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ABSTRACT 

The majority of the existing transportation literature has been concerned with private 

travel activities. Fortunately, the importance of commercial vehicles and their movement 

has led to a surge of research activities to analyze and understand commercial vehicle 

movements. However, an absent theme in the emerging research activities is the process 

governing commercial vehicle ownership. This project attempts to fill the gap in the 

existing literature by developing a new model of commercial vehicle ownership. The 

focus is on studying the spatial prevalence of the various types of commercial vehicles, as 

derived from the Gross Vehicle Weight (GVW) classes, in a given traffic analysis zone 

(TAZ) within an urban area using various types of statistical methods. The results allow 

us to unravel the significant factors explaining the variability in the spatial distribution of 

commercial vehicles. The obtained statistical results form the basis for developing 

predictive urban commercial vehicle ownership location models. 

 

 

 

 

 

 



v 

ACKNOWLEDGEMENTS 

First and foremost, I am grateful for the chance Dr. Hanna Maoh gave me to start 

my MASc under his supervision. I am thankful for Dr. Maoh’s incredible amount of trust, 

encouragement and support throughout my graduate studies. His guidance both 

challenged and encouraged me at the same time which positively shaped and improved 

my graduate experience. Our enlightening conversations about transportation helped me 

think more conceptually, critically and quantitatively for which I am grateful. In addition, 

I am extremely thankful for the extra time he exerted to help me prepare and submit 

conference papers, presentations, and scholarships. 

 I would also like to extend a great thank you to my committee members Dr. Chris 

Lee, Dr. William Anderson and Mr. John Tofflemire for taking the time to review my 

work and provide insightful comments which ultimately strengthened this thesis. Also, 

thank you to Dr. Faouzi Ghrib for taking the time to chair my final defense meeting. 

  Additionally, I would like to acknowledge Georgina Madar, who developed the 

Business Establishments Commercial Travel Survey, without which this project would 

have been significantly more difficult to complete. I especially thank Mr. Shakil Khan for 

all his help and expertise in managing the TSI lab and my workstation.  

To all my fellow lab mates, it was a pleasure working along such a great group of 

highly talented people. I am extremely grateful for Rahaf Husein and Terence Dimatulac 

for their continuous support and encouragement throughout my work.  

I am thankful to the Natural Science and Engineering Research Council of Canada 

(NSERC) for supporting this research through a Discovery Research Grant. Also, this 



vi 

research was enabled through a Canada Foundation of Innovation (CFI) Infrastructure 

Research Grant.  

Last, and certainly not least, I am especially thankful and am indebted to my 

family for their constant encouragement, for their love, support and for always being 

there for me - this thesis would not have been possible without you all. You have always 

believed that I can pursue and achieve my goals with great success.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

TABLE OF CONTENTS 

DECLARATION OF ORIGINALITY .............................................................................. iii 

ABSTRACT ....................................................................................................................... iv 

ACKNOWLEDGEMENTS ................................................................................................ v 

LIST OF TABLES .............................................................................................................. x 

LIST OF FIGURES .......................................................................................................... xii 

LIST OF APPENDICES ................................................................................................... xv 

CHAPTER 1: INTRODUCTION .................................................................................... 1 

1.1 Overview ................................................................................................................... 1 

1.2 Statement of the Problem .......................................................................................... 3 

1.3 Objectives ................................................................................................................. 5 

1.4 Thesis Outline ........................................................................................................... 5 

CHAPTER 2: LITERATURE REVIEW ....................................................................... 7 

2.1 Commercial Vehicle Movement ............................................................................... 7 

2.1.1 Conventional Approaches .................................................................................. 8 

2.1.2 Supply-Chain (Logistics) Approach ................................................................ 12 

2.1.3 Tour-Based Microsimulation Approach .......................................................... 17 

2.2 Vehicle Ownership Modeling ................................................................................. 21 

2.3 Population Synthesis ............................................................................................... 26 

CHAPTER 3: STUDY AREA AND DATA DESCRIPTION ..................................... 33 



viii 

3.1 Study Area .............................................................................................................. 33 

3.2 Data Description ..................................................................................................... 33 

3.2.1 InfoCanada Dataset .......................................................................................... 34 

3.2.2 Business Establishment Commercial Travel Survey ....................................... 35 

3.2.3 Polk Dataset ..................................................................................................... 39 

3.2.4 Other Data Sources .......................................................................................... 45 

CHAPTER 4: METHOD OF ANALYSIS .................................................................... 46 

4.1 Population Synthesis ............................................................................................... 47 

4.2 Modeling the Spatial Distribution of Commercial Vehicles................................... 51 

4.2.1 Discrete Choice Modeling Approach ............................................................... 51 

4.2.2 Count Modeling Approach .............................................................................. 59 

CHAPTER 5: RESULTS AND DISCUSSION ............................................................ 63 

5.1 Population Synthesis ............................................................................................... 63 

5.2 Modeling the Spatial Distribution of Commercial Vehicles................................... 69 

5.2.1 Discrete Choice Models ................................................................................... 69 

5.2.2 Discrete Choice Models with Spatial Effects .................................................. 75 

5.2.3 Count Models ................................................................................................... 78 

5.2.4 Discrete Choice Models versus Count Models ................................................ 81 

CHAPTER 6: CONCLUSIONS .................................................................................... 83 

6.1 Summary of Empirical Results ............................................................................... 83 



ix 

6.1.1 Population Synthesis ........................................................................................ 83 

6.1.2 Modeling the Spatial Distribution of Commercial Vehicles............................ 84 

6.2 Contributions and Policy Implications.................................................................... 86 

6.3 Study Limitations and Direction for Future Developments .................................... 87 

REFERENCES ................................................................................................................ 89 

APPENDICES ................................................................................................................. 97 

APPENDIX A: SIC Detailed Industry Classification ................................................... 97 

APPENDIX B: Spatial Autocorrelation (Moran’s I Results) ..................................... 100 

APPENDIX C: MNL Models - Observed versus Estimated Numbers Vehicles by Class

..................................................................................................................................... 108 

APPENDIX D: NB Models - Observed versus Estimated Numbers Vehicles by Class

..................................................................................................................................... 112 

VITA AUCTORIS ........................................................................................................ 114 

 

 

 

 

 

 

 



x 

LIST OF TABLES 

Table 3 - 1: Two - digits SIC codes and description of Survey Respondents .................. 38 

Table 3 - 2: Gross Vehicle Weight Classes and Corresponding Weight Ranges in Pounds

........................................................................................................................................... 39 

Table 4 - 1: Categories for Number of Employees ........................................................... 49 

Table 4 - 2: SIC-2D x CTID Tabulations Derived from the Windsor Firm Population ... 50 

Table 4 - 3: Emp-Cat x CTID Tabulations Derived from the Windsor Firm Population . 50 

Table 4 - 4: Microsample Derived from the BECTS ........................................................ 51 

Table 4 - 5: Description of Explanatory Variables ........................................................... 56 

Table 4 - 6: Independent Variables Coding and their Expected Signs ............................. 62 

Table 4 - 7: Independent and Dependent Variables Descriptive Statistics ....................... 62 

Table 5 - 1: Results of Comparisons between Synthetic and the Actual Number of 

vehicles, using the R2 ........................................................................................................ 63 

Table 5 - 2: Total Number of Vehicles Summary Statistics ............................................. 64 

Table 5 - 3: Synthesized Versus Polk Data Zonal Counts ................................................ 68 

Table 5 - 4: MNL and MXL Model Estimation Results ................................................... 70 

Table 5 - 5: Results of Comparisons between Estimated and the Actual Number of 

Vehicles by Class .............................................................................................................. 75 

Table 5 - 6: MNL 3 and MXL 3 Model Estimation Results ............................................. 76 

Table 5 - 7: Results of Comparisons between Estimated and the Actual Number of 

Vehicles by Class .............................................................................................................. 78 

Table 5 - 8: Poisson Regression Results of Commercial Vehicle by Class ...................... 79 

Table 5 - 9: Negative Binomial Regression Results of Commercial Vehicle by Class .... 79 



xi 

Table 5 - 10: Results of Comparisons between Estimated and the Actual Number of 

vehicles, using the R2 ........................................................................................................ 81 

Table 5 - 11 MNL Models RMSE Results........................................................................ 82 

Table 5 - 12: Negative Binomial Models RMSE Results ................................................. 82 

Table A - 1: Two - digits SIC Codes and Detailed Description ....................................... 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

LIST OF FIGURES 

Figure 3 - 1: Establishment Spatial Distribution in the Windsor Census Metropolitan 

Area, 2013 ......................................................................................................................... 35 

Figure 3 - 2: Frequency of Reported Total Number of Employees for Survey Respondents

........................................................................................................................................... 37 

Figure 3 - 3: Frequency of Industry Classifications of Survey Respondents ................... 37 

Figure 3 - 4: Frequency of Total Number of Vehicles Owned by Survey Respondents .. 38 

Figure 3 - 5: Max Number of Vehicle per Make, Model and Year per Zone ................... 40 

Figure 3 - 6: Distribution of Commercial Vehicle Classes ............................................... 41 

Figure 3 - 7: Spatial Distribution of (a) Cars, (b) Light Duty Trucks, (c) Medium Duty 

Trucks and (d) Heavy Duty Trucks by Place of Registration in Windsor in 2013 ........... 43 

Figure 3-8: Moran’s I result for (a) Cars, (b) Light Duty Trucks, (c) Medium Duty Trucks 

and (d) Heavy Duty Trucks............................................................................................... 44 

Figure 3 - 9: (a) Zones in Proximity to Highways and (b) Low Density Suburban Zones45 

Figure 4 - 1: Methodology Flow Chart ............................................................................. 47 

Figure 4 - 2: Discrete Choice Model Structure ................................................................. 52 

Figure 4 - 3: Spatial distribution of jobs by economic sector in Windsor in 2011 ........... 55 

Figure 4 - 4: Spatial Variables Used in Model Specification ........................................... 58 

Figure 5 - 1: Total Number of Vehicles Comparison for 10 Establishment Population 

Synthesized ....................................................................................................................... 65 

Figure 5 - 2: Comparison of the zonal aggregates of the synthesized population against 

the Polk Data ..................................................................................................................... 66 



xiii 

Figure 5 - 3: Spatial distribution of (a) Polk zonal aggregates and (b) Synthesized zonal 

aggregates in Windsor in 2013 ......................................................................................... 66 

Figure 5 - 4: Spatial Variables Used in MNL Model 2 Specifications ............................. 73 

Figure 5 - 5: MNL Model 1 - Observed versus Estimated Numbers Commercial Vehicles

........................................................................................................................................... 74 

Figure 5 - 6: MNL Model 2 - Observed versus Estimated Number of Commercial 

Vehicles............................................................................................................................. 74 

Figure 5 - 7: MNL Model 3 - Observed versus Estimated Number of Commercial 

Vehicles............................................................................................................................. 77 

Figure 5 - 8: NB Models: Observed versus Estimated Number of Commercial Vehicles 81 

Figure B - 1: GVW 1 Moran’s I Results ......................................................................... 100 

Figure B - 2: GVW 2 Moran’s I Results ......................................................................... 101 

Figure B - 3: GVW 3 Moran’s I Results ......................................................................... 102 

Figure B - 4: GVW 4 Moran’s I Results ......................................................................... 103 

Figure B - 5: GVW 5 Moran’s I Results ......................................................................... 104 

Figure B - 6: GVW 6 Moran’s I Results ......................................................................... 105 

Figure B - 7: GVW 1 Moran’s I Results ......................................................................... 106 

Figure B - 8: GVW 8 Moran’s I Results ......................................................................... 107 

Figure C - 1: MNL Model 1 - Observed versus Estimated Numbers of Cars ................ 108 

Figure C - 2: MNL Model 2 - Observed versus Estimated Numbers of Cars ................ 108 

Figure C - 3: MNL Model 3 - Observed versus Estimated Numbers of Cars ................ 108 

Figure C - 4: MNL Model 1 - Observed versus Estimated Numbers of Light Duty Trucks

......................................................................................................................................... 109 



xiv 

Figure C - 5: MNL Model 2 - Observed versus Estimated Numbers of Light Duty Trucks

......................................................................................................................................... 109 

Figure C - 6: MNL Model 3 - Observed versus Estimated Numbers of Light Duty Trucks

......................................................................................................................................... 109 

Figure C - 7: MNL Model 1 - Observed versus Estimated Numbers of Medium Duty 

Trucks ............................................................................................................................. 110 

Figure C - 8: MNL Model 2 - Observed versus Estimated Numbers of Medium Duty 

Trucks ............................................................................................................................. 110 

Figure C - 9: MNL Model 3 - Observed versus Estimated Numbers of Medium Duty 

Trucks ............................................................................................................................. 110 

Figure C - 10: MNL Model 1 - Observed versus Estimated Numbers of Heavy Duty 

Trucks ............................................................................................................................. 111 

Figure C - 11: MNL Model 2 - Observed versus Estimated Numbers of Heavy Duty 

Trucks ............................................................................................................................. 111 

Figure C - 12: MNL Model 3 - Observed versus Estimated Numbers of Heavy Duty 

Trucks ............................................................................................................................. 111 

Figure D - 1: NB Model 1 - Observed versus Estimated Numbers of Cars.................... 112 

Figure D - 2: NB Model 2 - Observed versus Estimated Numbers of Light Duty Trucks

......................................................................................................................................... 112 

Figure D - 3: NB Model 3 - Observed versus Estimated Numbers of Medium Duty 

Trucks ............................................................................................................................. 112 

Figure D - 4: NB Model 4- Observed versus Estimated Numbers of Heavy Duty Trucks

......................................................................................................................................... 113 



xv 

LIST OF APPENDICES 

APPENDIX A: SIC Detailed Industry Classification ................................................... 97 

APPENDIX B: Spatial Autocorrelation (Moran’s I Results) ..................................... 100 

APPENDIX C: MNL Models - Observed versus Estimated Numbers Vehicles by Class

..................................................................................................................................... 108 

APPENDIX D: NB Models - Observed versus Estimated Numbers Vehicles by Class

..................................................................................................................................... 112 



1 

CHAPTER 1: INTRODUCTION 

1.1 Overview 

Freight movement is a major factor contributing to economic growth and 

development. In 2014, the transportation services sector represented 4.2 percent of 

Canada’s GDP (Transport Canada, 2012). Freight movement originates from the 

distribution of raw materials to final products and services from producers, wholesalers 

and distribution centers to consumers at multiple spatial scales. This includes movements 

at the international, national, regional and urban level. In 2014, Canada was the 13th 

largest exporter and 12th largest importer in the world, where the United States ranks as 

its largest and most important trading partner (Central Intelligence Agency, 2013). 

Canada’s freight is transported through multi-modal networks involving waterways, 

railways, highways, air-ways, and intermodal facilities. However, road transportation is 

the most dominant mode for freight movement in terms of value transported (Transport 

Canada, 2012). This dependency on road-based freight transport raises the need to 

understand commercial vehicle transportation activity to help planners and policy makers 

accommodate the travel demand needs for commercial vehicles along with private 

vehicle on the same road network. 

In general, freight transportation is a very complex system unlike passenger 

transportation. Indeed, freight movement is a dynamic process that results from diverse 

interactions among many stakeholders that belong to heterogonous industries (Tavasszy 

et al., 1998). Stakeholders involved are classified either as public or private decision 

makers who generally share the same objective which is to transport and deliver goods 
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and/or services. Also, commercial vehicle movements tend to vary on a daily basis and 

from season to season as a result of the rapid changes in the supply chain structures, 

logistics and technological advancements. For example, Just-in-time (JIT) delivery makes 

studying freight transport a complex process. On the contrary, private passenger vehicles 

tend to follow the same pattern for their main activities like driving to work, school or 

limited recreational locations. 

Furthermore, particularly in urban areas, freight transportation exhibits some 

unique features. Among them, commercial vehicle fleets are composed of a wide range of 

vehicle sizes spanning from small sized vehicles to large multi-unit trucks (Hunt & 

Stefan, 2007). Unlike passenger vehicles, commercial vehicles have a higher impact on 

the performance of the transportation system. More specifically, commercial vehicles on 

average have significantly larger gross vehicle weight (GVW), and as such contribute to 

the deterioration of pavement and air quality. Another unique feature is tour chaining 

where commercial vehicle movements are not as simple as a two legs trip but rather a 

tour with multiple trips. For example, the vehicle starts at the establishment and in many 

cases makes several stops for different purposes such as delivering goods or services 

before returning to the establishment.  

Initially, the conventional four-step approach, primarily designed for passenger 

transport modeling, was the most commonly used method by many practitioners and 

decision makers to model commercial vehicle movement. The main reasons for such 

practice are the simplicity of applying the model and the relatively inexpensive and low 

effort in data collection. However, the complexities of commercial vehicle movements, as 

mentioned earlier, have led to a steady methodological evolution that sought to overcome 
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the known deficiencies inherited in the four-step approach. There has been a shift from 

the conventional approach to disaggregate models, for their ability to capture the 

fundamental characteristics of freight movement. For example, the supply-chain 

approach, explicitly accounts for the different component of the supply chain and their 

behavior. Also, such technique could be calibrated to capture new shipping behaviours 

such as the adoption of outsourcing, e-commerce, and JIT delivery systems. Moreover, 

the tour-based approach is able to represent commercial vehicle activities and activity 

chains using data collected in surveys or based on actual observed GPS data. It is worth 

noting that obtaining a representative sample to develop such models is hard and time 

demanding. As a result, in many cases, the available data eventually determines the 

appropriate technique to be used to study a specific aspect in commercial vehicle 

movement. 

