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Abstract

In this thesis we have proposed explicit formulae for group operation such as addition and doubling
on the Jacobians of Hyper Elliptic Curves genus 2, 3 and 4. The Cantor Algorithm generally
involves to perform arithmetic operations in the polynomial ring F,[x]. The explicit method
performs the arithmetic operation in the integer ring of IF,. Significant improvement has been made
in the explicit formulae algorithm proposed here. Other explicit formulae used Montgomery trick
to derive efficient formulae for faster group computation. The method used in this thesis to develop
an efficient explicit formula was inspired by the geometric properties in the hyper elliptic curves
of genus and by keeping the Jacobian variety curve constant. This formulae take Mumford
coordinates as input. The explicit formulae here performs the computation in affine space of genus
2, 3 and 4 of Hyper Elliptic Curves in general form, which can be used to develop Hyper Elliptic
Curve Cryptosystem.

Key Words: Hyper Elliptic Curve, Hyper Elliptic Curve Cryptosystem, Jacobian Curve, genus 2,
genus 3, genus 4.
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Chapter 1

Introduction

Cybersecurity plays a very important role in our daily lives. For example, we would like to protect our
data in our personal electronic devices, such as laptop and smart phone. To have a secure communication
over the unsafe internet, using communication application such as Skype, WhatsApp and many more. To
protect out data in cloud storage services offered by Dropbox, Google Drive and etc. or we would like to
do online banking services and paying bills, or we purchase online and enjoy Electronic Commerce
services offered by Amazon, EBay, Alibaba and many more. All those are made possible with the
implementation and improvement of cybersecurity. The field of cryptography, as the core technology to
achieve cybersecurity for the things mentioned above, can provide crucial security services such as

Privacy, Authentication, Key Establishment and Data Integrity.

Higher security strength, faster implementation and low power consumption, this is what we are after in
the area of cryptography engineering. There are already many cryptographic algorithms available which
are able to satisfy these requirements. However, the new communication gadgets are smaller in size, which
has very limited processing power and storage. The key size of the RSA [9] is quite large and RSA
implementation in small devices takes long processing time and consumes a lot power. So cryptosystems
that use smaller key size are favored in practice, such like those rely on the discrete logarithm problem

over multiplicative group of elliptic curve defined in finite fields.

Koblitz [1] introduced Elliptic Curve Cryptography (ECC) in 1987. It is based on the discrete logarithm
problem over the abelian group of points of the curve. The group law over the curve makes the operation
fast and easy to compute. The advantages of using ECC is its key size are smaller than RSA and also there

is no sub exponential algorithms for Elliptic Curve Discreet Logarithm Problem (ECDLP).
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Elliptic Curve Cryptography (ECC) can provide the same level of security as RSA or discreet logarithm
problem (DLP) based systems such as Diffie Hellman Key Exchange (DHKE) and ElGamal public key
cryptosystem at much smaller key size. On the hand, the complexity of the mathematics of the elliptic
curves are more involved than those of the RSA and DLP based systems. Hyper Elliptic Curve
Cryptography (HECC) is one of the late members of the established public-key algorithms: DHKE, RSA,
ElGamal and ECC [6], [7], [8] [10].

In 1989, Koblitz [2] introduced discrete logarithm problem on hyper elliptic curves (HEC) and the
cryptosystem constructed over the Jacobian of Hyper elliptic curves and based on this hard problem. This
research subject is called hyper elliptic curve cryptography (HECC). Note that hyper elliptic curves can
also be viewed as a special type of elliptic curves with genus > 2. The advantage of using HECC is the
smaller key size for the same level of security, even compared to ECC. Moreover, it has no sub exponential
algorithms to solve HEC DLP, similar to that for ECC. The smaller size of the base field also makes hyper

elliptic curves a good choice for the light weight cryptosystems.

Hyper Elliptic Curve Cryptography (HECC) offers theoretically higher level of security than all the
established public key cryptosystem [5]. This is due to the high level of mathematical complexity even
compare to Elliptic Curve Cryptosystems with the same key lengths size. In this thesis the mathematical
background of HECC is discussed in detail and efficient methods for performing group operation are

studied.

In hyper elliptic curve cryptosystem, the group law includes addition and doubling in the Jacobian of the
curve. The algorithm for the group operation was given by the Cantor [3]. Since then there have many
improvements on efficient computation of group operations and also very active research works in the
field of HECC. One of the earliest attempt made to efficient algorithm for group operation for HECC was
obtained by Harley [11]. The Harley’s algorithm is an explicit representation of the Cantor Algorithm [3].
Later works presented more efficient algorithm for performing group operations we done by Lange [12],

Matsuo, Chao and Tsujii [13], Miyamoto, Doi, Matsuo, Chao and Tsujii [14] and Takahashi [15].

In hyper elliptic curve the algorithms for group operation is not very fast for high genus compared to that

for elliptic curve. There are faster algorithms for the elliptic curves or hyper elliptic curves with genus =
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1. For the curves with larger genus, the existing algorithms for group operation are still relatively difficult
to perform. It is a challenging task to develop faster algorithms for the group operation, which makes the

study of HECC interesting.

1.1  Objective

The objective of the thesis can be listed as follow:

1. Understand the group laws of Hyper Elliptic Curve over the finite field.

2. Explain and discuss Mumford Representation of the intersecting Cartesian points between the
Jacobian Variety Curve and Hyper Elliptic Curve over the finite field.

3. Discuss the group operations in Cantor Algorithm and Subexpression Algorithm for point
addition and doubling.

4. Develop an explicit formulae algorithm for efficient group operation such as addition and

doubling.

1.2 Overview

The following is an outline of the rest of the thesis.

Chapter 2: Mathematical Fundamentals.

In this chapter we will discuss the basic abstract algebra, such as the definitions of groups, Abelian group,
subgroup, Homomorphism, Kernel, Rings, Polynomial Rings, Fields, Field Extension and etc. Later in
this chapter, we will discuss the basic properties of Elliptic and Hyper Elliptic Curves. The fundamental
difference between Elliptic and Hyper Elliptic Curve with pictorial examples.

Chapter 3: Hyper Elliptic Curve Cryptography.

In this chapter we present the necessary definitions and methods required in the later chapters. It provides

a description of group operations, group order in Elliptic Curve Cryptography and Hyper Elliptic Curve
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Cryptography. The group operation such as addition and scalar multiplication (generally better known as
doubling) is very fundamental. Here we discuss in detail with example on how to convert the Cartesian
points on the hyper elliptic curve over a field to Mumford Representation, which is polynomial
representation of the co-ordinates. Definitions like Divisor Class, Divisor Class Group would be

discussed.

Chapter 4: An overview of Hyper Elliptic Curve Computational Method.

In this chapter, we present how we can perform group operation such as addition and doubling by applying
Cantor Algorithm. Later in the same section we intended to make it clear by presenting an example on
how to apply this algorithm, the advantages and disadvantages of using Cantor Algorithm. Here we also
discuss another method for performing group operation: Subexpression Algorithm. We try to make it clear
with an example and its limitation (such as it advantages and disadvantages). Later in the same chapter
we introduces efficient method for computing group operation with Explicit Formulae Algorithm. Its

benefit and its limitation.

Chapter 5: Proposed efficient computation for Hyper Elliptic Curve Cryptography.

In this chapter, we will present with an efficient algorithm for group operation. Later in this chapter we
discuss theorems and proposition used to build an efficient explicit formulae algorithm. Separate explicit
formula algorithm for addition and doubling for specific hyper elliptic curve with different number of

genus.

Chapter 6: Discussions and possible future works.

In this thesis we have proposed efficient explicit formulae with less complexity for group operations for
the Hyper Elliptic Curves of genus 2, 3 and 4. The same procedure used here can be expanded to the hyper
elliptic curves of great number of genus. In the future works, hardware implementation of HEC
cryptographic system with the proposed efficient explicit algorithm for Hyper Elliptic Curve — Public Key
Infrastructure (HEC — PKI) and Hyper Elliptic Curve — Digital Signature (HEC - DS).
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Chapter 2

Mathematical Background

2.1  Elementary Algebraic Background

There are good reference book for the study of basic abstract algebra. The two books used for references
are by Gallian [16], Herstein [17] and for the field theory is by Roman [18]. The area of study for abstract
algebra is vast and to give a concise background is very difficult. The three books I have mentioned above
is a good place to start. The definitions I give in abstract algebra which will be useful for the study of

hyperelliptic curves.
2.1.1 Groups
Definition 1 (Law of Composition)

A law of composition on a set G is a rule for performing an operation between any two elements in the set

G, let it be a and b. The result of the operation, let it be p. Where p is also an element of the set G.
Definition 2 (Group)

A group is a set G together with the law of composition under this operation if the following three

properties are satisfied.

1. Associativity: The operation is said to be associative; that is (aeb)oc =avo (boc) for all
a,b,c €G.

2. Identity: There is an element e € G (called the identity element) such thata c e = a foralla € G.
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3. Inverse: For every element a € G, there is an element b € G (called an inverse of a) such that a o

b=boa=c¢e

Definition 3 (Abelian/Commutative Group)

A group G is called an Abelian group if and only if a,b € G where a o b = b o a for all elements in the

group G.

Definition 4 (Subgroup)

A subset H of a group G is called a subgroup of G containing the identity element e and such that it all

satisfies the all the properties of a group.

1. Foralla,b € H,aob =c,wherec € H
2. IfceHthenc ' eH

Definition 5 (Cyclic Group)

A group G is called cyclic if there is an element a € G such that G = {a™| n € Z}. Such an element is

called a generator of G. We can represent the cyclic nature of G as G =< a >.

Definition 6 (Order of a Group)

The number of elements of a group is called the order. If the group is finite, then the group is called a

finite group. |G| is denoted as the order of the group G.

Definition 7 (Order of an Element)

The order of an element a in a group is the smallest positive integer n such that a™ = e. The order of an

element a is denoted as |g|. The element g has infinite order if no such integer n exists.
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Definition 8 (Equivalence Relation)

An equivalence relation on a set G is a set R of ordered pairs of elements of G such that

1. (a,a) € R forall a € G (reflexive property).
2. (a,b) € R implies (b,a) € R (symmetric property).
3. (a,b) ER and (b,c) € R imply (a,c) € R (transitive property).

Definition 9 (Cosets)

If H is a subgroup of the group G, and an element g of the group G. Then gH = {gh|h is an element of
H} is called the left coset of H in G, Hg = {hg|h is an element of H} is called the right coset of H in G.

Properties of Cosets:

Let H be a subgroup of G, where the element a and b € G. Then,

1. a€aH.

2. aH=Hiffa € H.

3. (ab)H = a(bH) and H(ab) = (Ha)b.
4. aH = bH iff a € bH.

5. aH = bH oraH N bH = @.

6. aH = bH iffa'b € H.

7. |aH| = |bH|.

8. aH = Ha iff H = aHa™?.

9. aH c G, iffa € H.

Theorem 10 (Lagrange)

If the group G is a finite group and H be a subgroup of G. Then the order of H divides the order of G.

Which makes the order of every element also divide the order of G.
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Definition 11 (Homomorphism)

If (G,7) and (H,°) are two groups, a homomorphism from G to H is a function ¢: G — H that satisfies, for
alla,b € G.
p(a-b) = ¢(a)e @)

If ¢ is a one — to — one (INJECTIVE) — monomorphism.
If ¢ is a onto (SURJECTIVE) — epimorphism.
If @ is a bijective (BIJECTIVE) — isomorphism.

Homomorphism

Monomorphism
(one-to-one)

[somorphizm

Figure 2.1: Venn diagram Representation on types of Homomorphism

Definition 12 (Kernel)

If ¢ is a homomorphism from the group G — G’, then the kernel of ¢ is defined by kg = {a € G| ¢(a) =

e'}, and e’ is the identity element of the group G'.

Definition 13 (Normal Subgroup)

A subgroup H of G is normal in G iff aHa™! € H for all the elementa € G.
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Definition 14 (Quotient Group)

The subgroup H of G is normal, then the set of left (or right) cosets of H in G is by itselfis a group — called
the factor group (or quotient group) of G by H. Let G be a group and let H be a normal subgroup of G.
The set G/ H={aH | a € G} is a group under the operation (aH)(bH) = abH.

2.1.2 Rings

Definition 15 (Rings)

A set R is said to form a ring with respect to the binary operations addition (+) and multiplication (+)

provided the elements a, b, c € R holds the following properties.

Properties 16 (Rings)

1. Associative law of addition: (a + b) + c =a + (b + ¢)
Commutative law of addition: a + b = b + a

Presence of additive identity: there exists z € R such thata +z = a

Sl

Presence of additive inverse: for every element a € R, there exists —a € R such thata + (—a) =
Z.
5. Associative law of multiplication: (a-b)-c=a-(b-c)

6. Distributivelaw:a-(b+c¢)=a-b+a-c or (b+c)a=b-a+c-a

Definition 17 (Subrings)

Let R be aring and S is the non — empty subset of R, which itself is a ring with respect to the binary

operations on R, is called a subring of R.
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Definition 18 (Commutative Ring)

A ring for which multiplication is commutative is called a commutative ring.

For all the elements in the ring R. a,b € R.

a-b = b - a (Commutative law of multiplication)

Definition 19 (Ring with identity element or ring with unity)

A ring with a multiplicative identity is called a ring with identity element i or ring with unity
For all the elements in the ring R. a,a™! € R.

a.a™! = i (Multiplicative identity element)

Definition 20 (Zero - Divisors)

Let R be a ring and let a, b € R such that a # 0 and b # 0. If ab = 0, then a and b are called Zero —

Divisors.

Definition 21 (Integral Domain)

An integral domain is a commutative ring R with unity 1 (assuming 1 # 0) and no zero — divisor.

Definition 22 (ldeals)

Let R be aring, a non — empty subset A of R is called an Ideal ring. For a ring to be an Ideal the conditions
below has to be fulfilled.

Conditions:

1. A is an additive subgroup of R.
2. Foreveryelements,r € Randa € A.7A = {rala € A} S Aand Ar = {ar|a € A} € Aforallr €
R.
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Definition 23 (Principal Ideals)

If I is an ideal of the ring R such that the ring I is generated by one element. That is [ =< a > for some

a € R, then [ is said to be a principle ideal of R.

Definition 24 (Prime Ideals)

An ideal I if a ring R is called a prime ideal if ab € I implies eithera € [ or b € I.

Definition 25 (Maximal Ideals)

Let I be an ideal of a ring R with I # R. Then [ is called a maximal ideal of R if there exists an ideal ] of
RwithlcJcRandI #] #R.

Definition 26 (Ring Homomorphism)

A ring homomorphism ¢ from a ring R to a ring S is a mapping from R to S that preserves the two ring

operations; that is, for all a, b in R

p(a+b) =¢(a)+eb) and @(ab) = p(a)p(b)

A ring homomorphism that is both one — to — one and onto is called a ring isomorphism. [16]

Properties 27 (Ring Homomorphism) [16]

Let ¢ be a ring homomorphism from a ring R to aring S. Let A be a subring of R and let B be an ideal of
S.

1. Foranyr € R and any positive integer n, @ (nr) = ne(r) and o(r™) = (@(r))™.
2. @(A) ={p(a)|a € A} is a subring of S.
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If A is an ideal and ¢ is onto S, then ¢ (A) is an ideal.

@ 1(B) = {r € R|p(r) € B} is an ideal of R.

If R is a commutative, then ¢ (R) is commutative.

If R has aunity 1, S # {0}, and ¢ is onto, then ¢ (1) is the unity of S.

@ is an isomorphism if and only if ¢ is onto and Ker ¢ = {r € R|p(r) = 0} = {0}.

e

If ¢ is an isomorphism from R onto S, then ¢! is an isomorphism from S onto R.

2.1.3 Fields

Definition 28 (Fields)

A ring is a field, let F be the field. It forms an Abelian group under addition and multiplication and satisfies

the distributive laws under addition:

(1) a(b+c)=as+ac and (i) (a+b)c=ac+bc
The field F as satisfies the following three conditions below:

1. Multiplicative identity, unity e (or 1), which is defined by ea = ae = a for everya € F.

1

2. Multiplicative inverse, a™1, exists for every a € F, where a # 0, such thataa™! = a™ta = e.

3. Multiplicative commutativity, ab = ba for every a,b € F.

2.1.4 Polynomial Rings

Definition 29 (Polynomial Rings over R)

Let R be a commutative ring. Where R[x] = {a,x™ + a,_1x™ 1 + -+ a;x1 + ay|a; € R} is called the

polynomial ring over R.
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Definition 30 (Addition and Multiplication in R[x])
Let R be a commutative ring and let f(x) = apx™ + a,_1x™ 1 + -+ a;x + a4 and g(x) = bx™ +
byp—1x™ 1+ -+ bix + by belong to R[x]. So, f(x) + g(x) = (as + bg)x> + (as_q + be_)x5" 1 +

4+ (ay +by)x+ag+ by.a; =0fori >n,and b; = 0 fori > m.

Also, f(x)g(x) = CpnX™ ™ + Cpon_1 ™™ 4+ .+ ¢ x + ¢y, Where ¢ = agbg + aj_1by + -+ +

a;by_1 + agby fork =0, ...,m +n.

Theorem 31 (Integral Domain)

If the ring D is an integral domain, then D[x] is an integral domain.

Theorem 32 (Division Algorithm)

If F is a field and f(x) and g(x) € F[x] with g(x) # 0. Then there exists unique polynomial q(x) and
r(x) in F[x] such that f(x) = g(x)q(x) + r(x) and either r(x) = 0 or degr(x) < deg g(x).

Theorem 33 (Remainder Theorem)

IfF isafield, a € F, and f(x) € F[x]. Then f(a) is the remainder in the division of f(x) by x — a.

