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Abstract 
 

In this thesis we have proposed explicit formulae for group operation such as addition and doubling 

on the Jacobians of Hyper Elliptic Curves genus 2, 3 and 4. The Cantor Algorithm generally 

involves to perform arithmetic operations in the polynomial ring . The explicit method 

performs the arithmetic operation in the integer ring of . Significant improvement has been made 

in the explicit formulae algorithm proposed here. Other explicit formulae used Montgomery trick 

to derive efficient formulae for faster group computation. The method used in this thesis to develop 

an efficient explicit formula was inspired by the geometric properties in the hyper elliptic curves 

of genus and by keeping the Jacobian variety curve constant. This formulae take Mumford 

coordinates as input. The explicit formulae here performs the computation in affine space of genus 

2, 3 and 4 of Hyper Elliptic Curves in general form, which can be used to develop Hyper Elliptic 

Curve Cryptosystem. 

 

Key Words: Hyper Elliptic Curve, Hyper Elliptic Curve Cryptosystem, Jacobian Curve, genus 2, 

genus 3, genus 4. 
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Chapter 1 

 

Introduction 
 

Cybersecurity plays a very important role in our daily lives. For example, we would like to protect our 

data in our personal electronic devices, such as laptop and smart phone. To have a secure communication 

over the unsafe internet, using communication application such as Skype, WhatsApp and many more. To 

protect out data in cloud storage services offered by Dropbox, Google Drive and etc. or we would like to 

do online banking services and paying bills, or we purchase online and enjoy Electronic Commerce 

services offered by Amazon, EBay, Alibaba and many more. All those are made possible with the 

implementation and improvement of cybersecurity. The field of cryptography, as the core technology to 

achieve cybersecurity for the things mentioned above, can provide crucial security services such as 

Privacy, Authentication, Key Establishment and Data Integrity.      

 

Higher security strength, faster implementation and low power consumption, this is what we are after in 

the area of cryptography engineering. There are already many cryptographic algorithms available which 

are able to satisfy these requirements. However, the new communication gadgets are smaller in size, which 

has very limited processing power and storage. The key size of the RSA [9] is quite large and RSA 

implementation in small devices takes long processing time and consumes a lot power. So cryptosystems 

that use smaller key size are favored in practice, such like those rely on the discrete logarithm problem 

over multiplicative group of elliptic curve defined in finite fields. 

 

Koblitz [1] introduced Elliptic Curve Cryptography (ECC) in 1987. It is based on the discrete logarithm 

problem over the abelian group of points of the curve. The group law over the curve makes the operation  

fast and easy to compute. The advantages of using ECC is its key size are smaller than RSA and also there 

is no sub exponential algorithms for Elliptic Curve Discreet Logarithm Problem (ECDLP). 

 



Page 2 of 117 
 

Elliptic Curve Cryptography (ECC) can provide the same level of security as RSA or discreet logarithm 

problem (DLP) based systems such as Diffie Hellman Key Exchange (DHKE) and ElGamal public key 

cryptosystem at much smaller key size. On the hand, the complexity of the mathematics of the elliptic 

curves are more involved than those of the RSA and DLP based systems. Hyper Elliptic Curve 

Cryptography (HECC) is one of the late members of the established public-key algorithms: DHKE, RSA, 

ElGamal and ECC [6], [7], [8] [10].   

 

In 1989, Koblitz [2] introduced discrete logarithm problem on hyper elliptic curves (HEC) and the 

cryptosystem constructed over the Jacobian of Hyper elliptic curves and based on this hard problem. This 

research subject is called hyper elliptic curve cryptography (HECC). Note that hyper elliptic curves can 

also be viewed as a special type of elliptic curves with genus ≥ 2. The advantage of using HECC is the 

smaller key size for the same level of security, even compared to ECC. Moreover, it has no sub exponential 

algorithms to solve HEC DLP, similar to that for ECC. The smaller size of the base field also makes hyper 

elliptic curves a good choice for the light weight cryptosystems. 

 

Hyper Elliptic Curve Cryptography (HECC) offers theoretically higher level of security than all the 

established public key cryptosystem [5]. This is due to the high level of mathematical complexity even 

compare to Elliptic Curve Cryptosystems with the same key lengths size. In this thesis the mathematical 

background of HECC is discussed in detail and efficient methods for performing group operation are 

studied.  

 

In hyper elliptic curve cryptosystem, the group law includes addition and doubling in the Jacobian of the 

curve. The algorithm for the group operation was given by the Cantor [3]. Since then there have many 

improvements on efficient computation of group operations and also very active research works in the 

field of HECC. One of the earliest attempt made to efficient algorithm for group operation for HECC was 

obtained by Harley [11]. The Harley’s algorithm is an explicit representation of the Cantor Algorithm [3]. 

Later works presented more efficient algorithm for performing group operations we done by Lange [12], 

Matsuo, Chao and Tsujii [13], Miyamoto, Doi, Matsuo, Chao and Tsujii [14] and Takahashi [15]. 

 

In hyper elliptic curve the algorithms for group operation is not very fast for high genus compared to that 

for elliptic curve. There are faster algorithms for the elliptic curves or hyper elliptic curves with genus = 
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1. For the curves with larger genus, the existing algorithms for group operation are still relatively difficult 

to perform. It is a challenging task to develop faster algorithms for the group operation, which makes the 

study of HECC interesting. 

 

1.1 Objective 

 

The objective of the thesis can be listed as follow: 

1. Understand the group laws of Hyper Elliptic Curve over the finite field. 

2. Explain and discuss Mumford Representation of the intersecting Cartesian points between the 

Jacobian Variety Curve and Hyper Elliptic Curve over the finite field.  

3. Discuss the group operations in Cantor Algorithm and Subexpression Algorithm for point 

addition and doubling. 

4. Develop an explicit formulae algorithm for efficient group operation such as addition and 

doubling. 

 

1.2 Overview 

 

The following is an outline of the rest of the thesis. 

 

Chapter 2: Mathematical Fundamentals. 

 

In this chapter we will discuss the basic abstract algebra, such as the definitions of groups, Abelian group, 

subgroup, Homomorphism, Kernel, Rings, Polynomial Rings, Fields, Field Extension and etc. Later in 

this chapter, we will discuss the basic properties of Elliptic and Hyper Elliptic Curves. The fundamental 

difference between Elliptic and Hyper Elliptic Curve with pictorial examples.  

 

Chapter 3: Hyper Elliptic Curve Cryptography. 

 

In this chapter we present the necessary definitions and methods required in the later chapters. It provides 

a description of group operations, group order in Elliptic Curve Cryptography and Hyper Elliptic Curve 
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Cryptography. The group operation such as addition and scalar multiplication (generally better known as 

doubling) is very fundamental. Here we discuss in detail with example on how to convert the Cartesian 

points on the hyper elliptic curve over a field to Mumford Representation, which is polynomial 

representation of the co-ordinates. Definitions like Divisor Class, Divisor Class Group would be 

discussed.  

 

Chapter 4: An overview of Hyper Elliptic Curve Computational Method. 

 

In this chapter, we present how we can perform group operation such as addition and doubling by applying 

Cantor Algorithm. Later in the same section we intended to make it clear by presenting an example on 

how to apply this algorithm, the advantages and disadvantages of using Cantor Algorithm. Here we also 

discuss another method for performing group operation: Subexpression Algorithm. We try to make it clear 

with an example and its limitation (such as it advantages and disadvantages). Later in the same chapter 

we introduces efficient method for computing group operation with Explicit Formulae Algorithm. Its 

benefit and its limitation. 

 

Chapter 5: Proposed efficient computation for Hyper Elliptic Curve Cryptography. 

 

In this chapter, we will present with an efficient algorithm for group operation. Later in this chapter we 

discuss theorems and proposition used to build an efficient explicit formulae algorithm. Separate explicit 

formula algorithm for addition and doubling for specific hyper elliptic curve with different number of 

genus. 

 

Chapter 6: Discussions and possible future works. 

 

In this thesis we have proposed efficient explicit formulae with less complexity for group operations for 

the Hyper Elliptic Curves of genus 2, 3 and 4. The same procedure used here can be expanded to the hyper 

elliptic curves of great number of genus. In the future works, hardware implementation of HEC 

cryptographic system with the proposed efficient explicit algorithm for Hyper Elliptic Curve – Public Key 

Infrastructure (HEC – PKI) and Hyper Elliptic Curve – Digital Signature (HEC - DS).    
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Chapter 2 

 

Mathematical Background 
 

2.1 Elementary Algebraic Background 

 

There are good reference book for the study of basic abstract algebra. The two books used for references 

are by Gallian [16], Herstein [17] and for the field theory is by Roman [18]. The area of study for abstract 

algebra is vast and to give a concise background is very difficult. The three books I have mentioned above 

is a good place to start. The definitions I give in abstract algebra which will be useful for the study of 

hyperelliptic curves.  

 

2.1.1 Groups 

 

Definition 1 (Law of Composition) 

 

A law of composition on a set  is a rule for performing an operation between any two elements in the set 

, let it be  and . The result of the operation, let it be . Where  is also an element of the set . 

 

Definition 2 (Group) 

 

A group is a set G together with the law of composition under this operation if the following three 

properties are satisfied. 

1. Associativity: The operation is said to be associative; that is ∘ ∘ ∘ ∘  for all 

, , 	 ∈ . 

2. Identity: There is an element ∈  (called the identity element) such that ∘  for all ∈ . 
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3. Inverse: For every element ∈ , there is an element ∈  (called an inverse of ) such that ∘

∘  

Definition 3 (Abelian/Commutative Group) 

 

A group  is called an Abelian group if and only if , ∈  where ∘ ∘  for all elements in the 

group . 

 

Definition 4 (Subgroup) 

 

A subset  of a group  is called a subgroup of  containing the identity element  and such that it all 

satisfies the all the properties of a group. 

1. For all , ∈ , ∘ , where ∈  

2. If ∈  then ∈  

 

Definition 5 (Cyclic Group) 

 

A group  is called cyclic if there is an element ∈  such that |	 ∈ . Such an element is 

called a generator of . We can represent the cyclic nature of  as . 

 

Definition 6 (Order of a Group) 

 

The number of elements of a group is called the order. If the group is finite, then the group is called a 

finite group. | | is denoted as the order of the group . 

 

Definition 7 (Order of an Element) 

 

The order of an element  in a group is the smallest positive integer  such that . The order of an 

element  is denoted as | |. The element  has infinite order if no such integer  exists.  
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Definition 8 (Equivalence Relation) 

 

An equivalence relation on a set  is a set  of ordered pairs of elements of  such that 

1. , ∈  for all ∈  (reflexive property). 

2. , ∈  implies , ∈  (symmetric property). 

3. , ∈  and , ∈  imply , ∈  (transitive property). 

 

Definition 9 (Cosets) 

 

If  is a subgroup of the group , and an element  of the group . Then |  is an element of 

} is called the left coset of  in , |  is an element of } is called the right coset of  in .  

 

Properties of Cosets: 

 

Let  be a subgroup of , where the element  and  ∈ . Then, 

1. ∈ . 

2.  iff ∈ . 

3.  and . 

4.  iff ∈ . 

5.  or ∩ ∅. 

6.  iff ∈ . 

7. | | | |. 

8.  iff . 

9.  ⊂ , iff ∈ . 

 

Theorem 10 (Lagrange) 

 

If the group  is a finite group and  be a subgroup of . Then the order of  divides the order of . 

Which makes the order of every element also divide the order of . 
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Definition 11 (Homomorphism) 

 

If ,∙  and ,∘  are two groups, a homomorphism from  to  is a function : →  that satisfies, for 

all , ∈ . 

⋅ ∘  

 

If  is a one – to – one (INJECTIVE) → monomorphism. 

If  is a onto                (SURJECTIVE) → epimorphism. 

If  is a bijective         (BIJECTIVE) → isomorphism. 

 

 

Figure 2.1: Venn diagram Representation on types of Homomorphism 

 

Definition 12 (Kernel) 

 

If  is a homomorphism from the group → , then the kernel of  is defined by ∈ |	

, and  is the identity element of the group . 

 

Definition 13 (Normal Subgroup) 

 

A subgroup  of  is normal in  iff ⊆  for all the element	 ∈ .  
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Definition 14 (Quotient Group) 

 

The subgroup  of  is normal, then the set of left (or right) cosets of  in  is by itself is a group – called 

the factor group (or quotient group) of  by	 . Let  be a group and let  be a normal subgroup of	 . 

The set /	  = 	|	 	 ∈  is a group under the operation	 . 

 

2.1.2 Rings 

 

Definition 15 (Rings) 

 

A set  is said to form a ring with respect to the binary operations addition (+) and multiplication (·) 

provided the elements , , ∈  holds the following properties.  

 

Properties 16 (Rings) 

 

1. Associative law of addition:  

2. Commutative law of addition:  

3. Presence of additive identity: there exists ∈  such that  

4. Presence of additive inverse: for every element	 ∈ , there exists ∈  such that	

. 