1.2 Statement of the Problem 

In spite of the progress that commercial vehicle movement research has made in 

recent years, the state-of-the-art in freight modeling is far behind when compared to the 

work done on passenger vehicles (Samimi et al., 2012). For instance, the process 

governing commercial vehicle ownership is among the areas that are lacking within the 

freight modeling research. Therefore, this project intends to fill this gap by studying the 

determinants of commercial vehicle ownership with an application to Windsor Census 

Metropolitan Area (CMA). Our efforts will focus on studying the spatial distribution of 

commercial vehicles. This particularly important since the spatial distribution of where 

these vehicles are housed by their respective establishments (similar to private vehicles) 

is a key determinant of the level of traffic volume observed on an urban road network. In 
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fact, the work presented by Madar (2014) confirms that the number of owned commercial 

vehicles is a significant factor that explains the number of generated commercial trips. 

Therefore, there is a need to identify the factors that explain the prevalence of specific 

types of commercial vehicles at a certain location in a city to help devise more effective 

travel demand models. 

One of the main reasons for the underdevelopment of commercial vehicle 

ownership models in the literature is due to the lack of detailed commercial vehicle travel 

data. According to the literature, most of the existing efforts to collect detailed 

commercial travel data resulted in a low response rate (Samimi et al., 2012). Private 

establishments usually vacillate to share information related to their business freight 

and/or transportation activities. Therefore, this research also addresses the problem of 

data scarcity by employing synthetic population techniques to microsimulate the number 

of commercial vehicles owned by all individual business establishments that engage in 

delivering goods or services in the Windsor CMA. The case presented here uses the 

combinatorial optimization technique (CO) to synthesize the number of commercial 

vehicles owned by business establishments that engage in commercial travel activities 

(i.e. delivering goods and/or services).  

The offered procedure to microsimulate the spatial distribution of commercial 

vehicles within an urban area is novel and has not been attempted in the past. Such 

analysis provides a basis for evaluating commercial data sources such as the R. L. Polk 

and Co. vehicle registry data and its potential in analyzing commercial vehicles in other 

areas where micro-datasets are not available. Accordingly, the acquired Polk records are 

used to identify the locational determinants which explain the spatial prevalence of 
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specific types of commercial vehicles in a given census tract (zone). The choice decision 

is handled using the logit model modeling framework (i.e. Multinomial Logit and Mixed 

Logit) and the count models (i.e. Poisson and Negative Binomial Regression).  

1.3 Objectives 

The primary objectives of this project are: 

1) Advance the current state of knowledge on urban commercial vehicle 

movement transportation research by focusing on commercial vehicle 

ownership and its spatial distribution  

2) Determine the factors that lead to the prevalence of commercial vehicles by 

their GVW at the traffic analysis zoning (TAZ) level  

3) Provide the basis for commercial vehicle ownership forecasting through the 

use of different statistical methods and techniques 

4) Provide the foundation for performing micro-level future travel demand 

forecasting with the help of data synthesis techniques 

1.4 Thesis Outline  

The remainder of this thesis is organized as follows. The next chapter provides an 

overview of previous studies regarding commercial vehicle movement models, vehicle 

ownership models and population synthesis techniques. Chapter 3 provides a clear 

description of the study area, the different data sources and data treatment required to 

generate the synthetic population and the statistical models. Then chapter 4 highlights 

method of analysis including a description of the general means through which the goals 
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of this research is achieved. The results from the synthetic population and the performed 

statistical analyses are presented in Chapter 5. This will be followed by a final chapter 

that provides a conclusion of the results achieved, contributions and policy implications, 

the limitation of the work conducted, and some considerations for future research. A list 

of references follows Chapter 6, along with appendices containing additional information. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Commercial Vehicle Movement 

Despite the importance of commercial vehicle movement and their impact on the 

transportation network, the topic has not received the same attention as passenger vehicle 

movement (Zhou & Dai, 2012). Fortunately, the ability to collect detailed information in 

recent years has led to a surge of studies on commercial vehicle movement. Yet, there is a 

need for more work on the topic. The development of effective models requires a 

thorough understanding of commercial vehicle movement. To gain such understanding 

researchers have applied a wide variety of methodological techniques over the years.  

Reviews found in freight literature employ different frameworks to classify 

commercial vehicle movement models. For example, Chow et al. (2010) provide a review 

of different freight forecasting models with respect to their data requirement, model 

development and the objectives that could be achieved using each model. Similarly, Zhou 

and Dai (2012) review existing freight models with respect to major data requirements, 

procedures, techniques and real-world application cases. Alternatively, Anand et al. 

(2012), follow a framework that classifies the available urban goods movement models 

based on the stakeholders’ involvement, the objective of modeling, the descriptors for 

modeling purpose and the view point for achieving the objective. Other reviews only 

focus on models developed at the urban and metropolitan level (Anand et al., 2012; 

Regan & Garrido, 2001; Zhou & Dai, 2012) or only at the national and international 

levels (Yang et al., 2010; De Jong et al., 2004) 
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The intent of this section is to provide a review of some modeling efforts in 

freight demand modeling by underlining the methods used, the nature of the data required 

and the limitations of each approach in terms of its strengths and weaknesses. The 

following is organized on the basis of three basic approaches: 1) Conventional 

Approaches, 2) Supply-Chain Approaches and 3) Simulation (Tour-Based) Approaches. 

2.1.1 Conventional Approaches  

Conventional approaches usually starts with a specified formulation or a defined 

model which is applied and adapted to accessible data. This category includes: 1) 

Factoring methods, 2) Truck or (Trip-based or Vehicle) method, 3) Commodity-based 

method and 4) Input-Output method. Most of the aforementioned techniques generally 

apply one or more element of the urban four-step travel demand forecast model (NCHRP 

606, 2008). Applying the urban four-step modeling process to freight modeling was an 

ordinary transition since this method is well established in modeling private vehicles 

movement. This model is a sequence of four sub-models: trip generation, trip 

distribution, mode split and network assignment. 

Assuming that the study area is divided into different geographic zones, the first 

sub-model trip generation, estimates the total number of production and attraction freight 

movement trips starting or ending in each zone most often as a function of employment 

or establishment size (NCHRP 606, 2008). The second sub-model, trip distribution, 

estimates the freight flows between all the geographic zones. For this step the most 

commonly used methods is the gravity model as a function of generation and attraction 

factors of the origin and destination zones weighted by an impedance term that represents 
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transportation costs between zone pairs (De Jong et al., 2004). The third sub-model, 

mode split, designates the estimated freight flows for each distinct mode. Usually discrete 

choice models are employed either at the aggregate or the disaggregate level to estimate 

modal split usually as a function of cost and commodity classifications (De Jong et al., 

2004). Finally, the fourth sub-modal, traffic assignment, assigns estimated flows by mode 

to individual links of the network. This process can be rule-based assignment, freight 

truck only network assignment or multiclass network assignment (NCHRP 606, 2008).  

Factoring method includes different ways to estimate truck flows or commodity 

flows. This includes (i) direct facility flow factor method and (ii) Origin – Destination 

(O-D) factoring method. The direct facility flow factor method forecasts future flows 

based on existing base year data. This approach could be used either to estimate future 

flow on a facility by applying growth factors to the flow on that facility or by applying 

factors that account for the diversion of flow from that facility to other routes or modes. 

This approach relies on time series analysis and economic analysis to forecast flows 

based on historical data and change in the level of economic activities (Yang et al., 2010; 

NCHRP 606, 2008).  

Alternatively, the O-D factoring method uses existing O-D freight flow data to 

forecast future estimates of flow either using the Fratar expansion technique or the 

entropy maximization mathematical programming process (NCHRP 606, 2008; Stefan & 

Hunt, 2004). The former is an iterative proportional fitting technique applied to freight 

tables to predict freight flows based on predicted production and attraction growth rates. 

Afterwards, the factored O-D matrix is used for mode split and traffic assignment model 

components. 
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Truck-based model in essence is a three-step model; trip generation, trip 

distribution, and traffic assignment, rather than a four-step model since it only addresses 

trucks. Consequently, the model estimates aggregate truck flows and assign them to links 

of the road network. Alternatively, other models incorporate different truck classes such 

as light, medium and heavy trucks based on gross vehicle weight within the trip 

generation component (NCHRP 606, 2008). Such models use the trip generation and 

distribution component to produce flows by vehicle class and then assign flows to the 

road network.  

In the literature, Commodity-based models are also named the four-step 

commodity model since they utilize the same model structure as the passenger 

forecasting models. In the first stage freight flow production and attraction are estimated 

in ton or dollars at a predefined geographic level. In the second stage, the flows between 

distinct zones within the study area are estimated. Although, trucks are considered the 

dominant mode for commodity transportation, the third stage which is modal split is 

applied to assign commodity flows to different available modes. Finally, the fourth stage 

handles the flows to be assigned to the roadway network by estimating traffic volumes on 

routes between different zones for specific time frames. 

Input-output economic model generates commodity flows and truck flows O-D 

directly from land use activities and zonal data. This model focuses on the layer of trade 

by incorporating input-output (I/O) and land use–transport interaction models to explain 

the interaction between trade, transport and the economy (Anon, 2013). Accordingly, 

changes in economic activities and land-use patterns influence the extent and distribution 

of freight flows on the transportation network and corresponding transportation 
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performance. Cases studies for each of the model classes defined under the conventional 

approaches can be found in the statewide freight forecasting toolkit (NCHRP 606, 2008). 

Conventional approaches are comparatively straightforward and thus are easy to 

perform and can be relatively inexpensive. The sources of information needed to 

formulate such models are usually surveys or roadside counts. The former are surveys 

conducted to gather general information about shippers and carriers within the study area 

such as their current address and the total number of employees. Also information 

collected include the number of trips, the time of each trip, the origin and destination of 

each trip, the type of commodity or service shipped, the cost of the shipment/service, the 

weight of the shipment, the distance travelled, the mode choice, the route choice and 

other general information (NCHRP 606, 2008; Chow et al., 2010; Regan & Garrido, 

2001; Gonzalez-Feliu & Routhier, 2012). On the other hand, roadside counts only 

provide information such as vehicle count, type, speed and weight but not trip purpose, 

routing, duration etc. This process is challenging since it is hard to determine which 

vehicles are truly commercial vehicles (Stefan & Hunt, 2004).  

These data sources thus provide the data needed to establish the trip generation, 

trip distribution, mode split, and traffic assignment. However, often times, the data 

collected to study commercial vehicle movement are limited due to the low response of 

establishments, where they are hesitant to share information regarding their firms and/or 

commercial vehicle activities. Other data sources that are used are the Census Data and 

Network Data. The former is a data source where information about the population, 

employment and other socioeconomic factors are available. The latter include network 
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physical information such as the segment capacity, volume, free flow speed, and travel 

time for the all the existing networks within a study area.  

Although these models are accepted as useful toolkits and have been widely used, 

they are still limited. The factoring methods, for instance, can only be applied to forecast 

freight flow for the near future for a small study area. Also, such technique lacks the 

response to policy changes. Moreover, the structures of the four-step freight travel 

demand models significantly limit their ability to address some of the challenges to urban 

freight research (Anon, 2013). For example, vehicle-based models are usually formulated 

as a function of zonal employment or firm’s size and therefore insensitive to the true 

economic behavior of commodity movement. Similarly, commodity-based models have 

limited ability to address the actual trip chain of commodity flows, services trips, local 

pickup and delivery trips, truck trips with less-than-a-truck loads, and empty truck trips 

(Zhou & Dai, 2012). Therefore, such techniques are widely used to simulate zone-to-zone 

commodity flow data rather than analyzing public policies. 

2.1.2 Supply-Chain (Logistics) Approach 

Freight transportation is, in nature, a very complex system unlike passenger 

transportation. Indeed, freight movement is a dynamic process that results from diverse 

and complicated interactions among many stakeholders. This dynamic process includes 

the economic activities underlying the complete supply chain starting from the movement 

of raw goods to the production, sales and sourcing, inventory and distribution of finished 

products (Tavasszy et al., 1998). In general, the logistical organization of a firm can be 

divided into two types: product logistics and transport logistics (Tavasszy et al., 1998). 
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Product logistics involves connecting demand and supply of goods, resulting in trade 

relations between origin and destinations of goods based on goods prices, availability and 

accessibility. Transport logistics involves the optimization of goods movement between 

locations utilizing the available transport modes and services by considering costs and 

quality elements such as reliability and speed (Boerkamps et al., 2000). 

In this process, stakeholders involved are classified as public or private decision 

makers. Although, in general they have the same objective which is to transport goods 

and/or services, each has their own interests. Public stakeholders are the administrators 

who apply different policy measures to optimize the movement of commodities to 

improve the environmental condition, alleviate the traffic congestion, and any other 

enhancement to the society. While private stakeholders are shippers, carriers or receivers 

who take decisions that aim to maximize their profit by minimizing the cost of pickup or 

delivery the products. Receivers have the strongest influence on the demand of goods. 

This demand involves the types, volumes and delivery frequency depending on the 

characteristics of the goods. On the other hand, shippers are often responsible for 

transportation and therefore have to decide on mode choice, vehicle type, and vehicle 

size. They also decide on grouping of goods type with different logistical characteristics 

(Boerkamps et al., 2000). 

The model developed by Tavasszy et al. (1998), Strategic model for integrated 

logistic evaluations (SMILE), consists of three stages; (i) production, (ii) inventory and 

(iii) transportation. In the first stage, make/use tables are used to form a production 

function that generates the volume of commodities produced and consumed for each 

sector. Then based on production chains, sales, sourcing processes at each location, the 
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spatial distribution of the flows between these locations is determined. Afterward, at the 

second stage inventory chain are obtained using two steps. The first step involves finding 

optimal distribution location given three alternative channel types; direct, one distribution 

center or two distribution center. Then the second step involves using a choice model to 

assign flows to these alternative channel types based the total logistic costs (i.e. handling 

inventory and transport costs). Lastly, at the third stage, six modes of transportation are 

considered in a mode choice model, using the shortest route per mode for the choice 

disutility.  

The model developed by Boerkamps et al. (2000), GoodTrip, is a modification of 

the four stage model to incorporate the supply chain. The supply chains are constructed 

by linking different activity types by distribution channels. Activity types can be 

consumers, supermarkets, stores, offices, distribution centers or factories. Distribution 

channel can be direct with one vehicle type or complex with multiple distribution centres, 

transport modes and transport companies. Based on consumer demand the model 

estimates the volume of goods produced in each zone per goods types. Goods flows are 

estimated by linking demands of activities to their supplying activities based on receiver 

choice and the spatial distribution of activities. The estimated flows are then combined 

using a groupage probability. Afterwards, each combined goods flow is assigned to 

vehicle tours by mode. Depending on origin’s activity type, the transport mode, vehicle 

capacity, maximum load factor, and maximum number of stops per tour are determined. 

Finally, based on the destination activity type the minimal activity delivery frequency are 

determined. This model was calibrated and used to compare the logistical performance of 

three types of urban distribution systems in the city of Groningen in Netherland. 
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The GoodTrip model framework was the basis for developing a micro-simulation 

urban truck logistics model which was tested for Tokyo, Japan by Wisetjindawat and 

Sano (2003). Later, Wisetjindawat et al. (2006) extended the model to incorporate the 

fractional split distribution method. The model structure consists of two stages; 

commodity production and commodity distribution. At the first stage, the model utilizes 

regression techniques to estimate the production and consumption amounts based on firm 

characteristics such as number of employees and floor area. At the second stage, a spatial 

mixed logit model is utilized to incorporate the complex interactions among freight 

agents in a supply chain and the spatial interactions affecting each agent behavior. Hence, 

the fraction of a commodity k assigned to a customer j from shipper i, is the product of 1) 

distribution channel probability, 2) zone choice probability, and 3) shipper choice 

probability. Then the multiplication of the calculated fraction and the total amount of 

commodity consumption of customer j yields the commodity flow from shipper i to 

customer j. Summing all commodity flows among firms of each zone will produce the 

commodity OD matrix. 

In view of that, De Jong and Ben-Akiva (2007) also developed a structure and 

identified the data sources needed for a new logistics module for Norway and Sweden to 

be included in the existing freight demand model. However, the model has not been 

estimated on disaggregate data. A recent study by Samimi et al. (2012) also proposed a 

framework to provide a behavioral picture of the current and future modal split in the 

U.S. freight transport market. Other logistics models presented an agent-based 

microsimulation that accounts for logistics reaction patterns (Liedtke & Schepperle, 

2004; Roorda et al., 2010).  
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Data quality and availability is a vital key to develop and validate the supply-

chain models and all other approaches in general (Samimi et al., 2012). This approach in 

particular, requires detailed information about the actual location of producers, 

distributors and consumer within a study area. Also, detailed information on the volume 

and frequency, the mode choice and route of each commodity flow for each origin-

destination pairs are required (Zhou & Dai, 2012). As mentioned earlier, obtaining such 

information via surveys is mainly dependent on the cooperation of private stakeholders, 

who most of the time vacillate to share information related to their business freight and/or 

transportation activities such as logistics cost and the origins of raw material. As a results 

most of the existing efforts to collect detailed commercial travel data resulted in a low 

response rate.  