Theorem 34 (Factor Theorem)

If F is a field, a € F, and f(x) € F[x]. Then a is a zero of f(x) if and only if x — a is a factor of f(x)

Definition 35 (Principal Ideal Domain)

A principal ideal domain is an integral domain R in which every ideal has the form < a > = {ra|r € R}

for some a in R.
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Theorem 36 (I =< g(x) >)

If F is a field, I a non zero ideal in F[x], and g(x) is a nonzero polynomial of minimum degree in I.
Definition 37 (Irreducible or Prime Polynomial)

Let D be an integral domain. A polynomial f(x) € D[x] which is neither a zero polynomial nor a unit in
D[x] is an irreducible polynomial if the expression f(x) cannot be represented as factor of two or more
polynomials such as f(x) = g(x)h(x).

Definition 38 (Reducible Polynomial)

Let D be an integral domain. A polynomial f(x) € D[x], where the expression f(x) can be represented

as factor of two or more polynomials such as f(x) = g(x)h(x).

2.1.5 Extension Fields

Definition (Extension Field)

A field E is an extension field of a field F, if the field F is the subset of the field E such that the operations

of F are the operations of E confined to F.
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2.2  Basics of Hyper Elliptic Curve

In the area of cryptology, hyperelliptic curves are eagerly studied. Since it gives the same level of security
with a smaller key length as compared to cryptosystems using elliptic curves. In 1987 Koblitz proposed
that Jacobians of the hyperelliptic curves can produce abelian groups which will be suitable for
cryptography. Hyperelliptic curves are a special group of algebraic curves and can be seen as a
generalization of the elliptic curves. A hyperelliptic curve of genus g = 1 is also called an elliptic curves.
Therefore, all the curves of every genus g = 1 are hyperelliptic curves. In this chapter, we will briefly
introduce hyperelliptic curve cryptography and provide an overview of the parameters involved. In the

following section, hyperelliptic curve cryptography or cryptosystem will always be abbreviated as HECC.

Definition 1 (Hyperelliptic Curves)

Let K be a field and let K be the algebraic closure of the field K. A hyperelliptic curve C of genus g (g =

1) over K is an equation of the form

C:y? +h(x)y = f(x) in K[x,y]

Where h(x) € K[x] is a polynomial of degree at most g, f(x) € K[x] and a monic polynomial of degree

2g + 1 and there is no solution (x,y) € K X K, which simultaneously satisfies the equations

y? +h(x)y = f(x)
2y +h(x) =0

W)y —f'(x) =0

A singular point on the curve C is a solution (x,y) € K x K which satisfies all the above three equations.

Thus a hyperelliptic curve does not have any singular points by definition.
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Definition 2 (Extension field of K)

Let L be an extension field of K. The set of L is the rational points on the curve C, denoted by C(L) =
{(x,y) € L X L:y? + h(x)y = f(x)} U {0}, where O is a special point, called the point at infinity.

Definition 3 (Rational Points, Points at infinity, Finite Points)
To make the definition 2 to be clearer, the set of points in C (L) are the rational points P = (x,y) € L X L
which satisfies the main general expression of the hyperelliptic curve. The point O is a special point, called
the point at infinity. All the points in the curve C except O are finite points.
Definition 4 (Opposite, Special Points)
The opposite of a finite point P(x,y) on the curve C is defined to be the point P = (x, —y — h(x)). The
opposite of O is itself. A special point is a point if it is equal to its opposite. Like the point O, it is a special
point. Otherwise P is an ordinary point.
2.2.1 Hyper Elliptic Curve — An example
2.2.1.1 Graphical representation of an elliptic curve over the real field

E={(xy):y?>=x3+x (mod 17)}.

To represent the curve E in the graph, the curve has to be drawn over the real number field R. Therefore,

E={(x,y):y?>=x3—16x}overR
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Figure 2.2: Elliptic Curve over R

2.2.1.2 Determining the Cartesian points in an elliptic curve over the real field

When F = Z, (or more generally, when F is a finite field), the elliptic curves over Z;, will be a finite set.

Here we take an equation of an elliptic curve with F = Z,, and consider
E={(x,y):y?> =x3+x (mod 17)} U {0}
Now we want to know what points are on the curve E. To do that, we first compute the square table over F,

which tells us what element in F can have a square root. This can be done by using power and mod

function in MATLAB. Below shows the pseudo code for calculating y?mod 17.

Table 2.1 PSEUDO CODE FOR CALCULATING: y?*mod p
E ={(x,y):y? = x® + x (mod p)}
INPUT: Range of y; Mod of p;

OUTPUT: 4 = y? mod p;
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Output in the tabular form:

y |01 (2 (3 (4 |5 |6 |7 |8 |9 (10|11 |12 |13 |14 |15 |16
y’modp |0 |1 [4 |9 |16 (|8 |2 15|13 |13 |15(2 |8 |16|9 |4 |1

Then, we compute x = 0,1,2,..., 16 to solve the equation y? = x3 + x in Z;,. First, we compute the

x3 + x in Z,, table over F.

Table 2.2 PSEUDO CODE FOR CALCULATING: (x3 + x) mod p
E={(x,y):y?> =x3+ x (mod p)}

INPUT: Range of x; Mod of p;

OUTPUT: B = (x3 + x) mod p;

Output in the tabular form:

x o112 {3 (4 |5 |6 (7 (8 |9 |10|11 |12 |13 |14 |15 |16
x3+xmodp |0 |2 |10|13]|0 |11 |1 |[10|10|7 |7 |[l6|6 |0 [4 |7 |15

For x =1, y2 =1 + 1 and so the square root table gives y = +6. Hence (1,+6) € E, For x = 2, we
have y2 = 8 + 2 = 10, the square root table tell us that there is no solution, and so we move to the case

x = 3. The following MATLAB code computes all the needed information.

Table 2.3 PSEUDO CODE TO DETERMINE THE POINTS ON EC
E ={(x,y):y* = x* + x (mod p)}

INPUT: Range of x; Range of y; Mod of p;

A =y.~2 mod p;

B =x.3+ x mod p;
for b = [1:p]
for a = [1:p]
if B(b) == A(a)
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print “Valid Points”;

end
end

end

OUTPUT: Points (x,y);

In this way we have all the valid points of the curve: E = {(x,y):y? = x3 + x (mod 17)} U {0}

E ={(0,0),(1,6),(1,11),(3,8),(3,9),(4,0),(6,1),(6.16),(11,4), (11,13),(13,0)

(14,2), (14,15),(16,7),(16,10), 0}

For the curve with equation E = {(x,y):y? = x3 + x }.

For the curve with the equation E = {(x,y): y? = x3 + x (mod 17)} has 16 valid points. If we perform

the calculation in a larger finite field we will be able to work with greater number of valid points.

E, Number of Valid E, Number of Valid

Points on the curve Points on the curve
over the field of E, over the field of E,

x = 3 x = 4

x = 4 X = 8

x=11 12 x=13 20

x =17 16 x =19 20

x =23 24 x =29 20

x =31 32 x =37 36

x =41 32 x =43 44

x =47 48 x =53 68

x =59 60 x =61 52

x =67 68 x=171 72

x=73 80 x=179 80
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x =83 84 x =89 80
x =97 80 x =101 100
x =103 104 x =107 108
x =109 116 x =113 128
x =127 128 x =131 132
x =137 160 x =139 140
x =149 164 x =151 152
x =157 180 x =163 164
x =167 168 x =173 148
x =179 180 x =181 164
x =191 192 x =193 208
x =197 196 x =199 200

Table 2.4: Finite Field and its corresponding number of valid points
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2.2.1.3 Graphical representation of Hyper Elliptic Curve over the real field
E={(xy):y* =x(x—2)(x — (x + 1)(x + 2) (mod p)}.
To represent the curve E in the graph, the curve has to be drawn over the real number field R. Therefore,
E={(y):y>*=x(x—2)(x—D(x+1)(x+2)}overR

V2 - % (6:2) (1) (x+1) (x+2) = 0

5 e pr— S - III ............
NN
3l..i. | 1

5 | L
il ---- AR S . ! .5.....‘5;_'.3.":. ..... - SR PP
: ! T
; Y
L B T R A S S
RO O 4% SO N N N S -
: A -
_3 ------ E ----------- R J: ----- Lecwens : -.----: ----------- 1
j._ L ..J:_. ado. i
A ! Tl
i H
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Figure 2.3: Hyper Elliptic Curve over R

2.2.1.4 Determining the Cartesian points in a hyper elliptic curve over the real field

When F = Z,, (or more generally, when F is a finite field), the elliptic curves over Z;, will be a finite set.

Here we take an equation of an elliptic curve with F = Z,, and consider

E={(xy):y?>+xy=x>+42x*+x3 - 5x2 + 10 (mod 11)} U {0}

Page 21 of 117



Now we want to know what points are on the curve E. To do that, we first compute the square table over F,
which tells us what element in F can have a square root. This can be done by using power and mod

function in MATLAB.

Table 2.5 PSEUDO CODE TO DETERMINE THE POINTS ON HEC
E={(,y):y*>+xy =x°+ 2x*+ x3 — 5x2 + 10 mod p}
INPUT: Range of x; Range of y; Mod of p;
STEPS:
B =x."5+ 2*x."4 + x."3 — 5*x.~2 + 10 mod p;
for b = [1:p]
for a = [1:p]
A=y."2 + x(b).*y mod p;
it B(b) == A(a)
print “Valid Points”;

end
end

end

OUTPUT: Points (x,y);

In this way we have all the valid points of the curve:

E={(xy):y*>+xy=x%+2x*+x% - 5x2 + 10(mod 11)} U {0}

E ={(1,4),(1,6),(42),4,5),(5,7),(510),(8,0),(8.3),(9,5),(9,8),0}

For the curve with the equation E = {(x,y):y? + xy = x> + 2x* + x3 — 5x2 + 10 (mod 11)} has 11

valid points.
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2.2.1.5 Comparing the curves: Elliptic Curves and Hyper Elliptic Curve

Elliptic curve: E = {(x,y):y? = x3 — 16x} over R
Hyper Elliptic curve: Eyge = {(x,¥): ¥? = x(x — 2)(x — 1)(x + 1)(x + 2)} over R

n 233 16x=0 " V2 - (2) (cT) (eH) (x42) = 0

Figure 2.4: Elliptic curve Eg. Figure 2.5: Hyper Elliptic curve Eygc

By comparing the table 1 and 2, the figure 5 and 6. Hyper elliptic curves to have more number of valid
points compare to Elliptic curve. For the field F;q;, the curve Eg; has 196 valid points, whereas for the
field F,q7, , the curve Eypc has 206 valid points. Approximate we can comment that Ey - have more 10
valid points to Egc. Figure 5 represents an elliptic curve of genus — 1. Genus in plain English means
number of loops or holes. Figure 6 represents a hyperelliptic curve. Hyperelliptic curve is also a type

elliptic curve with genus — 2, a curve with two holes or two loops.

2.2.1.6 Finding the points on the Hyper Elliptic Curve over large prime field

Let’s take a hyperelliptic curve over a field. The curve E: y? = x> + 1184x3 + 1846x2 + 956x + 560
over F,, p = 2003.

Number of valid points on the curve: 1867
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Here are some of the valid points on the curve: (4,1712), (8,168), (257,1895), (258,783), (1000,1529),
(1002,519), (1502,1293), (1505,388), (1999,1232), (2000,818).

2.2.2 Polynomial and Rational Function

Definition 5 (Coordinate Ring, Quotient Ring and Polynomial Function)

If I be the ideal of K[x,y] which is generated by the polynomial x? + h(x)y — f(x), that is [ = x2 +
h(x)y — f(x). The quotient ring of K[x,y]/I is also called the coordinate ring of C over K, denoted by

K[C]. Elements in the K[C] is also called the polynomial functions of C over K.

It is easy to check that every polynomial, let it be G(x,y) € K[x,y] can be uniquely represented in the

form of

G(x,y) = u(x) —v(x)y
where the polynomial u(x), v(x) € K[x].
Definition 6 (Function Field, Rational Functions)
The function field K(C) of C over Kis the field of all fractions of polynomial functions in K[C]. An
element of K(C) is called a rational function on C. A polynomial function is also a rational function. We
have to make a note that K[C] is a subring of K(C).

Definition 7 (Degree of a Polynomial Function)

Let G(x,y) = u(x) — v(x)y be a polynomial and also a non — zero one in K[C]. The degree of the
polynomial G is defined to be

deg(G) = max|2deg,(u),2g + 1+ 2deg, (v)].

Page 24 of 117



Properties 8 (Degree of a Polynomial Function)
Let G, H € K[C].

1. deg(G) = deg,(N(G))

2. deg(GH) = deg(G) + deg(H)

3. deg(G) = deg(G)
2.2.3 Zeroes and Poles

Definition 12 (Zeros and Poles)

LetR € K(C) and P € C. If R(P) = 0, then R is a zero at P. If R is not defined at P, then R has a pole at
P. Where we write it as R(P) = oo.

Definition 13 (Special Point, Zeros)

Let P = (x, y) be a point on the curve C. Let us suppose that the polynomial function G (u,v) = a(u) —
b(uw)v € K(C) has a zero at P and x is not a root of both a(w) and b(u). The G(P) = 0 iff P is a special
point.

Definition 14 (Ordinary Point, Zeros and Poles)

Let P = (x,y) be an ordinary point on the curve C, and G (u, v) = a(u) — b(u)v € K(C). Assuming that
G(P) = 0 and x is not a root of both of the polynomials a(u) and b(w). Then G can be written in the form

of (u — x)5S, where s is the highest power of (u — x) which divides N(G), and S € K(C) does not have

a zero nor a pole at P.
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Definition 15 (Special Point, Zeros and Pole)

Let P = (x,y) be a special point on the curve C. Then (u — x) can be written in the form (v — y)2.

S(u, v), where S(u, v) € K(C) has neither a zero nor a pole at P.
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Chapter 3

Hyper Elliptic Curve Cryptography

To realize secure communication over the unsafe internet, cyber security techniques are indispensable
such as privacy and authentication. Among these techniques, public key cryptography is an essential in
our daily life. This cyber — security technology supports one of the fundamental aspect, like electronic

payment infrastructure.

Public key cryptography was first introduced by Diffie and Hellman in 1976 [6]. However the first
practical application was made by Rivest, Shamir and Adleman in 1977. Now the most widely used public
key cryptosystem called RSA [8]. Although RSA is widely popular but the best public key cryptography
currently available is the elliptic curve cryptosystem. Elliptic curve was first proposed by Koblitz [1] and
Miller [19] independently. The security of the RSA depends on the difficulty of solving the integer
factorization problem and Elliptic Curve Cryptography (ECC) depends on solving the discrete logarithm
problem on an elliptic curve. The Cartesian points on the Elliptic Curve over a specific field can form a
group based on the concepts generalized by Diffie — Hellman. This group is later used to develop ECC.
Just like ECC, Hyper Elliptic Curve (HECC) can also form group structure over Jacobian of a hyper
elliptic curve defined over a finite field. Koblitz [20] proposed this for the first time in 1988 . In this
chapter we will discuss the group operations in HECC such as addition and multiplication (generally

knows as doubling operation).
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3.1 Elliptic and Hyper Elliptic Curve Group Law

3.1.1 Arithmetic of Elliptic Curve

Definition 1  (Properties — Elliptic Curve)

An elliptic curve E over the field Z,, denoted by E /Z,, where p > 3, is given by the Weierstrass

equation.

E:y? 4+ aixy + azy = x3 + a,x? + azx + ag

Where the coefficients ay, a,, as, a,, ag € Z, and for the each point (x,y) on the curves, the coordinate
(x,y) € Z, together with an imaginary point 0. All the points on the curve must also satisfy the partial

derivatives 2y, + a;x; + a3 and 3x% + 2a,x; + a, — a,y; equals to zero at the same time.

The partial derivative conditions says whether the elliptic curve is non-singular or singular. A point on a

curve is called singular if both of the partial derivatives equals to zero.

Definition 2 (Discriminant — Elliptic Curve) [34]

Smoothness of the curves can also be figured out by finding the discriminant of the curve. Let

expressions.

bz = a% + 4‘a2
b4_ = a,as + 2a4
b6 = a% + 4‘a6
bg = atag; — ayaza, + 4a,a, + aya: — a3
Let E be a curve defined over Z,, and let b,, by, bg and bg. The discriminant of the curve E denoted by A

satisfies. The curve E is nonsingular and an elliptic curve, iff A # 0.
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3.1.1.1 Group Operations on Elliptic Curve

Definition 3 (Point Addition — Elliptic Curve)

Point Addition P + Q. Denoting the group operation with the symbol " + ". “Addition” means that given
two points and their coordinates lies in the curve E, say P = (xq,y;) and Q = (x3,y,). In this this case
we computer R = P + Q and P # Q. A tangent is drawn through the points P and Q and obtain a third
point of intersection. The point of intersection R’ is reflected on the x — axis to obtain the point R on the

curve. The figure 1 below shows the point addition on an elliptic curve over R.

Figure 3.1: Point Addition on an Elliptic Curve over R

It is important to define sum of the two points with the same x — coordinate such as (x4, y;) and (x1, —=y;).
In such case it is important to find a neutral element of the group. A further point P,, called the point at
infinity or O. It can be understood that a point lying far out on the y — axis such that the line x = x; = ¢
which is parallel to the y — axis and passed through the point P,, or O. This point at the infinity is called
the neutral point or element of the group. Therefore we can conclude that the line passing through (x4, y;)

and (x4, —y,) also passes through P, or O.
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(x1,¥1) + (x1,=y1) = Po, i.e.. (X1, —y;) = =P

Definition 4 (Point Doubling — Elliptic Curve)

Point Doubling P + P. Given two points and their coordinates lies in the curve E, say P = (x;,y;) and
Q = (x3,¥,). In this this case we computer R = P + Q and P = Q. Making R = P + P = 2P. A tangent
is drawn through the point P and obtain a second point of intersection. The point of intersection R’ is
reflected on the x — axis to obtain the point R on the curve. The figure 2 below shows the point addition

on an elliptic curve over R.

|
e

Figure 3.2: Point doubling on an Elliptic Curve over R

3.1.1.2 Point Addition and Doubling in Elliptic Curve

Point Addition

The simplest form of an elliptic curve is given by the equation

y2=x34+ax+b
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Let P = (x1,¥1), Q = (x3,¥2) and R = (x3,y3). P # Q, let the straight line passing through the point P
and Q be: y = ax + f§, where, «a is the gradient of the line and f is the y — intercept.

