filter coefficients. For small filters (G1, Y1) it is found to

average 14, for medium to large (A,B) it averages around 17 while for large filters (L1,c),

it averages around 19. Thus the ratio of hardware complexity of a SA to an MBA is 1.5

for short filters, 1.8 for medium length filters and 2.0 for large length filters.

85

Table 5.14: Full Adder Count for Filters

Filter EWL NFA,MBA NMBA NFA,SA NSA NFA,T

G1 6 17 2 205 15 222
G1 7 17 2 175 13 192
Y1 9 66 7 356 23 422
Y1 10 56 6 366 23 422
A 10 133 14 974 54 1107
B 8 107 12 1503 94 1610
L1 14 462 43 2509 118 2971
C 10 252 28 5219 282 5471

5.4 Result Comparison

In this section, the design results of section 5.2.2 are compared with the state of the art

algorithms present in literature. Firstly a comparison with approximate algorithms is done.

Next, a comparison with the latest deterministic methods is done.

Figure 5.26 shows the design results of filter A when compared to the infinite precision

Parks-McClellan method while figure 5.27 shows the comparison with a simply quantized

response. The quantization has been done such that the highest magnitude coefficient can

be represented in the same amount of bits as the designed filter. It is observed that the

amplitude response of the finite word length filter is very close to the infinite precision

design. Also, simply quantizing the coefficients results in a filter that violates the filter

specifications and a larger word length must be employed for the quantized design in order

for it to meet the specification.

5.4.1 Adder Cost Comparison: Approximate Methods

The approximate methods that have been taken for comparison are the genetic algorithm

based design (Ye1) found in [25], the NAIAD method described in [37], and the POTx

method of [33]. The papers chosen for comparison are the latest available papers utilizing

86

Figure 5.26: Comparison of Amplitude Response of Opitmal Finite Wordlength Design
With Infinite Precision Parks McClellan Design for Filter A

Figure 5.27: Comparison of Amplitude Response of Opitmal Finite Wordlength Design
With Simply Quantized Design for Filter A

87

approximate algorithms. The POTx algorithm uses a heuristic method to locally search

in the neighborhood of a quantized coefficient. A similar approach is given for the NAIAD

algorithm. Since local search algorithms are more adept at designing filters with large

number of filter taps, the comparison has been made for filters A, B, L1 and C. In Table

5.15, N is the filter length, EWL is effective word length (the number of bits needed to

represent the filter coefficients excluding the sign bit), MBA is the number of multiplier

block adders, SA is the number of structural adders. The last column shows the total

time for running the algorithm as given in the respective publications. For the proposed

algorithm, the time given is the time to run the Differential Evolution part of the algorithm

for one gain section since each section can be optimized independently. It is to be noted

that the hardware complexity of a SA is approximately 1.5-2.0 times higher than a MBA

as mentioned in section 5.3.2 Thus, when comparing two designs, the higher weight of a

SA must be taken into consideration. A more detailed discussion on the actual weights of

SAs and MBAs was given in section 5.3.2.

As seen in Table 5.15, the proposed method outperforms all the compared methods

in all the filter design examples. For filter B, the methods of Ye1 and POTx have lesser

number of MBAs but since the proposed design has more zero valued coefficients and hence

far fewer structural adder giving a total cost of hardware implementation to be better than

all other methods. Same reasoning can be made for the design of filter C where the NAIAD

and POTx methods have fewer MBAs but have larger structural adder count. Hence, the

proposed method has a much lower hardware cost. However, for all the designs compared

in Table 5.15, the proposed method has the least number of SAs (with the exception of

L1). Even though the design of NAIAD for filter L1 has less number of total adders and

structural adders, it can be seen that the EWL is greater than the proposed design. Since

hardware complexity heavily depends on the EWL, thus the proposed design exhibits less

hardware complexity. Thus, it is concluded that the inclusion of a sparse technique into

the multiplierless design approach goes a long way into reducing the hardware complexity.