5. Associative law of multiplication: ∙ ∙ ∙ ∙  

6. Distributive law: ∙ ∙ ∙  or   ∙ ∙ ∙  

 

Definition 17 (Subrings) 

 

Let  be a ring and  is the non – empty subset of , which itself is a ring with respect to the binary 

operations on , is called a subring of . 
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Definition 18 (Commutative Ring) 

 

A ring for which multiplication is commutative is called a commutative ring. 

 

For all the elements in the ring . , ∈ .  

∙ ∙  (Commutative law of multiplication)  

 

 

Definition 19 (Ring with identity element or ring with unity) 

 

A ring with a multiplicative identity is called a ring with identity element  or ring with unity 

For all the elements in the ring . , ∈ . 

.  (Multiplicative identity element) 

 

Definition 20 (Zero - Divisors) 

 

Let  be a ring and let , ∈  such that 0 and	 0. If 0, then  and  are called Zero – 

Divisors. 

 

Definition 21 (Integral Domain) 

 

An integral domain is a commutative ring  with unity 1 (assuming 1 ≠ 0) and no zero – divisor. 

 

Definition 22 (Ideals) 

 

Let  be a ring, a non – empty subset  of  is called an Ideal ring. For a ring to be an Ideal the conditions 

below has to be fulfilled. 

Conditions: 

1.  is an additive subgroup of . 

2. For every elements, ∈  and ∈ . | ∈ ⊆  and | ∈ ⊆  for all ∈

. 
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Definition 23 (Principal Ideals) 

 

If  is an ideal of the ring  such that the ring  is generated by one element. That is  for some 

∈ , then  is said to be a principle ideal of .  

 

 

Definition 24 (Prime Ideals) 

 

An ideal  if a ring  is called a prime ideal if ∈  implies either ∈  or	 ∈ .  

 

Definition 25 (Maximal Ideals) 

 

Let  be an ideal of a ring  with . Then  is called a maximal ideal of  if there exists an ideal  of 

 with ⊂ ⊂  and . 

 

Definition 26 (Ring Homomorphism) 

 

A ring homomorphism  from a ring  to a ring  is a mapping from  to  that preserves the two ring 

operations; that is, for all ,  in  

 

 and  

 

A ring homomorphism that is both one – to – one and onto is called a ring isomorphism. [16] 

 

Properties 27 (Ring Homomorphism) [16] 

 

Let  be a ring homomorphism from a ring  to a ring . Let  be a subring of  and let  be an ideal of 

. 

 

1. For any ∈  and any positive integer ,  and . 

2. | ∈  is a subring of . 
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3. If  is an ideal and  is onto	 , then  is an ideal. 

4. ∈ | ∈  is an ideal of . 

5. If  is a commutative, then  is commutative. 

6. If  has a unity 1, 0 , and  is onto, then 1  is the unity of . 

7.  is an isomorphism if and only if  is onto and 	 ∈ | 0 0 . 

8. If  is an isomorphism from  onto , then  is an isomorphism from  onto .  

 

2.1.3 Fields 

 

Definition 28 (Fields) 

 

A ring is a field, let  be the field. It forms an Abelian group under addition and multiplication and satisfies 

the distributive laws under addition: 

 

(i)  and  (ii)  

The field  as satisfies the following three conditions below: 

1. Multiplicative identity, unity  (or 1), which is defined by  for every ∈ . 

2. Multiplicative inverse, , exists for every ∈ , where 0, such that . 

3. Multiplicative commutativity,  for every , ∈ . 

 

2.1.4 Polynomial Rings 

 

Definition 29 (Polynomial Rings over R) 

 

Let R be a commutative ring. Where ⋯ | ∈  is called the 

polynomial ring over R. 

 

 

 



Page 13 of 117 
 

Definition 30 (Addition and Multiplication in ) 

 

Let R be a commutative ring and let ⋯  and 

⋯  belong to . So, 

⋯ . 0 for , and 0 for .  

 

Also, ⋯ , where ⋯

 for 0, … , . 

 

Theorem 31 (Integral Domain) 

 

If the ring  is an integral domain, then  is an integral domain. 

 

Theorem 32 (Division Algorithm) 

 

If  is a field and  and ∈  with 0. Then there exists unique polynomial  and 

 in  such that  and either 0 or deg deg . 

 

Theorem 33 (Remainder Theorem) 

 

If  is a field, ∈ , and ∈ .	Then (a) is the remainder in the division of  by .  

 

Theorem 34 (Factor Theorem) 

 

If  is a field, ∈ , and ∈ .	Then  is a zero of (x) if and only if  is a factor of  

 

Definition 35 (Principal Ideal Domain) 

 

A principal ideal domain is an integral domain  in which every ideal has the form 	 | ∈  

for some  in . 

 



Page 14 of 117 
 

Theorem 36 ( ) 

 

If  is a field,  a non zero ideal in , and  is a nonzero polynomial of minimum degree in . 

 

Definition 37 (Irreducible or Prime Polynomial) 

 

Let  be an integral domain. A polynomial ∈  which is neither a zero polynomial nor a unit in 

 is an irreducible polynomial if the expression  cannot be represented as factor of two or more 

polynomials such as . 

 

Definition 38 (Reducible Polynomial)  

 

Let  be an integral domain. A polynomial ∈ , where the expression  can be represented 

as factor of two or more polynomials such as . 

 

2.1.5 Extension Fields 

 

Definition  (Extension Field) 

 

A field  is an extension field of a field , if the field  is the subset of the field  such that the operations 

of  are the operations of  confined to . 
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2.2 Basics of Hyper Elliptic Curve 

 

In the area of cryptology, hyperelliptic curves are eagerly studied. Since it gives the same level of security 

with a smaller key length as compared to cryptosystems using elliptic curves. In 1987 Koblitz proposed 

that Jacobians of the hyperelliptic curves can produce abelian groups which will be suitable for 

cryptography. Hyperelliptic curves are a special group of algebraic curves and can be seen as a 

generalization of the elliptic curves. A hyperelliptic curve of genus 1 is also called an elliptic curves. 

Therefore, all the curves of every genus 1 are hyperelliptic curves. In this chapter, we will briefly 

introduce hyperelliptic curve cryptography and provide an overview of the parameters involved. In the 

following section, hyperelliptic curve cryptography or cryptosystem will always be abbreviated as HECC.  

 

Definition 1 (Hyperelliptic Curves) 

 

Let  be a field and let  be the algebraic closure of the field	 . A hyperelliptic curve  of genus 	

1  over  is an equation of the form 

 

:	  in ,  

 

Where ∈  is a polynomial of degree at most , ∈  and a monic polynomial of degree 

2 1 and there is no solution , ∈ , which simultaneously satisfies the equations 

 

 

2 0 

0 

 

A singular point on the curve  is a solution , ∈  which satisfies all the above three equations. 

Thus a hyperelliptic curve does not have any singular points by definition.  

 

 

 

 



Page 16 of 117 
 

Definition 2 (Extension field of ) 

 

Let  be an extension field of . The set of  is the rational points on the curve , denoted by 

, ∈ : ∪ , where  is a special point, called the point at infinity. 

 

Definition 3 (Rational Points, Points at infinity, Finite Points) 

 

To make the definition 2 to be clearer, the set of points in  are the rational points , ∈  

which satisfies the main general expression of the hyperelliptic curve. The point  is a special point, called 

the point at infinity. All the points in the curve  except  are finite points.     

 

Definition 4 (Opposite, Special Points) 

 

The opposite of a finite point ,  on the curve  is defined to be the point , . The 

opposite of  is itself. A special point is a point if it is equal to its opposite. Like the point , it is a special 

point. Otherwise  is an ordinary point.  

 

2.2.1    Hyper Elliptic Curve – An example 

 

2.2.1.1    Graphical representation of an elliptic curve over the real field 

 

, : 	 	17 . 

 

To represent the curve  in the graph, the curve has to be drawn over the real number field	 . Therefore,  

 

, : 16  over  
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Figure 2.2: Elliptic Curve over  

 

2.2.1.2    Determining the Cartesian points in an elliptic curve over the real field 

 

When  (or more generally, when  is a finite field), the elliptic curves over  will be a finite set. 

Here we take an equation of an elliptic curve with  and consider 

 

, : 	 	17 ∪  

 

Now we want to know what points are on the curve	 . To do that, we first compute the square table over	 , 

which tells us what element in  can have a square root. This can be done by using power and mod 

function in MATLAB. Below shows the pseudo code for calculating 	17. 

 

Table 2.1  PSEUDO CODE FOR CALCULATING: 	  

, : mod  

INPUT: Range of ; Mod of ;  

OUTPUT: 	mod ; 
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Output in the tabular form: 

 

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

	  0 1 4 9 16 8 2 15 13 13 15 2 8 16 9 4 1 

 

Then, we compute 0,1,2, . . . , 16 to solve the equation  in . First, we compute the 

 in  table over .  

 

Table 2.2  PSEUDO CODE FOR CALCULATING: 	 	  

, : mod  

INPUT: Range of ; Mod of ;  

OUTPUT: mod ; 

 

Output in the tabular form: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

	 	  0 2 10 13 0 11 1 10 10 7 7 16 6 0 4 7 15 

  

For 1, 1 1 and so the square root table gives 	 6. Hence	 1, 6 ∈ , For 2, we 

have 8 2 10, the square root table tell us that there is no solution, and so we move to the case 

3. The following MATLAB code computes all the needed information.  

 

Table 2.3  PSEUDO CODE TO DETERMINE THE POINTS ON EC 

, : 	 mod  

INPUT: Range of ; Range of ; Mod of ;  

A = y.^2 mod p; 

B = x.^3 + x mod p; 

for b = [1:p] 

   for a = [1:p] 

       if B(b) == A(a) 
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          print “Valid Points”; 

       end 

    end 

end 

OUTPUT: Points , ;  

 

In this way we have all the valid points of the curve: , : 	 	17 ∪  

 

	 0,0 , 1,6 , 1,11 , 3,8 , 3,9 , 4,0 , 6,1 , 6.16 , 11,4 , 11,13 , 13,0  

14,2 , 14,15 , 16,7 , 16,10 ,  

 

For the curve with the equation	 , : 	 	17  has 16 valid points. If we perform 

the calculation in a larger finite field we will be able to work with greater number of valid points.  

 

For the curve with equation	 , : 	 . 

 

 Number of Valid 

Points on the curve 

over the field of  

 Number of Valid 

Points on the curve 

over the field of  

2 3 3 4 

5 4 7 8 

11 12 13 20 

17 16 19 20 

23 24 29 20 

31 32 37 36 

41 32 43 44 

47 48 53 68 

59 60 61 52 

67 68 71 72 

73 80 79 80 
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83 84 89 80 

97 80 101 100 

103 104 107 108 

109 116 113 128 

127 128 131 132 

137 160 139 140 

149 164 151 152 

157 180 163 164 

167 168 173 148 

179 180 181 164 

191 192 193 208 

197 196 199 200 

 

Table 2.4: Finite Field and its corresponding number of valid points 
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2.2.1.3   Graphical representation of Hyper Elliptic Curve over the real field 

 

, : 2 1 1 2 	 	 . 

 

To represent the curve  in the graph, the curve has to be drawn over the real number field	 . Therefore,  

 

, : 2 1 1 2  over  

 

 

 

Figure 2.3: Hyper Elliptic Curve over  

 

2.2.1.4    Determining the Cartesian points in a hyper elliptic curve over the real field 

 

When  (or more generally, when  is a finite field), the elliptic curves over  will be a finite set. 

Here we take an equation of an elliptic curve with  and consider 

 

, : 2 5 10	 	11 ∪  
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Now we want to know what points are on the curve	 . To do that, we first compute the square table over	 , 

which tells us what element in  can have a square root. This can be done by using power and mod 

function in MATLAB. 

 

Table 2.5  PSEUDO CODE TO DETERMINE THE POINTS ON HEC 

, : 2 5 10 mod  

INPUT: Range of ; Range of ; Mod of ;  

STEPS:  

B = x.^5 + 2*x.^4 + x.^3 – 5*x.^2 + 10 mod p; 

for b = [1:p] 

   for a = [1:p] 

       A = y.^2 + x(b).*y mod p; 

       if B(b) == A(a) 

          print “Valid Points”; 

       end 

    end 

end 

OUTPUT: Points , ;  

 

 

In this way we have all the valid points of the curve: 

 

, : 2 5 10 	11 ∪  

 

	 1,4 , 1,6 , 4,2 , 4,5 , 5,7 , 5,10 , 8,0 , 8.3 , 9,5 , 9,8 ,  

 

For the curve with the equation	 , : 2 5 10	 	11  has 11 

valid points.  
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2.2.1.5   Comparing the curves: Elliptic Curves and Hyper Elliptic Curve 

 

Elliptic curve: , : 16  over  

Hyper Elliptic curve: , : 2 1 1 2  over  

  

   

                 Figure 2.4: Elliptic curve                                 Figure 2.5: Hyper Elliptic curve  

 

By comparing the table 1 and 2, the figure 5 and 6. Hyper elliptic curves to have more number of valid 

points compare to Elliptic curve. For the field , the curve  has 196 valid points, whereas for the 

field , , the curve  has 206 valid points. Approximate we can comment that  have more 10 

valid points to . Figure 5 represents an elliptic curve of genus – 1. Genus in plain English means 

number of loops or holes. Figure 6 represents a hyperelliptic curve. Hyperelliptic curve is also a type 

elliptic curve with genus – 2, a curve with two holes or two loops.    