The gradient of the line: a = % The y — intercept: at y — axis, x = 0, y = y; — ax; Therefore, f =
2741

Yi—ax;
A point (x, ax + B) lies in the elliptic curve if and only if: y? = x3 + ax + b, (ax + )% = x> + ax +
b, x3—(ax+B)2+ax+b=(x—x)(x—x)(x —x3), x> —a*x* —2afx —B*+ax+b= x>+

(—xy — x1 — x3)x% + (15 + X%35 + x1%3)% + (—x1%%3).

Let L.H.S = R.H.S (x?)

2

—a ——xz—xl—X3

Or,x3 =a?—x, — x;

Substituting x3 intoy = ax + f,y3 = axz + (y; —ax;) = axs+y; —ax; = alx; —x1) + ;.

—R = (x3,y3), —Rixz=a® —x, —x;. y3 = a(xz —x1) + y;

Reflecting the co-ordinate —R on the x — axis. Therefore, R = (x3, —y3) = (a? — x, — x4, a(x; — x3) —

y1). Therefore, x3 = a? — x, — x;. y3 = a(x; — x3) — y;.
where, @ = % mod p; if P # Q

Point Doubling

The simplest form of an elliptic curve is given by the equation

y2=x34+ax+b

d 3x,%+
Let P = (x1,yp) and R = (x3,3), o2 == —atP = (x, 1)
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Let the line tangent to the curve at P be: y = ax + f§ where, « is the gradient of the line tangent and £ is

the y — intercept. The gradient of the line: a = 227N The y —intercept: at y —axis, x = 0. Or, y —y; =

X2—Xq

a(x —x1),y—Yy, = —axy,y =y, — axy. Therefore, f = y; — ax;

A point (x, ax + B) lies in the elliptic curve if and only if: y? = x> + ax + b, (ax + f)? = x3 + ax +
b, x>—(ax+pB)+ax+b=(x—x)*(x—-x3), x>—a*x*—-2afx—p*+ax+b= x>+

(—2x1x — x3)x?% + (1% + 2x1x3)x — X1 %%3
Let LH.S =R.H.S (x?): —a? = 2x; — x3, x3 = a? — 2x;

Substituting x; intoy = ax + f, y3 =axs+ = axz +y; —ax; = alxs —x;) +y;. —R = (x3,¥3).

—R:xz =a®—2x;,y3 = a(x3 —x;) + 3

Reflecting the co-ordinate —R on the x — axis. Therefore, R = (x5, —y3) = (a? — 2x;, a(x3 — x1) + V4).

3x,%+a

Therefore, x; = a? — 2xy, y3 = a(x; — x3) — y;. Where, a = ™

3.1.2  Arithmetic of Hyper Elliptic Curves
3.1.2.1 Group Operations on Hyper Elliptic Curves

In elliptic curves we can take the points on the curve with the point of infinity to form a group. However
for the hyper elliptic curves, if we take the points on the curve and with the points of infinity cannot no
longer form a group. To form a group with respect to the points of hyper elliptic curve, we need to take
sum of points as group elements and then we can perform addition like(P; + P,)®(Q, + Q) =
(R + Rj). The symbol + and @ doesn’t refers to addition and XOR operation respectively. The symbol
@ refers to group operation. We will discuss this specific operation between the two Cartesian points on

the curve later in this chapter.
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If we start to form group by this expression(P; + P,)®(Q; + Q,) = (R] + R}), then we would end up
with an infinite group and larger and larger representation of the group elements. In this case we use the

quotient group of the group based on the all sum of points that lie on the curve.

Below we give a graphical representation of a hyper elliptic curve for a genus 2 over the finite field [,

given by the equation y? + h(x)y = f(x). This equation of the curve must fulfill the five conditions

before we can perform group operation.

Hyper elliptic curve of genus g over the finite field [F; in the set of points in F, X [F; such that:

C:y%2 + h(x)y = f(x).
Conditions:
1. h(x), f(x) € Fglx].
f(x) — monic, and deg(f) = 2g + 1 is odd.
deg(h) < g, ifchar(]Fq) =2;h(x)=0 ifchar([Fq) * 2.

> w D

The curve HEC doesn’t have any singular point over F, X [F,.

5. char(]Fq) # 2: y% = f(x), where f(x) is monic, odd — degree and square free.

Figure 3.3: Group operation on the HEC of genus 2 over R, y° = f(x),
deg f(x) = 5 and f(x) is monic for (P; + P,)®(Q; + Q2) = (R; + R)).
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As discussed before that the chord and tangent method in the elliptic curve cannot be used. The curve
which intersects with the hyper elliptic curve of genus 2 shown above is called Jacobian variety curve.
The Jacobian curve intersects in 5 points instead of 3 points unlike chord and tangent method in elliptic
curve. In order to build a group we take the quotient group; which is the sum of the intersecting points of

the Jacobian variety curve with the hyper elliptic curve by the subset of the points which lie on the HEC.
The six points Py, P,, @1, Q; R, and R, on the HE curve adds upto zero in the quotient group. The point
Ri = (xg1,Yr1) and —R; = R; = (Xg1, —Yr1) lie on the curve. Similarly, R{@®R; = 0. The points R; and
R, are the reflection of the points R; and R; on the HE curve respectively. And the resulting group
operation (P; + P,)®(Q; + Q,) = (R + R3).

3.1.2.2 Divisor and Divisor Class Group. [37], [38]

Definition 5 (Divisor)

The rational points of a hyper elliptic curve do not form a group, unlike the points on an elliptic curve.
The group which provides by the hyper elliptic curve for cryptography is a subgroup of the random group

D generated by the set of points on the curve. If the curve C is the hyper elliptic curve of genus g over the

finite field Fg. The elements of D is known as divisors.

D =Y myP, mp EF,and P € C

Definition 6 (Group of divisors)

For the hyper elliptic curve C of genus g over the finite field IF, given by an equation of the form C: y? +

h(x)y = f(x). The group of divisors of the curve C of degree 0 is given by
Divd = YpecmpP | mp € Fq,mp = 0, for most of the points on the curve P € C.

The group which describes before as the quotient group is also known as the divisor class group Pic? of

C. In order to formally define this quotient group we need to take the point P,, called the point of infinity
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into the divisor class group. Since in this thesis we are considering the hyper elliptic curve of deg f (x) =
odd. Therefore, there is only a single point at the infinity. However, if we were working on the hyper
elliptic curve of def f (x) = even, then there would have been two point of infinity. To visualize this we
can imagine a point far on the y — axis such that any line which is parallel to it passes through the point
P,.

Definition 7 (Divisor Class Group)

The divisor class group Pic? of C is the quotient group of the group of divisors Div2. In the divisor class

group, each divisor class can be represented by
D = )i_, P; —rP,, P; € C including the point {P.}, 7 < g.

By using the definition above. The individual divisor class can be represented for implementation purpose.
The divisor class group Picg of C is isomorphic to the finite field of F, of the Jacobian J of the hyper

elliptic curve C.

3.1.2.3 Jacobian variety of Hyper Elliptic Curve

Definition 8 (Jacobian) [39], [40]

The Jacobian of the curve C is defined by the quotient group:
J =J(C) = Divg/P

Hence, D;, D, € Div are equivalent if D; — D, € P. In every equivalence class there’s only one divisor

D, called the reduced divisor:

D =Y mpP — (X mp)Py, such that }y m, < g.
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Jacobian variety curve in a specific curve based on the Jacobian J(C). In simple form, the intersection
points between the Jacobian variety curve with the hyper elliptic curve forms a group including the point
at the infinity P,,. Where the sum of the all the intersecting point sums up to zero. The figure below is the

graphical representation of the Jacobian variety and the hyper elliptic curve of genus 2.

Figure 3.4: Hyper Elliptic Curve of genus 2 and Jacobian Variety Curve.

Since the intersection points between the Jacobian variety curve with the hyper elliptic curve sums up to

zero. Therefore:

[P1] + [Pz] + [Q1] + [Qz] + [R1] + [Rz] = 0.

[P1] + [P,] + [Q1] + [Q2] = —[R1] — [R,] = [R1] + [R;].

The Cartesian or affine space points P; and P, could be transformed to individual divisor class group

based on Mumford Representation, which is to be discussed in a separate section.

The divisor class, D; = div{P;, P,} U {P»} = [u;(x),v;(x)]. Similarly D, = div{Q,,Q,} U {P,} =
[u,(x), v, (x)] and D3 = div{R;, R3} U {Py} = [u3(x), v3(x)]. The expression u(x) and v(x) are the
polynomial representation of the affine space points on the curve. These are covered in the section

detailing Mumford representation.
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3.2 Point Representation - Divisor

The definition of the divisor group is the simplest form of representation. However, we can represent the

divisors just as the sum of points with the order of the points mp.

Dlvg == Z mPPP

PeC

The disadvantage of representing the divisor is that we cannot use this for computational purposes. To

represent the points in the form of divisor the best option in the Mumford Representation.
3.2.1 Mumford Representation [35], [36]

Mumford representation is the clearest representation of the Cartesian points into polynomial divisor form.
The divisor can be represented with two polynomial as u(x) and v(x). Let D be the individual reduced

divisor of the divisor class group Pic2 of C.

D= z mpP — (z mp) Py,

One fundamental reason for using the Mumford Representation is that this representation can be used
for computing purpose. Let consider a hyper elliptic curve C of genus g, where the curve C is

represented as:

y2+h(x)y = f(x)

where the polynomial expressions h(x) and f(x) € the polynomial field F,[x], the deg f(x) = 2g + 1
and the degh < g. As discussed before that the divisor class over the field [F; can be represented by a

pair of polynomials u(x) and v(x), where this polynomials u(x), v(x) € Fg[x].

Although the polynomials u(x) and v(x) belongs to the polynomial field of F,[x]. However this

polynomials must fulfill the three conditions below:
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Conditions:
1. u(x) must a monic polynomial.
2.degv(x) < degu(x) <g.
3. u(0)|v(x)? + v(x)h(x) — f.

The polynomial expression of u(x) of the divisor class D is represented by:

u@) = | Jor-x
i=1

Where the divisor class D is represented as shown below.

T
D= Zpi — 1P,
i=1

The point P; # P, < g and the points P; = (x;, y;) lies on the curve. If the points P; on the curve occurs

n; number of times then

d\’
() @ +vehe) - @)1 =0

Where x = a; and 0 < j <n; — 1. In the hyper elliptic curve of genus 2, each divisor class can be
represented by the 4 coefficients uq, ugy, v4, v of the polynomials u(x) and v(x). The divisor class D

represented by the polynomials u(x) and v(x) as D = [u(x),v(x)].

However, the divisor class group Picd of C is the quotient group of the group of divisors Div2. So the

identify or neutral elements, in this case its neutral divisor class of the group is represented as [1,0].

An example in the section 3.2.2 will present an example.
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3.2.2 Mumford Representation — An example

In this example we consider the hyper elliptic curve C: y? = x° + 3x3 + 2x2 + 3 of genus g = 2 over
the field IF;. The Cartesian points P; = (3,0), P, = (1,2), Q; = (4,1) and Q, = (3,0). The divisor class
group Pic? of C is the quotient group of the group of divisors Div2. Each divisor class can be

represented by D including the point {P,}, 7 < g.

T

D=ZPi—rPoo

i=1

Taking the points P; = (3,0), P, = (1,2), where x; = 3 and x, = 1. The polynomial expression of u(x)

of the divisor class D is represented by:

u(x) = ﬁ(x —X;)

Therefore, u(x) = [[re;(x —x) and u(x) = [[o(x —x) = (x —x)(x—x) = (x—3)(x—1) =
x? —4x + 3 = x? + x + 3 over the polynomial field of Fs[x]. The polynomial u(x) = x2 + x + 3 €
Fg[x].

The condition for finding the polynomial expression v(x) must satisfy the second and the third condition
(2). degv(x) < degu(x) < g and (3). u(x)|v(x)? + v(x)h(x) — f respectively. Since the degree of
v(x) is less than the degree of u(x), the polynomial expression of v(x) would appear as v(x) = v1x +

Ulo.

The number of combinations of v;;x + v;,, where Fg € {0.1.2.3.4}. The possible combinations we can

get for (v11, V1) are:

(0,0) (1,0) (2,0) (3,0) (4,0)
(0,1 (1,1) (2,1) (31) (41
(0,2) (1,2) (2,2) (3,2) (4,2)
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(0,3) (1,3) (2,3) (3,3) (4,3)
(04) (1,4) (24) 34) (44

Any of the combination of (v, V44) will satisfy the third condition u(x)|v(x)? + v(x)h(x) — f. In this

case the combination (v, V1) = (4,3) satisfies the condition mentioned above.

Therefore, the Mumford representation of the point P; = (3,0) and P, = (1,2) on the hyper elliptic curve
C:y? = x>+ 3x3 + 2x% + 3 of genus g = 2 over the field Fy is:

D; = [x? + x + 3,4x + 3]
Similarly, the Cartesian points Q; = (4,1) and Q, = (3,0) can be represented in Mumford form.

D, = [x% +3x + 2,x + 2]
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Chapter 4

An Overview of Hyper Elliptic Curve
Computation Method

In this chapter we will discuss Hyper Elliptic Curve Computation Methods for performing group
operations, such as addition and doubling of the divisor classes of hyper elliptic curves discussed in the
previous chapter. The purpose of this chapter is to discuss in detail on how we perform the group
operations of the divisor class group obtained from the Jacobians of the hyper elliptic curves. The

intersecting points of the Jacobian variety curve with the hyper elliptic curves seems to form a group [19].

However, the arithmetic operations of the divisor classes in the hyper elliptic curve was usually performed
by using Cantor Algorithm. Cantor algorithm has been optimized by Harley, and the first to obtain
subexpression and explicit formulas for the hyper elliptic curves of genus 2 and later in was extended by

Lange and others.

Here we concentrate on the hyper elliptic curves of genus 2, 3 and 4 and provide an efficient explicit
formulae for performing the arithmetic operations such as addition and doubling in HEC. The first explicit

formula for genus 4 curves in to be found in this chapter.

4.1  Cantor Algorithm

Before the adverse of Cantor Algorithm [3] many explicit formulas for the addition of divisor classes has
appeared, such as Montgomery [21] and Chudnosky [22]. Cantor Algorithm presents a formula for

addition by using the divisor class in Mumford form. The same algorithm can also be used for scalar

multiplication by using it in repeated manner. The sections below discusses the algorithm in more detail.
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4.1.1 Composition and Reduction Stage

Let consider a hyper elliptic curve C of genus g, where the curve C is represented as [1]:

y?+h()y = f(x)

where the polynomial expressions h(x) and f(x) € the polynomial field [F;[x], the deg f(x) = 2g + 1
and the degh < g. As discussed before that the divisor class over the field [F, can be represented by a

pair of polynomials u(x) and v(x), where this polynomials u(x), v(x) € F,[x].

Here the polynomials u(x) and v(x) of the divisor class are the representation of the intersection points
between the Jacobian variety curve and the hyper elliptic curve in Mumford form. The divisor class D =
[u(x), v(x)].

In the composition section of the Cantor Algorithm, the algorithm takes the polynomial expression h(x)
and (x) € F, [x]. The Mumford representation of the points P;, P, and Q,, Q, in the divisor class: Dp =
[up(x), vp(x)] & Do = [uqg(x),vo(x)]. Here the polynomials up(x), uqg(x), vp(x), vy (x) € Fy[x]. The

algorithm below performs the calculation for: Dg = Dp + Dj,.

Cantor Algorithm (Composition)
INPUT | HEC: y* + h(x)y = f(x). Dp = [up, vp], Dy = [ug, vol.

OUTPUT | Dg = [ug, vg], Semi reduced divisor D = Dp + D

Steps | Expressions

1 Compute dy = GCD(up, uy) = e;uy + eyuy;

2 Compute d = GCD(dy, vp + vy + h) = ¢;dy + ¢, (Vp + v + h);

3 Where d = sjup + spug + s3(vp + v + h), 51 = c1€q, S, = ¢1€3, S3 = C3;
4 Up = Uply/d?, Vg = S1UpVy + SpugVp + S3(Vpvg + f)/d mod ug;

Table 4.1: Cantor Algorithm (Composition)
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In the step 1, d; = equy + e,u, is the resultant polynomial expression found by calculating the greatest
common divisor GCD of the two polynomials up and ugy. In the step 2, d = ¢,dy + c,(vp + v + h)
resultant polynomial expression found by calculating the GCD of the two polynomials d; and the sum of
the polynomials vp + v + h. The expression d in the step 2 can be represented as s;, s, and s3. The step

4 calculates the expression for uz and reduced expression of vg mod ug.

Cantor Algorithm (Reduction)
INPUT | Dy = [ug, vg] semi — reduced.
OUTPUT | Dg = [ug, vg] reduced Dy = Dp

Steps | Expressions

1 Calculate uy = f — vh — v3/ug, vk = (—h — vg) mod uy ;
2 If deguy > g put ug = ug, Vg = Vg, goto step 1;
3 Make uy monic.