88

Table 5.15: Comparison With Approximate Methods

Filter Method N EWL MBA SA Time

A
Prop. 59 10 14 54 10m

NAIAD 59 10 16 56 44m
POTx 59 10 16 58 1.49m

B

Prop. 105 8 12 94 18m
NAIAD 105 8 13 96 2h2m

Ye1 105 8 10 98 16m24s
POTx 105 8 10 99 1.13m

L1
Prop. 121 14 43 118 2h5m

NAIAD 121 15 40 116 3h48m
Ye1 121 14 43 120 26m41s

C

Prop. 325 10 28 282 1h15m
NAIAD 325 10 25 286 4h

Ye1 325 10 31 306 3h49m
POTx 325 10 24 301 28.7m

5.4.2 Adder Cost Comparison: Deterministic Methods

The exact methods that have been taken for comparison are FIRGAM method found in

[36], the SIREN method described in [37], the method by Shi [22], the method by Yao [23]

and the Ye2 method of [24]. The papers chosen for comparison are the latest available

papers and have a runtime of less than 24 hours 1. In Table 5.16 N , EWL, MBA, SA and

TA have the same meaning as in Table 5.15. Also, the time given is the timings reported

in the respective publications.

As seen in 5.16, the proposed method is very competitive with the state of the art deter-

ministic algorithms. In all cases except for filter L1 and B, the number of adders found is in

comparison with the best available method. Since deterministic methods have a exponen-

tial time complexity, the proposed method is advantageous as it has non-exponential time

1A cap of 24hrs was made as deterministic graph based methods can always produce globally optimum
solution provided enough time is given. Methods such as graph based depth first search (Shi [22]) and
MILP ([20]) can take upto years to design filter such as example C.

89

Table 5.16: Comparison With Deterministic Methods

Filter Method N EWL MBA SA Time

G1

Prop. 16 7 2 13 31s
Prop. 16 6 2 15 59s
SIREN 16 6 2 15 <1s

Shi 16 7 2 13 <1s
Shi 16 6 2 15 <1s

Y1

Prop. 30 9 7 23 1m
Prop. 30 10 6 23 2m
SIREN 30 9 6 23 7m56s

Shi 30 10 6 23 6s
Shi 30 9 7 23 5m9s

A

Prop. 59 10 14 54 10m
Ye2 59 10 14 54 8m
Yao 59 10 14 54 2h

FIRGAM 59 10 18 58 56m

B

Prop. 105 8 12 94 18m
Ye2 105 8 12 94 31m
Yao 105 8 11 94 >24h

FIRGAM 105 8 11 100 1h41m

L1

Prop. 121 14 43 118 2h5m
Ye2 121 14 42 118 33m
Yao 121 14 41 120 >24h

FIRGAM 121 14 47 120 56m

C

Prop. 325 10 28 282 1h15m
Ye2 325 10 28 282 5h17m
Yao 325 10 20 304 >24h

FIRGAM 325 10 22 304 5h11m

90

complexity owing to the heuristic nature of the algorithm. The time complexity analysis

is discussed more in detail in section 5.5.

5.5 Design Algorithm Complexity Analysis

As discussed briefly in chapter 3 section 3.1, in theoretical computer science, algorithms are

compared on the basis of their worst case complexity and the O-notation is frequently used.

The comparison is done independent of the implementation language and the hardware

used to run the algorithm.

The design procedure for small filters consists of finding the range of each coefficient

for unity gain, upscaling that range to fit into the integer space, sectioning the passband

gain and running a local search Differential Evolution algorithm in that section. Once,

the results for each section are obtained, the best among them is the output of the design

result.

Among the operators of Differential Evolution, the selection operator is the most time

consuming and is the bottleneck of the algorithm. Thus, many strategies have been im-

plemented to reduce the time consumption. Firstly, as discussed in Chapter 4 section

4.2.6, the amplitude response value of the coefficients corresponding to the lowest limit of

the quantized range is stored. Since the amplitude response is a linear function, thus the

amplitude response of the difference between the actual coefficient value is added to the

lower range value to obtain the actual amplitude response. Thus, this avoids a series of

repeated calculations and cuts short the objective function calculation time by a factor of

almost 5. Secondly, the adaptive search space reduction technique as discussed in section