 

2.2.1.6    Finding the points on the Hyper Elliptic Curve over large prime field 

 

Let’s take a hyperelliptic curve over a field. The curve :	 1184 1846 956 560 

over , 	 2003.  

 

Number of valid points on the curve: 1867 
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Here are some of the valid points on the curve: (4,1712), (8,168), (257,1895), (258,783), (1000,1529), 

(1002,519), (1502,1293), (1505,388), (1999,1232), (2000,818).  

 

2.2.2   Polynomial and Rational Function 

 

Definition 5 (Coordinate Ring, Quotient Ring and Polynomial Function) 

 

If  be the ideal of ,  which is generated by the polynomial	 , that is 

. The quotient ring of , /  is also called the coordinate ring of  over , denoted by 

. Elements in the  is also called the polynomial functions of  over .  

 

It is easy to check that every polynomial, let it be , ∈ ,  can be uniquely represented in the 

form of 

,  

 

where the polynomial ,  ∈ . 

 

Definition 6 (Function Field, Rational Functions) 

 

The function field  of  over is the field of all fractions of polynomial functions in . An 

element of  is called a rational function on . A polynomial function is also a rational function. We 

have to make a note that  is a subring of .  

 

Definition 7 (Degree of a Polynomial Function) 

 

Let ,  be a polynomial and also a non – zero one in . The degree of the 

polynomial  is defined to be 

 

2 , 2 1 2 . 
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Properties 8 (Degree of a Polynomial Function) 

 

Let , ∈ . 

 

1. deg  

2.  deg deg deg	  

3. deg deg	 ̅   

 

2.2.3   Zeroes and Poles 

 

Definition 12 (Zeros and Poles)  

 

Let ∈  and ∈ . If 0, then  is a zero at . If  is not defined at , then  has a pole at 

. Where we write it as ∞.  

 

Definition 13 (Special Point, Zeros) 

 

Let ,  be a point on the curve C. Let us suppose that the polynomial function ,

∈  has a zero at  and  is not a root of both  and . The ̅ 0 iff  is a special 

point.  

 

Definition 14 (Ordinary Point, Zeros and Poles) 

 

Let ,  be an ordinary point on the curve , and , ∈ . Assuming that 

0 and  is not a root of both of the polynomials  and . Then  can be written in the form 

of , where  is the highest power of  which divides , and ∈  does not have 

a zero nor a pole at .   
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Definition 15 (Special Point, Zeros and Pole) 

 

Let ,  be a special point on the curve . Then  can be written in the form . 

, , where , ∈  has neither a zero nor a pole at . 
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Chapter 3 

 

Hyper Elliptic Curve Cryptography 
 

To realize secure communication over the unsafe internet, cyber security techniques are indispensable 

such as privacy and authentication. Among these techniques, public key cryptography is an essential in 

our daily life. This cyber – security technology supports one of the fundamental aspect, like electronic 

payment infrastructure.  

 

Public key cryptography was first introduced by Diffie and Hellman in 1976 [6]. However the first 

practical application was made by Rivest, Shamir and Adleman in 1977. Now the most widely used public 

key cryptosystem called RSA [8]. Although RSA is widely popular but the best public key cryptography 

currently available is the elliptic curve cryptosystem. Elliptic curve was first proposed by Koblitz [1] and 

Miller [19] independently. The security of the RSA depends on the difficulty of solving the integer 

factorization problem and Elliptic Curve Cryptography (ECC) depends on solving the discrete logarithm 

problem on an elliptic curve. The Cartesian points on the Elliptic Curve over a specific field can form a 

group based on the concepts generalized by Diffie – Hellman. This group is later used to develop ECC. 

Just like ECC, Hyper Elliptic Curve (HECC) can also form group structure over Jacobian of a hyper 

elliptic curve defined over a finite field. Koblitz [20] proposed this for the first time in 1988 . In this 

chapter we will discuss the group operations in HECC such as addition and multiplication (generally 

knows as doubling operation).  
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3.1    Elliptic and Hyper Elliptic Curve Group Law 

 

3.1.1    Arithmetic of Elliptic Curve 

 

Definition 1 (Properties – Elliptic Curve) 

 

An elliptic curve  over the field , denoted by /  where 3, is given by the Weierstrass 

equation. 

 

:	  

 

Where the coefficients , , , , ∈  and for the each point ,  on the curves, the coordinate 

, ∈  together with an imaginary point . All the points on the curve must also satisfy the partial 

derivatives 2  and 3 2  equals to zero at the same time.  

 

The partial derivative conditions says whether the elliptic curve is non-singular or singular. A point on a 

curve is called singular if both of the partial derivatives equals to zero.   

 

Definition 2 (Discriminant – Elliptic Curve) [34] 

 

Smoothness of the curves can also be figured out by finding the discriminant of the curve. Let 

expressions. 

 

4   

2  

4   

4  

 

Let  be a curve defined over  and let , , 	and	 . The discriminant of the curve  denoted by ∆ 

satisfies. The curve  is nonsingular and an elliptic curve, iff	∆	 0.  
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∆	 8 27 9  

 

3.1.1.1    Group Operations on Elliptic Curve 

 

Definition 3 (Point Addition – Elliptic Curve) 

 

Point Addition P + Q. Denoting the group operation with the symbol	" ". “Addition” means that given 

two points and their coordinates lies in the curve	 , say ,  and , . In this this case 

we computer  and . A tangent is drawn through the points  and  and obtain a third 

point of intersection. The point of intersection  is reflected on the axis to obtain the point  on the 

curve. The figure 1 below shows the point addition on an elliptic curve over . 

 

 

 

 

It is important to define sum of the two points with the same  coordinate such as ,  and , . 

In such case it is important to find a neutral element of the group. A further point  called the point at 

infinity or . It can be understood that a point lying far out on the  axis such that the line  

which is parallel to the  axis and passed through the point  or . This point at the infinity is called 

the neutral point or element of the group. Therefore we can conclude that the line passing through ,  

and ,  also passes through  or .       

 

Figure 3.1: Point Addition on an Elliptic Curve over  
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, , , i.e.. ,  

 

Definition 4 (Point Doubling – Elliptic Curve) 

 

Point Doubling P + P. Given two points and their coordinates lies in the curve	 , say ,  and 

, . In this this case we computer  and . Making 2 . A tangent 

is drawn through the point  and obtain a second point of intersection. The point of intersection  is 

reflected on the axis to obtain the point  on the curve. The figure 2 below shows the point addition 

on an elliptic curve over . 

 

 

 

 

3.1.1.2    Point Addition and Doubling in Elliptic Curve 

 

Point Addition 

 

The simplest form of an elliptic curve is given by the equation  

 

	 

 

Figure 3.2: Point doubling on an Elliptic Curve over  
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Let	 , , ,  and , . , let the straight line passing through the point  

and  be: , where,  is the gradient of the line and  is the  – intercept.  

 

The gradient of the line: . The  – intercept: at  – axis, 0,  Therefore, 

 

 

A point ,  lies in the elliptic curve if and only if: , 

, , 2 	

. 

 

Let L.H.S ≡ R.H.S ( ) 

 

Or,  

 

Substituting  into ,   	 	 . 

≡ , , :	 .  

 

Reflecting the co-ordinate  on the  – axis. Therefore, ≡ , ,

. Therefore,  . .	 

 

where, 	 	 ; if   

 

Point Doubling 

 

The simplest form of an elliptic curve is given by the equation  

 

	 

 

Let ,  and , ,   at ,  
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Let the line tangent to the curve at  be:  where,  is the gradient of the line tangent and  is 

the  – intercept. The gradient of the line: . The  – intercept: at  – axis, 0. Or, 

, , . Therefore,  

 

A point ,  lies in the elliptic curve if and only if: , 

, , 2 		

2 2  

 

Let L.H.S ≡ R.H.S ( ): 2 , 2  

 

Substituting  into ,   	  	 . ≡ , . 

:	 2 ,  

 

Reflecting the co-ordinate  on the  – axis. Therefore, ≡ , 2 , . 

Therefore,  2 , . Where, 		 

 

3.1.2    Arithmetic of Hyper Elliptic Curves 

 

3.1.2.1    Group Operations on Hyper Elliptic Curves 

 

In elliptic curves we can take the points on the curve with the point of infinity to form a group. However 

for the hyper elliptic curves, if we take the points on the curve and with the points of infinity cannot no 

longer form a group. To form a group with respect to the points of hyper elliptic curve, we need to take 

sum of points as group elements and then we can perform addition like ⨁

. The symbol  and ⨁ doesn’t refers to addition and XOR operation respectively. The symbol 

⨁ refers to group operation. We will discuss this specific operation between the two Cartesian points on 

the curve later in this chapter.  
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If we start to form group by this expression ⨁ , then we would end up 

with an infinite group and larger and larger representation of the group elements. In this case we use the 

quotient group of the group based on the all sum of points that lie on the curve.  

 

Below we give a graphical representation of a hyper elliptic curve for a genus 2 over the finite field  

given by the equation . This equation of the curve must fulfill the five conditions 

before we can perform group operation.  

 

Hyper elliptic curve of genus  over the finite field  in the set of points in   such that: 

 

C: . 

Conditions: 

1. ,  ∈ . 

2. → monic, and deg 2 1 is odd. 

3. deg , if 2; 0 if 2. 

4. The curve HEC doesn’t have any singular point over . 

5. 2: , where  is monic, odd – degree and square free. 

 

Figure 3.3: Group operation on the HEC of genus 2 over , ,  

deg 5 and  is monic for ⨁ . 
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As discussed before that the chord and tangent method in the elliptic curve cannot be used. The curve 

which intersects with the hyper elliptic curve of genus 2 shown above is called Jacobian variety curve. 

The Jacobian curve intersects in 5 points instead of 3 points unlike chord and tangent method in elliptic 

curve. In order to build a group we take the quotient group; which is the sum of the intersecting points of 

the Jacobian variety curve with the hyper elliptic curve by the subset of the points which lie on the HEC.  

 

The six points , , ,   and  on the HE curve adds upto zero in the quotient group. The point 

,  and ,  lie on the curve. Similarly, ⨁ 0. The points  and 

 are the reflection of the points  and  on the HE curve respectively. And the resulting group 

operation ⨁ .   

 

3.1.2.2    Divisor and Divisor Class Group. [37], [38] 

 

Definition 5 (Divisor) 

 

The rational points of a hyper elliptic curve do not form a group, unlike the points on an elliptic curve. 

The group which provides by the hyper elliptic curve for cryptography is a subgroup of the random group 

 generated by the set of points on the curve. If the curve  is the hyper elliptic curve of genus  over the 

finite field . The elements of  is known as divisors. 

 

∑ ,  ∈  and ∈  

 

Definition 6 (Group of divisors) 

 

For the hyper elliptic curve  of genus  over the finite field  given by an equation of the form C: 

. The group of divisors of the curve  of degree 0 is given by 

 

∑ 	|	 ∈∈ , 0,	for most of the points on the curve ∈ . 

   

The group which describes before as the quotient group is also known as the divisor class group  of 

. In order to formally define this quotient group we need to take the point  called the point of infinity 
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into the divisor class group. Since in this thesis we are considering the hyper elliptic curve of deg  

odd. Therefore, there is only a single point at the infinity. However, if we were working on the hyper 

elliptic curve of def  even, then there would have been two point of infinity. To visualize this we 

can imagine a point far on the  axis such that any line which is parallel to it passes through the point 

. 

 

Definition 7 (Divisor Class Group) 

 

The divisor class group  of  is the quotient group of the group of divisors . In the divisor class 

group, each divisor class can be represented by  

 

∑ , ∈  including the point , . 

 

By using the definition above. The individual divisor class can be represented for implementation purpose. 

The divisor class group  of  is isomorphic to the finite field of  of the Jacobian  of the hyper 

elliptic curve .  

 

3.1.2.3    Jacobian variety of Hyper Elliptic Curve 

 

Definition 8 (Jacobian) [39], [40] 

 

The Jacobian of the curve  is defined by the quotient group: 

 

/  

 

Hence, , ∈  are equivalent if ∈ . In every equivalence class there’s only one divisor 

, called the reduced divisor:  

 

∑ ∑ , such that ∑ . 
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Jacobian variety curve in a specific curve based on the Jacobian . In simple form, the intersection 

points between the Jacobian variety curve with the hyper elliptic curve forms a group including the point 

at the infinity . Where the sum of the all the intersecting point sums up to zero. The figure below is the 

graphical representation of the Jacobian variety and the hyper elliptic curve of genus 2. 

 

Figure 3.4: Hyper Elliptic Curve of genus 2 and Jacobian Variety Curve. 