Supply-chain model, attempts to explicitly account for the different components 

of the supply chain to understand, describe and predict their behavior under different 

scenarios. This dynamic approach makes it possible to analyse the interaction between 

economics and freight transport. Such models are able to provide valuable information 

about system mechanics and its activities to explain how changes in external factors such 

as socio-economic trends can affect the performance of logistics and transport system. 

Also, they are developed to answer questions related to measures to improve the system's 

performance and the impacts of these measures (Tavasszy et al., 1998). This framework 

makes it possible to analyze and evaluate logistical choices of different stakeholder 

before implementation. Last but not least, these models can be designed and calibrated to 

capture new shipping behaviours such as the adoption of outsourcing, e-commerce, (JIT) 
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delivery systems (Samimi et al., 2012). Indeed, developing such framework will aid 

obtaining insights for future policy making. 

Then again, the issue remain on how to overcome the limitation of the available 

survey data. Hence, these models are often suitable to model the supply chain of limited 

number of industries where reliable data exists. Therefore, most of the existing models 

are used in conjunction with freight model such as I/O models to understand the complete 

picture of freight flows within a study area (Zhou & Dai, 2012) Additionally, supply 

chain models generally focus on commodities flows were service delivery tours are not 

included.  

2.1.3 Tour-Based Microsimulation Approach 

Beside the fundamental characteristics mentioned before, freight transportation, 

particularly in urban area, exhibits some unique features. Among them, tour chaining 

where commercial vehicle movement are not as simple as two legs trip but rather 

manifest themselves in the form of tours. For example, when a commercial vehicle 

movement takes place to give rise to commercial trips, the vehicle starts at the 

establishment and in many cases make several stops before it returns to the establishment. 

Also, commercial vehicle movement tend to vary from day to day and season to season, 

unlike private vehicle passengers were they tend to follow the same pattern for their main 

activities like driving to work, school or limited recreational locations. In recognition of 

these characteristics, there has been a shift toward adopting the micro-approach instead of 

the conventional approaches to model commercial vehicle movement (Hunt et al., 2004). 
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This approach construct tours to simulate the salient chaining behaviour of commercial 

vehicle movement trips.  

Hunt and Stefan (2007) where one of the first pioneers who developed a tour-

based microsimulation for the city of Calgary, Alberta. First, using an aggregate trip 

generation model the number of tours generated by each category of establishment for 

each time period per zone is calculated. Then, using Monte Carlo techniques and single 

level logit model with utility functions that include zonal-level land use, establishment 

location and accessibility, each tour on the list for each zone is assigned a primary tour 

purpose and a vehicle type. Then using a Monte Carlo process each tour in the list for 

each time period is assigned a precise start time. Finally, again using a Monte Carlo 

technique and single level logit model, the next stop purpose, location and duration are 

assigned iteratively until the tour ends. This novel technique provides a very useful tool, 

to understand and simulate urban commercial movements well beyond the ‘freight only’, 

‘large-truck-only’ and ‘regional-level’ approaches used previously. Later Ferguson et al. 

(2012), extended this study and examined the transferability of this framework to 

estimate the movements of commercial vehicles in other urban areas. The model was 

calibrated, implemented and validated for the Greater Toronto and Hamilton Area 

(GTHA) indicating that modeling framework from Calgary can be transferred and used to 

depict the travel patterns of commercial vehicle movements in other urban areas.  

Joubert and Axhausen (2009) represented another novel approach in extracting 

commercial vehicle tours from raw global positioning system (GPS) data in Gauteng, 

South Africa. Building on that foundation, and using the same dataset, Joubert et al. 

(2010) developed an agent-based approach to reconstruct commercial vehicle chains and 
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simulate them along with private vehicles. They adopted the same framework proposed 

by (Tavasszy, 2007) that extends the conventional four-step models to account for the 

decisions and issues relevant to freight modeling. This framework consists of five sub-

modals: Production and Consumption, Trade (sale and sourcing), Logistics, 

Transportation and Network sourcing. Starting with synthesized population of agents, 

each selects a single plan from its set of plans. A plan consists of a set of sequential 

activities, each with a location that is associated with a given network. These activities 

are connected with a route through the network and the mode of transport. These plans 

are developed for each commercial vehicle based on conditional probabilities calculated 

for four chain parameters: the start location, start time, chain duration and number of 

activities per chain. When the model is executed, information is recorded in the form of 

discrete events such as the start and end of an activity, entering and leaving a link in the 

network, or waiting to access a link. Based on the selected plan simulation events are 

then interpreted to derive a score. Depending on the rewarded score these plan can be 

modified by changing the start time/location of the activities, or the mode/routing of the 

travel legs during the re-planning step. After a specified number of iterations, the 

achieved results are then compared to observed counts data. The achieved results were 

validated to be geographically and temporally accurate representation of observed vehicle 

chains. 

These models usually require an extensive amount of data that are usually 

gathered from surveys. For the model developed by Hunt and Stefan (2007) a massive 

survey was conducted for Calgary and Edmonton regions, in the province of Alberta, 

Canada, to collect information on tours made on a typical weekday in the year 2001 
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(Hunt et al., 2006). The surveyed establishments provided information on the 

transportation activity of their entire fleet over a 24-h period, including origin, 

destination, purpose, fleet, commodity information and descriptions of the associated 

person and vehicle movements arising with this activity. Total survey costs including 

survey planning and design, execution, data coding and verification, and expansion were 

about $800,000. Other studies employed GPS data to understand and simulate 

commercial vehicle tours. This detailed and disaggregate data was used to represent the 

activity and chain durations, number of activities per chain and the spatial extent of the 

activity chain (Joubert & Axhausen, 2009). 

Tour based microsimulation approach provide new insight in modeling urban 

commercial vehicle movement. It highlights the significance of light commercial vehicle 

and the prevalence of service trips opposed to good delivery within an urban area. This 

approach makes it possible to provide detailed representation of commercial vehicle tours 

without having to deal with shipment and the related complexities regarding conversion 

of commodity flows to shipment, the allocation of shipments to vehicle or routing (Hunt 

& Stefan, 2007). The model permits “feedback effects” to effectively assess response to 

changes in policies and hence leading to better planning of urban freight activities. For 

instance, it can be used to examine modal changes and rail planning (Chow et al., 2010). 

Moreover, it can be used to assess the impact of commercial vehicle movement on the 

environment and to provide measures to elevate system’s performance. It is worth 

mentioning again that the major constraint in developing such model is data availability. 
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2.2 Vehicle Ownership Modeling 

Vehicle ownership models are typically used as an external subsequent model 

before modeling travel demand (Miller et al., 1998). Vehicle ownership has been 

considered as one of the important explanatory socio-economic factors that affect trip 

distribution and mode choice models in passenger travel demand models. Moreover, 

automobile ownership is a required input to most land use models. Therefore, estimating 

such variable is critical and can affect the ability to perform accurate future travel 

demand forecasting. More specifically, vehicle ownership levels can affect the prediction 

of vehicle miles of travel, traffic congestion, and air quality emission (Chu, 2002). 

Our review to the literature indicates that the existing body of literature on vehicle 

ownership modeling has been focused on private vehicles. In comparison, no efforts have 

been conducted in the past to model commercial vehicle ownership. Given the scarcity of 

studies on commercial vehicle ownership, the remainder of this section highlights the 

work that has been done for the case of private vehicle ownership. While the ownership 

process for commercial vehicles differs from private vehicles, some of the general 

principles governing the ownership process hold in the case of the former. Also, the 

methods used to model private vehicle ownership could be used in the case of 

commercial vehicles.  

The studies found in literature employ different frameworks to classify car 

ownership models. Jong et al. (2004) provide an audit of a wide range of models 

developed for public sector planning since 1995. They classified car ownership models 

into nine types and compared them based on sixteen different criteria. Potoglou and 
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Kanaroglou (2008a) complement the aforementioned study and focus on the specific 

aspects of disaggregate automobile demand. They provide a review of different studies 

with respect to data requirement, modelling approach, and the relevant explanatory 

variables. These studies include car ownership level, vehicle-type choice, vehicle 

holdings, and vehicle transactions models. They also discuss models that assess the 

potential demand of alternative fueled vehicles. A more recent study by Anowar et al. 

(2014) has reviewed the most noticeable disaggregate models that were developed within 

the past two decades using a four-way classification of the modeling framework. These 

four models categories are exogenous static, endogenous static, exogenous dynamic and 

endogenous dynamic. They also provide a decision matrix to aid researchers and 

practitioners to determine the appropriate model frameworks for conducting vehicle 

ownership analysis. 

A variety of methodological techniques have been applied to analyze automobile 

ownership data. According to the available data, two broad modeling approaches can be 

identified: aggregate analysis at the regional level, and disaggregate analysis at the 

household level (Li et al., 2010; Chu, 2002). The statistical methods employed by 

researchers have primarily relied on the nature of the modeled dependent variable. The 

dependent variable of existing vehicle ownership models are typically either a binary 

response outcome (e.g., owning a car and not owning a car) (Karlaftis & Golias, 2002; Li 

et al., 2010), or a multiple response outcome (e.g. zero automobiles, one automobile, two 

automobiles, and three or more automobiles) (Potoglou & Kanaroglou, 2008a). 

Dependent variables with multiple response outcomes has been treated as ordinal 

(accounting for the ordinal nature of ownership data), nominal (no physical relation 
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between the various ownership level) or count (representing an actual count of the 

number of vehicles owned)  

According to Li et al. (2010), earlier approaches examined vehicle ownership as 

the accumulation of household decisions at a more aggregate geographic level that 

pertained to a region or a country. Here, different aggregate-based methods (e.g. 

aggregate OLS, aggregate time series models, aggregate cohort models, pseudo-panel 

data analysis, and longitudinal data analysis) were reported in the literature (Gómez-

Gélvez & Obando, 2013; Thakuriah et al., 2010). However, the general consensus is that 

aggregate-based models tend to lack a behavioral basis to capture the variation among 

households. Also, aggregate models have been criticized to lack the proper policy 

sensitivity needed for practical urban planning applications (Anowar et al., 2014).  

Recognizing the need to address the different behavioral aspects associated with 

the decision of a typical household to own a certain type of vehicle, the use of 

disaggregate modeling techniques became widespread. Examples are the work done by 

(Schimek, 1996; Ryan & Han, 1999; Wu et al., 1999; Hanly & Dargay, 2000; Baldwin 

Hess & Ong, 2002; Chu, 2002; Prillwitz et al., 2006; Sillaparcharn, 2007; Potoglou & 

Kanaroglou, 2008b; Li et al., 2010; Ma & Srinivasan, 2010; Thakuriah et al., 2010; ter 

Schure et al., 2012; Bhat et al., 2013; Dash et al., 2013; Gómez-Gélvez & Obando, 2013; 

Klincevicius et al., 2014). Across these studies, the discrete choice approach is widely 

used to model car ownership at the household level where two general decision 

mechanisms have been used; the unordered and the ordered-response responses.  
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The Multinomial Logit (MNL) model is the most well-known un-ordered 

response approach, with the assumption that an individual (i.e. decision maker) is rational 

and his/her vehicle type ownership decision is the one that will maximize his/her choice 

utility. On the other hand, the ordered logit (ORL) and ordered probit (ORP) models 

capture the ordered nature of vehicle ownership data. Unlike the MNL model, these 

models assume that a single continuous variable represents the propensity of a household 

to own a certain number of vehicles. Thresholds are then estimated to distinguish the 

different ownership levels (Gómez-Gélvez & Obando, 2013). Potoglou and Susilo (2008) 

have compared different car ownership models including MNL, ORL and ORP, and 

found that the MNL should be selected for modeling household car ownership. Despite 

the popularity of using the ordered and unordered discrete choice modeling to examine 

disaggregate vehicle ownership data, some studies acknowledged that ownership data 

represent typical count data. As such, several authors have applied count data regression 

models to model passenger car ownership levels (Karlaftis & Golias, 2002; Shay & 

Khattak, 2005). However, the application of such models remains uncommon in the 

literature (Anowar et al., 2014). Furthermore, others have applied spatial models to 

account for spatial autocorrelation across observational units. For example the Poisson-

lognormal conditional autoregressive (CAR) model implemented by Chen et al. (2015) to 

examine Prius hybrid electric vehicles, other electric vehicles, and conventional vehicle 

ownership patterns at a neighborhood level. The results of this study emphasize on the 

importance of considering spatial auto-correlation patterns to avoid biased parameters. 

Car ownership models have employed various explanatory variables to replicate 

the mechanism that a household experience when choosing a type of vehicle to own or 
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when determining the number of vehicles to own. In general, these explanatory variables 

can be classified into the following categories: socio-economic and demographic 

characteristics, vehicle-specific characteristics, housing attributes and urban form 

characteristics. Based on the reviewed studies, household income has been reported as 

one of the most important socio-economic explanatory variables for car ownership. 

Another important determinant that has a strong influence on the number of vehicles 

maintained by the household is the number of household members and their designation 

(e.g. working adults, children, etc.) (Gómez-Gélvez & Obando, 2013). Other 

socioeconomic and demographic variables that were reported include driving license, 

ethnicity, gender, and occupation type (Chu, 2002; Karlaftis & Golias, 2002).  

Automobile characteristics include variables that represent quality of vehicles, 

vehicle fuel efficiency and ownership costs. These variables are expected to increase 

vehicle ownership, as a result of the decreased per-kilometer cost of driving and 

increased quality of vehicles such as comfort and roominess (Schimek, 1996). Ownership 

costs including the expenditures of purchasing or leasing the vehicle, maintaining and 

operating the vehicle are expected to decrease vehicle ownership level as they increase 

(Ryan & Han, 1999). In term of housing attributes, variables representing the type of 

housing (e.g. single-family house detached or multi-family) have been used (Chu, 2002). 

Four types of urban form measurements have been considered in disaggregate car 

ownership models: land use measurement (e.g. population and residential density), urban 

design (e.g. land use mix, street width, and pedestrian connectivity), transit accessibility 

and location effect (Ryan & Han, 1999; Baldwin Hess & Ong, 2002; Li et al., 2010).  
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2.3 Population Synthesis 

Population synthesis has been widely used in transportation research to develop 

activity-based microsimulation models and disaggregate land use models to address 

several policy relevant issues. It has been also incorporated as part of comprehensive 

socioeconomic and demographic model system and econometric micro-simulator for 

urban systems (Eluru et al., 2008; Pendyala et al., 2012). In particular, population 

synthesis is used as a preliminary step to construct the micro dataset that represent the 

characteristics of the agents used in a microsimulation. For these models the decision 

agents to be micro-simulated may include individual, households, dwelling or 

establishment populations (Ryan et al., 2009). In general, to develop such models, 

substantial amount of disaggregate data is required. However, almost all the available 

data are anonymized, geographically diluted, or generalized to specific spatial areas to 

protect the privacy of individuals (Voas & Williamson, 2000). In fact, when detailed 

information about individual demographics exists, their spatial location is diluted to 

maintain confidentiality (Frick & Axhausen, 2004). Hence, to overcome the tedious effort 

and long-time associated with data collection and the availability of data, synthetic 

populations for transportation research has received more attention over the past two 

decades (Arentze et al., 2007).  

The data used to create synthetic populations are usually; aggregate zonal 

population data and disaggregate sample data. The former are available in terms of 

summary cross-tabulations of demographics represented as one-way, two-way, or 

multiway cross-tabulations that describe the joint aggregate distribution of relevant 

demographic and socioeconomic variables at the zonal level (Arentze et al., 2007; Ryan 
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et al., 2009). For example, the Summary Files (SFs) used in the United States and the 

Small Area Statistics (SAS) file used in the United Kingdom (Beckman et al., 1996; Voas 

& Williamson, 2000). On the other hand, the disaggregate data represents a sample of 

individuals with information about the characteristics of each individual in it, excluding 

addresses and unique identifier. Examples are the Public-Use Microdata Samples 

(PUMS) in U.S. and the Sample of Anonymized Records (SAR) in UK (Beckman et al., 

1996; Voas & Williamson, 2000).  

A wide variety of techniques exist in the literature to estimate detailed microdata 

such as stratified sampling, geodemographic profiling, data fusion, data merging, 

reweighting, iterative proportional fitting synthetic reconstruction (IPFSR) and 

combinatorial optimization (CO) (Huang & Williamson, 2001). However, both IPFSR 

and CO have been identified as the most dominant techniques in the recreation of 

synthetic population microdata, although the IPFSR have been used more widely (Ryan 

et al., 2009). The synthetic reconstruction techniques presented by Wilson and Pownall 

(1976) current state-of-the-art, make use of the iterative proportional fitting (IPF) 

technique to create multiway tables of proportions that are consistent with the aggregate 

data totals. Then synthetic population of households is drawn from the microdata to 

match the proportions in the estimated multiway table (Beckman et al., 1996). In fact, 

with the variations in the types of input and how certain synthesis routines are carried out, 

a wide variety of the current population synthesizers involve the use of the IPF technique. 

