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Abstract 
 

In this thesis we have proposed explicit formulae for group operation such as addition and doubling 

on the Jacobians of Hyper Elliptic Curves genus 2, 3 and 4. The Cantor Algorithm generally 

involves to perform arithmetic operations in the polynomial ring ॲ௤ሾݔሿ. The explicit method 

performs the arithmetic operation in the integer ring of ॲ௤. Significant improvement has been made 

in the explicit formulae algorithm proposed here. Other explicit formulae used Montgomery trick 

to derive efficient formulae for faster group computation. The method used in this thesis to develop 

an efficient explicit formula was inspired by the geometric properties in the hyper elliptic curves 

of genus and by keeping the Jacobian variety curve constant. This formulae take Mumford 

coordinates as input. The explicit formulae here performs the computation in affine space of genus 

2, 3 and 4 of Hyper Elliptic Curves in general form, which can be used to develop Hyper Elliptic 

Curve Cryptosystem. 

 

Key Words: Hyper Elliptic Curve, Hyper Elliptic Curve Cryptosystem, Jacobian Curve, genus 2, 

genus 3, genus 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Dedication  
 

To my mother (Mrs. Israt Jahan) and father (Mr. Iqbal Ahmed), for nurturing and raising me to 

the place where I stand. 

 

To my wife (Mrs. Minnatul Fatema), for her companionship and love. 

 

To my sister (Ms, Raqima Tahseen Raisa), for her support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Acknowledgements 
 

I would like to thank my supervisor Dr. Huapeng Wu, Professor of Electrical and Computer 

Engineering at University of Windsor, for introducing me to the world of cyber – security and 

cryptography. His broad knowledge and logical way of thinking have been of great value; without 

his detailed and constructive comments on my research, none of this thesis would be possible.  

 

Finally, I wish to extend my gratitude to everyone at the UWindsor’s Faculty of ECE, for their 

efforts during my study in the MASc. Program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Contents 
 

Author’s Declaration of Originality  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

iii

Abstract    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

iv

Dedication  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

v

Acknowledgement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

vi

List of Figures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

xi

List of Tables  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

xii

List of Algorithms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

xiv

List of Acronyms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

xvi

1.    Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

       1.1    Objective  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

       1.2    Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

1

3

3

2.    Mathematical Background  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

       2.1    Elementary Algebraic Background  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                2.1.1    Groups  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                2.1.2    Rings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                2.1.3    Fields .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                2.1.4    Polynomial Rings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                2.1.5    Extension Fields  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

       2.2    Basics of Hyper Elliptic Curve  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

5

5

5

9

12

12

14

15



viii 
 

                2.2.1    Hyper Elliptic Curve – An example  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                            2.2.1.1    Graphical representation of an Elliptic Curve over Թ  .  .  .  .  .  

                            2.2.1.2    Determining Cartesian points in an Elliptic Curve over Թ  .  .   

                            2.2.1.3    Graphical representation of a Hyper Elliptic Curve over Թ  .  .  

                            2.2.1.4    Determining Cartesian points in a Hyper Elliptic Curve over  

                                           Թ .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                            2.2.1.5    Comparing the curves: Elliptic and Hyper Elliptic  .  .  .  .  .  .  

                            2.2.1.6    Finding the points on the hyper elliptic curve over large prime 

                                           field  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

               2.2.2    Polynomial and Rational Function  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

               2.2.3    Zeroes and Poles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

16

16

17

21

21

23

23

23

24

25

3.    Hyper Elliptic Curve Cryptography  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

       3.1    Elliptic and Hyper Elliptic Curve Group Law  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                3.1.1    Arithmetic of Elliptic Curve  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                            3.1.1.1    Group Operations on Elliptic Curve  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                            3.1.1.2    Point Addition and Doubling in Elliptic Curve  .  .  .  .  .  .  .  .   

                3.1.2    Arithmetic of Hyper Elliptic Curve  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                            3.1.2.1    Group Operations on Hyper Elliptic Curve  .  .  .  .  .  .  .  .  .  .  

                            3.1.2.2    Divisor and Divisor Class Group  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                            3.1.2.3    Jacobian Variety of Hyper Elliptic Curve  .  .  .  .  .  .  .  .  .  .  .  

        3.2    Point Representation – Divisor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                  3.2.1    Mumford Representation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                  3.2.2    Mumford Representation – An example  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

27

28

28

29

30

32

32

34

35

37

37

39

4.    An Overview of Hyper Elliptic Curve Computation Method  .  .  .  .  .  .  .  .  .  .  .  

       4.1    Cantor Algorithm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

                 4.1.1    Composition and Reduction Stage  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                 4.1.2    Cantor Algorithm – An example  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                 4.1.3    Advantages and Disadvantage of using Cantor Algorithm  .  .  .  .  .  .  .  

       4.2    Subexpression Algorithm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

41

41

42

43

45

46



ix 
 

                 4.2.1    Subexpression Algorithm - An example  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                 4.2.2    Advantages and Disadvantages of using Subexpression Algorithm  .  .  

       4.3    Explicit Formula Algorithm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

                4.3.1    Advantages and Disadvantages of Explicit Formulae Algorithm  .  .  .  .  

 

47

48

48

49

5.    Proposed Efficient Computation for Hyper Elliptic Curve Cryptography  .  .  .   

       5.1    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 2  .  .  .  .  .  .    

                 5.1.1    Generating General Addition Explicit Formula for HEC of genus 2  .  . 

                 5.1.2    Computational Complexity of General Addition Explicit Formula for  

                             HEC of  ݃ ൌ 2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

                 5.1.3    Comparison of proposed and existing Explicit Formulae (Addition) for 

                             HEC ݃ ൌ 2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

        5.2    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 3  .  .  .  .  .  .  

                 5.2.1    Generating General Addition Explicit Formula for HEC of genus 3  .  .  

                 5.2.2    Computational Complexity of General Addition Explicit Formula for  

                             HEC of  ݃ ൌ 3  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

                 5.2.3    Comparison of proposed and existing Explicit Formulae (Addition) for 

                             HEC ݃ ൌ 3  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

        5.3    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 4  .  .  .  .  .  .  

                 5.3.1    Generating General Addition Explicit Formula for HEC of genus 4  .  .  

                 5.3.2    Computational Complexity of General Addition Explicit Formula for    

                             HEC of  ݃ ൌ 4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

                 5.3.3    Comparison of proposed and existing Explicit Formulae (Addition) for 

                             HEC ݃ ൌ 4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

         5.4    Explicit Formulae (Doubling) for HEC of genus 2  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

                  5.4.1    Generating Doubling Explicit Formulae for HEC of genus 2  .  .  .  .  .  

                  5.4.2    Comparison of proposed and existing Explicit Formulae (Doubling) 

                              For HEC ݃ ൌ 2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

         5.5    Explicit Formulae (Doubling) for HEC of genus 3  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

                  5.5.1    Generating Doubling Explicit Formulae for HEC of genus 3  .  .  .  .  .  

                  5.5.2    Comparison of proposed and existing Explicit Formulae (Doubling) 

50

50

51

57

58

61

62

67

68

71

71

78

78

83

83

88

90



x 
 

                              for HEC ݃ ൌ 3  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

         5.6    Explicit Formulae (Doubling) for HEC of genus 4  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

                  5.6.1    Generating Doubling Explicit Formulae for HEC of genus 4  .  .  .  .  .   

                  5.6.2    Comparison of proposed and existing Explicit Formulae (Doubling) 

                              For HEC ݃ ൌ 4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

90

96

99

99

 104

6.    Discussions and Possible Future Work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

107

Appendix  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

A.    MATLAB SCRIPT FOR PSEUDO CODE FOR CALCULATING: ࢟૛ࢊ࢕࢓	࢖  .  

B.    MATLAB SCRIPT FOR PSEUDO CODE FOR CALCULATING:  

       ሺ࢞૜ ൅   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ࢖	܌ܗܕ	ሻ࢞

C.    MATLAB SCRIPT FOR  PSEUDO CODE TO DETERMINE THE POINTS 

        ON EC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

D.    MATLAB SCRIPT FOR PSEUDO CODE TO DETERMINE THE POINTS 

        ON HEC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

109

109

110

111

112

Bibliography  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

 

113

Vita Auctoris  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   117

 

 

 

 

 



xi 
 

List of Figures 

 

2.1 Venn Diagram Representation on types of Homomorphism  .  .  .  .  .  .  .  .  .  . 8

2.2 Elliptic Curve over Թ  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  17

2.3 Hyper Elliptic Curve over Թ  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   21

2.4 Elliptic curve ܧா஼  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

2.5 Hyper Elliptic curve ܧுா஼  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   23

3.1 Point Addition on an Elliptic Curve over Թ  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29

3.2 Point doubling on an Elliptic Curve over Թ  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   30

3.3 Group operation on the HEC of genus 2 over Թ, ݕହ ൌ ݂ሺݔሻ, deg ݂ሺݔሻ ൌ 5 

and ݂ሺݔሻ is monic for ሺ ଵܲ ൅ ଶܲሻ⨁ሺܳଵ ൅ ܳଶሻ ൌ ሺܴଵ
ᇱ ൅ ܴଶ

ᇱ ሻ.  .  .  .  .  .  .  .  .  .  .  33

3.4 Hyper Elliptic Curve of genus 2 and Jacobian variety curve  .  .  .  .  .  .  .  .  .  .  36

5.1 Hyper Elliptic Curve of genus 2 and Jacobian variety curve    .  .  .  .  .  .  .  .  .   50

5.2 Hyper Elliptic Curve of genus 3 and Jacobian variety curve    .  .  .  .  .  .  .  .  .    61

5.3 Hyper Elliptic Curve of genus 4 and Jacobian variety curve    .  .  .  .  .  .  .  .  .   71

5.4 Hyper Elliptic Curve of genus 2 as it touch the Jacobian variety curve  .  .  .  .   83

5.5 Hyper Elliptic Curve of genus 3 as it touch the Jacobian variety curve  .  .  .  .   90

5.6 Hyper Elliptic Curve of genus 4 as it touch the Jacobian variety curve  .  .  .  .   99

 

 

 

 

 

 



xii 
 

List of Tables 

 

2.1 PSEUDO CODE FOR CALCULATING: ݕଶ݉݀݋ 17  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ݌

2.2 PSEUDO CODE FOR CALCULATING: ሺݔଷ ൅ ሻݔ mod 18   .  .  .  .  .  .  .  .  .  .  ݌

2.3 PSEUDO CODE TO DETERMINE THE POINTS ON EC  .  .  .  .  .  .  .  .  .  . 18

2.4 Finite Field and its corresponding number of valid points  .  .  .  .  .  .  .  .  .  .  . 19

2.5 PSEUDO CODE TO DETERMINE THE POINTS ON HEC  .  .  .  .  .  .  .  .  . 22

4.1 Cantor Algorithm (Composition)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  42

4.2 Cantor Algorithm (Reduction)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   43

4.3 Complexity of the Cantor Algorithm of the hyper elliptic curve of genus 4 45

4.4 Subexpression Algorithm (Addition)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  46

4.5 Subexpression Algorithm (Doubling)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   47

5.1 Complexity comparison between the explicit formulae for HEC of genus 2 for 
different curve property  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57

5.2 Comparison between the explicit formulas for (genus = 2) curves over ॲ௤ of 

previous work and the present work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   58

5.3 Corresponding conversion of the Cartesian points to Mumford form  .  .  .  .  .   62

5.4 Complexity comparison between the explicit formulae for HEC of genus 3 for 

different curve property  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67

5.5 Comparison between the explicit formulas for (genus = 3) curves over 	

ॲ௤ of previous work and the present work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  68

5.6 Complexity comparison between the explicit formulae for HEC of genus 4 for 

different curve property  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78

5.7 Comparison between the explicit formulas for (genus = 4) curves over ॲ௤ of 

previous work and the present work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

78

5.8 Comparison between the explicit formulas (doubling) for (genus = 2) curves over 

ॲݍ	of previous work and the present work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   88

5.9 Corresponding conversion of the Cartesian points to Mumford form for genus 3  . 91

5.10 Comparison between the explicit formulas for (genus = 3) curves over ॲݍ	of 

previous work and the present work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

96



xiii 
 

5.11 Corresponding conversion of the Cartesian points to Mumford form for genus 4  . 100

5.12 Comparison between the explicit formulae’s (doubling) for (genus = 4) curves 

over ॲݍ	of previous work and the present work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   104

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

List of Algorithms 

 

I EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 2, HEC: ݕଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅

ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF 

COORDINATES: 6  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

   

59

II EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 2, HEC: ݕଶ ൌ ହݔ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE 

GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF COORDINATES: 6  .  .  .  .  .  .  .  .  . 

   

60

III EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 3, HEC: ݕଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ଻ݔ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅

ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. 

NUMBER OF COORDINATES: 8  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

69

IV EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 3, HEC: ݕଶ ൌ ଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

OVER THE GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF COORDINATES: 8.  .  

    

70

V EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 4, HEC: ݕଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ଽݔ ൅ ଼݂ ଼ݔ ൅ ଻݂ݔ଻ ൅

଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD 

 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ሻ. NUMBER OF COORDINATES: 10݌ሺܨܩ

   

79

 

 

 



xv 
 

VI EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 4, HEC: ݕଶ ൌ ଽݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅

ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF 

COORDINATES: 10 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81

 

VII EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 2, HEC: ݕଶ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE 

GALOIS FIELD	ܨܩሺ݌ሻ. NUMBER OF COORDINATES: 4  .  .  .  .  .  .  .  .  . 

 

89

VIII EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 3, HEC: ݕଶ ൌ ଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

OVER THE GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF COORDINATES: 6  .  . 

 

97

IX EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE 

OF GENUS 4, HEC: ݕଶ ൌ ଽݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅

ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF 

COORDINATES: 8  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

 

105

 

 

 

 

 

 



xvi 
 

List of Acronyms 

 

GF Finite Field or Galois Field 

EC Elliptic Curve  

ECC Elliptic Curve Cryptography 

HEC Hyper Elliptic Curve 

RSA Rivest, Shamir, Adleman 

DLP Discrete Logarithm Problem 

ECDLP Elliptic Curve Discrete Logarithm Problem 

HECDLP Hyper Elliptic Curve Discrete Logarithm Problem 

DH Diffie – Hellman 

PKI Public Key Infrastructure 

CA Cantor Algorithm 

SA Subexpression Algorithm 

JC Jacobian Curve 

Թ Real Field 

ॲ௤ Prime field  

 

 

 

 
 

 



Page 1 of 117 
 

Chapter 1 

 

Introduction 
 

Cybersecurity plays a very important role in our daily lives. For example, we would like to protect our 

data in our personal electronic devices, such as laptop and smart phone. To have a secure communication 

over the unsafe internet, using communication application such as Skype, WhatsApp and many more. To 

protect out data in cloud storage services offered by Dropbox, Google Drive and etc. or we would like to 

do online banking services and paying bills, or we purchase online and enjoy Electronic Commerce 

services offered by Amazon, EBay, Alibaba and many more. All those are made possible with the 

implementation and improvement of cybersecurity. The field of cryptography, as the core technology to 

achieve cybersecurity for the things mentioned above, can provide crucial security services such as 

Privacy, Authentication, Key Establishment and Data Integrity.      

 

Higher security strength, faster implementation and low power consumption, this is what we are after in 

the area of cryptography engineering. There are already many cryptographic algorithms available which 

are able to satisfy these requirements. However, the new communication gadgets are smaller in size, which 

has very limited processing power and storage. The key size of the RSA [9] is quite large and RSA 

implementation in small devices takes long processing time and consumes a lot power. So cryptosystems 

that use smaller key size are favored in practice, such like those rely on the discrete logarithm problem 

over multiplicative group of elliptic curve defined in finite fields. 

 

Koblitz [1] introduced Elliptic Curve Cryptography (ECC) in 1987. It is based on the discrete logarithm 

problem over the abelian group of points of the curve. The group law over the curve makes the operation  

fast and easy to compute. The advantages of using ECC is its key size are smaller than RSA and also there 

is no sub exponential algorithms for Elliptic Curve Discreet Logarithm Problem (ECDLP). 
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Elliptic Curve Cryptography (ECC) can provide the same level of security as RSA or discreet logarithm 

problem (DLP) based systems such as Diffie Hellman Key Exchange (DHKE) and ElGamal public key 

cryptosystem at much smaller key size. On the hand, the complexity of the mathematics of the elliptic 

curves are more involved than those of the RSA and DLP based systems. Hyper Elliptic Curve 

Cryptography (HECC) is one of the late members of the established public-key algorithms: DHKE, RSA, 

ElGamal and ECC [6], [7], [8] [10].   

 

In 1989, Koblitz [2] introduced discrete logarithm problem on hyper elliptic curves (HEC) and the 

cryptosystem constructed over the Jacobian of Hyper elliptic curves and based on this hard problem. This 

research subject is called hyper elliptic curve cryptography (HECC). Note that hyper elliptic curves can 

also be viewed as a special type of elliptic curves with genus ≥ 2. The advantage of using HECC is the 

smaller key size for the same level of security, even compared to ECC. Moreover, it has no sub exponential 

algorithms to solve HEC DLP, similar to that for ECC. The smaller size of the base field also makes hyper 

elliptic curves a good choice for the light weight cryptosystems. 

 

Hyper Elliptic Curve Cryptography (HECC) offers theoretically higher level of security than all the 

established public key cryptosystem [5]. This is due to the high level of mathematical complexity even 

compare to Elliptic Curve Cryptosystems with the same key lengths size. In this thesis the mathematical 

background of HECC is discussed in detail and efficient methods for performing group operation are 

studied.  

 

In hyper elliptic curve cryptosystem, the group law includes addition and doubling in the Jacobian of the 

curve. The algorithm for the group operation was given by the Cantor [3]. Since then there have many 

improvements on efficient computation of group operations and also very active research works in the 

field of HECC. One of the earliest attempt made to efficient algorithm for group operation for HECC was 

obtained by Harley [11]. The Harley’s algorithm is an explicit representation of the Cantor Algorithm [3]. 

Later works presented more efficient algorithm for performing group operations we done by Lange [12], 

Matsuo, Chao and Tsujii [13], Miyamoto, Doi, Matsuo, Chao and Tsujii [14] and Takahashi [15]. 

 

In hyper elliptic curve the algorithms for group operation is not very fast for high genus compared to that 

for elliptic curve. There are faster algorithms for the elliptic curves or hyper elliptic curves with genus = 
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1. For the curves with larger genus, the existing algorithms for group operation are still relatively difficult 

to perform. It is a challenging task to develop faster algorithms for the group operation, which makes the 

study of HECC interesting. 

 

1.1 Objective 

 

The objective of the thesis can be listed as follow: 

1. Understand the group laws of Hyper Elliptic Curve over the finite field. 

2. Explain and discuss Mumford Representation of the intersecting Cartesian points between the 

Jacobian Variety Curve and Hyper Elliptic Curve over the finite field.  

3. Discuss the group operations in Cantor Algorithm and Subexpression Algorithm for point 

addition and doubling. 

4. Develop an explicit formulae algorithm for efficient group operation such as addition and 

doubling. 

 

1.2 Overview 

 

The following is an outline of the rest of the thesis. 

 

Chapter 2: Mathematical Fundamentals. 

 

In this chapter we will discuss the basic abstract algebra, such as the definitions of groups, Abelian group, 

subgroup, Homomorphism, Kernel, Rings, Polynomial Rings, Fields, Field Extension and etc. Later in 

this chapter, we will discuss the basic properties of Elliptic and Hyper Elliptic Curves. The fundamental 

difference between Elliptic and Hyper Elliptic Curve with pictorial examples.  

 

Chapter 3: Hyper Elliptic Curve Cryptography. 

 

In this chapter we present the necessary definitions and methods required in the later chapters. It provides 

a description of group operations, group order in Elliptic Curve Cryptography and Hyper Elliptic Curve 
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Cryptography. The group operation such as addition and scalar multiplication (generally better known as 

doubling) is very fundamental. Here we discuss in detail with example on how to convert the Cartesian 

points on the hyper elliptic curve over a field to Mumford Representation, which is polynomial 

representation of the co-ordinates. Definitions like Divisor Class, Divisor Class Group would be 

discussed.  

 

Chapter 4: An overview of Hyper Elliptic Curve Computational Method. 

 

In this chapter, we present how we can perform group operation such as addition and doubling by applying 

Cantor Algorithm. Later in the same section we intended to make it clear by presenting an example on 

how to apply this algorithm, the advantages and disadvantages of using Cantor Algorithm. Here we also 

discuss another method for performing group operation: Subexpression Algorithm. We try to make it clear 

with an example and its limitation (such as it advantages and disadvantages). Later in the same chapter 

we introduces efficient method for computing group operation with Explicit Formulae Algorithm. Its 

benefit and its limitation. 

 

Chapter 5: Proposed efficient computation for Hyper Elliptic Curve Cryptography. 

 

In this chapter, we will present with an efficient algorithm for group operation. Later in this chapter we 

discuss theorems and proposition used to build an efficient explicit formulae algorithm. Separate explicit 

formula algorithm for addition and doubling for specific hyper elliptic curve with different number of 

genus. 

 

Chapter 6: Discussions and possible future works. 

 

In this thesis we have proposed efficient explicit formulae with less complexity for group operations for 

the Hyper Elliptic Curves of genus 2, 3 and 4. The same procedure used here can be expanded to the hyper 

elliptic curves of great number of genus. In the future works, hardware implementation of HEC 

cryptographic system with the proposed efficient explicit algorithm for Hyper Elliptic Curve – Public Key 

Infrastructure (HEC – PKI) and Hyper Elliptic Curve – Digital Signature (HEC - DS).    
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Chapter 2 

 

Mathematical Background 
 

2.1 Elementary Algebraic Background 

 

There are good reference book for the study of basic abstract algebra. The two books used for references 

are by Gallian [16], Herstein [17] and for the field theory is by Roman [18]. The area of study for abstract 

algebra is vast and to give a concise background is very difficult. The three books I have mentioned above 

is a good place to start. The definitions I give in abstract algebra which will be useful for the study of 

hyperelliptic curves.  

 

2.1.1 Groups 

 

Definition 1 (Law of Composition) 

 

A law of composition on a set ܩ is a rule for performing an operation between any two elements in the set 

 .ܩ is also an element of the set ݌ Where .݌ let it be ܽ and ܾ. The result of the operation, let it be ,ܩ

 

Definition 2 (Group) 

 

A group is a set G together with the law of composition under this operation if the following three 

properties are satisfied. 

1. Associativity: The operation is said to be associative; that is ሺܽ ∘ ܾሻ ∘ ܿ ൌ ܽ ∘ ሺܾ ∘ ܿሻ for all 

ܽ, ܾ, ܿ	 ∈  .ܩ

2. Identity: There is an element ݁ ∈ ܽ such that (called the identity element) ܩ ∘ ݁ ൌ ܽ for all ܽ ∈  .ܩ
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3. Inverse: For every element ܽ ∈ ܾ there is an element ,ܩ ∈ ܽ such that (ܽ called an inverse of) ܩ ∘

ܾ ൌ ܾ ∘ ܽ ൌ ݁ 

Definition 3 (Abelian/Commutative Group) 

 

A group ܩ is called an Abelian group if and only if ܽ, ܾ ∈ ܽ where ܩ ∘ ܾ ൌ ܾ ∘ ܽ for all elements in the 

group ܩ. 

 

Definition 4 (Subgroup) 

 

A subset ܪ of a group ܩ is called a subgroup of ܩ containing the identity element ݁ and such that it all 

satisfies the all the properties of a group. 

1. For all ܽ, ܾ ∈ ܽ ,ܪ ∘ ܾ ൌ ܿ, where ܿ ∈  ܪ

2. If ܿ ∈ then ܿିଵ ܪ ∈  ܪ

 

Definition 5 (Cyclic Group) 

 

A group ܩ is called cyclic if there is an element ܽ ∈ ܩ such that ܩ ൌ ሼܽ௡|	݊ ∈ ܼሽ. Such an element is 

called a generator of ܩ. We can represent the cyclic nature of ܩ as ܩ ൌ൏ ܽ ൐. 

 

Definition 6 (Order of a Group) 

 

The number of elements of a group is called the order. If the group is finite, then the group is called a 

finite group. |ܩ| is denoted as the order of the group ܩ. 

 

Definition 7 (Order of an Element) 

 

The order of an element ܽ in a group is the smallest positive integer ݊ such that ܽ௡ ൌ ݁. The order of an 

element ܽ is denoted as |݃|. The element ݃ has infinite order if no such integer ݊ exists.  
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Definition 8 (Equivalence Relation) 

 

An equivalence relation on a set ܩ is a set ܴ of ordered pairs of elements of ܩ such that 

1. ሺܽ, ܽሻ ∈ ܴ for all ܽ ∈  .(reflexive property) ܩ

2. ሺܽ, ܾሻ ∈ ܴ implies ሺܾ, ܽሻ ∈ ܴ (symmetric property). 

3. ሺܽ, ܾሻ ∈ ܴ and ሺܾ, ܿሻ ∈ ܴ imply ሺܽ, ܿሻ ∈ ܴ (transitive property). 

 

Definition 9 (Cosets) 

 

If ܪ is a subgroup of the group ܩ, and an element ݃ of the group ܩ. Then ݃ܪ ൌ ሼ݄݃|݄ is an element of 

݃ܪ ,ܩ in ܪ is called the left coset of {ܪ ൌ ሼ݄݃|݄ is an element of ܪ} is called the right coset of ܪ in ܩ.  

 

Properties of Cosets: 

 

Let ܪ be a subgroup of ܩ, where the element ܽ and ܾ ∈  ,Then .ܩ

1. ܽ ∈  .ܪܽ

ܪܽ .2 ൌ ܽ iff ܪ ∈  .ܪ

3. ሺܾܽሻܪ ൌ ܽሺܾܪሻ and ܪሺܾܽሻ ൌ ሺܽܪሻܾ. 

ܪܽ .4 ൌ ܽ iff ܪܾ ∈  .ܪܾ

ܪܽ .5 ൌ ܪorܽ ܪܾ ∩ ܪܾ ൌ ∅. 

ܪܽ .6 ൌ iff ܽିଵܾ ܪܾ ∈  .ܪ

|ܪܽ| .7 ൌ  .|ܪܾ|

ܪܽ .8 ൌ ܪ iff ܽܪ ൌ  .ଵିܽܪܽ

⊃ ܪܽ .9 ܽ iff ,ܩ ∈  .ܪ

 

Theorem 10 (Lagrange) 

 

If the group ܩ is a finite group and ܪ be a subgroup of ܩ. Then the order of ܪ divides the order of ܩ. 

Which makes the order of every element also divide the order of ܩ. 
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Definition 11 (Homomorphism) 

 

If ሺܩ,∙ሻ and ሺܪ,∘ሻ are two groups, a homomorphism from ܩ to ܪ is a function ߮: ܩ →  that satisfies, for ܪ

all ܽ, ܾ ∈  .ܩ

߮ሺܽ ⋅ ܾሻ ൌ ߮ሺܽሻ ∘ ߮ሺܾሻ 

 

If ߮ is a one – to – one (INJECTIVE) → monomorphism. 

If ߮ is a onto                (SURJECTIVE) → epimorphism. 

If ߮ is a bijective         (BIJECTIVE) → isomorphism. 

 

 

Figure 2.1: Venn diagram Representation on types of Homomorphism 

 

Definition 12 (Kernel) 

 

If ߮ is a homomorphism from the group ܩ → ߮ ᇱ, then the kernel ofܩ  is defined by ݇߮ ൌ ሼܽ ∈ ሺܽሻ߮	|ܩ ൌ

݁ᇱሽ, and ݁ᇱ is the identity element of the group ܩᇱ. 

 

Definition 13 (Normal Subgroup) 

 

A subgroup ܪ of ܩ is normal in ܩ iff ܽିܽܪଵ ⊆ ܽ	for all the element ܪ ∈   .ܩ
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Definition 14 (Quotient Group) 

 

The subgroup ܪ of ܩ is normal, then the set of left (or right) cosets of ܪ in ܩ is by itself is a group – called 

the factor group (or quotient group) of ܩ by	ܪ. Let ܩ be a group and let ܪ be a normal subgroup of	ܩ. 

The set /ܩ	ܪ = ሼܽܪ	|	ܽ	 ∈ ሻܪሻሺܾܪሺܽ	ሽ is a group under the operationܩ ൌ  .ܪܾܽ

 

2.1.2 Rings 

 

Definition 15 (Rings) 

 

A set ܴ is said to form a ring with respect to the binary operations addition (+) and multiplication (·) 

provided the elements ܽ, ܾ, ܿ ∈ ܴ holds the following properties.  

 

Properties 16 (Rings) 

 

1. Associative law of addition: ሺܽ ൅ ܾሻ ൅ ܿ ൌ ܽ ൅ ሺܾ ൅ ܿሻ 

2. Commutative law of addition: ܽ ൅ ܾ ൌ ܾ ൅ ܽ 

3. Presence of additive identity: there exists ݖ ∈ ܴ such that ܽ ൅ ݖ ൌ ܽ 

4. Presence of additive inverse: for every element	ܽ ∈ ܴ, there exists െܽ ∈ ܴ such that	ܽ ൅ ሺെܽሻ ൌ

 .ݖ

5. Associative law of multiplication: ሺܽ ∙ ܾሻ ∙ ܿ ൌ ܽ ∙ ሺܾ ∙ ܿሻ 

6. Distributive law: ܽ ∙ ሺܾ ൅ ܿሻ ൌ ܽ ∙ ܾ ൅ ܽ ∙ ܿ or   ሺܾ ൅ ܿሻ ∙ ܽ ൌ ܾ ∙ ܽ ൅ ܿ ∙ ܽ 

 

Definition 17 (Subrings) 

 

Let ܴ be a ring and ܵ is the non – empty subset of ܴ, which itself is a ring with respect to the binary 

operations on ܴ, is called a subring of ܴ. 
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Definition 18 (Commutative Ring) 

 

A ring for which multiplication is commutative is called a commutative ring. 

 

For all the elements in the ring ܴ. ܽ, ܾ ∈ ܴ.  

ܽ ∙ ܾ ൌ ܾ ∙ ܽ (Commutative law of multiplication)  

 

 

Definition 19 (Ring with identity element or ring with unity) 

 

A ring with a multiplicative identity is called a ring with identity element ݅ or ring with unity 

For all the elements in the ring ܴ. ܽ, ܽିଵ ∈ ܴ. 

ܽ. ܽିଵ ൌ ݅ (Multiplicative identity element) 

 

Definition 20 (Zero - Divisors) 

 

Let ܴ be a ring and let ܽ, ܾ ∈ ܴ such that ܽ ് 0 and	ܾ ് 0. If ܾܽ ൌ 0, then ܽ and ܾ are called Zero – 

Divisors. 

 

Definition 21 (Integral Domain) 

 

An integral domain is a commutative ring ܴ with unity 1 (assuming 1 ≠ 0) and no zero – divisor. 

 

Definition 22 (Ideals) 

 

Let ܴ be a ring, a non – empty subset ܣ of ܴ is called an Ideal ring. For a ring to be an Ideal the conditions 

below has to be fulfilled. 

Conditions: 

 .ܴ is an additive subgroup of ܣ .1

2. For every elements, ݎ ∈ ܴ and ܽ ∈ ܣݎ .ܣ ൌ ሼܽݎ|ܽ ∈ ሽܣ ⊆ ݎܣ and ܣ ൌ ሼܽݎ|ܽ ∈ ሽܣ ⊆ ݎ for all ܣ ∈

ܴ. 
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Definition 23 (Principal Ideals) 

 

If ܫ is an ideal of the ring ܴ such that the ring ܫ is generated by one element. That is ܫ ൌ൏ ܽ ൐ for some 

ܽ ∈ ܴ, then ܫ is said to be a principle ideal of ܴ.  

 

 

Definition 24 (Prime Ideals) 

 

An ideal ܫ if a ring ܴ is called a prime ideal if ܾܽ ∈ ܽ implies either ܫ ∈ ܾ	or ܫ ∈   .ܫ

 

Definition 25 (Maximal Ideals) 

 

Let ܫ be an ideal of a ring ܴ with ܫ ് ܴ. Then ܫ is called a maximal ideal of ܴ if there exists an ideal ܬ of 

ܴ with ܫ ⊂ ܬ ⊂ ܴ and ܫ ് ܬ ് ܴ. 

 

Definition 26 (Ring Homomorphism) 

 

A ring homomorphism ߮ from a ring ܴ to a ring ܵ is a mapping from ܴ to ܵ that preserves the two ring 

operations; that is, for all ܽ, ܾ in ܴ 

 

߮ሺܽ ൅ ܾሻ ൌ ߮ሺܽሻ ൅ ߮ሺܾሻ and ߮ሺܾܽሻ ൌ ߮ሺܽሻ߮ሺܾሻ 

 

A ring homomorphism that is both one – to – one and onto is called a ring isomorphism. [16] 

 

Properties 27 (Ring Homomorphism) [16] 

 

Let ߮ be a ring homomorphism from a ring ܴ to a ring ܵ. Let ܣ be a subring of ܴ and let ܤ be an ideal of 

ܵ. 

 

1. For any ݎ ∈ ܴ and any positive integer ݊, ߮ሺ݊ݎሻ ൌ ݊߮ሺݎሻ and ߮ሺݎ௡ሻ ൌ ሺ߮ሺݎሻሻ௡. 

2. ߮ሺܣሻ ൌ ሼ߮ሺܽሻ|ܽ ∈  .ܵ ሽ is a subring ofܣ
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3. If ܣ is an ideal and ߮ is onto	ܵ, then ߮ሺܣሻ is an ideal. 

4. ߮ିଵሺܤሻ ൌ ሼݎ ∈ ܴ|߮ሺݎሻ ∈  .ܴ ሽ is an ideal ofܤ

5. If ܴ is a commutative, then ߮ሺܴሻ is commutative. 

6. If ܴ has a unity 1, ܵ ് ሼ0ሽ, and ߮ is onto, then ߮ሺ1ሻ is the unity of ܵ. 

7. ߮ is an isomorphism if and only if ߮ is onto and ݎ݁ܭ	߮ ൌ ሼݎ ∈ ܴ|߮ሺݎሻ ൌ 0ሽ ൌ ሼ0ሽ. 