 

Since the intersection points between the Jacobian variety curve with the hyper elliptic curve sums up to 

zero. Therefore: 

 

0. 

 

. 

 

The Cartesian or affine space points  and  could be transformed to individual divisor class group 

based on Mumford Representation, which is to be discussed in a separate section.  

 

The divisor class, , ∪ , . Similarly , ∪

,  and , ∪ , . The expression  and  are the 

polynomial representation of the affine space points on the curve. These are covered in the section 

detailing Mumford representation.  
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3.2    Point Representation - Divisor 

 

The definition of the divisor group is the simplest form of representation. However, we can represent the 

divisors just as the sum of points with the order of the points .  

 

	
∈

 

The disadvantage of representing the divisor is that we cannot use this for computational purposes. To 

represent the points in the form of divisor the best option in the Mumford Representation.   

 

3.2.1    Mumford Representation [35], [36] 

 

Mumford representation is the clearest representation of the Cartesian points into polynomial divisor form. 

The divisor can be represented with two polynomial as  and . Let  be the individual reduced 

divisor of the divisor class group  of . 

 

 

 

One fundamental reason for using the Mumford Representation is that this representation can be used 

for computing purpose. Let consider a hyper elliptic curve  of genus , where the curve  is 

represented as: 

 

 

 

where the polynomial expressions  and  ∈ the polynomial field , the deg 2 1 

and the deg . As discussed before that the divisor class over the field  can be represented by a 

pair of polynomials  and , where this polynomials , ∈ .  

 

Although the polynomials  and  belongs to the polynomial field of . However this 

polynomials must fulfill the three conditions below: 



Page 38 of 117 
 

Conditions: 

1.  must a monic polynomial.  

2. deg deg . 

3. | .  

 

The polynomial expression of  of the divisor class  is represented by: 

 

 

 

Where the divisor class  is represented as shown below.  

 

 

 

The point	 ,  and the points ,  lies on the curve. If the points  on the curve occurs 

 number of times then  

 

0 

 

Where  and 0 1. In the hyper elliptic curve of genus 2, each divisor class can be 

represented by the 4 coefficients , , ,  of the polynomials  and . The divisor class  

represented by the polynomials  and  as , .    

 

However, the divisor class group  of  is the quotient group of the group of divisors	 . So the 

identify or neutral elements, in this case its neutral divisor class of the group is represented as	 1,0 .  

 

An example in the section 3.2.2 will present an example.  
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3.2.2    Mumford Representation – An example 

 

In this example we consider the hyper elliptic curve : 3 2 3 of genus 2 over 

the field . The Cartesian points 3,0 , 1,2 , 4,1  and 3,0 . The divisor class 

group  of  is the quotient group of the group of divisors . Each divisor class can be 

represented by  including the point , . 

 

 

 

Taking the points	 3,0 , 1,2 , where 3 and 1. The polynomial expression of  

of the divisor class  is represented by: 

 

 

Therefore, ∏  and ∏ 	 3 1

4 3 3 over the polynomial field of . The polynomial 3 ∈

.  

 

The condition for finding the polynomial expression  must satisfy the second and the third condition 

(2). deg deg  and (3). |  respectively. Since the degree of 

 is less than the degree of , the polynomial expression of  would appear as 

.  

 

The number of combinations of , where ∈ 0.1.2.3.4 . The possible combinations we can 

get for ,  are: 

 

0,0 		 1,0 		 2,0 		 3,0 		 4,0  

0,1 		 1,1 		 2,1 		 3,1 		 4,1  

0,2 		 1,2 		 2,2 		 3,2 		 4,2  
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0,3 		 1,3 		 2,3 		 3,3 		 4,3  

0,4 		 1,4 		 2,4 		 3,4 		 4,4  

 

Any of the combination of ,  will satisfy the third condition	 | . In this 

case the combination , 4,3  satisfies the condition mentioned above.   

 

Therefore, the Mumford representation of the point 3,0  and 1,2  on the hyper elliptic curve 

: 3 2 3 of genus 2 over the field  is: 

 

3,4 3  

 

Similarly, the Cartesian points 4,1  and 3,0  can be represented in Mumford form.  

 

3 2, 2  

 

 

 

 

 

 

 

 

 



Page 41 of 117 
 

Chapter 4 

 

An Overview of Hyper Elliptic Curve 

Computation Method 
 

In this chapter we will discuss Hyper Elliptic Curve Computation Methods for performing group 

operations, such as addition and doubling of the divisor classes of hyper elliptic curves discussed in the 

previous chapter. The purpose of this chapter is to discuss in detail on how we perform the group 

operations of the divisor class group obtained from the Jacobians of the hyper elliptic curves. The 

intersecting points of the Jacobian variety curve with the hyper elliptic curves seems to form a group [19].  

 

However, the arithmetic operations of the divisor classes in the hyper elliptic curve was usually performed 

by using Cantor Algorithm. Cantor algorithm has been optimized by Harley, and the first to obtain 

subexpression and explicit formulas for the hyper elliptic curves of genus 2 and later in was extended by 

Lange and others.  

 

Here we concentrate on the hyper elliptic curves of genus 2, 3 and 4 and provide an efficient explicit 

formulae for performing the arithmetic operations such as addition and doubling in HEC. The first explicit 

formula for genus 4 curves in to be found in this chapter.   

 

4.1 Cantor Algorithm 

 

Before the adverse of Cantor Algorithm [3] many explicit formulas for the addition of divisor classes has 

appeared, such as Montgomery [21] and Chudnosky [22]. Cantor Algorithm presents a formula for 

addition by using the divisor class in Mumford form. The same algorithm can also be used for scalar 

multiplication by using it in repeated manner. The sections below discusses the algorithm in more detail.  
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4.1.1 Composition and Reduction Stage 

 

Let consider a hyper elliptic curve  of genus , where the curve  is represented as [1]: 

 

 

 

where the polynomial expressions  and  ∈ the polynomial field , the deg 2 1 

and the deg . As discussed before that the divisor class over the field  can be represented by a 

pair of polynomials  and , where this polynomials , ∈ .  

 

Here the polynomials  and  of the divisor class are the representation of the intersection points 

between the Jacobian variety curve and the hyper elliptic curve in Mumford form. The divisor class 

, . 

In the composition section of the Cantor Algorithm, the algorithm takes the polynomial expression  

and  ∈ . The Mumford representation of the points ,  and ,  in the divisor class: 

,  & , . Here the polynomials , , , ∈ . The 

algorithm below performs the calculation for: . 

 

 Cantor Algorithm (Composition) 

INPUT HEC: . , , , . 

OUTPUT , , Semi reduced divisor  

  

Steps Expressions 

1 Compute GCD , ; 

2 Compute GCD , ; 

3 Where , , , ; 

4 ⁄ , ⁄  mod	 ; 

 

Table 4.1: Cantor Algorithm (Composition) 
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In the step 1,   is the resultant polynomial expression found by calculating the greatest 

common divisor GCD of the two polynomials  and . In the step 2,  

resultant polynomial expression found by calculating the GCD of the two polynomials  and the sum of 

the polynomials . The expression  in the step 2 can be represented as ,  and . The step 

4 calculates the expression for  and reduced expression of  mod .  

 

 Cantor Algorithm (Reduction) 

INPUT ,  semi – reduced. 

OUTPUT ,  reduced ≡  

  

Steps Expressions 

1 Calculate ⁄ , mod 	; 

2 If deg  put , , goto step 1; 

3 Make  monic. 

 

Table 4.2: Cantor Algorithm (Reduction) 

 

The divisor  is known as semi reduced as calculated in the composition section. That means 

it is possible for further reduction. The second part of the Cantor Algorithm (Reduction) can be used to 

further reduce the polynomials expression of  and . The result of the composition section can be used 

to perform further calculation. However it is better in practice to reduce the two polynomial expressions. 

In the section below, we have presented an example which will clear the mathematical steps in the Cantor 

Algorithm.  

 

4.1.2 Cantor Algorithm – An example 

 

In this example we consider the hyper elliptic curve : 3 7 2 of genus 2 over the 

field . The divisor , 7 10, 	 9  and , 10, 	7 9 . 

Here the polynomial expression 3 7 2, , ,  and  ∈ . The step 

1 and 2 of the composition section calculates the GCD of the two polynomials. In step 1, we need to 
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compute GCD , . So we can rewrite this expression as GCD 7

10, 10 .  

 

Here, the GCD is calculated by using Extended Euclidean Algorithm as shown below: 

 

7 10 10 GCD 7 10, 10  

 

    

1 0 7 10  

0 1 10 1 

1 1 7  8  

3  8 1 10 4  

  0  

 

Therefore, 3 7 10 8 1 10 . In step 2, we need to 

compute GCD , . So we can rewrite this expression as 

GCD 10,8 10 . Here, the GCD is calculated by using Extended Euclidean Algorithm as shown 

below: 

8 7 10 gcd	 10, 	8 7  

 

    

1 0 8 7  

0 1 10 3 4 

  0  

 

Therefore, 1 10 0 8 7 . In the step 3, we need to represent the 

result of step 3 as . Where we need to calculate 1

3 3 , 1 8 1 8 1 and 0. In the step 4, ⁄

7 10 10 10⁄ 7 9 4 1.  
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⁄  mod	 4 7 5. So, the semi reduced divisor 

7 9 4 1, 	4 7 5 . In the step 1 of the Cantor Algorithm (Reduction), we 

calculate ⁄ 10 and 	mod	 6. Working on the step 2 and 

3 of the algorithm the reduced divisor . 10,6  in Mumford Representation. 

 

4.1.3 Advantages and Disadvantages of using Cantor Algorithm 

 

Cantor Algorithm was the first solid algorithm to perform the computations in the Jacobian groups of 

hyper elliptic curves over the fields of odd characteristics. The biggest advantage of the Cantor Algorithm 

is that we can apply this algorithm for any hyper elliptic curve of any genus over any field. Although the 

Cantor Algorithm is very computationally intensive, it can perform divisor class operations on hyper 

elliptic curves of any properties. The disadvantage lies in its computationally intensiveness. In the step 1 

and 2 of its composition section, both of the steps uses Extended Euclidean Algorithm to calculate the 

GCD, which is computationally very intensive. Calculating GCD requires polynomial multiplication and 

especially polynomial inverses, which is computationally intensive. Other steps also requires polynomial 

multiplication and inverses. The Cantor Algorithm only offers the addition operation. For the scalar 

multiplication or doubling, the algorithm needs to be repeated. The table below shows the complexity of 

the Cantor Algorithm for genus 4 hyper elliptic curve over the field .   

 

Algorithm Inversion Addition Operation 

 (I) Multiplication 

 (M) 

Squaring 

 (S) 

Cantor [23] 6 386 M/S 

 

Table 4.3: Complexity of the Cantor Algorithm of the hyper elliptic curve of genus 4 
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4.2 Subexpression Algorithm 

 

Similarly like the Cantor Algorithm, Subexpression Algorithm [11] considers a hyper elliptic curve  of 

genus , where the curve  is represented as:  where the polynomial expressions  

and  ∈ the polynomial field , the deg 2 1 and the deg . As discussed before 

that the divisor class over the field  can be represented by a pair of polynomials  and , where 

this polynomials , ∈ . The divisor class , . The algorithm below performs 

the calculation for: . 

 

 Subexpression Algorithm [24] 

INPUT Genus = 2, HEC: . , , , . 

, ; , 

; 

OUTPUT , , , ; 

  

Steps Expressions 

1 ⁄ ; 

2 ⁄ 	mod ; 

3 ∙ ; 

4 ⁄ ; 

5  made monic; 

6 mod ; 

 

Table 4.4: Subexpression Algorithm (Addition) 
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The algorithm above performs addition operation between the two divisor classes. Similar algorithm 

below performs the doubling operation for: 2 . 

 

 Subexpression Algorithm [24] 

INPUT Genus = 2, HEC: . , , ,  

; 

OUTPUT 2 , ; 

  

Steps Expressions Steps Expression 

1 ⁄  4 2 ⁄  

2 2⁄ 	mod  5  made monic 

3 ⋅  6 ≡ 	mod	  

 

Table 4.5: Subexpression Algorithm (Doubling) 

 

4.2.1 Subexpression Algorithm – An example 

 

Using the same example used in the section of Cantor Algorithm – An example. Considering the hyper 

elliptic curve : 3 7 2 of genus 2 over the field . The divisor ,

7 10, 	 9  and , 10, 	7 9 . Here the polynomial expression 

3 7 2, , ,  and  ∈ .   

In the step 1, we calculate the expression, ⁄ ; 

 

3 7 2 7 9 ⋅ 0 7 9 10⁄  

 

Therefore, 4 2.   

 

In the step 2, we calculate the expression, ⁄ 	mod	 ; 

 



Page 48 of 117 
 

9 7 9 10⁄ 	mod	 7 10 

Therefore, 4. 

 

In the step 3,4 and 5. We calculate the expression, ∙ 4 7, the expression 

⁄ 10 and the expression  made monic 10.  