Table 4.2: Cantor Algorithm (Reduction)

The divisor Dg = Dp + Dy, is known as semi reduced as calculated in the composition section. That means

it is possible for further reduction. The second part of the Cantor Algorithm (Reduction) can be used to
further reduce the polynomials expression of up and vy. The result of the composition section can be used
to perform further calculation. However it is better in practice to reduce the two polynomial expressions.
In the section below, we have presented an example which will clear the mathematical steps in the Cantor

Algorithm.
4.1.2 Cantor Algorithm — An example

In this example we consider the hyper elliptic curve C: y? = x° + 3x3 + 7x2 + x + 2 of genus 2 over the
field Fy;. The divisor Dp = [up, vp] = [x? + 7x + 10, x + 9] and Dy = [ug, vo| = [x? + 10, 7x + 9].
Here the polynomial expression f(x) = x° + 3x3 + 7x% + x + 2, up, Ug, Vp and vy € [F1q[x]. The step

1 and 2 of the composition section calculates the GCD of the two polynomials. In step 1, we need to
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compute d; = GCD(uP,uQ) = e;U; + eyU,. So we can rewrite this expression as d; = GCD(x? + 7x +

10,x% + 10).
Here, the GCD is calculated by using Extended Euclidean Algorithm as shown below:

a(x? + 7x +10) + b(x? + 10) = GCD(x? + 7x + 10,x2 + 10)

a b d k

1 0 x2+7x+10

0 1 x?+10 1

1 -1 7x 8x

3x 8x+1 10 4x
0

Therefore, d; = ejup + e;uy = (3x)(x* + 7x + 10) + (8x + 1)(x* + 10). In step 2, we need to
compute d = GCD(dl, vp+ vy + h) = ¢1dy + ¢;(Vp + vy + h). So we can rewrite this expression as

d,; = GCD(10,8x + 10). Here, the GCD is calculated by using Extended Euclidean Algorithm as shown

below:

a(8x + 7) + b(10) = gcd(10, 8x + 7)

a b d k

1 0 8x+7

0 1 10 3x +4
0

Therefore, d = ¢;d; + ¢ (v + v, + h) = 1(10) + (0)(8x + 7). In the step 3, we need to represent the
result of step 3 as d = s;up + suy + S3(Vp + vy + h). Where we need to calculate s; = ¢cje; = 1 X
3x =3x, s, =c1e; =1x(B8x+1)=8x+1 and s;=c, =0. In the step 4, up = upuy/d* =
(x? +7x + 10)(x? + 10)/10% = x* + 7x3 + 9x? + 4x + 1.
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Vg = SUpVq + SUgVp + S3(Vpvg + f)/d mod ug = 4x? 4+ 7x + 5. So, the semi reduced divisor D =
[x* +7x% +9x% + 4x + 1, 4x?> + 7x + 5]. In the step 1 of the Cantor Algorithm (Reduction), we
calculate up = f — vh — v3/ug = x + 10 and vy = (—h — vg) mod uy = 6. Working on the step 2 and

3 of the algorithm the reduced divisor Dg. Dz = Dp + Dy = [x + 10,6] in Mumford Representation.

4.1.3 Advantages and Disadvantages of using Cantor Algorithm

Cantor Algorithm was the first solid algorithm to perform the computations in the Jacobian groups of
hyper elliptic curves over the fields of odd characteristics. The biggest advantage of the Cantor Algorithm
is that we can apply this algorithm for any hyper elliptic curve of any genus over any field. Although the
Cantor Algorithm is very computationally intensive, it can perform divisor class operations on hyper
elliptic curves of any properties. The disadvantage lies in its computationally intensiveness. In the step 1
and 2 of its composition section, both of the steps uses Extended Euclidean Algorithm to calculate the
GCD, which is computationally very intensive. Calculating GCD requires polynomial multiplication and
especially polynomial inverses, which is computationally intensive. Other steps also requires polynomial
multiplication and inverses. The Cantor Algorithm only offers the addition operation. For the scalar
multiplication or doubling, the algorithm needs to be repeated. The table below shows the complexity of

the Cantor Algorithm for genus 4 hyper elliptic curve over the field F,.

Algorithm Inversion Addition Operation
D Multiplication Squaring
M) (S)
Cantor [23] 6 386 M/S

Table 4.3: Complexity of the Cantor Algorithm of the hyper elliptic curve of genus 4
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4.2  Subexpression Algorithm

Similarly like the Cantor Algorithm, Subexpression Algorithm [11] considers a hyper elliptic curve C of
genus g, where the curve C is represented as: y2 + h(x)y = f(x) where the polynomial expressions h(x)

and f (x) € the polynomial field F,[x], the deg f(x) = 2g + 1 and the degh < g. As discussed before
that the divisor class over the field [F; can be represented by a pair of polynomials u(x) and v(x), where
this polynomials u(x), v(x) € FF;[x]. The divisor class D = [u(x), v(x)]. The algorithm below performs

the calculation for: D; = D; + D,.

Subexpression Algorithm [24]
INPUT | Genus =2, HEC: y2 + h(x)y = f(x). D; = [uy, v1], D, = [uy, v5].

u1 == x2 + ullx + ulo, uz S x2 + u21x + uzo; 171 = Ullx + 1710, Uz ==
V21X + V305

OUTPUT | D3 = [us, v3] = [uy, v1] + [uy, v5];

Steps | Expressions

1 k= (f —v2h —v3)/uy;

2 s = (v; — v3)/u; mod uy;

3 [ =5"-uy;

4 u=(k—s(l+h+svy))/uy;
5 u; = u made monic;

6 vy = —h — (I + v,) mod us;

Table 4.4: Subexpression Algorithm (Addition)
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The algorithm above performs addition operation between the two divisor classes. Similar algorithm

below performs the doubling operation for: D' = 2D;.

Subexpression Algorithm [24]
INPUT | Genus =2, HEC: y2 + h(x)y = f(x). D = [u,v], u = x? + uyx + u,,

v = U1X+U0;

OUTPUT | D' = 2D = [v/,v'];

Steps Expressions Steps Expression
1 k=(—-hv—v?)/u 4 u; =s? —(hs+2vs —k)/u
2 k/(h + 2v) modu 5 u' = u,; made monic
3 l=s-u 6 v'=—-h—(l+v)modu’

Table 4.5: Subexpression Algorithm (Doubling)

4.2.1 Subexpression Algorithm — An example

Using the same example used in the section of Cantor Algorithm — An example. Considering the hyper

elliptic curve C: y? = x> + 3x3 + 7x? + x + 2 of genus 2 over the field F,,. The divisor D; = [uy,v;] =

[x? 4+ 7x + 10, x + 9] and D, = [u,, v,] = [x? + 10, 7x + 9]. Here the polynomial expression f(x) =

x° 4+ 3x3 + 7x% + x + 2, uy, up, v, and v, € Fyq[x].

In the step 1, we calculate the expression, k = (f — v,h — v2) /u,;
k=((x°+3x3+7x2+x+2)—(7x+9) - (0) — (7x + 9)?)/x? + 10

Therefore, k = x3 + 4x + 2.

In the step 2, we calculate the expression, s = (v; — v,)/u, mod uy;
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s=((x+9)—(7x+9))/x*+ 10 mod x? + 7x + 10

Therefore, s = 4.

In the step 3,4 and 5. We calculate the expression,l =s-u, = 4x%+ 7, the expression u =

(k—s(l+ h+svy))/u; = x + 10 and the expression u; = u made monic = x + 10.

Finally in the step 6, we calculate the expression, v = —h — (I + v,) mod u; = 6.

D3 = D; + D, = [x + 10,6] in Mumford Representation.

4.2.2 Advantages and Disadvantages of using Subexpression Algorithm

The algorithms takes the polynomial representation of the divisor class of Cartesian points in Mumford
Representation and also the polynomial expression of h(x) and f(x). The biggest advantage of the
Subexpression Algorithm is that, unlike the Cantor Algorithm which uses Extended Euclidean Algorithm
twice to calculate GCD. In this algorithm, we don’t have to compute GCD, which saves a lot of

computationally intensive calculations such as polynomial inverses and multiplication.

The disadvantage lies in its computationally intensiveness. All the steps requires polynomial
multiplication and especially polynomial inverses, which is computationally intensive. Unlike Cantor
Algorithm, which can be applied to any hyper elliptic curve of any number of genus’s, this algorithm is

limited to the hyper elliptic curve of genus 2.

4.3  Explicit Formulae Algorithm

As discussed before that the disadvantages of using Cantor Algorithm is the computational intensity in
the steps and the GCD calculation of polynomial by using Extended Euclidean Algorithm. Similarly, for
the Subexpression Algorithm, where we still need to perform polynomial multiplications and inverses.
However, in the Subexpression we do not need to perform GCD calculation of polynomials using

Extended Euclidean Algorithm. In or der to avoid Cantor and Subexpression Algorithm, deriving an
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explicit formula for genus 2 and for odd characteristics was made by Harley [11] and later was derived to
have an explicit formula for even characteristics by Lange [9].

Matsuo, Chao and Tsujii [13] has already presented an explicit formulae for addition and doubling
operation. To reduce the number of inversions to 1, Miyamoto, Doi, Matsuo, Chao and Tsujii [14] and the

work by Takahashi [15] had obtained by using Montgomery trick.

4.3.1 Advantages and Disadvantages on Explicit Formulae Algorithm

Unlike Cantor Algorithm and Subexpression, which uses computationally intensive polynomial
multiplication and inverses. Explicit formula only takes the co-efficient of the input polynomial and

perform integer multiplication, inverses and squaring.

The only disadvantage of Explicit Formulae over the Cantor Algorithm is we need to derive separate
explicit formula for the hyper elliptic curve of genus 2, 3, 4 and further. Unlike Cantor Algorithm, where
we can use the same algorithm for performing group operation such as addition and doubling. Explicit

formula has separate algorithms for addition and doubling operation.
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Chapter 5

Proposed Efficient Computation for Hyper
Elliptic Curve Cryptography

In this chapter, we will discuss the proposed efficient explicit formulae algorithm for group operation.
Also the theorems and proposition used to build an efficient explicit formulae algorithm. Separate explicit
formula algorithm for addition and doubling for specific hyper elliptic curve with different number of

genus.
5.1 Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 2

As discuss before that the group law operations in the Jacobian. The intersecting points of the Jacobian
variety curve with the hyper elliptic curve form a group. In the section 3.1.2.3 of Jacobian variety of Hyper
Elliptic Curve, we have mentioned that that Jacobian variety curve is a specific curve and its intersecting
points with the hyper elliptic curve for a group including the point at the infinity P,,. Where the intersecting
points sums to zero. The figure below is the graphical representation of the Jacobian variety curve and the

hyper elliptic curve of genus 2.

Figure 5.1: Hyper Elliptic Curve of genus 2 and Jacobian Variety Curve.

Page 50 of 117



Since the intersection points between the Jacobian variety curve with the hyper elliptic curve sums up to

zero. Therefore:

[P1] + [Pz] + [Q1] + [Qz] + [R1] + [Rz] = 0.
[P1] + [P2] + [Q1] + [Q2] = —[R1] — [R2] = [R1] + [Ré]

The Cartesian or affine space points P; and P, could be transformed to individual divisor class group

based on Mumford Representation, which is to be discussed in a separate section.

In the section 3.2.2 Mumford Representation — An example, we have shown how we can convert the
Cartesian points on the curve into polynomial expression based on Mumford. By applying Mumford
Representation, we can convert all the Cartesian points into divisors, after the conversion we can obtain

the equation for the Jacobian Variety curve. Here we denote the Jacobian curve as y = [(x).

5.1.1 Generating General Addition Explicit Formula for HEC of genus 2

Let’s consider a general Hyper Elliptic Curve C of genus g = 2 over the finite field F,:
HEC: y2 + (hyx? + hyx + hg)y = x> + fix* + f5x3 + fox? + fix + f,

The intersecting coordinates P; = (xpq,Yp1) and P, = (xp,, Yp,) Would be converted to polynomial

expression using Mumford.

The divisor class group, D; for the point P;, P,, D, for the point Q4, Q, and D5 for the point R, R, as

shown below:

2
Dy = n(" — xp1) (X = Xpz) — 2Py = [X? + Uy X + Uy, V11X + V1]
r=1

2
Dz = n(x — xg1) (¥ = Xg2) = 2P = [x? + Up1 X + Uzg, V21X + V2]

r=1
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2
D; = H(x — Xp1)(x — xpy) — 2P, = [xz + Uz X + Uzg, V31X + V30]

r=1

From the figure 1 above we can assert the polynomial expression of [(x) to be [(x) = l3x3 + l,x% +
lix + 1. The Jacobian curve y = [(x) is a cubic function since we can see in the graph that the function

has two extreme points and intersecting with the hyper elliptic curve with six Cartesian points.

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points

l(x) = v(x) or l(x) — v(x) = 0 mod u(x) since we have to perform polynomial reduction.

For the intersecting points P; and P,, we can write it in the form of [(x) — v(x) = 0 mod u(x).
(Lx3 + Lx? + Lix + 1)) — (V1% + v10) = 0mod x2 + Uy, x + uygq

Or, (I3x3 + LLx? + Lix + 1) = (v11x + v10) mod x2 + ugx + uqy

By reducing the L.H.S with the polynomial expression x? + u;;x + u;, and comparing with the R.H.S,

we get four simultaneous equations.

lo = ugoly + UrUsolz = vy EQN' 1
L —uply + Wiy —ug)lz = vy EQN 2
lo — uyoly + uyquygls = vy EQN 3
Iy — Ui ly + (UF; — Uz)ls = vy EQN 4

Subtracting the EQN 1 from EQN 3, we get:

(ugo — Uzp)lz + (UzqUz0 — U Us0) 13 = V3o — Vg EQN 5

Subtracting the EQN 4 from EQN 2, we get:
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(U —uply + [(u%1 — Upg) — (uﬂ —uo)]lz = vy —vyy EQN 6

Generating an explicit formulae with too many variables may cause error or the final result of the
algorithm may look tedious. At the same time in order to reduce repetitive computation which may
consume processing power, we can denote the variables such as u;q,u,q, V11 and v,, with other

notifications, as shown below:

_ _ — 2 _
Ag = UpqUyg Ap = ug9 — Uy By = ui; Co = V30 — V10
_ _ 2 _
A; = UzqUyg Ay = Uy —upy By = u3, Ci =V — Vg
Al - AO == 81 Eo = _uzo + u10 B1 - Bo == 92 82 + Eo - 93

We can re — write the EQN 5 & 6 in a simpler way as shown below:
Agl, + 6413 = C EQN 5
Al + (0, +€9)l3 =Cy EQN 6
Solving the EQN 5 & 6 simultaneously we will get expressions for [, and l; as shown below:

_ Cobs — (10,
27 Dob3 — A6,

_ A0C1 - Alco
7 DoB3 — A6

By substituting [/, and 5 into the EQN 1 and in EQN 2 respectively, we will get the expression for [, and

l,, as shown below:
lo = u10(ly —uyql3) + vqp

Ly = ugqly + 055 + (Bo — ugo)ls
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At intersecting points of the two curves, in this case it is the Jacobian Variety and the Hyper Elliptic Curve
of genus 2, the value of the y on both curve is the same. So we can replace the y expression of the hyper

elliptic curve by the Jacobian variety curve y = l3x3 + [,x% + Iy x + [.

HEC: y2 4+ (hyx? + hyx + hg)y = x5 + faix* + f3x3 + fox? + fix + f,
The Jacobian Variety Curve: y;c = l3x® + x* + lix + [

Substituting y in HEC with y:

yic? + (hyx? + hyx + ho)yje = x° + fix* + fox® + fox® + fix + f

Or, (l3x3 + lzxz + llx + lo)z + (hzxz + hlx + ho) : (l3x3 + lzxz + llx + lo) = xS +f;1_x4 +f3x3 +

fox* + fix + fo

Or, (l3x3 + lzxz + llx + lo)z + (hzxz + hlx + ho) * (l3x3 + lzxz + llx + lo) - (x5 +f;1_x4 +f3x3 +
fox?+ fix+fo) =0

Expanding the L.H.S and comparing its coefficients with the R.H.S we will get as show below:

6 12.

x> 20,15 + hyls + 1.

x* 2413 + 2 + hyl, + hyls — fo.

x3 2L L + Lls + Loly 4+ hyly + hyly + hols — f.
x? 2lol, + 12 + hyly + hyly + holy, — f.

x1 2Ll + hyly + holy — fi.

x° holy + 12 — fo.

After computing the Jacobian Variety Curve y,c = 33 + [,x? + l;x + . However, if we intended to
solve the y,¢ and the HEC to find the Cartesian coordinates of the intersecting points. We can find the

remaining two intersecting points by solving the expression below:
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2 2 2
[ o= o006 =02 | [ = 2010 = x02) - | [ = ) = 42
r=1 r=1 r=1

(l3x3 + l2x2 + llx + lo)z + (h2x2 + hlx + ho) * (l3x3 + lzxz + llx + lo)
—(x° + fux* + f33° + fox* + fix + fy)

In order to avoid tedious work and for simplification, we have introduced four new variable as s3, s,, 51

and s,. The expression of the variable is shown below:
S3 = Upp + Uyq
Sz = Uy + UgqlUpg Uy
S3 = Ug1Upe + Ugolzo
So = U10Uz20

Expanding the L.H.S of the equation and compare with the coefficients of x on the R.H.S. The expansion
of the L.H.S is shown below:

(xz + ullx + ulo) ¢ (xz + ule + uzo) * (xz + u31x + u30)

x® 1.

x5 Uz; + S3.

x* Ugg + S3Uszq + Sy
x3 S3lUsg + SpUzq + ;.
x? SpUsg + SqUsg + So.
x? SiUszg + SolUsq.

x0 SoUsg-
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Comparing the coefficients of the L.H.S with the R.H.S we get:
u31 == 2l2l3 + hzl3 + 1 - 53

u30 = 211[3 + l% + hzlz + h1l3 _f4_ - U31$3 - SZ

Similarly, we can get the result for v3; and v3, by solving the equation:

[(x) mod (x? 4+ uzx + Ugp) = V31X + V3

Or, l3x3 + lzxz + llx + lO mod (x2 + Uz X + U30) = V31X + V30

After expanding the equation and comparing the coefficients L.H.S = R.H.S we get:

V3 = —{u31ls — ULy + UL}

V3g = —{u31UL0 + UL}

For simplification reason we presented with two variables:

ULO = u3ol3

UL = _u31l2 + ll
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5.1.2 Computational Complexity of General Addition Explicit Formula for HEC of g = 2

In the section above, we have proposed and derived a General Explicit Formula for Addition on a HEC
of genus = 2. For practical purpose one can eliminate the function of h(x) and the co-efficient of f, from
the function f(x). The computational complexity for the General Addition Explicit Formulae is defined

as (no. of Inverses, no. of Multiplication, no. of Squaring).