8. If ߮ is an isomorphism from ܴ onto ܵ, then ߮ିଵ is an isomorphism from ܵ onto ܴ.  

 

2.1.3 Fields 

 

Definition 28 (Fields) 

 

A ring is a field, let ܨ be the field. It forms an Abelian group under addition and multiplication and satisfies 

the distributive laws under addition: 

 

(i) ܽሺܾ ൅ ܿሻ ൌ ݏܽ ൅ ܽܿ and  (ii) ሺܽ ൅ ܾሻܿ ൌ ܽܿ ൅ ܾܿ 

The field ܨ as satisfies the following three conditions below: 

1. Multiplicative identity, unity ݁ (or 1), which is defined by ݁ܽ ൌ ܽ݁ ൌ ܽ for every ܽ ∈  .ܨ

2. Multiplicative inverse, ܽିଵ, exists for every ܽ ∈ ܽ where ,ܨ ് 0, such that ܽܽିଵ ൌ ܽିଵܽ ൌ ݁. 

3. Multiplicative commutativity, ܾܽ ൌ ܾܽ for every ܽ, ܾ ∈  .ܨ

 

2.1.4 Polynomial Rings 

 

Definition 29 (Polynomial Rings over R) 

 

Let R be a commutative ring. Where ܴሾݔሿ ൌ ሼܽ௡ݔ௡ ൅ ܽ௡ିଵݔ௡ିଵ ൅ ⋯൅ ܽଵݔଵ ൅ ܽ଴|ܽ௜ ∈ ܴሽ is called the 

polynomial ring over R. 
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Definition 30 (Addition and Multiplication in ࡾሾ࢞ሿ) 

 

Let R be a commutative ring and let ݂ሺݔሻ ൌ ܽ௡ݔ௡ ൅ ܽ௡ିଵݔ௡ିଵ ൅ ⋯൅ ܽଵݔ ൅ ܽ଴ and ݃ሺݔሻ ൌ ܾ௠ݔ௠ ൅

ܾ௠ିଵݔ௠ିଵ ൅ ⋯൅ ܾଵݔ ൅ ܾ଴ belong to ܴሾݔሿ. So, ݂ሺݔሻ ൅ ݃ሺݔሻ ൌ ሺܽ௦ ൅ ܾ௦ሻݔ௦ ൅ ሺܽ௦ିଵ ൅ ܾ௦ିଵሻݔ௦ିଵ ൅

⋯൅ ሺܽଵ ൅ ܾଵሻݔ ൅ ܽ଴ ൅ ܾ଴. ܽ௜ ൌ 0 for ݅ ൐ ݊, and ܾ௜ ൌ 0 for ݅ ൐ ݉.  

 

Also, ݂ሺݔሻ݃ሺݔሻ ൌ ܿ௠ା௡ݔ௠ା௡ ൅ ܿ௠ା௡ିଵݔ௠ା௡ିଵ ൅ ⋯൅ ܿଵݔ ൅ ܿ଴, where ܿ௞ ൌ ܽ௞ܾ଴ ൅ ܽ௞ିଵܾଵ ൅ ⋯൅

ܽଵܾ௞ିଵ ൅ ܽ଴ܾ௞ for ݇ ൌ 0,… ,݉ ൅ ݊. 

 

Theorem 31 (Integral Domain) 

 

If the ring ܦ is an integral domain, then ܦሾݔሿ is an integral domain. 

 

Theorem 32 (Division Algorithm) 

 

If ܨ is a field and ݂ሺݔሻ and ݃ሺݔሻ ∈ ሻݔሿ with ݃ሺݔሾܨ ് 0. Then there exists unique polynomial ݍሺݔሻ and 

ሻݔሿ such that ݂ሺݔሾܨ ሻ inݔሺݎ ൌ ݃ሺݔሻݍሺݔሻ ൅ ሻݔሺݎ ሻ and eitherݔሺݎ ൌ 0 or deg ሻݔሺݎ ൏ deg݃ሺݔሻ. 

 

Theorem 33 (Remainder Theorem) 

 

If ܨ is a field, ܽ ∈ ሻݔand ݂ሺ ,ܨ ∈ ݔ ሻ byݔThen ݂(a) is the remainder in the division of ݂ሺ	ሿ.ݔሾܨ െ ܽ.  

 

Theorem 34 (Factor Theorem) 

 

If ܨ is a field, ܽ ∈ ሻݔand ݂ሺ ,ܨ ∈ ݔ Then ܽ is a zero of ݂(x) if and only if	ሿ.ݔሾܨ െ ܽ is a factor of ݂ሺݔሻ 

 

Definition 35 (Principal Ideal Domain) 

 

A principal ideal domain is an integral domain ܴ in which every ideal has the form ൏ ܽ ൐	ൌ ሼݎ|ܽݎ ∈ ܴሽ 

for some ܽ in ܴ. 

 



Page 14 of 117 
 

Theorem 36 (ࡵ ൌ൏ ሻ࢞ሺࢍ ൐) 

 

If ܨ is a field, ܫ a non zero ideal in ܨሾݔሿ, and ݃ሺݔሻ is a nonzero polynomial of minimum degree in ܫ. 

 

Definition 37 (Irreducible or Prime Polynomial) 

 

Let ܦ be an integral domain. A polynomial ݂ሺݔሻ ∈  ሿ which is neither a zero polynomial nor a unit inݔሾܦ

 ሻ cannot be represented as factor of two or moreݔሿ is an irreducible polynomial if the expression ݂ሺݔሾܦ

polynomials such as ݂ሺݔሻ ൌ ݃ሺݔሻ݄ሺݔሻ. 

 

Definition 38 (Reducible Polynomial)  

 

Let ܦ be an integral domain. A polynomial ݂ሺݔሻ ∈  ሻ can be representedݔሿ, where the expression ݂ሺݔሾܦ

as factor of two or more polynomials such as ݂ሺݔሻ ൌ ݃ሺݔሻ݄ሺݔሻ. 

 

2.1.5 Extension Fields 

 

Definition  (Extension Field) 

 

A field ܧ is an extension field of a field ܨ, if the field ܨ is the subset of the field ܧ such that the operations 

of ܨ are the operations of ܧ confined to ܨ. 

 

 

 

 

 

 

 

 

 

 



Page 15 of 117 
 

2.2 Basics of Hyper Elliptic Curve 

 

In the area of cryptology, hyperelliptic curves are eagerly studied. Since it gives the same level of security 

with a smaller key length as compared to cryptosystems using elliptic curves. In 1987 Koblitz proposed 

that Jacobians of the hyperelliptic curves can produce abelian groups which will be suitable for 

cryptography. Hyperelliptic curves are a special group of algebraic curves and can be seen as a 

generalization of the elliptic curves. A hyperelliptic curve of genus ݃ ൌ 1 is also called an elliptic curves. 

Therefore, all the curves of every genus ݃ ൒ 1 are hyperelliptic curves. In this chapter, we will briefly 

introduce hyperelliptic curve cryptography and provide an overview of the parameters involved. In the 

following section, hyperelliptic curve cryptography or cryptosystem will always be abbreviated as HECC.  

 

Definition 1 (Hyperelliptic Curves) 

 

Let ܭ be a field and let ܭഥ be the algebraic closure of the field	ܭ. A hyperelliptic curve ܥ of genus ݃	ሺ݃ ൒

1ሻ over ܭ is an equation of the form 

 

ଶݕ	:ܥ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ in ܭሾݔ,  ሿݕ

 

Where ݄ሺݔሻ ∈ ሻݔሿ is a polynomial of degree at most ݃, ݂ሺݔሾܭ ∈  ሿ and a monic polynomial of degreeݔሾܭ

2݃ ൅ 1 and there is no solution ሺݔ, ሻݕ ∈ ഥܭ ൈ  ഥ, which simultaneously satisfies the equationsܭ

 

ଶݕ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ 

ݕ2 ൅ ݄ሺݔሻ ൌ 0 

݄ᇱሺݔሻݕ െ ݂ᇱሺݔሻ ൌ 0 

 

A singular point on the curve ܥ is a solution ሺݔ, ሻݕ ∈ ഥܭ ൈ  .ഥ which satisfies all the above three equationsܭ

Thus a hyperelliptic curve does not have any singular points by definition.  
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Definition 2 (Extension field of ࡷ) 

 

Let ܮ be an extension field of ܭ. The set of ܮ is the rational points on the curve ܥ, denoted by ܥሺܮሻ ൌ

ሼሺݔ, ሻݕ ∈ ܮ ൈ :ܮ ଶݕ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻሽ ∪ ሼܱሽ, where ܱ is a special point, called the point at infinity. 

 

Definition 3 (Rational Points, Points at infinity, Finite Points) 

 

To make the definition 2 to be clearer, the set of points in ܥሺܮሻ are the rational points ܲ ൌ ሺݔ, ሻݕ ∈ ܮ ൈ  ܮ

which satisfies the main general expression of the hyperelliptic curve. The point ܱ  is a special point, called 

the point at infinity. All the points in the curve ܥ except ܱ are finite points.     

 

Definition 4 (Opposite, Special Points) 

 

The opposite of a finite point ܲሺݔ, is defined to be the point ෨ܲ ܥ ሻ on the curveݕ ൌ ሺݔ, െݕ െ ݄ሺݔሻሻ. The 

opposite of ܱ is itself. A special point is a point if it is equal to its opposite. Like the point ܱ, it is a special 

point. Otherwise ܲ is an ordinary point.  

 

2.2.1    Hyper Elliptic Curve – An example 

 

2.2.1.1    Graphical representation of an elliptic curve over the real field 

 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ ൅  .17ሻሽ	݀݋ሺ݉	ݔ

 

To represent the curve ܧ in the graph, the curve has to be drawn over the real number field	Թ. Therefore,  

 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ െ  ሽ over Թݔ16
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Figure 2.2: Elliptic Curve over Թ 

 

2.2.1.2    Determining the Cartesian points in an elliptic curve over the real field 

 

When ܨ ൌ ܼ௣ (or more generally, when ܨ is a finite field), the elliptic curves over ܼ௣ will be a finite set. 

Here we take an equation of an elliptic curve with ܨ ൌ ܼ௣ and consider 

 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ ൅ 17ሻሽ	݀݋ሺ݉	ݔ ∪ ሼܱሽ 

 

Now we want to know what points are on the curve	ܧ. To do that, we first compute the square table over	ܨ, 

which tells us what element in ܨ can have a square root. This can be done by using power and mod 

function in MATLAB. Below shows the pseudo code for calculating ݕଶ݉݀݋	17. 

 

Table 2.1  PSEUDO CODE FOR CALCULATING: ࢟૛ࢊ࢕࢓	࢖ 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ ൅ ݔ ሺmod  ሻሽ݌

INPUT: Range of ݕ; Mod of ݌;  

OUTPUT: ܣ ൌ mod	ଶݕ  ;݌
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Output in the tabular form: 

 

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 1 4 9 16 8 2 15 13 13 15 2 8 16 9 4 1 0 ݌	݀݋ଶ݉ݕ

 

Then, we compute ݔ ൌ 0,1,2, . . . , 16 to solve the equation ݕଶ ൌ ଷݔ ൅  in ܼଵ଻. First, we compute the ݔ

ଷݔ ൅   .ܨ in ܼଵ଻ table over ݔ

 

Table 2.2  PSEUDO CODE FOR CALCULATING: ሺ࢞૜ ൅  ࢖	܌ܗܕ	ሻ࢞

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ ൅ ݔ ሺmod  ሻሽ݌

INPUT: Range of ݔ; Mod of ݌;  

OUTPUT: ܤ ൌ ሺݔଷ ൅ ሻݔ mod  ;݌

 

Output in the tabular form: 

 

 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ݔ

ଷݔ ൅ 11 0 13 10 2 0 ݌	݀݋݉	ݔ 1 10 10 7 7 16 6 0 4 7 15 

  

For ݔ ൌ ଶݕ ,1 ൌ 1 ൅ 1 and so the square root table gives ݕ ൌ 	േ6. Hence	ሺ1, േ6ሻ ∈ ݔ For ,ܧ ൌ 2, we 

have ݕଶ ൌ 8 ൅ 2 ൌ 10, the square root table tell us that there is no solution, and so we move to the case 

ݔ ൌ 3. The following MATLAB code computes all the needed information.  

 

Table 2.3  PSEUDO CODE TO DETERMINE THE POINTS ON EC 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ ൅ ሺmod	ݔ  ሻሽ݌

INPUT: Range of ݔ; Range of ݕ; Mod of ݌;  

A = y.^2 mod p; 

B = x.^3 + x mod p; 

for b = [1:p] 

   for a = [1:p] 

       if B(b) == A(a) 
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          print “Valid Points”; 

       end 

    end 

end 

OUTPUT: Points ሺݔ,   ;ሻݕ

 

In this way we have all the valid points of the curve: ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ ൅ 17ሻሽ	݀݋ሺ݉	ݔ ∪ ሼܱሽ 

 

	ܧ ൌ ሼሺ0,0ሻ, ሺ1,6ሻ, ሺ1,11ሻ, ሺ3,8ሻ, ሺ3,9ሻ, ሺ4,0ሻ, ሺ6,1ሻ, ሺ6.16ሻ, ሺ11,4ሻ, ሺ11,13ሻ, ሺ13,0ሻ 

ሺ14,2ሻ, ሺ14,15ሻ, ሺ16,7ሻ, ሺ16,10ሻ, ܱሽ 

 

For the curve with the equation	ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ ൅  17ሻሽ has 16 valid points. If we perform	݀݋ሺ݉	ݔ

the calculation in a larger finite field we will be able to work with greater number of valid points.  

 

For the curve with equation	ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ ൅  .ሽ	ݔ

 

 ௫ Number of Validܨ

Points on the curve 

over the field of ܨ௫ 

 ௫ Number of Validܨ

Points on the curve 

over the field of ܨ௫ 

ݔ ൌ ݔ 3 2 ൌ 3 4 

ݔ ൌ ݔ 4 5 ൌ 7 8 

ݔ ൌ ݔ 12 11 ൌ 13 20 

ݔ ൌ ݔ 16 17 ൌ 19 20 

ݔ ൌ ݔ 24 23 ൌ 29 20 

ݔ ൌ ݔ 32 31 ൌ 37 36 

ݔ ൌ ݔ 32 41 ൌ 43 44 

ݔ ൌ ݔ 48 47 ൌ 53 68 

ݔ ൌ ݔ 60 59 ൌ 61 52 

ݔ ൌ ݔ 68 67 ൌ 71 72 

ݔ ൌ ݔ 80 73 ൌ 79 80 
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ݔ ൌ ݔ 84 83 ൌ 89 80 

ݔ ൌ ݔ 80 97 ൌ 101 100 

ݔ ൌ ݔ 104 103 ൌ 107 108 

ݔ ൌ ݔ 116 109 ൌ 113 128 

ݔ ൌ ݔ 128 127 ൌ 131 132 

ݔ ൌ ݔ 160 137 ൌ 139 140 

ݔ ൌ ݔ 164 149 ൌ 151 152 

ݔ ൌ ݔ 180 157 ൌ 163 164 

ݔ ൌ ݔ 168 167 ൌ 173 148 

ݔ ൌ ݔ 180 179 ൌ 181 164 

ݔ ൌ ݔ 192 191 ൌ 193 208 

ݔ ൌ ݔ 196 197 ൌ 199 200 

 

Table 2.4: Finite Field and its corresponding number of valid points 
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2.2.1.3   Graphical representation of Hyper Elliptic Curve over the real field 

 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ݔሺݔ െ 2ሻሺݔ െ 1ሻሺݔ ൅ 1ሻሺݔ ൅ 2ሻ	ሺ݉݀݋	݌ሻሽ. 

 

To represent the curve ܧ in the graph, the curve has to be drawn over the real number field	Թ. Therefore,  

 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ݔሺݔ െ 2ሻሺݔ െ 1ሻሺݔ ൅ 1ሻሺݔ ൅ 2ሻሽ over Թ 

 

 

 

Figure 2.3: Hyper Elliptic Curve over Թ 

 

2.2.1.4    Determining the Cartesian points in a hyper elliptic curve over the real field 

 

When ܨ ൌ ܼ௣ (or more generally, when ܨ is a finite field), the elliptic curves over ܼ௣ will be a finite set. 

Here we take an equation of an elliptic curve with ܨ ൌ ܼ௣ and consider 

 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൅ ݕݔ ൌ ହݔ ൅ ସݔ2 ൅ ଷݔ െ ଶݔ5 ൅ 10	ሺ݉݀݋	11ሻሽ ∪ ሼܱሽ 
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Now we want to know what points are on the curve	ܧ. To do that, we first compute the square table over	ܨ, 

which tells us what element in ܨ can have a square root. This can be done by using power and mod 

function in MATLAB. 

 

Table 2.5  PSEUDO CODE TO DETERMINE THE POINTS ON HEC 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൅ ݕݔ ൌ ହݔ ൅ ସݔ2 ൅ ଷݔ െ ଶݔ5 ൅ 10 mod  ሽ݌

INPUT: Range of ݔ; Range of ݕ; Mod of ݌;  

STEPS:  

B = x.^5 + 2*x.^4 + x.^3 – 5*x.^2 + 10 mod p; 

for b = [1:p] 

   for a = [1:p] 

       A = y.^2 + x(b).*y mod p; 

       if B(b) == A(a) 

          print “Valid Points”; 

       end 

    end 

end 

OUTPUT: Points ሺݔ,   ;ሻݕ

 

 

In this way we have all the valid points of the curve: 

 

ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൅ ݕݔ ൌ ହݔ ൅ ସݔ2 ൅ ଷݔ െ ଶݔ5 ൅ 10ሺ݉݀݋	11ሻሽ ∪ ሼܱሽ 

 

	ܧ ൌ ሼሺ1,4ሻ, ሺ1,6ሻ, ሺ4,2ሻ, ሺ4,5ሻ, ሺ5,7ሻ, ሺ5,10ሻ, ሺ8,0ሻ, ሺ8.3ሻ, ሺ9,5ሻ, ሺ9,8ሻ, ܱሽ 

 

For the curve with the equation	ܧ ൌ ሼሺݔ, :ሻݕ ଶݕ ൅ ݕݔ ൌ ହݔ ൅ ସݔ2 ൅ ଷݔ െ ଶݔ5 ൅ 10	ሺ݉݀݋	11ሻሽ has 11 

valid points.  
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2.2.1.5   Comparing the curves: Elliptic Curves and Hyper Elliptic Curve 

 

Elliptic curve: ܧா ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ଷݔ െ  ሽ over Թݔ16

Hyper Elliptic curve: ܧுா஼ ൌ ሼሺݔ, :ሻݕ ଶݕ ൌ ݔሺݔ െ 2ሻሺݔ െ 1ሻሺݔ ൅ 1ሻሺݔ ൅ 2ሻሽ over Թ 

  

   

                 Figure 2.4: Elliptic curve ܧா஼                                Figure 2.5: Hyper Elliptic curve ܧுா஼ 

 

By comparing the table 1 and 2, the figure 5 and 6. Hyper elliptic curves to have more number of valid 

points compare to Elliptic curve. For the field ܨଵଽ଻, the curve ܧா஼ has 196 valid points, whereas for the 

field ܨଵଽ଻, , the curve ܧுா஼ has 206 valid points. Approximate we can comment that ܧுா஼ have more 10 

valid points to ܧா஼. Figure 5 represents an elliptic curve of genus – 1. Genus in plain English means 

number of loops or holes. Figure 6 represents a hyperelliptic curve. Hyperelliptic curve is also a type 

elliptic curve with genus – 2, a curve with two holes or two loops.    

 

2.2.1.6    Finding the points on the Hyper Elliptic Curve over large prime field 

 

Let’s take a hyperelliptic curve over a field. The curve :ܧ	ݕଶ ൌ ହݔ ൅ ଷݔ1184 ൅ ଶݔ1846 ൅ ݔ956 ൅ 560 

over ܨ௣, 	݌ ൌ 2003.  

 

Number of valid points on the curve: 1867 
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Here are some of the valid points on the curve: (4,1712), (8,168), (257,1895), (258,783), (1000,1529), 

(1002,519), (1502,1293), (1505,388), (1999,1232), (2000,818).  

 

2.2.2   Polynomial and Rational Function 

 

Definition 5 (Coordinate Ring, Quotient Ring and Polynomial Function) 

 

If ܫ be the ideal of ܭሾݔ, ଶݔ	ሿ which is generated by the polynomialݕ ൅ ݄ሺݔሻݕ െ ݂ሺݔሻ, that is ܫ ൌ ଶݔ ൅

݄ሺݔሻݕ െ ݂ሺݔሻ. The quotient ring of ܭሾݔ,  ഥ, denoted byܭ over ܥ is also called the coordinate ring of ܫ/ሿݕ

  .ܭ over ܥ ሿ is also called the polynomial functions ofܥഥሾܭ ሿ. Elements in theܥሾܭ

 

It is easy to check that every polynomial, let it be ܩሺݔ, ሻݕ ∈ ,ݔሾܭ  ሿ can be uniquely represented in theݕ

form of 

,ݔሺܩ ሻݕ ൌ ሻݔሺݑ െ  ݕሻݔሺݒ

 

where the polynomial ݑሺݔሻ,  ݒሺݔሻ ∈  .ሿݔሾܭ

 

Definition 6 (Function Field, Rational Functions) 

 

The function field ܭሺܥሻ of ܥ over ܭis the field of all fractions of polynomial functions in ܭሾܥሿ. An 

element of ܭሺܥሻ is called a rational function on ܥ. A polynomial function is also a rational function. We 

have to make a note that ܭഥሾܥሿ is a subring of ܭሺܥሻ.  

 

Definition 7 (Degree of a Polynomial Function) 

 

Let ܩሺݔ, ሻݕ ൌ ሻݔሺݑ െ  ሿ. The degree of theܥഥሾܭ be a polynomial and also a non – zero one in ݕሻݔሺݒ

polynomial ܩ is defined to be 

 

݀݁݃ሺܩሻ ൌ ,ሻݑሾ2݀݁݃௫ሺݔܽ݉ 2݃ ൅ 1 ൅ 2݀݁݃௫ሺݒሻሿ. 
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Properties 8 (Degree of a Polynomial Function) 

 

Let ܪ,ܩ ∈  .ሿܥሾܭ

 

1. degሺܩሻ ൌ ݀݁݃௫ሺܰሺܩሻሻ 

2.  degሺܪܩሻ ൌ degሺܩሻ ൅ deg	ሺܪሻ 

3. degሺܩሻ ൌ deg	ሺ̅ܩሻ  

 

2.2.3   Zeroes and Poles 

 

Definition 12 (Zeros and Poles)  

 

Let ܴ ∈ ܲ ሻ andܥഥሺܭ ∈ If ܴሺܲሻ .ܥ ൌ 0, then ܴ is a zero at ܲ. If ܴ is not defined at ܲ, then ܴ has a pole at 

ܲ. Where we write it as ܴሺܲሻ ൌ ∞.  

 

Definition 13 (Special Point, Zeros) 

 

Let ܲ ൌ ሺݔ, ,ݑሺܩ ሻ be a point on the curve C. Let us suppose that the polynomial functionݕ ሻݒ ൌ ܽሺݑሻ െ

ܾሺݑሻݒ ∈ ሺܲሻܩ̅ ሻ. Theݑሻ and ܾሺݑis not a root of both ܽሺ ݔ ሻ has a zero at ܲ andܥഥሺܭ ൌ 0 iff ܲ is a special 

point.  

 

Definition 14 (Ordinary Point, Zeros and Poles) 

 

Let ܲ ൌ ሺݔ, ,ݑሺܩ and ,ܥ ሻ be an ordinary point on the curveݕ ሻݒ ൌ ܽሺݑሻ െ ܾሺݑሻݒ ∈  ሻ. Assuming thatܥഥሺܭ

ሺܲሻܩ ൌ 0 and ݔ is not a root of both of the polynomials ܽሺݑሻ and ܾሺݑሻ. Then ܩ can be written in the form 

of ሺݑ െ ݑis the highest power of ሺ ݏ ሻ௦ܵ, whereݔ െ ܵ ሻ, andܩሻ which divides ܰሺݔ ∈  ሻ does not haveܥഥሺܭ

a zero nor a pole at ܲ.   
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Definition 15 (Special Point, Zeros and Pole) 

 

Let ܲ ൌ ሺݔ, ݑThen ሺ .ܥ ሻ be a special point on the curveݕ െ ݒሻ can be written in the form ሺݔ െ  .ሻଶݕ

ܵሺݑ, ,ݑሻ, where ܵሺݒ ሻݒ ∈  .ܲ ሻ has neither a zero nor a pole atܥഥሺܭ
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Chapter 3 

 

Hyper Elliptic Curve Cryptography 
 

To realize secure communication over the unsafe internet, cyber security techniques are indispensable 

such as privacy and authentication. Among these techniques, public key cryptography is an essential in 

our daily life. This cyber – security technology supports one of the fundamental aspect, like electronic 

payment infrastructure.  

 

Public key cryptography was first introduced by Diffie and Hellman in 1976 [6]. However the first 

practical application was made by Rivest, Shamir and Adleman in 1977. Now the most widely used public 

key cryptosystem called RSA [8]. Although RSA is widely popular but the best public key cryptography 

currently available is the elliptic curve cryptosystem. Elliptic curve was first proposed by Koblitz [1] and 

Miller [19] independently. The security of the RSA depends on the difficulty of solving the integer 

factorization problem and Elliptic Curve Cryptography (ECC) depends on solving the discrete logarithm 

problem on an elliptic curve. The Cartesian points on the Elliptic Curve over a specific field can form a 

group based on the concepts generalized by Diffie – Hellman. This group is later used to develop ECC. 

Just like ECC, Hyper Elliptic Curve (HECC) can also form group structure over Jacobian of a hyper 

elliptic curve defined over a finite field. Koblitz [20] proposed this for the first time in 1988 . In this 

chapter we will discuss the group operations in HECC such as addition and multiplication (generally 

knows as doubling operation).  
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3.1    Elliptic and Hyper Elliptic Curve Group Law 

 

3.1.1    Arithmetic of Elliptic Curve 

 

Definition 1 (Properties – Elliptic Curve) 

 

An elliptic curve ܧ over the field Ժ௣, denoted by ܧ/Ժ௣ where ݌ ൐ 3, is given by the Weierstrass 

equation. 

 

ଶݕ	:ܧ ൅ ܽଵݕݔ ൅ ܽଷݕ ൌ ଷݔ ൅ ܽଶݔଶ ൅ ܽସݔ ൅ ܽ଺ 

 

Where the coefficients ܽଵ, ܽଶ, ܽଷ, ܽସ, ܽ଺ ∈ ܼ௣ and for the each point ሺݔ,  ሻ on the curves, the coordinateݕ

ሺݔ, ሻݕ ∈ ܼ௣ together with an imaginary point ܱ. All the points on the curve must also satisfy the partial 

derivatives 2ݕଵ ൅ ܽଵݔଵ ൅ ܽଷ and 3ݔଵ
ଶ ൅ 2ܽଶݔଵ ൅ ܽସ െ ܽଵݕଵ equals to zero at the same time.  

 

The partial derivative conditions says whether the elliptic curve is non-singular or singular. A point on a 

curve is called singular if both of the partial derivatives equals to zero.   

 

Definition 2 (Discriminant – Elliptic Curve) [34] 

 

Smoothness of the curves can also be figured out by finding the discriminant of the curve. Let 

expressions. 

 

ܾଶ ൌ ܽଵ
ଶ ൅ 4ܽଶ  

ܾସ ൌ ܽଵܽଷ ൅ 2ܽସ 

ܾ଺ ൌ ܽଷ
ଶ ൅ 4ܽ଺  

଼ܾ ൌ ܽଵ
ଶܽ଺ െ ܽଵܽଷܽସ ൅ 4ܽଶܽ଺ ൅ ܽଶܽଷ

ଶ െ ܽସ
ଶ 

 

Let ܧ be a curve defined over Ժ௣ and let ܾଶ, ܾସ, ܾ଺	and	଼ܾ. The discriminant of the curve ܧ denoted by ∆ 

satisfies. The curve ܧ is nonsingular and an elliptic curve, iff	∆	് 0.  
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∆	ൌ െܾଶ
ଶ଼ܾ െ 8ܾସ

ଷ െ 27ܾ଺
ଶ ൅ 9ܾଶܾସܾ଺ 

 

3.1.1.1    Group Operations on Elliptic Curve 

 

Definition 3 (Point Addition – Elliptic Curve) 

 

Point Addition P + Q. Denoting the group operation with the symbol	" ൅ ". “Addition” means that given 

two points and their coordinates lies in the curve	ܧ, say ܲ ൌ ሺݔଵ, ܳ ଵሻ andݕ ൌ ሺݔଶ,  ଶሻ. In this this caseݕ

we computer ܴ ൌ ܲ ൅ ܳ and ܲ ് ܳ. A tangent is drawn through the points ܲ and ܳ and obtain a third 

point of intersection. The point of intersection ܴᇱ is reflected on the ݔ െ axis to obtain the point ܴ on the 

curve. The figure 1 below shows the point addition on an elliptic curve over Թ. 

 

 

 

 

It is important to define sum of the two points with the same ݔ െ coordinate such as ሺݔଵ, ,ଵݔଵሻ and ሺݕ െݕଵሻ. 

In such case it is important to find a neutral element of the group. A further point ஶܲ called the point at 

infinity or ܱ. It can be understood that a point lying far out on the ݕ െ axis such that the line ݔ ൌ ଵݔ ൌ ܿ 

which is parallel to the ݕ െ axis and passed through the point ஶܲ or ܱ. This point at the infinity is called 

the neutral point or element of the group. Therefore we can conclude that the line passing through ሺݔଵ,  ଵሻݕ

and ሺݔଵ, െݕଵሻ also passes through ஶܲ or ܱ.       

 

Figure 3.1: Point Addition on an Elliptic Curve over Թ 
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ሺݔଵ, ଵሻݕ ൅ ሺݔଵ, െݕଵሻ ൌ ஶܲ, i.e.. ሺݔଵ, െݕଵሻ ൌ െܲ 

 

Definition 4 (Point Doubling – Elliptic Curve) 

 

Point Doubling P + P. Given two points and their coordinates lies in the curve	ܧ, say ܲ ൌ ሺݔଵ,  ଵሻ andݕ

ܳ ൌ ሺݔଶ, ܴ ଶሻ. In this this case we computerݕ ൌ ܲ ൅ ܳ and ܲ ൌ ܳ. Making ܴ ൌ ܲ ൅ ܲ ൌ 2ܲ. A tangent 

is drawn through the point ܲ and obtain a second point of intersection. The point of intersection ܴᇱ is 

reflected on the ݔ െ axis to obtain the point ܴ on the curve. The figure 2 below shows the point addition 

on an elliptic curve over Թ. 

 

 

 

 

3.1.1.2    Point Addition and Doubling in Elliptic Curve 

 

Point Addition 

 

The simplest form of an elliptic curve is given by the equation  

 

ଶݕ ൌ ଷݔ ൅ ݔܽ ൅ ܾ	 

 

Figure 3.2: Point doubling on an Elliptic Curve over Թ 
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Let	ܲ ൌ ሺݔଵ, ܳ ,ଵሻݕ ൌ ሺݔଶ, ܴ ଶሻ andݕ ൌ ሺݔଷ, ܲ .ଷሻݕ ് ܳ, let the straight line passing through the point ܲ 

and ܳ be: ݕ ൌ ݔߙ ൅   .intercept – ݕ is the ߚ is the gradient of the line and ߙ ,where ,ߚ

 

The gradient of the line: ߙ ൌ ௬మି௬భ
௫మି௫భ

. The ݕ – intercept: at ݕ – axis, ݔ ൌ ݕ ,0 ൌ ଵݕ െ ߚ ,ଵ Thereforeݔߙ ൌ

ଵݕ െ  ଵݔߙ

 

A point ሺݔ, ݔߙ ൅ ଶݕ :ሻ lies in the elliptic curve if and only ifߚ ൌ ଷݔ ൅ ݔܽ ൅ ܾ, ሺݔߙ ൅ ሻଶߚ ൌ ଷݔ ൅ ݔܽ ൅

ଷݔ ,ܾ െ ሺݔߙ ൅ ሻଶߚ ൅ ݔܽ ൅ ܾ ൌ ሺݔ െ ݔଵሻሺݔ െ ݔଶሻሺݔ െ ଷݔ ,ଷሻݔ െ ଶݔଶߙ െ ݔߚߙ2 െ ଶߚ ൅ ݔܽ ൅ ܾ ൌ ଷݔ	 ൅

ሺെݔଶ െ ଵݔ െ ଶݔଷሻݔ ൅ ሺݔଵݔଶ ൅ ଷݔଶݔ ൅ ݔଷሻݔଵݔ ൅ ሺെݔଵݔଶݔଷሻ. 

 

Let L.H.S ≡ R.H.S (ݔଶ) 

െߙଶ ൌ െݔଶ െ ଵݔ െ  ଷݔ

Or, ݔଷ ൌ ଶߙ െ ଶݔ െ  ଵݔ

 

Substituting ݔଷ into ݕ ൌ ݔߙ ൅ ଷݕ ,ߚ ൌ ଷݔߙ ൅ ሺݕଵ െ ଵሻ  ൌݔߙ ଷݔߙ	 ൅ ଵݕ െ ଵݔߙ ൌ ଷݔሺߙ	 െ ଵሻݔ ൅  .ଵݕ

െܴ ≡ ሺݔଷ, ,ଷሻݕ െܴ:	ݔଷ ൌ ଶߙ െ ଶݔ െ ଷݕ .ଵݔ ൌ ଷݔሺߙ െ ଵሻݔ ൅  ଵݕ

 

Reflecting the co-ordinate െܴ on the ݔ – axis. Therefore, ܴ ≡ ሺݔଷ, െݕଷሻ ൌ ሺߙଶ െ ଶݔ െ ,ଵݔ ଵݔሺߙ െ ଷሻݔ െ

ଷݔ ,ଵሻ. Thereforeݕ ൌ ߙଶ െ ଶݔ െ ଷݕ .ଵݔ ൌ ଵݔሺߙ െ ଷሻݔ െ  	.ଵݕ

 

where, ߙ ൌ ௬మି௬భ
௫మି௫భ

ܲ if ;݌	݀݋݉	 ് ܳ  

 

Point Doubling 

 

The simplest form of an elliptic curve is given by the equation  

 

ଶݕ ൌ ଷݔ ൅ ݔܽ ൅ ܾ	 

 

Let ܲ ൌ ሺݔଵ, ܴ ଵሻ andݕ ൌ ሺݔଷ,   ,ଷሻݕ
ௗ௬

ௗ௫
ൌ ଷ௫భమା௔

ଶ௬భ
 at ܲ ൌ ሺݔଵ,  ଵሻݕ
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Let the line tangent to the curve at ܲ be: ݕ ൌ ݔߙ ൅  is ߚ is the gradient of the line tangent and ߙ ,where ߚ

the ݕ – intercept. The gradient of the line: ߙ ൌ ௬మି௬భ
௫మି௫భ

. The ݕ – intercept: at ݕ – axis, ݔ ൌ 0. Or, ݕ െ ଵݕ ൌ

ݔሺߙ െ ݕ ,ଵሻݔ െ ଵݕ ൌ െݔߙଵ, ݕ ൌ ଵݕ െ ߚ ,ଵ. Thereforeݔߙ ൌ ଵݕ െ  ଵݔߙ

 

A point ሺݔ, ݔߙ ൅ ଶݕ :ሻ lies in the elliptic curve if and only ifߚ ൌ ଷݔ ൅ ݔܽ ൅ ܾ, ሺݔߙ ൅ ሻଶߚ ൌ ଷݔ ൅ ݔܽ ൅

ଷݔ ,ܾ െ ሺݔߙ ൅ ሻଶߚ ൅ ݔܽ ൅ ܾ ൌ ሺݔ െ ݔଵሻଶሺݔ െ ଷݔ ,ଷሻݔ െ ଶݔଶߙ െ ݔߚߙ2 െ ଶߚ ൅ ݔܽ ൅ ܾ ൌ 		 ଷݔ ൅

ሺെ2ݔଵݔ െ ଶݔଷሻݔ ൅ ሺݔଵଶ ൅ ݔଷሻݔଵݔ2 െ  ଷݔଵଶݔ

 

Let L.H.S ≡ R.H.S (ݔଶ): െߙଶ ൌ ଵݔ2 െ ଷݔ ,ଷݔ ൌ ଶߙ െ  ଵݔ2

 

Substituting ݔଷ into ݕ ൌ ݔߙ ൅ ଷݕ  ,ߚ ൌ ଷݔߙ ൅ ൌ ߚ ଷݔߙ	 ൅ ଵݕ െ ଵ ൌݔߙ ଷݔሺߙ	 െ ଵሻݔ ൅ ଵ. െܴݕ ≡ ሺݔଷ,  .ଷሻݕ

െܴ:	ݔଷ ൌ ଶߙ െ ଷݕ ,ଵݔ2 ൌ ଷݔሺߙ െ ଵሻݔ ൅  ଵݕ

 

Reflecting the co-ordinate െܴ on the ݔ – axis. Therefore, ܴ ≡ ሺݔଷ, െݕଷሻ ൌ ሺߙଶ െ ,ଵݔ2 ଷݔሺߙ െ ଵሻݔ ൅  .ଵሻݕ

Therefore, ݔଷ ൌ ߙଶ െ ଷݕ ,ଵݔ2 ൌ ଵݔሺߙ െ ଷሻݔ െ ߙ ,ଵ. Whereݕ ൌ ଷ௫భమା௔

ଶ௬భ
		 

 

3.1.2    Arithmetic of Hyper Elliptic Curves 

 

3.1.2.1    Group Operations on Hyper Elliptic Curves 

 

In elliptic curves we can take the points on the curve with the point of infinity to form a group. However 

for the hyper elliptic curves, if we take the points on the curve and with the points of infinity cannot no 

longer form a group. To form a group with respect to the points of hyper elliptic curve, we need to take 

sum of points as group elements and then we can perform addition likeሺ ଵܲ ൅ ଶܲሻ⨁ሺܳଵ ൅ ܳଶሻ ൌ

ሺܴଵ
ᇱ ൅ ܴଶ

ᇱ ሻ. The symbol ൅ and ⨁ doesn’t refers to addition and XOR operation respectively. The symbol 

⨁ refers to group operation. We will discuss this specific operation between the two Cartesian points on 

the curve later in this chapter.  
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If we start to form group by this expressionሺ ଵܲ ൅ ଶܲሻ⨁ሺܳଵ ൅ ܳଶሻ ൌ ሺܴଵ
ᇱ ൅ ܴଶ

ᇱ ሻ, then we would end up 

with an infinite group and larger and larger representation of the group elements. In this case we use the 

quotient group of the group based on the all sum of points that lie on the curve.  