Finally in the step 6, we calculate the expression, 	mod	 6. 

 

10,6  in Mumford Representation. 

 

 

4.2.2 Advantages and Disadvantages of using Subexpression Algorithm 

 

The algorithms takes the polynomial representation of the divisor class of Cartesian points in Mumford 

Representation and also the polynomial expression of  and . The biggest advantage of the 

Subexpression Algorithm is that, unlike the Cantor Algorithm which uses Extended Euclidean Algorithm 

twice to calculate GCD. In this algorithm, we don’t have to compute GCD, which saves a lot of 

computationally intensive calculations such as polynomial inverses and multiplication. 

 

The disadvantage lies in its computationally intensiveness. All the steps requires polynomial 

multiplication and especially polynomial inverses, which is computationally intensive. Unlike Cantor 

Algorithm, which can be applied to any hyper elliptic curve of any number of genus’s, this algorithm is 

limited to the hyper elliptic curve of genus 2.   

 

4.3 Explicit Formulae Algorithm 

 

As discussed before that the disadvantages of using Cantor Algorithm is the computational intensity in 

the steps and the GCD calculation of polynomial by using Extended Euclidean Algorithm. Similarly, for 

the Subexpression Algorithm, where we still need to perform polynomial multiplications and inverses. 

However, in the Subexpression we do not need to perform GCD calculation of polynomials using 

Extended Euclidean Algorithm. In or der to avoid Cantor and Subexpression Algorithm, deriving an 
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explicit formula for genus 2 and for odd characteristics was made by Harley [11] and later was derived to 

have an explicit formula for even characteristics by Lange [9]. 

Matsuo, Chao and Tsujii [13] has already presented an explicit formulae for addition and doubling 

operation. To reduce the number of inversions to 1, Miyamoto, Doi, Matsuo, Chao and Tsujii [14] and the 

work by Takahashi [15] had obtained by using Montgomery trick.  

 

4.3.1 Advantages and Disadvantages on Explicit Formulae Algorithm 

 

Unlike Cantor Algorithm and Subexpression, which uses computationally intensive polynomial 

multiplication and inverses. Explicit formula only takes the co-efficient of the input polynomial and 

perform integer multiplication, inverses and squaring.  

 

The only disadvantage of Explicit Formulae over the Cantor Algorithm is we need to derive separate 

explicit formula for the hyper elliptic curve of genus 2, 3, 4 and further. Unlike Cantor Algorithm, where 

we can use the same algorithm for performing group operation such as addition and doubling. Explicit 

formula has separate algorithms for addition and doubling operation.    
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Chapter 5 
 
Proposed Efficient Computation for Hyper 
Elliptic Curve Cryptography 
 
 
In this chapter, we will discuss the proposed efficient explicit formulae algorithm for group operation. 

Also the theorems and proposition used to build an efficient explicit formulae algorithm. Separate explicit 

formula algorithm for addition and doubling for specific hyper elliptic curve with different number of 

genus. 

 

5.1    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 2 

 

As discuss before that the group law operations in the Jacobian. The intersecting points of the Jacobian 

variety curve with the hyper elliptic curve form a group. In the section 3.1.2.3 of Jacobian variety of Hyper 

Elliptic Curve, we have mentioned that that Jacobian variety curve is a specific curve and its intersecting 

points with the hyper elliptic curve for a group including the point at the infinity . Where the intersecting 

points sums to zero. The figure below is the graphical representation of the Jacobian variety curve and the 

hyper elliptic curve of genus 2. 

 

 
Figure 5.1: Hyper Elliptic Curve of genus 2 and Jacobian Variety Curve. 
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Since the intersection points between the Jacobian variety curve with the hyper elliptic curve sums up to 

zero. Therefore: 

0. 

 

 . 

 

The Cartesian or affine space points  and  could be transformed to individual divisor class group 

based on Mumford Representation, which is to be discussed in a separate section.  

 

In the section 3.2.2 Mumford Representation – An example, we have shown how we can convert the 

Cartesian points on the curve into polynomial expression based on Mumford. By applying Mumford 

Representation, we can convert all the Cartesian points into divisors, after the conversion we can obtain 

the equation for the Jacobian Variety curve. Here we denote the Jacobian curve as . 

 
5.1.1   Generating General Addition Explicit Formula for HEC of genus 2  
 
Let’s consider a general Hyper Elliptic Curve  of genus 2 over the finite field :  

 

HEC:  

 

The intersecting coordinates ,  and ,  would be converted to polynomial 

expression using Mumford.  

 

The divisor class group,  for the point , ,  for the point ,  and  for the point ,  as 

shown below: 

 

2 ,  

 

2 ,  
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2 ,  

 
From the figure 1 above we can assert the polynomial expression of  to be 

. The Jacobian curve  is a cubic function since we can see in the graph that the function 

has two extreme points and intersecting with the hyper elliptic curve with six Cartesian points.  

 

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points 

 or ≡ 0	 	  since we have to perform polynomial reduction.  

 

For the intersecting points  and , we can write it in the form of ≡ 0	 	 . 

 

≡ 0	mod	  

 

Or, ≡ 	mod	  

 

By reducing the L.H.S with the polynomial expression  and comparing with the R.H.S, 

we get four simultaneous equations.  

 
≡  

 
EQN 1

≡  
 

EQN 2

≡  
 

EQN 3

≡  
 

EQN 4

 
Subtracting the EQN 1 from EQN 3, we get: 
 

 EQN 5
 
Subtracting the EQN 4 from EQN 2, we get: 
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 EQN 6
 
Generating an explicit formulae with too many variables may cause error or the final result of the 

algorithm may look tedious. At the same time in order to reduce repetitive computation which may 

consume processing power, we can denote the variables such as , ,  and  with other 

notifications, as shown below: 

 
 

 
Δ   C  

 
 

Δ   C  

  
 

 
 

 

We can re – write the EQN 5 & 6 in a simpler way as shown below: 
 

Δ  
 

EQN 5

Δ  
 

EQN 6

Solving the EQN 5 & 6 simultaneously we will get expressions for  and  as shown below: 
 

Δ Δ
 

 
Δ Δ
Δ Δ

 

 
By substituting  and  into the EQN 1 and in EQN 2 respectively, we will get the expression for  and 

, as shown below: 
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At intersecting points of the two curves, in this case it is the Jacobian Variety and the Hyper Elliptic Curve 

of genus 2, the value of the  on both curve is the same. So we can replace the  expression of the hyper 

elliptic curve by the Jacobian variety curve . 

 

HEC:  

The Jacobian Variety Curve:  

 

Substituting  in HEC with : 

 

 

 

Or, ⋅

 

 

Or, ⋅

0 

 

Expanding the L.H.S and comparing its coefficients with the R.H.S we will get as show below: 

 
 

 . 

 2 1. 

 2 . 

 2 . 

 2 . 

 2 . 

 . 

 
 After computing the Jacobian Variety Curve . However, if we intended to 

solve the  and the HEC to find the Cartesian coordinates of the intersecting points. We can find the 

remaining two intersecting points by solving the expression below: 
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⋅ ⋅  

≡ 

⋅  

 

 

 

In order to avoid tedious work and for simplification, we have introduced four new variable as , ,  

and . The expression of the variable is shown below: 

 

 

 

 

 

 

 

 

 

Expanding the L.H.S of the equation and compare with the coefficients of  on the R.H.S. The expansion 

of the L.H.S is shown below: 

 

⋅ ⋅  

 

 1. 

 . 

 . 

 . 

 . 

 . 

 . 
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Comparing the coefficients of the L.H.S with the R.H.S we get: 

2 1  

2  

 

Similarly, we can get the result for  and  by solving the equation: 

 

	mod	 	≡  

 

Or, 	mod		 ≡  

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 

 

 

 

 

 

For simplification reason we presented with two variables: 
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5.1.2   Computational Complexity of General Addition Explicit Formula for HEC of   

 

In the section above, we have proposed and derived a General Explicit Formula for Addition on a  HEC 

of genus = 2. For practical purpose one can eliminate the function of  and the co-efficient of  from 

the function . The computational complexity for the General Addition Explicit Formulae is defined 

as (no. of Inverses, no. of Multiplication, no. of Squaring). 

 
Finite 
Field 

Curve Properties  Cost  

Inverses (I) Multiplication (M) Squaring (s) 

 ,  1 23 4 

 0, 0. 1 20 4 

 
Table 5.1: Complexity comparison between the explicit formulae for HEC of 

genus 2 for different curve property.  
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5.1.3    Comparison of proposed and existing Explicit Formulae (Addition) for HEC . 

 

The proposed works has been compared with the Explicit Formulae for Addition for the HEC for genus 2 

has been compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite 
Field 

Curve  
Properties 

 Cost  Improvement 
Percentage (%)

 Inverses  
(I) 

Multiplication 
(M) 

Squaring  
(S) 

  

Harley [11,25]  0, 
0 

2 24 3 100 

Lange [26]  0, 
0 

2 24 3 100 

Matsuo [13]  0, 
0 

2 25 - 101.2 

Takahashi [15]  0, 
0 

1 25 - 131.6 

Miyamoto [14]  0, 
0 

1 26 - 130.1 

Lange [27]  0, 
0 

1 22 3 133.4 

This work   0, 
0 

1 20 4 135.6 

 

Table 5.2: Comparison between the explicit formulas for (genus = 2) curves over 	

 of previous work and the present work. 
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ALGORITHM I 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: 

 OVER THE GALOIS FIELD . 

NUMBER OF COORDINATES: 6 

Input Genus 2 HEC: ; 
;  

; 
Divisor , , , ; 

, , 
, ;  

 

Output , , 
, ; 

Cost 
, ,  

 

Step Expressions Cost 
1 , ; ∆ , ∆ ; 

, ; , ;  
0,2,2  

 

2 ; , , ; 0,0,0  
3 ∆ ∆ ; 1,2,0  
4 , ; 0,1,0  
5 ⋅ ∆ ∆ , ⋅ ,  

; 
0,8,0  

6 Compute : 
2 1 ,  
2 ; 

0,6,1  

7 , ; 0,2,0  
8 Compute : 

, ; 
0,2,1  

Sum  0,23,4  
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ALGORITHM II 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: 

 OVER THE GALOIS FIELD . NUMBER OF COORDINATES: 6 

Input Genus 3 HEC: ; 
; 

Divisor , , , ; 
, , 
, ;  

 

Output , , 
, ; 

Cost 
, ,  

 

Step Expressions Cost 
1 , ; ∆ , ∆ ; 

, ; , ;  
0,2,2  

 

2 ; , , ; 0,0,0  
3 ∆ ∆ ; 1,2,0  
4 , ; 0,1,0  
5 ⋅ ∆ ∆ , ⋅ ,  

; 
0,8,0  

6 Compute : 
2 1 , 2 ; 

0,3,1  

7 , ; 0,2,0  
8 Compute : 

, ; 
0,2,1  

Sum  0,20,4  
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5.2    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 3 

 

As discussed in the section 5.1, the intersecting points of the Jacobian variety curve with the hyper elliptic 

curve forms a group. We applied this concept to the HEC of genus 2. In this section we apply the same 

concept to develop a general addition explicit formulae algorithm for genus 3. The figure below is the 

graphical representation of the Jacobian variety curve and the hyper elliptic curve of genus 3. 

 

 

Figure 5.2: Hyper Elliptic Curve of genus 3 and Jacobian Variety Curve. 

 

Since the intersecting points between the Jacobian variety curve with the hyper elliptic curve sums up to 

zero. Therefore: 

 

0. 

 . 

 

Just like in the previous section, the Cartesian of affine space points ,  and  would be transformed 

to individual divisor class group based on Mumford Representation. By applying the Mumford 

Representation, we can convert all the Cartesian points into divisor, after the conversion we can obtain 

the equation for the Jacobian Variety curve. Here we denote the Jacobian curve as .  
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5.2.1    Generating General Addition Explicit Formulae for HEC of genus 3 

 

Let’s consider a general Hyper Elliptic Curve  of genus 3 over the finite field :  

 

HEC:  

 

The intersecting coordinates , , ,  and ,  would be converted to 

polynomial expression using Mumford.  

 

The divisor class group,  for the point ,  and .  for the point , .  for the point ,  and 

 as shown below: 

 

3  
,  

 

 

2  
,  

, 

; 

3  
,  

 

 

 
Table 5.3: Corresponding conversion of the Cartesian points to Mumford form. 

 
From the figure 2 above we can assert the polynomial expression of  to be 

. As shown in the previous section, here there are eight intersecting points with the hyper 

elliptic curve. 

 

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points 

 or ≡ 0	 	  since we have to perform polynomial reduction.  

 

For the intersecting points ,  and , we can write it in the form of ≡ 0	 	 . 
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≡ 0	mod	  

 

Or, ≡ 	mod	  

 

For the intersecting points  and , we can write it in the form of ≡ 0	 	 . 

 

≡ 0	mod	  

 

Or, ≡ 	mod	  

 

By reducing the L.H.S with the polynomial expression   and   

comparing with the R.H.S, we get five simultaneous equations.  