Finite Curve Properties Cost

Field Inverses (I) | Multiplication (M) Squaring (s)
Fq h(x), f(x) 1 23 4
F, h(x) =0, f, =0. 1 20 4

Table 5.1: Complexity comparison between the explicit formulae for HEC of

genus 2 for different curve property.
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5.1.3 Comparison of proposed and existing Explicit Formulae (Addition) for HEC g = 2.

The proposed works has been compared with the Explicit Formulae for Addition for the HEC for genus 2

has been compared. The table below presents list the complexity comparison table.

Previous Work | Finite Curve Cost Improvement
Field Properties Percentage (%)
Inverses | Multiplication | Squaring
@ M) (S)
Harley [11,25] F, h(x) =0, 2 24 3 100
fa=0
Lange [26] F, h(x) =0, 2 24 3 100
fa=0
Matsuo [13] F, h(x) =0, 2 25 - 101.2
fa=0
Takahashi [15] F, h(x) =0, 1 25 - 131.6
fa=0
Miyamoto [14] F, h(x) =0, 1 26 - 130.1
fa=0
Lange [27] F, h(x) =0, 1 22 3 133.4
fa=0
This work F, h(x) =0, 1 20 4 135.6
fa=0

Table 5.2: Comparison between the explicit formulas for (genus = 2) curves over

[F, of previous work and the present work.
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ALGORITHM 1

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: y? +
(hyx? + hyx + ho)y = x° + fux* + f5x3 + fox%2 + fix + f;, OVER THE GALOIS FIELD GF(p).
NUMBER OF COORDINATES: 6

Input | Genus 2 HEC: y2 + h(x)y = f(x);

h(x) = hyx? + hyx + hy;

f) = x° + fox* + f33° + fo0% + fix + f;
Divisor Dy = [uy(x), v1(x)], Dy = [up(x), v, (x)];
ug (%) = x% + Uy X + Uy, v (X) = vi1X + vy,
Uy () = %% + UpyX + Upg, V1(X) = V21X + Vy0;

Output | D3 = [uz(x), v3(x)] = D; + D5, Cost
Uz (%) = X% + Ugy X + Uzg, V3(x) = V31X + v30; (I,M,S)
Step | Expressions Cost
1 Ap = Up1lyg, A1 = Up1Upe; Bo= Uzg — Uz, B1= Ugg — Upy; (0,2,2)
By = ufy, By = ujy; Gy = V30 — V10, C1 = Va1 — V135
2 €9 = —Uyg +Uqg; 00 = A1 — Ay, 0, = By — By, 03 = 0, + €; (0,0,0)
3 inv = (Ay0; — A6,)7%; (1,2,0)
4 Sz = Upg + UgqlUpg + U, S3 = Upg + Ugy; (0,1,0)
5 I; =inv- (AC; — ACy), L, = inv - (C,05 — C16,), (0,8,0)
L =uysly +vi1 + (B — wyo)l;
6 Compute uz(x) = x? + uz 1 x + uszy: (0,6,1)
Uzq = 20,13 + hyls; + 1 — 53,
Uzg = 2113 + 15 + hyly + hyly — fi, — u3155 — 555
7 ULy = uzols, UL = —ugql, + 1y (0,2,0)
8 Compute v3(x) = v31x + v34: (0,2,1)
v31 = —{udily — ULy + UL}, v3o = —{u3, ULy + UL};
Sum (0,23,4)
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ALGORITHM II

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: y? =
x5 + f,x3 + fo,x2 + fix + fy OVER THE GALOIS FIELD GF(p). NUMBER OF COORDINATES: 6

Input | Genus 3 HEC: y% + h(x)y = f(x);
f) =x>+ f320° + foLx* + fix + fo;
Divisor Dy = [uy(x), v1(x)], Dy = [uz(x), v, (x)];
Uy (x) = x% + Up1 X + Ugg, V1 (X) = V11X + vy,
Uy (X) = X% + Upy X + Upg, V1 (X) = V1 X + V0;
Output | D3 = [uz(x), v3(x)] = D; + D5, Cost
Uz (%) = x2 + uz1x + uzg, v3(x) = V31X + v30; (I,M,S)
Step | Expressions Cost

1 Ay = UyqUyg, Ay = UpqlUpg; D= Ugg — Upp, A= Upp — Upq; (0,2,2)
By = ufy, By = udy; Co = Vpo — V19, C1 = Va1 — V11

2 €p = —Uyg +Uqg; 00 = A1 — Ay, 0, = By — By, 05 = 0, + €; (0,0,0)

3 inv = (Ag0; — A,16,)71; (1,2,0)

4 Sy = Upg + UgqUpg + Ugg, S3 = Upg + Ugy; (0,1,0)

5 l; =inv- (AyC; — A Cy), L, = inv- (C,05 — C,6,), (0,8,0)
L =uyly +vyq + (Bo — Uyo)ls;

6 Compute uz(x) = x% + uz 1 x + uszy: (0,3,1)
Uzq = 2113 + 1 — 83, U39 = 2L 15 + 12 — Uz 83 — Sy;

7 ULy = uzpls, UL = —ugql, + 1y (0,2,0)

8 Compute v3(x) = v31x + v3: (0,2,1)
V31 = —{uf1l; — ULy + UL}, v39 = —{u3,ULy + UL};

Sum (0,20,4)
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5.2 Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 3

As discussed in the section 5.1, the intersecting points of the Jacobian variety curve with the hyper elliptic
curve forms a group. We applied this concept to the HEC of genus 2. In this section we apply the same
concept to develop a general addition explicit formulae algorithm for genus 3. The figure below is the

graphical representation of the Jacobian variety curve and the hyper elliptic curve of genus 3.

Figure 5.2: Hyper Elliptic Curve of genus 3 and Jacobian Variety Curve.

Since the intersecting points between the Jacobian variety curve with the hyper elliptic curve sums up to

zero. Therefore:

[P1] + [Po] + [Ps] + [Q1] + [Q2] + [Rq] + [R2] + [R3] = 0.
[Pi] + [Po] + [Ps] + [Q1] + [Q2] = —[R1] = [R2] — [Rs] = [R1] + [Rz] + [Rs].

Just like in the previous section, the Cartesian of affine space points P;, P, and P; would be transformed
to individual divisor class group based on Mumford Representation. By applying the Mumford
Representation, we can convert all the Cartesian points into divisor, after the conversion we can obtain

the equation for the Jacobian Variety curve. Here we denote the Jacobian curve as y = [(x).
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5.2.1 Generating General Addition Explicit Formulae for HEC of genus 3

Let’s consider a general Hyper Elliptic Curve C of genus g = 3 over the finite field F,:

HEC: y? + (hyx? + hyx + hg)y = x7 + fox® + fox5 + fux* + fox® + fox? + fix + f,

The intersecting coordinates P; = (xpq, Vp1), P2 = (Xpy, Yp2) and P3 = (xp3, Yp3) would be converted to

polynomial expression using Mumford.

The divisor class group, D; for the point P;, P, and P5. D, for the point Q4, Q,. D5 for the point R4, R, and

R; as shown below:

Dy = [uy(x), v, (x)]

2
D=1_[x—x X — Xpp)(Xx — xp3) — 3P, =
1 1( Pl)( PZ)( P3) ul(x) =x3 +u12x2 +u11x+u10
r=
vl(x) == vlzxz + vnx + 1710

D, = [uy(x), v2(x)]

Uy (x) = x% + Uy X + Uy,

2
Dz = l_l(x - le)(x - XQz) - 2POO
r=1
V(%) = V21X + Vyo;

D3 = [uz(x), v3(x)]

uz(x) = x3 + ux? + upx + ug

2
Dy = | 6= xr0) (= ) G = ) = 3P,
r=1

173(X) = vlzxz + v11x + 1710

Table 5.3: Corresponding conversion of the Cartesian points to Mumford form.

From the figure 2 above we can assert the polynomial expression of [(x) to be 1(x) = l,x* + I3x3 +
l,x% + l;x + ;. As shown in the previous section, here there are eight intersecting points with the hyper

elliptic curve.

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points

I(x) = v(x) or l(x) — v(x) = 0 mod u(x) since we have to perform polynomial reduction.

For the intersecting points P;, P, and P5, we can write it in the form of [(x) — v(x) = 0 mod u(x).
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((Lax®* + I3x3 + Lx? + Lix + 1)) — (01x2 + v11% + V1) = 0mod x3 + uypx2 + ugx + uqy
Or, (Lyx* + I3x3 + Lx? + Lix + 1) = (v1,x% + vy1x + v10) mod x3 + upx2 + Uy x + uqg
For the intersecting points Q; and Q,, we can write it in the form of [(x) — v(x) = 0 mod u(x).
((Lax* + 13x3 + Lx? + Lix + 1) — (1 x + v50) = 0mod x2 + Uy x + Uy
Or, (Lyx* + I3x3 + Lx? + Lix + 1)) = (21X + v5) mod x2 + Uy X + Uy

By reducing the L.H.S with the polynomial expression x3 + u;,x2 + Uy, X + Uyq and x? + Uy x + Uy

comparing with the R.H.S, we get five simultaneous equations.

(ufz —w Dl —upls + 1, = vy EQN 1

(Ug2U10)ls — Ugols + 1o = V10 EQN 3

[—uz1 (31 — Uzo) + Uprtizolls + (UG — Upg)ls + (—Uz )Ly + 1 = vy EQN 4
[—uz0(f; — uz0)]ly + (Uzitz0) 3 + (—Uzo) Lz + 1y = v EQN5

As discussed before, that generating an explicit formulae with too many variable may make the work

tedious. In order to reduce repetitive computation, we can denote the variable with other notifications, as

shown below:

_ 2 _ _
U1 = Uz By = uy1uy2 Aog=Uy,Us; —Uzy — By + uqg + uz1Uspyq
_ .2 _ _
Uiz = ui By = Uy Uy, A= =By +uyy + Uz — Uy
Ay = —Up; —uqq) B3 = uyoUy; Ay=uyoUy; — By
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Ay = —B, By = ujouy; Az=uUy9 — UyoUy1 — Bs
Az = —(Bg — uy9) €0 = [Up1v21] — [V11 — V4] €1 = [UzoV12] — [V10 — V20]

Solving the five equations simultaneously, we will get the expression for 1y, 4, L, I3, and 1, as shown

below:
lo = ujols + Azly + vy
I =uqqlz + Azl + vy
Ly = uppls + Agly + vy

Ayeg — Aoy Ajeg — Ds€g

= d [, =
A, —Rgh, O

l =_11 50
’ A8z = Aohs

At intersecting points of the two curves, in this case it is the Jacobian Variety and the Hyper Elliptic Curve
of genus 3, the value of the y on both curve is the same. So we can replace the y expression of the hyper

elliptic curve by the Jacobian variety curve y = L,x* + L3x3 + Lx? + Lix + .

HEC: y2 + (hpx? + hyx + hg)y = x7 + fex® + fox® + fox* + f5x3 + fox2 + fix + fo
The Jacobian Variety Curve: y;c = lix* + l3x3 + Lx? + Lix + [

Substituting y in HEC with y:
y]CZ + (hzxz + hlx + hO)y]C = x5 +f;1_x4 +f3x3 +f2X2 + f1X +f0

Or, (Lyx* + I3x3 + Lx? + Lix + 1g)? + (hyx? + hyx + hy) - (Lx* + Lx3 + Lx? + Lix+ 1) = x7 +

fox® + fox® + fux* + fax3 + fox* + fix + f,

Page 64 of 117



Or, (Lyx* + I3x3 + Lx? + Lix + 1))? + (hyx? + hyx + hy) - (Lx* + Lx3 + Lx? + Lix + 1) —
(7 + fox® + fox® + fax* + fax® + fox® + fix + fo) = 0

Expanding the L.H.S and comparing its coefficients with the R.H.S we will get as show below:

x8 12,

x? 20,15 — 1.

xS 2l + 12+ hyl, — .

x5 2l + 200, 4+ hyls + hyly — fr.

x* 20l + 2Ll + 12+ hyly + hyls + hols — fo.
x3  2Lly + 20,0 + hyly + hyly + hols — f3.

x? 2,1y + 12 + hyly + hyly + hol, — f.

x1 210y + hyly + holy — fi.

X0 124 holy — fo.

After computing the Jacobian Variety Curve y;c = lyx* + 303 4+ [,x? + [;x + ;. However, if we
intended to solve the y;¢ and the HEC to find the Cartesian coordinates of the intersecting points. We can

find the remaining two intersecting points by solving the expression below:

3

2 2
[ o= o006 =026 = x0) | [ = 20a)(x = 202) - | [ = )G = ) G = )
r=1 r=1

r=1

(Lx* + 13x3 + Lx? + Lix + 1)? + (hyx? + hyx + hy) - (Lx* + 1303 + Lx? + Lix + 1)
— (7 + fox® + fox® + fox* + f3x° + fox* + fix + fo)

In order to avoid tedious work and for simplification, we have introduced four new variable as s,, s3, S,,

sq and sy. The expression of the variable is shown below:
So = U1 + Up

Sl = uZO + B1 +u11
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Sy = B3 + ug Uy + Uy

S3 = Ug1Uzp T UgolUyzp

S4 = UqoUzp

Expanding the L.H.S of the equation and compare with the coefficients of x on the R.H.S. The expansion
of the L.H.S is shown below:

(x3 + ulzxz + ullx + ulo) * (xz + u21x + uZo) * (x3 + U,32x2 + u31x + ugo)

x8 1.

x”7 So + Uszs.

x® Sy + U380 + Usg.

x° S3 + U3yS; + Uz1Sy + Usp.
x* S3 4 Us.Sy + Uz S + UszpSo-
x3 Sy + Usz,S3 + UzqSy + UzpSy.
x? U354 + U31S3 + UgpS;.

x?! U31Ss + Usz0S3.

x° U39Sy

Comparing the coefficients of the L.H.S with the R.H.S we get:

u32 = 214_[3 —_ 1 - SO
Uzy = 2Ul, + 15 + hyly — fo — 51 — u3,5,

U,30 == 2l4l1 + 2l3l2 + h2l3 + h1l4 _f5 - Sz - U,3251 - u315‘0

Similarly, we can get the result for vs,, v3; and v, by solving the equation:

Lax* + 13x3 + Lx? + Lix + 1y = (03,X2 + v31x + V30) mod x3 + uz,x? + Uz X + Usgg
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After expanding the equation and comparing the coefficients L.H.S = R.H.S we get:

U3y = —{u§2l4 — ULy —uz,l3 + 15}

V31 = —{u3ULy — UL — uzql3 + 1}

V30 = —{u3 UL — ugpls + lp}

For simplification reason we presented with two variables:

UL == u30l4

ULO = U31l4,

5.2.2 Computational Complexity of General Addition Explicit Formula for HEC of g = 3

In the section above, we have proposed and derived a General Explicit Formula for Addition on a HEC of
genus = 3. For practical purpose one can eliminate the function of h(x) and the co-efficient of f, from the
function f(x). The computational complexity for the General Addition Explicit Formulae is defined as

(no. of Inverses, no. of Multiplication, no. of Squaring).

Finite Curve Properties Cost

Field Inverses (1) Multiplication (M) Squaring (s)
Fq h(x), f(x) 1 44 4
F, h(x) =0, f¢ = 0. 1 41 4

Table 5.4: Complexity comparison between the explicit formulae for HEC of
genus 3 for different curve property.
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5.2.3 Comparison of proposed and existing Explicit Formulae (Addition) for HEC g = 3.

The proposed work is compared with the Explicit Formulae for Addition for the HEC for genus 3 has been

compared. The table below presents list the complexity comparison table.

Previous Work | Finite Curve Cost Improvement
Field | Properties Percentage (%)
Inverse | Multiplication Squaring
@) M) (S)
Kuroki et al F, h(x) =0, 1 81 M/S 100

[29] fe=0

Gonda et al F, h(x) =0, 1 70 M/S 110.9
[30] fe=0

Guyot et al. F, h(x) =0, 1 64 6 113.3
[31] fe=0

Myukai et al. F, h(x) =0, 1 67 M/S 113.9
[32] fe=0

This work F, h(x) =0, 1 41 4 132.2
fe=0

Table 5.5: Comparison between the explicit formulas for (genus = 3) curves over

[F, of previous work and the present work.
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ALGORITHM III
EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: y? +
(hox? + hyx + ho)y = x7 + fex® + fox® + faix* + f3x3 + fox? + fix + f, OVER THE GALOIS
FIELD GF (p). NUMBER OF COORDINATES: 8

Input | Genus 3 HEC: y% + h(x)y = f(x);

h(x) = hyx? + hyx + hy;

f) =x7 + fox® + fsx° + fox* + f33° + fox% + fix + fy;
Divisor Dy = [uy(x), v (x)], Dy = [uz(x), v (x)];

U (x) = x3 + uppx? + U x + uqg, v, (%) = v1x2% + vx + vy,
Uy () = %% + Up X + Upg, 11(X) = V31X + Vy0;

Output | D3 = [uz(x), v3(x)] = D; + D,, Cost
Uz (x) = x3 + Uzpx? + Uz X + Uz, V3(X) = V3x2 + V31X + V30; (I,M,S)
Step | Expressions Cost
1 Upr = U3y, Uiz = Uiy, By = Ugqliyz, By = Upqlya, By = Upgllyy, (0,4,2)
B, = uyouyz;
2 Ao= uzUyp — Upy — By + uyg + up1 Uz — 250Uy, (0,5,0)

A= —B; + uyy + Uz — Uy, A= UyoUsp — By,
A3= Uy9 — UyoUys — Bs;

3 €0 = [Uz1v21] — [V11 — Va1, €1 = [UgoV12] — [Vi0 — V20l; (0,2,0)
Ay = —(Urp —uq1), Ay = =By, A3 = —(By — Uy0); (0,0,0)

5 So = Up1 + Usp, S = Upg + By + U1, S2 = Bz + UgqUpg + Uyp; (1,3,0)
inv = (A1A; — AgAg) 7Y

6 I, =inv- (A6 — Az€p), I3 = inv - (Ayeq — Agé€q), (0,12,0)

Ly =upls + Agly +v1o, L = ugqlz + Azly + 044,
lo = ugols + Axly + vy;

7 Compute uz(x) = x3 + ugx% + Uz X + Ugg: (0,10,1)
Uzy = 2l4ly — 1 — 5o, uzq = 2Ll + 15 + hyly — fo — 51 — uz,So,
Uzg = 2Uly + 2131, + hylz + hyly — f5 — S5 — U3p51 — U341 Sp;

8 UL = uzgly, ULy = uzqly; (0,2,0)
9 Compute v3(x) = v3,x% + V31X + V30" (0,6,1)
V3p = —{ufply — ULy — usyls + 15},
V31 = —{uzpULy = UL —uzql3 + 1}, v30 = —{uz UL —uzols + lo};
Sum (1,44,4)
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ALGORITHM 1V

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: y2 =
x7 + fox5 + fix* + fax3 + fux% + fix + fy, OVER THE GALOIS FIELD GF(p). NUMBER OF
COORDINATES: 8.