 

Below we give a graphical representation of a hyper elliptic curve for a genus 2 over the finite field ॲ௤ 

given by the equation ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ. This equation of the curve must fulfill the five conditions 

before we can perform group operation.  

 

Hyper elliptic curve of genus ݃ over the finite field ॲ௤ in the set of points in  ॲ௤ ൈ ॲ௤ such that: 

 

C: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ. 

Conditions: 

1. ݄ሺݔሻ, ݂ሺݔሻ ∈ ॲ௤ሾݔሿ. 

2. ݂ሺݔሻ → monic, and degሺ݂ሻ ൌ 2݃ ൅ 1 is odd. 

3. degሺ݄ሻ ൑ ݃, if ݄ܿܽݎ൫ॲ௤൯ ൌ 2; ݄ሺݔሻ ൌ 0 if ݄ܿܽݎ൫ॲ௤൯ ് 2. 

4. The curve HEC doesn’t have any singular point over ॲ௤ ൈ ॲ௤. 

൫ॲ௤൯ݎ݄ܽܿ .5 ് ଶݕ :2 ൌ ݂ሺݔሻ, where ݂ሺݔሻ is monic, odd – degree and square free. 

 

Figure 3.3: Group operation on the HEC of genus 2 over Թ, ݕହ ൌ ݂ሺݔሻ,  

deg ݂ሺݔሻ ൌ 5 and ݂ሺݔሻ is monic for ሺ ଵܲ ൅ ଶܲሻ⨁ሺܳଵ ൅ ܳଶሻ ൌ ሺܴଵ
ᇱ ൅ ܴଶ

ᇱ ሻ. 
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As discussed before that the chord and tangent method in the elliptic curve cannot be used. The curve 

which intersects with the hyper elliptic curve of genus 2 shown above is called Jacobian variety curve. 

The Jacobian curve intersects in 5 points instead of 3 points unlike chord and tangent method in elliptic 

curve. In order to build a group we take the quotient group; which is the sum of the intersecting points of 

the Jacobian variety curve with the hyper elliptic curve by the subset of the points which lie on the HEC.  

 

The six points ଵܲ, ଶܲ, ܳଵ, ܳଶ ܴଵ and ܴଶ on the HE curve adds upto zero in the quotient group. The point 

ܴଵ
ᇱ ൌ ሺݔோଵ, ோଵሻ and െܴଵݕ

ᇱ ൌ ܴଵ ൌ ሺݔோଵ, െݕோଵሻ lie on the curve. Similarly, ܴଵ
ᇱ⨁ܴଵ ൌ 0. The points ܴ ଵ and 

ܴଶ are the reflection of the points ܴଵ
ᇱ  and ܴଶ

ᇱ  on the HE curve respectively. And the resulting group 

operation ሺ ଵܲ ൅ ଶܲሻ⨁ሺܳଵ ൅ ܳଶሻ ൌ ሺܴଵ
ᇱ ൅ ܴଶ

ᇱ ሻ.   

 

3.1.2.2    Divisor and Divisor Class Group. [37], [38] 

 

Definition 5 (Divisor) 

 

The rational points of a hyper elliptic curve do not form a group, unlike the points on an elliptic curve. 

The group which provides by the hyper elliptic curve for cryptography is a subgroup of the random group 

 is the hyper elliptic curve of genus ݃ over the ܥ generated by the set of points on the curve. If the curve ܦ

finite field ॲ௤. The elements of ܦ is known as divisors. 

 

ܦ ൌ ∑݉௣ܲ,  ݉௉ ∈ ॲ௤ and ܲ ∈  ܥ

 

Definition 6 (Group of divisors) 

 

For the hyper elliptic curve ܥ of genus ݃ over the finite field ॲ௤ given by an equation of the form C: ݕଶ ൅

݄ሺݔሻݕ ൌ ݂ሺݔሻ. The group of divisors of the curve ܥ of degree 0 is given by 

 

஼ݒ݅ܦ
଴ ൌ ∑ ݉௉ܲ	|	݉௉ ∈ ॲ௤௉∈஼ ,݉௉ ൌ 0,	for most of the points on the curve ܲ ∈  .ܥ

   

The group which describes before as the quotient group is also known as the divisor class group ܲ݅ܿ஼
଴ of 

 In order to formally define this quotient group we need to take the point ஶܲ called the point of infinity .ܥ
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into the divisor class group. Since in this thesis we are considering the hyper elliptic curve of deg ݂ሺݔሻ ൌ 

odd. Therefore, there is only a single point at the infinity. However, if we were working on the hyper 

elliptic curve of def ݂ሺݔሻ ൌ even, then there would have been two point of infinity. To visualize this we 

can imagine a point far on the ݕ െ axis such that any line which is parallel to it passes through the point 

ஶܲ. 

 

Definition 7 (Divisor Class Group) 

 

The divisor class group ܲ݅ܿ஼
଴ of ܥ is the quotient group of the group of divisors ݒ݅ܦ஼

଴. In the divisor class 

group, each divisor class can be represented by  

 

ܦ ൌ ∑ ௜ܲ െ ݎ ஶܲ
௥
௜ୀଵ , ௜ܲ ∈ including the point ሼ ܥ ஶܲሽ, ݎ ൑ ݃. 

 

By using the definition above. The individual divisor class can be represented for implementation purpose. 

The divisor class group ܲ݅ܿ஼
଴ of ܥ is isomorphic to the finite field of ॲ௤ of the Jacobian ܬ஼ of the hyper 

elliptic curve ܥ.  

 

3.1.2.3    Jacobian variety of Hyper Elliptic Curve 

 

Definition 8 (Jacobian) [39], [40] 

 

The Jacobian of the curve ܥ is defined by the quotient group: 

 

ܬ ൌ ሻܥሺܬ ൌ ஼ݒ݅ܦ
଴/ܲ 

 

Hence, ܦଵ, ଶܦ ∈ ஼ݒ݅ܦ
଴ are equivalent if ܦଵ െ ଶܦ ∈ ܲ. In every equivalence class there’s only one divisor 

  :called the reduced divisor ,ܦ

 

ܦ ൌ ∑݉௉ܲ െ ሺ∑݉௉ሻ ஶܲ, such that ∑݉௣ ൑ ݃. 
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Jacobian variety curve in a specific curve based on the Jacobian ܬሺܥሻ. In simple form, the intersection 

points between the Jacobian variety curve with the hyper elliptic curve forms a group including the point 

at the infinity ஶܲ. Where the sum of the all the intersecting point sums up to zero. The figure below is the 

graphical representation of the Jacobian variety and the hyper elliptic curve of genus 2. 

 

Figure 3.4: Hyper Elliptic Curve of genus 2 and Jacobian Variety Curve. 

 

Since the intersection points between the Jacobian variety curve with the hyper elliptic curve sums up to 

zero. Therefore: 

 

ሾ ଵܲሿ ൅ ሾ ଶܲሿ ൅ ሾܳଵሿ ൅ ሾܳଶሿ ൅ ሾܴଵሿ ൅ ሾܴଶሿ ൌ 0. 

 

ሾ ଵܲሿ ൅ ሾ ଶܲሿ ൅ ሾܳଵሿ ൅ ሾܳଶሿ ൌ െሾܴଵሿ െ ሾܴଶሿ ൌ ሾܴଵ
ᇱ ሿ ൅ ሾܴଶ

ᇱ ሿ. 

 

The Cartesian or affine space points ଵܲ and ଶܲ could be transformed to individual divisor class group 

based on Mumford Representation, which is to be discussed in a separate section.  

 

The divisor class, ܦଵ ൌ ሼݒ݅݀ ଵܲ, ଶܲሽ ∪ ሼ ஶܲሽ ൌ ሾݑଵሺݔሻ, ଶܦ ሻሿ. Similarlyݔଵሺݒ ൌ ,ሼܳଵݒ݅݀ ܳଶሽ ∪ ሼ ஶܲሽ ൌ

ሾݑଶሺݔሻ, ଷܦ ሻሿ andݔଶሺݒ ൌ ሼܴଵݒ݅݀
ᇱ , ܴଶ

ᇱ ሽ ∪ ሼ ஶܲሽ ൌ ሾݑଷሺݔሻ,  ሻ are theݔሺݒ ሻ andݔሺݑ ሻሿ. The expressionݔଷሺݒ

polynomial representation of the affine space points on the curve. These are covered in the section 

detailing Mumford representation.  
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3.2    Point Representation - Divisor 

 

The definition of the divisor group is the simplest form of representation. However, we can represent the 

divisors just as the sum of points with the order of the points ݉௉.  

 

஼ݒ݅ܦ
଴ ൌ ෍݉௉ ௉ܲ	

௉∈஼

 

The disadvantage of representing the divisor is that we cannot use this for computational purposes. To 

represent the points in the form of divisor the best option in the Mumford Representation.   

 

3.2.1    Mumford Representation [35], [36] 

 

Mumford representation is the clearest representation of the Cartesian points into polynomial divisor form. 

The divisor can be represented with two polynomial as ݑሺݔሻ and ݒሺݔሻ. Let ܦ be the individual reduced 

divisor of the divisor class group ܲ݅ܿ஼
଴ of ܥ. 

 

ܦ ൌ෍݉௉ܲ െ ሺ෍݉௉ሻ ஶܲ 

 

One fundamental reason for using the Mumford Representation is that this representation can be used 

for computing purpose. Let consider a hyper elliptic curve ܥ of genus ݃, where the curve ܥ is 

represented as: 

 

ଶݕ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ 

 

where the polynomial expressions ݄ሺݔሻ and ݂ሺݔሻ ∈ the polynomial field ॲ௤ሾݔሿ, the deg ݂ሺݔሻ ൌ 2݃ ൅ 1 

and the deg ݄ ൑ ݃. As discussed before that the divisor class over the field ॲ௤ can be represented by a 

pair of polynomials ݑሺݔሻ and ݒሺݔሻ, where this polynomials ݑሺݔሻ, ݒሺݔሻ ∈ ॲ௤ሾݔሿ.  

 

Although the polynomials ݑሺݔሻ and ݒሺݔሻ belongs to the polynomial field of ॲ௤ሾݔሿ. However this 

polynomials must fulfill the three conditions below: 
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Conditions: 

  .ሻ must a monic polynomialݔሺݑ .1

2. deg ሻݔሺݒ ൏ deg ሻݔሺݑ ൑ ݃. 

ሻଶݔሺݒ|ሻݔሺݑ .3 ൅ ሻݔሻ݄ሺݔሺݒ െ ݂.  

 

The polynomial expression of ݑሺݔሻ of the divisor class ܦ is represented by: 

 

ሻݔሺݑ ൌෑሺݔ െ ௜ሻݔ

௥

௜ୀଵ

 

 

Where the divisor class ܦ is represented as shown below.  

 

ܦ ൌ෍ ௜ܲ െ ݎ ஶܲ

௥

௜ୀଵ

 

 

The point	 ௜ܲ ് ஶܲ, ݎ ൑ ݃ and the points ௜ܲ ൌ ሺݔ௜, ܲ ௜ሻ lies on the curve. If the pointsݕ ௜ on the curve occurs 

݊௜ number of times then  

 

൬
݀
ݐ݀
൰
௝

ሾݒሺݔሻଶ ൅ ሻݔሻ݄ሺݔሺݒ െ ݂ሺݔሻሿ ൌ 0 

 

Where ݔ ൌ ܽ௜ and 0 ൑ ݆ ൑ ௝݊ െ 1. In the hyper elliptic curve of genus 2, each divisor class can be 

represented by the 4 coefficients ݑଵ, ,଴ݑ ,ଵݒ  ܦ ሻ. The divisor classݔሺݒ ሻ andݔሺݑ ଴ of the polynomialsݒ

represented by the polynomials ݑሺݔሻ and ݒሺݔሻ as ܦ ൌ ሾݑሺݔሻ,ݒሺݔሻሿ.    

 

However, the divisor class group ܲ݅ܿ஼
଴ of ܥ is the quotient group of the group of divisors	ݒ݅ܦ஼

଴. So the 

identify or neutral elements, in this case its neutral divisor class of the group is represented as	ሾ1,0ሿ.  

 

An example in the section 3.2.2 will present an example.  
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3.2.2    Mumford Representation – An example 

 

In this example we consider the hyper elliptic curve ܥ: ଶݕ ൌ ହݔ ൅ ଷݔ3 ൅ ଶݔ2 ൅ 3 of genus ݃ ൌ 2 over 

the field ॲ௤. The Cartesian points ଵܲ ൌ ሺ3,0ሻ, ଶܲ ൌ ሺ1,2ሻ, ܳଵ ൌ ሺ4,1ሻ and ܳଶ ൌ ሺ3,0ሻ. The divisor class 

group ܲ݅ܿ஼
଴ of ܥ is the quotient group of the group of divisors ݒ݅ܦ஼

଴. Each divisor class can be 

represented by ܦ including the point ሼ ஶܲሽ, ݎ ൑ ݃. 

 

ܦ ൌ෍ ௜ܲ െ ݎ ஶܲ

௥

௜ୀଵ

 

 

Taking the points	 ଵܲ ൌ ሺ3,0ሻ, ଶܲ ൌ ሺ1,2ሻ, where ݔଵ ൌ 3 and ݔଶ ൌ 1. The polynomial expression of ݑሺݔሻ 

of the divisor class ܦ is represented by: 

 

ሻݔሺݑ ൌෑሺݔ െ ௜ሻݔ

௥

௜ୀଵ

 

Therefore, ݑሺݔሻ ൌ ∏ ሺݔ െ ௜ሻݔ
௥
௜ୀଵ  and ݑሺݔሻ ൌ ∏ ሺݔ െ ௜ሻݔ

ଶ
௜ୀଵ ൌ 	 ሺݔ െ ݔଵሻሺݔ െ ଶሻݔ ൌ ሺݔ െ 3ሻሺݔ െ 1ሻ ൌ

ଶݔ െ ݔ4 ൅ 3 ൌ ଶݔ ൅ ݔ ൅ 3 over the polynomial field of ॲହሾݔሿ. The polynomial ݑሺݔሻ ൌ ଶݔ ൅ ݔ ൅ 3 ∈

ॲହሾݔሿ.  

 

The condition for finding the polynomial expression ݒሺݔሻ must satisfy the second and the third condition 

(2). deg ሻݔሺݒ ൏ deg ሻݔሺݑ ൑ ݃ and (3). ݑሺݔሻ|ݒሺݔሻଶ ൅ ሻݔሻ݄ሺݔሺݒ െ ݂ respectively. Since the degree of 

ሻݔሺݒ ሻ would appear asݔሺݒ ሻ, the polynomial expression ofݔሺݑ ሻ is less than the degree ofݔሺݒ ൌ ݔଵଵݒ ൅

  .ଵ଴ݒ

 

The number of combinations of ݒଵଵݔ ൅ ଵ଴, where ॲହݒ ∈ ሼ0.1.2.3.4ሽ. The possible combinations we can 

get for ሺݒଵଵ,  :ଵ଴ሻ areݒ

 

ሺ0,0ሻ		ሺ1,0ሻ		ሺ2,0ሻ		ሺ3,0ሻ		ሺ4,0ሻ 

ሺ0,1ሻ		ሺ1,1ሻ		ሺ2,1ሻ		ሺ3,1ሻ		ሺ4,1ሻ 

ሺ0,2ሻ		ሺ1,2ሻ		ሺ2,2ሻ		ሺ3,2ሻ		ሺ4,2ሻ 
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ሺ0,3ሻ		ሺ1,3ሻ		ሺ2,3ሻ		ሺ3,3ሻ		ሺ4,3ሻ 

ሺ0,4ሻ		ሺ1,4ሻ		ሺ2,4ሻ		ሺ3,4ሻ		ሺ4,4ሻ 

 

Any of the combination of ሺݒଵଵ, ሻଶݔሺݒ|ሻݔሺݑ	ଵ଴ሻ will satisfy the third conditionݒ ൅ ሻݔሻ݄ሺݔሺݒ െ ݂. In this 

case the combination ሺݒଵଵ, ଵ଴ሻݒ ൌ ሺ4,3ሻ satisfies the condition mentioned above.   

 

Therefore, the Mumford representation of the point ଵܲ ൌ ሺ3,0ሻ and ଶܲ ൌ ሺ1,2ሻ on the hyper elliptic curve 

:ܥ ଶݕ ൌ ହݔ ൅ ଷݔ3 ൅ ଶݔ2 ൅ 3 of genus ݃ ൌ 2 over the field ॲହ is: 

 

ଵܦ ൌ ሾݔଶ ൅ ݔ ൅ ݔ3,4 ൅ 3ሿ 

 

Similarly, the Cartesian points ܳଵ ൌ ሺ4,1ሻ and ܳଶ ൌ ሺ3,0ሻ can be represented in Mumford form.  

 

ଶܦ ൌ ሾݔଶ ൅ ݔ3 ൅ 2, ݔ ൅ 2ሿ 
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Chapter 4 

 

An Overview of Hyper Elliptic Curve 

Computation Method 
 

In this chapter we will discuss Hyper Elliptic Curve Computation Methods for performing group 

operations, such as addition and doubling of the divisor classes of hyper elliptic curves discussed in the 

previous chapter. The purpose of this chapter is to discuss in detail on how we perform the group 

operations of the divisor class group obtained from the Jacobians of the hyper elliptic curves. The 

intersecting points of the Jacobian variety curve with the hyper elliptic curves seems to form a group [19].  

 

However, the arithmetic operations of the divisor classes in the hyper elliptic curve was usually performed 

by using Cantor Algorithm. Cantor algorithm has been optimized by Harley, and the first to obtain 

subexpression and explicit formulas for the hyper elliptic curves of genus 2 and later in was extended by 

Lange and others.  

 

Here we concentrate on the hyper elliptic curves of genus 2, 3 and 4 and provide an efficient explicit 

formulae for performing the arithmetic operations such as addition and doubling in HEC. The first explicit 

formula for genus 4 curves in to be found in this chapter.   

 

4.1 Cantor Algorithm 

 

Before the adverse of Cantor Algorithm [3] many explicit formulas for the addition of divisor classes has 

appeared, such as Montgomery [21] and Chudnosky [22]. Cantor Algorithm presents a formula for 

addition by using the divisor class in Mumford form. The same algorithm can also be used for scalar 

multiplication by using it in repeated manner. The sections below discusses the algorithm in more detail.  
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4.1.1 Composition and Reduction Stage 

 

Let consider a hyper elliptic curve ܥ of genus ݃, where the curve ܥ is represented as [1]: 

 

ଶݕ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ 

 

where the polynomial expressions ݄ሺݔሻ and ݂ሺݔሻ ∈ the polynomial field ॲ௤ሾݔሿ, the deg ݂ሺݔሻ ൌ 2݃ ൅ 1 

and the deg ݄ ൑ ݃. As discussed before that the divisor class over the field ॲ௤ can be represented by a 

pair of polynomials ݑሺݔሻ and ݒሺݔሻ, where this polynomials ݑሺݔሻ, ݒሺݔሻ ∈ ॲ௤ሾݔሿ.  

 

Here the polynomials ݑሺݔሻ and ݒሺݔሻ of the divisor class are the representation of the intersection points 

between the Jacobian variety curve and the hyper elliptic curve in Mumford form. The divisor class ܦ ൌ

ሾݑሺݔሻ,  .ሻሿݔሺݒ

In the composition section of the Cantor Algorithm, the algorithm takes the polynomial expression ݄ሺݔሻ 

and ሺݔሻ ∈ ॲ௤ሾݔሿ. The Mumford representation of the points ଵܲ, ଶܲ and ܳଵ, ܳଶ in the divisor class: ܦ௉ ൌ

ሾݑ௉ሺݔሻ, ொܦ & ሻሿݔ௉ሺݒ ൌ ሾݑொሺݔሻ, ,ሻݔ௉ሺݑ ሻሿ. Here the polynomialsݔொሺݒ ,ሻݔொሺݑ ,ሻݔ௉ሺݒ ሻݔொሺݒ ∈ ॲ௤ሾݔሿ. The 

algorithm below performs the calculation for: ܦோ ൌ ௉ܦ ൅  .ொܦ

 

 Cantor Algorithm (Composition) 

INPUT HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ. ܦ௉ ൌ ሾݑ௉, ொܦ ,௉ሿݒ ൌ ሾݑொ,  .ொሿݒ

OUTPUT ܦோ ൌ ሾݑோ, ோܦ ோሿ, Semi reduced divisorݒ ൌ ௉ܦ ൅  ொܦ

  

Steps Expressions 

1 Compute ݀ଵ ൌ GCD൫ݑ௉, ொ൯ݑ ൌ ݁ଵݑଵ ൅ ݁ଶݑଶ; 

2 Compute ݀ ൌ GCD൫݀ଵ, ௉ݒ ൅ ொݒ ൅ ݄൯ ൌ ܿଵ݀ଵ ൅ ܿଶሺݒ௉ ൅ ொݒ ൅ ݄ሻ; 

3 Where ݀ ൌ ௉ݑଵݏ ൅ ொݑଶݏ ൅ ௉ݒଷሺݏ ൅ ொݒ ൅ ݄ሻ, ݏଵ ൌ ܿଵ݁ଵ, ݏଶ ൌ ܿଵ݁ଶ, ݏଷ ൌ ܿଶ; 

ோݑ 4 ൌ ொݑ௉ݑ ݀ଶ⁄ ோݒ , ൌ ொݒ௉ݑଵݏ ൅ ௉ݒொݑଶݏ ൅ ொݒ௉ݒଷሺݏ ൅ ݂ሻ ݀⁄  mod	ݑோ; 

 

Table 4.1: Cantor Algorithm (Composition) 
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In the step 1, ݀ଵ ൌ ݁ଵݑଵ ൅ ݁ଶݑଶ is the resultant polynomial expression found by calculating the greatest 

common divisor GCD of the two polynomials ݑ௉ and ݑொ. In the step 2, ݀ ൌ ܿଵ݀ଵ ൅ ܿଶሺݒ௉ ൅ ொݒ ൅ ݄ሻ 

resultant polynomial expression found by calculating the GCD of the two polynomials ݀ଵ and the sum of 

the polynomials ݒ௉ ൅ ொݒ ൅ ݄. The expression ݀ in the step 2 can be represented as ݏଵ, ݏଶ and ݏଷ. The step 

4 calculates the expression for ݑோ and reduced expression of ݒோ mod ݑோ.  

 

 Cantor Algorithm (Reduction) 

INPUT ܦோ ൌ ሾݑோ,  .ோሿ semi – reducedݒ

OUTPUT ܦோ
ᇱ ൌ ሾݑோ

ᇱ , ோݒ
ᇱ ሿ reduced ܦோ ≡ ோܦ

ᇱ  

  

Steps Expressions 

1 Calculate ݑோ
ᇱ ൌ ݂ െ ݄ݒ െ ோݒ

ଶ ⁄ோݑ ோݒ ,
ᇱ ൌ ሺെ݄ െ ோሻݒ mod ோݑ

ᇱ 	; 

2 If deg ோݑ
ᇱ ൐ ݃ put ݑோ ൌ ோݑ

ᇱ ோݒ , ൌ ோݒ
ᇱ , goto step 1; 

3 Make ݑோ
ᇱ  monic. 

 

Table 4.2: Cantor Algorithm (Reduction) 

 

The divisor ܦோ ൌ ௉ܦ ൅  ொ is known as semi reduced as calculated in the composition section. That meansܦ

it is possible for further reduction. The second part of the Cantor Algorithm (Reduction) can be used to 

further reduce the polynomials expression of ݑோ and ݒோ. The result of the composition section can be used 

to perform further calculation. However it is better in practice to reduce the two polynomial expressions. 

In the section below, we have presented an example which will clear the mathematical steps in the Cantor 

Algorithm.  

 

4.1.2 Cantor Algorithm – An example 

 

In this example we consider the hyper elliptic curve ܥ: ଶݕ ൌ ହݔ ൅ ଷݔ3 ൅ ଶݔ7 ൅ ݔ ൅ 2 of genus 2 over the 

field ॲଵଵ. The divisor ܦ௉ ൌ ሾݑ௉, ௉ሿݒ ൌ ሾݔଶ ൅ ݔ7 ൅ 10, ݔ	 ൅ 9ሿ and ܦொ ൌ ,ொݑൣ ொ൧ݒ ൌ ሾݔଶ ൅ 10, ݔ7	 ൅ 9ሿ. 

Here the polynomial expression ݂ሺݔሻ ൌ ହݔ ൅ ଷݔ3 ൅ ଶݔ7 ൅ ݔ ൅  ሿ. The stepݔொ ∈ ॲଵଵሾݒ ௉ andݒ ,ொݑ ,௉ݑ ,2

1 and 2 of the composition section calculates the GCD of the two polynomials. In step 1, we need to 
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compute ݀ଵ ൌ GCD൫ݑ௉, ொ൯ݑ ൌ ݁ଵݑଵ ൅ ݁ଶݑଶ. So we can rewrite this expression as ݀ଵ ൌ GCDሺݔଶ ൅ ݔ7 ൅

10, ଶݔ ൅ 10ሻ.  

 

Here, the GCD is calculated by using Extended Euclidean Algorithm as shown below: 

 

ܽሺݔଶ ൅ ݔ7 ൅ 10ሻ ൅ ܾሺݔଶ ൅ 10ሻ ൌ GCDሺݔଶ ൅ ݔ7 ൅ 10, ଶݔ ൅ 10ሻ 

 

ܽ ܾ ݀ ݇ 

ଶݔ 0 1 ൅ ݔ7 ൅ 10  

ଶݔ 1 0 ൅ 10 1 

1 െ1 7ݔ8 ݔ 

ݔ8 ݔ3 ൅  ݔ4 10 1

  0  

 

Therefore, ݀ଵ ൌ ݁ଵݑ௉ ൅ ݁ଶݑொ ൌ ሺ3ݔሻሺݔଶ ൅ ݔ7 ൅ 10ሻ ൅ ሺ8ݔ ൅ 1ሻሺݔଶ ൅ 10ሻ. In step 2, we need to 

compute ݀ ൌ GCD൫݀ଵ, ௉ݒ ൅ ொݒ ൅ ݄൯ ൌ ܿଵ݀ଵ ൅ ܿଶሺݒ௉ ൅ ொݒ ൅ ݄ሻ. So we can rewrite this expression as 

݀ଵ ൌ GCDሺ10,8ݔ ൅ 10ሻ. Here, the GCD is calculated by using Extended Euclidean Algorithm as shown 

below: 

ܽሺ8ݔ ൅ 7ሻ ൅ ܾሺ10ሻ ൌ gcd	ሺ10, ݔ8	 ൅ 7ሻ 

 

ܽ ܾ ݀ ݇ 

ݔ8 0 1 ൅ 7  

ݔ3 10 1 0 ൅ 4 

  0  

 

Therefore, ݀ ൌ ܿଵ݀ଵ ൅ ܿଶሺݒଵ ൅ ଶݒ ൅ ݄ሻ ൌ 1ሺ10ሻ ൅ ሺ0ሻሺ8ݔ ൅ 7ሻ. In the step 3, we need to represent the 

result of step 3 as ݀ ൌ ௉ݑଵݏ ൅ ொݑଶݏ ൅ ௉ݒଷሺݏ ൅ ொݒ ൅ ݄ሻ. Where we need to calculate ݏଵ ൌ ܿଵ݁ଵ ൌ 1 ൈ

ݔ3 ൌ ଶݏ ,ݔ3 ൌ ܿଵ݁ଶ ൌ 1 ൈ ሺ8ݔ ൅ 1ሻ ൌ ݔ8 ൅ 1 and ݏଷ ൌ ܿଶ ൌ 0. In the step 4, ݑோ ൌ ொݑ௉ݑ ݀ଶ⁄ ൌ

ሺݔଶ ൅ ݔ7 ൅ 10ሻሺݔଶ ൅ 10ሻ 10ଶ⁄ ൌ ସݔ ൅ ଷݔ7 ൅ ଶݔ9 ൅ ݔ4 ൅ 1.  
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ோݒ ൌ ொݒ௉ݑଵݏ ൅ ௉ݒொݑଶݏ ൅ ொݒ௉ݒଷሺݏ ൅ ݂ሻ ݀⁄  mod	ݑோ ൌ ଶݔ4 ൅ ݔ7 ൅ 5. So, the semi reduced divisor ܦ ൌ

ሾݔସ ൅ ଷݔ7 ൅ ଶݔ9 ൅ ݔ4 ൅ 1, ଶݔ4	 ൅ ݔ7 ൅ 5ሿ. In the step 1 of the Cantor Algorithm (Reduction), we 

calculate ݑோ
ᇱ ൌ ݂ െ ݄ݒ െ ோݒ

ଶ ⁄ோݑ ൌ ݔ ൅ 10 and ݒோ
ᇱ ൌ ሺെ݄ െ ோݑ	mod	ோሻݒ

ᇱ ൌ 6. Working on the step 2 and 

3 of the algorithm the reduced divisor ܦோ. ܦோ ൌ ௉ܦ ൅ ொܦ ൌ ሾݔ ൅ 10,6ሿ in Mumford Representation. 

 

4.1.3 Advantages and Disadvantages of using Cantor Algorithm 

 

Cantor Algorithm was the first solid algorithm to perform the computations in the Jacobian groups of 

hyper elliptic curves over the fields of odd characteristics. The biggest advantage of the Cantor Algorithm 

is that we can apply this algorithm for any hyper elliptic curve of any genus over any field. Although the 

Cantor Algorithm is very computationally intensive, it can perform divisor class operations on hyper 

elliptic curves of any properties. The disadvantage lies in its computationally intensiveness. In the step 1 

and 2 of its composition section, both of the steps uses Extended Euclidean Algorithm to calculate the 

GCD, which is computationally very intensive. Calculating GCD requires polynomial multiplication and 

especially polynomial inverses, which is computationally intensive. Other steps also requires polynomial 

multiplication and inverses. The Cantor Algorithm only offers the addition operation. For the scalar 

multiplication or doubling, the algorithm needs to be repeated. The table below shows the complexity of 

the Cantor Algorithm for genus 4 hyper elliptic curve over the field ॲ௤.   

 

Algorithm Inversion Addition Operation 

 (I) Multiplication 

 (M) 

Squaring 

 (S) 

Cantor [23] 6 386 M/S 

 

Table 4.3: Complexity of the Cantor Algorithm of the hyper elliptic curve of genus 4 
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4.2 Subexpression Algorithm 

 

Similarly like the Cantor Algorithm, Subexpression Algorithm [11] considers a hyper elliptic curve ܥ of 

genus ݃ , where the curve ܥ is represented as: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ where the polynomial expressions ݄ ሺݔሻ 

and ݂ሺݔሻ ∈ the polynomial field ॲ௤ሾݔሿ, the deg ݂ሺݔሻ ൌ 2݃ ൅ 1 and the deg ݄ ൑ ݃. As discussed before 

that the divisor class over the field ॲ௤ can be represented by a pair of polynomials ݑሺݔሻ and ݒሺݔሻ, where 

this polynomials ݑሺݔሻ, ݒሺݔሻ ∈ ॲ௤ሾݔሿ. The divisor class ܦ ൌ ሾݑሺݔሻ,  ሻሿ. The algorithm below performsݔሺݒ

the calculation for: ܦଷ ൌ ଵܦ ൅  .ଶܦ

 

 Subexpression Algorithm [24] 

INPUT Genus = 2, HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ. ܦଵ ൌ ሾݑଵ, ଶܦ ,ଵሿݒ ൌ ሾݑଶ,  .ଶሿݒ

ଵݑ ൌ ଶݔ ൅ ݔଵଵݑ ൅ ଶݑ ,ଵ଴ݑ ൌ ଶݔ ൅ ݔଶଵݑ ൅ ଵݒ ;ଶ଴ݑ ൌ ݔଵଵݒ ൅ ଶݒ ,ଵ଴ݒ ൌ

ݔଶଵݒ ൅  ;ଶ଴ݒ

OUTPUT ܦଷ ൌ ሾݑଷ, ଷሿݒ ൌ ሾݑଵ, ଵሿݒ ൅ ሾݑଶ,  ;ଶሿݒ

  

Steps Expressions 

1 ݇ ൌ ሺ݂ െ ଶ݄ݒ െ ଶݒ
ଶሻ ⁄ଶݑ ; 

ݏ 2 ൌ ሺݒଵ െ ଶሻݒ ⁄ଶݑ 	mod  ;ଵݑ

3 ݈ ൌ ݏ ∙  ;ଶݑ

ݑ 4 ൌ ሺ݇ െ ሺ݈ݏ ൅ ݄ ൅ ଶሻሻݒݏ ⁄ଵݑ ; 

ଷݑ 5 ൌ  ;made monic ݑ

ଷݒ 6 ൌ െ݄ െ ሺ݈ ൅ ଶሻݒ mod  ;ଷݑ

 

Table 4.4: Subexpression Algorithm (Addition) 
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The algorithm above performs addition operation between the two divisor classes. Similar algorithm 

below performs the doubling operation for: ܦᇱ ൌ  .ଵܦ2

 

 Subexpression Algorithm [24] 

INPUT Genus = 2, HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ. ܦ ൌ ሾݑ, ݑ ,ሿݒ ൌ ଶݔ ൅ ݔଵݑ ൅   ,଴ݑ

ݒ ൌ ݔଵݒ ൅  ;଴ݒ

OUTPUT ܦᇱ ൌ ܦ2 ൌ ሾݑᇱ,  ;ᇱሿݒ

  

Steps Expressions Steps Expression 

1 ݇ ൌ ሺ݂ െ ݒ݄ െ ଶሻݒ ⁄ݑ ଵݑ 4  ൌ ଶݏ െ ሺ݄ݏ ൅ ݏݒ2 െ ݇ሻ ⁄ݑ  

2 ݇ ሺ݄ ൅ ⁄ሻݒ2 	mod ᇱݑ 5 ݑ ൌ  ଵ made monicݑ

3 ݈ ൌ ݏ ⋅ ᇱݒ 6 ݑ ≡ െ݄ െ ሺ݈ ൅ ᇱݑ	mod	ሻݒ  

 

Table 4.5: Subexpression Algorithm (Doubling) 

 

4.2.1 Subexpression Algorithm – An example 

 

Using the same example used in the section of Cantor Algorithm – An example. Considering the hyper 

elliptic curve ܥ: ଶݕ ൌ ହݔ ൅ ଷݔ3 ൅ ଶݔ7 ൅ ݔ ൅ 2 of genus 2 over the field ॲଵଵ. The divisor ܦଵ ൌ ሾݑଵ, ଵሿݒ ൌ

ሾݔଶ ൅ ݔ7 ൅ 10, ݔ	 ൅ 9ሿ and ܦଶ ൌ ሾݑଶ, ଶሿݒ ൌ ሾݔଶ ൅ 10, ݔ7	 ൅ 9ሿ. Here the polynomial expression ݂ሺݔሻ ൌ

ହݔ ൅ ଷݔ3 ൅ ଶݔ7 ൅ ݔ ൅    .ሿݔଶ ∈ ॲଵଵሾݒ ଵ andݒ ,ଶݑ ,ଵݑ ,2

In the step 1, we calculate the expression, ݇ ൌ ሺ݂ െ ଶ݄ݒ െ ଶݒ
ଶሻ ⁄ଶݑ ; 

 

݇ ൌ ሺሺݔହ ൅ ଷݔ3 ൅ ଶݔ7 ൅ ݔ ൅ 2ሻ െ ሺ7ݔ ൅ 9ሻ ⋅ ሺ0ሻ െ ሺ7ݔ ൅ 9ሻଶሻ ଶݔ ൅ 10⁄  

 

Therefore, ݇ ൌ ଷݔ ൅ ݔ4 ൅ 2.   