 
≡  

 
EQN 1

≡  
 

EQN 3

≡  
 

EQN 4

≡  
 

EQN 5

 
As discussed before, that generating an explicit formulae with too many variable may make the work 

tedious. In order to reduce repetitive computation, we can denote the variable with other notifications, as 

shown below: 

 

 

 ∆  

 

 

 ∆  

  ∆  
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 ∆  

   

 

Solving the five equations simultaneously, we will get the expression for , , , , and , as shown 

below: 

 

 

 

 

 

 

 

∆ ∆
∆ ∆ ∆ ∆

					and					
∆ ∆
∆ ∆ ∆ ∆

 

 

At intersecting points of the two curves, in this case it is the Jacobian Variety and the Hyper Elliptic Curve 

of genus 3, the value of the  on both curve is the same. So we can replace the  expression of the hyper 

elliptic curve by the Jacobian variety curve . 

 

HEC:  

The Jacobian Variety Curve:  

 

Substituting  in HEC with : 

 

 

 

Or, ⋅
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Or, ⋅

0 

 

Expanding the L.H.S and comparing its coefficients with the R.H.S we will get as show below: 

 
 . 

 2 1. 

 2 . 

 2 2 . 

 2 2 . 

 2 2 . 

 2 . 

 2 . 

 . 

 
After computing the Jacobian Variety Curve . However, if we 

intended to solve the  and the HEC to find the Cartesian coordinates of the intersecting points. We can 

find the remaining two intersecting points by solving the expression below: 

 

⋅ ⋅  

≡ 

⋅

 

 

In order to avoid tedious work and for simplification, we have introduced four new variable as , , , 

 and . The expression of the variable is shown below: 
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Expanding the L.H.S of the equation and compare with the coefficients of  on the R.H.S. The expansion 

of the L.H.S is shown below: 

 

⋅ ⋅  

 

 1. 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 

Comparing the coefficients of the L.H.S with the R.H.S we get: 

 

2 1  

2  

2 2  

 

Similarly, we can get the result for ,  and  by solving the equation: 

 

≡ 	mod	  
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After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 

 

 

 

 

 

 

 

For simplification reason we presented with two variables: 

 
 

 
 

 
 
 

5.2.2   Computational Complexity of General Addition Explicit Formula for HEC of   

 

In the section above, we have proposed and derived a General Explicit Formula for Addition on a HEC of 

genus = 3. For practical purpose one can eliminate the function of  and the co-efficient of  from the 

function . The computational complexity for the General Addition Explicit Formulae is defined as 

(no. of Inverses, no. of Multiplication, no. of Squaring). 

 
Finite 
Field 

Curve Properties  Cost  

Inverses (I) Multiplication (M) Squaring (s) 

 ,  1 44 4 

 0, 0. 1 41 4 

 
Table 5.4: Complexity comparison between the explicit formulae for HEC of 

genus 3 for different curve property.  
 
 

 

 



Page 68 of 117 
 

5.2.3    Comparison of proposed and existing Explicit Formulae (Addition) for HEC . 

  

The proposed work is compared with the Explicit Formulae for Addition for the HEC for genus 3 has been 

compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite  
Field 

Curve  
Properties 

          Cost Improvement 
Percentage (%) 

Inverse 
(I) 

Multiplication       Squaring 
          (M)                    (S) 

 

Kuroki et al 
[29] 

 0, 
0 

1 81 M/S 100 

Gonda et al 
[30] 

 0, 
0 

1 70 M/S 110.9 

Guyot et al. 
[31] 

 0, 
0 

1            64                       6 113.3 

Myukai et al. 
[32] 

 0, 
0 

1 67 M/S 113.9 

This work  0, 
0 

1            41                       4 132.2 

 
Table 5.5: Comparison between the explicit formulas for (genus = 3) curves over 	

 of previous work and the present work. 
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ALGORITHM III 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: 

 OVER THE GALOIS 

FIELD . NUMBER OF COORDINATES: 8 

Input Genus 3 HEC: ; 
;  

; 
Divisor , , , ; 

, , 
, ;  

 

Output , , 
, ; 

Cost 
, ,  

 

Step Expressions Cost 
1 , , , , , 

; 
0,4,2  

 

2 ∆ 2 , 
∆ , ∆ ,  
∆ ; 

0,5,0  

3 , ;  0,2,0  
4 , , ; 0,0,0  
5 , , ; 

∆ ∆ ∆ ∆ ; 
1,3,0  

6 ⋅ ∆ ∆ , ⋅ ∆ ∆ ,  
, ,  
; 

0,12,0  

7 Compute : 
2 1 , 2 , 
2 2 ; 

0,10,1  

8 , ; 0,2,0  
9 Compute : 

,  
, ;  

0,6,1  

Sum  1,44,4  
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ALGORITHM IV 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: 

 OVER THE GALOIS FIELD . NUMBER OF 

COORDINATES: 8.  

Input Genus 3 HEC: ; 
; 

Divisor , , , ; 
, , 

, ;  

 

Output , , 
, ; 

Cost 
, ,  

 

Step Expressions Cost 
1 , , , , ,  

;   
0,4,2  

 

2 ∆ 2 , 
∆ , ∆ ,  
∆ ; 

0,5,0  

3 , ;  0,2,0  
4 , , ; 0,0,0  
5 , , ; 

∆ ∆ ∆ ∆ ; 
1,3,0  

6 ⋅ ∆ ∆ , ⋅ ∆ ∆ ,  
, ,  
; 

0,12,0  

7 Compute : 
2 1 , 2 , 
2 2 ; 

0,7,1  

8 , ; 0,2,0  
9 Compute : 

,  
, ; 

0,6,1  

Sum  1,41,4  
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5.3    Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 4 
 
In this section we apply the same concept to develop a general addition explicit formulae algorithm for 

genus 3. The figure below is the graphical representation of the Jacobian variety curve and the hyper 

elliptic curve of genus 4. 

 

Figure 5.3: Hyper Elliptic Curve of genus 4 and Jacobian Variety Curve. 

 

Since the intersecting points between the Jacobian variety curve with the hyper elliptic curve sums up to 

zero. Therefore: 

 

0. 

  

. 

 
5.3.1    Generating General Addition Explicit Formulae for HEC genus 4 

 

Just like in the previous section, the Cartesian of affine space points to individual divisor class group based 

on Mumford Representation. After the conversion we can obtain the equation for the Jacobian Variety 

curve. Here we denote the Jacobian curve as .  

 

The divisor class group,  for the point , ,  and , for the point as shown below: 

 

4  
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In Mumford form:  

 

, ,  

 

The divisor class group,  for the point  and , for the point as shown below: 

 

2  

In Mumford form: 

 

, ,  

 

The divisor class group,  for the point , ,  and , for the point as shown below: 

 

4  

In Mumford form: 

 

, ,  

 

From the figure 3 above we can assert the polynomial expression of  to be 

. As shown in the previous section, here there are eight intersecting points with the 

hyper elliptic curve. At the intersecting points the y-coordinates are same. Therefore we can write, at the 

intersection points  or ≡ 0	 	  since we have to perform polynomial 

reduction.  

 

For the intersecting points , ,  and , we can write it in the form of ≡ 0	 	 . 

 

≡ 0	mod	  
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Or, ≡ 	mod	

 

 

For the intersecting points  and , we can write it in the form of ≡ 0	 	 . 

 

≡ 0	mod	  

 

Or, ≡ 	mod	  

 

By reducing the L.H.S with the polynomial expression   and 

  comparing with the R.H.S, we get six simultaneous equations.  

 
 

 
EQN 1

 
 

EQN 2

 
 

EQN 3

 
 

EQN 4

3 2
 

 

EQN 5

2   EQN 6
 
As discussed before, we can introduce new variables to make the equation less tedious. The variable we 

choose is shown below to ease the computation: 

 
∆ 3  

 
∆ 2  ∆  

∆ 2  
 

∆  ∆  
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 We can re – write the EQNS to make it easier to solve: 
 

 
 

EQN 1

 
 

EQN 2

 
 

EQN 3

 
 

EQN 4

∆ ∆ ∆  
 

EQN 5

∆ ∆ ∆   EQN 6
 
Subtracting the EQN 6 from EQN 5: 
 

∆ ∆ ∆ ∆ ∆ ∆
 

EQN 7

 
Adding the EQN 7 and EQN 4: 
 

∆ ∆ ∆ ∆ ∆ ∆
 

EQN 8

 
Subtracting the EQN 3 from EQN 8: 
 

∆ ∆ ∆ ∆
∆ ∆  

EQN 9

 
As discussed before, we can introduce new variables to make the equation less tedious. The variable we 

choose is shown below to ease the computation: 

 
∆ ∆  

 
∆ ∆  

 
∆ ∆  
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Subtracting the EQN 1 from EQN 9: 

 

 EQN 10
 

We can simplify the EQN 10 by introducing new variables, as shown below: 

 

 

 

 

 

 EQN 10
 

Similarly, we can represent the EQN 7 in a similar manner as shown below: 

 

∆ ∆  

∆ ∆  

∆ ∆  

 

 EQN 7
 

The table below shows how the consecutive equations are formed by addition, subtraction and elimination: 

 

EQN 7 + EQN 4 

. 

EQN 11

EQN 11 - EQN 3 

. 

EQN 12

EQN 12 - EQN 1 

. 

EQN 13

Similarly, we can represent the EQN 13 in a similar manner as shown below: 
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 EQN 13

 EQN 10

 
Solving the equations simultaneously, we will get the expression for , , , ,  and , as shown 
below: 
 

 
 

⋅   
 

⋅  
 

  

 
 

  

 
By using the same methodology used in the earlier sections, we find: 
 

, 1 

 

,  

 

, , ,  

 

, ,  

 
where the variables are detailed below: 
 

1   

  , 2  

, 2  , 2  , 2  

, 2  ,   

  
Similarly, we can get the result for ,  and  by solving the equation: 

 

≡ 
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≡ 	mod	  

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 
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5.3.2   Computational Complexity of General Addition Explicit Formula for HEC of   

 

In the section above, we have proposed and derived a General Explicit Formula for Addition on a  HEC 

of genus = 4. For practical purpose one can eliminate the function of  and the co-efficient of  from 

the function . The computational complexity for the General Addition Explicit Formulae is defined 

as (no. of Inverses, no. of Multiplication, no. of Squaring). 

 
Finite 
Field 

Curve Properties  Cost  

Inverses (I) Multiplication (M) Squaring (s) 

 ,  1 74 9 

 0 1 71 9 

 
Table 5.6: Complexity comparison between the explicit formulae for HEC of 

genus 4 for different curve property.  

 

5.3.3    Comparison of proposed explicit formulae and existing (Addition) for HEC . 

 

The proposed work is compared with the existing addition for the HEC for genus 4 has been compared. 

The table below shows the list of complexity comparison. 

 

Previous Work Finite Field Cost Improvement 
Percentage (%)Inverse 

(I) 
   Multiplication        Squaring 
           (M)                      (S) 

Cantor [23]  6 386 M/S 100 

Nagao [23]  2 289 M/S 135 

C. Paar [33]  2            160                        4 160 

This work  1              71                        9 181 

 
Table 5.7: Comparison between the explicit formulas for (genus = 4) curves over 	

 of previous work and the present work. 
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ALGORITHM V 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: 

 OVER THE 

GALOIS FIELD . NUMBER OF COORDINATES: 10 

Input Genus 4 HEC: ; 
;  

; 
Divisor , , , ; 

,  
; 

, ;  

 

Output , , 
,  

; 

Cost 
, ,  

 

Step Expressions Cost 
1  , , ; 0,1,2  

2 ∆ 3 , ∆ 2 , ∆ , 
∆ 2 , ∆ , ∆ ;  

0,5,1  

3 , , , ; 0,3,1  

4 ∆ , ∆ , ∆ , ∆ , ∆ , 
∆ ; 

0,6,0  

5 , , ,  
;  

0,4,0  

6 , , , 
, , ;   

0,0,0  

7 , , 
, , ,  

;  

0,8,0  

8 ;  1,2,0  
9 ⋅ , ⋅ ,  

, , , 
;   

0,14,0  

10 1, , , 
, ;  

0,5,0  
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11 , 2 , , 2 , , 2 , , 2 , 

, 2 , , ;  

0,6,2  

12 Compute : 

, 1, , ,  

, , , , 

, ,

; 

0,9,2  

13 Compute : 
, 

,  
,  

; 

0,11,1  

Sum  (1,74, 9) 
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ALGORITHM VI 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: 

 OVER THE GALOIS FIELD . 