4.2.5 expedites the search process by excluding those coefficients whose entire population

has converged to a single value. Table 5.17 shows the timings of short filters. Tb is the

minimum time in which the result is obtained and the algorithm converged, Tavg is the

average time of the result to converge, S is the number of gain sections taken, gmax is the

maximum number of generations ran for each gain or the termination criteria for the Dif-

ferential Evolution, and TG is time for running the Differential Evolution for the maximum

91

Table 5.17: Time Analysis for Small Length Filters

Filter EWL Tb Tavg S gmax TG

G1 6 1.76s 4.11s 10 500 31s
G1 7 6.6s 33.1s 10 1000 59s
Y1 9 12.1 45s 30 1500 1.7m
Y1 10 7.51 10.2s 20 1500 2.8m
A 10 - - 30 5000 10m

generations (gmax). The averages have been taken from 30 runs of the program and the

population has 100 members for each of the small filters.

For large filters, an extra step in the design procedure is introduced to obtain an initial

guess of the solution (called base solution) in each gain section. The reason for this is

that a population generated with total randomness for large filters is not able to search

the entire space. Thus, an initial hint is given in the form of perturbing the parameters

around the base solution to create the population. However, to preserve large random

pool of population members, only half the population is generated by perturbing the base

solution.

Table 5.18 shows the design statistics for the large filters and is divided into three

parts. In the first part, the statistics of the linear program used for obtaining an initial

base solution is listed. In column 2, S is the number of gains sections for which the

linear program is run, while in column 3 nPV is the number of pseudo-viable solutions(PV)

tried. Once the base solution is obtained than a population around the pseudo viable base

solution is created as explained in Chapter 4 section 4.2.2. In the second part of the table,

the population statistics are given. Pop. is the number of members in the population, Max.

bits is the maximum number of bits the neighborhood of the largest valued coefficient is

alloted, Percent Pert. is the percentage of the parameters perturbed from the initial base

solution found by the linear program to generate half the population. Also, nexcl. is the

number of coefficients excluded as a result of adaptive sub space reduction. Lastly, in the

third part of the table the timings for the Differential Evolution algorithm are given. gmax

is the maximum number of generations ran for each gain PV solution, TG is the time taken

92

Table 5.18: Design Statistics for Large Filters

Filter S nPV Pop. Max.
bits

Percent
Pert.

nexcl. gmax TG

B 40 5 200 3 90% 10 10k 18m
L1 50 6 400 4 85% 0 25k 2h5m
C 40 7 200 3 90% 49 15k 1h15m

Table 5.19: Adder Saving From Base Solution

Filter Base Solution
MBAs

Final Solution
MBAs

Adder Reduction

B No F.S. 12 -
L1 45 43 2
C 37 28 9

for running the maximum generations.

From Table 5.18, it is seen that the adaptive search space reduction technique is suc-

cessful in reducing the search space and expediting the search process. For filter L1, no

reduction in subspace was possible because of the high word length and hence the coeffi-

cients range was large ever for small coefficients.

Table 5.19 shows the number of adders reduced as a result of the optimization method.

For Filter B, no feasible solution exists among the base solution. Since, the SAs are fixed

before optimization, they are not taken into consideration. At first glance it may seem

like a wastage of resources to optimize at the expense of such high design times. However,

since the algorithm is tailored for custom IC design, the high cost can be nullified in the

recurring engineering cost. Hence, the use of the optimization algorithm is justified.

93

Summary

Firstly in this chapter the Differential Evolution algorithm’s performance was analyzed with

respect to its control parameters. Next, an analysis of the filter length and word length used

for ensuring minimal hardware was given. After that the results of the prototype filters

were tabulated and their amplitude responses were given to show conformity with the filter

specifications. Afterwards, a comparison of the design examples was carried out with the

state of the art methods present in literature. Next, the complexity of the algorithm was

analyzed and the statistics for the various designs were presented. Finally, the for the

purpose of continuity into a lower abstraction level, the hardware synthesis was explained

and two examples of the hardware synthesis were given to demonstrate the construction

of the hardware from the tabulated data.

94

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

This thesis formulated a design procedure for fixed coefficient finite word length filters.