 

In the step 2, we calculate the expression, ݏ ൌ ሺݒଵ െ ଶሻݒ ⁄ଶݑ 	mod	ݑଵ; 
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ݏ ൌ ሺሺݔ ൅ 9ሻ െ ሺ7ݔ ൅ 9ሻሻ ଶݔ ൅ 10⁄ 	mod	ݔଶ ൅ ݔ7 ൅ 10 

Therefore, ݏ ൌ 4. 

 

In the step 3,4 and 5. We calculate the expression, ݈ ൌ ݏ ∙ ଶݑ ൌ ଶݔ4 ൅ 7, the expression ݑ ൌ

ሺ݇ െ ሺ݈ݏ ൅ ݄ ൅ ଶሻሻݒݏ ⁄ଵݑ ൌ ݔ ൅ 10 and the expression ݑଷ ൌ made monic ൌ ݑ ݔ ൅ 10.  

Finally in the step 6, we calculate the expression, ݒଷ ൌ െ݄ െ ሺ݈ ൅ ଷݑ	mod	ଶሻݒ ൌ 6. 

 

ଷܦ ൌ ଵܦ ൅ ଶܦ ൌ ሾݔ ൅ 10,6ሿ in Mumford Representation. 

 

 

4.2.2 Advantages and Disadvantages of using Subexpression Algorithm 

 

The algorithms takes the polynomial representation of the divisor class of Cartesian points in Mumford 

Representation and also the polynomial expression of ݄ሺݔሻ and ݂ሺݔሻ. The biggest advantage of the 

Subexpression Algorithm is that, unlike the Cantor Algorithm which uses Extended Euclidean Algorithm 

twice to calculate GCD. In this algorithm, we don’t have to compute GCD, which saves a lot of 

computationally intensive calculations such as polynomial inverses and multiplication. 

 

The disadvantage lies in its computationally intensiveness. All the steps requires polynomial 

multiplication and especially polynomial inverses, which is computationally intensive. Unlike Cantor 

Algorithm, which can be applied to any hyper elliptic curve of any number of genus’s, this algorithm is 

limited to the hyper elliptic curve of genus 2.   

 

4.3 Explicit Formulae Algorithm 

 

As discussed before that the disadvantages of using Cantor Algorithm is the computational intensity in 

the steps and the GCD calculation of polynomial by using Extended Euclidean Algorithm. Similarly, for 

the Subexpression Algorithm, where we still need to perform polynomial multiplications and inverses. 

However, in the Subexpression we do not need to perform GCD calculation of polynomials using 

Extended Euclidean Algorithm. In or der to avoid Cantor and Subexpression Algorithm, deriving an 
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explicit formula for genus 2 and for odd characteristics was made by Harley [11] and later was derived to 

have an explicit formula for even characteristics by Lange [9]. 

Matsuo, Chao and Tsujii [13] has already presented an explicit formulae for addition and doubling 

operation. To reduce the number of inversions to 1, Miyamoto, Doi, Matsuo, Chao and Tsujii [14] and the 

work by Takahashi [15] had obtained by using Montgomery trick.  

 

4.3.1 Advantages and Disadvantages on Explicit Formulae Algorithm 

 

Unlike Cantor Algorithm and Subexpression, which uses computationally intensive polynomial 

multiplication and inverses. Explicit formula only takes the co-efficient of the input polynomial and 

perform integer multiplication, inverses and squaring.  

 

The only disadvantage of Explicit Formulae over the Cantor Algorithm is we need to derive separate 

explicit formula for the hyper elliptic curve of genus 2, 3, 4 and further. Unlike Cantor Algorithm, where 

we can use the same algorithm for performing group operation such as addition and doubling. Explicit 

formula has separate algorithms for addition and doubling operation.    
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Chapter 5 
 
Proposed Efficient Computation for Hyper 
Elliptic Curve Cryptography 
 
 
In this chapter, we will discuss the proposed efficient explicit formulae algorithm for group operation. 

Also the theorems and proposition used to build an efficient explicit formulae algorithm. Separate explicit 

formula algorithm for addition and doubling for specific hyper elliptic curve with different number of 

genus. 

 

5.1    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 2 

 

As discuss before that the group law operations in the Jacobian. The intersecting points of the Jacobian 

variety curve with the hyper elliptic curve form a group. In the section 3.1.2.3 of Jacobian variety of Hyper 

Elliptic Curve, we have mentioned that that Jacobian variety curve is a specific curve and its intersecting 

points with the hyper elliptic curve for a group including the point at the infinity ܲ ஶ. Where the intersecting 

points sums to zero. The figure below is the graphical representation of the Jacobian variety curve and the 

hyper elliptic curve of genus 2. 

 

 
Figure 5.1: Hyper Elliptic Curve of genus 2 and Jacobian Variety Curve. 
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Since the intersection points between the Jacobian variety curve with the hyper elliptic curve sums up to 

zero. Therefore: 

ሾ ଵܲሿ ൅ ሾ ଶܲሿ ൅ ሾܳଵሿ ൅ ሾܳଶሿ ൅ ሾܴଵሿ ൅ ሾܴଶሿ ൌ 0. 

 

 ሾ ଵܲሿ ൅ ሾ ଶܲሿ ൅ ሾܳଵሿ ൅ ሾܳଶሿ ൌ െሾܴଵሿ െ ሾܴଶሿ ൌ ሾܴଵ
ᇱ ሿ ൅ ሾܴଶ

ᇱ ሿ. 

 

The Cartesian or affine space points ଵܲ and ଶܲ could be transformed to individual divisor class group 

based on Mumford Representation, which is to be discussed in a separate section.  

 

In the section 3.2.2 Mumford Representation – An example, we have shown how we can convert the 

Cartesian points on the curve into polynomial expression based on Mumford. By applying Mumford 

Representation, we can convert all the Cartesian points into divisors, after the conversion we can obtain 

the equation for the Jacobian Variety curve. Here we denote the Jacobian curve as ݕ ൌ ݈ሺݔሻ. 

 
5.1.1   Generating General Addition Explicit Formula for HEC of genus 2  
 
Let’s consider a general Hyper Elliptic Curve ܥ of genus ݃ ൌ 2 over the finite field ॲ௤:  

 

HEC: ݕଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 

The intersecting coordinates ଵܲ ൌ ሺݔ௉ଵ, ௉ଵሻ and ଶܲݕ ൌ ሺݔ௉ଶ,  ௉ଶሻ would be converted to polynomialݕ

expression using Mumford.  

 

The divisor class group, ܦଵ for the point ଵܲ, ଶܲ, ܦଶ for the point ܳଵ, ܳଶ and ܦଷ for the point ܴଵ, ܴଶ as 

shown below: 

 

ଵܦ ൌෑሺݔ െ ݔ௉ଵሻሺݔ െ ௉ଶሻݔ െ 2 ஶܲ

ଶ

௥ୀଵ

ൌ ሾݔଶ ൅ ݔଵଵݑ ൅ ,ଵ଴ݑ ݔଵଵݒ ൅  ଵ଴ሿݒ

 

ଶܦ ൌෑ൫ݔ െ ݔொଵ൯൫ݔ െ ொଶ൯ݔ െ 2 ஶܲ

ଶ

௥ୀଵ

ൌ ሾݔଶ ൅ ݔଶଵݑ ൅ ,ଶ଴ݑ ݔଶଵݒ ൅  ଶ଴ሿݒ
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ଷܦ ൌෑሺݔ െ ݔோଵሻሺݔ െ ோଶሻݔ െ 2 ஶܲ

ଶ

௥ୀଵ

ൌ ሾݔଶ ൅ ݔଷଵݑ ൅ ,ଷ଴ݑ ݔଷଵݒ ൅  ଷ଴ሿݒ

 
From the figure 1 above we can assert the polynomial expression of ݈ሺݔሻ to be ݈ሺݔሻ ൌ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅

݈ଵݔ ൅ ݈଴. The Jacobian curve ݕ ൌ ݈ሺݔሻ is a cubic function since we can see in the graph that the function 

has two extreme points and intersecting with the hyper elliptic curve with six Cartesian points.  

 

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points 

݈ሺݔሻ ൌ ሻݔሻ or ݈ሺݔሺݒ െ ሻݔሺݒ ≡   .ሻ since we have to perform polynomial reductionݔሺݑ	݀݋݉	0

 

For the intersecting points ଵܲ and ଶܲ, we can write it in the form of ݈ሺݔሻ െ ሻݔሺݒ ≡  .ሻݔሺݑ	݀݋݉	0

 

ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݒଵଵݔ ൅ ଵ଴ሻݒ ≡ 0	mod	ݔଶ ൅ ݔଵଵݑ ൅  ଵ଴ݑ

 

Or, ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ ≡ ሺݒଵଵݔ ൅ ଶݔ	mod	ଵ଴ሻݒ ൅ ݔଵଵݑ ൅  ଵ଴ݑ

 

By reducing the L.H.S with the polynomial expression ݔଶ ൅ ݔଵଵݑ ൅  ,ଵ଴ and comparing with the R.H.Sݑ

we get four simultaneous equations.  

 
݈଴ െ ଵ଴݈ଶݑ ൅ ଵ଴݈ଷݑଵଵݑ ≡  ଵ଴ݒ

 
EQN 1

݈ଵ െ ଵଵ݈ଶݑ ൅ ሺݑଵଵ
ଶ െ ଵ଴ሻ݈ଷݑ ≡  ଵଵݒ
 

EQN 2

݈଴ െ ଶ଴݈ଶݑ ൅ ଶ଴݈ଷݑଶଵݑ ≡  ଶ଴ݒ
 

EQN 3

݈ଵ െ ଶଵ݈ଶݑ ൅ ሺݑଶଵ
ଶ െ ଶ଴ሻ݈ଷݑ ≡  ଶଵݒ
 

EQN 4

 
Subtracting the EQN 1 from EQN 3, we get: 
 

ሺݑଵ଴ െ ଶ଴ሻ݈ଶݑ ൅ ሺݑଶଵݑଶ଴ െ ଵ଴ሻ݈ଷݑଵଵݑ ൌ ଶ଴ݒ െ ଵ଴ EQN 5ݒ
 
Subtracting the EQN 4 from EQN 2, we get: 
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ሺݑଵଵ െ ଶଵሻ݈ଶݑ ൅ ሾሺݑଶଵ
ଶ െ ଶ଴ሻݑ െ ሺݑଵଵ

ଶ െ ଵ଴ሻሿ݈ଷݑ ൌ ଶଵݒ െ ଵଵ EQN 6ݒ
 
Generating an explicit formulae with too many variables may cause error or the final result of the 

algorithm may look tedious. At the same time in order to reduce repetitive computation which may 

consume processing power, we can denote the variables such as ݑଵଵ, ,ଶଵݑ  ଶ଴ with otherݒ ଵଵ andݒ

notifications, as shown below: 

 
଴ܣ ൌ  ଵ଴ݑଵଵݑ

 
Δ଴ ൌ ଵ଴ݑ െ ଴ܤ ଶ଴ݑ ൌ ଵଵݑ

ଶ  C଴ ൌ ଶ଴ݒ െ  ଵ଴ݒ

ଵܣ ൌ  ଶ଴ݑଶଵݑ
 

Δଵ ൌ ଵଵݑ െ ଵܤ ଶଵݑ ൌ ଶଵݑ
ଶ  Cଵ ൌ ଶଵݒ െ  ଵଵݒ

ଵܣ െ ଴ܣ ൌ ଵ ߳଴ߠ ൌ െݑଶ଴ ൅  ଵ଴ݑ
 

ଵܤ െ ଴ܤ ൌ  ଶߠ
 

ଶߠ ൅ ߳଴ ൌ  ଷߠ

We can re – write the EQN 5 & 6 in a simpler way as shown below: 
 

Δ଴݈ଶ ൅ ଵ݈ଷߠ ൌ  ଴ܥ
 

EQN 5

Δଵ݈ଶ ൅ ሺߠଶ ൅ ߳଴ሻ݈ଷ ൌ  ଵܥ
 

EQN 6

Solving the EQN 5 & 6 simultaneously we will get expressions for ݈ଶ and ݈ଷ as shown below: 
 

݈ଶ ൌ
ଷߠ଴ܥ െ ଵߠଵܥ
Δ଴ߠଷ െ Δଵߠଵ

 

 

݈ଷ ൌ
Δ଴ܥଵ െ Δଵܥ଴
Δ଴ߠଷ െ Δଵߠଵ

 

 
By substituting ݈ଶ and ݈ଷ into the EQN 1 and in EQN 2 respectively, we will get the expression for ݈଴ and 

݈ଵ, as shown below: 

 

݈଴ ൌ ଵ଴ሺ݈ଶݑ െ ଵଵ݈ଷሻݑ ൅  ଵ଴ݒ

 

݈ଵ ൌ ଵଵ݈ଶݑ ൅ ଵଵݒ ൅ ሺܤ଴ െ  ଵ଴ሻ݈ଷݑ
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At intersecting points of the two curves, in this case it is the Jacobian Variety and the Hyper Elliptic Curve 

of genus 2, the value of the ݕ on both curve is the same. So we can replace the ݕ expression of the hyper 

elliptic curve by the Jacobian variety curve ݕ ൌ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. 

 

HEC: ݕଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

The Jacobian Variety Curve: ݕ௃஼ ൌ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ 

 

Substituting ݕ in HEC with ݕ௃஼: 

 

௃஼ଶݕ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ௃஼ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 

Or, ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻ ⋅ ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅

ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 

Or, ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻ ⋅ ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅

ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ ൌ 0 

 

Expanding the L.H.S and comparing its coefficients with the R.H.S we will get as show below: 

 
 

଺ ݈ଷݔ
ଶ. 

ହ 2݈ଶ݈ଷݔ ൅ ݄ଶ݈ଷ ൅ 1. 

ସ 2݈ଵ݈ଷݔ ൅ ݈ଶ
ଶ ൅ ݄ଶ݈ଶ ൅ ݄ଵ݈ଷ െ ସ݂. 

ଷ 2݈ଵ݈ଶݔ ൅ ݈ଵ݈ଷ ൅ ݈଴݈ଷ ൅ ݄ଶ݈ଵ ൅ ݄ଶ݈ଶ ൅ ݄଴݈ଷ െ ଷ݂. 

ଶ 2݈଴݈ଶݔ ൅ ݈ଵ
ଶ ൅ ݄ଶ݈଴ ൅ ݄ଵ݈ଵ ൅ ݄଴݈ଶ െ ଶ݂. 

ଵ 2݈଴݈ଵݔ ൅ ݄ଵ݈଴ ൅ ݄଴݈ଵ െ ଵ݂. 

଴ ݄଴݈଴ݔ ൅ ݈଴
ଶ െ ଴݂. 

 
 After computing the Jacobian Variety Curve ݕ௃஼ ൌ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. However, if we intended to 

solve the ݕ௃஼ and the HEC to find the Cartesian coordinates of the intersecting points. We can find the 

remaining two intersecting points by solving the expression below: 
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ෑሺݔ െ ݔ௉ଵሻሺݔ െ ௉ଶሻݔ
ଶ

௥ୀଵ

⋅ෑ൫ݔ െ ݔொଵ൯൫ݔ െ ொଶ൯ݔ

ଶ

௥ୀଵ

⋅ෑሺݔ െ ݔோଵሻሺݔ െ ோଶሻݔ
ଶ

௥ୀଵ

 

≡ 

ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻ ⋅ ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ 

 

െሺݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ 

 

In order to avoid tedious work and for simplification, we have introduced four new variable as ݏଷ, ݏଶ, ݏଵ 

and ݏ଴. The expression of the variable is shown below: 

 

ଷݏ ൌ ଶଵݑ ൅  ଵଵݑ

 

ଶݏ ൌ ଶ଴ݑ ൅ ଶଵݑଵଵݑ ൅  ଵ଴ݑ

 

ଷݏ ൌ ଶ଴ݑଵଵݑ ൅  ଶ଴ݑଵ଴ݑ

 

଴ݏ ൌ  ଶ଴ݑଵ଴ݑ

 

Expanding the L.H.S of the equation and compare with the coefficients of ݔ on the R.H.S. The expansion 

of the L.H.S is shown below: 

 

ሺݔଶ ൅ ݔଵଵݑ ൅ ଵ଴ሻݑ ⋅ ሺݔଶ ൅ ݔଶଵݑ ൅ ଶ଴ሻݑ ⋅ ሺݔଶ ൅ ݔଷଵݑ ൅  ଷ଴ሻݑ

 

 .଺ 1ݔ

ଷଵݑ ହݔ ൅  .ଷݏ

ଷ଴ݑ ସݔ ൅ ଷଵݑଷݏ ൅  .ଶݏ

ଷ଴ݑଷݏ ଷݔ ൅ ଷଵݑଶݏ ൅  .ଵݏ

ଷ଴ݑଶݏ ଶݔ ൅ ଷଵݑଵݏ ൅  .଴ݏ

ଷ଴ݑଵݏ ଵݔ ൅  .ଷଵݑ଴ݏ

 .ଷ଴ݑ଴ݏ ଴ݔ
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Comparing the coefficients of the L.H.S with the R.H.S we get: 

ଷଵݑ ൌ 2݈ଶ݈ଷ ൅ ݄ଶ݈ଷ ൅ 1 െ  ଷݏ

ଷ଴ݑ ൌ 2݈ଵ݈ଷ ൅ ݈ଶ
ଶ ൅ ݄ଶ݈ଶ ൅ ݄ଵ݈ଷ െ ସ݂ െ ଷݏଷଵݑ െ  ଶݏ

 

Similarly, we can get the result for ݒଷଵ and ݒଷ଴ by solving the equation: 

 

݈ሺݔሻ	mod	ሺݔଶ ൅ ݔଷଵݑ ൅ ଷ଴ሻݑ 	≡ ݔଷଵݒ ൅  ଷ଴ݒ

 

Or, ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴	mod		ሺݔଶ ൅ ݔଷଵݑ ൅ ଷ଴ሻݑ ≡ ݔଷଵݒ ൅  ଷ଴ݒ

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 

 

ଷଵݒ ൌ െሼݑଷଵ
ଶ ݈ଷ െ ଴ܮܷ ൅  ሽܮܷ

 

ଷ଴ݒ ൌ െሼݑଷଵܷܮ଴ ൅  ሽܮܷ

 

For simplification reason we presented with two variables: 

 

଴ܮܷ ൌ  ଷ଴݈ଷݑ

 

ܮܷ ൌ െݑଷଵ݈ଶ ൅ ݈ଵ 
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5.1.2   Computational Complexity of General Addition Explicit Formula for HEC of  ࢍ ൌ ૛ 

 

In the section above, we have proposed and derived a General Explicit Formula for Addition on a  HEC 

of genus = 2. For practical purpose one can eliminate the function of ݄ሺݔሻ and the co-efficient of ସ݂ from 

the function ݂ሺݔሻ. The computational complexity for the General Addition Explicit Formulae is defined 

as (no. of Inverses, no. of Multiplication, no. of Squaring). 

 
Finite 
Field 

Curve Properties  Cost  

Inverses (I) Multiplication (M) Squaring (s) 

ॲ௤ ݄ሺݔሻ, ݂ሺݔሻ 1 23 4 

ॲ௤ ݄ሺݔሻ ൌ 0, ସ݂ ൌ 0. 1 20 4 

 
Table 5.1: Complexity comparison between the explicit formulae for HEC of 

genus 2 for different curve property.  
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5.1.3    Comparison of proposed and existing Explicit Formulae (Addition) for HEC ࢍ ൌ ૛. 

 

The proposed works has been compared with the Explicit Formulae for Addition for the HEC for genus 2 

has been compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite 
Field 

Curve  
Properties 

 Cost  Improvement 
Percentage (%)

 Inverses  
(I) 

Multiplication 
(M) 

Squaring  
(S) 

  

Harley [11,25] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
2 24 3 100 

Lange [26] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
2 24 3 100 

Matsuo [13] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
2 25 - 101.2 

Takahashi [15] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
1 25 - 131.6 

Miyamoto [14] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
1 26 - 130.1 

Lange [27] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
1 22 3 133.4 

This work  ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
1 20 4 135.6 

 

Table 5.2: Comparison between the explicit formulas for (genus = 2) curves over 	

ॲ௤ of previous work and the present work. 
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ALGORITHM I 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: ݕଶ ൅

ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. 

NUMBER OF COORDINATES: 6 

Input Genus 2 HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ; 
݄ሺݔሻ ൌ ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴;  
݂ሺݔሻ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂; 
Divisor ܦଵ ൌ ሾݑଵሺݔሻ, ଶܦ ,ሻሿݔଵሺݒ ൌ ሾݑଶሺݔሻ,  ;ሻሿݔଶሺݒ
ሻݔଵሺݑ ൌ ଶݔ ൅ ݔଵଵݑ ൅ ሻݔଵሺݒ ,ଵ଴ݑ ൌ ݔଵଵݒ ൅  ,ଵ଴ݒ
ሻݔଶሺݑ ൌ ଶݔ ൅ ݔଶଵݑ ൅ ሻݔଵሺݒ ,ଶ଴ݑ ൌ ݔଶଵݒ ൅   ;ଶ଴ݒ

 

Output ܦଷ ൌ ሾݑଷሺݔሻ, ሻሿݔଷሺݒ ൌ ଵܦ ൅  ,ଶܦ
ሻݔଷሺݑ ൌ ଶݔ ൅ ݔଷଵݑ ൅ ሻݔଷሺݒ ,ଷ଴ݑ ൌ ݔଷଵݒ ൅  ;ଷ଴ݒ

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
଴ܣ 1 ൌ ଵܣ ,ଵ଴ݑଵଵݑ ൌ ଶ଴; ∆଴ൌݑଶଵݑ ଵ଴ݑ െ ଶ଴, ∆ଵൌݑ ଵଵݑ െ  ;ଶଵݑ

଴ܤ ൌ ଵଵݑ
ଶ ଵܤ , ൌ ଶଵݑ

ଶ ଴ܥ ; ൌ ଶ଴ݒ െ ,ଵ଴ݒ ଵܥ ൌ ଶଵݒ െ   ;ଵଵݒ
ሺ0,2,2ሻ 

 

2 ߳଴ ൌ െݑଶ଴ ൅ ଵߠ ;ଵ଴ݑ ൌ ଵܣ െ ଶߠ ,଴ܣ ൌ ଵܤ െ ଷߠ ,଴ܤ ൌ ଶߠ ൅ ߳଴; ሺ0,0,0ሻ 
ݒ݊݅ 3 ൌ ሺ∆଴ߠଷ െ ∆ଵߠଵሻିଵ; ሺ1,2,0ሻ 
ଶݏ 4 ൌ ଶ଴ݑ ൅ ଶଵݑଵଵݑ ൅ ଷݏ ,ଵ଴ݑ ൌ ଶଵݑ ൅  ଵଵ; ሺ0,1,0ሻݑ
5 ݈ଷ ൌ ݒ݊݅ ⋅ ሺ∆଴ܥଵ െ ∆ଵܥ଴ሻ, ݈ଶ ൌ ݒ݊݅ ⋅ ሺܥ௢ߠଷ െ   ,ଵሻߠଵܥ

݈ଵ ൌ ଵଵ݈ଶݑ ൅ ଵଵݒ ൅ ሺܤ଴ െ  ;ଵ଴ሻ݈ଷݑ
ሺ0,8,0ሻ 

6 Compute ࢛૜ሺ࢞ሻ ൌ ૛࢞ ൅ ࢞૜૚࢛ ൅  :૜૙࢛
ଷଵݑ ൌ 2݈ଶ݈ଷ ൅ ݄ଶ݈ଷ ൅ 1 െ   ,ଷݏ
ଷ଴ݑ ൌ 2݈ଵ݈ଷ ൅ ݈ଶ

ଶ ൅ ݄ଶ݈ଶ ൅ ݄ଵ݈ଷ െ ସ݂ െ ଷݏଷଵݑ െ  ;ଶݏ

ሺ0,6,1ሻ 

଴ܮܷ 7 ൌ ܮܷ ,ଷ଴݈ଷݑ ൌ െݑଷଵ݈ଶ ൅ ݈ଵ; ሺ0,2,0ሻ 
8 Compute ࢜૜ሺ࢞ሻ ൌ ࢞૜૚࢜ ൅  :૜૙࢜

ଷଵݒ ൌ െሼݑଷଵ
ଶ ݈ଷ െ ଴ܮܷ ൅ ଷ଴ݒ ,ሽܮܷ ൌ െሼݑଷଵܷܮ଴ ൅  ;ሽܮܷ

ሺ0,2,1ሻ 

Sum  ሺ0,23,4ሻ 
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ALGORITHM II 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: ݕଶ ൌ

ହݔ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF COORDINATES: 6 

Input Genus 3 HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ; 
݂ሺݔሻ ൌ ହݔ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂; 
Divisor ܦଵ ൌ ሾݑଵሺݔሻ, ଶܦ ,ሻሿݔଵሺݒ ൌ ሾݑଶሺݔሻ,  ;ሻሿݔଶሺݒ
ሻݔଵሺݑ ൌ ଶݔ ൅ ݔଵଵݑ ൅ ሻݔଵሺݒ ,ଵ଴ݑ ൌ ݔଵଵݒ ൅  ,ଵ଴ݒ
ሻݔଶሺݑ ൌ ଶݔ ൅ ݔଶଵݑ ൅ ሻݔଵሺݒ ,ଶ଴ݑ ൌ ݔଶଵݒ ൅   ;ଶ଴ݒ

 

Output ܦଷ ൌ ሾݑଷሺݔሻ, ሻሿݔଷሺݒ ൌ ଵܦ ൅  ,ଶܦ
ሻݔଷሺݑ ൌ ଶݔ ൅ ݔଷଵݑ ൅ ሻݔଷሺݒ ,ଷ଴ݑ ൌ ݔଷଵݒ ൅  ;ଷ଴ݒ

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
଴ܣ 1 ൌ ଵܣ ,ଵ଴ݑଵଵݑ ൌ ଶ଴; ∆଴ൌݑଶଵݑ ଵ଴ݑ െ ଶ଴, ∆ଵൌݑ ଵଵݑ െ  ;ଶଵݑ

଴ܤ ൌ ଵଵݑ
ଶ ଵܤ , ൌ ଶଵݑ

ଶ ଴ܥ ; ൌ ଶ଴ݒ െ ,ଵ଴ݒ ଵܥ ൌ ଶଵݒ െ   ;ଵଵݒ
ሺ0,2,2ሻ 

 

2 ߳଴ ൌ െݑଶ଴ ൅ ଵߠ ;ଵ଴ݑ ൌ ଵܣ െ ଶߠ ,଴ܣ ൌ ଵܤ െ ଷߠ ,଴ܤ ൌ ଶߠ ൅ ߳଴; ሺ0,0,0ሻ 
ݒ݊݅ 3 ൌ ሺ∆଴ߠଷ െ ∆ଵߠଵሻିଵ; ሺ1,2,0ሻ 
ଶݏ 4 ൌ ଶ଴ݑ ൅ ଶଵݑଵଵݑ ൅ ଷݏ ,ଵ଴ݑ ൌ ଶଵݑ ൅  ଵଵ; ሺ0,1,0ሻݑ
5 ݈ଷ ൌ ݒ݊݅ ⋅ ሺ∆଴ܥଵ െ ∆ଵܥ଴ሻ, ݈ଶ ൌ ݒ݊݅ ⋅ ሺܥ௢ߠଷ െ   ,ଵሻߠଵܥ

݈ଵ ൌ ଵଵ݈ଶݑ ൅ ଵଵݒ ൅ ሺܤ଴ െ  ;ଵ଴ሻ݈ଷݑ
ሺ0,8,0ሻ 

6 Compute ࢛૜ሺ࢞ሻ ൌ ૛࢞ ൅ ࢞૜૚࢛ ൅  :૜૙࢛
ଷଵݑ ൌ 2݈ଶ݈ଷ ൅ 1 െ ଷ଴ݑ ,ଷݏ ൌ 2݈ଵ݈ଷ ൅ ݈ଶ

ଶ െ ଷݏଷଵݑ െ  ;ଶݏ

ሺ0,3,1ሻ 

଴ܮܷ 7 ൌ ܮܷ ,ଷ଴݈ଷݑ ൌ െݑଷଵ݈ଶ ൅ ݈ଵ; ሺ0,2,0ሻ 
8 Compute ࢜૜ሺ࢞ሻ ൌ ࢞૜૚࢜ ൅  :૜૙࢜

ଷଵݒ ൌ െሼݑଷଵ
ଶ ݈ଷ െ ଴ܮܷ ൅ ଷ଴ݒ ,ሽܮܷ ൌ െሼݑଷଵܷܮ଴ ൅  ;ሽܮܷ

ሺ0,2,1ሻ 

Sum  ሺ0,20,4ሻ 
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5.2    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 3 

 

As discussed in the section 5.1, the intersecting points of the Jacobian variety curve with the hyper elliptic 

curve forms a group. We applied this concept to the HEC of genus 2. In this section we apply the same 

concept to develop a general addition explicit formulae algorithm for genus 3. The figure below is the 

graphical representation of the Jacobian variety curve and the hyper elliptic curve of genus 3. 

 

 

Figure 5.2: Hyper Elliptic Curve of genus 3 and Jacobian Variety Curve. 

 

Since the intersecting points between the Jacobian variety curve with the hyper elliptic curve sums up to 

zero. Therefore: 

 

ሾ ଵܲሿ ൅ ሾ ଶܲሿ ൅ ሾ ଷܲሿ ൅ ሾܳଵሿ ൅ ሾܳଶሿ ൅ ሾܴଵሿ ൅ ሾܴଶሿ ൅ ሾܴଷሿ ൌ 0. 

 ሾ ଵܲሿ ൅ ሾ ଶܲሿ ൅ ሾ ଷܲሿ ൅ ሾܳଵሿ ൅ ሾܳଶሿ ൌ െሾܴଵሿ െ ሾܴଶሿ െ ሾܴଷሿ ൌ ሾܴଵ
ᇱ ሿ ൅ ሾܴଶ

ᇱ ሿ ൅ ሾܴଷ
ᇱ ሿ. 

 

Just like in the previous section, the Cartesian of affine space points ଵܲ, ଶܲ and ଷܲ would be transformed 

to individual divisor class group based on Mumford Representation. By applying the Mumford 

Representation, we can convert all the Cartesian points into divisor, after the conversion we can obtain 

the equation for the Jacobian Variety curve. Here we denote the Jacobian curve as ݕ ൌ ݈ሺݔሻ.  
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5.2.1    Generating General Addition Explicit Formulae for HEC of genus 3 

 

Let’s consider a general Hyper Elliptic Curve ܥ of genus ݃ ൌ 3 over the finite field ॲ௤:  

 

HEC: ݕଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ଻ݔ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 

The intersecting coordinates ଵܲ ൌ ሺݔ௉ଵ, ௉ଵሻ, ଶܲݕ ൌ ሺݔ௉ଶ, ௉ଶሻ and ଷܲݕ ൌ ሺݔ௉ଷ,  ௉ଷሻ would be converted toݕ

polynomial expression using Mumford.  

 

The divisor class group, ܦଵ for the point ଵܲ, ଶܲ and ଷܲ. ܦଶ for the point ܳଵ, ܳଶ. ܦଷ for the point ܴଵ, ܴଶ and 

ܴଷ as shown below: 

 

ଵܦ ൌෑሺݔ െ ݔ௉ଵሻሺݔ െ ݔ௉ଶሻሺݔ െ ௉ଷሻݔ െ 3 ஶܲ

ଶ

௥ୀଵ

ൌ 
ଵܦ ൌ ሾݑଵሺݔሻ,  ሻሿݔଵሺݒ

ሻݔଵሺݑ ൌ ଷݔ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅  ଵ଴ݑ

ሻݔଵሺݒ ൌ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅  ଵ଴ݒ

ଶܦ ൌෑ൫ݔ െ ݔொଵ൯൫ݔ െ ொଶ൯ݔ െ 2 ஶܲ

ଶ

௥ୀଵ

 
ଶܦ ൌ ሾݑଶሺݔሻ,  ሻሿݔଶሺݒ

ሻݔଶሺݑ ൌ ଶݔ ൅ ݔଶଵݑ ൅  ,ଶ଴ݑ

ሻݔଶሺݒ ൌ ݔଶଵݒ ൅  ;ଶ଴ݒ

ଷܦ ൌෑሺݔ െ ݔோଵሻሺݔ െ ݔோଶሻሺݔ െ ோଷሻݔ െ 3 ஶܲ

ଶ

௥ୀଵ

 
ଷܦ ൌ ሾݑଷሺݔሻ,  ሻሿݔଷሺݒ

ሻݔଷሺݑ ൌ ଷݔ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅  ଵ଴ݑ

ሻݔଷሺݒ ൌ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅  ଵ଴ݒ

 
Table 5.3: Corresponding conversion of the Cartesian points to Mumford form. 