Examples are the work done by (Arentze et al., 2007; Auld et al., 2009; Guo & Bhat, 

2007; Martin Frick et al., 2004; Simpson & Tranmer, 2005).  
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Some of the more recent studies listed above attempted to address some of the 

shortcomings in the method presented in Beckman et al. (1996). For instance, the method 

in Beckman et al. (1996) does not address the zero-cell-value problem and the inability to 

control for statistical distributions of both household- and individual-level attributes. Guo 

& Bhat (2007) introduces a new population synthesis procedure that allows the user to 

adjust the choice of control variables and the class definition of these variables at run 

time to avoid initial incorrect value of zero in the contingency tables. That is when a 

specific demographic group in the population is represented in the aggregate data but not 

represented in the sample of the disaggregate data. Auld et al. (2009) also addressed this 

problem and developed a routine that allows for the aggregation of control variable 

categories during execution at the sub-regional level based on a user-controlled 

aggregation threshold parameter. The inability for controlling attributes on multiple 

analysis levels in a population synthesis program was also tackled by Auld et al. (2010). 

Their methodology is implemented within a population synthesizer to allow multiple-

level synthetic populations such as household- and person-level, establishment and 

employee or household and vehicle estimation.  

The combinatorial optimization (CO) technique has been used as an alternative to 

the IPFSR method. This iterative technique is more computationally efficient as it 

synthesizes the population on a zone-by-zone basis. That is, synthesis for multiple zones 

could be executed at the same time using multiple processes or workstations. For a given 

zone, the CO method starts by choosing a random set of households from a sample 

microdata with replacement from the micro list, then assessing the effects of replacing 

one of the selected households. Accordingly, the replacement will be made only if the 
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swap improves the fit. Williamson et al. (1998) presented different techniques to solve 

the combinatorial optimization problem pertaining to synthesizing small-area micro 

population estimates. These included: 1) hill climbing approach, 2) simulated annealing 

(SA) approach, and 3) genetic algorithm approach. It was found that the SA is the best 

performing approach. Later, Voas & Williamson (2000) assessed the implementation of 

the CO technique and proposed a sequential fitting procedure to further improve the 

quality of the synthetic microdata. The simulated annealing approach is robust for its 

ability to find an optimal solution much faster than the classical hill-climbing method.  

SA has been proposed to solve optimization problems that may have several local 

minima. According to Yang (2010), SA can be used to solve global optimization 

problems by mimicking the annealing process of solid material. Annealing in the physical 

world entails liquefying a solid material (e.g. metal) then solidifying or crystalizing it at a 

low temperature. Crystallization at a low temperature tends to reduce the defects in the 

metallic structure of the material. In such case, global minimum energy is used to 

produce the solid state of the atoms forming the material. As noted in Yang (2010): “the 

annealing process involves the careful control of temperature and cooling rate, often 

called annealing schedule”. Unlike the hill-climbing method, SA avoids being trapped in 

local minima, thus speeding up the process of finding an optimal solution.  

The change in state (i.e. from liquid to crystal) is driven by a probability function 

that is analogous to the Boltzmann probability from the physical world: 

𝑃 = exp (−
∆𝐸

𝑘𝑇
)                                                            (2.1) 
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where 𝐸 is the change in energy level, 𝑇 is the temperature for controlling the annealing 

process and 𝑘 is Boltzmann constant which is assumed to equal 1. In the physical word, if 

the liquid is cooled at a low temperature, then the energy spent to change from the liquid 

state to the solid state will be optimal (i.e. global minimum energy). In such case, the 

formed solid will have the least amount of structural defect. The transition in state occurs 

over time and is subjected to a particular cooling schedule that could be either linear or 

geometric. In the linear case, 𝑇 =  𝑇0 –  𝛼 𝑡, where 𝑇0 is the initial cooling temperature, α 

is the cooling rate and t is a time instant. On the other hand, a geometric cooling 

temperature function takes the form 𝑇 =  𝑇0 𝛼𝑡. An advantage of the geometric form is 

that T will approach 0 when time reaches infinity. The cooling factor α is usually set to a 

value in the range of 0.7 – 0.99 to reflect a slow cooling process that will enable the 

system to stabilize. Usually, changes in energy level at time t (i.e. for 𝐸 = 𝐸𝑡+1 − 𝐸𝑡) 

will be accepted if the Boltzman probability P is greater than some random number r.  

In CO problems, the objective function 𝑓 is directly related to 𝐸. That is, 

𝐸 =  𝑓 and this give rise to the transition probability  

𝑃 = exp (−
∆𝑓

𝑇
)                                                            (2.2) 

When running the CO, the choice of the initial temperature 𝑇0 and cooling rate α are 

critical in achieving the equivalent of an optimal minimum energy (i.e. global minimum 

solution). Very high temperature represents a system at a very high energy state that 

makes it hard to achieve an optimal solution. On the other hand, very low temperature 

represents a situation where the system energy is not enough to jump out of a local 

minimum (i.e. system is trapped in a local minima state).  
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The CO technique is used to synthesize a disaggregate list of individuals with 

attributes that when aggregated will conform to a predefined zonal totals. For the case 

presented here, the simulated annealing (SA) algorithm starts by drawing N records from 

the available micro-sample at random and with replacement. The drawn N records are 

used to form aggregate tables that are then compared to the predefined zonal totals. The 

comparison, which could be the absolute difference between the generated aggregates 

from the random draw and the predefined aggregates, give rise to some cost function 𝑓𝑡. 

Next, the SA algorithm will generate another random draw from the micro-sample by 

arbitrarily swapping one of the records drawn from the previous iteration with a new 

record from the micro-sample. The new list is then used to calculate a new cost 

function 𝑓𝑡+1. Next, the algorithm will evaluate the fitness of 𝑓𝑡+1 and 𝑓𝑡 relative to the 

predefined zonal totals. If 𝑓𝑡+1 provides a better solution 𝑓𝑡  then the swaps is accepted, 

otherwise, the algorithm calculates the transition probability 𝑃 given the 𝑓 (𝑓 =

𝑓𝑡+1 – 𝑓𝑡), 𝛼 and the initial temperature 𝑇0. If the calculated probability P is greater than 

some random number r then the list used to calculate 𝑓𝑡+1 is accepted even though it did 

not provide a better fit compared to 𝑓𝑡. This enables the algorithm to move more freely 

within the solution space to arrive at the global minima in much faster computer run-

time. Note that the hill-climbing method will only consider the swap at instant (iteration) 

t+1 if and only if 𝑓𝑡+1provides a superior fit over 𝑓𝑡. The SA will keep iterating until the 

synthesized list is able to mimic the predefined zonal aggregates or when a maximum 

number of iterations is reached.  

Given their popularity, the CO and IPFSR techniques have been compared to find 

which would achieve better results. According to Ryan et al. (2009), both techniques are 
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capable of producing synthetic microdata that fit constraining tables extremely well. 

However, the CO technique is deemed superior for its ability to produce more accurate 

results with the variation in tabulation details and input sample size. Also, the utilization 

of the SA algorithm provides a further advantage given its computational superiority 

when compared to the IPFSR technique. 
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CHAPTER 3: STUDY AREA AND DATA DESCRIPTION 

3.1 Study Area 

The analysis in this research is focused on the Windsor CMA located on the south 

shore of the Detroit River and Lake St. Clair. Windsor occupies approximately 1022.31 

square kilometers of Canada’s land (Statistics Canada, 2011). The strategic location of 

Windsor across from Detroit Michigan, U.S.A. makes it an international gateway for 

people and commerce. According to the 2011 Canadian Census, the CMA housed 

323,342 people, 126,845 households and 123,305 jobs. The manufacturing sector 

accounted for 21 percent of all jobs in 2011, followed by retail trade and health care with 

each accounting for a respective 12 percent of the total jobs. Educational services ranked 

3rd with just below 8.9 percent. Windsor’s job distribution by industry is fairly similar to 

the total national distribution except for the manufacturing sector. Excluding Windsor, 

the national share of jobs pertaining to the manufacturing industry was just below 9.5 

percent. Windsor’s population and employment size and the strong presence of the 

manufacturing sector guarantee the presence of commercial vehicles (CVs) and the 

generation of CV trip activities. 

3.2 Data Description 

The data used for this research was acquired from different sources: R. L. Polk 

and Co., InfoCanada, Business Establishment Commercial Travel Survey (BECTS), and 

other sources. As an input to population synthesis process 1) the InfoCanada dataset is 

used to create representative aggregate cross-tabulations for the total firm population that 

engage in commercial activities, 2) the BECTS results is used to extract a representative 
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microsample and 3) the Polk dataset is used to validate the results achieved as will be 

discussed in the next section. On the other hand, for the modeling framework, the Polk 

dataset was also used as the dependent variable within the models and the other sources 

such as the 2011 Canadian Census data was used to provide independent parameters as 

input variables within the models. 

3.2.1 InfoCanada Dataset 

The first dataset was acquired from InfoCanada and consists of all 10,771 

establishments registered in the Windsor CMA in 2013. The attributes provided for each 

establishment includes; the InfoUSA (IUSA) code designation for each establishment, 

contact information (i.e. telephone number and full address), employment size and 

industry classification according to the North American Industry Classification System 

(NAICS) six-digit code and the Standard Industry Classification (SIC) code. 

3.2.1.1 Geocoding 

To get the zonal location of the business establishments within the Windsor 

CMA, this dataset was uploaded into ArcGIS and geocoded using the street addresses and 

postal codes. Initially, all business establishments with no addresses and postal codes (i.e. 

606) were dropped from the analysis, accounting for approximately 5.6% of all business 

establishments. Then, an address locater was created using the Desktop Mapping 

Technology Inc (DMTI) road network. Out of the 10,165 business establishments 

considered, 8,971 (i.e. 88%) were successfully geocoded. To further increase the percent 

of records that are spatially located, a shapefile with all the local delivery units (LDU) in 

the Windsor CMA from CHASS was used. This file had three records: Postal Code, 
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Longitude and the Latitude for each delivery unit in the CMA. Accordingly, an additional 

968 establishments were geocoded by joining the postal codes address of the business 

establishments with the postal codes in the LDU shapefile. 

  As a result of the geocoding process, 9,939 business establishments were 

geocoded, representing (97%) of all the addresses considered. Figure 3-1 illustrates the 

location of the geocoded establishments within the Windsor CMA, where establishments 

mainly operate from 65 zones rather than all the 73 zones comprising the study area.  

 

Figure 3 - 1: Establishment Spatial Distribution in the Windsor Census Metropolitan Area, 2013 

3.2.2 Business Establishment Commercial Travel Survey 

The second data source is the Business Establishment Commercial Travel Survey 

that was conducted by the University of Windsor in 2013 (Madar, 2014). This survey was 

undertaken in two stages; a telephone based survey followed by a web based survey. 

During stage one, businesses were contacted through a short telephone survey to know 

whether they engage in shipping and/or receiving goods and services and if yes, whether 

the establishment would partake in the online survey. A total of 6,740 establishments 
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where contacted in the Windsor CMA, where 1,461 reported that they engage in shipping 

or receiving goods and/or services. Furthermore, from the 1,461 establishments, 681 

agreed to participate in the online survey. 

During stage two, a link to the web survey was provided for those establishments 

that agreed to participate in the online survey. Then reminder emails were sent to 

establishments’ representatives after 2, 7 and 14 days. Recruited establishments were 

given 40 questions about the general establishment characteristics and inbound and 

outbound commercial activities on the day the survey. The data collection process is 

described in details in (Madar, 2014). Out the establishments who provided contact 

information to receive the survey, 171 completed the survey. However, only 162 

establishments completed the questions that pertain to the attributes required to create the 

microsample that will be used for the synthesizing process as will be discussed in the 

following chapter of this thesis. These attributes provide information that characterizes 

the surveyed establishments (e.g. location, industry type, employment size and number of 

owned vehicles). 

The industry type and the employment size reported were then checked, verified 

and corrected according to the information provided in the InfoCanada dataset. Since the 

values provided in the InfoCanada dataset are accurate and verified, whereas the survey 

responses were dependent on the respondents (i.e. establishments’ representatives) 

judgment and knowledge. Figure 3-2 represents the number of employees reported by 

each firms, it can be seen that the majority of the establishments (i.e. 66%) have a total of 

ten employees or less.  
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Figure 3 - 2: Frequency of Reported Total Number of Employees for Survey Respondents 

Figure 3-3 represent the frequency distribution of the establishments by their two-

digit SIC industry category and Table 3-1 provides a list all of the SIC categories to 

which survey respondent firms belonged with a general description of each category. A 

detailed description of each industry class is shown in Appendix A. Most of the 

respondent establishments belonged to “Retail Trade”, “Manufacturing” and “Wholesale 

Trade” accounting for 36%, 33% and 15% of all respondents, respectively. 

 

Figure 3 - 3: Frequency of Industry Classifications of Survey Respondents 

0

20

40

60

80

100

120

1 – 10 11 – 20 21 – 30 31 – 40 41 – 50 51 – 60 81 – 90 > 90

F
R

E
Q

U
E

N
C

Y

NUMBER OF EMPLOYEES

0

10

20

30

40

50

60

52-59 20-39 50-51 70-89 40-49 15-17 01-02,

07-09

60-67 10-17

F
R

E
Q

U
E

N
C

Y

INDUSTRY CATEGORIES BY TWO-DIGIT SIC CODE



38 

Table 3 - 1: Two - digits SIC codes and description of Survey Respondents 

Industry Code Description 

01 – 02, 07 – 09 Agriculture, Forestry, Fishing 

10 – 14 Mining 

15 – 17 Construction 

20 – 39 Manufacturing 

40 – 49 Transportation & Public Utilities  

50 – 51 Wholesale Trade 

52 – 59 Retail Trade 

60 – 67 Finance, Insurance, Real Estate 

70 – 89 Services 

91 – 99 Public Administration 

 

The diversity in the distribution of firms per industry classes and firm sizes lead to 

a varied CVs ownership across the firms. Figure 3-4 shows the distribution of the 

reported total number of vehicles owned by each firm. It can be observed that most 

establishment own four vehicles or less. A possible explanation for such trend is the large 

portion of establishments with low employment. 

 

Figure 3 - 4: Frequency of Total Number of Vehicles Owned by Survey Respondents 
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3.2.3 Polk Dataset 

The third dataset is the Polk data for the year 2013 acquired from R. L. Polk and 

Co. This dataset consists of all registered CVs at the census tract level in the CMA, where 

commercial vehicles are classified into eight different classes according to their Gross 

Vehicle Weight (GVW) and geo-referenced to the census tract level. Table 3-2 provides 

the weight ranges in pounds for each GVW class.  

Table 3 - 2: Gross Vehicle Weight Classes and Corresponding Weight Ranges in Pounds 

GVW Wight Ranges 

Class 1 6,000 lbs. or less 

Class 2 6,001 – 10,000 lbs. 

Class 3 10,001– 14,000 lbs. 

Class 4 14,001– 16,000 lbs. 

Class 5 16,001– 19,500 lbs. 

Class 6 19,501– 26,000 lbs. 

Class 7 26,001– 33,000 lbs. 

Class 8 33,001 lbs. and over 

Class 9 Cars 

 

Based on the acquired data, the total number of commercial vehicles in 2013 in 

the 73 zones comprising the CMA was found to be 13,983 vehicles. However, vehicles 

registered outside the 65 zones (that were identified through the geo-coding process) 

were excluded from the analysis. Also, vehicles for 2 of the 65 zones were excluded since 

these had no establishments engaging in shipping goods and/or services. As a result, the 

total number of registered vehicles was reduced from 13,983 to 12,240 vehicles and those 

were attributed to 63 zones. 
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The Polk dataset provided information with regards to the model, make and year 

of each registered vehicle. Given this information, the counts of registered vehicles in 

each zone by their year, model and make were considered. The exploration indicated the 

existence of large counts of the same vehicle spanning from 23 to 220 vehicles per 

unique year, make and model in zone 5590033. For instance, this is the only zone that has 

a count of 220 vehicles of “2013 Chrysler 200”. Consequently, this zone was also 

dropped from the analysis since it represents a clear outlier compared to all other zones. 

This is particularly the case because the count of vehicles pertaining to a unique year, 

make and model class in any of the other zones was fairly low with an average of 5 

vehicles. In fact, the average among 59 zones was 3 vehicles and only 5 zones had counts 

of 30, 24, 22, 18 and 13 vehicles per unique year, make and model class, respectively as 

illustrated in Figure 3-5. After dropping zone 5590033, the total number of registered 

vehicles was further reduced from 12,240 to 8,869 vehicles. The latter are housed in 62 

zones. 