NUMBER OF COORDINATES: 10 

Input Genus 4 HEC: ; 

; 
Divisor , , , ; 

,  
; 

, ;  

 

Output , , 
,  

; 

Cost 
, ,  

 

Step Expressions Cost 
1  , , ; 0,1,2  

2 ∆ 3 , ∆ 2 , ∆ , 
∆ 2 , ∆ , ∆ ;  

0,5,1  

3 , , , ; 0,3,1  

4 ∆ , ∆ , ∆ , ∆ , ∆ , 
∆ ; 

0,6,0  

5 , , ,  
;  

0,4,0  

6 , , , 
, , ;   

0,0,0  

7 , , 
, , ,  

;  

0,8,0  

8 ;  1,2,0  
9 ⋅ , ⋅ ,  

, , , 
;   

0,14,0  

10 1, , , 
, ;  

0,5,0  
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11 , 2 , , 2 , , 2 , , 2 , 

, 2 , , ;  

0,6,2  

12 Compute : 

, 1, , ,  

, , , , 

, , ; 

0,6,2  

13 Compute : 
, 

,  
,  

; 

0,11,1  

Sum  (1,71, 9) 
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5.4    Explicit Formulae (Doubling) for HEC of genus 2 

As discussed in the previous sections that we can apply the group law operations in the Jacobian and we 

can generate explicit formulae for the hyper elliptic curve of genus 2, 3 and 4 from the intersecting points. 

Similar to the elliptic curve tangent and chord method, we can also generate doubling explicit formulae 

for HECs. The figure below is the graphical representation of the Jacobian variety curve and the hyper 

elliptic curve of genus 2. 

 

Figure 5.4: Hyper Elliptic Curve of genus 2 as it touch the Jacobian variety curve. 

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero. 

Therefore: 

0. 

 

2 2  

 

The Cartesian points or the affine space points  and  could be transformed to individual divisor class 

group based on Mumford Representation, which is to be discussed in a separate section. 

 

5.4.1    Generating Doubling Explicit Formulae for HEC of genus 2 

 

Let’s consider a general Hyper Elliptic Curve  of genus 2 over the finite field :  

 

HEC:  
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Since, we will be working with this particular expression	 0. 

We can convert the coordinate  and  to polynomial expression using Mumford. 

 

The divisor class group,  for the point ,  and for the point ,  is shown below: 

 

2 ,  

 

2 ,  

 

From the figure 4 above we can assert the polynomial expression of  to be 

. The Jacobian curve  is a cubic function since we can see in the graph that the function 

has two extreme points and intersecting with the hyper elliptic curve with four Cartesian points.  

 

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points 

 or ≡ 0	 	  since we have to perform polynomial reduction.  

 

For the intersecting points  and , we can write it in the form of ≡ 0	 	 . 

 

≡ 0	mod	  

 

Or, ≡ 	mod	  

 

By reducing the L.H.S with the polynomial expression  and comparing with the R.H.S, we 

get two equations.  

 
≡  

 
EQN 1

≡  
 

EQN 2
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Since, the Jacobian variety curve touches at two points on the hyper elliptic curve. We can conclude that 

at that point the gradient is same. So we find the derivative of the Jacobian and the hyper elliptic curves: 

 

Derivative of Jacobian Curve: 

 

3 2  

Derivative of the hyper elliptic curve: 

 

2 ⋅ 5 4 3 2  

 

By substituting  of the divisor ,  and the derivative of the Jacobian curve, 

we get the expression as shown below: 

 

2 3 2 ⋅ 5 4 3 2 	mod	  

 

By reducing the L.H.S with the polynomial expression  and comparing with the R.H.S, we 

get another pair of equations.  

 
∆ ∆ ∆ ≡  

 
EQN 3

∆ ∆ ∆ ≡  
 

EQN 4

Where the variables ∆ , ∆ , ∆ , ∆ , ∆ , ∆ ,  and  are shown below: 
 

∆ 6 6  
 

∆ 4 4  
 

∆ 2  
 

∆ 6 6  

∆ 4  
 

∆ 2  
 

5 3
2  

 

5 3  
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By solving the equations EQN 1, 2, 3 and 4 we can find the co-efficient of the Jacobian variety curve 

. The results are shown below: 

 

 

 

 

 
 

 
 

 
 
Where the variable are used to simplify the calculation and to make the result appear less tedious. The 

variable used here is shown below: 

 
∆ ∆  

 
∆ ∆  ∆ ∆  

∆ ∆  ∆  ∆  
 
At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 2, the 

value of the  on both curve is the same. So we can replace the  expression of the hyper elliptic curve by 

the Jacobian variety curve . 

 

HEC:  

The Jacobian Variety Curve:  

 

Substituting  in HEC with : 

 

 

 

Or,  

  
                       Or, 0                    [EXP 1]  
 
Solving the expression [EXP 1] would give the coordinates of the intersecting points and the point of 

touch. However, we intended to get the results in Mumford form. The expression below is explicitly 

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.  
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⋅ ⋅  

≡ 

 

 

 

Comparing the coefficients of the L.H.S with the R.H.S we get: 

 

2 2 1 

2 2 2  

 

Similarly, we can get the result for  and  by solving the equation: 

 

	mod	 	≡  

 

Or, 	mod	 	≡  

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 
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5.4.2    Comparison of proposed and existing Explicit Formulae (Doubling) for HEC . 

 

The proposed works has been compared with the Explicit Formulae for doubling for the HEC for genus 2 

has been compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite 
Field 

Curve  
Properties 

 Cost  Improvement 
Percentage (%)

 Inverses  
(I) 

Multiplication 
(M) 

Squaring  
(S) 

  

Harley [11,25]  0, 
0 

2 30 - 100 

Lange [26]  0, 
0 

2 24 6 103.4 

Matsuo [13]  0, 
0 

2 27 - 104.3 

Takahashi [15]  0, 
0 

1 29 - 130 

Miyamoto [14]  0, 
0 

1 27 - 132.9 

Lange [27]  0, 
0 

1 22 5 135.7 

This work   0, 
0 

1 23 3 136.7 

 
Table 5.8: Comparison between the explicit formulas (doubling) for (genus = 2) curves over 	

 of previous work and the present work. 
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TABLE VII 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: 

 OVER THE GALOIS FIELD	 . NUMBER OF 

COORDINATES: 4 

Input Genus 2 HEC: ; 
0; ; 

Divisor , ;  
, , 

 

Initial 
input 

variables 

; ; ; ; ; 
; 

 

 

Output , 2 ,  
,	 ; 

Cost 
, ,  

 

Step Expressions Cost 
1 ∆ 6 ; ∆ 4 4 ; ∆ 2 ;  

∆ 6 6 ; ∆ 4 ; ∆ 2 ; 
0,2,0  

 

2 5 2 3 2 ; 
5 3 ;  

0,3,2  

3 ∆ ∆ ; ∆ ∆ ;  
∆ ∆ ; ∆ ∆ ;    

0,3,0  

4 ∆ ; ∆ ;   

5 ; 1,2,0  
6 ⋅ ; ⋅ ; 

; ;  
0,8,0  

7 Compute : 
2 2 1;  
2 2 2 ; 

0,3,1  

Initial 
output 

variables 

; ;   

8 Compute : 
; 

; 

0,2,0  

Sum  0,23,3  
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5.5    Explicit Formulae (Doubling) for HEC of genus 3 

As discussed in the section 5.4, we apply this concept to the HEC of genus 3. In this section we apply the 

same concept to develop a general addition explicit formulae algorithm for genus 3.  

 

 

Figure 5.5: Hyper Elliptic Curve of genus 3 as it touch the Jacobian variety curve. 

 

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero. 

Therefore: 

 

 2 2 2 . 

 

The Cartesian points or the affine space points ,  and  could be transformed to individual divisor 

class group based on Mumford Representation, which is to be discussed in a separate section. 

 

5.5.1    Generating Doubling Explicit Formulae for HEC of genus 3 

 

Let’s consider a general Hyper Elliptic Curve  of genus 3 over the finite field :  

HEC:  
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Since, we will be working with this particular expression	

0. We can convert the coordinate  and  to polynomial expression using 

Mumford.  

 

The divisor class group,  for the point , ,  and for the point , ,  is shown 

below: 

 

3  
,  

 
 

3  
,  

 
 

 
Table 5.9: Corresponding conversion of the Cartesian points to Mumford form for genus 3. 

 

We can assert the polynomial expression of  to be . The 

Jacobian curve  is a quantic function. At the intersecting points the y-coordinates are same. 

Therefore we can write, at the intersection points  or ≡ 0	 	  since we 

have to perform polynomial reduction.  

For the points , ,  we can write it in the form of ≡ 0	 	 . 

 

≡ 0	mod	  

 

 ≡ 	mod	  

 

By reducing the L.H.S with the polynomial expression  and comparing with the R.H.S, 

we get three equations. 

 
 

 
EQN 1

 
 

EQN 2

  EQN 3
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Where the variables ,  and : 
 

   
 
Since, the Jacobian variety curve touches at two points on the hyper elliptic curve. We can conclude that 

at that point the gradient is same. So we find the derivative of the Jacobian and the hyper elliptic curves: 

 

Derivative of Jacobian Curve: 

 

4 3 2  

 

 

Derivative of the hyper elliptic curve: 

2 ⋅ 7 5 4 3 2  

 
By substituting  of the divisor ,  and the derivative of the 

Jacobian curve, we get the expression as shown below: 

 

2 4 3 2 ⋅  

≡ 

5 4 3 2 	mod	  

 

By reducing the L.H.S with the polynomial expression  and comparing with the R.H.S, we 

get another three equations. 

  
∆ ∆ ∆ ∆  

 
EQN 4

∆ ∆ ∆ ∆  
 

EQN 5

∆ ∆ ∆ ∆  EQN 6
 
Where the variables ∆ , ∆ , ∆ , ∆ , ∆ , ∆ , ∆ , ∆ , ∆ , ∆ , ∆ , ∆ , ,  and  shown below: 
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∆ 8 8 8  
 

∆ 6 6 6 6  

∆ 4 4  
 

∆ 2  

∆ 8 8 8 8  ∆ 6 6 6  

∆ 4 4  
 

∆ 2  

∆ 8 8 8  
 

∆ 6 4  

∆ 4  
 

∆ 2  

7 5 4 3  
 

7 5 4 2  

7 5 4  3  
2 2   

 

By solving the equations EQN 1, 2, 3, 4, 5 and 6 we can find the co-efficient of the Jacobian variety 

curve . The results are shown below: 

 

 

 

 

 
 

 
 

 
 

 
Where the variable are used to simplify the calculation and to make the result appear less tedious. The 

variable used here is shown below: 

 
∆ ∆ ∆ ∆  

 
∆ ∆ ∆ ∆  ∆ ∆ ∆ ∆  

∆ ∆ ∆ ∆  ∆ ∆ ∆ ∆  ∆ ∆ ∆ ∆  
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At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 3, the 

value of the  on both curve is the same. So we can replace the  expression of the hyper elliptic curve by 

the Jacobian variety curve . 

 

HEC:  

The Jacobian Variety Curve:  

 

Substituting  in HEC with : 

 
 

 
Or,  

 
Or, 0         
 

[EXP 2]  
 

Solving the expression [EXP 2] would give the coordinates of the intersecting points and the point of 

touch. However, we intended to get the results in Mumford form. The expression below is explicitly 

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.  

 

 

 

 

 

 

≡ 

 



Page 95 of 117 
 

 

 

Comparing the coefficients of the L.H.S with the R.H.S we get: 

 

2  

2 2 2  

2 2 2 2  

 

Similarly, we can get the result for ,  and  by solving the equation: 

 

	mod	 	≡  

 

Or, 	mod	 	≡  

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 
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5.5.2   Comparison of proposed and existing Explicit Formulae (Doubling) for HEC . 

 

The proposed works has been compared with the Explicit Formulae (Doubling) for the HEC for genus 3 

has been compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite  
Field 

Curve  
Properties 

          Cost Improvement 
Percentage (%) 

Inverse 
(I) 

Multiplication       Squaring 
          (M)                    (S) 

 

Kuroki et al 
[29] 

 0, 
0 

1 74 M/S 100 

Gonda et al 
[30] 

 0, 
0 

1 71 M/S 103.3 

Guyot et al. 
[31] 

 0, 
0 

1            61                       9 108.1 

Myukai et al. 
[32] 

 0, 
0 

1 68 M/S 106.4 

This work  0, 
0 

1            63                       3 109.8 

 

Table 5.10: Comparison between the explicit formulas for (genus = 3) curves over 	
 of previous work and the present work. 
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TABLE VIII 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: 

 OVER THE GALOIS FIELD . NUMBER OF 

COORDINATES: 6.  