 
From the figure 2 above we can assert the polynomial expression of ݈ሺݔሻ to be ݈ሺݔሻ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅

݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. As shown in the previous section, here there are eight intersecting points with the hyper 

elliptic curve. 

 

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points 

݈ሺݔሻ ൌ ሻݔሻ or ݈ሺݔሺݒ െ ሻݔሺݒ ≡   .ሻ since we have to perform polynomial reductionݔሺݑ	݀݋݉	0

 

For the intersecting points ଵܲ, ଶܲ and ଷܲ, we can write it in the form of ݈ሺݔሻ െ ሻݔሺݒ ≡  .ሻݔሺݑ	݀݋݉	0
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ሺሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݒଵଶݔଶ ൅ ݔଵଵݒ ൅ ଵ଴ሻݒ ≡ 0	mod	ݔଷ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅  ଵ଴ݑ

 

Or, ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ ≡ ሺݒଵଶݔଶ ൅ ݔଵଵݒ ൅ ଷݔ	mod	ଵ଴ሻݒ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅  ଵ଴ݑ

 

For the intersecting points ܳଵ and ܳଶ, we can write it in the form of ݈ሺݔሻ െ ሻݔሺݒ ≡  .ሻݔሺݑ	݀݋݉	0

 

ሺሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݒଶଵݔ ൅ ଶ଴ሻݒ ≡ 0	mod	ݔଶ ൅ ݔଶଵݑ ൅  ଶ଴ݑ

 

Or, ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ ≡ ሺݒଶଵݔ ൅ ଶݔ	mod	ଶ଴ሻݒ ൅ ݔଶଵݑ ൅  ଶ଴ݑ

 

By reducing the L.H.S with the polynomial expression ݔଷ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅ ଶݔ ଵ଴  andݑ ൅ ݔଶଵݑ ൅   ଶ଴ݑ

comparing with the R.H.S, we get five simultaneous equations.  

 
ሺݑଵଶ

ଶ െ ଵଵሻ݈ସݑ െ ଵଶ݈ଷݑ ൅ ݈ଶ ≡  ଵଶݒ
 

EQN 1

ሺݑଵଶݑଵ଴ሻ݈ସ െ ଵ଴݈ଷݑ ൅ ݈଴ ≡  ଵ଴ݒ
 

EQN 3

ሾെݑଶଵሺݑଶଵ
ଶ െ ଶ଴ሻݑ ൅ ଶ଴ሿ݈ସݑଶଵݑ ൅ ሺݑଶଵ

ଶ െ ଶ଴ሻ݈ଷݑ ൅ ሺെݑଶଵሻ݈ଶ ൅ ݈ଵ ≡  ଶଵݒ
 

EQN 4

ሾെݑଶ଴ሺݑଶଵ
ଶ െ ଶ଴ሻሿ݈ସݑ ൅ ሺݑଶଵݑଶ଴ሻ݈ଷ ൅ ሺെݑଶ଴ሻ݈ଶ ൅ ݈଴ ≡  ଶ଴ݒ

 
EQN 5

 
As discussed before, that generating an explicit formulae with too many variable may make the work 

tedious. In order to reduce repetitive computation, we can denote the variable with other notifications, as 

shown below: 

ܷଶଵ ൌ ଶଵݑ
ଶ  

 

଴ܤ ൌ ଵଶ ∆଴ൌݑଵଵݑ ଶଵݑ ଵܷଶ െ ܷଶଵ െ ଴ܤ ൅ ଵ଴ݑ ൅  ଶଵܷଶଵݑ

ଵܷଶ ൌ ଵଶݑ
ଶ  

 

ଵܤ ൌ ଵଶ ∆ଵൌݑଶଵݑ െܤଵ ൅ ଵଵݑ ൅ ܷଶଵ െ  ଶ଴ݑ

ଵܣ ൌ െሺ ଵܷଶ െ ଷܤ ଵଵሻݑ ൌ ଵଶ ∆ଶൌݑଶ଴ݑ ଶ଴ݑ ଵܷଶ െ  ସܤ
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ଶܣ ൌ െܤସ 

 

ସܤ ൌ ଵଶ ∆ଷൌݑଵ଴ݑ ଵ଴ݑ െ ଶଵݑଶ଴ݑ െ  ଷܤ

ଷܣ ൌ െሺܤ଴ െ ଵ଴ሻ ߳଴ݑ ൌ ሾݑଶଵݒଶଵሿ െ ሾݒଵଵ െ ଶଵሿ ߳ଵݒ ൌ ሾݑଶ଴ݒଵଶሿ െ ሾݒଵ଴ െ  ଶ଴ሿݒ

 

Solving the five equations simultaneously, we will get the expression for ݈଴, ݈ଵ, ݈ଶ, ݈ଷ, and ݈ସ, as shown 

below: 

 

݈଴ ൌ ଵ଴݈ଷݑ ൅ ଶ݈ସܣ ൅  ଵ଴ݒ

 

݈ଵ ൌ ଵଵ݈ଷݑ ൅ ଷ݈ସܣ ൅  ଵଵݒ

 

݈ଶ ൌ ଵଶ݈ଷݑ ൅ ଵ݈ସܣ ൅  ଵଶݒ

 

݈ଷ ൌ
∆ଶ߳଴ െ ∆଴߳ଵ
∆ଵ∆ଶ െ ∆଴∆ଷ

					and					݈ଷ ൌ
∆ଵ߳ଵ െ ∆ଷ߳଴
∆ଵ∆ଶ െ ∆଴∆ଷ

 

 

At intersecting points of the two curves, in this case it is the Jacobian Variety and the Hyper Elliptic Curve 

of genus 3, the value of the ݕ on both curve is the same. So we can replace the ݕ expression of the hyper 

elliptic curve by the Jacobian variety curve ݕ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. 

 

HEC: ݕଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ଻ݔ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

The Jacobian Variety Curve: ݕ௃஼ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ 

 

Substituting ݕ in HEC with ݕ௃஼: 

 

௃஼ଶݕ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ௃஼ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 

Or, ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻ ⋅ ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ ൌ ଻ݔ ൅

଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 
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Or, ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻ ⋅ ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ

ሺݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ ൌ 0 

 

Expanding the L.H.S and comparing its coefficients with the R.H.S we will get as show below: 

 
ସ݈ ଼ݔ

ଶ. 

଻ 2݈ସ݈ଷݔ െ 1. 

଺ 2݈ସ݈ଶݔ ൅ ݈ଷ
ଶ ൅ ݄ଶ݈ସ െ ଺݂. 

ହ 2݈ସ݈ଵݔ ൅ 2݈ଷ݈ଶ ൅ ݄ଶ݈ଷ ൅ ݄ଵ݈ସ െ ହ݂. 

ସ 2݈ଷ݈ଵݔ ൅ 2݈ସ݈଴ ൅ ݈ଶ
ଶ ൅ ݄ଶ݈ଶ ൅ ݄ଵ݈ଷ ൅ ݄଴݈ଷ െ ସ݂. 

ଷ 2݈ଷ݈଴ݔ ൅ 2݈ଶ݈ଵ ൅ ݄ଶ݈ଵ ൅ ݄ଵ݈ଶ ൅ ݄଴݈ଷ െ ଷ݂. 

ଶ 2݈ଶ݈଴ݔ ൅ ݈ଵ
ଶ ൅ ݄ଶ݈଴ ൅ ݄ଵ݈ଵ ൅ ݄଴݈ଶ െ ଶ݂. 

ଵ 2݈ଵ݈଴ݔ ൅ ݄ଵ݈଴ ൅ ݄଴݈ଵ െ ଵ݂. 

଴ ݈଴ݔ
ଶ ൅ ݄଴݈଴ െ ଴݂. 

 
After computing the Jacobian Variety Curve ݕ௃஼ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. However, if we 

intended to solve the ݕ௃஼ and the HEC to find the Cartesian coordinates of the intersecting points. We can 

find the remaining two intersecting points by solving the expression below: 

 

ෑሺݔ െ ݔ௉ଵሻሺݔ െ ݔ௉ଶሻሺݔ െ ௉ଷሻݔ
ଷ

௥ୀଵ

⋅ෑ൫ݔ െ ݔொଵ൯൫ݔ െ ொଶ൯ݔ

ଶ

௥ୀଵ

⋅ෑሺݔ െ ݔோଵሻሺݔ െ ோଶሻݔ
ଶ

௥ୀଵ

ሺݔ െ  ோଷሻݔ

≡ 

ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ ൅ ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻ ⋅ ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ

െ ሺݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ 

 

In order to avoid tedious work and for simplification, we have introduced four new variable as ݏସ, ݏଷ, ݏଶ, 

 :଴. The expression of the variable is shown belowݏ ଵ andݏ

 

଴ݏ ൌ ଶଵݑ ൅  ଵଶݑ

 

ଵݏ ൌ ଶ଴ݑ ൅ ଵܤ ൅  ଵଵݑ
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ଶݏ ൌ ଷܤ ൅ ଶଵݑଵଵݑ ൅  ଵ଴ݑ

 

ଷݏ ൌ ଶ଴ݑଵଵݑ ൅  ଶ଴ݑଵ଴ݑ

 

ସݏ ൌ  ଶ଴ݑଵ଴ݑ

 

Expanding the L.H.S of the equation and compare with the coefficients of ݔ on the R.H.S. The expansion 

of the L.H.S is shown below: 

 

ሺݔଷ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅ ଵ଴ሻݑ ⋅ ሺݔଶ ൅ ݔଶଵݑ ൅ ଶ଴ሻݑ ⋅ ሺݔଷ ൅ ଶݔଷଶݑ ൅ ݔଷଵݑ ൅  ଷ଴ሻݑ

 

 .1 ଼ݔ

଴ݏ ଻ݔ ൅  .ଷଶݑ

ଵݏ ଺ݔ ൅ ଴ݏଷଶݑ ൅  .ଷଵݑ

ଷݏ ହݔ ൅ ଵݏଷଶݑ ൅ ଴ݏଷଵݑ ൅  .ଷ଴ݑ

ଷݏ ସݔ ൅ ଶݏଷଶݑ ൅ ଵݏଷଵݑ ൅  .଴ݏଷ଴ݑ

ସݏ ଷݔ ൅ ଷݏଷଶݑ ൅ ଶݏଷଵݑ ൅  .ଵݏଷ଴ݑ

ସݏଷଶݑ ଶݔ ൅ ଷݏଷଵݑ ൅  .ଵݏଷ଴ݑ

ସݏଷଵݑ ଵݔ ൅  .ଷݏଷ଴ݑ

 .ସݏଷ଴ݑ ଴ݔ

 

Comparing the coefficients of the L.H.S with the R.H.S we get: 

 

ଷଶݑ ൌ 2݈ସ݈ଷ െ 1 െ  ଴ݏ

ଷଵݑ ൌ 2݈ସ݈ଶ ൅ ݈ଷ
ଶ ൅ ݄ଶ݈ସ െ ଺݂ െ ଵݏ െ  ଴ݏଷଶݑ

ଷ଴ݑ ൌ 2݈ସ݈ଵ ൅ 2݈ଷ݈ଶ ൅ ݄ଶ݈ଷ ൅ ݄ଵ݈ସ െ ହ݂ െ ଶݏ െ ଵݏଷଶݑ െ  ଴ݏଷଵݑ

 

Similarly, we can get the result for ݒଷଶ, ݒଷଵ and ݒଷ଴ by solving the equation: 

 

݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ ≡ ሺݒଷଶݔଶ ൅ ݔଷଵݒ ൅ ଷݔ	mod	ଷ଴ሻݒ ൅ ଶݔଷଶݑ ൅ ݔଷଵݑ ൅  ଷ଴ݑ
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After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 

 

ଷଶݒ ൌ െሼݑଷଶ
ଶ ݈ସ െ ଴ܮܷ െ ଷଶ݈ଷݑ ൅ ݈ଶሽ 

 

ଷଵݒ ൌ െሼݑଷଶܷܮ଴ െ ܮܷ െ ଷଵ݈ଷݑ ൅ ݈ଵሽ 

 

ଷ଴ݒ ൌ െሼݑଷଶܷܮ െ ଷ଴݈ଷݑ ൅ ݈଴ሽ 

 

For simplification reason we presented with two variables: 

 
ܮܷ ൌ  ଷ଴݈ସݑ

 
଴ܮܷ ൌ  ଷଵ݈ସݑ

 
 
 

5.2.2   Computational Complexity of General Addition Explicit Formula for HEC of  ࢍ ൌ ૜ 

 

In the section above, we have proposed and derived a General Explicit Formula for Addition on a HEC of 

genus = 3. For practical purpose one can eliminate the function of ݄ሺݔሻ and the co-efficient of ସ݂ from the 

function ݂ሺݔሻ. The computational complexity for the General Addition Explicit Formulae is defined as 

(no. of Inverses, no. of Multiplication, no. of Squaring). 

 
Finite 
Field 

Curve Properties  Cost  

Inverses (I) Multiplication (M) Squaring (s) 

ॲ௤ ݄ሺݔሻ, ݂ሺݔሻ 1 44 4 

ॲ௤ ݄ሺݔሻ ൌ 0, ଺݂ ൌ 0. 1 41 4 

 
Table 5.4: Complexity comparison between the explicit formulae for HEC of 

genus 3 for different curve property.  
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5.2.3    Comparison of proposed and existing Explicit Formulae (Addition) for HEC ࢍ ൌ ૜. 

  

The proposed work is compared with the Explicit Formulae for Addition for the HEC for genus 3 has been 

compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite  
Field 

Curve  
Properties 

          Cost Improvement 
Percentage (%) 

Inverse 
(I) 

Multiplication       Squaring 
          (M)                    (S) 

 

Kuroki et al 
[29] 

ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1 81 M/S 100 

Gonda et al 
[30] 

ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1 70 M/S 110.9 

Guyot et al. 
[31] 

ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1            64                       6 113.3 

Myukai et al. 
[32] 

ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1 67 M/S 113.9 

This work ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1            41                       4 132.2 

 
Table 5.5: Comparison between the explicit formulas for (genus = 3) curves over 	

ॲ௤ of previous work and the present work. 
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ALGORITHM III 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: ݕଶ ൅

ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ଻ݔ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS 

FIELD ܨܩሺ݌ሻ. NUMBER OF COORDINATES: 8 

Input Genus 3 HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ; 
݄ሺݔሻ ൌ ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴;  
݂ሺݔሻ ൌ ଻ݔ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂; 
Divisor ܦଵ ൌ ሾݑଵሺݔሻ, ଶܦ ,ሻሿݔଵሺݒ ൌ ሾݑଶሺݔሻ,  ;ሻሿݔଶሺݒ
ሻݔଵሺݑ ൌ ଷݔ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅ ሻݔଵሺݒ ,ଵ଴ݑ ൌ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅  ,ଵ଴ݒ
ሻݔଶሺݑ ൌ ଶݔ ൅ ݔଶଵݑ ൅ ሻݔଵሺݒ ,ଶ଴ݑ ൌ ݔଶଵݒ ൅   ;ଶ଴ݒ

 

Output ܦଷ ൌ ሾݑଷሺݔሻ, ሻሿݔଷሺݒ ൌ ଵܦ ൅  ,ଶܦ
ሻݔଷሺݑ ൌ ଷݔ ൅ ଶݔଷଶݑ ൅ ݔଷଵݑ ൅ ሻݔଷሺݒ ,ଷ଴ݑ ൌ ଶݔଷଶݒ ൅ ݔଷଵݒ ൅  ;ଷ଴ݒ

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
1 ܷଶଵ ൌ ଶଵݑ

ଶ , ଵܷଶ ൌ ଵଶݑ
ଶ ଴ܤ , ൌ ଵܤ ,ଵଶݑଵଵݑ ൌ ଷܤ ,ଵଶݑଶଵݑ ൌ  ,ଵଶݑଶ଴ݑ

ସܤ ൌ  ;ଵଶݑଵ଴ݑ
ሺ0,4,2ሻ 

 

2 ∆଴ൌ ଶଵݑ ଵܷଶ െ ܷଶଵ െ ଴ܤ ൅ ଵ଴ݑ ൅ ଶଵܷଶଵݑ െ  ,ଵଵݑଵ଴ݑ2
∆ଵൌ െܤଵ ൅ ଵଵݑ ൅ ܷଶଵ െ ଶ଴, ∆ଶൌݑ ଶ଴ݑ ଵܷଶ െ   ,ସܤ
∆ଷൌ ଵ଴ݑ െ ଶଵݑଶ଴ݑ െ  ;ଷܤ

ሺ0,5,0ሻ 

3 ߳଴ ൌ ሾݑଶଵݒଶଵሿ െ ሾݒଵଵ െ ଶଵሿ, ߳ଵݒ ൌ ሾݑଶ଴ݒଵଶሿ െ ሾݒଵ଴ െ  ଶ଴ሿ;  ሺ0,2,0ሻݒ
ଵܣ 4 ൌ െሺ ଵܷଶ െ ଶܣ ,ଵଵሻݑ ൌ െܤସ, ܣଷ ൌ െሺܤ଴ െ  ଵ଴ሻ; ሺ0,0,0ሻݑ
଴ݏ 5 ൌ ଶଵݑ ൅ ଵݏ ,ଵଶݑ ൌ ଶ଴ݑ ൅ ଵܤ ൅ ଶݏ ,ଵଵݑ ൌ ଷܤ ൅ ଶଵݑଵଵݑ ൅  ;ଵ଴ݑ

ݒ݊݅ ൌ ሺ∆ଵ∆ଶ െ ∆଴∆ଷሻିଵ; 
ሺ1,3,0ሻ 

6 ݈ସ ൌ ݒ݊݅ ⋅ ሺ∆ଵ߳ଵ െ ∆ଷ߳଴ሻ, ݈ଷ ൌ ݒ݊݅ ⋅ ሺ∆ଶ߳଴ െ ∆଴߳ଵሻ,  
݈ଶ ൌ ଵଶ݈ଷݑ ൅ ଵ݈ସܣ ൅ ଵଶ, ݈ଵݒ ൌ ଵଵ݈ଷݑ ൅ ଷ݈ସܣ ൅   ,ଵଵݒ
݈଴ ൌ ଵ଴݈ଷݑ ൅ ଶ݈ସܣ ൅  ;ଵ଴ݒ

ሺ0,12,0ሻ 

7 Compute ࢛૜ሺ࢞ሻ ൌ ૜࢞ ൅ ૛࢞૜૛࢛ ൅ ࢞૜૚࢛ ൅  :૜૙࢛
ଷଶݑ ൌ 2݈ସ݈ଷ െ 1 െ ଷଵݑ ,଴ݏ ൌ 2݈ସ݈ଶ ൅ ݈ଷ

ଶ ൅ ݄ଶ݈ସ െ ଺݂ െ ଵݏ െ  ,଴ݏଷଶݑ
ଷ଴ݑ ൌ 2݈ସ݈ଵ ൅ 2݈ଷ݈ଶ ൅ ݄ଶ݈ଷ ൅ ݄ଵ݈ସ െ ହ݂ െ ଶݏ െ ଵݏଷଶݑ െ  ;଴ݏଷଵݑ

ሺ0,10,1ሻ 

ܮܷ 8 ൌ ଴ܮܷ ,ଷ଴݈ସݑ ൌ  ଷଵ݈ସ; ሺ0,2,0ሻݑ
9 Compute ࢜૜ሺ࢞ሻ ൌ ૛࢞૜૛࢜ ൅ ࢞૜૚࢜ ൅  :૜૙࢜

ଷଶݒ ൌ െሼݑଷଶ
ଶ ݈ସ െ ଴ܮܷ െ ଷଶ݈ଷݑ ൅ ݈ଶሽ,  

ଷଵݒ ൌ െሼݑଷଶܷܮ଴ െ ܮܷ െ ଷଵ݈ଷݑ ൅ ݈ଵሽ, ݒଷ଴ ൌ െሼݑଷଶܷܮ െ ଷ଴݈ଷݑ ൅ ݈଴ሽ;  

ሺ0,6,1ሻ 

Sum  ሺ1,44,4ሻ 
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ALGORITHM IV 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: ݕଶ ൌ

଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF 

COORDINATES: 8.  

Input Genus 3 HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ; 
݂ሺݔሻ ൌ ଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂; 
Divisor ܦଵ ൌ ሾݑଵሺݔሻ, ଶܦ ,ሻሿݔଵሺݒ ൌ ሾݑଶሺݔሻ,  ;ሻሿݔଶሺݒ
ሻݔଵሺݑ ൌ ଷݔ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅ ሻݔଵሺݒ ,ଵ଴ݑ ൌ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅  ,ଵ଴ݒ
ሻݔଶሺݑ ൌ ଶݔ ൅ ݔଶଵݑ ൅ ሻݔଵሺݒ ,ଶ଴ݑ ൌ ݔଶଵݒ ൅   ;ଶ଴ݒ

 

Output ܦଷ ൌ ሾݑଷሺݔሻ, ሻሿݔଷሺݒ ൌ ଵܦ ൅  ,ଶܦ
ሻݔଷሺݑ ൌ ଷݔ ൅ ଶݔଷଶݑ ൅ ݔଷଵݑ ൅ ሻݔଷሺݒ ,ଷ଴ݑ ൌ ଶݔଷଶݒ ൅ ݔଷଵݒ ൅  ;ଷ଴ݒ

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
1 ܷଶଵ ൌ ଶଵݑ

ଶ , ଵܷଶ ൌ ଵଶݑ
ଶ ଴ܤ , ൌ ଵܤ ,ଵଶݑଵଵݑ ൌ ଷܤ ,ଵଶݑଶଵݑ ൌ   ,ଵଶݑଶ଴ݑ

ସܤ ൌ    ;ଵଶݑଵ଴ݑ
ሺ0,4,2ሻ 

 

2 ∆଴ൌ ଶଵݑ ଵܷଶ െ ܷଶଵ െ ଴ܤ ൅ ଵ଴ݑ ൅ ଶଵܷଶଵݑ െ  ,ଵଵݑଵ଴ݑ2
∆ଵൌ െܤଵ ൅ ଵଵݑ ൅ ܷଶଵ െ ଶ଴, ∆ଶൌݑ ଶ଴ݑ ଵܷଶ െ   ,ସܤ
∆ଷൌ ଵ଴ݑ െ ଶଵݑଶ଴ݑ െ  ;ଷܤ

ሺ0,5,0ሻ 

3 ߳଴ ൌ ሾݑଶଵݒଶଵሿ െ ሾݒଵଵ െ ଶଵሿ, ߳ଵݒ ൌ ሾݑଶ଴ݒଵଶሿ െ ሾݒଵ଴ െ  ଶ଴ሿ;  ሺ0,2,0ሻݒ
ଵܣ 4 ൌ െሺ ଵܷଶ െ ଶܣ ,ଵଵሻݑ ൌ െܤସ, ܣଷ ൌ െሺܤ଴ െ  ଵ଴ሻ; ሺ0,0,0ሻݑ
଴ݏ 5 ൌ ଶଵݑ ൅ ଵݏ ,ଵଶݑ ൌ ଶ଴ݑ ൅ ଵܤ ൅ ଶݏ ,ଵଵݑ ൌ ଷܤ ൅ ଶଵݑଵଵݑ ൅  ;ଵ଴ݑ

ݒ݊݅ ൌ ሺ∆ଵ∆ଶ െ ∆଴∆ଷሻିଵ; 
ሺ1,3,0ሻ 

6 ݈ସ ൌ ݒ݊݅ ⋅ ሺ∆ଵ߳ଵ െ ∆ଷ߳଴ሻ, ݈ଷ ൌ ݒ݊݅ ⋅ ሺ∆ଶ߳଴ െ ∆଴߳ଵሻ,  
݈ଶ ൌ ଵଶ݈ଷݑ ൅ ଵ݈ସܣ ൅ ଵଶ, ݈ଵݒ ൌ ଵଵ݈ଷݑ ൅ ଷ݈ସܣ ൅   ,ଵଵݒ
݈଴ ൌ ଵ଴݈ଷݑ ൅ ଶ݈ସܣ ൅  ;ଵ଴ݒ

ሺ0,12,0ሻ 

7 Compute ࢛૜ሺ࢞ሻ ൌ ૜࢞ ൅ ૛࢞૜૛࢛ ൅ ࢞૜૚࢛ ൅  :૜૙࢛
ଷଶݑ ൌ 2݈ସ݈ଷ െ 1 െ ଷଵݑ ,଴ݏ ൌ 2݈ସ݈ଶ ൅ ݈ଷ

ଶ െ ଵݏ െ  ,଴ݏଷଶݑ
ଷ଴ݑ ൌ 2݈ସ݈ଵ ൅ 2݈ଷ݈ଶ െ ହ݂ െ ଶݏ െ ଵݏଷଶݑ െ  ;଴ݏଷଵݑ

ሺ0,7,1ሻ 

ܮܷ 8 ൌ ଴ܮܷ ,ଷ଴݈ସݑ ൌ  ଷଵ݈ସ; ሺ0,2,0ሻݑ
9 Compute ࢜૜ሺ࢞ሻ ൌ ૛࢞૜૛࢜ ൅ ࢞૜૚࢜ ൅  :૜૙࢜

ଷଶݒ ൌ െሼݑଷଶ
ଶ ݈ସ െ ଴ܮܷ െ ଷଶ݈ଷݑ ൅ ݈ଶሽ,  

ଷଵݒ ൌ െሼݑଷଶܷܮ଴ െ ܮܷ െ ଷଵ݈ଷݑ ൅ ݈ଵሽ, ݒଷ଴ ൌ െሼݑଷଶܷܮ െ ଷ଴݈ଷݑ ൅ ݈଴ሽ; 

ሺ0,6,1ሻ 

Sum  ሺ1,41,4ሻ 
 
 

 
 



Page 71 of 117 
 

5.3    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 4 
 
In this section we apply the same concept to develop a general addition explicit formulae algorithm for 

genus 3. The figure below is the graphical representation of the Jacobian variety curve and the hyper 

elliptic curve of genus 4. 

 

Figure 5.3: Hyper Elliptic Curve of genus 4 and Jacobian Variety Curve. 

 

Since the intersecting points between the Jacobian variety curve with the hyper elliptic curve sums up to 

zero. Therefore: 

 

ሾ ଵܲሿ ൅ ሾ ଶܲሿ ൅ ሾ ଷܲሿ ൅ ሾ ସܲሿ ൅ ሾܳଵሿ ൅ ሾܳଶሿ ൅ ሾܴଵሿ ൅ ሾܴଶሿ ൅ ሾܴଷሿ ൅ ሾܴସሿ ൌ 0. 

 ሾ ଵܲሿ ൅ ሾ ଶܲሿ ൅ ሾ ଷܲሿ ൅ ሾ ସܲሿ ൅ ሾܳଵሿ ൅ ሾܳଶሿ ൌ െሾܴଵሿ െ ሾܴଶሿ െ ሾܴଷሿ െ ሾܴସሿ 

ൌ ሾܴଵ
ᇱ ሿ ൅ ሾܴଶ

ᇱ ሿ ൅ ሾܴଷ
ᇱ ሿ ൅ ሾܴସ

ᇱ ሿ. 

 
5.3.1    Generating General Addition Explicit Formulae for HEC genus 4 

 

Just like in the previous section, the Cartesian of affine space points to individual divisor class group based 

on Mumford Representation. After the conversion we can obtain the equation for the Jacobian Variety 

curve. Here we denote the Jacobian curve as ݕ ൌ ݈ሺݔሻ.  

 

The divisor class group, ܦଵ for the point ଵܲ, ଶܲ, ଷܲ and ସܲ, for the point as shown below: 

 

ଵܦ ൌෑሺݔ െ ݔ௉ଵሻሺݔ െ ݔ௉ଶሻሺݔ െ ݔ௉ଷሻሺݔ െ ௉ସሻݔ െ 4 ஶܲ

ଶ

௥ୀଵ
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In Mumford form:  

 

ଵܦ ൌ ሾݑଵሺݔሻ, ሻሿݔଵሺݒ ൌ ሾݔସ ൅ ଷݔଵଷݑ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅ ,ଵ଴ݑ ଷݔଵଷݒ ൅ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅  ଵ଴ሿݒ

 

The divisor class group, ܦଶ for the point ܳଵ and ܳଶ, for the point as shown below: 

 

ଶܦ ൌෑ൫ݔ െ ݔொଵ൯൫ݔ െ ொଶ൯ݔ െ 2 ஶܲ

ଶ

௥ୀଵ

 

In Mumford form: 

 

ଶܦ ൌ ሾݑଶሺݔሻ, ሻሿݔଶሺݒ ൌ ሾݔଶ ൅ ݔଶଵݑ ൅ ,ଶ଴ݑ ݔଶଵݒ ൅  ଶ଴ሿݒ

 

The divisor class group, ܦଵ for the point ܴଵ, ܴଶ, ܴଷ and ܴସ, for the point as shown below: 

 

ଷܦ ൌෑሺݔ െ ݔோଵሻሺݔ െ ݔோଶሻሺݔ െ ݔோଷሻሺݔ െ ோସሻݔ െ 4 ஶܲ

ଶ

௥ୀଵ

 

In Mumford form: 

 

ଷܦ ൌ ሾݑଷሺݔሻ, ሻሿݔଷሺݒ ൌ ሾݔସ ൅ ଷݔଷଷݑ ൅ ଶݔଷଶݑ ൅ ݔଷଵݑ ൅ ,ଷ଴ݑ ଷݔଷଷݒ ൅ ଶݔଷଶݒ ൅ ݔଷଵݒ ൅  ଷ଴ሿݒ

 

From the figure 3 above we can assert the polynomial expression of ݈ሺݔሻ to be ݈ሺݔሻ ൌ ݈ହݔହ ൅ ݈ସݔସ ൅

݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. As shown in the previous section, here there are eight intersecting points with the 

hyper elliptic curve. At the intersecting points the y-coordinates are same. Therefore we can write, at the 

intersection points ݈ሺݔሻ ൌ ሻݔሻ or ݈ሺݔሺݒ െ ሻݔሺݒ ≡  ሻ since we have to perform polynomialݔሺݑ	݀݋݉	0

reduction.  