 

Figure 3 - 5: Max Number of Vehicle per Make, Model and Year per Zone 

#   Maximum Number of 

Vehicles 

´



41 

Figure 3-6 presents the breakdown of the 8,869 CVs registered in the 62 zones 

considered for the analysis. As can be seen, the majority (78%) of all the considered 

registered CVs are either cars or light duty trucks (i.e. GVW 1 and GVW 2).  

 

Figure 3 - 6: Distribution of Commercial Vehicle Classes 

3.2.3.1 Spatial Autocorrelation (Moran’s I Statistics)  

Moran’s I Statistic was calculated in ArcGIS to test if the spatial distribution of 
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were grouped based on the Federal Highway Administration (FHWA) classifications to: 

(i) Cars; (ii) Light Duty Trucks (GVW 1-2); (iii) Medium Duty Trucks (GVW 3-6); and 

(iv) Heavy Duty (GVW 7-8). Figure 3-7 highlights the spatial distribution of these four 

classes. The Global Moran's I statistic tested the null hypothesis that the attribute being 

analyzed is randomly distributed in the study area (i.e. no clustering).  

Figure 3-8 provides the estimation results for the commercial vehicles at the 

census tract level using a first order rook contiguity spatial weight matrix. The estimated 
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Cars  GVW 1  GVW 2  GVW 3  GVW 4  GVW 5  GVW 6  GVW 7  GVW 8

Percentage 16.1% 19.5% 42.8% 5.3% 2.5% 1.9% 1.3% 2.4% 8.2%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%



42 

hypothesis of no spatial autocorrelation can be rejected. The p-value of 0.041 estimated 

for cars indicates that there is less than 5% likelihood that this clustered pattern could be 

the result of random chance. While, the p-value of 0.002, 0.004 and 0.001 for light, 

medium and heavy duty trucks, respectively, indicate that there is less than 1% likelihood 

that this clustered pattern could be the result of random chance. 

Therefore, the spatial distributions of all vehicle classes in the study area exhibit 

the presence of clustering over space. Note that individual GVW classes were also tested 

for clustering and the results were equivalent to their aggregates. Results of these 

individual tests are shown in Appendix B. Accordingly, these clustering patterns suggest 

an underlying process that gives rise to the prevalence of commercial vehicle per class in 

particular census tracts.  
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Figure 3 - 7: Spatial Distribution of (a) Cars, (b) Light Duty Trucks, (c) Medium Duty Trucks and (d) Heavy Duty Trucks by Place of Registration in 

Windsor in 2013 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3-8: Moran’s I result for (a) Cars, (b) Light Duty Trucks, (c) Medium Duty Trucks and (d) Heavy Duty Trucks 
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3.2.4 Other Data Sources 

Other data sources were used to provide input variables in the models. This 

includes the National Household Survey (NHS) of the 2011 Canadian Census and 

different ESRI shapefile layers created by DMTI. The NHS dataset was acquired from 

the Computing in the Humanities and Social Sciences (CHASS) census analyzer from the 

University of Toronto, it provides demographic information such as the population and 

the employment numbers by industry type (NAICS) for each census tract. On the other 

hand, the shapefile layers obtained from DMTI were used in ArcGIS to identify and 

create various zonal variables needed to estimate the discrete choice models and the 

count models. For instance, ArcGIS was used to generate variables that 1) identify low 

density zones (i.e. less than hundred jobs per km2 and less than hundred residents per 

km2), 2) locate zones in proximity with highways (i.e. highway infrastructures passes 

through the zone), and 3) calculate the equidistance in kilometres between the centroid of 

different zones and the Central Business District (CBD) of the study area. Figure 3-9 

shows zones in close proximity with highways and low density suburban zones, 

respectively.  

 

Figure 3 - 9: (a) Zones in Proximity to Highways and (b) Low Density Suburban Zones 

(a) (b) 
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CHAPTER 4: METHOD OF ANALYSIS 

The framework followed for this research is illustrated in Figure 4-1. Synthetic 

population techniques are first employed to micro-simulate the number of commercial 

vehicles owned by all individual business establishments that engage in delivering goods 

or services in the Windsor CMA. This process consists of three consecutive steps: 1) 

identifying all the establishments that engage in shipping goods and/or services in the 

CMA, 2) applying the Simulated Annealing Procedure to solve the Combinatorial 

Optimization (CO) problem of assigning commercial vehicles to business establishments, 

and 3) validating the synthesized records using an external dataset (Polk data) that was 

not initially used in the population synthesis procedure. 

This process provides the basis to justify the use of zonal data from Polk to 

analyze the spatial prevalence (or assignment) of commercial vehicles (CVs) in a given 

census tract. The main concern is that some CVs that are registered to the establishment 

in the census tract as given in the Polk data might not be physically located or operating 

from that location. The hypothesis is that synthesized aggregates are a true representation 

of the vehicles registered and operated from the same zone. Hence achieving comparable 

results would provide a basis to use the of Polk data to examine the spatial distribution of 

commercial vehicles. Accordingly, for the zones with Polk totals less than the 

synthesized totals, the Polk totals are used. However, if the Polk zonal totals were greater 

than the synthesized totals, the synthesized totals are used. In view of that, discrete choice 

models and count models are used to study the spatial distribution of commercial vehicles 

by their GVW classes.  
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Figure 4 - 1: Methodology Flow Chart 

4.1 Population Synthesis 
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the simulated annealing approach in the context of CO method see (Williamson et al., 

1998). This process was repeated ten times to confirm the consistency of these 

populations. The program to execute this process was written in C# and is called the 

Combinatorial Optimizer program. 

To generate the aggregate cross-tabulations, as an input to synthesizing process, 

first the list of individual business establishments that engaged in shipping and receiving 

had to be determined. This is performed using a participation quotient (PQ) approach. 

The latter is based on the number of establishments that reported to engage in shipping 

and/or receiving goods in the BECTS. The PQ index is calculated as the ratio of (𝐹𝑛
𝑠) the 

number of businesses that reported to engage in shipping or receiving within a specific 

industry category n, to (∑ 𝐹𝑛
𝑠

𝑛 ) the total number of establishments who reported engaging 

in shipping or receiving, divided by the ratio of (𝐹𝑛) the number of businesses in the 

respective industry to (∑ 𝐹𝑛𝑛 ) the number of establishments in the entire population of 

establishments as illustrated in Equation 4.1. Note that the firms were categorized to the 

most detailed industry classification (i.e. six-digit SIC industry classification) 

𝑃𝑄𝑆 =
𝐹𝑛

𝑠 ∑ 𝐹𝑛
𝑠

𝑛⁄

𝐹𝑛 ∑ 𝐹𝑛𝑛⁄
                                                    (4.1) 

This method is inspired by the Location Quotient technique, a well-established 

method that has been used in economics and economic geography (Miller and Blair, 

2009). The rational is, a PQ value greater than or equal to 1 indicates that the industry 

category being investigated is more likely to engage in shipping and/or receiving as the 

industry will have higher concentration of its firms in the sample relative to the entire 

firm population. However in the case presented here, a threshold value of 0.7 was chosen 
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after considering different values. The 0.7 cut-off value achieved the most reliable 

outcomes as will be discussed in the results section.  

Accordingly, all establishments that belong to industries with PQ greater than or 

equal to 0.7 were kept for the analysis, while establishments that belong to industries with 

PQ less than 0.7 were dropped except for those establishments who were originally 

surveyed. Out of 9,939 establishments in the study area, a total of 3,478 establishments 

were found to engage in shipping and/or receiving goods and/or services (35%).  

To create representative aggregate cross-tabulations for the 3,478 establishments, 

the attributes considered are: census tract ID (CTID), number of employees and a two-

digit SIC industry classification. The values from the number of employees attribute were 

reclassified into ten categories representing discrete employment ranges as illustrated in 

Table 4-1. The two-digit SIC industry categories to which establishment belonged are 62 

mutually exclusive categories. Besides, the CTID attribute with 62 categories. 

Table 4 - 1: Categories for Number of Employees 

Category Range (Number of Employees) 

1 1 – 10 

2 11 – 20 

3 21 – 30 

4 31 – 40 

5 41 – 50 

6 51 – 60 

7 61 – 70 

8 71 – 80 

9 81 – 90 

10 > 90 
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In what follows, two cross-tabulations for the CO were derived based on the two-

digit SIC industry classes (SIC-2D) and employment size categories (Emp-Cat). The first 

tabulation represents the breakdown of zonal firms by Industry class and the second by 

employment size categories as shown in Table 4-2 and Table 4-3, respectively.  

Table 4 - 2: SIC-2D x CTID Tabulations Derived from the Windsor Firm Population 

Industry Zone 1 Zone 2 Zone 3 … Total 

SIC – 57 2 13 1 … 193 

SIC – 58 6 17 1 … 595 

SIC – 59 8 14 0 … 442 

⋮ ⋮ ⋮ ⋮ … ⋮ 

Total 40 121 11 … 3478 

  

Table 4 - 3: Emp-Cat x CTID Tabulations Derived from the Windsor Firm Population 

Employment Zone 1 Zone 2 Zone 3 … Total 

Cat – 1 30 90 9 … 2615 

Cat – 2 6 9 2 … 436 

Cat – 3 0 5 0 … 137 

⋮ ⋮ ⋮ ⋮ … ⋮ 

Total 40 121 11 … 3478 

 

Next, a micro-sample of 162 establishments were extracted from the survey 

responses were information about the two-digit SIC industry classification and 

employment category and the number of commercial vehicles owned are stated, as shown 

in Table 4-4. 
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Table 4 - 4: Microsample Derived from the BECTS 

ID SIC-2D Emp-Cat Vehicle Owned 

Firm 1 42 2 22 

Firm 2 57 3 5 

Firm 3 50 6 36 

⋮ ⋮ ⋮ ⋮ 

Firm 162 35 4 0 

 

 The CO method was then used to create a list of 3,478 establishments, where 

each establishment in the list has attributes that represent the employment size class and 

corresponding two-digit SIC category. Each synthesized establishment was linked 

directly to an establishment from the micro-sample, and as such the values for the 

number of vehicles owned were assigned. 

4.2 Modeling the Spatial Distribution of Commercial Vehicles 

This research will make use of two major methodological approaches to study the 

spatial distribution of commercial vehicles: 1) discrete choice modeling, and 2) count 

models.  

4.2.1 Discrete Choice Modeling Approach 

The discrete choice modeling techniques namely, the MNL and the MXL models 

are used to capture the effect of different zonal and vehicle characteristics on the spatial 

prevalence of commercial vehicles in zones comprising the study area. The econometric 

analysis for the discrete choice models is performed in the NLOGIT 5 software.  
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Given the population of CVs, the MNL or the MXL model predicts the 

probability of finding a given commercial vehicle c in one of the 62 zones encompassing 

firms that engage in shipping and receiving goods and/or services. Although the choice 

probability could be modeled across all 62 zones, we opted for generating a smaller 

choice set of ten alternative zones. The later was formed by considering the actual zone i 

where vehicle type c is observed and adding to it 9 randomly selected zones from the 

remaining 61 zones as shown in Figure 4-2. Such practice has been used before to 

overcome the problem of dealing with large choice sets and it is proven to produce 

reliable coefficient estimates for the logit model (McFadden, 1978; Maoh & Kanaroglou, 

2009). As shown by McFadden (1978), the random sampling of alternatives will still 

produce efficient and unbiased parameters with the smaller choice set.  

 

Figure 4 - 2: Discrete Choice Model Structure 

Each zone i is associated with a utility function, Uic that can be expressed as follows: 

Uic =  Vic +  εic                                                              (4.2) 

Vic = ∑ βk ∙ Xkick                                                            (4.3) 



53 

where Vic is a linear-in-parameter deterministic function characterizing the nature of 

alternative zone i and the attributes of commercial vehicle c. For the MNL, characteristics 

 Xkic of alternative i and vehicle c will be associated with a single point 

coefficient  βk that represents the influence of Xkic on the probability of finding vehicle c 

in zone i. The random error terms εic (for all i and c) are assumed to be independently 

and identically distributed (iid) across alternatives and observations according to a 

Gumbel probability density function. Accordingly, the location of a given commercial 

vehicle c is modelled by calculating the probability that vehicle c will be located in 

specific zone i such that:  

Pic = P r( βk ∙ Xkic  +  εic  ≥  βk ∙ Xkjc  +  εjc)  for all i ≠ j and i;  j ∈  C      (4.4) 

Where the MNL choice probability can be represented as follows: 

Pic =
exp (Vic)

∑ exp (Vjc)10
j=1

                                                            (4.5) 

Despite its widespread use in travel demand modeling, the MNL model has been 

replaced by the MXL model in recent years. Unlike the MNL model, the MXL model 

provides more flexibility when modeling the choice data since it assumes that parameter 

βk associated with covariate Xkic is random and varies across the modeled commercial 

vehicles (Train, 2009). Therefore, the MXL model accounts for unobserved heterogeneity 

in the modeled sample. Following this assumption Pic can be formulated as the weighted 

probability across all possible β’s that are drawn from a known probability 

distribution (Φ), that is: 

Pic = ∫
exp(Vic/βc)

∑ exp(Vjc/βc
)jβc

 P(β|Φ) dβ                                   (4.6) 
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4.2.1.1 Model Specification 

The starting point for specifying the deterministic utility function Vic is to 

consider jobs in the various zones. These are the locations where CVs are housed by their 

respective firms. The rationale followed is based on the premises that locations where 

jobs are found give rise to the existence of CVs since firms housing these jobs will need 

to own vehicles for their business transportation activities (i.e. delivering goods and/or 

providing services). Given the diversity in the clustering pattern of industries over space 

(Maoh & Kanaroglou, 2006), variability in the spatial distribution of CVs in the various 

zones across the city of these vehicles are expected.  

Intuitively, not all industries will be dependent on the same types of vehicles for 

their business transportation activities. For instance, the basic industry is more likely to 

own heavy duty trucks while firms from the services sector are more prone to own and 

use small cars and light commercial trucks. The inclusion of a list of variables which 

represent the number of jobs (by zone) from a particular industry would capture these 

differences especially in the presence of interaction terms characterizing the class of 

commercial vehicles. For the latter, the GVW classification is utilized. More specifically, 

as mentioned earlier, the nine GVW classes are grouped to: (i) Cars; (ii) Light Duty 

Trucks; (iii) Medium Duty Trucks; and (iv) Heavy Duty.  

Zonal jobs are classified into 5 major industrial groups following the 

categorization used in Hunt and Stefan (2007). That is, basic industry, wholesale, retail, 

transportation and services. Figure 4-3 illustrates the spatial distribution of the zonal jobs 

per class. Table 4-5 lists the variables used in the specification of the utility equation with 

their description.  
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Figure 4 - 3: Spatial distribution of jobs by economic sector in Windsor in 2011
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Table 4 - 5: Description of Explanatory Variables 

Variable Description 

ln(INDi) The natural log of the total number of Basic Industrial jobs in each zone i 

ln(WHLi) The natural log of the total number of Wholesale jobs in each zone i 

ln(TRAi) The natural log of the total number of Transportation jobs in each zone i 

ln(RETi) The natural log of the total number of Retail jobs for each zone i 

ln(SERi) The natural log of the total number of Service jobs in each zone i 

ln(AREAi) The natural log of the area in kilometers squared for each zone i 

HWYPROi 1 if the zone i is in close proximity with highways, 0 otherwise 

ln(INDi) × C 
Interaction term between the natural log of basic industrial jobs in each 

zone i and Cars 

ln(INDi) × L 
Interaction term between the natural log of basic industrial jobs in each 

zone i and Light Duty Trucks 

ln(INDi) × M 
Interaction term between the natural log of industrial jobs in each zone i and 

Medium Duty Trucks 

ln(WHLi) × M 
Interaction term between the natural log of Wholesale jobs in each zone i 

and Medium Duty Trucks 

ln(TRAi) × L 
Interaction term between the natural log of Transportation jobs in each zone 

i and Light Trucks 

ln(TRAi) × M 
Interaction term between the natural log of Transportation jobs in each zone 

i and Medium Duty Trucks 

ln(RETi) × H 
Interaction term between the natural log of Retail jobs in each zone i and 

Heavy Duty Trucks 

ln(AREAi) × C Interaction term between the natural log of Area of each zone i and Cars 

ln(SERi) × L 
Interaction term between the natural log of Service jobs in each zone i and 

Light Trucks 

HWYPROi × C 
Interaction terms between Light Trucks and zones in close proximity with 

highways 

CBDi × C 
Interaction terms between Cars and the distance to Central Business District 

for each zone in kilometres  

ZONEi 
Location dummy variables: 1 if Commercial Vehicle is registered in census 

tract 𝑖, 0 otherwise (see Figure 4-4 for the list of tracts i) 
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The natural logarithm is applied to the calculated zonal jobs to capture the non-

linear linear effect between the size of jobs in a given zone and the probability of finding 

a particular type of CV in that zone. This transformation produced more stable results in 

the models. 

The first a priori expectation is that zones with basic industry firms will be more 

prone to housing medium and heavy vehicles, other things being equal. On the other 

hand, these zones would be less likely to house cars and light trucks since their use to 

deliver goods is not common. When it comes to the wholesale industry, zones with firms 

pertaining to this industry are more likely to house various types of commercial vehicles. 