These filters are suitable for custom IC designs for cutting down the recurring engineering

cost owing to their minimal hardware complexity. The design procedure has the capability

to design single stage filters having sharp transition widths and stringent error constraints

requiring filter orders up to length 300. The approach implements a shift and add network

to replace the multipliers needed for generating the scaled and delayed values used in non

recursive filtering operation.

A novel Differential Evolution algorithm, which is a population based evolutionary meta

heuristic optimization technique, is proposed for the filter design problem. The algorithm

is a discrete variant of DE algorithm which redefines the mutation operator in terms of bit

representation aimed at optimizing discrete or mixed valued problems. The algorithm has

been tested for standalone error minimization and joint optimization of error and hardware

cost.

The algorithm is dived among design for small length filters or large filters. For small

length filter, the algorithm is able to converge to feasible solutions without the need for

95

giving hints on the location of the solutions. However, for large filters, a linear program

is utilized for generating initial base solutions around which the population is generated

by perturbation. The entire filter design approach is named DEFDO and it consists of 3

basic steps: coefficient sparsity, coefficient range, optimization routine. Coefficient sparsity

is introduced to maximize zero valued coefficients. As zero valued coefficients have no

hardware presence, they reduce the hardware cost substantially. Coefficient range is used

to create the bounds on the search space for the filter coefficients. Lastly, the optimization

routine consists of the DE algorithm.

Eight designs of six filters taken from literature have been implemented to show the

working of the algorithm. Also, two additional filters have been designed to showcase the

robustness of the algorithm for designing bandpass and bandstop filters. The comparison

with the state of the art algorithms show that the design procedure is able to produce better

results than the best available evolutionary and local search algorithms. When compared

to deterministic methods, the results are comparable. In six out of the eight cases, the

result is equal to the best deterministic method present. From the design examples, it

is seen that the algorithm works best for the filter whose constraints are such that many

feasible solutions are available. In cases where very few feasible solutions are present, the

algorithm is not able to jointly optimize the hardware complexity and satisfy the feasibility

condition. The reason for this is that the solutions are present further apart from each

other and once the algorithm enters the valley created, it is not able to escape from it.

6.2 Contribution of Thesis

The thesis proposed a novel application of Differential Evolution algorithm for the design of

finite word length digital filters. The Differential Evolution algorithm has been successful

at solving hard optimization problems with continuous parameters. Owing to its success,

researchers have attempted to utilize the differential approach to solving combinatorial

optimization problems. However, all attempts have been made at solving classical problems

such the Traveling Salesman Problem or the Multiple Knapsack Problem. This thesis

96

proposed a representation for the Differential Evolution algorithm’s population adapted for

the finite word length filter design problem. Due to the nature of the FIR filter’s coefficients,

adaptive search space reduction technique was developed and proved successful to enhance

the algorithm’s run time and efficiency. The complex abstraction used for representing the

TSP was simplified for the problem at hand and the mutation operator was redefined.

On the other front, this thesis proposed a fast and efficient method to minimize the

hardware cost of implementing an FIR filter in custom ICs. Compared to other approxi-

mate methods such a Genetic Algorithm and Local Search, the algorithm is able to provide

better results in terms of hardware cost. Owing to its non exponential computational com-

plexity the method is scalable and can be used for larger design problems. Also, the

design results are at par when compared with the best deterministic methods available.

In conclusion, the design procedure is suited for designing filters with stringent frequency

specifications that require large filter orders.

6.3 Future Scope

The proposed Differential Evolution algorithm is able to reduce hardware complexity when

the filter constraints are relaxed and many feasible solutions exist. The new escape ap-

proach can be developed whereby the search agent is able to escape a deep valley. One

such scheme could be to develop Particle Swarm optimization inspired local and global

best learning approach.

The current objective in the filter design procedure has been to reduce the adder cost

of implementing the finite word length FIR filter. However, it is observed that the problem

is multi modal. Thus, a new problem at a lower level of abstraction can be formulated

taking into account the full adder cost of implementation. Also, the actual synthesis of

the filter can carried out using tools such as Synopsys Design Compiler to make precise

latency and power analysis.