 

For the intersecting points ଵܲ, ଶܲ, ଷܲ and ସܲ, we can write it in the form of ݈ሺݔሻ െ ሻݔሺݒ ≡  .ሻݔሺݑ	݀݋݉	0

 

ሺሺ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݒଵଷݔଷ ൅ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅ ଵ଴ሻݒ

≡ 0	mod	ݔସ ൅ ଷݔଵଷݑ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅  ଵ଴ݑ
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Or, ሺሺ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ ≡ ሺݒଵଷݔଷ ൅ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅ ସݔ	mod	ଵ଴ሻݒ ൅ ଷݔଵଷݑ ൅

ଶݔଵଶݑ ൅ ݔଵଵݑ ൅  ଵ଴ݑ

 

For the intersecting points ܳଵ and ܳଶ, we can write it in the form of ݈ሺݔሻ െ ሻݔሺݒ ≡  .ሻݔሺݑ	݀݋݉	0

 

ሺሺ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݒଶଵݔ ൅ ଶ଴ሻݒ ≡ 0	mod	ݔଶ ൅ ݔଶଵݑ ൅  ଶ଴ݑ

 

Or, ሺ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ ≡ ሺݒଶଵݔ ൅ ଶݔ	mod	ଶ଴ሻݒ ൅ ݔଶଵݑ ൅  ଶ଴ݑ

 

By reducing the L.H.S with the polynomial expression ݔସ ൅ ଷݔଵଷݑ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅ ଶݔ ଵ଴  andݑ ൅

ݔଶଵݑ ൅   .ଶ଴  comparing with the R.H.S, we get six simultaneous equationsݑ

 
݈ହሺݑଵଷ

ଶ െ ଵଶሻݑ െ ݈ସݑଵଷ ൅ ݈ଷ ൌ  ଵଷݒ
 

EQN 1

݈ହሺݑଵଷݑଵଶ െ ଵଵሻݑ െ ݈ସݑଵଶ ൅ ݈ଶ ൌ  ଵଶݒ
 

EQN 2

݈ହሺݑଵଷݑଵଵ െ ଵ଴ሻݑ െ ݈ସݑଵଵ ൅ ݈ଵଵ ൌ  ଵଵݒ
 

EQN 3

݈ହሺݑଵଷݑଵଵሻ െ ݈ସݑଵ଴ ൅ ݈଴ ൌ  ଵ଴ݒ
 

EQN 4

݈ହሺݑଶଵ
ସ ൅ ଶ଴ݑ

ଶ െ ଶଵݑ3
ଶ ଶ଴ሻݑ ൅ ݈ସሺ2ݑଶଵݑଶ଴ െ ଶଵݑ

ଷ ሻ ൅ ݈ଷሺݑଶଵ
ଶ െ ଶ଴ሻݑ െ ݈ଶݑଶଵ ൅ ݈ଵ

ൌ  ଶଵݒ
 

EQN 5

݈ହሺݑଶଵ
ଷ ଶ଴ݑ െ ଶ଴ݑଶଵݑ2

ଶ ሻ ൅ ݈ସሺݑଶ଴
ଶ െ ଶଵݑ

ଶ ଶ଴ሻݑ ൅ ݈ଷሺݑଶଵݑଶ଴ሻ െ ݈ଶݑଶ଴ ൅ ݈଴ ൌ  ଶ଴ݒ EQN 6
 
As discussed before, we can introduce new variables to make the equation less tedious. The variable we 

choose is shown below to ease the computation: 

 
∆଴ൌ ଶଵݑ

ସ ൅ ଶ଴ݑ
ଶ െ ଶଵݑ3

ଶ  ଶ଴ݑ
 

∆ଵൌ ଶ଴ݑଶଵݑ2 െ ଶଵݑ
ଷ  ∆ଶൌ ଶଵݑ െ  ଶ଴ݑ

∆ଷൌ ଶଵݑ
ଷ ଶ଴ݑ െ ଶ଴ݑଶଵݑ2

ଶ  
 

∆ସൌ ଶ଴ݑ
ଶ െ ଶଵݑ

ଶ ଶ଴ ∆ହൌݑ  ଶ଴ݑଶଵݑ

߳௢ ൌ ଵଷݑ
ଶ െ  ଵଶݑ

 
߳ଵ ൌ ଵଶݑଵଷݑ െ ଵଵ ߳ଶݑ ൌ ଵଵݑଵଷݑ െ  ଵ଴ݑ
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߳ସ ൌ   ଵ଴ݑଵଷݑ

 We can re – write the EQNS to make it easier to solve: 
 

݈ହ߳௢ െ ݈ସݑଵଷ ൅ ݈ଷ ൌ  ଵଷݒ
 

EQN 1

݈ହ߳ଵ െ ݈ସݑଵଶ ൅ ݈ଶ ൌ  ଵଶݒ
 

EQN 2

݈ହ߳ଶ െ ݈ସݑଵଵ ൅ ݈ଵଵ ൌ  ଵଵݒ
 

EQN 3

݈ହ߳ଷ െ ݈ସݑଵ଴ ൅ ݈଴ ൌ  ଵ଴ݒ
 

EQN 4

∆଴݈ହ ൅ ∆ଵ݈ସ ൅ ∆ଶ݈ଷ െ ݈ଶݑଶଵ ൅ ݈ଵ ൌ  ଶଵݒ
 

EQN 5

݈ହ∆ଷ ൅ ݈ସ∆ସ ൅ ݈ଷ∆ହ െ ݈ଶݑଶ଴ ൅ ݈଴ ൌ  ଶ଴ݒ EQN 6
 
Subtracting the EQN 6 from EQN 5: 
 

ሺݑଶ଴∆଴ െ ଶଵ∆ଷሻ݈ହݑ ൅ ሺݑଶ଴∆ଵ െ ଶଵ∆ସሻ݈ସݑ ൅ ሺݑଶ଴∆ଶ െ ଶଵ∆ଷሻ݈ଷݑ ൅ ଶ଴݈ଵݑ െ ଶଵ݈଴ݑ
ൌ ଶଵݒଶ଴ݑ െ  ଶ଴ݒଶଵݑ

EQN 7

 
Adding the EQN 7 and EQN 4: 
 

ሺݑଶ଴∆଴ െ ଶଵ∆ଷݑ ൅ ଶଵ߳ଷሻ݈ହݑ ൅ ሺݑଶ଴∆ଵ െ ଶଵ∆ସݑ ൅ ଶ଴ሻ݈ସݑଶଵݑ ൅ ሺݑଶ଴∆ଶ െ ଶଵ∆ହሻ݈ଷݑ
൅ ଶ଴݈ଵݑ ൌ ଶଵݒଶ଴ݑ െ ଶ଴ݒଶଵݑ ൅  ଵ଴ݒଶଵݑ

EQN 8

 
Subtracting the EQN 3 from EQN 8: 
 

ሺݑଶ଴∆଴ െ ଶଵ∆ଷݑ ൅ ଶଵ߳ଷݑ െ ଶ଴߳ଶሻ݈ହݑ ൅ ሺݑଶ଴∆ଵ െ ଶଵ∆ସݑ െ ଵ଴ݑଶଵݑ ൅ ଶ଴ሻ݈ସݑଵଵݑ
൅ ሺݑଶ଴∆ଶ െ ଶଵ∆ହሻ݈ଷݑ ൌ ଶ଴ݒଶଵሺെݑ െ  ଵ଴ሻݒ

EQN 9

 
As discussed before, we can introduce new variables to make the equation less tedious. The variable we 

choose is shown below to ease the computation: 

 
଴ܤ ൌ ଶ଴∆଴ݑ െ ଶଵ∆ଷݑ ൅ ଶଵ߳ଷݑ െ  ଶ଴߳ଶݑ

 
ଵܤ ൌ ଶ଴∆ଵݑ െ ଶଵ∆ସݑ െ ଵ଴ݑଶଵݑ ൅  ଶ଴ݑଵଵݑ

 
ଶܤ ൌ ଶ଴∆ଶݑ െ  ଶଵ∆ହݑ
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Subtracting the EQN 1 from EQN 9: 

 

ሺܤ଴ െ ଶ߳଴ሻ݈ହܤ ൅ ሺܤଵ ൅ ଶሻ݈ସܤଵଷݑ ൌ ଶ଴ݒଶଵሺെݑ െ ଵ଴ሻݒ െ ଵଷ EQN 10ݒଶܤ
 

We can simplify the EQN 10 by introducing new variables, as shown below: 

 

ଷܥ ൌ ଴ܤ െ  ଶ߳଴ܤ

ସܥ ൌ ଵܤ ൅  ଶܤଷݑ

ହܥ ൌ ଶ଴ݒଶଵሺെݑ െ ଵ଴ሻݒ െ  ଵଷݒଶܤ

 

ଷ݈ହܥ ൅ ସ݈ସܥ ൌ ହ EQN 10ܥ
 

Similarly, we can represent the EQN 7 in a similar manner as shown below: 

 

ଷܤ ൌ ଶ଴∆଴ݑ െ  ଶଵ∆ଷݑ

ସܤ ൌ ଶ଴∆ଵݑ െ  ଶଵ∆ସݑ

ହܤ ൌ ଶ଴∆ଶݑ െ  ଶଵ∆ଷݑ

 

ଷ݈ହܤ ൅ ସ݈ସܤ ൅ ହ݈ଷܤ ൅ ଶ଴݈ଵݑ െ ଶଵ݈଴ݑ ൌ ଶଵݒଶ଴ݑ െ ଶ଴ EQN 7ݒଶଵݑ
 

The table below shows how the consecutive equations are formed by addition, subtraction and elimination: 

 

EQN 7 + EQN 4 ሺݑଶଵ߳ଷ ൅ ଷሻ݈ହܤ ൅ ሺെݑଶଵݑଵ଴ ൅ ସሻ݈ସܤ ൅ ଷ݈ଷܤ ൅ ଶ଴݈ଵݑ ൌ ଶଵݒଶ଴ݑ െ

ଶ଴ݒଶଵݑ ൅  .ଵ଴ݒଶଵݑ

EQN 11

EQN 11 - EQN 3 ሺݑଶଵ߳ଷ ൅ ଷܤ െ ଶ଴߳ଶሻ݈ହݑ ൅ ሺݑଶଵݑଵ଴ െ ଵ଴ݑଶଵݑ ൅ ସሻ݈ସܤ ൅ ହ݈ଷܤ ൌ

ଶଵݒଶ଴ݑ െ ଶ଴ݒଶଵݑ ൅ ଵ଴ݒଶଵݑ െ  .ଵଵݒଶ଴ݑ

EQN 12

EQN 12 - EQN 1 ሺݑଶଵ߳ଷ ൅ ଷܤ െ ଶ଴߳ଶݑ െ ߳଴ܤହሻ݈ହ ൅ ሺݑଶ଴ݑଵଵ െ ଵ଴ݑଶଵݑ ൅ ସܤ ൅

ହሻ݈ସܤଵଶݑ ൌ ଶଵݒଶ଴ݑ െ ଶ଴ݒଶଵݑ ൅ ଵ଴ݒଶଵݑ െ ଵଵݒଶ଴ݑ െ  .ହܤଵଷݒ

EQN 13

Similarly, we can represent the EQN 13 in a similar manner as shown below: 

 

଴ܥ ൌ ଶଵ߳ଷݑ ൅ ଷܤ െ ଶ଴߳ଶݑ െ ߳଴ܤହ 
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ଵܥ ൌ ଵଵݑଶ଴ݑ െ ଵ଴ݑଶଵݑ ൅ ସܤ ൅  ହܤଵଶݑ

ଶܥ ൌ ଶଵݒଶ଴ݑ െ ଶ଴ݒଶଵݑ ൅ ଵ଴ݒଶଵݑ െ ଵଵݒଶ଴ݑ െ  ହܤଵଷݒ

 
଴݈ହܥ ൅ ଵ݈ସܥ ൌ ଶ EQN 13ܥ

ଷ݈ହܥ ൅ ସ݈ସܥ ൌ ହ EQN 10ܥ

 
Solving the equations simultaneously, we will get the expression for ݈଴, ݈ଵ, ݈ଶ, ݈ଷ, ݈ସ and ݈ହ, as shown 
below: 
 

ݒ݊݅ ൌ ሺܥସܥଶ െ  ଵሻିଵܥଷܥ
 

݈ହ ൌ ݒ݊݅ ⋅ ሺܥସܥଶ െ ଵሻ ݈଴ܥହܥ ൌ ଵ଴ݒ ൅ ଵ଴݈ସݑ െ ߳ଷ݈ହ 
 

݈ସ ൌ ݒ݊݅ ⋅ ሺܥହܥ଴ െ  ଷሻܥଷܥ
 

݈ଷ ൌ ଵଷݒ ൅ ଵଷ݈ସݑ െ ߳଴݈ହ  

݈ଶ ൌ ଵଶݒ ൅ ଵଶ݈ସݑ െ ߳ଵ݈ହ 
 

݈ଵ ൌ ଵଵݒ ൅ ଵଵ݈ସݑ െ ߳ଵ݈ହ  

 
By using the same methodology used in the earlier sections, we find: 
 

ଷଷݑ ൌ ሺହ,ସሻܮ െ ଺ܰ െ 1 

 
ଷଶݑ ൌ ሺହ,ଷሻܮ ൅ ݈ସ

ଶ െ ଷଷݑ ହܰ െ ସܰ 

 
ଷଵݑ ൌ ሺହ,ଶሻܮ ൅ ሺହ,ଷሻܮ ൅ ሺସ,ଷሻܮ െ ସ݂ െ ଷଶݑ ହܰ െ ଷଷݑ ସܰ െ ଷܰ 

 
ଷ଴ݑ ൌ ሺହ,ଵሻܮ ൅ ሺସ,ଶሻܮ ൅ ݈ଷ

ଶ െ ଺݂ െ ଷଵݑ ହܰ െ ଷଶݑ ସܰ െ ଷଷݑ ଷܰ െ ଶܰ 

 
where the variables are detailed below: 
 

଺ܰ ൌ 1 ହܰ ൌ ଶଵݑ ൅ ଵଷ ସܰݑ ൌ ଶ଴ݑ ൅ ଵଷݑଶଵݑ ൅  ଵଶݑ

ଷܰ ൌ ଵଷݑଶ଴ݑ ൅ ଵଶݑଶଵݑ ൅ ଵଵ ଶܰݑ ൌ ଵଶݑଶ଴ݑ ൅ ଵଵݑଶଵݑ ൅ ሺହ,ଷሻܮ ଵ଴ݑ ൌ 2݈ହ݈ଷ 

ሺହ,ସሻܮ ൌ 2݈ହ݈ସ ܮሺହ,ଶሻ ൌ 2݈ହ݈ଶ ܮሺହ,ଵሻ ൌ 2݈ହ݈ଵ 

ሺସ,ଶሻܮ ൌ 2݈ସ݈ଶ ܮሺସ,ଷሻ ൌ ݈ସ݈ଷ  

  
Similarly, we can get the result for ݒଷଶ, ݒଷଵ and ݒଷ଴ by solving the equation: 

 

݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ ≡ 
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≡ ሺݒଷଷݔଷ ൅ ଶݔଷଶݒ ൅ ݔଷଵݒ ൅ ସݔ	mod	ଷ଴ሻݒ ൅ ଷݔଷଷݑ ൅ ଶݔଷଶݑ ൅ ݔଷଵݑ ൅  ଷ଴ݑ

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 

 

ଷଷݒ ൌ ݈ହሺݑଷଷ
ଶ െ ଷଶሻݑ ൅ ݈ସሺെݑଷଷሻ ൅ ݈ଷ 

 

ଷଶݒ ൌ ݈ହሺݑଷଷݑଷଶ െ ଷଵሻݑ ൅ ݈ସሺെݑଷଶሻ ൅ ݈ଶ 

 

ଷଵݒ ൌ ݈ହሺݑଷଷݑଷଵ െ ଷ଴ሻݑ ൅ ݈ସሺെݑଷଵሻ ൅ ݈ଵ 

 

ଷଶݒ ൌ ݈ହሺݑଷଷݑଷ଴ሻ ൅ ݈ସሺെݑଷ଴ሻ ൅ ݈଴ 
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5.3.2   Computational Complexity of General Addition Explicit Formula for HEC of  ࢍ ൌ ૝ 

 

In the section above, we have proposed and derived a General Explicit Formula for Addition on a  HEC 

of genus = 4. For practical purpose one can eliminate the function of ݄ሺݔሻ and the co-efficient of ସ݂ from 

the function ݂ሺݔሻ. The computational complexity for the General Addition Explicit Formulae is defined 

as (no. of Inverses, no. of Multiplication, no. of Squaring). 

 
Finite 
Field 

Curve Properties  Cost  

Inverses (I) Multiplication (M) Squaring (s) 

ॲ௤ ݄ሺݔሻ, ݂ሺݔሻ 1 74 9 

ॲ௤ ݄ሺݔሻ ൌ 0 1 71 9 

 
Table 5.6: Complexity comparison between the explicit formulae for HEC of 

genus 4 for different curve property.  

 

5.3.3    Comparison of proposed explicit formulae and existing (Addition) for HEC ࢍ ൌ ૝. 

 

The proposed work is compared with the existing addition for the HEC for genus 4 has been compared. 

The table below shows the list of complexity comparison. 

 

Previous Work Finite Field Cost Improvement 
Percentage (%)Inverse 

(I) 
   Multiplication        Squaring 
           (M)                      (S) 

Cantor [23] ॲ௤ 6 386 M/S 100 

Nagao [23] ॲ௤ 2 289 M/S 135 

C. Paar [33] ॲ௤ 2            160                        4 160 

This work ॲ௤ 1              71                        9 181 

 
Table 5.7: Comparison between the explicit formulas for (genus = 4) curves over 	

ॲ௤ of previous work and the present work. 
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ALGORITHM V 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: ݕଶ ൅

ሺ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴ሻݕ ൌ ଽݔ ൅ ଼݂ ଼ݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE 

GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF COORDINATES: 10 

Input Genus 4 HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ; 
݄ሺݔሻ ൌ ݄ଶݔଶ ൅ ݄ଵݔ ൅ ݄଴;  
݂ሺݔሻ ൌ ଽݔ ൅ ଼݂ ଼ݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅

ଵ݂ݔ ൅ ଴݂; 
Divisor ܦଵ ൌ ሾݑଵሺݔሻ, ଶܦ ,ሻሿݔଵሺݒ ൌ ሾݑଶሺݔሻ,  ;ሻሿݔଶሺݒ
ሻݔଵሺݑ ൌ ସݔ ൅ ଷݔଵଷݑ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅   ,ଵ଴ݑ
ሻݔଵሺݒ ൌ ଷݔଵଷݒ ൅ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅  ;ଵ଴ݒ
ሻݔଶሺݑ ൌ ଶݔ ൅ ݔଶଵݑ ൅ ሻݔଵሺݒ ,ଶ଴ݑ ൌ ݔଶଵݒ ൅   ;ଶ଴ݒ

 

Output ܦଷ ൌ ሾݑଷሺݔሻ, ሻሿݔଷሺݒ ൌ ଵܦ ൅  ,ଶܦ
ሻݔଷሺݑ ൌ ସݔ ൅ ଷݔଷଷݑ ൅ ଶݔଷଶݑ ൅ ݔଷଵݑ ൅   ,ଷ଴ݑ
ሻݔଷሺݒ ൌ ଷݔଷଷݒ ൅ ଶݔଷଶݒ ൅ ݔଷଵݒ ൅  ;ଷ଴ݒ

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
1  ܷଶଵ ൌ ଶଵݑ

ଶ , ܷଶ଴ ൌ ଶ଴ݑ
ଶ , ܷଶଵଶ଴ ൌ  ଶ଴; ሺ0,1,2ሻݑଶଵݑ

2 ∆଴ൌ ܷଶଵ
ଶ ൅ ܷଶ଴ െ 3ܷଶଵݑଶ଴, ∆ଵൌ 2ܷଶଵଶ଴ െ ܷଶଵଶ଴ݑଶଵ, ∆ଶൌ ଶଵݑ െ  ,ଶ଴ݑ

∆ଷൌ ܷଶଵܷଶଵଶ଴ െ 2ܷଶ଴ݑଶଵ, ∆ସൌ ܷଶ଴ െ ܷଶଵݑଶ଴, ∆ହൌ ܷଶଵଶ଴;  
ሺ0,5,1ሻ 

3 ߳௢ ൌ ଵଷݑ
ଶ െ ଵଶ, ߳ଵݑ ൌ ଵଶݑଵଷݑ െ ଵଵ, ߳ଶݑ ൌ ଵଵݑଵଷݑ െ ଵ଴, ߳ସݑ ൌ  ଵ଴; ሺ0,3,1ሻݑଵଷݑ

଴ܯ 4 ൌ ଵܯ ,ଶ଴∆଴ݑ ൌ ଶܯ ,ଶ଴∆ଵݑ ൌ ଷܯ ,ଶ଴∆ଶݑ ൌ ସܯ ,ଶଵ∆ଷݑ ൌ  ,ଶଵ∆ସݑ
ହܯ ൌ  ;ଶଵ∆ହݑ

ሺ0,6,0ሻ 

଴ܦ 5 ൌ ଶଵ߳ଷݑ െ ଵܦ ,ଶ଴߳ଶݑ ൌ െݑଶଵݑଵ଴ െ ଶܦ ,ଶ଴ݑଵଵݑ ൌ   ,ଶ଴ݒଶଵݑ
ଷܦ ൌ   ;ଵ଴ݒଶଵݑ

ሺ0,4,0ሻ 

଴ܤ 6 ൌ ଴ܯ െܯଷ ൅ ଵܤ ,଴ܦ ൌ ଵܯ െܯସ ൅ ଶܤ ,ଵܦ ൌ ଶܯ െܯହ, ܤଷ ൌ ଴ܯ െ
ସܤ ,ଷܯ ൌ ଵܯ െܯସ, ܤହ ൌ ଶܯ െܯଷ;   

ሺ0,0,0ሻ 

଴ܥ 7 ൌ ଴ܦ ൅ ଷܤ െ ߳଴ܤହ, ܥଵ ൌ ଵܦ ൅ ସܤ െ ଶܥ ,ହܤଶݑ ൌ ଶଵݒଶ଴ݑ െ ଶܦ ൅
ଷܦ െ ଵଵݒଶ଴ݑ െ ଷܥ ,ହܤଵଷݒ ൌ ଴ܤ െ ߳଴ܤଶ, ܥସ ൌ ଵܤ ൅   ,ଶܤଵଷݑ
ହܥ ൌ െܦଶ െ ଷܦ െ   ;ଶܤଵଷݒ

ሺ0,8,0ሻ 

ݒ݊݅ 8 ൌ ሺܥସܥ଴ െ  ଵሻିଵ;  ሺ1,2,0ሻܥଷܥ
9 ݈ହ ൌ ݒ݊݅ ⋅ ሺܥସܥଶ െ ଵሻ, ݈ସܥହܥ ൌ ݒ݊݅ ⋅ ሺܥହܥ଴ െ   ,ଶሻܥଷܥ

݈ଷ ൌ ଷݒ ൅ ଷ݈ସݑ െ ߳଴݈ହ, ݈ଶ ൌ ଶݒ ൅ ଶ݈ସݑ െ ߳ଵ݈ହ, ݈ଵ ൌ ଵݒ ൅ ଵ݈ସݑ െ ߳ଶ݈ହ, 
݈଴ ൌ ଴ݒ ൅ ଴݈ସݑ െ ߳ଷ݈ହ;   

ሺ0,14,0ሻ 

10 ଺ܰ ൌ 1, ହܰ ൌ ଶଵݑ ൅ ଵଷ, ସܰݑ ൌ ଶ଴ݑ ൅ ଵଷݑଶଵݑ ൅  ,ଵଶݑ

ଷܰ ൌ ଵଷݑଶ଴ݑ ൅ ଵଶݑଶଵݑ ൅ ଵଵ, ଶܰݑ ൌ ଵଶݑଶ଴ݑ ൅ ଵଵݑଶଵݑ ൅   ;ଵ଴ݑ
ሺ0,5,0ሻ 
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ሺହ,ଷሻܮ 11 ൌ 2݈ହ݈ଷ, ܮሺହ,ସሻ ൌ 2݈ହ݈ସ, ܮሺହ,ଶሻ ൌ 2݈ହ݈ଶ, ܮሺହ,ଵሻ ൌ 2݈ହ݈ଵ, 

ሺସ,ଶሻܮ ൌ 2݈ସ݈ଶ, ܮሺସ,ଷሻ ൌ ݈ସ݈ଷ;  

ሺ0,6,2ሻ 

12 Compute ࢛૜ሺ࢞ሻ ൌ ૝࢞ ൅ ૜࢞૜૜࢛ ൅ ૛࢞૜૛࢛ ൅ ࢞૜૚࢛ ൅  :૜૙࢛
ଷଷݑ ൌ ሺହ,ସሻܮ െ ଺ܰ െ ଷଶݑ ,1 ൌ ሺହ,ଷሻܮ ൅ ݈ସ

ଶ െ ଼݂ െ ଷଷݑ ହܰ െ ସܰ,  

ଷଵݑ ൌ ሺହ,ଶሻܮ ൅ ሺହ,ଷሻܮ ൅ ሺସ,ଷሻܮ ൅ ݄ଶ݈ହ െ ସ݂ െ ଷଶݑ ହܰ െ ଷଷݑ ସܰ െ ଷܰ, 

ଷ଴ݑ ൌ ሺହ,ଵሻܮ ൅ ሺସ,ଶሻܮ ൅ ݈ଷ
ଶ ൅ ݄ଶ݈ସ ൅ ݄ଵ݈ହ െ ଺݂ െ ଷଵݑ ହܰ െ ଷଶݑ ସܰ െ

ଷଷݑ ଷܰ െ ଶܰ; 

ሺ0,9,2ሻ 

13 Compute ࢜૜ሺ࢞ሻ ൌ ૜࢞૜૜࢜ ൅ ૛࢞૜૛࢜ ൅ ࢞૜૚࢜ ൅  :૜૙࢜
ଷଷݒ ൌ ݈ହሺݑଷଷ

ଶ െ ଷଶሻݑ ൅ ݈ସሺെݑଷଷሻ ൅ ݈ଷ, 
ଷଶݒ ൌ ݈ହሺݑଷଷݑଷଶ െ ଷଵሻݑ ൅ ݈ସሺെݑଷଶሻ ൅ ݈ଶ,  
ଷଵݒ ൌ ݈ହሺݑଷଷݑଷଵ െ ଷ଴ሻݑ ൅ ݈ସሺെݑଷଵሻ ൅ ݈ଵ,  
ଷଶݒ ൌ ݈ହሺݑଷଷݑଷ଴ሻ ൅ ݈ସሺെݑଷ଴ሻ ൅ ݈଴; 

ሺ0,11,1ሻ 

Sum  (1,74, 9) 
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ALGORITHM VI 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: ݕଶ ൌ

ଽݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. 

NUMBER OF COORDINATES: 10 

Input Genus 4 HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ; 
݂ሺݔሻ ൌ ଽݔ ൅ ଼݂ ଼ݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅

ଵ݂ݔ ൅ ଴݂; 
Divisor ܦଵ ൌ ሾݑଵሺݔሻ, ଶܦ ,ሻሿݔଵሺݒ ൌ ሾݑଶሺݔሻ,  ;ሻሿݔଶሺݒ
ሻݔଵሺݑ ൌ ସݔ ൅ ଷݔଵଷݑ ൅ ଶݔଵଶݑ ൅ ݔଵଵݑ ൅   ,ଵ଴ݑ
ሻݔଵሺݒ ൌ ଷݔଵଷݒ ൅ ଶݔଵଶݒ ൅ ݔଵଵݒ ൅  ;ଵ଴ݒ
ሻݔଶሺݑ ൌ ଶݔ ൅ ݔଶଵݑ ൅ ሻݔଵሺݒ ,ଶ଴ݑ ൌ ݔଶଵݒ ൅   ;ଶ଴ݒ

 

Output ܦଷ ൌ ሾݑଷሺݔሻ, ሻሿݔଷሺݒ ൌ ଵܦ ൅  ,ଶܦ
ሻݔଷሺݑ ൌ ସݔ ൅ ଷݔଷଷݑ ൅ ଶݔଷଶݑ ൅ ݔଷଵݑ ൅   ,ଷ଴ݑ
ሻݔଷሺݒ ൌ ଷݔଷଷݒ ൅ ଶݔଷଶݒ ൅ ݔଷଵݒ ൅  ;ଷ଴ݒ

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
1  ܷଶଵ ൌ ଶଵݑ

ଶ , ܷଶ଴ ൌ ଶ଴ݑ
ଶ , ܷଶଵଶ଴ ൌ  ଶ଴; ሺ0,1,2ሻݑଶଵݑ

2 ∆଴ൌ ܷଶଵ
ଶ ൅ ܷଶ଴ െ 3ܷଶଵݑଶ଴, ∆ଵൌ 2ܷଶଵଶ଴ െ ܷଶଵଶ଴ݑଶଵ, ∆ଶൌ ଶଵݑ െ  ,ଶ଴ݑ

∆ଷൌ ܷଶଵܷଶଵଶ଴ െ 2ܷଶ଴ݑଶଵ, ∆ସൌ ܷଶ଴ െ ܷଶଵݑଶ଴, ∆ହൌ ܷଶଵଶ଴;  
ሺ0,5,1ሻ 

3 ߳௢ ൌ ଵଷݑ
ଶ െ ଵଶ, ߳ଵݑ ൌ ଵଶݑଵଷݑ െ ଵଵ, ߳ଶݑ ൌ ଵଵݑଵଷݑ െ ଵ଴, ߳ସݑ ൌ  ଵ଴; ሺ0,3,1ሻݑଵଷݑ

଴ܯ 4 ൌ ଵܯ ,ଶ଴∆଴ݑ ൌ ଶܯ ,ଶ଴∆ଵݑ ൌ ଷܯ ,ଶ଴∆ଶݑ ൌ ସܯ ,ଶଵ∆ଷݑ ൌ  ,ଶଵ∆ସݑ
ହܯ ൌ  ;ଶଵ∆ହݑ

ሺ0,6,0ሻ 

଴ܦ 5 ൌ ଶଵ߳ଷݑ െ ଵܦ ,ଶ଴߳ଶݑ ൌ െݑଶଵݑଵ଴ െ ଶܦ ,ଶ଴ݑଵଵݑ ൌ   ,ଶ଴ݒଶଵݑ
ଷܦ ൌ   ;ଵ଴ݒଶଵݑ

ሺ0,4,0ሻ 

଴ܤ 6 ൌ ଴ܯ െܯଷ ൅ ଵܤ ,଴ܦ ൌ ଵܯ െܯସ ൅ ଶܤ ,ଵܦ ൌ ଶܯ െܯହ, ܤଷ ൌ ଴ܯ െ
ସܤ ,ଷܯ ൌ ଵܯ െܯସ, ܤହ ൌ ଶܯ െܯଷ;   

ሺ0,0,0ሻ 

଴ܥ 7 ൌ ଴ܦ ൅ ଷܤ െ ߳଴ܤହ, ܥଵ ൌ ଵܦ ൅ ସܤ െ ଶܥ ,ହܤଶݑ ൌ ଶଵݒଶ଴ݑ െ ଶܦ ൅
ଷܦ െ ଵଵݒଶ଴ݑ െ ଷܥ ,ହܤଵଷݒ ൌ ଴ܤ െ ߳଴ܤଶ, ܥସ ൌ ଵܤ ൅   ,ଶܤଵଷݑ
ହܥ ൌ െܦଶ െ ଷܦ െ   ;ଶܤଵଷݒ

ሺ0,8,0ሻ 

ݒ݊݅ 8 ൌ ሺܥସܥ଴ െ  ଵሻିଵ;  ሺ1,2,0ሻܥଷܥ
9 ݈ହ ൌ ݒ݊݅ ⋅ ሺܥସܥଶ െ ଵሻ, ݈ସܥହܥ ൌ ݒ݊݅ ⋅ ሺܥହܥ଴ െ   ,ଶሻܥଷܥ

݈ଷ ൌ ଷݒ ൅ ଷ݈ସݑ െ ߳଴݈ହ, ݈ଶ ൌ ଶݒ ൅ ଶ݈ସݑ െ ߳ଵ݈ହ, ݈ଵ ൌ ଵݒ ൅ ଵ݈ସݑ െ ߳ଶ݈ହ, 
݈଴ ൌ ଴ݒ ൅ ଴݈ସݑ െ ߳ଷ݈ହ;   

ሺ0,14,0ሻ 

10 ଺ܰ ൌ 1, ହܰ ൌ ଶଵݑ ൅ ଵଷ, ସܰݑ ൌ ଶ଴ݑ ൅ ଵଷݑଶଵݑ ൅  ,ଵଶݑ

ଷܰ ൌ ଵଷݑଶ଴ݑ ൅ ଵଶݑଶଵݑ ൅ ଵଵ, ଶܰݑ ൌ ଵଶݑଶ଴ݑ ൅ ଵଵݑଶଵݑ ൅   ;ଵ଴ݑ
ሺ0,5,0ሻ 
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ሺହ,ଷሻܮ 11 ൌ 2݈ହ݈ଷ, ܮሺହ,ସሻ ൌ 2݈ହ݈ସ, ܮሺହ,ଶሻ ൌ 2݈ହ݈ଶ, ܮሺହ,ଵሻ ൌ 2݈ହ݈ଵ, 

ሺସ,ଶሻܮ ൌ 2݈ସ݈ଶ, ܮሺସ,ଷሻ ൌ ݈ସ݈ଷ;  

ሺ0,6,2ሻ 

12 Compute ࢛૜ሺ࢞ሻ ൌ ૝࢞ ൅ ૜࢞૜૜࢛ ൅ ૛࢞૜૛࢛ ൅ ࢞૜૚࢛ ൅  :૜૙࢛
ଷଷݑ ൌ ሺହ,ସሻܮ െ ଺ܰ െ ଷଶݑ ,1 ൌ ሺହ,ଷሻܮ ൅ ݈ସ

ଶ െ ଷଷݑ ହܰ െ ସܰ,  

ଷଵݑ ൌ ሺହ,ଶሻܮ ൅ ሺହ,ଷሻܮ ൅ ሺସ,ଷሻܮ െ ସ݂ െ ଷଶݑ ହܰ െ ଷଷݑ ସܰ െ ଷܰ, 

ଷ଴ݑ ൌ ሺହ,ଵሻܮ ൅ ሺସ,ଶሻܮ ൅ ݈ଷ
ଶ െ ଺݂ െ ଷଵݑ ହܰ െ ଷଶݑ ସܰ െ ଷଷݑ ଷܰ െ ଶܰ; 

ሺ0,6,2ሻ 

13 Compute ࢜૜ሺ࢞ሻ ൌ ૜࢞૜૜࢜ ൅ ૛࢞૜૛࢜ ൅ ࢞૜૚࢜ ൅  :૜૙࢜
ଷଷݒ ൌ ݈ହሺݑଷଷ

ଶ െ ଷଶሻݑ ൅ ݈ସሺെݑଷଷሻ ൅ ݈ଷ, 
ଷଶݒ ൌ ݈ହሺݑଷଷݑଷଶ െ ଷଵሻݑ ൅ ݈ସሺെݑଷଶሻ ൅ ݈ଶ,  
ଷଵݒ ൌ ݈ହሺݑଷଷݑଷଵ െ ଷ଴ሻݑ ൅ ݈ସሺെݑଷଵሻ ൅ ݈ଵ,  
ଷଶݒ ൌ ݈ହሺݑଷଷݑଷ଴ሻ ൅ ݈ସሺെݑଷ଴ሻ ൅ ݈଴; 

ሺ0,11,1ሻ 

Sum  (1,71, 9) 
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5.4    Explicit Formulae (Doubling) for HEC of genus 2 

As discussed in the previous sections that we can apply the group law operations in the Jacobian and we 

can generate explicit formulae for the hyper elliptic curve of genus 2, 3 and 4 from the intersecting points. 

Similar to the elliptic curve tangent and chord method, we can also generate doubling explicit formulae 

for HECs. The figure below is the graphical representation of the Jacobian variety curve and the hyper 

elliptic curve of genus 2. 

 

Figure 5.4: Hyper Elliptic Curve of genus 2 as it touch the Jacobian variety curve. 

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero. 

Therefore: 

ሾ ଵܲሿ ൅ ሾ ଵܲሿ ൅ ሾܳଵሿ ൅ ሾܳଵሿ ൅ ሾܴଵሿ ൅ ሾܴଶሿ ൌ 0. 

 

2ሾ ଵܲሿ ൅ 2ሾܳଵሿ ൌ െሾܴଵሿ െ ሾܴଶሿ ൌ ሾܴଵ
ᇱ ሿ ൅ ሾܴଶ

ᇱ ሿ 

 

The Cartesian points or the affine space points ଵܲ and ܳଵ could be transformed to individual divisor class 

group based on Mumford Representation, which is to be discussed in a separate section. 

 

5.4.1    Generating Doubling Explicit Formulae for HEC of genus 2 

 

Let’s consider a general Hyper Elliptic Curve ܥ of genus ݃ ൌ 2 over the finite field ॲ௤:  

 

HEC: ݕଶ ൌ ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 
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Since, we will be working with this particular expression	ሾ ଵܲሿ ൅ ሾ ଵܲሿ ൅ ሾܳଵሿ ൅ ሾܳଵሿ ൅ ሾܴଵሿ ൅ ሾܴଶሿ ൌ 0. 

We can convert the coordinate ሾ ଵܲሿ and ሾܳଵሿ to polynomial expression using Mumford. 

 

The divisor class group, ܦ for the point ሾ ଵܲሿ, ሾܳଵሿ and for the point ሾܴଵሿ, ሾܴଵሿ is shown below: 

 

ܦ ൌෑሺݔ െ ݔ௉ଵሻ൫ݔ െ ொଶ൯ݔ െ 2 ஶܲ

ଶ

௥ୀଵ

ൌ ሾݔଶ ൅ ݔଵݑ ൅ ,଴ݑ ݔଵݒ ൅  ଴ሿݒ

 

ᇱܦ ൌෑሺݔ െ ݔோଵሻሺݔ െ ோଶሻݔ െ 2 ஶܲ

ଶ

௥ୀଵ

ൌ ሾݔଶ ൅ ଵݑ
ᇱ ݔ ൅ ଴ݑ

ᇱ , ଵݒ
ᇱݔ ൅ ଴ݒ

ᇱ ሿ 

 

From the figure 4 above we can assert the polynomial expression of ݈ሺݔሻ to be ݈ሺݔሻ ൌ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅

݈ଵݔ ൅ ݈଴. The Jacobian curve ݕ ൌ ݈ሺݔሻ is a cubic function since we can see in the graph that the function 

has two extreme points and intersecting with the hyper elliptic curve with four Cartesian points.  

 

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points 

݈ሺݔሻ ൌ ሻݔሻ or ݈ሺݔሺݒ െ ሻݔሺݒ ≡   .ሻ since we have to perform polynomial reductionݔሺݑ	݀݋݉	0

 

For the intersecting points ሾ ଵܲሿ and ሾܳଵሿ, we can write it in the form of ݈ሺݔሻ െ ሻݔሺݒ ≡  .ሻݔሺݑ	݀݋݉	0

 

ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݒଵݔ ൅ ଴ሻݒ ≡ 0	mod	ݔଶ ൅ ݔଵݑ ൅  ଴ݑ

 

Or, ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ ≡ ሺݒଵݔ ൅ ଶݔ	mod	଴ሻݒ ൅ ݔଵݑ ൅  ଴ݑ

 

By reducing the L.H.S with the polynomial expression ݔଶ ൅ ݔଵݑ ൅  ଴ and comparing with the R.H.S, weݑ

get two equations.  