However, it is expected that firms from this industry will be more affiliated with medium 

and heavy trucks. Likewise, we expect to see a strong affiliation between zones housing 

the transportation industry and the prevalence of heavy trucks. At the same time, this 

industry is expected to show preference to other types of commercial vehicles albeit we 

do not expect the same influence as in the case of heavy trucks. Zones housing the retail 

industry are more likely to be affiliated with the prevalence of cars and light trucks. In 

contrast, we do not expect retail firms to own medium and heavy trucks in general. The 

same could be said about firms from the services sector. 

Next, we hypothesize that zones with larger land areas will house more 

commercial vehicles, other things being equal. The rationale here is that smaller zones 

are typically associated with high population densities and not as many business 

establishments especially in a sprawled city like Windsor. Similarly, zone closer to the 

CBD are expected to be more specialized in terms of their firm population (e.g. zones 

housing services jobs) and as such are more likely to house cars and light commercial 
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vehicles, other things being equal. Furthermore, zones in close proximity to highways 

and interchanges are also expected to attract more commercial vehicles since locations in 

proximity to transportation infrastructure are normally considered prime sites for business 

establishments to locate. Finally, location specific variables were introduced to two 

separate models (i.e. model 2 and model 4) to capture the added utility or disutility 

associated with the existence of commercial vehicles in particular zones. Figure 4-4 

highlights the spatial variables used in the specification of the choice utilities.  

 

Figure 4 - 4: Spatial Variables Used in Model Specification 

4.2.1.2 Spatial Effects  

Two separate models are developed (i.e. MNL 3 and MXL 3) to account for the 

spatial autocorrelation in the modeled data. The latter effect was confirmed by the 

Moran’s I results shown in section 3.2.3.1. A spatial variable 𝑆𝑖 for zone i is introduced to 
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the logit model to control for the impact of having vehicles of the same class type 

locating in neighbouring zones j (i.e. sharing the same edge with zone i). The assumption 

is that spatial autocorrelation will increase the probability of finding the same type of 

vehicle class in zone i, other things being equal. Quantitatively, 𝑆𝑖 can be expressed as 

follows:  

            𝑆𝑖 = ∑ 𝛿𝑖𝑗
𝑛
𝑗=1 𝐶𝑗/𝑞                                                                (4.7) 

where, 𝛿𝑖𝑗 = 1 when zone i and its neighboring zones j are in contiguity (i.e. share an 

edge), 0 otherwise. 𝐶𝑗/𝑞 is the count of vehicle of type q in neighboring zones j. For 

example, if the modeled commercial vehicle type q is a light duty truck, then the count of 

light duty trucks in neighbouring zones j are used to represent 𝐶𝑗/𝑞 in equation 4.7.  

4.2.2 Count Modeling Approach 

By considering the count nature of the available data, the Poisson and Negative 

Binomial (NB) regression models can be used to predict the number of commercial 

vehicles per census tract. Given that the commercial vehicle ownership data is non-

negative, the Poisson regression model can be used as a starting point to predict the 

number of commercial vehicles per census tract. The parameter estimates for the count 

models is performed in the SAS 9.2 software. 

 In this model, the probability of specific zone i having count (𝑦𝑖) commercial 

vehicles (where 𝑦𝑖 is non-negative integer) is given by:  

𝑃(𝑦𝑖|𝑋𝑖) =
exp (−𝜆𝑖)𝜆

𝑖

𝑦𝑖

𝑦𝑖!
                                                    (4.8) 
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where 𝜆𝑖 is the expected number of vehicles per zones, 𝐸[𝑦𝑖]. The Poisson regression 

model is estimated by specifying the Poisson parameter 𝜆𝑖 as a function of explanatory 

variables as illustrated in equation 4.9.  

𝜆𝑖 = 𝐸[𝑦𝑖] = exp (𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖)                                (4.9) 

 𝑋𝑖 represent a given explanatory variables that is associated with zone i and 𝛽′𝑠 

are estimable parameters. Based on equation 4.9, 𝜆𝑖 is the mean of the Poisson 

distribution conditional on explanatory variable 𝑋𝑖. One of the main properties of the 

Poisson distribution is the equidispersion property that is the equality of the mean and the 

variance. Therefore, if the variance is over or under-dispersed relative to the mean, the 

estimated parameters 𝛽 from the Poisson regression will be biased. 

To remedy the equidispersion constraint problem the negative binomial (Poisson-

gamma or NB) model are used. The NB model assumes that the Poisson parameter 

follows a gamma probability distribution. This model is derived by rewriting the Poisson 

parameter for each zone i as follows:  

𝜆𝑖 = 𝐸[𝑦𝑖] = exp(𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖 + 휀𝑖)                                          

𝜆𝑖 = exp(𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖) exp(휀𝑖)                               (4.10) 

where exp(휀𝑖) is a gamma-distributed error term with mean 1 and variance 𝛼. The 

addition of this term allows the variance to differ from the mean such that:  

 𝑉𝐴𝑅[𝑦𝑖] =  𝐸[𝑦𝑖][1 +  𝑎𝐸[𝑦𝑖]]                                  (4.11) 

This yields the resulting conditional probability: 
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𝑃(𝑦𝑖|휀) =
exp[−𝜆𝑖 exp(𝜀)][𝜆𝑖exp (𝜀)]𝑦𝑖

𝑦𝑖!
                               (4.12) 

4.2.2.2 Count Model Specification  

For this analysis, given the number of vehicles per zone classified by their GVW, 

four separate models are estimated by each method to examine number of vehicles by 

class per zone. Following the MNL and the MXL models, CVs are classified as (i) Cars 

(GVW unknown); (ii) Light Duty Trucks (GVW 1-2); (iii) Medium Duty Trucks (GVW 

3-6); and (iv) Heavy Duty Trucks (GVW 7-8). These are the dependent variables.  

On the other hand, the independent variables considered, as in the case of MNL 

and MXL models are: the natural log of the total number of jobs by industry type, the 

natural log of area in squared kilometers of each zone, the equidistance distance from the 

centroid of zones to the CBD and whether zones are in proximity to highways. 

Furthermore, the a priori expectations for the count models developed are the same as the 

ones mentioned in section 4.2.1. Table 4-6 presents the coding of the variables used in the 

analysis, together with a summary of the a priori expectations and Table 4-7 provides the 

descriptive statistics for the variables. 
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Table 4 - 6: Independent Variables Coding and their Expected Signs 

Variable Prior Expectation 

ln(INDi) Positive correlation with Medium and Heavy Duty Trucks 

ln(WHLi) Positive correlation with Medium and Heavy Duty Trucks 

ln(TRAi) Positive correlation with Heavy Duty Trucks 

ln(RETi) Positive correlation with Cars and Light Duty Trucks 

ln(SERi) Positive correlation with Cars and Light Duty Trucks 

ln(AREAi) Positive correlation with Cars, Light, Medium and Heavy Duty Trucks 

HWYPROi Positive correlation with Cars, Light, Medium and Heavy Duty Trucks 

CBDi  Positive correlation with Cars and Light Duty Trucks 

 

Table 4 - 7: Independent and Dependent Variables Descriptive Statistics 

Variables Minimum Maximum Median Mean Standard Deviation 

Cars 1 149 12 23.05 30.02 

Light Duty Trucks 4 1032 45 89.13 150.96 

Medium Duty Trucks 0 241 6 15.65 34.55 

Heavy Duty Trucks 0 247 4 15.23 36.95 

ln(INDi) 0 8.58 4.28 4.29 2.31 

ln(WHLi) 0 6.44 0 1.65 2.18 

ln(RETi) 0 7.28 4.65 4.32 1.85 

ln(TRAi) 0 6.51 0 2.04 2.34 

ln(SERi) 4.70 8.97 6.31 6.44 0.87 

ln (AREAi)  -0.85 4.71 0.91 0.89 0.92 

CBDi 0.23 11.29 1.14 2.02 2.26 

N= 62 Zones 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Population Synthesis 

For each synthetic population generated, the total number of vehicles at each zone 

is calculated by summing the number of vehicles owned by each establishment in the 

zone. Then, the results are validated by comparing the zonal aggregates to the Polk Data. 

For this research, the R-squared value was used to assess the correlation between the 

synthesized and the actual number of vehicles per zone. Consequently, for the different 

PQ cut-off values tested, a set of 10 populations were generated. After calculating the 

zonal aggregates for each synthesized population, an average was estimated from the 10 

different populations and compared to the Polk data. Table 5-1 presents the R-squared 

achieved, where, PQ greater than or equal to 0.7, is associated with the highest fit with R-

squared value of 0.88. 

Table 5 - 1: Results of Comparisons between Synthetic and the Actual Number of vehicles, using the R2 

 
Number of Establishments Percent from Total Population R2 

PQ ≥ 0.2 5906 59% 0.83 

PQ ≥ 0.3 5048 51% 0.86 

PQ ≥ 0.4 4452 45% 0.86 

PQ ≥ 0.5 4148 42% 0.86 

PQ ≥ 0.6 3744 38% 0.87 

PQ ≥ 0.7 3478 35% 0.88 

PQ ≥ 0.8 3022 30% 0.87 

PQ ≥ 1.0 2795 28% 0.87 
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Hence, a total of 3,478 establishments are determined to engage in commercial 

vehicle activities, representing 35% of all establishments in the Windsor CMA. Although 

a slightly larger share was reported for the Greater Toronto Area (43%) (MITL, 2010) 

and Edmonton (49%), a 35% of establishments engaging in commercial activities for 

Windsor is an acceptable share given its overall size when compared to mega regions like 

Toronto and Edmonton. The variations (which is due to the stochastic nature of the CO 

method) between the total numbers of vehicles estimated from each run were 

insignificant as discerned by the descriptive statistics shown in Table 5-2. The total 

number of vehicles can also be found in graphical form in Figure 5-1. The estimated 

standard deviation, variance and range indicate the results achieved from the 10 runs are 

consistent with each other.  

Table 5 - 2: Total Number of Vehicles Summary Statistics 

Summary Statistics CO 

Mean 10,005 

Median 9,951 

Standard Deviation 256.412 

Sample Variance 65,749.56 

Kurtosis -0.357 

Skewness 0.231 

Range 865 

Minimum 9,591 

Maximum 10,456 

Count 10 
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Figure 5 - 1: Total Number of Vehicles Comparison for 10 Establishment Population Synthesized 

These establishments are then classified into 5 major industrial groups, that is, 

retail, basic industry, services, wholesale and transportation accounting for 55%, 19%, 

12%, 8% and 6% of establishments that engage in commercial activities, respectively. As 

mentioned earlier, not all industries will be dependent on the same types of vehicles for 

their business transportation activities. Therefore, the diversity in the clustering pattern of 

these industries over space would result in varied spatial distribution of CVs in the 

various zones across the city. 

Figure 5-2 provides a comparison between the synthesized zonal aggregates 

versus the Polk data, while Figure 5-3 highlights the spatial distribution of these vehicles. 

The synthesized and the actual number of vehicles per zone have similar spatial 

distributions. As the trend in Figure 5-2 suggests, the Polk totals are very close to the 

synthesized totals per zone.  
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Figure 5 - 2: Comparison of the zonal aggregates of the synthesized population against the Polk Data 

 

 

Figure 5 - 3: Spatial distribution of (a) Polk zonal aggregates and (b) Synthesized zonal aggregates in 

Windsor in 2013 

Accordingly, to insure that the utilized Polk data records do not include vehicles 

that are registered but do not operate from the zone, the following constraints were 

imposed:  
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in a zone, then the Polk data are used to represent the zonal vehicles in the 

analysis.  

2- If the synthesized aggregates are less than the Polk data count in a zone, then 

the synthesized aggregates are used to represent the number of vehicles in the 

zone. Consequently, the registered Polk vehicles in the zone are scaled down 

proportionally by vehicle class such that the total number of Polk records 

equals the synthesized aggregate in the zone. 

Table 5-3 illustrates the Polk totals versus the synthesized by zones. Out of the 62 

zones, 17 zones were found to have zonal totals greater than the synthesized totals. These 

zones are highlighted and demarked in bold.  

After adjusting the Polk data, the total number registered vehicles in the zones 

comprising the CMA was reduced from 8869 to 7136 vehicles, a 19.5 percent reduction 

from the original Polk data records. This adjustment eliminates any concerns of vehicles 

registered to establishments in a census tract but operating from another location, an 

inherited problem in any acquired Polk dataset. This is the case since the synthesized 

population is a true representation of the vehicles registered and operated from the same 

zone. Hence, the Polk data is used to examine the commercial vehicle ownership location 

to study the spatial prevalence of the various types of commercial vehicles in a given 

zone.  
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Table 5 - 3: Synthesized Versus Polk Data Zonal Counts 

CTUID Polk Data Synthesized   CTUID Polk Data Synthesized 

Zone 1 81 71   Zone 32 47 105 

Zone 2 355 472   Zone 33 127 237 

Zone 3 82 62   Zone 34 23 38 

Zone 4 317 479   Zone 35 69 151 

Zone 5 755 814   Zone 36 55 164 

Zone 6 90 236   Zone 37 60 47 

Zone 7 29 76   Zone 38 53 61 

Zone 8 23 25   Zone 39 7 10 

Zone 9 156 125   Zone 40 83 325 

Zone 10 68 197   Zone 41 45 86 

Zone 11 175 280   Zone 42 112 133 

Zone 12 50 94   Zone 43 53 114 

Zone 13 50 106   Zone 44 48 83 

Zone 14 43 63   Zone 45 85 56 

Zone 15 690 483   Zone 46 118 75 

Zone 16 45 75   Zone 47 48 93 

Zone 17 46 96   Zone 48 44 46 

Zone 18 313 243   Zone 49 101 144 

Zone 19 90 100   Zone 50 10 62 

Zone 20 153 220   Zone 51 15 27 

Zone 21 482 348   Zone 52 65 39 

Zone 22 26 73   Zone 53 56 111 

Zone 23 108 55   Zone 54 6 47 

Zone 24 209 152   Zone 55 139 93 

Zone 25 24 31   Zone 56 72 71 

Zone 26 80 163   Zone 57 119 99 

Zone 27 60 54   Zone 58 1669 881 

Zone 28 103 229   Zone 59 80 122 

Zone 29 32 62   Zone 60 37 73 

Zone 30 17 78   Zone 61 146 246 

Zone 31 166 255   Zone 62 359 180 
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5.2 Modeling the Spatial Distribution of Commercial Vehicles 

5.2.1 Discrete Choice Models 

After adjusting the Polk data, a 40 percent sample was used for the analysis to 

reduce the computation time required to perform the models estimation. This resulted in a 

total of 2920 commercial vehicles that were checked and validated to be a good 

representative sample of the entire CV population. 

The estimation results of the Multinomial Logit (MNL) and the Mixed Logit 

(MXL) models are presented in Table 5-4, with all of the coefficients and their 

corresponding t-statistics. The results from the four models are fairly consistent across 

most of the estimated parameters. Both models achieve higher ρ2 value when the zone-

specific dummy variables are introduced. The two MNL models have an adjusted ρ2 

value of 0.181 and 0.203, respectively, while, the models pertaining to MXL have an 

adjusted ρ2 value of 0.185 and 0.204, respectively. As far as the achieved ρ2 values, there 

is no significant difference between the MNL and MXL models. Therefore, the 

discussion of the factors explaining the choice probability is focused on the MNL model 

with zone-specific dummy variables. 