Input | Genus 3 HEC: y% + h(x)y = f(x);

fO) =x7 + fox® + fix* + f53° + L0 + fix + fo;

Divisor Dy = [uy(x), v1(x)], D, = [uz(x), v, (x)];

u (%) = x3 + uppx? + upx + uqg, v, (%) = vx% + vyx + vy,
Uy (X) = X% + Upy X + Upg, V1 (X) = Va1 X + V0;

Output | D3 = [uz(x), v3(x)] = D; + D5, Cost
Uz (x) = 23 + Uzpx? + Uz X + Ugg, V3(X) = V3502 + V31X + V305 (IL,M,S)
Step | Expressions Cost
1 Upr = U3y, Uiz = Uiy, By = gz, By = Up1lyy, By = Upgliyy, (0,4,2)
B, = uyouyz;
2 A= up1Usz — Uzy — By + ugg + Uz U1 — 2uy0Us4, (0,5,0)

A= =By +uyy + Uzy — Upo, A= UpoUs; — By,
A3= uy9 — UpoUpy — B3;

3 €0 = [Up1V21] — [V11 — V1], €1 = [UnoVi2] — [V10 — Va0l (0,2,0)
Ay = —(Uyp —uyy), Ay = =By, A3 = —(By — Uy0); (0,0,0)

5 So = Up1 + Usp, S = Upg + By + U1, S2 = Bz + UyqUpg + Uygp; (1,3,0)
inv = (A1A; — ApA3) ™

6 I, =inv- (Mg — Az€p), I3 = inv - (Ayep — AgEq), (0,12,0)

Ly =uppls + Agly +v12, L = ugqlz + Azly +v44,
lo = wyols + Ayl + 0195

7 Compute uz(x) = x3 + uz,x% + Uz X + Ugg: (0,7,1)
Uzy = 2l4l3 — 1 — g, Ugy = 2Uyl, + 15 — 51 — Uz,S,,
Uszg = 2l4ly + 2131, — f5 — 3 — UzpS; — U31S0;

8 UL = ugply, ULy = ugqly; (0,2,0)
9 Compute v3(x) = v3,x% + V31X + V30: (0,6,1)
V3p = —{ufply — ULy — uspls + 1},
V31 = —{usULy — UL —uzyl3 + L1}, v39 = —{uz UL —ugels + lo};
Sum (1,41,4)
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5.3 Explicit Formulae Algorithm for Hyper Elliptic Curve for genus 4

In this section we apply the same concept to develop a general addition explicit formulae algorithm for
genus 3. The figure below is the graphical representation of the Jacobian variety curve and the hyper

elliptic curve of genus 4.

Figure 5.3: Hyper Elliptic Curve of genus 4 and Jacobian Variety Curve.

Since the intersecting points between the Jacobian variety curve with the hyper elliptic curve sums up to

zero. Therefore:

[P1] + [P2] + [P5] + [Py] + [Q1] + [Q2] + [Ry] + [R2] + [R3] + [R4] = 0.
[P] + [Po] + [P5] + [P4] + [Q1] + [Q2] = —[R1] — [R2] — [R3] — [R4]
= [R1] + [R3] + [R3] + [R4].

5.3.1 Generating General Addition Explicit Formulae for HEC genus 4
Just like in the previous section, the Cartesian of affine space points to individual divisor class group based
on Mumford Representation. After the conversion we can obtain the equation for the Jacobian Variety

curve. Here we denote the Jacobian curve as y = [(x).

The divisor class group, D; for the point P;, P,, P; and P,, for the point as shown below:

D, = n(x — xp1) (x — xpz) (X — xp3) (X — Xxpy) — 4Py,
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In Mumford form:
D1 = [ul(X), Ul(x)] = [x4 + u13x3 + ulzxz + U1 X + U, U13x3 + Ulzxz + V11X + le]

The divisor class group, D, for the point Q; and Q, for the point as shown below:

2

D, = n(x — x01)(x — x¢2) — 2P,

r=1

In Mumford form:
D, = [u,(x), v,(x)] = [xz + Uz X + Upg, Va1 X + Vo]

The divisor class group, D; for the point Ry, R,, R3 and R,, for the point as shown below:

D; = 1_[(95 — xp1) (X — Xpo) (x — Xp3) (x — xp4) — 4Py

In Mumford form:
D3 = [u3(X), 173(X)] = [X4 + u33x3 + U32x2 + Uz X + U3, 1733x3 + 1732x2 + V31X + 1730]

From the figure 3 above we can assert the polynomial expression of [(x) to be 1(x) = lsx® + L,x* +
323 + 1,x? + I;x + l,. As shown in the previous section, here there are eight intersecting points with the
hyper elliptic curve. At the intersecting points the y-coordinates are same. Therefore we can write, at the
intersection points [(x) = v(x) or [(x) — v(x) = 0 mod u(x) since we have to perform polynomial

reduction.
For the intersecting points P;, P,, P; and P,, we can write it in the form of [(x) — v(x) = 0 mod u(x).

((Isx® + Lyx* + 13x3 + Lx? + Lix + 1) — (013x3 + v1,x2 + vy1x + v10)

= 0mod x* + uy3x3 + upx? + U x + ug
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Or, ((Isx® + Lyx* + 3x3 + Lx? + Lix + 1) = (v13x3 + v1,x%2 + vy1x + vy) mod x* + uy3x3 +

U X% + Uy x + Uy

For the intersecting points Q; and Q,, we can write it in the form of [(x) — v(x) = 0 mod u(x).

((Usx® + Lyx* + L3x3 + Lx? + Lix + 1y) — (WX + V50) = 0mod x2 + Uy x + Uy

Or, (Isx® + Lyx* + L3x3 + Lx? + Lix + 1) = (Wp1X + v50) mod x2 + Uy X + Uy,

By reducing the L.H.S with the polynomial expression x* + u;3x3 + u;,x% + uyyx + 1y, and x? +

Uy1X + Uy comparing with the R.H.S, we get six simultaneous equations.

Is(ufs — ugp) — Lyugs + 13 = vyg EQN 1

ls (Uit — Us1) — Ltz + 1 = Vg EQN 2

ls(uy3tyg — Ugo) — lawqy + 1y = Vg EQN 3

ls(uysuss) — Lyugo + Lo = vyo EQN 4

Is(u31 + Ujp — 3udiUng) + L Ruaqtize — u31) + I3(Uf; — uze) — Ly +14 EQN5
=V

Is (U3 Uz — 2up1udp) + La(USp — U3 1Uz0) + L3 (UpiUzg) — laUzg + Lo = Vg EQN 6

As discussed before, we can introduce new variables to make the equation less tedious. The variable we

choose is shown below to ease the computation:

4 2 2 _ 3 _
Ap=uz; +uze — 3uz;Uy Ay= 2UpqUp0 — U, Ay= Uy — Uy
—..3 2 ) 2 _
Az= uz;Uzo — 2Up U3 Ay= ujp — Uz1Uy As= UyUy
_ .2 _ _
€p = Ujz — Uqp €1 = Uy3Uqp — Uqq €; = Uy3Uq 1 — Uqg
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€4 = Uy3Uq0

We can re — write the EQNS to make it easier to solve:

lse, — lyuqgz + 13 = vy45 EQN 1
lse; — Lugp, + 1, = vy EQN 2
lse, — Lyugq + 111 = vy EQN 3
lse3 — lyuqg + Ly = vy EQN 4
Aols + Ayl + Ayls — Luy, + 1 = vy, EQN S
[sAz + LA, + 1345 — Liugg + 1y = vy EQN 6

Subtracting the EQN 6 from EQN 5:

(U0l — U1 A3) 15 + (Upplg — Uz Al + (Upoly — Uz A3) 3 + Upgly — Uyl EQN 7
= UpV21 — U1y

Adding the EQN 7 and EQN 4:

(Uz0lp — U103 + Upi€3) 15 + (UpA; — Up Ay + UpgUpe)ly + (Uzel; — Uz A5); EQN 8
+ Uyply = UpVz1 — Upq Va0 + Uz V1

Subtracting the EQN 3 from EQN 8:

(U0l — U1 Az + U163 — Upg€)ls + (Uzdy — Uz Ay — UpgUsg + UgUz) s EQN9
+ (Uz0ly — Uz A5)l3 = Upy (—Vp0 — V1p)

As discussed before, we can introduce new variables to make the equation less tedious. The variable we

choose is shown below to ease the computation:

By = upplo — Uz1A3 + Uz €3 — Upp€y
By = uypl; — U8y — UpqUyg + Ugq Uy

By = uppl; — Uy14s
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Subtracting the EQN 1 from EQN 9:

(Bo — By€g)ls + (By + uy3By)ly = up (—v,9 — v19) — Byvg3

We can simplify the EQN 10 by introducing new variables, as shown below:

(3 = By — By¢&g
C4 == B1 + u3B2

Cs = Upy(—V30 — V19) — BaV13
C3ls + Cyly = Cy
Similarly, we can represent the EQN 7 in a similar manner as shown below:
B3 = uz0l¢ — uz143
By = uzoB1 — U184

Bs = uppl; — Uy 43

B3ls + Buly + Bsls + upgly — Up1ly = UpgVa1 — Upq Vg

EQN 10

EQN 10

EQN 7

The table below shows how the consecutive equations are formed by addition, subtraction and elimination:

EQN7+EQN4  (uz;€3 + B3)ls + (—uz1uo + Ba)ly + Bsls + uzly = ugovpy —

U1 V30 + U1 V10-

EQN I1-EQN 3 (uy1€3 + B3 — upo€2)ls + (UpqUso — UprUso + Bu)ly + Bsls =

UpoV21 — Uz1Vz0 T Up1V10 — UzV11-

EQN 12 = EQN 1 (u21€3 + B3 - u20€2 - EoBs)ls + (u20u11 - u21u10 + B4 +

Uy Bs)ly = UpgVpq — Uz Vg0 + Uz Vg — UzeViq — Vi3Bs.

Similarly, we can represent the EQN 13 in a similar manner as shown below:
Co = Up1€3 + B3 — Uyp€; — €8s
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Cy = UyoUyy — UpqUgo + By + Uy Bs

Cy = UygVaq — Upq Vg0 + Uzq Vi — UzeVi1 — V13Bs

Col5 + C1l4, = Cz EQN 13
C3l5 + C4,l4_ = CS EQN 10

Solving the equations simultaneously, we will get the expression for [y, [;, 5, I3, l, and lg, as shown
below:

inv = (C4CZ - C3Cl)_1 l5 = inv . (C4C2 - C5C1) lO - vlo + u10l4 - 6315
ly = inv - (CsCy — C3C3) l3 = v13 + us3ly — €ls
l, = vy +ugply — €4l li =v11 Huply — 6ls

By using the same methodology used in the earlier sections, we find:
U3z = Lsg) —Neg — 1
Uzy = L(s3) + I3 —u33Ns — N,
Uzy = L(s2) + Lis 3y + Laz)y — fa — UzaNs — uzsNy — N3
Uzg = Les1y + Leazy + 15 = fo — tu31Ns — uz,Ny — uz3N; — N,

where the variables are detailed below:

Ne =1 N5 = uz; + Us3 Ny = Uz + UzqUsz + Upp
N3 = Upouyz + UpqUip +U; Ny = Upolyp + UpqUyg + Uygg L(s3) = 21513
L(say = 21514 Liszy = 25y Lisy = 2lsly
L(4,2) = 2,1, L(4,3) = lyl;

Similarly, we can get the result for v5,, v3; and v3, by solving the equation:

LexS + Lx* + Lx3 + Lx? + Lix+ 1, =
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= (133%3 + V3x2 4+ V310 + v30) mod x* + ugzx3 + ugpx? + ugx + uszg

After expanding the equation and comparing the coefficients L.H.S = R.H.S we get:

V33 = ls(u33 — usy) + ly(—usz3) + 13

V3 = ls(Uz3usp — Uzg) + la(—uzz) + 1,

V31 = ls(Uz3uzy — uzg) + la(—uszy) + 14

V3 = ls(uz3us) + la(—uzp) + Iy
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5.3.2 Computational Complexity of General Addition Explicit Formula for HEC of g = 4

In the section above, we have proposed and derived a General Explicit Formula for Addition on a HEC
of genus = 4. For practical purpose one can eliminate the function of h(x) and the co-efficient of f, from
the function f(x). The computational complexity for the General Addition Explicit Formulae is defined

as (no. of Inverses, no. of Multiplication, no. of Squaring).

Finite Curve Properties Cost

Field Inverses (I) | Multiplication (M) Squaring (s)
Fq h(x), f(x) 1 74 9
F, h(x) =0 1 71 9

Table 5.6: Complexity comparison between the explicit formulae for HEC of

genus 4 for different curve property.

5.3.3 Comparison of proposed explicit formulae and existing (Addition) for HEC g = 4.

The proposed work is compared with the existing addition for the HEC for genus 4 has been compared.

The table below shows the list of complexity comparison.

Previous Work | Finite Field Cost Improvement
Inverse Multiplication Squaring Percentage (%)
@ M) (S)
Cantor [23] F, 6 386 M/S 100
Nagao [23] F, 2 289 M/S 135
C. Paar [33] F, 2 160 4 160
This work Fq 1 71 9 181

Table 5.7: Comparison between the explicit formulas for (genus = 4) curves over

[F, of previous work and the present work.
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ALGORITHM V
EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: y? +
(hyx? + hyx + ho)y = x° + fox® + fox7 + fox® + fox® + fux* + f3x32 + f,x% + fix + fy OVER THE
GALOIS FIELD GF (p). NUMBER OF COORDINATES: 10

Input | Genus 4 HEC: y? + h(x)y = f(x);

h(x) = hyx? + hyx + hy;

fx) =x%+ fox® + fox7 + fox® + fox® + fix* + f3x3 + fox? +
fix + fo;

Divisor Dy = [uy(x), v1(x)], Dy = [up(x), v (x)];

Uy (%) = x* + up3x3 + upx? + ugx + uq,

U1 (X) = vi3x° + 01507 + V11X + vy

Uy () = %% + Upy X + Upg, 11(X) = V31X + Vyo;

Output | D3 = [uz(x), v3(x)] = D; + D5, Cost
uz(x) = x* + u33x3 + uz,x? + Uz x + us, (IL,M,S)
v3(x) = v330° + v3,0% + v31x + v30;

Step | Expressions Cost

1 Uy = u%la Uy = u%o’ Uz120 = Uz1Uz0; (0,1,2)
2 Do= U3y + Upg — 3UzqUzg, Ay = 2Uy 120 — Uziz0Ua1, A= Uz — Uy, (0,51)
A3= Uz1Up120 — 2Uz0Uz1, A= Uzg — UzqUyg, As= Uzq20;

3 €0 = Uf3 — Ugp, € = Ugzllyp — Ugy, € = Uggllyy — Usgg, €4 = Ussllyo; (0,3,1)
My = U089, My = Upoly, My = Upplz, M3 = U143, My = Up Ay, (0,6,0)
Ms = uy,4s;

5 Dy = uz;1€3 — Upo€z, Dy = —Up1U1g — UgqUzg, Dz = Uz V20, (0,4,0)
D3 = uy1040;

6 By =My, — M3+ Dy,B; =My — M, +D;,B, =M, — Mg, B; = My — (0,0,0)
M3, By = My — M,, Bs = M, — M3;

7 Co =Dy + B; —€yBs, C; = D; + B, —uyBs, C; = uyqvy; — Dy + (0,8,0)

D3 — uyov11 — V13Bs, C3 = By — €9B,, C4 = By + uy3B,,
(5 = =Dy — D3 — v13By;

8 inv = (C,Cy — C3C)7L; (1,2,0)
9 ls = inv- (C,C, — C5Cy), Iy = inv - (C5Cy — C3C5), (0,14,0)
I3 =v3+usly —€pls, L, = vy +uyl, —€1ls, [y = v +uqly — 6515,
ly = vy + uply — €5ls;

10 Ng =1, N5 = uy; + uq3, Ny = Uyg + UpqUq3 + Upo, (0,5,0)
N3 = UpoUy3 + UpgUsp + U, Ny = UplUyp + UpqUsg + Ugg;

Page 79 of 117



11 Lis3y = 2lsls, Lisay = 2lsly, Lisz) = 21515, Lisqy = 2154, (0,6,2)
L(4,2) = 21,15, L(4,3) = Lls;

12| Compute uz(x) = x* + u33x3 + uzpx? + uz x + uzy: (0,9,2)
U3z = Lsa)y = Neg — 1, U3y = L(s3) + li — fg — u3zNs — N,
Uz = L(5,2) + L(5,3) + L(4,3) + hyls — fo — u3,Ns — uz3N, — Ns,
Usg = L(s1y + Lazy + 13 + holy + hyls — fo — ug  Ng — uz, Ny —
UzzN3 — Np;