The proposed Differential Evolution algorithm can also be used for other discrete prob-

lems. It can be used to design cascade form FIR filters. It can also be modified for solving

97

mixed problems by modifying the population members to include floating point parameters

and utilizing the original mutation scheme for these parameters.

98

References

[1] H. K. Kwan, Digital Filters and Systems. ISP Lab, University of Windsor, 2015. 8

[2] L. R. Rabiner and B. Gold, “Theory and application of digital signal processing,”

Englewood Cliffs, NJ, Prentice-Hall, Inc., 1975. 777 p., vol. 1, 1975. 8

[3] T. Parks and J. McClellan, “A program for the design of linear phase finite impulse

response digital filters,” Audio and Electroacoustics, IEEE Transactions on, vol. 20,

no. 3, pp. 195–199, Aug 1972. 11

[4] T. Baran, D. Wei, and A. Oppenheim, “Linear Programming Algorithms for Sparse

Filter Design,” Signal Processing, IEEE Transactions on, vol. 58, no. 3, pp. 1605–1617,

March 2010. 13

[5] A. Jiang and H. K. Kwan, “WLS Design of Sparse FIR Digital Filters,” Circuits and

Systems I: Regular Papers, IEEE Transactions on, vol. 60, no. 1, pp. 125–135, Jan

2013. 13

[6] Y. C. Lim, “Frequency-response masking approach for the synthesis of sharp linear

phase digital filters,” Circuits and Systems, IEEE Transactions on, vol. 33, no. 4, pp.

357–364, Apr 1986. 13

[7] Y. Lim and Y. Lian, “Frequency-response masking approach for digital filter design:

complexity reduction via masking filter factorization,” Circuits and Systems II: Analog

and Digital Signal Processing, IEEE Transactions on, vol. 41, no. 8, pp. 518–525, Aug

1994. 13

99

[8] D. Kodek and K. Steiglitz, “Comparison of optimal and local search methods for de-

signing finite wordlength FIR digital filters,” Circuits and Systems, IEEE Transactions

on, vol. 28, no. 1, pp. 28–32, Jan 1981. 14

[9] D. Kodek, “Design of optimal finite wordlength FIR digital filters using integer pro-

gramming techniques,” Acoustics, Speech and Signal Processing, IEEE Transactions

on, vol. 28, no. 3, pp. 304–308, Jun 1980. 14

[10] Y. Lim and S. Parker, “FIR filter design over a discrete powers-of-two coefficient

space,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 31, no. 3,

pp. 583–591, Jun 1983. 14

[11] Y. Lim, “Design of discrete-coefficient-value linear phase FIR filters with optimum

normalized peak ripple magnitude,” Circuits and Systems, IEEE Transactions on,

vol. 37, no. 12, pp. 1480–1486, Dec 1990. 15

[12] H. Samueli, “An improved search algorithm for the design of multiplierless FIR filters

with powers-of-two coefficients,” Circuits and Systems, IEEE Transactions on, vol. 36,

no. 7, pp. 1044–1047, Jul 1989. 15

[13] Y. C. Lim, R. Yang, D. Li, and J. Song, “Signed power-of-two term allocation scheme

for the design of digital filters,” Circuits and Systems II: Analog and Digital Signal

Processing, IEEE Transactions on, vol. 46, no. 5, pp. 577–584, May 1999. 16

[14] D. Bull and D. Horrocks, “Primitive operator digital filters,” Circuits, Devices and

Systems, IEE Proceedings G, vol. 138, no. 3, pp. 401–412, June 1991. 16

[15] P. Cappello and K. Steiglitz, “Some complexity issues in digital signal processing,”

Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 32, no. 5, pp.