 
ሺݑଵ

ଶ െ ଴ሻ݈ଷݑ ൅ ሺെݑଵሻ݈ଶ ൅ ݈ଵ ≡  ଵݒ
 

EQN 1

ሺݑଵݑ଴ሻ݈ଷ ൅ ሺെݑ଴ሻ݈ଶ ൅ ݈଴ ≡  ଴ݒ
 

EQN 2



Page 85 of 117 
 

Since, the Jacobian variety curve touches at two points on the hyper elliptic curve. We can conclude that 

at that point the gradient is same. So we find the derivative of the Jacobian and the hyper elliptic curves: 

 

Derivative of Jacobian Curve: 

 

ݕ݀
ݔ݀

ൌ 3݈ଷݔଶ ൅ 2݈ଶݔ ൅ ݈ଵ 

Derivative of the hyper elliptic curve: 

 

ݕ2 ⋅
ݕ݀
ݔ݀

ൌ ସݔ5 ൅ 4 ସ݂ݔସ ൅ 3 ଷ݂ݔଷ ൅ 2 ଶ݂ݔ ൅ ଵ݂ 

 

By substituting ݒሺݔሻ ൌ ݔଵݒ ൅ ܦ ଴ of the divisorݒ ൌ ሾݑሺݔሻ,  ,ሻሿ and the derivative of the Jacobian curveݔሺݒ

we get the expression as shown below: 

 

2ሺ3݈ଷݔଶ ൅ 2݈ଶݔ ൅ ݈ଵሻ ⋅ ሺݒଵݔ ൅ ଴ሻݒ ൌ ସݔ5 ൅ 4 ସ݂ݔସ ൅ 3 ଷ݂ݔଷ ൅ 2 ଶ݂ݔ ൅ ଵ݂	mod	ሺݔଶ ൅ ݔଵݑ ൅  ଴ሻݑ

 

By reducing the L.H.S with the polynomial expression ݔଶ ൅ ݔଵݑ ൅  ଴ and comparing with the R.H.S, weݑ

get another pair of equations.  

 
∆଴݈ଷ ൅ ∆ଵ݈ଶ ൅ ∆ଶ݈ଵ ≡ ߳଴ 

 
EQN 3

∆ଷ݈ଷ ൅ ∆ସ݈ଶ ൅ ∆ହ݈ଵ ≡ ߳ଵ 
 

EQN 4

Where the variables ∆଴, ∆ଵ, ∆ଶ, ∆ଷ, ∆ସ, ∆ହ, ߳଴ and ߳ଵ are shown below: 
 

∆଴ൌ ଵݑଵሺݒ6
ଶ െ ଴ሻݑ െ  ଴ݒଵݑ6

 
∆ଵൌ െ4ݑଵݒଵ ൅  ଴ݒ4

 
∆ଶൌ  ଵݒ2

 
∆ଷൌ ଵݒ଴ݑଵݑ6 െ  ଴ݒ଴ݑ6

∆ସൌ െ4ݑ଴ݒଵ 
 

∆ଶൌ  ଴ݒ2
 

߳଴ ൌ 5ሾെݑଵሺݑଵ
ଶ െ ଴ሻݑ ൅ ଴ሿݑଵݑ ൅ 3 ଷ݂ሺെݑଵሻ
൅ 2 ଶ݂ 

 

߳ଵ ൌ 5ሾെݑ଴ሺݑଵ
ଶ െ ଴ሻሿݑ ൅ 3 ଷ݂ሺെݑ଴ሻ ൅ ଵ݂ 
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By solving the equations EQN 1, 2, 3 and 4 we can find the co-efficient of the Jacobian variety curve 

݈ሺݔሻ ൌ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. The results are shown below: 

 

݈ଷ ൌ
ଵߠସܯ െ ଶߠଵܯ
ସܯ଴ܯ െܯଵܯଷ

 

 

݈ଶ ൌ
ଶߠ଴ܯ െ ଵߠଷܯ
ସܯ଴ܯ െܯଵܯଷ

 

 
݈ଵ ൌ ଵݒ ൅ ଵ݈ଶݑ െ ሺݑଵ

ଶ െ  ଴ሻ݈ଷݑ
 

݈଴ ൌ ଴ݒ ൅ ଴݈ଶݑ െ ሺݑଵݑ଴ሻ݈ଷ 
 

 
Where the variable are used to simplify the calculation and to make the result appear less tedious. The 

variable used here is shown below: 

 
଴ܯ ൌ ∆ଷ െ ∆ହሺݑଵ

ଶ െ  ଴ሻݑ
 

ଵܯ ൌ ∆ସ െ ∆ହሺെݑଵሻ ܯଷ ൌ ∆଴ െ ∆ଶሺݑଵ
ଶ െ  ଴ሻݑ

ସܯ ൌ ∆ଵ െ ∆ଶሺെݑଵሻ ߠଵ ൌ ߳ଵ െ ∆ହݒଵ ߠଶ ൌ ߳଴ െ ∆ଶݒଵ 
 
At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 2, the 

value of the ݕ on both curve is the same. So we can replace the ݕ expression of the hyper elliptic curve by 

the Jacobian variety curve ݕ ൌ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. 

 

HEC: ݕଶ ൌ ହݔ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

The Jacobian Variety Curve: ݕ௃஼ ൌ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ 

 

Substituting ݕ in HEC with ݕ௃஼: 

 

௃஼ଶݕ ൌ ହݔ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 

Or, ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ ൌ ହݔ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

  
                       Or, ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ െ ሺݔହ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ ൌ 0                    [EXP 1]  
 
Solving the expression [EXP 1] would give the coordinates of the intersecting points and the point of 

touch. However, we intended to get the results in Mumford form. The expression below is explicitly 

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.  
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ෑሺݔ െ ݔ௉ଵሻ൫ݔ െ ொଵ൯ݔ

ଶ

௥ୀଵ

⋅ෑሺݔ െ ݔ௉ଵሻ൫ݔ െ ொଵ൯ݔ

ଶ

௥ୀଵ

⋅ෑሺݔ െ ݔோଵሻሺݔ െ ோଶሻݔ
ଶ

௥ୀଵ

 

≡ 

 

ሺ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ െ ሺݔହ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ 

 

Comparing the coefficients of the L.H.S with the R.H.S we get: 

 

ଵݑ
ᇱ ൌ 2݈ଷ݈ଶ െ ଵݑ2 െ 1 

଴ݑ
ᇱ ൌ 2݈ଷ݈ଵ ൅ ݈ଶ

ଶ െ ଴ݑ2 െ ଵݑ
ଶ െ ଵݑ2

ᇱ  ଵݑ

 

Similarly, we can get the result for ݒଵ
ᇱ  and ݒ଴

ᇱ  by solving the equation: 

 

݈ሺݔሻ	mod	ሺݔଶ ൅ ଵݑ
ᇱ ݔ ൅ ଴ݑ

ᇱ ሻ 	≡ ଵݒ
ᇱݔ ൅ ଴ݒ

ᇱ  

 

Or, ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴	mod	ሺݔଶ ൅ ଵݑ
ᇱ ݔ ൅ ଴ݑ

ᇱ ሻ 	≡ ଵݒ
ᇱݔ ൅ ଴ݒ

ᇱ  

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 

 

ଵݒ
ᇱ ൌ ሺݑଵ

ᇱଶ െ ଴ݑ
ᇱ ሻ݈ଷ െ ଵݑ

ᇱ ݈ଶ ൅ ݈ଵ 

଴ݒ
ᇱ ൌ ሺݑଵ

ᇱ ଴ݑ
ᇱ ሻ݈ଷ െ ଴ݑ

ᇱ ݈ଶ ൅ ݈଴ 
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5.4.2    Comparison of proposed and existing Explicit Formulae (Doubling) for HEC ࢍ ൌ ૛. 

 

The proposed works has been compared with the Explicit Formulae for doubling for the HEC for genus 2 

has been compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite 
Field 

Curve  
Properties 

 Cost  Improvement 
Percentage (%)

 Inverses  
(I) 

Multiplication 
(M) 

Squaring  
(S) 

  

Harley [11,25] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
2 30 - 100 

Lange [26] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
2 24 6 103.4 

Matsuo [13] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
2 27 - 104.3 

Takahashi [15] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
1 29 - 130 

Miyamoto [14] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
1 27 - 132.9 

Lange [27] ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
1 22 5 135.7 

This work  ॲ௤ ݄ሺݔሻ ൌ 0, 

ସ݂ ൌ 0 
1 23 3 136.7 

 
Table 5.8: Comparison between the explicit formulas (doubling) for (genus = 2) curves over 	

ॲ௤ of previous work and the present work. 
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TABLE VII 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: ݕଶ ൌ

ହݔ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD	ܨܩሺ݌ሻ. NUMBER OF 

COORDINATES: 4 

Input Genus 2 HEC: ݕଶ ൌ ݂ሺݔሻ; 
݄ሺݔሻ ൌ 0; ݂ሺݔሻ ൌ ହݔ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂; 
Divisor ܦ ൌ ሾݑሺݔሻ,   ;ሻሿݔሺݒ
ሻݔሺݑ ൌ ଶݔ ൅ ݔଵݑ ൅ ሻݔሺݒ ,଴ݑ ൌ ݔଵݒ ൅  ,଴ݒ

 

Initial 
input 

variables 

ଵܷ ൌ ଵݑ
ଶ; ܷ଴ ൌ ܷ ;଴ݑଵݑ ଴ܸଵ ൌ ܷ ;ଵݒ଴ݑ ଵܸ଴ ൌ ܷ ;଴ݒଵݑ ଵܸଵ ൌ  ;ଵݒଵݑ

ܷ ଴ܸ଴ ൌ  ;଴ݒ଴ݑ
 

 

Output ܦᇱ ൌ ሾݑᇱ, ᇱሿݒ ൌ   ,ܦ2
ሻݔᇱሺݑ ൌ ଶݔ ൅ ଵݑ

ᇱ ݔ ൅ ଴ݑ
ᇱ ሻݔᇱሺݒ	, ൌ ଶݔ ൅ ଵݒ

ᇱݔ ൅ ଴ݒ
ᇱ ; 

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
1 ∆଴ൌ ଵݒ6 ଵܷ െ ܷ ଵܸ଴; ∆ଵൌ െ4ܷ ଵܸଵ ൅ ଴; ∆ଶൌݒ4   ;ଵݒ2

∆ଷൌ ଵܷ଴ݒ6 െ 6ܷ ଴ܸ଴; ∆ସൌ െ4ܷ ଴ܸଵ; ∆ହൌ  ;଴ݒ2
ሺ0,2,0ሻ 

 

2 ߳଴ ൌ 5ሺെݑଵ ଵܷ ൅ 2ܷ଴ሻ െ 3 ଷ݂ݑଵ ൅ 2 ଶ݂; 
߳ଵ ൌ 5ሾെݑ଴ܷ଴ ൅ ଴ݑ

ଶሿ െ 3 ଷ݂ݑ଴ ൅ ଵ݂;  
ሺ0,3,2ሻ 

଴ܯ 3 ൌ ∆ଷ െ ∆ହሺ ଵܷ െ ଵܯ ;଴ሻݑ ൌ ∆ସ െ ∆ହሺെݑଵሻ;  
ଷܯ ൌ ∆଴ െ ∆ଶሺ ଵܷ െ ସܯ ;଴ሻݑ ൌ ∆ଵ െ ∆ଶሺെݑଵሻ;    

ሺ0,3,0ሻ 

ଵߠ 4 ൌ ߳ଵ െ ∆ହݒଵ; ߠଶ ൌ ߳଴ െ ∆ଶݒଵ;   

ݒ݊݅ 5 ൌ ሺܯ଴ܯସ െܯଵܯଷሻିଵ; ሺ1,2,0ሻ 
6 ݈ଷ ൌ ݒ݊݅ ⋅ ሺܯସߠଵ െܯଵߠଶሻ; ݈ଶ ൌ ݒ݊݅ ⋅ ሺܯ଴ߠଶ െ  ;ଵሻߠଷܯ

݈ଵ ൌ ଵݒ ൅ ଵ݈ଶݑ െ ሺ ଵܷ െ ଴ሻ݈ଷ; ݈଴ݑ ൌ ଴ݒ ൅ ଴݈ଶݑ െ ሺܷ଴ሻ݈ଷ;  
ሺ0,8,0ሻ 

7 Compute ࢛ᇱሺ࢞ሻ ൌ ૛࢞ ൅ ૚࢛
ᇱ ࢞ ൅ ૙࢛

ᇱ : 
ଵݑ
ᇱ ൌ 2݈ଷ݈ଶ െ ଵݑ2 െ 1;  
଴ݑ
ᇱ ൌ 2݈ଷ݈ଵ ൅ ݈ଶ

ଶ െ ଴ݑ2 െ ଵܷ െ ଵݑ2
ᇱ  ;ଵݑ

ሺ0,3,1ሻ 

Initial 
output 

variables 

ଵܷ
ᇱ ൌ ଵݑ

ᇱଶ; ܷ଴
ᇱ ൌ ଵݑ

ᇱ ଴ݑ
ᇱ ;   

8 Compute ࢜ᇱሺ࢞ሻ ൌ ૚࢜
ᇱ ࢞ ൅ ૙࢜

ᇱ : 
ଵݒ
ᇱ ൌ ሺ ଵܷ െ ଴ݑ

ᇱ ሻ݈ଷ െ ଵݑ
ᇱ ݈ଶ ൅ ݈ଵ; 

଴ݒ
ᇱ ൌ ܷ଴

ᇱ݈ଷ െ ଴ݑ
ᇱ ݈ଶ ൅ ݈଴; 

ሺ0,2,0ሻ 

Sum  ሺ0,23,3ሻ 
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5.5    Explicit Formulae (Doubling) for HEC of genus 3 

As discussed in the section 5.4, we apply this concept to the HEC of genus 3. In this section we apply the 

same concept to develop a general addition explicit formulae algorithm for genus 3.  

 

 

Figure 5.5: Hyper Elliptic Curve of genus 3 as it touch the Jacobian variety curve. 

 

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero. 

Therefore: 

 

 2ሾ ଵܲሿ ൅ 2ሾܳଵሿ ൅ 2ሾ ଵܵሿ ൌ െሾܴଵሿ െ ሾܴଶሿ െ ሾܴଷሿ ൌ ሾܴଵ
ᇱ ሿ ൅ ሾܴଶ

ᇱ ሿ ൅ ሾܴଷ
ᇱ ሿ. 

 

The Cartesian points or the affine space points ଵܲ, ܳଵ and ଵܵ could be transformed to individual divisor 

class group based on Mumford Representation, which is to be discussed in a separate section. 

 

5.5.1    Generating Doubling Explicit Formulae for HEC of genus 3 

 

Let’s consider a general Hyper Elliptic Curve ܥ of genus ݃ ൌ 3 over the finite field ॲ௤:  

HEC: ݕଶ ൌ ଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 
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Since, we will be working with this particular expression	ሾ ଵܲሿ ൅ ሾ ଵܲሿ ൅ ሾܳଵሿ ൅ ሾܳଵሿ ൅ ሾ ଵܵሿ ൅ ሾ ଵܵሿ ൅

ሾܴଵሿ ൅ ሾܴଶሿ ൅ ሾܴଷሿ ൌ 0. We can convert the coordinate ሾ ଵܲሿ and ሾܳଵሿ to polynomial expression using 

Mumford.  

 

The divisor class group, ܦ for the point ሾ ଵܲሿ, ሾܳଵሿ, ሾ ଵܵሿ and for the point ሾܴଵሿ, ሾܴଶሿ, ሾܴଷሿ is shown 

below: 

 

ܦ ൌෑሺݔ െ ݔ௉ሻ൫ݔ െ ݔொ൯ሺݔ െ ௌሻݔ െ 3 ஶܲ

ଶ

௥ୀଵ

ൌ 
ܦ ൌ ሾݑሺݔሻ,  ሻሿݔሺݒ

ሻݔሺݑ ൌ ଷݔ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ݑ
ሻݔሺݒ ൌ ଶݔଶݒ ൅ ݔଵݒ ൅  ଴ݒ

ᇱܦ ൌෑሺݔ െ ݔோଵሻሺݔ െ ݔோଶሻሺݔ െ ோଷሻݔ െ 3 ஶܲ

ଶ

௥ୀଵ

 
ᇱܦ ൌ ሾݑᇱሺݔሻ,  ሻሿݔᇱሺݒ

ሻݔᇱሺݑ ൌ ଷݔ ൅ ଶݑ
ᇱ ଶݔ ൅ ଵݑ

ᇱ ݔ ൅ ଴ݑ
ᇱ  

ሻݔᇱሺݒ ൌ ଶݒ
ᇱݔଶ ൅ ଵݒ

ᇱݔ ൅ ଴ݒ
ᇱ  

 
Table 5.9: Corresponding conversion of the Cartesian points to Mumford form for genus 3. 

 

We can assert the polynomial expression of ݈ሺݔሻ to be ݈ሺݔሻ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. The 

Jacobian curve ݕ ൌ ݈ሺݔሻ is a quantic function. At the intersecting points the y-coordinates are same. 

Therefore we can write, at the intersection points ݈ሺݔሻ ൌ ሻݔሻ or ݈ሺݔሺݒ െ ሻݔሺݒ ≡  ሻ since weݔሺݑ	݀݋݉	0

have to perform polynomial reduction.  

For the points ሾ ଵܲሿ, ሾܳଵሿ, ሾ ଵܵሿ we can write it in the form of ݈ሺݔሻ െ ሻݔሺݒ ≡  .ሻݔሺݑ	݀݋݉	0

 

ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݒଶݔଶ ൅ ݔଵݒ ൅ ଴ሻݒ ≡ 0	mod	ݔଷ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ݑ

 

 ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ ≡ ሺݒଶݔଶ ൅ ݔଵݒ ൅ ଷݔ	mod	଴ሻݒ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ݑ

 

By reducing the L.H.S with the polynomial expression ݔଶ ൅ ݔଵݑ ൅  ,଴ and comparing with the R.H.Sݑ

we get three equations. 

 
଴݈ସܣ െ ଶ݈ଷݑ ൅ ݈ଶ ൌ  ଶݒ

 
EQN 1

ଵ݈ସܣ െ ଵ݈ଷݑ ൅ ݈ଵ ൌ  ଵݒ
 

EQN 2

ଶ݈ସܣ െ ଴݈ଷݑ ൅ ݈଴ ൌ  ଴ݒ EQN 3
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Where the variables ܣ଴, ܣଵ and ܣଶ: 
 

଴ܣ ൌ ሺݑଶ
ଶ െ ଵܣ ଵሻݑ ൌ ሺݑଶݑଵ െ ଷܣ ଴ሻݑ ൌ ሺݑଶݑ଴ሻ 

 
Since, the Jacobian variety curve touches at two points on the hyper elliptic curve. We can conclude that 

at that point the gradient is same. So we find the derivative of the Jacobian and the hyper elliptic curves: 

 

Derivative of Jacobian Curve: 

 

ݕ݀
ݔ݀

ൌ 4݈ସݔଷ ൅ 3݈ଷݔଶ ൅ 2݈ଶݔ ൅ ݈ଵ 

 

 

Derivative of the hyper elliptic curve: 

ݕ2 ⋅
ݕ݀
ݔ݀

ൌ ଺ݔ7 ൅ 5 ହ݂ݔସ ൅ 4 ସ݂ݔଷ ൅ 3 ଷ݂ݔଶ ൅ 2 ଶ݂ݔ ൅ ଵ݂ 

 
By substituting ݒሺݔሻ ൌ ଶݔଶݒ ൅ ݔଵݒ ൅ ܦ ଴ of the divisorݒ ൌ ሾݑሺݔሻ,  ሻሿ and the derivative of theݔሺݒ

Jacobian curve, we get the expression as shown below: 

 

2ሺ4݈ସݔଷ ൅ 3݈ଷݔଶ ൅ 2݈ଶݔ ൅ ݈ଵሻ ⋅ ሺݒଶݔଶ ൅ ݔଵݒ ൅  ଴ሻݒ

≡ 

ସݔ5 ൅ 4 ସ݂ݔସ ൅ 3 ଷ݂ݔଷ ൅ 2 ଶ݂ݔ ൅ ଵ݂	mod	ሺݔଶ ൅ ݔଵݑ ൅  ଴ሻݑ

 

By reducing the L.H.S with the polynomial expression ݔଶ ൅ ݔଵݑ ൅  ଴ and comparing with the R.H.S, weݑ

get another three equations. 

  
∆଴݈ସ ൅ ∆ଵ݈ଷ ൅ ∆ଶ݈ଶ ൅ ∆ଷ݈ଵ ൌ  ଴ߠ

 
EQN 4

∆ସ݈ସ ൅ ∆ହ݈ଷ ൅ ∆଺݈ଶ ൅ ∆଻݈ଵ ൌ  ଵߠ
 

EQN 5

∆଼݈ସ ൅ ∆ଽ݈ଷ ൅ ∆ଵ଴݈ଶ ൅ ∆ଵଵ݈ଵ ൌ ଶ EQN 6ߠ
 
Where the variables ∆଴, ∆ଵ, ∆ଶ, ∆ଷ, ∆ସ, ∆ହ, ∆଺, ∆଻, ∆଼, ∆ଽ, ∆ଵ଴, ∆ଵଵ, ߠ଴, ߠଵ and ߠଶ shown below: 
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∆଴ൌ ଶݒ଴ܤ8 ൅ ଵݒଶݑଶݑ8 െ ଵݒଵݑ8 െ  ଴ݒଶݑ
 

∆ଵൌ ଶݒଶݑଶݑ6 െ ଶݒଵݑ6 െ ଵݒଶݑ6 െ  ଴ݒ6

∆ଶൌ െ4ݑଶݒଶ െ  ଵݒ4
 

∆ଷൌ െ2ݒଶ 

∆ସൌ ଶݒଵܤ8 ൅ ଵݒଵݑଶݑ8 െ ଵݒ଴ݑ8 െ ଴ ∆ହൌݒଶݑଵݑ8 ଶݒଵݑଶݑ6 െ ଶݒ଴ݑ6 െ  ଵݒଵݑ6

∆଺ൌ െ4ݑଵݒଶ ൅  ଴ݒ4
 

∆଻ൌ  ଵݒ2

∆଼ൌ ଶݒଶܤ8 ൅ ଵݒଶݑ଴ݑ8 െ  ଴ݒ଴ݑ8
 

∆ଽൌ ଶݒ଴ݑଶݑ6 െ  ଵݒ଴ݑ4

∆ଵ଴ൌ െ4ݑ଴ݒଶ 
 

∆ଵଵൌ  ଵݒ2

଴ߠ ൌ ଴ܥ7 ൅ 5 ହ݂ܣ଴ െ 4 ସ݂ݑଶ ൅ 3 ଷ݂ 
 

ଵߠ ൌ ଵܥ7 ൅ 5 ହ݂ܣଵ െ 4 ସ݂ݑଵ ൅ 2 ଶ݂ 

ଶߠ ൌ ଶܥ7 ൅ 5 ହ݂ܣଶ െ 4 ସ݂ݑ଴ ൅ ଵ݂ ܥ଴ ൌ ܷଶ
ଶ ൅ ଶݑ3

ଶݑଵ ൅ ଴ݑଶݑ ൅ ଵݑ
ଶ 

ଵܥ ൌ ଶݑ
ଷݑଵ െ ଵݑଶݑ2

ଶ െ ଶݑ
ଶݑ଴ െ ଶܥ ଴ݑଵݑ2 ൌ ଶݑ

ଷݑ଴ െ ଴ݑଶݑଵݑ െ ଴ݑ
ଶ 

 

By solving the equations EQN 1, 2, 3, 4, 5 and 6 we can find the co-efficient of the Jacobian variety 

curve ݈ሺݔሻ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. The results are shown below: 

 

݈ସ ൌ
ଷܵ଴ܦ െ ଵܦ ଵܵ

ଷܦ଴ܦ െ ଶܦଵܦ
 

 

݈ଷ ൌ
଴ܦ ଵܵ െ ଶܵ଴ܦ
ଷܦ଴ܦ െ ଶܦଵܦ

 

 
݈ଶ ൌ ଶݒ ൅ ଶ݈ଷݑ െ  ଴݈ସܣ

 
݈ଵ ൌ ଵݒ ൅ ଵ݈ଷݑ െ  ଵ݈ସܣ

 
݈଴ ൌ ଴ݒ ൅ ଴݈ଷݑ െ  ଶ݈ସܣ

 
Where the variable are used to simplify the calculation and to make the result appear less tedious. The 

variable used here is shown below: 

 
଴ܯ ൌ ∆଻∆଴ െ ∆ସ∆ଷ 

 
ଵܯ ൌ ∆଻∆ଵ െ ∆ହ∆ଷ ܯଶ ൌ ∆଻∆ଶ െ ∆଺∆ଷ 

ଷܯ ൌ ∆ଵଵ∆଴ െ ∆଼∆ଷ ܯସ ൌ ∆ଵଵ∆ଵ െ ∆ଽ∆ଷ ܯହ ൌ ∆ଵଵ∆ଶ െ ∆ଵ଴∆ଷ 
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଴ܦ ൌ ଷܯ െ  ହܯ଴ܣ
 

ଵܦ ൌ ସܯ െ ଶܦ ହܯଶݑ ൌ ଴ܯ െ  ଶܯ଴ܣ

ଷܦ ൌ ଵܯ െ ଶ ܵ଴ܯଶݑ ൌ ߳ଶ െ ହ ଵܵܯଶݒ ൌ ߳ଵ െ  ଶܯଶݒ
 
At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 3, the 

value of the ݕ on both curve is the same. So we can replace the ݕ expression of the hyper elliptic curve by 

the Jacobian variety curve ݕ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. 

 

HEC: ݕଶ ൌ ଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

The Jacobian Variety Curve: ݕ௃஼ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ 

 

Substituting ݕ in HEC with ݕ௃஼: 

 
௃஼ଶݕ ൌ ଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 
Or, ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ ൌ ଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 
Or, ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ െ ሺݔ଻ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ ൌ 0         
 

[EXP 2]  
 

Solving the expression [EXP 2] would give the coordinates of the intersecting points and the point of 

touch. However, we intended to get the results in Mumford form. The expression below is explicitly 

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.  

 

ෑሺݔ െ ݔ௉ሻ൫ݔ െ ݔொ൯ሺݔ െ ௌሻݔ
ଷ

௥ୀଵ

ෑሺݔ െ ݔ௉ሻ൫ݔ െ ݔொ൯ሺݔ െ ݔௌሻෑሺݔ െ ݔோଵሻሺݔ െ ݔோଶሻሺݔ െ ோଷሻݔ
ଷ

௥ୀଵ

ଷ

௥ୀଵ

 

ൌ 

 

ሺݔଷ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅ ଷݔ଴ሻሺݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅ ଷݔ଴ሻሺݑ ൅ ଶݑ
ᇱ ଶݔ ൅ ଵݑ

ᇱ ݔ ൅ ଴ݑ
ᇱ ሻ 

 

≡ 
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ሺ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ െ ሺݔ଻ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ 

 

Comparing the coefficients of the L.H.S with the R.H.S we get: 

 

ଶݑ
ᇱ ൌ ଶݑ2 ൅ ݈ସ

ଶ 

ଵݑ
ᇱ ൌ 2݈ସ݈ଶ െ ሺ2ݑଵ ൅ ଶݑ

ଶሻ െ ଵݑଶݑ2
ᇱ  

଴ݑ
ᇱ ൌ 2݈ସ݈ଶ െ ଵݑଶݑ2

ᇱ െ ଵݑ
ᇱ ሺ2ݑଵ ൅ ଶݑ

ଶሻ െ ሺ2ݑ଴ ൅  ଵሻݑଶݑ

 

Similarly, we can get the result for ݒଶ
ᇱ ଵݒ ,

ᇱ  and ݒ଴
ᇱ  by solving the equation: 

 

݈ሺݔሻ	mod	ሺݔଷ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅ ଴ሻݑ 	≡ ଶݔଶݒ ൅ ݔଵݒ ൅  ଴ݒ

 

Or, ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴	mod	ሺݔଷ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅ ଴ሻݑ 	≡ ଶݔଶݒ ൅ ݔଵݒ ൅  ଴ݒ

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 

 

ଶݒ
ᇱ ൌ ݈ଶ ൅ ଶݑ

ᇱ ݈ଷ െ ሺݑଶ
ᇱଶ െ ଵݑ

ᇱ ሻ݈ସ 

ଵݒ
ᇱ ൌ ݈ଵ ൅ ଵݑ

ᇱ ݈ଷ െ ሺݑଶ
ᇱ ଵݑ

ᇱ െ ଴ݑ
ᇱ ሻ݈ସ 

଴ݒ
ᇱ ൌ ݈଴ ൅ ଴ݑ

ᇱ ݈ଷ െ ሺݑଶ
ᇱ ଴ݑ

ᇱ ሻ݈ସ 
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5.5.2   Comparison of proposed and existing Explicit Formulae (Doubling) for HEC ࢍ ൌ ૜. 

 

The proposed works has been compared with the Explicit Formulae (Doubling) for the HEC for genus 3 

has been compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite  
Field 

Curve  
Properties 

          Cost Improvement 
Percentage (%) 

Inverse 
(I) 

Multiplication       Squaring 
          (M)                    (S) 

 

Kuroki et al 
[29] 

ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1 74 M/S 100 

Gonda et al 
[30] 

ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1 71 M/S 103.3 

Guyot et al. 
[31] 

ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1            61                       9 108.1 

Myukai et al. 
[32] 

ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1 68 M/S 106.4 

This work ॲ௤ ݄ሺݔሻ ൌ 0, 

଺݂ ൌ 0 
1            63                       3 109.8 

 

Table 5.10: Comparison between the explicit formulas for (genus = 3) curves over 	
ॲ௤ of previous work and the present work. 
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TABLE VIII 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: ݕଶ ൌ

଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. NUMBER OF 

COORDINATES: 6.  

Input Genus 3 HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ; 
݂ሺݔሻ ൌ ଻ݔ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂; 
Divisor ܦ ൌ ሾݑሺݔሻ,   ;ሻሿݔሺݒ
ሻݔሺݑ ൌ ଷݔ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅ ሻݔሺݒ ,଴ݑ ൌ ଶݔଶݒ ൅ ݔଵݒ ൅  ,଴ݒ

 

Initial 
input 

variables 

ܷଶ଴ ൌ ଴; ଵܷ଴ݑଶݑ ൌ ଴; ܷ଴ݑଵݑ ൌ ଴ݑ
ଶ; ଵܷ ൌ ଵݑ

ଶ; ܷଶ ൌ ଶݑ
ଶ; ܷସ ൌ ܷଶ

ଶ; 
ܷଶଵ ൌ ଵ; ܷଶଶଵݑଶݑ ൌ ܷଶݑଵ; ܷଶଶ଴ ൌ ܷଶݑ଴; ܷ ଵܸଵ ൌ   ;ଵݒଵݑ
ܷ ଵܸଵ ൌ ܷ  ;ଵݒଵݑ ଴ܸଵ ൌ ܷ ;ଵݒ଴ݑ ଵܸଶ ൌ ܷ ;ଶݒଵݑ ଴ܸଵ ൌ   ;ଵݒ଴ݑ
ܷ ଶܸ଴ ൌ ܷ ;଴ݒଶݑ ଶܸଶ ൌ ܷ ;ଶݒଶݑ ଶܸଵ ൌ ܷ ;ଵݒଶݑ ଴ܸ଴ ൌ  ;଴ݒ଴ݑ

 

Output ܦᇱ ൌ ሾݑᇱ, ᇱሿݒ ൌ   ,ܦ2
ሻݔᇱሺݑ ൌ ଷݔ ൅ ଶݑ

ᇱ ଶݔ ൅ ଵݑ
ᇱ ݔ ൅ ଴ݑ

ᇱ , ሻݔᇱሺݒ ൌ ଶݒ
ᇱݔଶ ൅ ଵݒ

ᇱݔ ൅ ଴ݒ
ᇱ ; 

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
଴ܣ 1 ൌ ܷଶ െ ଵܣ ;ଵݑ ൌ ܷଶଵ െ ଶܣ ;଴ݑ ൌ ܷଶ଴; ሺ0,0,0ሻ 
଴ܤ 2 ൌ െݑଶܷଶ ൅ 2ܷଶଵ െ ଵܤ ;଴ݑ ൌ ܷଶ଴ ൅ ܷଶଶଵ െ ଵܷ;  

ଶܤ ൌ െܷଶଶ଴ ൅ ଵܷ଴; 
ሺ0,1,0ሻ 

଴ܥ 3 ൌ ܷସ ൅ 3ܷଶଶଵ ൅ ܷଶ଴ ൅ ଵܷ; ܥଵ ൌ ଶܷଶଶଵݑ െ ଶݑ2 ଵܷ െ ܷଶଶ଴ െ 2 ଵܷ଴;  
ଶܥ ൌ ܷଶܷଶ଴ െ ଵܷଶ଴ݑ െ ܷ଴; 

ሺ0,4,0ሻ 

4 ∆଴ൌ ଶݒ଴ܤ8 ൅ ଶܷݑ8 ଶܸଵ െ 8ܷ ଵܸଵ െ ܷ ଶܸ଴;  
∆ଵൌ ଶܷݑ6 ଶܸଶ െ 6ܷ ଵܸଶ െ 6ܷ ଶܸଵ െ ଴; ∆ଶൌݒ6 െ4ܷ ଶܸଶ െ   ;ଵݒ4
∆ଷൌ െ2ݒଶ; ∆ସൌ ଶݒଵܤ8 ൅ ଶܷݑ8 ଵܸଵ െ 8ܷ ଴ܸଵ െ ଵܷݑ8 ଶܸ଴; 
∆ହൌ ଶܷݑ6 ଵܸଶ െ 6ܷ ଴ܸଶ െ 6ܷ ଵܸଵ; ∆଺ൌ െ4ܷ ଵܸଶ ൅ ଴; ∆଻ൌݒ4  ;ଵݒ2
∆଼ൌ ଶݒଶܤ8 ൅ ଴ܷݑ8 ଶܸଵ െ 8ܷ ଴ܸ଴; ∆ଽൌ ଶܷݑ6 ଴ܸଶ െ 4ܷ ଴ܸଵ;  
∆ଵ଴ൌ െ4ܷ ଴ܸଶ; ∆ଵଵൌ  ;ଵݒ2

ሺ0,11,0ሻ 

଴ܯ 5 ൌ ∆଻∆଴ െ ∆ସ∆ଷ; ܯଵ ൌ ∆଻∆ଵ െ ∆ହ∆ଷ; ܯଶ ൌ ∆଻∆ଶ െ ∆଺∆ଷ; 
ଷܯ ൌ ∆ଵଵ∆଴ െ ∆଼∆ଷ; ܯସ ൌ ∆ଵଵ∆ଵ െ ∆ଽ∆ଷ; ܯହ ൌ ∆ଵଵ∆ଶ െ ∆ଵ଴∆ଷ; 

ሺ0,12,0ሻ 

଴ߠ 6 ൌ ଴ܥ7 ൅ 5 ହ݂ܣ଴ െ 4 ସ݂ݑଶ ൅ 3 ଷ݂; ߠଵ ൌ ଵܥ7 ൅ 5 ହ݂ܣଵ െ 4 ସ݂ݑଵ ൅ 2 ଶ݂; 
ଶߠ ൌ ଶܥ7 ൅ 5 ହ݂ܣଶ െ 4 ସ݂ݑ଴ ൅ ଵ݂; 

ሺ0,6,0ሻ 

7 ߳ଵ ൌ ∆଻ߠ଴ െ ∆ଷߠଵ; ߳ଶ ൌ ∆ଵଵߠ଴ െ ∆ଷߠଶ; ሺ0,4,0ሻ 
଴ܦ 8 ൌ ଷܯ െ ଵܦ ;ହܯ଴ܣ ൌ ସܯ െ ଶܦ ;ହܯଶݑ ൌ ଴ܯ െ   ;ଶܯ଴ܣ

ଷܦ ൌ ଵܯ െ  ;ଶܯଶݑ
ሺ0,4,0ሻ 

9 ܵ଴ ൌ ߳ଶ െ ହ; ଵܵܯଶݒ ൌ ߳ଵ െ  ଶ; ሺ0,2,0ሻܯଶݒ
ݒ݊݅ 10 ൌ ሺܦ଴ܦଷ െ  ଶሻିଵ; ሺ1,2,0ሻܦଵܦ
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11 Computing the co-efficient of Jacobian Variety Curve: ࢟ ൌ ૝࢞૝࢒ ൅
૜࢞૜࢒ ൅ ૛࢞૛࢒ ൅ ࢞૚࢒ ൅   :૙࢒
݈ସ ൌ ݒ݊݅ ⋅ ሺܦଷܵ଴ െ ଵܦ ଵܵሻ; ݈ଷ ൌ ݒ݊݅ ⋅ ሺܦ଴ ଵܵ െ  ;ଶܵ଴ሻܦ
݈ଶ ൌ ଶݒ ൅ ଶ݈ଷݑ െ ଴݈ସ; ݈ଵܣ ൌ ଵݒ ൅ ଵ݈ଷݑ െ   ;ଵ݈ସܣ
݈଴ ൌ ଴ݒ ൅ ଴݈ଷݑ െ  ;ଶ݈ସܣ

ሺ0,12,0ሻ 

ሺସ,ଶሻܮ 12 ൌ 2݈ସ݈ଶ ൅ ݈ଷ
ଶ; ܷଶଵ

ᇱ ൌ ଵݑଶݑ
ᇱ ;  ሺ0,2,1ሻ 

13 Compute ࢛ᇱሺ࢞ሻ ൌ ૜࢞ ൅ ૛࢛
ᇱ ૛࢞ ൅ ૚࢛

ᇱ ࢞ ൅ ૙࢛
ᇱ : 

ଶݑ
ᇱ ൌ ଶݑ2 ൅ ݈ସ

ଶ;  
ଵݑ
ᇱ ൌ ሺସ,ଶሻܮ െ ሺ2ݑଵ ൅ ܷଶሻ െ 2ܷଶଵ

ᇱ ;  

଴ݑ
ᇱ ൌ ሺସ,ଶሻܮ െ 2ܷଶଵ

ᇱ െ ଵݑ
ᇱ ሺ2ݑଵ ൅ ܷଶሻ െ ሺ2ݑ଴ ൅ ܷଶଵሻ; 

ሺ0,1,1ሻ 

14 Compute ࢜ᇱሺ࢞ሻ ൌ ૛࢜
ᇱ ૛࢞ ൅ ૚࢜

ᇱ ࢞ ൅ ૙࢜
ᇱ : 

ଶݒ
ᇱ ൌ ݈ଶ ൅ ଶݑ

ᇱ ݈ଷ െ ሺݑଶ
ᇱଶ െ ଵݑ

ᇱ ሻ݈ସ;  
ଵݒ
ᇱ ൌ ݈ଵ ൅ ଵݑ

ᇱ ݈ଷ െ ሺݑଶ
ᇱ ଵݑ

ᇱ െ ଴ݑ
ᇱ ሻ݈ସ; 

଴ݒ
ᇱ ൌ ݈଴ ൅ ଴ݑ

ᇱ ݈ଷ െ ሺݑଶ
ᇱ ଴ݑ

ᇱ ሻ݈ସ; 

ሺ0,6,1ሻ 

Sum  ሺ0,63,3ሻ 
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5.6    Explicit Formulae (Doubling) for HEC of genus 4 

As discussed in the section 5.5, we apply this concept to the HEC of genus 4. In this section we apply the 

same concept to develop a general addition explicit formulae algorithm for genus 4.  