13 | Compute v3(x) = v33x3 + V3,x% + V31x + V30" (0,11,1)
V33 = ls(u33 — uzp) + La(—us3) + L,
U3y = ls(UsgzUsp — ugq) + L(—usp) + 1,
V31 = ls(Ussuss — uzp) + la(—uzq) + 1y,
V32 = ls(Uzzusg) + La(—usz0) + lo;

Sum (1,74, 9)
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ALGORITHM VI
EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: y2 =
X%+ fox7 + fox6 + fox® + fux* + fox3 + f,x2 + fix + f, OVER THE GALOIS FIELD GF(p).
NUMBER OF COORDINATES: 10

Input | Genus 4 HEC: y% + h(x)y = f(x);

fO) = 2%+ fox® + frx7 + fox® + fox® + fax* + f3x° + fox? +
fix + fo;

Divisor Dy = [uy(x), v (x)], D, = [u(x), v,(x)];

uy (%) = x* + u3x® + upx? + ugx + uq,

V(%) = v13x3 + v1,x% + V1% + Vy0;

Uy (X) = X% + Upy X + Upg, V1 (X) = VqX + Vy0;

Output | D3 = [uz(x), v3(x)] = D; + D5, Cost
Uz(x) = x* + uz3x3 + uzx? + Uz x + Uz, (IL,M,S)
V3(%) = v33%3 + v3,X2 + V31X + V3;

Step | Expressions Cost

1 Uy = u%la Uy = u%o, Uz120 = Uz1Uz0; (0,1,2)
2 Ap= U221 + Uzp — 3Uz1Uz0, A1= 2U3z120 — Uz120U21, A= Uz — Uy, (0,5,1)
A3= Uz1Up120 — 2Uz0Uz1, A= Uzg — UzqUyg, As= Uzq20;

3 €0 = Uf3 — Usp, €1 = Uggllyp — Uyq, € = Uggllyy — Uy, €4 = Ugzlig; (0,3,1)
Moy = uz0lo, My = Upl1, My = Upolz, M3 = UpiA3, My = Upi Ay, (0,6,0)
Ms = up,4s;

5 Do = uz1€3 — Upp€z, Dy = —Up1Uy0 — Us1Uz0, Dy = Uz 1y, (0,4,0)
D3 = uy1v40;

6 By =My—-M;+Dy,B; =My —M,+D,,B, =M, —Ms,B; =M, —| (0,0,0)
M3, By = My — My, Bs = M — M3;

7 Co = Dy + B3 —€yBs, C; = Dy + By —uyBs, C; = UyqVy1 — Dy + (0,8,0)

D3 — upov11 — V13Bs, (3 = By — €9B;, (4 = By + uy3B,,
(s = —D; — D3 — v13By;

8 inv = (C,Cy — C3C;) 71, (1,2,0)
9 ls = inv- (C,C; — C5Cy), ly = inv - (C5Cy — C3C3), (0,14,0)
I3 =vs +uszly —€pls, L, = vy +wyly — €115, L = v +uqly — €515,
ly = vy + uply — €3ls;

10 Ng =1, N5 = Uy + U3, Ny = Uyg + UyqUy3 + Ugy, (0,5,0)
N3 = UpoUy3 + UpgUsp + U, Ny = UplUyp + UpqUsg + Ugg;
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11 Lis3y = 2lsls, Lisay = 2lsly, Lisz) = 21515, Lisqy = 2154, (0,6,2)
L(4,2) = 21,15, L(4,3) = Lls;

12| Compute uz(x) = x* + u33x3 + uzpx? + uz x + uzy: (0,6,2)
U3z = Lsa)y = Neg — 1, U3y = L(s3) + 1 — us3Ns — Ny,
Uz = L(5,2) + L(5,3) + L(4,3) — fa — u32Ns — u3zzN, — N3,
Uzg = L5y + Laoy + 13 — fo — uzg1Ns — U3, Ny — uzzN3z — Ny;

13 Compute v3(x) = v33x3 + v3,x% + V31X + v3¢: (0,11,1)
V33 = ls(Ud3 — uzp) + ly(—us3) + L,
U3y = ls(Ussusp — uzq) + la(—uszp) + 15,
V31 = ls(ugsuss — uge) + Lu(—uzq) + 14,
U3y = ls(UssUsg) + la(—uzp) + lo;

Sum (1,71, 9)
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5.4 Explicit Formulae (Doubling) for HEC of genus 2

As discussed in the previous sections that we can apply the group law operations in the Jacobian and we
can generate explicit formulae for the hyper elliptic curve of genus 2, 3 and 4 from the intersecting points.
Similar to the elliptic curve tangent and chord method, we can also generate doubling explicit formulae
for HECs. The figure below is the graphical representation of the Jacobian variety curve and the hyper

elliptic curve of genus 2.

Figure 5.4: Hyper Elliptic Curve of genus 2 as it touch the Jacobian variety curve.

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero.

Therefore:

[Pl] + [P1] + [Q1] + [Ql] + [Rl] + [Rz] = 0.

2[P] + 2[Q] = —[R1] — [R,] = [Ri] + [Ré]

The Cartesian points or the affine space points P; and Q; could be transformed to individual divisor class

group based on Mumford Representation, which is to be discussed in a separate section.

5.4.1 Generating Doubling Explicit Formulae for HEC of genus 2

Let’s consider a general Hyper Elliptic Curve C of genus g = 2 over the finite field Fg:

HEC: y? = x°> + fix* + f5x3 + fox? + fix + f
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Since, we will be working with this particular expression [P;] + [P;] + [Q4] + [Q,] + [R,] + [R,] = O.

We can convert the coordinate [P, ] and [Q,] to polynomial expression using Mumford.

The divisor class group, D for the point [P, ], [Q;] and for the point [R;], [R;] is shown below:

2
D= l_l(x — xp1) (X — xg2) = 2P = [x% 4+ uyx + ug, v1X + ]
r=1

2
D' = n(x — xXg1) (x — xgy) — 2P, = [x% + ujx + ug, vix + vg]
r=1

From the figure 4 above we can assert the polynomial expression of [(x) to be [(x) = l3x3 + l,x% +
lix + 1. The Jacobian curve y = [(x) is a cubic function since we can see in the graph that the function

has two extreme points and intersecting with the hyper elliptic curve with four Cartesian points.

At the intersecting points the y-coordinates are same. Therefore we can write, at the intersection points

l(x) = v(x) or l(x) — v(x) = 0 mod u(x) since we have to perform polynomial reduction.

For the intersecting points [P, ] and [Q,], we can write it in the form of [(x) — v(x) = 0 mod u(x).
(Lx® + Ix? + Lix + 1y) — (v1x + vy) = 0 mod x2 + uyx + uq

Or, (I3x3 + Lx? + Lix + 1) = (v1x + vo) mod x2 + uyx + u,

By reducing the L.H.S with the polynomial expression x? + u;x + u, and comparing with the R.H.S, we

get two equations.

(u% - uo)l3 + (_ul)lz + l1 = vl EQN 1

(uluo)l3 + (_uo)lz + lo = Vo EQN 2
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Since, the Jacobian variety curve touches at two points on the hyper elliptic curve. We can conclude that

at that point the gradient is same. So we find the derivative of the Jacobian and the hyper elliptic curves:
Derivative of Jacobian Curve:

dy
a = 3l3x2 + 2l2x + ll

Derivative of the hyper elliptic curve:

d
Zy-d—i/ =5x*+ 4fix* + 3f5x3 + 2fox + fy

By substituting v(x) = v;x + v, of the divisor D = [u(x), v(x)] and the derivative of the Jacobian curve,

we get the expression as shown below:
2(813x2% + 2Lx + 1)) - (v1x +vg) = 5x* + 4f,x* + 3f3x3 + 2fox + f; mod (x2 + uyx + up)

By reducing the L.H.S with the polynomial expression x? + u;x + u, and comparing with the R.H.S, we

get another pair of equations.
Aol3 + A1l2 + Azll = €o EQN 3
A3l3 + A4l2 + A5l1 = €1 EQN 4

Where the variables Ay, A;, A,, Az, A4, Ag, €, and €; are shown below:

Aoz 6171(‘[1,% - uo) - 6U1U0 A1= _4‘u1171 + 4‘170
A2: 21.71 A3: 6u1u0U1 - 6u0v0
A4= _4‘u0v1 A2= 2170

€0 = 5[—uy (uf — up) + uguel + 3f3(—uy) €1 = 5[—uo(uf —up)l + 3f3(~up) + fi
+ 2f,

Page 85 of 117



By solving the equations EQN 1, 2, 3 and 4 we can find the co-efficient of the Jacobian variety curve

[(x) = l3x3 + 1,x? + l;x + l,. The results are shown below:

l _ M491 - M182 l _ MOHZ - M391
3T MOM4_ - M1M3 2 MOM4_ - M1M3
L=v +uly — (U —w)ls lo = vo + uply — (Uaup)ls

Where the variable are used to simplify the calculation and to make the result appear less tedious. The

variable used here is shown below:
My, = Az — As(u% — Up) M; = A, — As(—uy) M; = Ay — Az(u% — Up)
M, =4, — Ay (—uy) 0, =€, — Asvy 0, = €y — Ay

At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 2, the
value of the y on both curve is the same. So we can replace the y expression of the hyper elliptic curve by

the Jacobian variety curve y = l3x3 + [,x? + [;x + [,.

HEC: y2 = x5+ fox3 + fox? + fix + f,
The Jacobian Variety Curve: y;c = l3x3 + Lx* + lix + [

Substituting y in HEC with y:

yict = x5+ fox® + fLx? + fix + fy

OI‘, (l3x3 + lzxz + llx + lo)z == x5 +f3x3 +f2x2 + flx +f0

Or, (l3x3 + lzxz + llx + lo)z - (xs +f3x3 + f2x2 +f1x +fo) =0 [EXP 1]

Solving the expression [EXP 1] would give the coordinates of the intersecting points and the point of
touch. However, we intended to get the results in Mumford form. The expression below is explicitly

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.
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2 2 2
[ e =0 =x00) - | [ =200 = x01) - | [ = e = 02
r=1 r=1 r=1

(Lx® + Lx? + Lx+1)%? — (x® + f5x3 + HLx2 + fix + f,)

Comparing the coefficients of the L.H.S with the R.H.S we get:

u& == 2[3l2 - 2u1 - 1

uy = 2Ll + 15 — 2uy — uf — 2ujuy
Similarly, we can get the result for v; and v} by solving the equation:
[(x) mod (x? + ujx + uy) = vix + v}
Or, I3x3 + Lx? + I;x + [y mod (x? + uix + up) = vix + v

After expanding the equation and comparing the coefficients L.H.S = R.H.S we get:

!

v = (i —up)ls —uil, + 4

vo = (Wug)ls —ugly + 1
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5.4.2 Comparison of proposed and existing Explicit Formulae (Doubling) for HEC g = 2.

The proposed works has been compared with the Explicit Formulae for doubling for the HEC for genus 2

has been compared. The table below presents list the complexity comparison table.

Previous Work | Finite Curve Cost Improvement
Field Properties Percentage (%)
Inverses | Multiplication | Squaring
@ M) (S)
Harley [11,25] F, h(x) =0, 2 30 - 100
fa=0
Lange [26] F, h(x) =0, 2 24 6 103.4
fa=0
Matsuo [13] F, h(x) =0, 2 27 - 104.3
fa=0
Takahashi [15] F, h(x) =0, 1 29 - 130
fa=0
Miyamoto [14] F, h(x) =0, 1 27 - 132.9
fa=0
Lange [27] F, h(x) =0, 1 22 5 135.7
fa=0
This work F, h(x) =0, 1 23 3 136.7
fa=0

Table 5.8: Comparison between the explicit formulas (doubling) for (genus = 2) curves over

[F, of previous work and the present work.
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TABLE VII

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 2, HEC: y? =

x% + f4x4 + f3x3 + fzx2 + fix+f, OVER THE GALOIS FIELD GF(p). NUMBER OF
COORDINATES: 4
Input Genus 2 HEC: y? = f(x);
h(x) = 0; f(x) = x° + f3° + fox* + fix + fo;
Divisor D = [u(x), v(x)];
u(x) = x2 + uyx + ug, v(x) = v1x + vy,
Initial | U; = u?; Uy = uqug; UVyy = ugvy; UVyg = ugvg; UVy, = uyvyg;
input | UVyo = ugvp;
variables
Output | D' = [u',v'] = 2D, Cost
u'(x) = x2 + ujx +ugy, v'(x) = x% + vix + vy; (IL,M,S)
Step Expressions Cost
1 Ao= 6v,U; — UV y; Ay= —4UVy + 4vy; A= 204, (0,2,0)
Az= 6v,Uy — 6UVyo; Ay= —4UVy;1; Ag= 2vy;
2 €0 = 5(—u Uy + 2U,) — 3fzuy + 2f5; (0,3,2)
€1 = 5[~uoUs + uf] — 3fsuq + fi;
3 My = A3 = As(Uy — ug); My = Ay — As(—uy); (0,3,0)
Ms = Ay — A, (Uy —wg); My = Ay — By (—uy);
4 01 = €1 — Asvy; 0, = €9 — Ayvy;
5 inv = (MgM, — M;M3)™1; (1,2,0)
6 l; =inv- (M0, —M;0,); l, =inv - (My0, — M36,); (0,8,0)
L =v +uly — (U —ug)ls; lp = v + uply, — (Up)ls;
7 Compute u'(x) = x% + ujx + ug: (0,3,1)
uy = 2l3l, — 2uy — 1;
up = 2l3l; + 15 — 2uy — Uy — 2ujuy;
Initial | U] = ui?; U} = ujuy;
output
variables
8 Compute v'(x) = vix + vy: (0,2,0)
v = Uy —uplls —ugly + 1y
vy = Ugls —uyly + l;
Sum (0,23,3)
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5.5 Explicit Formulae (Doubling) for HEC of genus 3

As discussed in the section 5.4, we apply this concept to the HEC of genus 3. In this section we apply the

same concept to develop a general addition explicit formulae algorithm for genus 3.

Q]_-.

Figure 5.5: Hyper Elliptic Curve of genus 3 as it touch the Jacobian variety curve.

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero.

Therefore:

2[P1] + 2[Q1] + 2[$1] = —[R1] = [R2] = [Rs] = [Ri] + [R2] + [Rs].

The Cartesian points or the affine space points P;, Q; and S; could be transformed to individual divisor

class group based on Mumford Representation, which is to be discussed in a separate section.

5.5.1 Generating Doubling Explicit Formulae for HEC of genus 3

Let’s consider a general Hyper Elliptic Curve C of genus g = 3 over the finite field F:
HEC: y2 = x7 + fox® + fux* + fax3 + fLx? + fix + f
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Since, we will be working with this particular expression [P;] + [P;] + [Q1] + [Q4] + [S1] + [S1] +
[R{] + [R,] + [R3] = 0. We can convert the coordinate [P;] and [Q;] to polynomial expression using
Mumford.

The divisor class group, D for the point [P, ], [Q1], [S1] and for the point [R4], [R,], [R3] is shown

below:
= D = [u(x),v(x)]
D= |(x—xp)(x—x)(x —x5) =3P = u(x) = x3 + upx? + uyx + ug
=1 v(x) = v,x% + v1x + v,
2 D" = [u'(x),v'(x)]
D" =] |(x — xp1)(x — xg2) (x — Xp3) — 3Py u'(x) = x3 + upx? + ujx + ug
=1 v'(x) = vix? + vix + v}

Table 5.9: Corresponding conversion of the Cartesian points to Mumford form for genus 3.

We can assert the polynomial expression of [(x) to be 1(x) = lyx* + l3x3 + [,x% + lix + l,. The
Jacobian curve y = [(x) is a quantic function. At the intersecting points the y-coordinates are same.
Therefore we can write, at the intersection points [(x) = v(x) or [(x) — v(x) = 0 mod u(x) since we
have to perform polynomial reduction.

For the points [P;], [@Q4], [S1] we can write it in the form of [(x) — v(x) = 0 mod u(x).

(Lx* + L3x3 + Lx? + Lix + 1)) — (v,x% + vix + 1) = 0 mod x3 + upx? + uyx + uy

Lax* + I3x3 + Lx? + Lix + 1y = (,x2 + v1.x + v) mod x3 + uyx? + uyx + u,

By reducing the L.H.S with the polynomial expression x? + u;x + u, and comparing with the R.H.S,

we get three equations.

A0l4 - u2l3 + lz = 172 EQN 1
A1l4_ - ull3 + ll = 171 EQN 2
A2l4 - u0l3 + lo = UO EQN 3
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Where the variables A, A; and A,:
Ag = (U3 —uy) Ay = (uauy — up) Az = (uzup)

Since, the Jacobian variety curve touches at two points on the hyper elliptic curve. We can conclude that

at that point the gradient is same. So we find the derivative of the Jacobian and the hyper elliptic curves:

Derivative of Jacobian Curve:

dy
E == 4‘l4_x3 + 3l3x2 + 2l2x + ll

Derivative of the hyper elliptic curve:

d
2y 22 = 7x% + Sfixt + 4f,x® + 3fx? + 263 +

By substituting v(x) = v,x% + vyx + v, of the divisor D = [u(x), v(x)] and the derivative of the

Jacobian curve, we get the expression as shown below:

2(41,x3 + 3L3x% + 21L,x + 1;) - (0x% + vix + vy)

S5x* 4+ 4f,x* + 3f3x3 + 2fox + f; mod (%2 + uyx + ug)

By reducing the L.H.S with the polynomial expression x2 + u;x + u, and comparing with the R.H.S, we

get another three equations.