Based on the estimated coefficients, zones with higher number of basic industry 

jobs tend to be strongly affiliated with heavy duty trucks, as discerned from the positive 

and significant parameter of the ln(INDi) variable. Those zones are also less prone to give 

rise to the prevalence of cars, light and medium duty trucks as discerned from the 

parameters of the three interaction terms ln(INDi) × C, ln(INDi) × M and ln(INDi) × H. 
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Table 5 - 4: MNL and MXL Model Estimation Results 

 
MNL Model 1  

 
MNL Model 2 

 
MXL Model 1 

 
MXL Model 2  

Parameter Beta t-stat 
 

Beta t-stat 
 

Beta t-stat 
 

Beta t-stat 

Ln(INDi) 0.265 6.36 
 

0.178 3.97 
 

0.293 6.42 
 

0.190 4.07 

Ln(WHLi) 0.145 9.56 
 

0.219 11.91 
 

0.184 8.38 
 

0.230 10.53 

Ln(RETi) 0.173 9.98 
 

0.127 6.14 
 

0.251 10.29 
 

0.137 6.28 

Ln(TRAi) 0.098 3.97 
 

0.160 6.06 
 

0.113 3.65 
 

0.175 5.59 

Ln(SERi) 0.168 5.41 
 

0.149 3.39 
 

0.181 5.26 
 

0.148 3.30 

Ln(INDi) × C -0.349 -7.32 
 

-0.357 -7.36 
 

-0.398 -7.48 
 

-0.375 -7.35 

Ln(INDi) × L -0.161 -3.75 
 

-0.183 -4.20 
 

-0.196 -4.13 
 

-0.197 -4.34 

Ln(INDi) × M -0.168 -2.87 
 

-0.203 -3.36 
 

-0.215 -3.33 
 

-0.215 -3.46 

ln(WHLi) × M 0.095 2.09 
 

0.097 2.03 
 

0.250 2.81 
 

0.102 2.06 

ln(TRAi) × L -0.075 -2.64 
 

-0.054 -1.92 
 

-0.071 -2.27 
 

-0.054 -1.82 

ln(TRAi) × M -0.131 -2.86 
 

-0.104 -2.28 
 

-0.148 -2.83 
 

-0.106 -2.21 

ln(RETi) × H -0.136 -2.77 
 

-0.123 -2.7 
 

-0.130 -2.31 
 

-0.118 -2.51 

Ln(AREAi) 0.125 5.51 
 

0.116 4.72 
 

0.120 4.76 
 

0.120 4.70 

Ln(AREAi) × C -0.128 -2.24 
 

-0.172 -2.92 
 

-0.158 -2.48 
 

-0.183 -2.97 

HWYPROi  0.340 5.97 
 

0.267 3.56 
 

0.277 4.53 
 

0.253 3.29 

HWYPROi × C -0.556 -4.36 
 

-0.512 -3.92 
 

-0.584 -4.27 
 

-0.523 -3.90 

CBDi × C 0.081 3.46 
 

0.110 4.20 
 

0.088 3.47 
 

0.109 4.08 

ZONE3 -- -- 
 

0.969 4.10 
 

-- -- 
 

1.009 4.18 

ZONE9 -- -- 
 

-0.688 -4.03 
 

-- -- 
 

-0.713 -3.94 

ZONE10 -- -- 
 

-1.046 -4.98 
 

-- -- 
 

-1.066 -4.95 

ZONE11 -- -- 
 

-0.398 -2.85 
 

-- -- 
 

-0.385 -2.68 

ZONE12 -- -- 
 

-0.534 -2.15 
 

-- -- 
 

-0.506 -2.01 

ZONE13 -- -- 
 

-1.250 -5.32 
 

-- -- 
 

-1.205 -5.07 

ZONE18 -- -- 
 

-0.298 -2.46 
 

-- -- 
 

-0.282 -2.27 

ZONE23 -- -- 
 

-0.988 -4.32 
 

-- -- 
 

-0.976 -4.20 

ZONE26 -- -- 
 

0.408 2.02 
 

-- -- 
 

0.394 1.91 

ZONE27 -- -- 
 

0.860 3.18 
 

-- -- 
 

0.895 3.25 

ZONE30 -- -- 
 

-0.806 -2.07 
 

-- -- 
 

-0.838 -2.14 

ZONE34 -- -- 
 

-1.816 -5.20 
 

-- -- 
 

-1.776 -5.06 

ZONE36 -- -- 
 

-0.533 -2.27 
 

-- -- 
 

-0.523 -2.20 

ZONE38 -- -- 
 

0.478 2.12 
 

-- -- 
 

0.466 2.03 

ZONE42 -- -- 
 

-0.819 -4.19 
 

-- -- 
 

-0.744 -3.69 

ZONE46 -- -- 
 

0.753 3.55 
 

-- -- 
 

0.733 3.39 

ZONE50 -- -- 
 

-1.296 -2.55 
 

-- -- 
 

-1.332 -2.60 

ZONE52 -- -- 
 

0.783 2.93 
 

-- -- 
 

0.806 2.97 

ZONE53 -- -- 
 

0.444 2.12 
 

-- -- 
 

0.421 1.98 

ZONE54 -- -- 
 

-2.036 -3.47 
 

-- -- 
 

-2.067 -3.51 

ZONE55 -- -- 
 

0.909 4.72 
 

-- -- 
 

0.903 4.60 

ZONE61 -- -- 
 

0.764 4.82 
 

-- -- 
 

0.792 4.89 

ZONE62 -- -- 
 

-0.443 -3.13 
 

-- -- 
 

-0.435 -2.97 

Standard Deviation 
         

   
Ln(WHLi) 

 
0.249 5.7 

 
0.128 2.33 

   
Ln(RETi) 

 
0.278 8.38 

 
-- -- 

   
Ln(TRAi) 

 
0.147 2.27 

 
0.143 2.58 

   
Ln(WHLi) × M 

 
0.500 3.67 

 
-- -- 

Log Likelihood  -6723.55 
 

-6723.55 
 

-6723.55 
 

-6723.55 

Full Log Likelihood  -5509.13 
 

-5358.31 
 

-5477.286 
 

-5355.27 

ρ2 0.181 
 

0.203 
 

0.185 
 

0.204 
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These results are expected given the nature of these industries (e.g. manufacturing and 

mining) which relies heavily on larger trucks for their business operation. 

 In a similar vein, the results from the interaction term ln(WHLi) × M suggest that 

zones housing wholesale firms are strongly affiliated with medium duty trucks. As we 

anticipated, the wholesale industry is likely to own cars and light trucks (as discerned by 

the positive sign of the ln(WHLi) parameter when compared to the parameters of the 

interaction terms ln(WHLi) × M but their dependency on larger trucks is evident in the 

model. However, the effect of the wholesale jobs vary across the modeled observations 

given the significance of the standard deviation of the ln(WHLi) and ln(WHLi) × M in the 

case of the MXL model. A possible explanation for the randomness effect in these 

parameter could be attributed to the nature of the commercial vehicle ownership for 

establishments in the wholesale industry.  

In the case of the transportation industry, zones housing firms of this type are 

more prone to give rise to the presence of cars and heavy trucks as can be discerned from 

the positive and significant parameter of the ln(TRAi) variable. Also, those zones are less 

prone to give rise to the prevalence of light and medium duty trucks as discerned from the 

parameters of the two interaction terms ln(TRAi) × M and ln(TRAi) × H. It is worth 

noting that the effects of the existence of transportation jobs in the zone vary across the 

modeled CV observations, as confirmed by the significant standard deviation of the 

variable in the MXL model. 

Zones housing retail trade firms tend to be affiliated with cars, light and medium 

duty trucks. By comparison, these zones repels heavy duty trucks as can be deduced from 
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the sign of the interaction term ln(RETi) × H parameter which is negative and significant 

relative to the positive and significant ln(RETi) parameter. Similar to the case of 

transportation jobs, the impact of the retail jobs on the location choice of commercial 

vehicles vary across the modeled CV observations as discerned from the standard 

deviation of the ln(RETi) variable in the MXL model.  

Zones housing services sectors firms are prone to give rise to the presence of all 

types of vehicles as can be discerned from positive and significant parameter of the 

ln(SERi) variable. As expected, larger zones tend to have a positive influence on the 

presence of commercial vehicles. However, these zones are less prone to give rise to the 

prevalence of cars as discerned from the parameters of the interaction terms ln(Areai) × 

C. While, zones closer to the CBD tend to have a positive influence on the presence of 

cars, other things being equal. 

It is found, zones in proximity to highways tend to be more associated with the 

presence of heavier vehicles. On the other hand, those zones are less prone to having cars. 

These results are sensible especially that locations in proximity to highways and 

interchanges (i.e. highway ramps) are attractive to manufacturing and heavy industry 

firms that rely heavily on accessibility (Maoh & Kanaroglou, 2009). These firms are 

more likely to own light, medium and heavy trucks for their goods movement activities. 

Finally, a set of 62 location specific variables (i.e. 62 zones comprising firms that 

engage in commercial activities) were examined. These zone dummies indicate the added 

utility or disutility associated with the existence of commercial vehicles in particular 
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zones. 23 of the tested location dummies were significant and were added to the final 

model as illustrated in Table 5-3 and Figure 5-4.  

 

Figure 5 - 4: Spatial Variables Used in MNL Model 2 Specifications 

These zones dummies suggests that factors other than those specified in the 

second MNL and MXL models are important in predicting the probability of finding a 

given commercial vehicle c in one of the 62 zones. Such unobserved factors could be 

related to land use and zoning by-laws.  

To assess the predictive ability of the estimated MNL models (Model 1 and 

Model 2), the utility of each zone was calculated using the parameters reported in Table 

13. At first the utility for each of the 10 alternatives per case is calculated using the 

estimated parameters. Next, an average utility per zone is calculated based on the zone id, 

since the choice set formed when estimating the choice model was based on 10 
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were then used to calculate the probability of finding a CV in any of the 62 zones 

encompassing firms that engage in shipping and receiving goods and/or services. In this 

case, the sum of the 62 probabilities sum to 1. Using the calculated probabilities, the 

2,920 CVs were distributed among the 62 zone and compared to the observed spatial 

distribution. Figure 5-5 and Figure 5-6 represent the calculated versus the observed CVs 

per zone for Model 1 and Model 2, respectively.  

 

Figure 5 - 5: MNL Model 1 - Observed versus Estimated Numbers Commercial Vehicles 

 

 

Figure 5 - 6: MNL Model 2 - Observed versus Estimated Number of Commercial Vehicles 
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As shown, the estimation results suggest that both models are superior in their 

predictive ability, correctly predicting 88 and 96.6 percent of the modeled CVs. However, 

a comparison between the two models suggests that other things being equal, the location 

specific variables contribute improving the prediction of the estimated models. 

Further, both models are tested for their ability to predict the spatial distribution 

of each vehicle class. Table 5-5 illustrates the estimation results, where the correlations 

between the observed and the estimated number of commercial vehicles by a given class 

reveal that both models are capable of providing good predictions. Similarly, the 

estimated results illustrate that the predictive ability of the MNL model improves when 

the location specific variables are added. Figures that represent the calculated versus the 

observed CVs by class per zone for MNL Model 1 and MNL Model 2 are shown in 

Appendix C.  

Table 5 - 5: Results of Comparisons between Estimated and the Actual Number of Vehicles by Class 

 MNL Model 1 MNL Model 2 

Cars 65% 77% 

Light Duty Trucks 89% 97% 

Medium Duty Trucks 86% 92% 

Heavy Duty Trucks 75% 83% 

 

5.2.2 Discrete Choice Models with Spatial Effects 

The results from the spatial logit models are given in Table 5-6. For both models 

(MNL and MXL), the spatial parameter was found to be positive and significant as 

expected.  
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Table 5 - 6: MNL 3 and MXL 3 Model Estimation Results 

  
MNL Model 3 

 
MXL Model 3 

Parameter 
 

Beta t-stat 
 

Beta t-stat 

Ln(INDi) 
 

0.305 7.43  0.321 7.45 

Ln(WHLi) 
 

0.118 7.59  0.136 7.04 

Ln(RETi) 
 

0.165 9.51  0.232 10.03 

Ln(TRAi) 
 

0.109 4.44  0.108 4.24 

Ln(SERi) 
 

0.106 3.31  0.118 3.47 

Ln(INDi) × C 
 

-0.383 -8.36  -0.414 -8.46 

Ln(INDi) × L 
 

-0.223 -5.12  -0.237 -5.2 

Ln(INDi) × M 
 

-0.187 -3.20  -0.225 -3.57 

ln(WHLi) × M 
 

0.129 2.86  0.310 3.49 

ln(TRAi) × L 
 

-0.089 -3.16  -0.085 -2.9 

ln(TRAi) × M 
 

-0.128 -2.80  -0.140 -2.83 

ln(RETi) × H 
 

-0.102 -2.05  -0.103 -1.9 

Ln(AREAi)  -- --  -- -- 

Ln(AREAi) × C  -- --  -- -- 

HWYPROi  
 

0.260 4.47  0.216 3.56 

HWYPROi × C 
 

-0.473 -3.79  -0.496 -3.8 

CBDi × C 
 

0.090 3.82  0.095 3.83 

Si 
 

0.00054 9.75  0.00053 8.91 

Standard Deviation 
      

Ln(WHLi) 
    

0.169 4.06 

Ln(RETi) 
    

0.258 8.17 

Ln(TRAi) 
    

-- -- 

Ln(WHLi) × M 
  

  0.540 4.16 

Log Likelihood  
 

-6723.55 
 

-6723.55 

Full Log Likelihood  
 

-5475.87 
 

-5451.99 

ρ2 
 

0.186 
 

0.189 
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Also, the ρ2 increased to 0.186 and 0.189 indicating that both model are an 

improvement over MNL Model 1 and MXL Model 1, respectively. In addition, the results 

from the estimated models are fairly consistent across most of the estimated parameters. 

Only variables Ln(AREAi) and Ln(AREAi) × C were found to be insignificant in both 

models with the addition of the spatial variable. As such, these were dropped from the 

final specification of the models presented in Table 5-6.  

Figure 5-7 represents the calculated versus the observed CVs per zone for MNL 

Model 3. As shown, the predictive ability of MNL Model 3 was calculated to be 90.95 

percent. Also, the model’s ability to predict the spatial distribution for each vehicle class 

was tested. Table 5-7 illustrates the estimation results. Similar to MNL 1 and MNL2, the 

results achieved are indicative of the models ability to provide good predictions. Figures 

that represent the calculated versus the observed CVs by class per zone for Model 3 are 

shown in Appendix C. 

 

Figure 5 - 7: MNL Model 3 - Observed versus Estimated Number of Commercial Vehicles 
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Table 5 - 7: Results of Comparisons between Estimated and the Actual Number of Vehicles by Class 

 MNL Model 3 

Cars 68% 

Light Duty Trucks 89% 

Medium Duty Trucks 86% 

Heavy Duty Trucks 80% 

 

5.2.3 Count Models  

 Table 5-8 and 5-9 represent statistically significant parameters of explanatory 

variables for the Poisson and NB regression models, respectively. Separate models are 

estimated to examine commercial vehicle ownership by class, including, Cars, Light, 

Medium and Heavy Duty Trucks. The NB regression models show a dispersion factor 

different from 0 which implies overdispersion in the data; hence the Poisson models 

would not be appropriate to model vehicle ownership (Table 5-8). Indeed, this in line 

with the results achieved from the Moran’s I statistics, where the Poisson Regression is 

suitable only if the number of vehicles in zone i is independent of the number of vehicles 

in any other neighbouring zone (i.e. no clustering).  

The four NB models have an adjusted ρ2 value of 0.100, 0.153, 0.188 and 0.114, 

respectively. The significance of the constants in the NB models, namely Model 1, Model 

2 and Model 4, in Table 5-9 suggests that factors other than those specified in the model 

are important in explaining the process of CVs ownership. Such unobserved factors could 

be related to the ownership costs including the expenditures of purchasing, maintaining 

and operating the vehicle. These constant could be also capturing information that relates 

to the behavior of the business establishments. 
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Table 5 - 8: Poisson Regression Results of Commercial Vehicle by Class 

 
Model 1  

 
Model 2  

 
Model 3  

 
Model 4  

Parameter Beta P-value 
 

Beta P-value 
 

Beta P-value 
 

Beta P-value 

Constant 1.178 0.000 
 

1.988 0.000 
 

0.156 0.306 
 

0.624 0.000 

ln(INDi) - - 
 

0.087 0.000 
 

- - 
 

- - 

ln(WHLi) - - 
 

0.176 0.000 
 

0.433 0.000 
 

0.201 0.000 

ln(TRAi) 0.127 0.000 
 

0.075 0.000 
 

- - 
 

0.255 0.000 

ln(RETi) 0.236 0.000 
 

0.208 0.000 
 

0.16 0.000 
 

- - 

ln(SERi) - - 
 

- - 
 

- - 
 

- - 

ln(Areai) - - 
 

0.149 0.000 
 

- - 
 

0.341 0.000 

HWYPROi - - 
 

- - 
 

0.510 0.000 
 

- - 

CBDi 0.109 0.000 
 

- - 
 

- - 
 

- - 

Number of Observations 62 
 

62 
 

62 
 

62 

Log Likelihood 2643.253 
 

16645.235 
 

1654.560 
 

1662.062 

Full Log Likelihood -358.910 
 

-575.904 
 

-222.626 
 

-355.726 

ρ2 0.474  0.779  0.702  0.612 

Note: Model 1 (Cars), Model 2 (Light Trucks), Model 3 (Medium Trucks) and Model 4 (Heavy Trucks) 

 

Table 5 - 9: Negative Binomial Regression Results of Commercial Vehicle by Class 

 
Model 1  

 
Model 2  

 
Model 3  

 
Model 4  

Parameter Beta P-value 
 

Beta P-value 
 

Beta P-value 
 

Beta P-value 

Constant 1.500 0.000  2.233 0.000  0.454 0.073  0.617 0.009 

ln(INDi) - -  0.115 0.001  - -  - - 

ln(WHLi) - -  0.121 0.003  0.361 0.000  0.152 0.042 

ln(TRAi) 0.128 0.006  0.077 0.028  - -  0.203 0.004 

ln(RETi) 0.162 0.001  0.155 0.000  0.159 0.004  - - 

ln(SERi) - -  - -  - -  - - 

ln(Areai) - -  0.149 0.044  - -  0.591 0.002 

HWYPROi - -  - -  0.384 0.039  - - 

CBDi 0.118 0.010  - -  - -  - - 

Dispersion 0.364  0.191  0.280  1.037 

Number of Observations 62  62  62  62 

Log Likelihood 2780.767  16943.815  1701.311  1837.025 

Full Log Likelihood -221.396  -277.324  -175.874  -180.762 

ρ2 0.100  0.153  0.188  0.114 

Note: Model 1 (Cars), Model 2 (Light Trucks), Model 3 (Medium Trucks) and Model 4 (Heavy Trucks) 
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  Model 1 shows that Transportation and Retail jobs have a positive impact on 

Cars ownership levels as discerned from the positive and significant parameters of the 

ln(TRAi) and ln(RETi) variables. Also, the significant parameters of the CBDi indicates 

that zones closer to the CBD tend to have a positive influence on the count of cars, other 

things being equal. Model 2 showed that the Light Duty Trucks class showed significant 

positive relationship with all job types except services jobs. In addition, it shows that 

larger zones tend to attract more Light Duty Trucks. Likewise, the Medium Duty Trucks 

class shows a positive statically significant relationship with Wholesale and Retail Jobs. 