Input Genus 3 HEC: ; 
; 

Divisor , ;  
, , 

 

Initial 
input 

variables 

; ; ; ; ; ; 
; ; ; ;  
;  ; ; ;  
; ; ; ; 

 

Output , 2 ,  
, ; 

Cost 
, ,  

 

Step Expressions Cost 
1 ; ; ; 0,0,0  
2 2 ; ;  

; 
0,1,0  

3 3 ; 2 2 ;  
; 

0,4,0  

4 ∆ 8 8 8 ;  
∆ 6 6 6 6 ; ∆ 4 4 ;  
∆ 2 ; ∆ 8 8 8 8 ; 
∆ 6 6 6 ; ∆ 4 4 ; ∆ 2 ; 
∆ 8 8 8 ; ∆ 6 4 ;  
∆ 4 ; ∆ 2 ; 

0,11,0  

5 ∆ ∆ ∆ ∆ ; ∆ ∆ ∆ ∆ ; ∆ ∆ ∆ ∆ ; 
∆ ∆ ∆ ∆ ; ∆ ∆ ∆ ∆ ; ∆ ∆ ∆ ∆ ; 

0,12,0  

6 7 5 4 3 ; 7 5 4 2 ; 
7 5 4 ; 

0,6,0  

7 ∆ ∆ ; ∆ ∆ ; 0,4,0  
8 ; ; ;  

; 
0,4,0  

9 ; ; 0,2,0  
10 ; 1,2,0  
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11 Computing the co-efficient of Jacobian Variety Curve: 

:  
⋅ ; ⋅ ; 

; ;  
; 

0,12,0  

12 , 2 ; ;  0,2,1  

13 Compute : 

2 ;  

, 2 2 ;  

, 2 2 2 ; 

0,1,1  

14 Compute : 

;  
; 

; 

0,6,1  

Sum  0,63,3  
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5.6    Explicit Formulae (Doubling) for HEC of genus 4 

As discussed in the section 5.5, we apply this concept to the HEC of genus 4. In this section we apply the 

same concept to develop a general addition explicit formulae algorithm for genus 4.  

 

 

Figure 5.6: Hyper Elliptic Curve of genus 4 as it touch the Jacobian variety curve. 

 

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero. 

Therefore: 

 
 2 2 2 2 . 

 
 2 2 2 2 . 

 
The Cartesian points or the affine space points , ,  and  could be transformed to individual divisor 

class group based on Mumford Representation, which is to be discussed in a separate section. 

 
5.6.1    Generating Doubling Explicit Formulae for HEC of genus 4 
 
Let’s consider a general Hyper Elliptic Curve  of genus 4 over the finite field :  

 
HEC: ; 
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Since, we will be working with this particular expression  2 2 2 2

. We can convert the coordinate , ,  and  to polynomial expression 

using Mumford as shown below: 

 

3  
,  

 

 

3  
,  

 

 

 
Table 5.11: Corresponding conversion of the Cartesian points to Mumford form for genus 4. 

 
 

4  

 

4  

 

We can assert the polynomial expression of  to be . The 

Jacobian curve  is a pentic function. At the touch points the y-coordinates are same. Therefore 

we can write,  or ≡ 0	 	  since we have to perform polynomial reduction.  

 
For the points , , ,  we can write it in the form of ≡ 0	 	 . 

 

≡ 0	mod	  

 

 

≡ 

	mod	  
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By reducing the L.H.S with the polynomial expression  and comparing 

with the R.H.S, we get four equations. 

 
 

 
EQN 1

 
 

EQN 2

 

 

EQN 3

 

 

EQN 4

Derivative of Jacobian Curve: 
 

5 4 3 2  

 
Derivative of the hyper elliptic curve: 
 

2 ⋅ 9 7 6 5 4 3 2  

 
By substituting  of the divisor ,  and the derivative of 

the Jacobian curve, we get the expression as shown below: 

 
2 5 4 3 2 ⋅  

≡ 
9 7 6 5 4 3 2 	mod	  

 

By reducing the L.H.S with the polynomial expression , and comparing 

with the R.H.S, we get four equations. 

 
 

 
EQN 5

 
 

EQN 6

 

 

EQN 7

  EQN 8
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By solving the equations EQN 1, 2, 3, 4, 5, 6,7 and 8 we can find the co-efficient of the Jacobian variety 

curve . The results are shown below: 

 
∆ ∆
∆ ∆ ∆ ∆

 

 
∆ ∆
∆ ∆ ∆ ∆

 

 
 

 
 

 
 

 
 

 
At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 4, the 

value of the  on both curve is the same. So we can replace the  expression of the hyper elliptic curve by 

the Jacobian variety curve . 

 

HEC:  

The Jacobian Variety Curve:  

 
Substituting  in HEC with : 

 
 

 

Or,  

 

 

 

Or,  

                                   0                         [EXP 2]  
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Solving the expression [EXP 2] would give the coordinates of the intersecting points and the point of 

touch. However, we intended to get the results in Mumford form. The expression below is explicitly 

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.  

 
∙ ∙ 

 

≡ 

 

 
 

Comparing the coefficients of the L.H.S with the R.H.S we get: 

2  

2 2  

2 1 2 2 2 2  

2 2 2 2 2 2  

 

Similarly, we can get the result for ,  and  by solving the equation: 

 

	mod	 	≡  

 

Or, 	≡ 	 

	  

 

After expanding the equation and comparing the coefficients L.H.S ≡ R.H.S we get: 
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5.6.2   Comparison of proposed and existing Explicit Formulae (Doubling) for HEC  

 
The proposed works has been compared with the Explicit Formulae (Doubling) for the HEC for genus 4 

has been compared. The table below presents list the complexity comparison table. 

 

Previous Work Finite Field Cost Improvement 
Percentage (%)Inverse 

(I) 
   Multiplication        Squaring 
           (M)                      (S) 

Cantor [23]  6                       359 M/S 100 

Nagao [23]  2                       268 M/S 135.7 

C. Paar [33]  2            193                       16 146.3 

This work  1              98                         3 178.6 

 
Table 5.12: Comparison between the explicit formulae’s (doubling) for (genus = 4) curves over 	

 of previous work and the present work. 
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TABLE IX 

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: 

 OVER THE GALOIS FIELD . 

NUMBER OF COORDINATES: 8 

Input Genus 4 HEC: ; 

; 
Divisor , ; 

,  
; 

 

Initial 
input 

variables 

; ; ; ; ; 
; ; ; ; ; 

; ; ; ; ; ; 

 

Output , 2 ,  
; 

; 

Cost 
, ,  

 

Step Expressions Cost 
1 ; ; ; ; 0,0,0  
2 2 ; ;  

; ; 
0,1,0  

3 3 2 ;  
2 2 ;  
2 ;  
2 ; 

0,4,0  

4 3 2 4 3 2 ; 
4 2 3 ; 

2 3 2 2
; 3 2 ; 

0,16,0  

5 10 10 10 10 ; 8
8 8 8 ; 6 6 6 ;  

4 4 ; 2 ; 10 10
10 10 ; 8 8 8 ; 6
6 6 ; 2 ; 

0,19,0  

6 9 7 6 5 4 ; 
9 7 6 5 3 ; 

0,6,0  



Page 106 of 117 
 

7 ∆ ; ∆ ; 
∆ ; ∆ ; 

0,13,0  

8 ; ; 0,6,0  
9 ∆ ∆ ∆ ∆ ; 1,2,0  
10 Computing the co-efficient of Jacobian Variety Curve: 

:  
⋅ ∆ ∆ ; ⋅ ∆ ∆ ; 

; ;  
; ; 

0,12,0  

11 Compute : 

2 ; 2 2 ; 
2 1 2 2 2 2 ;  
2 2 2 2 2

2 ;  

0,8,2  

12 ; ; ; ; 0,3,1  

13 Compute : 
; ; 
; ; 

0,8,0  

Sum  1,98,3  
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Chapter 6 
 
Discussions and Future Works 

 
 
In the field of cyber – security, especially for public key infrastructure. There is a demand for shorter key 

size and faster computation. Shorter key size is needed since the mobile devices stores limited amount of 

space and faster computation is necessary because of limited power supply and processing capabilities. 

Elliptic Curve Cryptosystem has been studied extensively and has already been implemented in our mobile 

devices such as Blackberry to public key cryptosystem. The key size used by the ECC is much shorter 

than of RSA and provides the same security strength. However, it is believed theoretically that the Hyper 

Elliptic Curve Cryptosystem can provide the same security strength with much shorter key size of ECC.   

 

In this thesis, a brief introduction is provided in the first chapter. Then, in chapter 2 the mathematical 

background of groups, rings, finite field and basic introduction of Hyper Elliptic Curve with examples. 

Chapter 3, discusses the HECC is details such as group operation and its comparison with ECC. In the 

chapter 4, we gave an overview of the existing computational methods and subsequently in chapter 5 we 

have proposed an algorithm for faster computation for Hyper Elliptic Curve Cryptography. We also 

discussed the process used derive the algorithm for curves of genus 2, 3 and 4. In the complexity 

comparison table, we have noticed that the as the number of genus of the curve increases the number of 

total operations to perform group operation decreases compare to the recent existing work. There is 

significant rise in efficiency in terms of percentage from the recent previous work for the hyper elliptic 

curves of genus 3 and 4.      

 

In the future study, we can work on the hardware implementation of Hyper Elliptic Curve Cryptosystems, 

i.e, key exchange and digital signature. Although this thesis is solely based on the computation in Affine 

Space. Later we can derived an explicit formulae in projective space, which will delete the inversion 

operation. As discussed in this thesis, inverse operation is computationally intensive. Would it be possible 

to develop an explicit formulae algorithm of 0 inversion in affine space? The explicit formulae shown in 

the thesis is takes the coefficient of the Mumford Representation of the Cartesian points as input. There is 
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another method of transforming the Cartesian points into divisor class by Chow Representation [41], [42]. 

Is it possible to develop more efficient explicit formulae with Chow Representation instead of Mumford 

Representation? All these options can be explored in the future.  

 

Later, we can propose explicit formulae over the finite field of 2 . 
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Appendix 

 

A.    MATLAB SCRIPT FOR PSEUDO CODE FOR CALCULATING: 	  

 
% Power Mod Calculator 
 
% A = y.^2 mod p 
 
syms A y p 
 
y = input('Enter the range of y: '); 
p = input('Enter the value of mod p: '); 
 
A = mod(power(y,p),p); 
 
W = ['y = ', num2str(y)]; 
Z = ['y.^n mod p = ', num2str(A)]; 
 
disp(W) 
disp(Z) 
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B.    MATLAB SCRIPT FOR PSEUDO CODE FOR CALCULATING: 	 	  
 
% Power Mod Calculator 
 
% B = (x.^3 + x) mod p 
 
syms B x p 
 
x = input('Enter the range of x: '); 
p = input('Enter the value of mod p: '); 
 
B = mod((x.^3 + x),p); 
 
W = ['x = ', num2str(x)]; 
Z = ['x.^3 + x mod p = ', num2str(B)]; 
 
disp(W) 
disp(Z) 
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C.    MATLAB SCRIPT FOR  PSEUDO CODE TO DETERMINE THE POINTS ON EC 
 
% EllipticCurvePoints 
% E = {(x,y): y^2 = x^3 + x mod p} U {O} 
 
% A = y.^2 mod p 
% B = (x.^3 + x) mod p 
% A represents the left side of the equation 
% B represents the right side of the equation 
 
syms A B x y p 
 
y = input('Enter the range of y: '); % range of y is from 0:p-1 
x = input('Enter the range of x: '); % range of x is from 0:p-1 
count = 0; 
 
p = input('Enter the value of mod p: '); 
 
disp('The valid co-ordinates or points in the curve') 
 
A = mod(y.^2,p); 
B = mod((x.^3 + x),p); 
 
for b = [1:p] 
        for  a = [1:p] 
            if B(b) == A(a) 
                %Z = ['B[', num2str(b) ,']', '===' , 'A[', num2str(a) 
,']'];                 
                %W = ['x = ', num2str(x(b)) , ' === ' , 'y = ', 
num2str(y(a))]; 
                %disp(Z) 
                %W = ['(x,y) = (', num2str(x(b)) ,',', 
num2str(y(a)),')']; 
                count = count + 1;  
                %disp(W)             
            end 
        end 
end 
count = count + 1; 
Z = ['Number of Valid points = ', num2str(count)]; 
disp(Z) 
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D.    MATLAB SCRIPT FOR PSEUDO CODE TO DETERMINE THE POINTS ON HEC 
 
% HyperEllipticCurvePoints 
% E = {(x,y): y^2 = x^5 + 1184x^3 + 1846x^2 + 956x + 560 mod p} U {O} 
 
% A = (y.^2) mod p 
% B = (x.^5 + 1184*x.^3 + 1846*x.^2 + 956*x + 560) mod p 
% A represents the left side of the equation 
% B represents the right side of the equation 
 
syms A B x y p 
 
y = input('Enter the range of y: '); % range of y is from 0:p-1 
x = input('Enter the range of x: '); % range of x is from 0:p-1 
count = 0; 
 
p = input('Enter the value of mod p: '); 
 
disp('The valid co-ordinates or points in the curve') 
 
A = mod((y.^2),p); 
B = mod((x.^5 + 1184*x.^3 + 1846*x.^2 + 956*x + 560),p); 
 
for b = [1:p] 
        for  a = [1:p] 
            if B(b) == A(a) 
                W = ['(x,y) = (', num2str(x(b)) ,',', 
num2str(y(a)),')']; 
                count = count + 1;  
                disp(W) 
                 
            end 
        end 
end 
count = count + 1; 
Z = ['Number of Valid points = ', num2str(count)]; 
disp(Z) 
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