1037–1041, Oct 1984. 17

[16] A. Yurdakul and G. Dundar, “Fast and efficient algorithm for the multiplierless real-

isation of linear DSP transforms,” Circuits, Devices and Systems, IEE Proceedings -,

vol. 149, no. 4, pp. 205–211, Aug 2002. 17, 23

100

[17] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Multiple constant multiplica-

tions: efficient and versatile framework and algorithms for exploring common subex-

pression elimination,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 15, no. 2, pp. 151–165, Feb 1996. 17

[18] A. Dempster and M. Macleod, “Use of minimum-adder multiplier blocks in FIR digital

filters,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Trans-

actions on, vol. 42, no. 9, pp. 569–577, Sep 1995. 17, 18, 24, 52, 54

[19] ——, “Multiplication by an integer using minimum adders,” in Mathematical Aspects

of Digital Signal Processing, IEE Colloquium on, Feb 1994, pp. 11/1–11/4. 18, 19, 52

[20] Y. J. Yu and Y. C. Lim, “Design of Linear Phase FIR Filters in Subexpression Space

Using Mixed Integer Linear Programming,” Circuits and Systems I: Regular Papers,

IEEE Transactions on, vol. 54, no. 10, pp. 2330–2338, Oct 2007. 20, 21, 89

[21] Y. Yu and Y. Lim, “Optimization of Linear Phase FIR Filters in Dynamically Ex-

panding Subexpression Space,” Circuits, Systems and Signal Processing, vol. 29, no. 1,

pp. 65–80, 2010. 23

[22] D. Shi and Y. J. Yu, “Design of Linear Phase FIR Filters With High Probability

of Achieving Minimum Number of Adders,” Circuits and Systems I: Regular Papers,

IEEE Transactions on, vol. 58, no. 1, pp. 126–136, Jan 2011. 23, 89

[23] C.-Y. Yao, W.-C. Hsia, and Y.-H. Ho, “Designing Hardware-Efficient Fixed-Point

FIR Filters in an Expanding Subexpression Space,” Circuits and Systems I: Regular

Papers, IEEE Transactions on, vol. 61, no. 1, pp. 202–212, Jan 2014. 23, 89

[24] W. B. Ye and Y. J. Yu, “Two-Step Optimization Approach for the Design of Mul-

tiplierless Linear-Phase FIR Filters,” Circuits and Systems I: Regular Papers, IEEE

Transactions on, vol. 62, no. 5, pp. 1279–1287, May 2015. 23, 89

[25] ——, “Single-Stage and Cascade Design of High Order Multiplierless Linear Phase

FIR Filters Using Genetic Algorithm,” Circuits and Systems I: Regular Papers, IEEE

Transactions on, vol. 60, no. 11, pp. 2987–2997, Nov 2013. 24, 86

101

[26] A. Antoniou and W.-S. Lu, Practical optimization: algorithms and engineering appli-

cations. Springer Science & Business Media, 2007. 27

[27] “OPTI Toolbox,” accessed: 2016-01-02. [Online]. Available: http://www.i2c2.aut.ac.

nz/Wiki/OPTI/index.php/ 31, 65

[28] B. Borchers, “CSDP, A C library for semidefinite programming,” Optimization

Methods and Software, vol. 11, no. 1-4, pp. 613–623, 1999. [Online]. Available:

http://dx.doi.org/10.1080/10556789908805765 31

[29] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Ap-

proach to Global Optimization (Natural Computing Series). Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2005. 34

[30] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-Adapting Control

Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark

Problems,” Evolutionary Computation, IEEE Transactions on, vol. 10, no. 6, pp. 646–

657, Dec 2006. 35

[31] Y. Liu, W. neng Chen, Z. hui Zhan, Y. Lin, Y.-J. Gong, and J. Zhang, “A Set-Based

Discrete Differential Evolution Algorithm,” in Systems, Man, and Cybernetics (SMC),

2013 IEEE International Conference on, Oct 2013, pp. 1347–1352. 35

[32] W.-N. Chen, J. Zhang, H. Chung, W.-L. Zhong, W. gang Wu, and Y. hui Shi, “A Novel

Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems,”

Evolutionary Computation, IEEE Transactions on, vol. 14, no. 2, pp. 278–300, April

2010. 35

[33] A. Shahein, Q. Zhang, N. Lotze, and Y. Manoli, “A Novel Hybrid Monotonic Local

Search Algorithm for FIR Filter Coefficients Optimization,” Circuits and Systems I:

Regular Papers, IEEE Transactions on, vol. 59, no. 3, pp. 616–627, March 2012. 40,

86

102

http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/
http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/
http://dx.doi.org/10.1080/10556789908805765

[34] W. B. Ye and Y. J. Yu, “A polynomial-time algorithm for the design of multiplierless

linear-phase FIR filters with low hardware cost,” in Circuits and Systems (ISCAS),

2014 IEEE International Symposium on, June 2014, pp. 970–973. 48

[35] H. Samueli, “On the design of FIR digital data transmission filters with arbitrary mag-

nitude specifications,” Circuits and Systems, IEEE Transactions on, vol. 38, no. 12,

pp. 1563–1567, Dec 1991. 55

[36] M. Aktan, A. Yurdakul, and G. Dundar, “An Algorithm for the Design of Low-

Power Hardware-Efficient FIR Filters,” Circuits and Systems I: Regular Papers, IEEE

Transactions on, vol. 55, no. 6, pp. 1536–1545, July 2008. 48, 64, 89

[37] L. Aksoy, P. Flores, and J. Monteiro, “Exact and Approximate Algorithms for the Fil-

ter Design Optimization Problem,” Signal Processing, IEEE Transactions on, vol. 63,

no. 1, pp. 142–154, Jan 2015. 86, 89

[38] K. Johansson, O. Gustafsson, and L. Wanhammar, “Bit-Level Optimization of Shift-

and-Add Based FIR Filters,” in Electronics, Circuits and Systems, 2007. ICECS 2007.

14th IEEE International Conference on, Dec 2007, pp. 713–716. 81

103

Vita Auctoris

Kunwar Rehan, born 1992 in India, is an MASc candidate at the University of Windsor,

Windsor, Ontario, Canada. He received his Bachelor of Technology in Electronics Engi-

neering from Aligarh Muslim University, Aligarh, India in 2014 with the highest honours.

In 2015, Kunwar Rehan was admitted as a member of the Golden Key Honour Society

for his academic excellence. At the University of Windsor, he served as a graduate teaching

assistant. He also served as a Industrial Relation Chair of the IEEE Student Branch.

Kunwar Rehan’s research interests include VLSI Signal Processing and Optimization

Methods.

104

	University of Windsor
	Scholarship at UWindsor
	2016

	Linear-Phase FIR Digital Filter Design with Reduced Hardware Complexity using Discrete Differential Evolution
	Muhammed Kunwar Rehan
	Recommended Citation

	Declaration of Originality
	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction to Digital Filter Design
	Mathematical Representation of Digital Filters
	Filter Design Methodology and Specifications
	Motivation and Outline of Thesis

	Review of Filter Complexity Reduction Methods
	Filter Complexity Reduction Technique
	Multiplierless Filter Design
	SPT Design
	MCM Algorithms
	State of the Art

	Summary

	Optimization Methods
	Selection of Optimization Method
	Linear Programming
	Differential Evolution Algorithm for Continuous Optimization
	Variations of Differential Evolution
	Variation in Mutation
	Adaptive Control Parameters

	Differential Evolution for Discrete Filter Optimization
	Summary

	Proposed Algorithm
	Problem Formulation
	Joint Optimization Objective Function
	DEFDO Algorithm

	Algorithms Used In DEFDO
	Linear Programs Used in Filter Design
	Population Generation for Differential Evolution
	Modified RAG-n Algorithm
	Selection Operator for Differential Evolution
	Adaptive Search Space Reduction
	Computation Cost Reduction

	Summary

	Design Examples and Results
	Comparison of Variations of DE Algorithms
	Joint Optimization of Minimax Error and Hardware Complexity
	Empirical Determination of Filter Order and Wordlength
	Design Examples

	Hardware Synthesis
	Structure of Filter and Shift Add Network
	Filter Adders' Topology

	Result Comparison
	Adder Cost Comparison: Approximate Methods
	Adder Cost Comparison: Deterministic Methods

	Design Algorithm Complexity Analysis
	Summary

	Conclusion and Future Scope
	Conclusion
	Contribution of Thesis
	Future Scope

	References
	Vita Auctoris