Furthermore, the magnitude of the estimated parameters for this HWYPROi variable 

suggests that Light Duty Trucks ownership levels are strongly affiliated with zones in 

close proximity to highways. Lastly, Model 4 indicates that Wholesale and 

Transportation jobs are prone to give rise to Heavy Duty Trucks ownership. Again 

ln(Areai) is significant, suggesting that larger zones tend to also increase Heavy Duty 

Trucks counts per zone. 

To evaluate the predictive ability of each model, the probability of specific zone i 

having certain number of commercial vehicles was calculated for each class using the 

parameters in Table 5-9. Then the predict count per zone for each model were compared 

to the observed zonal counts. Table 5-10 presents the R-squared achieved; ranging 

approximately from 55 percent to 81 percent, suggesting that all the models are fairly 

good in their predictive ability. Furthermore, the results achieved from all the four NB 

regression models were summed and compared to the observed CVs per zone. Figure 5-8 

represents the calculated R-squared, which was found to be 81 percent. Similarly, this 

reveal that overall the four NB models are capable of providing good predictions.  
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Table 5 - 10: Results of Comparisons between Estimated and the Actual Number of Vehicles 

 R2 

Model 1: Cars 55% 

Model 2: Light Duty Trucks 81% 

Model 3: Medium Duty Trucks 79% 

Model 4: Heavy Duty Trucks 81% 

 

 

Figure 5 - 8: NB Models: Observed versus Estimated Number of Commercial Vehicles 

5.2.4 Discrete Choice Models versus Count Models 

 To further assess the predictive ability of the two modeling techniques (i.e. 

discrete choice and count models) the root mean square error (RMSE) was used to 

measure the differences between values predicted by the models and the actual zonal 

counts observed. The RMSE can be represented as follows: 
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results, it is apparent that the three discrete choice models have lower RMSE and 

therefore are more capable of predicting accurate results. 

Table 5 - 11 MNL Models RMSE Results 

 MNL Model 1 MNL Model 2 MNL Model 3 

Cars 5 4 5 

Light Duty Trucks 13 6 14 

Medium Duty Trucks 3 2 3 

Heavy Duty Trucks 5 4 5 

Total 22 12 19 

 

Table 5 - 12: Negative Binomial Models RMSE Results 

 
RMSE 

NB Model 1 - Cars 14 

NB Model 2 - Light Duty Trucks 45 

NB Model 3 - Medium Duty Trucks 11 

NB Model 4 - Heavy Duty Trucks 23 

Total 71 
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CHAPTER 6: CONCLUSIONS 

The broad purpose of this thesis was to analyze and model commercial vehicle 

ownership location in the Windsor CMA. To date, all of the existing efforts have been 

solely focused on private car ownership modeling. Hence, identifying the factors that 

explain the prevalence of specific types of commercial vehicles at a certain location in a 

city will help devise more effective travel demand models. To this end, discrete choice 

models and count models were applied to investigate the determinants which lead to the 

spatial prevalence of a specific type of commercial vehicle at its residence zone within an 

urban area. Furthermore, the problem of data scarcity was tackled by relying on a readily 

available list of all the registered commercial vehicles in the year 2013 for the Windsor 

CMA. It should be noted that one of the main reasons for the underdevelopment of 

commercial vehicle ownership models in the literature is due to the lack of detailed 

commercial vehicle travel data. Results from the analysis were promising as they helped 

us understand, model and predict the spatial distribution of commercial vehicles by class 

and housing establishment location.  

6.1 Summary of Empirical Results 

6.1.1 Population Synthesis 

This analysis provided the basis to justify the use of zonal data of all the 

registered commercial vehicles within the study area from sources like Polk to study the 

spatial prevalence (or assignment) of such vehicles in a given census tract. The main 

concern is that some CVs that are registered to the establishment in the census tract as 
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given in the Polk data might not be physically located or operating from that location. 

The hypothesis is that synthesized aggregates are a true representation of the vehicles 

registered and operated from the same zone. Hence achieving comparable results would 

provide a basis to use the of Polk data in future research. Using combinatorial 

optimization techniques, a synthetic population of establishments that engage in 

commercial activities for the Windsor CMA is created. Then the total number of vehicles 

owned was assigned to each establishment of the population by linking each 

establishment directly to an establishment of the micro-sample attained from the survey 

responses. Using the Polk data as a validation source, comparisons against the 

synthesized total number of vehicles were made. The Polk data compared well with the 

synthesized zonal values with a correlation of 0.88. This indicated that the Polk data can 

be used to examine the spatial distribution of commercial vehicles. 

6.1.2 Modeling the Spatial Distribution of Commercial Vehicles 

MNL and MXL models were formulated to test the influence of various zonal and 

vehicle characteristics on the prevalence of commercial vehicles in traffic analysis zones 

(TAZs). The total number of jobs per zone, zone’s land area, whether the zone is in close 

proximity to a highway and distance to CBD were found to have positive effect on the 

prevalence of commercial vehicles in specific zones. Moreover, the variability in the 

spatial distribution of the key types of commercial vehicles was explained based on the 

presence and dominance of certain industries in these zones. Furthermore, the predictive 

ability of the estimated MNL models (without and with zonal dummies) was calculated to 

be 88 and 96.5 percent, respectively. These results indicate that both models are superior 

in their predictive ability. Predictions pertaining to the MXL model were not conducted 
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due to the complex nature of the calculations of the choice probabilities. Further, to 

account for the spatial autocorrelation in the modeled data, two separate models were 

developed (i.e. MNL 3 and MXL 3). For both models, the spatial parameter was found to 

be positive and significant. Also, the ρ2 increased to 0.186 and 0.189 indicating that both 

model are an improvement over MNL Model 1 and MXL Model 1, respectively. 

Also, to consider the count nature of the available data, the Poisson and NB 

regression models predict the number of commercial vehicles per class per census tract. 

Four separate models were estimated by each method to examine number of vehicles by 

class per zone. The NB regression models showed a dispersion factor different from 0 

which implied overdispersion in the data. As a result the Poisson models deemed to be 

inappropriate to model commercial vehicle ownership in the case presented here. 

Variables such as number of jobs per zone, zone’s land area, distance to CBD, and 

whether the zone is in close proximity to a highway were used to explain their effect on 

commercial vehicle ownership. The results of the models were conclusive, that the 

number of commercial vehicles per zone is dependent on the following:  

 The higher the presence and dominance of certain industries, the higher the CVs 

count in the zone 

 Zones closer to the CBD, suggest higher count of commercial cars in the zones  

 Zones in close proximity to highways, suggest higher count of light duty trucks 

 Larger the zone, the more light and heavy Duty Trucks counts per zone 

Furthermore, the four NB models estimated were able to predict 55 to 81 percent 

right, showing that all the models are capable of providing good predictions. 
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6.2 Contributions and Policy Implications 

The contribution of the thesis is as follows: 1) it sheds light on commercial 

vehicle ownership exclusively, something that has not previously been investigated, 

according to a search of the existing literature; 2) it overcomes data limitations that 

curtailed the development of predictive commercial vehicle ownership models; and 3) it 

utilizes different statistical techniques that are suitable to model the commercial vehicle 

ownership and performs a comparison regarding their predictive abilities. 

From a transport policy perspective, modeling and understanding car ownership is 

essential to both urban transport and land-use planning, since vehicles influence trip 

generation and traffic on the transportation network. Previous research on urban 

commercial vehicle movements suggest that commercial vehicle, despite their lower 

count compared to passenger vehicles, play a more detrimental role when it comes to 

traffic congestion, energy consumption and delays on urban roads (Hunt and Stefan, 

2007). According to Madar (2014), the number of vehicles owned by a particular 

establishment is an important determinant to predict the number of generated trips. 

Hence, as in the case of private vehicles, the study shows that the inclusion of 

commercial vehicle ownership is critical to developing travel demand forecasting models. 

Therefore, this research offers an in-depth understanding of the factors that affect the 

prevalence of different commercial vehicle classes in the urban context. The results 

obtained from the models, provides the basis for developing predictive transport demand 

models that could be integrated within a more comprehensive land use and transportation 

simulation model for the study area.  
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The approach devised in this thesis is also practice ready for two reasons: 1) the 

modeling effort in this paper makes use of publicly available commercial vehicle 

registration data and census information that exists for most North American 

jurisdictions, and 2) the approach can help overcome some of the data limitations that 

curtailed the development of predictive commercial vehicle ownership models in existing 

travel demand models. Further, the findings of this thesis have important implication on 

land use policy and transportation planning decisions, particularly in the Windsor CMA. 

It allows transportation planners to acknowledge the difference in temporal and 

geographic distributions of commercial vehicles when compared with private vehicles, to 

design and provide alternative freight-related and transportation policies that can shape 

future transportation master plans.  

6.3 Study Limitations and Direction for Future Developments 

Finally, as mentioned earlier, the models presented here offers a pioneering effort 

that uses publically available datasets to address an important gap in current research in 

term of the factors that could help researchers to understand the commercial vehicle 

ownership process. Limitations of this empirical work relate to the fact that there was no 

attempt made to explore the covariates of commercial vehicles ownership in the past. A 

business establishment’s decision to purchase commercial vehicles could be also 

influenced by many relatively complex zonal and transportation characteristics, not 

included in this study’s set of variables. These include things such as ownership costs 

including the expenditures of purchasing, maintaining and operating the vehicles owned. 

Furthermore, because the model uses aggregate data, these parameters cannot be 

generalized to apply at an individual establishment level. Nevertheless, these limitations 
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could be rectified in future research. Further developments of this research could aim to 

investigate the spatial clustering effect on commercial vehicle ownership levels in the NB 

count models. Other development is to integrate this modelling system within a travel 

demand model for the Windsor CMA to have a more robust tool for evaluating impacts 

of urban freight transport measures and policies.  
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APPENDICES  

APPENDIX A: SIC Detailed Industry Classification 

Table A - 1: Two - digits SIC Codes and Detailed Description 

SIC_2D Industry Classification  

1 Agricultural Production Crops 

7 Agricultural Services 

13 Oil And Gas Extraction 

14 Mining And Quarrying Of Non-metallic Minerals, Except Fuels 

15 Building Construction General Contractors And Operative Builders 

16 Heavy Construction 

17 Construction Special Trade Contractors 

20 Food And Kindred Products 

23 Apparel And Other Finished Products Made From Fabrics And Similar Materials 

24 Lumber And Wood Products, Except Furniture 

25 Furniture And Fixtures 

26 Paper And Allied Products 

27 Printing Publishing & Allied Industries 

28 Chemical Manufacturing 

29 Petroleum Refining And Related Industries 

30 Rubber And Miscellaneous Plastics Products 

31 Leather And Leather Products 

32 Stone, Clay, Glass, And Concrete Products 

33 Primary Metal Industries 

34 Fabricated Metal Products, Except Machinery And Transportation Equipment 

35 Industrial And Commercial Machinery And Computer Equipment 

36 Electronic And Other Electrical Equipment And Components, Except Computer 

Equipment 

37 Transportation 

38 Measuring & Analyzing Instruments Manufacturers 

39 Miscellaneous Manufacturing Industries 

40 Railroad Transportation 
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SIC_2D Industry Classification  

41 Local And Suburban Transit And Interurban Highway Passenger Transportation 

42 Waste Collection 

43 United States Postal Service 

44 Retail 

45 Transportation by Air 

46 Pipelines, Except Natural Gas 

47 Transportation Services 

48 Trucking 

49 Electric, Gas, And Sanitary Services 

50 Wholesale Trade-durable Goods 

51 Wholesale Trade-non-durable Goods 

52 Building Materials, Hardware, Garden Supply, And Mobile Home Dealers 

53 General Merchandise Stores 

54 Food Stores 

55 Automotive Dealers And Gasoline Service Stations 

56 Apparel And Accessory Stores 

57 Home Furniture, Furnishings, And Equipment Stores 

58 Eating And Drinking Places 

59 Miscellaneous Retail 

60 Depository Institutions 

61 Non-depository Credit Institutions 

62 Security And Commodity Brokers, Dealers, Exchanges, And Services 

63 Insurance Carriers 

64 Insurance Agents, Brokers, And Service 

65 Real Estate 

67 Holding And Other Investment Offices 

70 Hotels, Rooming Houses, Camps, And Other Lodging Places 

72 Personal Services 

73 Business Services 

75 Wholesale Trade-durable Goods 

76 Miscellaneous Repair Services 

78 Motion Pictures 

79 Amusement and Recreation Services 
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SIC_2D Industry Classification  

80 Health Services 

81 Legal Services 

82 Educational Services 

83 Social Services 

84 Social non-profit 

86 Membership Organizations 

87 Engineering, Accounting, Research, Management, And Related Services 

89 Miscellaneous Services 

91 Executive, Legislative, And General Government, Except Finance 

92 Justice, Public Order, And Safety 

93 Public Finance, Taxation, And Monetary Policy 

95 Admin-Environmental Quality Programs 

96 Administration Of Economic Programs 

97 National Security and International Affairs 

99 Non-classifiable Establishments 
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APPENDIX B: Spatial Autocorrelation (Moran’s I Results) 

 

Figure B - 1: GVW 1 Moran’s I Results 

Given the p-value of 0.001, there is less than 1% likelihood that this clustered pattern 

could be the result of random chance. 
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Figure B - 2: GVW 2 Moran’s I Results 

 

Given the p-value of 0.003, there is less than 1% likelihood that this clustered pattern 

could be the result of random chance. 
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Figure B - 3: GVW 3 Moran’s I Results 

 

Given the p-value of 0.024, there is less than 5% likelihood that this clustered pattern 

could be the result of random chance. 

 

 

 

 

 



103 

 

 

Figure B - 4: GVW 4 Moran’s I Results 

 

Given the p-value of 0.0097, there is less than 1% likelihood that this clustered pattern 

could be the result of random chance. 
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Figure B - 5: GVW 5 Moran’s I Results 

 

Given the p-value of 0.011, there is less than 5% likelihood that this clustered pattern 

could be the result of random chance. 
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Figure B - 6: GVW 6 Moran’s I Results 

 

Given the p-value of 0.054, there is less than 10% likelihood that this clustered pattern 

could be the result of random chance. 
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Figure B - 7: GVW 1 Moran’s I Results 

 

Given the p-value of 0.009, there is less than 1% likelihood that this clustered pattern 

could be the result of random chance. 
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Figure B - 8: GVW 8 Moran’s I Results 

 

Given the p-value of 0.0006, there is less than 1% likelihood that this clustered pattern 

could be the result of random chance. 
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APPENDIX C: MNL Models - Observed versus Estimated Numbers Vehicles 

by Class 

 

 

Figure C - 1: MNL Model 1 - Observed versus Estimated Numbers of Cars 

 

Figure C - 2: MNL Model 2 - Observed versus Estimated Numbers of Cars 

 

Figure C - 3: MNL Model 3 - Observed versus Estimated Numbers of Cars 
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Figure C - 4: MNL Model 1 - Observed versus Estimated Numbers of Light Duty Trucks 

 

Figure C - 5: MNL Model 2 - Observed versus Estimated Numbers of Light Duty Trucks 

 

Figure C - 6: MNL Model 3 - Observed versus Estimated Numbers of Light Duty Trucks 
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Figure C - 7: MNL Model 1 - Observed versus Estimated Numbers of Medium Duty Trucks 

 

Figure C - 8: MNL Model 2 - Observed versus Estimated Numbers of Medium Duty Trucks 

 

Figure C - 9: MNL Model 3 - Observed versus Estimated Numbers of Medium Duty Trucks 
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Figure C - 10: MNL Model 1 - Observed versus Estimated Numbers of Heavy Duty Trucks 

 

Figure C - 11: MNL Model 2 - Observed versus Estimated Numbers of Heavy Duty Trucks 

 

Figure C - 12: MNL Model 3 - Observed versus Estimated Numbers of Heavy Duty Trucks 
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APPENDIX D: NB Models - Observed versus Estimated Numbers Vehicles by 

Class 

 

 

Figure D - 1: NB Model 1 - Observed versus Estimated Numbers of Cars 

 

Figure D - 2: NB Model 2 - Observed versus Estimated Numbers of Light Duty Trucks 

 

Figure D - 3: NB Model 3 - Observed versus Estimated Numbers of Medium Duty Trucks 
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Figure D - 4: NB Model 4- Observed versus Estimated Numbers of Heavy Duty Trucks 
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