 

 

Figure 5.6: Hyper Elliptic Curve of genus 4 as it touch the Jacobian variety curve. 

 

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero. 

Therefore: 

 
 2ሾ ଵܲሿ ൅ 2ሾܳଵሿ ൅ 2ሾ ଵܵሿ ൅ 2ሾ ଵܶሿ ൌ െሾܴଵሿ െ ሾܴଶሿ െ ሾܴଷሿ െ ሾܴସሿ ൌ ሾܴଵ

ᇱ ሿ ൅ ሾܴଶ
ᇱ ሿ ൅ ሾܴଷ

ᇱ ሿ ൅ ሾܴସ
ᇱ ሿ. 

 
 2ሾ ଵܲሿ ൅ 2ሾܳଵሿ ൅ 2ሾ ଵܵሿ ൅ 2ሾ ଵܶሿ ൌ െሾܴଵሿ െ ሾܴଶሿ െ ሾܴଷሿ ൌ ሾܴଵ

ᇱ ሿ ൅ ሾܴଶ
ᇱ ሿ ൅ ሾܴଷ

ᇱ ሿ ൅ ሾܴସ
ᇱ ሿ. 

 
The Cartesian points or the affine space points ܲ ଵ, ܳ ଵ, ܶ ଵ and ܵ ଵ could be transformed to individual divisor 

class group based on Mumford Representation, which is to be discussed in a separate section. 

 
5.6.1    Generating Doubling Explicit Formulae for HEC of genus 4 
 
Let’s consider a general Hyper Elliptic Curve ܥ of genus ݃ ൌ 4 over the finite field ॲ௤:  

 
HEC: ݕଶ ൌ ଽݔ ൅ ଼݂ ଼ݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂; 
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Since, we will be working with this particular expression  2ሾ ଵܲሿ ൅ 2ሾܳଵሿ ൅ 2ሾ ଵܵሿ ൅ 2ሾ ଵܶሿ ൌ െሾܴଵሿ െ

ሾܴଶሿ െ ሾܴଷሿ െ ሾܴସሿ. We can convert the coordinate ሾ ଵܲሿ, ሾܳଵሿ, ሾ ଵܵሿ and ሾ ଵܶሿ to polynomial expression 

using Mumford as shown below: 

 

ܦ ൌෑሺݔ െ ݔ௉ሻ൫ݔ െ ݔொ൯ሺݔ െ ௌሻݔ െ 3 ஶܲ

ଶ

௥ୀଵ

ൌ 
ܦ ൌ ሾݑሺݔሻ,  ሻሿݔሺݒ

ሻݔሺݑ ൌ ଷݔ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ݑ

ሻݔሺݒ ൌ ଶݔଶݒ ൅ ݔଵݒ ൅  ଴ݒ

ᇱܦ ൌෑሺݔ െ ݔோଵሻሺݔ െ ݔோଶሻሺݔ െ ோଷሻݔ െ 3 ஶܲ

ଶ

௥ୀଵ

 
ᇱܦ ൌ ሾݑᇱሺݔሻ,  ሻሿݔᇱሺݒ

ሻݔᇱሺݑ ൌ ଷݔ ൅ ଶݑ
ᇱ ଶݔ ൅ ଵݑ

ᇱ ݔ ൅ ଴ݑ
ᇱ  

ሻݔᇱሺݒ ൌ ଶݒ
ᇱݔଶ ൅ ଵݒ

ᇱݔ ൅ ଴ݒ
ᇱ  

 
Table 5.11: Corresponding conversion of the Cartesian points to Mumford form for genus 4. 

 
 

ܦ ൌෑሺݔ െ ݔ௉ሻ൫ݔ െ ݔொ൯ሺݔ െ ݔௌሻሺݔ െ ሻ்ݔ െ 4 ஶܲ

ସ

௥ୀଵ

ൌ ସݔ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ݑ

 

ᇱܦ ൌෑሺݔ െ ݔோଵሻሺݔ െ ݔோଶሻሺݔ െ ݔோଷሻሺݔ െ ோସሻݔ െ 4 ஶܲ

ସ

௥ୀଵ

ൌ ସݔ ൅ ଷݑ
ᇱ ଷݔ ൅ ଶݑ

ᇱ ଶݔ ൅ ଵݑ
ᇱ ݔ ൅ ଴ݑ

ᇱ  

 

We can assert the polynomial expression of ݈ሺݔሻ to be ݈ሺݔሻ ൌ ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. The 

Jacobian curve ݕ ൌ ݈ሺݔሻ is a pentic function. At the touch points the y-coordinates are same. Therefore 

we can write, ݈ ሺݔሻ ൌ ݈ ሻ orݔሺݒ ሺݔሻ െ ሻݔሺݒ ≡   .ሻ since we have to perform polynomial reductionݔሺݑ	݀݋݉	0

 
For the points ሾ ଵܲሿ, ሾܳଵሿ, ሾ ଵܵሿ, ሾ ଵܶሿ we can write it in the form of ݈ሺݔሻ െ ሻݔሺݒ ≡  .ሻݔሺݑ	݀݋݉	0

 

ሺ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻ െ ሺݒଷݔଷ ൅ ଶݔଶݒ ൅ ݔଵݒ ൅ ଴ሻݒ

≡ 0	mod	ݔସ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ݑ

 

݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ 

≡ 

ଷݔଷݒ ൅ ଶݔଶݒ ൅ ݔଵݒ ൅ ସݔ	mod	଴ݒ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ݑ
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By reducing the L.H.S with the polynomial expression ݔସ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ and comparingݑ

with the R.H.S, we get four equations. 

 
଴݈ହܣ െ ଷ݈ସݑ ൅ ݈ଷ ൌ  ଷݒ

 
EQN 1

ଵ݈ହܣ െ ଶ݈ସݑ ൅ ݈ଶ ൌ  ଶݒ
 

EQN 2

ଶ݈ହܣ െ ଵ݈ସݑ ൅ ݈ଵ ൌ  ଵݒ
 

EQN 3

ଷ݈ହܣ െ ଴݈ସݑ ൅ ݈଴ ൌ  ଴ݒ
 

EQN 4

Derivative of Jacobian Curve: 
 

ݕ݀
ݔ݀

ൌ 5݈ହݔସ ൅ 4݈ସݔଷ ൅ 3݈ଷݔଶ ൅ 2݈ଶݔ ൅ ݈ଵ 

 
Derivative of the hyper elliptic curve: 
 

ݕ2 ⋅
ݕ݀
ݔ݀

ൌ ଼ݔ9 ൅ 7 ଻݂ݔ଺ ൅ 6 ଺݂ݔହ ൅ 5 ହ݂ݔସ ൅ 4 ସ݂ݔଷ ൅ 3 ଷ݂ݔଶ ൅ 2 ଶ݂ݔ ൅ ଵ݂ 

 
By substituting ݒሺݔሻ ൌ ଷݔଷݒ ൅ ଶݔଶݒ ൅ ݔଵݒ ൅ ܦ ଴ of the divisorݒ ൌ ሾݑሺݔሻ,  ሻሿ and the derivative ofݔሺݒ

the Jacobian curve, we get the expression as shown below: 

 
2ሺ5݈ହݔସ ൅ 4݈ସݔଷ ൅ 3݈ଷݔଶ ൅ 2݈ଶݔ ൅ ݈ଵሻ ⋅ ሺݒଷݔଷ ൅ ଶݔଶݒ ൅ ݔଵݒ ൅  ଴ሻݒ

≡ 
଼ݔ9 ൅ 7 ଻݂ݔ଺ ൅ 6 ଺݂ݔହ ൅ 5 ହ݂ݔସ ൅ 4 ସ݂ݔଷ ൅ 3 ଷ݂ݔଶ ൅ 2 ଶ݂ݔ ൅ ଵ݂	mod	ݑሺݔሻ 

 

By reducing the L.H.S with the polynomial expression ݔସ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴, and comparingݑ

with the R.H.S, we get four equations. 

 
଴݈ହܯ ൅ ଵ݈ସܯ ൅ ଶ݈ଷܯ ൅ ଷ݈ଶܯ ൅ ଷ݈ଶܯ ൌ ߳଴ 

 
EQN 5

ହ݈ହܯ ൅ ଺݈ସܯ ൅ ଻݈ଷܯ ൅ ଶ଼݈ܯ ൅ ଽ݈ଶܯ ൌ ߳ଵ 
 

EQN 6

଴݈ܲହ ൅ ଵ݈ܲହ ൅ ଶ݈ܲଷ ൅ ଷ݈ܲଶ ൅ ଷ݈ܲଶ ൌ ߳ଶ 
 

EQN 7

ହ݈ܲହ ൅ ଺݈ܲହ ൅ ଻݈ܲଷ ൅ ଼ܲ ݈ଶ ൅ ଽ݈ܲଶ ൌ ߳ଶ  EQN 8
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By solving the equations EQN 1, 2, 3, 4, 5, 6,7 and 8 we can find the co-efficient of the Jacobian variety 

curve ݈ሺݔሻ ൌ ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. The results are shown below: 

 

݈ହ ൌ
∆ଷߠ଴ െ ∆ଵߠଵ
∆ଷ∆଴ െ ∆ଶ∆ଵ

 

 

݈ସ ൌ
∆଴ߠଵ െ ∆ଶߠ଴
∆ଷ∆଴ െ ∆ଶ∆ଵ

 

 
݈ଷ ൌ ଷݒ ൅ ଷ݈ସݑ െ  ଴݈ହܣ

 
݈ଶ ൌ ଶݒ ൅ ଶ݈ସݑ െ  ଵ݈ହܣ

 
݈ଵ ൌ ଵݒ ൅ ଵ݈ସݑ െ  ଶ݈ହܣ

 
݈଴ ൌ ଴ݒ ൅ ଴݈ସݑ െ  ଷ݈ହܣ

 
At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 4, the 

value of the ݕ on both curve is the same. So we can replace the ݕ expression of the hyper elliptic curve by 

the Jacobian variety curve ݕ ൌ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴. 

 

HEC: ݕଶ ൌ ଽݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

The Jacobian Variety Curve: ݕ௃஼ ൌ ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ 

 
Substituting ݕ in HEC with ݕ௃஼: 

 
௃஼ଶݕ ൌ ଽݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 

Or, ሺ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ 

ൌ 

ଽݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 

 

Or, ሺ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ െ 

                                   ሺݔ଻ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ሻ ൌ 0                         [EXP 2]  
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Solving the expression [EXP 2] would give the coordinates of the intersecting points and the point of 

touch. However, we intended to get the results in Mumford form. The expression below is explicitly 

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.  

 
ሺݔସ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅ ଴ሻݑ ∙ ሺݔସ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅ ଴ሻݑ ∙ 

ሺݔସ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ሻݑ

≡ 

ሺ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ሻଶ െ 

ଽݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ 
 

Comparing the coefficients of the L.H.S with the R.H.S we get: 

ଷݑ
ᇱ ൌ െ2ݑଷ 

ଶݑ
ᇱ ൌ ݈ହ

ଶ െ ଷݑ
ᇱ ሺ2ݑଷሻ െ ሺ2ݑଶ ൅ ܷ଴ሻ 

ଵݑ
ᇱ ൌ 2݈ହ݈ସ െ 1 െ ଶݑ

ᇱ ሺ2ݑଷሻ ൅ ଷݑ
ᇱ ሺ2ݑଶ ൅ ܷ଴ሻ െ ሺ2ݑଵ ൅ 2ܷଶଷሻ 

଴ݑ
ᇱ ൌ 2݈ହ݈ଷ ൅ ݈ସ

ଶ െ ଵݑ
ᇱ ሺ2ݑଷሻ െ ଶݑ

ᇱ ሺ2ݑଶ ൅ ܷ଴ሻ െ ଷݑ
ᇱ ሺ2ݑଵ ൅ 2ܷଶଷሻ െ ሺ2ݑ଴ ൅ ଵܷଷ ൅ ܷଶሻ 

 

Similarly, we can get the result for ݒଶ
ᇱ ଵݒ ,

ᇱ  and ݒ଴
ᇱ  by solving the equation: 

 

݈ሺݔሻ	mod	ሺݔସ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅ ଴ሻݑ 	≡ ଷݔଷݒ ൅ ଶݔଶݒ ൅ ݔଵݒ ൅  ଴ݒ

 

Or, ݈ହݔହ ൅ ݈ସݔସ ൅ ݈ଷݔଷ ൅ ݈ଶݔଶ ൅ ݈ଵݔ ൅ ݈଴ 	≡ ଷݔଷݒ ൅ ଶݔଶݒ ൅ ݔଵݒ ൅  	଴ݒ

ସݔሺ	݀݋݉ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅  ଴ሻݑ

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 

 

ଷݒ
ᇱ ൌ ଴ܣ

ᇱ ݈ହ െ ଷݑ
ᇱ ݈ସ ൅ ݈ଷ 

ଶݒ
ᇱ ൌ ଵܣ

ᇱ ݈ହ െ ଶݑ
ᇱ ݈ସ ൅ ݈ଶ 

ଵݒ
ᇱ ൌ ଶܣ

ᇱ ݈ହ െ ଵݑ
ᇱ ݈ସ ൅ ݈ଵ 

଴ݒ
ᇱ ൌ ଷܣ

ᇱ ݈ହ െ ଴ݑ
ᇱ ݈ସ ൅ ݈଴ 
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5.6.2   Comparison of proposed and existing Explicit Formulae (Doubling) for HEC ࢍ ൌ ૝ 

 
The proposed works has been compared with the Explicit Formulae (Doubling) for the HEC for genus 4 

has been compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite Field Cost Improvement 
Percentage (%)Inverse 

(I) 
   Multiplication        Squaring 
           (M)                      (S) 

Cantor [23] ॲ௤ 6                       359 M/S 100 

Nagao [23] ॲ௤ 2                       268 M/S 135.7 

C. Paar [33] ॲ௤ 2            193                       16 146.3 

This work ॲ௤ 1              98                         3 178.6 

 
Table 5.12: Comparison between the explicit formulae’s (doubling) for (genus = 4) curves over 	

ॲ௤ of previous work and the present work. 
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TABLE IX 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: ݕଶ ൌ

ଽݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅ ଵ݂ݔ ൅ ଴݂ OVER THE GALOIS FIELD ܨܩሺ݌ሻ. 

NUMBER OF COORDINATES: 8 

Input Genus 4 HEC: ݕଶ ൅ ݄ሺݔሻݕ ൌ ݂ሺݔሻ; 
݂ሺݔሻ ൌ ଽݔ ൅ ଼݂ ଼ݔ ൅ ଻݂ݔ଻ ൅ ଺݂ݔ଺ ൅ ହ݂ݔହ ൅ ସ݂ݔସ ൅ ଷ݂ݔଷ ൅ ଶ݂ݔଶ ൅

ଵ݂ݔ ൅ ଴݂; 
Divisor ܦ ൌ ሾݑሺݔሻ,  ;ሻሿݔሺݒ
ሻݔሺݑ ൌ ସݔ ൅ ଷݔଷݑ ൅ ଶݔଶݑ ൅ ݔଵݑ ൅   ,଴ݑ
ሻݔሺݒ ൌ ଷݔଷݒ ൅ ଶݔଶݒ ൅ ݔଵݒ ൅  ;଴ݒ

 

Initial 
input 

variables 

ܷ଴ ൌ ଷݑ
ଶ; ܷଷ଴ ൌ ܷ଴ݑ଴; ܷଷଶ ൌ ܷ଴ݑଶ; ܷଷଵ ൌ ܷ଴ݑଵ; ܷଷଶ଴ ൌ  ;଴ܷଶଷݑ

ܷଷଶଵ ൌ ଵܷଶଷ; ଵܷଷݑ ൌ ଵ; ܷ଴ଷݑଷݑ ൌ ଴; ܷ଴ଶݑଷݑ ൌ ଴; ܷ଴ଵݑଶݑ ൌ  ;଴ݑଵݑ
ܷଶଷ ൌ ଶ; ଵܷଶݑଷݑ ൌ ଵ; ଵܷݑଶݑ ൌ ܷ଴

ଶ; ܷଶ ൌ ଶݑ
ଶ; ܷଷ ൌ ଵݑ

ଶ; ܷସ ൌ ଴ݑ
ଶ; 

 

Output ܦᇱ ൌ ሾݑᇱ, ᇱሿݒ ൌ   ,ܦ2
ሻݔᇱሺݑ ൌ ସݔ ൅ ଷݑ

ᇱ ଷݔ ൅ ଶݑ
ᇱ ଶݔ ൅ ଵݑ

ᇱ ݔ ൅ ଴ݑ
ᇱ ; 

ሻݔᇱሺݒ ൌ ଷݒ
ᇱݔଷ ൅ ଶݒ

ᇱݔଶ ൅ ଵݒ
ᇱݔ ൅ ଴ݒ

ᇱ ; 

Cost 
ሺܯ,ܫ, ܵሻ 

 

Step Expressions Cost 
଴ܣ 1 ൌ ܷ଴ െ ଵܣ ;ଶݑ ൌ ܷଶଷ െ ଶܣ ;ଵݑ ൌ ଵܷଷ െ ଷܣ ;଴ݑ ൌ ܷ଴ଷ; ሺ0,0,0ሻ 
଴ܤ 2 ൌ െݑଷܷ଴ ൅ 2ܷଶଷ െ ଵܤ ;ଵݑ ൌ െܷଷଶ ൅ ܷଶ ൅ ଵܷଷ െ   ;଴ݑ

ଶܤ ൌ െܷଷଵ ൅ ଵܷଶ ൅ ܷ଴ଷ; ܤଷ ൌ ܷ଴ଶ െ ܷଷ଴; 
ሺ0,1,0ሻ 

଴ܥ 3 ൌ ଵܷ െ 3ܷଷଶ ൅ 2 ଵܷଷ ൅ ܷଶ െ   ;଴ݑ
ଵܥ ൌ ଷܷଷଶݑ െ ଷܷଶݑ2 ൅ 2 ଵܷଶ ൅ ܷ଴ଷ;  
ଶܥ ൌ ଷܷଷଵݑ െ 2ܷଷଶଵ െ ܷଷ଴ ൅ ܷଷ ൅ ܷ଴ଶ;  
ଷܥ ൌ ଷܷଷ଴ݑ െ 2ܷଷଶ଴ െ ଴ݑ ൅ ܷ଴ଵ; 

ሺ0,4,0ሻ 

଴ܦ 4 ൌ െݑଷ ଵܷ ൅ 3ܷଷଶ ൅ ଷܷଷଶݑ ൅ 2 ଵܷଶ െ 4ܷଷଵ െ ଷܷଶݑ3 ൅ 2ܷ଴ଷ; 
ଵܦ ൌ ଷܷଷଵݑ െ ଴ܷଷଶݑ െ 4ܷଷଶଵ ൅ ܷଷ ൅ 2ܷ଴ଶ ൅ 3ܷ଴ܷଶ െ  ;ଶܷଶݑ
ଶܦ ൌ 2ܷ଴ଵ െ ܷ଴ܷଷଵ ൅ ଵܷଷଶݑ3 െ ଷܷଷݑ2 െ ଵܷଶݑ ൅ ଷܷଶ଴ݑ െ 2ܷଷଶ଴ െ
ଷܦ ;଴ݑ ൌ െܷ଴ܷଷ଴ ൅ ଶܷଷ଴ݑ3 െ ଴ݑ2 ଵܷଷ െ ଴ܷଶݑ ൅ ܷସ; 

ሺ0,16,0ሻ 

଴ܯ 5 ൌ ଷݒ଴ܥ10 ൅ ଶݒ଴ܤ10 ൅ ଵݒ଴ܣ10 ൅ ଵܯ ;଴ݒଷݑ10 ൌ ଷݒ଴ܤ8 ൅
ଶݒ଴ܣ8 െ ଵݒଷݑ8 ൅ ଶܯ ;଴ݒ8 ൌ ଷݒ଴ܣ6 െ ଶݒଷݑ6 ൅   ;ଵݒ6
ଷܯ ൌ െ4ݑଷݒଷ ൅ ସܯ ;ଶݒ4 ൌ ହܯ ;ଷݒ2 ൌ ଷݒଵܥ10 ൅ ଶݒଵܤ10 ൅
ଵݒଵܣ10 ൅ ଺ܯ ;଴ݒଶݑ10 ൌ ଷݒଵܤ8 ൅ ଶݒଵܣ8 െ ଻ܯ ;ଵݒଶݑ8 ൌ ଷݒଵܣ6 െ
ଶݒଶݑ6 ൅ ଽܯ ;଴ݒ6 ൌ  ;ଶݒ2

ሺ0,19,0ሻ 

6 ߳଴ ൌ ଴ܦ9 ൅ 7 ଻݂ܤ଴ ൅ 6 ଺݂ܣ଴ െ 5 ହ݂ݑଷ ൅ 4 ସ݂; 
߳ଵ ൌ ଵܦ9 ൅ 7 ଻݂ܤଵ ൅ 6 ଺݂ܣଵ െ 5 ହ݂ݑଶ ൅ 3 ଷ݂; 

ሺ0,6,0ሻ 
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7 ∆଴ൌ ଴ܯ െܯଶܣ଴ െܯଷܣଵ െ ଶ; ∆ଵൌܣସܯ ଵܯ െ ଶܯଷݑ ൅ ଷܯଶݑ ൅  ;ସܯଵݑ
∆ଶൌ ହܯ െܯ଻ܣ଴ െܣ଼ܯଵ െ ଶ; ∆ଷൌܣଽܯ ଺ܯ െ ଻ܯଷݑ ൅ ଼ܯଶݑ ൅  ;ଽܯଵݑ

ሺ0,13,0ሻ 

଴ߠ 8 ൌ ߳଴ െ ଷݒଶܯ െ ଶݒଷܯ െ ଵߠ ;ଵݒସܯ ൌ ߳ଵ െ ଷݒ଻ܯ െ ଶݒ଼ܯ െܯଽݒଵ; ሺ0,6,0ሻ 
ݒ݊݅ 9 ൌ ሺ∆ଷ∆଴ െ ∆ଶ∆ଵሻିଵ; ሺ1,2,0ሻ 
10 Computing the co-efficient of Jacobian Variety Curve: ࢟ ൌ ૞࢞૞࢒ ൅

૝࢞૝࢒ ൅ ૜࢞૜࢒ ൅ ૛࢞૛࢒ ൅ ࢞૚࢒ ൅   :૙࢒
݈ହ ൌ ݒ݊݅ ⋅ ሺ∆ଷߠ଴ െ ∆ଵߠଵሻ; ݈ସ ൌ ݒ݊݅ ⋅ ሺ∆଴ߠଵ െ ∆ଶߠ଴ሻ; 
݈ଷ ൌ ଷݒ ൅ ଷ݈ସݑ െ ଴݈ହ; ݈ଶܣ ൌ ଶݒ ൅ ଶ݈ସݑ െ   ;ଵ݈ହܣ
݈ଵ ൌ ଵݒ ൅ ଵ݈ସݑ െ ଶ݈ହ; ݈଴ܣ ൌ ଴ݒ ൅ ଴݈ସݑ െ  ;ଷ݈ହܣ

ሺ0,12,0ሻ 

11 Compute ࢛ᇱሺ࢞ሻ ൌ ૜࢞ ൅ ૛࢛
ᇱ ૛࢞ ൅ ૚࢛

ᇱ ࢞ ൅ ૙࢛
ᇱ : 

ଷݑ
ᇱ ൌ െ2ݑଷ; ݑଶ

ᇱ ൌ ݈ହ
ଶ െ ଷݑ

ᇱ ሺ2ݑଷሻ െ ሺ2ݑଶ ൅ ܷ଴ሻ; 
ଵݑ
ᇱ ൌ 2݈ହ݈ସ െ 1 െ ଶݑ

ᇱ ሺ2ݑଷሻ ൅ ଷݑ
ᇱ ሺ2ݑଶ ൅ ܷ଴ሻ െ ሺ2ݑଵ ൅ 2ܷଶଷሻ;  

଴ݑ
ᇱ ൌ 2݈ହ݈ଷ ൅ ݈ସ

ଶ െ ଵݑ
ᇱ ሺ2ݑଷሻ െ ଶݑ

ᇱ ሺ2ݑଶ ൅ ܷ଴ሻ െ ଷݑ
ᇱ ሺ2ݑଵ ൅ 2ܷଶଷሻ െ

ሺ2ݑ଴ ൅ ଵܷଷ ൅ ܷଶሻ;  

ሺ0,8,2ሻ 

଴ܣ 12
ᇱ ൌ ଷݑ

ᇱଶ െ ଶݑ
ᇱ ଵܣ ;

ᇱ ൌ ଷݑ
ᇱ ଶݑ

ᇱ െ ଵݑ
ᇱ ଶܣ ;

ᇱ ൌ ଷݑ
ᇱ ଵݑ

ᇱ െ ଴ݑ
ᇱ ଶܣ ;

ᇱ ൌ ଷݑ
ᇱ ଴ݑ

ᇱ ; ሺ0,3,1ሻ 
13 Compute ࢜ᇱሺ࢞ሻ ൌ ૛࢜

ᇱ ૛࢞ ൅ ૚࢜
ᇱ ࢞ ൅ ૙࢜

ᇱ : 
ଷݒ
ᇱ ൌ ଴ܣ

ᇱ ݈ହ െ ଷݑ
ᇱ ݈ସ ൅ ݈ଷ; ݒଶ

ᇱ ൌ ଵܣ
ᇱ ݈ହ െ ଶݑ

ᇱ ݈ସ ൅ ݈ଶ; 
ଵݒ
ᇱ ൌ ଶܣ

ᇱ ݈ହ െ ଵݑ
ᇱ ݈ସ ൅ ݈ଵ; ݒ଴

ᇱ ൌ ଷܣ
ᇱ ݈ହ െ ଴ݑ

ᇱ ݈ସ ൅ ݈଴; 

ሺ0,8,0ሻ 

Sum  ሺ1,98,3ሻ 
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Chapter 6 
 
Discussions and Future Works 

 
 
In the field of cyber – security, especially for public key infrastructure. There is a demand for shorter key 

size and faster computation. Shorter key size is needed since the mobile devices stores limited amount of 

space and faster computation is necessary because of limited power supply and processing capabilities. 

Elliptic Curve Cryptosystem has been studied extensively and has already been implemented in our mobile 

devices such as Blackberry to public key cryptosystem. The key size used by the ECC is much shorter 

than of RSA and provides the same security strength. However, it is believed theoretically that the Hyper 

Elliptic Curve Cryptosystem can provide the same security strength with much shorter key size of ECC.   

 

In this thesis, a brief introduction is provided in the first chapter. Then, in chapter 2 the mathematical 

background of groups, rings, finite field and basic introduction of Hyper Elliptic Curve with examples. 

Chapter 3, discusses the HECC is details such as group operation and its comparison with ECC. In the 

chapter 4, we gave an overview of the existing computational methods and subsequently in chapter 5 we 

have proposed an algorithm for faster computation for Hyper Elliptic Curve Cryptography. We also 

discussed the process used derive the algorithm for curves of genus 2, 3 and 4. In the complexity 

comparison table, we have noticed that the as the number of genus of the curve increases the number of 

total operations to perform group operation decreases compare to the recent existing work. There is 

significant rise in efficiency in terms of percentage from the recent previous work for the hyper elliptic 

curves of genus 3 and 4.      

 

In the future study, we can work on the hardware implementation of Hyper Elliptic Curve Cryptosystems, 

i.e, key exchange and digital signature. Although this thesis is solely based on the computation in Affine 

Space. Later we can derived an explicit formulae in projective space, which will delete the inversion 

operation. As discussed in this thesis, inverse operation is computationally intensive. Would it be possible 

to develop an explicit formulae algorithm of 0 inversion in affine space? The explicit formulae shown in 

the thesis is takes the coefficient of the Mumford Representation of the Cartesian points as input. There is 
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another method of transforming the Cartesian points into divisor class by Chow Representation [41], [42]. 

Is it possible to develop more efficient explicit formulae with Chow Representation instead of Mumford 

Representation? All these options can be explored in the future.  

 

Later, we can propose explicit formulae over the finite field of ܨܩሺ2௠ሻ. 
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Appendix 

 

A.    MATLAB SCRIPT FOR PSEUDO CODE FOR CALCULATING: ࢟૛ࢊ࢕࢓	࢖ 

 
% Power Mod Calculator 
 
% A = y.^2 mod p 
 
syms A y p 
 
y = input('Enter the range of y: '); 
p = input('Enter the value of mod p: '); 
 
A = mod(power(y,p),p); 
 
W = ['y = ', num2str(y)]; 
Z = ['y.^n mod p = ', num2str(A)]; 
 
disp(W) 
disp(Z) 
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B.    MATLAB SCRIPT FOR PSEUDO CODE FOR CALCULATING: ሺ࢞૜ ൅  ࢖	܌ܗܕ	ሻ࢞
 
% Power Mod Calculator 
 
% B = (x.^3 + x) mod p 
 
syms B x p 
 
x = input('Enter the range of x: '); 
p = input('Enter the value of mod p: '); 
 
B = mod((x.^3 + x),p); 
 
W = ['x = ', num2str(x)]; 
Z = ['x.^3 + x mod p = ', num2str(B)]; 
 
disp(W) 
disp(Z) 
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C.    MATLAB SCRIPT FOR  PSEUDO CODE TO DETERMINE THE POINTS ON EC 
 
% EllipticCurvePoints 
% E = {(x,y): y^2 = x^3 + x mod p} U {O} 
 
% A = y.^2 mod p 
% B = (x.^3 + x) mod p 
% A represents the left side of the equation 
% B represents the right side of the equation 
 
syms A B x y p 
 
y = input('Enter the range of y: '); % range of y is from 0:p-1 
x = input('Enter the range of x: '); % range of x is from 0:p-1 
count = 0; 
 
p = input('Enter the value of mod p: '); 
 
disp('The valid co-ordinates or points in the curve') 
 
A = mod(y.^2,p); 
B = mod((x.^3 + x),p); 
 
for b = [1:p] 
        for  a = [1:p] 
            if B(b) == A(a) 
                %Z = ['B[', num2str(b) ,']', '===' , 'A[', num2str(a) 
,']'];                 
                %W = ['x = ', num2str(x(b)) , ' === ' , 'y = ', 
num2str(y(a))]; 
                %disp(Z) 
                %W = ['(x,y) = (', num2str(x(b)) ,',', 
num2str(y(a)),')']; 
                count = count + 1;  
                %disp(W)             
            end 
        end 
end 
count = count + 1; 
Z = ['Number of Valid points = ', num2str(count)]; 
disp(Z) 
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D.    MATLAB SCRIPT FOR PSEUDO CODE TO DETERMINE THE POINTS ON HEC 
 
% HyperEllipticCurvePoints 
% E = {(x,y): y^2 = x^5 + 1184x^3 + 1846x^2 + 956x + 560 mod p} U {O} 
 
% A = (y.^2) mod p 
% B = (x.^5 + 1184*x.^3 + 1846*x.^2 + 956*x + 560) mod p 
% A represents the left side of the equation 
% B represents the right side of the equation 
 
syms A B x y p 
 
y = input('Enter the range of y: '); % range of y is from 0:p-1 
x = input('Enter the range of x: '); % range of x is from 0:p-1 
count = 0; 
 
p = input('Enter the value of mod p: '); 
 
disp('The valid co-ordinates or points in the curve') 
 
A = mod((y.^2),p); 
B = mod((x.^5 + 1184*x.^3 + 1846*x.^2 + 956*x + 560),p); 
 
for b = [1:p] 
        for  a = [1:p] 
            if B(b) == A(a) 
                W = ['(x,y) = (', num2str(x(b)) ,',', 
num2str(y(a)),')']; 
                count = count + 1;  
                disp(W) 
                 
            end 
        end 
end 
count = count + 1; 
Z = ['Number of Valid points = ', num2str(count)]; 
disp(Z) 
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