A0l4 +A1l3 +Azlz +A3l1 = 90 EQN4
A4l4 + A5l3 + A6l2 + A7l1 = 61 EQN 5
A8l4_ + A9l3 + AIOZZ + Allll = 62 EQN 6

Where the variables Ay, A, A,, Az, Ay, Ag, Ag, A, Ag, Ag, A, A1, 0, 81 and 8, shown below:

Page 92 of 117



A0= 8BOU2 + 8u2u21]1 - 8u1v1 — U7y A1= 6u2u2U2 - 6u1172 - 6u2171 - 6U0

A2: _4u2U2 - 4171 A3: _sz

A4= 8B1U2 + 8u2u1171 - 8u0171 - 8u1u21]0 A5= 6u2u11]2 - 6u01]2 - 6u1v1

A6: _4u1U2 + 4170 A7: 2U1

A8= 8B2U2 + 8u0u21]1 - 8u0U0 A9= 6u2u0U2 - 4‘u0171

Ajp= —4uyv, A= 21

0o = 7Co + S5fsAo — 4fsu, + 3f3 01 =7C, + 5fsA; — 4fauy + 21,

Co = U2 + 3uu; + uyuy + u?

0, =7C, + 5fs4; —4fyue + f
C, = Udug — ujuuy — ul

C, = uduy — 2uyu? — udug — 2u ug

By solving the equations EQN 1, 2, 3, 4, 5 and 6 we can find the co-efficient of the Jacobian variety

curve [(x) = lyx* + I3x3 + [,x% + l;x + l,. The results are shown below:

_ D350 — D45y
4 DOD3 - DIDZ

.. — DoSi = D;5
> DyDs3 — D1D,

lz = 172 + uZlg _A0l4
ll s Ul + u1l3 _A1l4
lO = 170 + uOl3 _A2l4

Where the variable are used to simplify the calculation and to make the result appear less tedious. The

variable used here is shown below:

MO == A7A0 - A4A3 M1 - A7A1 - A5A3 MZ == A7A2 - A6A3

M3 = Aj14¢ — Agl; My = A1141 — Dglg Ms = A118; — Aqpl;
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Dy = M3 — AgMs Dy =M, —u; Ms D, = My — AgM,
D3 == Ml - uzMZ So == 62 - szS Sl S 61 - szz

At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 3, the
value of the y on both curve is the same. So we can replace the y expression of the hyper elliptic curve by

the Jacobian variety curve y = lyx* + I3x3 + [,x? + [;x + [,.

HEC: yZ = x7 +f5x5 +ﬁx4 +f3x3 +f2x2 +f1x +f0
The Jacobian Variety Curve: y;c = Lix* + Lx® + Lx? + Lix + [,

Substituting y in HEC with y:

yic? =x’ + f5x° + fix* + fox + fox® + fix + fy
Or, (Lyx* + L3x3 + Lx? + Lix + 1)) = x7 + fox5 + faix* + f3x3 + fox? + fix + f,
Or, (Lx* + Lx3 + Lx? + Lix +1))> — (x7 + fsx® + fux* + f5x3 + HLx2 + fix + f5) =0

[EXP 2]

Solving the expression [EXP 2] would give the coordinates of the intersecting points and the point of
touch. However, we intended to get the results in Mumford form. The expression below is explicitly

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.

3 3 3
B CEERCEEDICELS] [ CEEACEENCEEDY [ [CEEMICTEMMICTE

(3 + upx? + ugx + up) (3 + upx? + ugx + uy) (x> + ubx? + uix + uyp)
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(Lx* + Ix3 + Lx? + Lx +1)% — (x7 + fox® + fux* + f5x3 + fLox% + fix + fy)

Comparing the coefficients of the L.H.S with the R.H.S we get:

uy = 2u, + I3
up = 20,1, — Quy + u3) — 2uuy

uy = 2lly — 2uyuy — ufRuy + u3) — Qugy + uyuy)

Similarly, we can get the result for v3, v; and v by solving the equation:

[(x) mod (x3 + upx? + uyx + up) = vx2% + v1x + v,

Or, Lx* + I3x3 + Lx? + Lix + L[y mod (x3 + upx? + uyx + up) = v,x% + vyx + v,

After expanding the equation and comparing the coefficients L.H.S = R.H.S we get:

vy =l +upls — (Ut —up)ly
vy =l tugly — (uaug —ug)ly

v = lo + upls — (uaug)ly
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5.5.2 Comparison of proposed and existing Explicit Formulae (Doubling) for HEC g = 3.

The proposed works has been compared with the Explicit Formulae (Doubling) for the HEC for genus 3

has been compared. The table below presents list the complexity comparison table.

Previous Work | Finite Curve Cost Improvement
Field | Properties Percentage (%)
Inverse | Multiplication Squaring
@) M) (S)

Kuroki et al F, h(x) =0, 1 74 M/S 100
[29] fe=0

Gonda et al F, h(x) =0, 1 71 M/S 103.3
[30] fe=0

Guyot et al. F, h(x) =0, 1 61 9 108.1
[31] fe=0

Myukai et al. F, h(x) =0, 1 68 M/S 106.4
[32] fe=0

This work F, h(x) =0, 1 63 3 109.8
fe=0

Table 5.10: Comparison between the explicit formulas for (genus = 3) curves over
[F, of previous work and the present work.
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TABLE VIII

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 3, HEC: y2 =
x7 + fox5 + fix* + fax3 + fux% + fix + fy, OVER THE GALOIS FIELD GF(p). NUMBER OF
COORDINATES: 6.

Input Genus 3 HEC: y2 + h(x)y = f(x);

fO) =x7+ fsx® + fix* + f33° + fox% + fix + fo;
Divisor D = [u(x), v(x)];

u(x) = x3 + uyx? + ugx + ug, v(x) = v,x% + vyx + vy,

s _ . _ . _ 2. _ 2. _ 2. _ 7172.
Initial UZO = UyUyp, UlO = U Uy, UO = Uy, Ul =us,; U2 = Uy, U4_ = Uz,
mput U1 = upuy; Uppy = Upyuy; Uppg = Usug; UV = uyvy;

variables | UVy; = wyvy; UVyy = ugvy; UV, = uyvy; UVyy = ugvy;
UVyo = Upvy; UVyy = Uy vy, UVyy = Uy vy UV = Ugvy;

Output | D' =[u',v'] = 2D, Cost
u'(x) = x3 +uhx? + uix + up, v'(x) = vex? + vix + vf; (I,M,S)
Step Expressions Cost
1 Ag = Uy —uy; Ay = Uy — up; Ay = Upg; (0,0,0)
2 By = —uyUp + 2Up1 — ug; By = Uy + Uzzy — Uy (0,1,0)
B, = —=Uypyo + Usp;
3 Co = Uy + 3Uzz1 + Uz + Us; €y = upUzzq — 2upUy — Uppp — 2Uq0; (0,4,0)
Cy = UpUpo — uy Uy — Up;
4 Ay= 8Byv, + 8u,UV,; — 8UV;; — UVy; (0,11,0)

A= 6u,UV,, — 6UV;, — 6UV, — 6vy; Ay= —4UV,, — 4vy4;
A= —2v,; Ay= 8B v, + 8u,UV;; — 8UVy; — 8uUV,;

Ag= 6u,UVy, — 6UVy, — 6UV,; Ag= —4UV;, + 4vy; A= 2v4;
Ag= 8B,v, + BuyUV,; — 8UVyg; Ag= 6u,UVy, — 4UVy4;

Ajo= —4UViy; Ag1= 2045

5 My = A;A) — AyAsz; My = Ay A — AAg; My = A, A, — AgAs; (0,12,0)
Mz = A1 Ag — Aglz; My = A1 Ay — AglAz; M5 = Ay Ay — Ayl

6 0y =7Cy + 5fsAy — 4fau, + 3f3; 0, = 7C; + 5fsA41 — 4fauy + 2f5; (0,6,0)
0, = 7C, + 5fsA; — 4faug + f1;

7 €, = 0700 — A304; €, = 010, — A30,; (0,4,0)

8 Dy = M3 — AgMs; Dy = My — uy;Ms; D, = My — AgMpy; (0,4,0)
D3 = My —u;My;

9 So =€, —Vv,Ms; S =€, — v, M,; (0,2,0)

10 inv = (DyD; — D;D,)™1; (1,2,0)
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11 Computing the co-efficient of Jacobian Variety Curve: y = L,x* + (0,12,0)
L;x3 + Lx? + Lix + 1y:

ly = inv - (D3Sp — D151); I3 = inv - (DyS1 — D250);
Ly =v, +uply —Aolys Ly = vy +uglz — Aqly;

lo = vo + ugls — Aaly;

12 L(4’2) = 2l4l2 + lz, Uél = uZU:IL, (0,2,1)

13 Compute u'(x) = x> + upx? + ujx + uy: (0,1,1)
uy = 2uy + 13;

uy = L2y — Quy + Up) — 2U34;

Uy = Loy — 2Uz —uiCuy + Up) — (2ug + Uypy);

14 Compute v'(x) = vyx? + vix + vy: (0,6,1)
v, =l +uply — (U — up)ly;
vy =l +ugls — (Uauy — ugp)lys
vo = lo + upls — (uaug)ly;

Sum (0,63,3)
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5.6 Explicit Formulae (Doubling) for HEC of genus 4

As discussed in the section 5.5, we apply this concept to the HEC of genus 4. In this section we apply the

same concept to develop a general addition explicit formulae algorithm for genus 4.

Figure 5.6: Hyper Elliptic Curve of genus 4 as it touch the Jacobian variety curve.

Since the points of touch between the Jacobian variety curve with the hyper elliptic curve sums up to zero.

Therefore:

2[P1] + 2[Q1] + 2[$1] + 2[T1] = —=[R1] = [R,] = [R3] = [Ra] = [R1] + [Rz] + [R3] + [R4].
2[P1] + 2[Q1] + 2[$1] + 2[T1] = —[R1] = [R;] = [Rs] = [R1] + [Rz] + [R3] + [Ra].

The Cartesian points or the affine space points P;, Q;, T; and S; could be transformed to individual divisor

class group based on Mumford Representation, which is to be discussed in a separate section.

5.6.1 Generating Doubling Explicit Formulae for HEC of genus 4

Let’s consider a general Hyper Elliptic Curve C of genus g = 4 over the finite field F,:

HEC: y2 = x° + fgx® + fox7 + fox® + fox® + fux* + f5x3 + fox2 + fix + fy;
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Since, we will be working with this particular expression 2[P;] + 2[Q;] + 2[S;] + 2[T;] = —[R4] —
[R,] — [R3] — [R4]. We can convert the coordinate [P;], [Q4], [S;] and [T;] to polynomial expression

using Mumford as shown below:

2 D = [u(x), v(x)]
b= H(x —xp)(x — xg)(x = x5) = 3R, = u(x) = x3 + uyx? + ux + uq
- v(x) = v,x% + vyx + v,
D" =[u'(x),v'(x)]

u'(x) = x3 + uhx?® + uix + ug

2
D' = (x — xp1) (X — Xg2) (X — Xg3) — 3Py
H ]

v'(x) = vix? + vix + v

Table 5.11: Corresponding conversion of the Cartesian points to Mumford form for genus 4.

4
D= H(x —xp)(x — %) (x — x5)(x — x7) — 4Py, = x* + uzx® + upx? + uyx + ug

r=1

4
D' = ﬂ(x — xg1) (X — xXg2) (x — xp3) (X — Xg4) — 4P, = x* + usx® + upx? + ufx + uy

r=1

We can assert the polynomial expression of [(x) to be [(x) = lsx® + L,x* + I3x3 + I,x% + [;x + 1. The
Jacobian curve y = [(x) is a pentic function. At the touch points the y-coordinates are same. Therefore

we can write, [(x) = v(x) or l(x) — v(x) = 0 mod u(x) since we have to perform polynomial reduction.

For the points [P;], [@41], [S1], [T1] we can write it in the form of [(x) — v(x) = 0 mod u(x).

(Lsx® + Lyx* + L3x3 4+ Ix? + Lix + 1) — (w3x3 + vx2% + vyx + 1)

= 0 mod x* + ugx3 + upx? + u x + uq

Lsx® 4+ Lyx* + Lx3 + Lx? + Lix + 1,

v3x3 + 1,12 + vx + vy mod x* + uzx3 + uyx? + ux + u,
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By reducing the L.H.S with the polynomial expression x* + u;x3 + u,x? + u;x + u, and comparing

with the R.H.S, we get four equations.

Apls —uzly + 13 = v EQN 1
Alls —uyly + 1, = v, EQN 2
Als —uly + 1 =14 EQN 3
Aszls —uply + 1y = vy EQN 4

Derivative of Jacobian Curve:

d
d—i' = Slsx* + 4Lyx3 + 3lsx? + 2Lx + Iy

Derivative of the hyper elliptic curve:

d
2y - % =9x® + 7f,x® + 6fsx> + 5fsx* + 4f,x3 + 3f5x2 + 2f5ox + fi

By substituting v(x) = v3x3 + v,x2 + v, x + v, of the divisor D = [u(x), v(x)] and the derivative of

the Jacobian curve, we get the expression as shown below:

2(5lsx* + 4l,x3 + 313x% + 2L,x + 1;) - (v3x3 + vx2% + vix + vy)

9x8 + 7f,x® + 6fex> + 5fcx* + 4f,x3 + 3f3x% + 2f5x + f; mod u(x)

By reducing the L.H.S with the polynomial expression x* + uzx3 + u,x? + u; x + Uy, and comparing

with the R.H.S, we get four equations.

Myls + M1, + Myls + Msly + Msl, = €, EQN 5
Msls + Mgl, + Mols + Mgl, + Mol, = €, EQN 6
Pyls + Pyls + Pyly + P3l, + P3l, = €, EQN 7
Psls + Pgls + Pyly + Pgly + Pyl, = €, EQN 8
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By solving the equations EQN 1, 2, 3,4, 5, 6,7 and 8 we can find the co-efficient of the Jacobian variety

curve [(x) = lsx® + Lyx* + 1323 + 1,x? + I;x + 1. The results are shown below:

D30 — 0,6,
* T A3Ag — Ayl

Doy — A0,
A0 — Ay

l; =v3 +uszly, — Ayls
L, =v,+uyl, — Ayls
L =v +uly, — Ayl
lo = vy +ugly — A3ls

At the point of touch, in this case it is the Jacobian Variety and the Hyper Elliptic Curve of genus 4, the
value of the y on both curve is the same. So we can replace the y expression of the hyper elliptic curve by

the Jacobian variety curve y = Lyx* + I3x3 + Lx? + L;x + [,.

HEC: y? = x% + fox7 + fox® + fox® + fax* + f3x3 + fox? + fix + f
The Jacobian Variety Curve: v = lsx® + [x* + l3x3 + Lx* + Lix +

Substituting y in HEC with y:

Vit =2+ fox7 + fox® + fox® + fixt + f5x3 + fox2 + fix + fy

Or, (Isx5 + Lyx* + I3x3 + L,x? + Lix + 1)?

x9 +f7x7 +f6x6 +f5X5 +f;1_x4 +f3x3 +f2x2 +f1x +f0

OI’, (l5x5 + l4x4 + 13x3 + lzxz + llx + lo)z -
X7+ fsx® + fax* + f5x] + fLox? + fix + fo) =0 [EXP 2]
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Solving the expression [EXP 2] would give the coordinates of the intersecting points and the point of
touch. However, we intended to get the results in Mumford form. The expression below is explicitly

expressed in the Mumford form if we solve and compare the L.H.S and R.H.S.

Ot + ugx® + upx? +ugx + ug) - (e + uzx® + upx? + ugx +uy) -
(x* + uzx® + upx? + ugx + ug)

(lsx® + Lyx* + L3x3 + Lx? + Lix + 1)? —
x4 fox” 4+ fox® + fox® + fixt + f5x3 + Lx? + fix +

Comparing the coefficients of the L.H.S with the R.H.S we get:
u; = —2us
uy = 12 —uz(2uz) — Quy + Uy)
u:,[ = 2lsl4 —-1- ulz(ZU3) + u’3(2u2 + Uo) - (2u1 + 2U23)

U6 = 215[3 + li - ui(2u3) - ué(zuz + Uo) - u’3(2u1 + 2U23) - (Zuo + U13 + Uz)
Similarly, we can get the result for v5, v; and v by solving the equation:
[(x) mod (x* + ugx® + uyx? + ux + ug) = v3x3 + vx2 + vx + v,

Or, lsx® + Lyx* + 3x3 + Lx? + Lix + Iy = v3x3 + v,x% + vyx + v,

mod (x* + uzx3 + upx? + uyx + ug)
After expanding the equation and comparing the coefficients L.H.S = R.H.S we get:

vg = Apls —usly + 13
vy = Alls —ujly, + 1,
vy =AYl —uil, + 1
vy = A5ls —ugly + 1
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5.6.2 Comparison of proposed and existing Explicit Formulae (Doubling) for HEC g = 4

The proposed works has been compared with the Explicit Formulae (Doubling) for the HEC for genus 4

has been compared. The table below presents list the complexity comparison table.

Previous Work | Finite Field Cost Improvement
Inverse Multiplication Squaring | Percentage (%)
M (M) )
Cantor [23] F, 6 359 M/S 100
Nagao [23] F, 2 268 M/S 135.7
C. Paar [33] F, 2 193 16 146.3
This work Fq 1 98 3 178.6

Table 5.12: Comparison between the explicit formulae’s (doubling) for (genus = 4) curves over

[F, of previous work and the present work.
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TABLE IX

EXPLICIT FORMULA FOR ADDITION ON A HYPER ELLIPTIC CURVE OF GENUS 4, HEC: y2 =
X%+ fox7 + fox6 + fox® + fux* + fox3 + f,x2 + fix + f, OVER THE GALOIS FIELD GF(p).
NUMBER OF COORDINATES: 8

Input Genus 4 HEC: y2 + h(x)y = f(x);
f) =x%+ fox® + fox” + fex® + fox® + fix* + fox3 + fox? +
fix + fo;
Divisor D = [u(x), v(x)];
u(x) = x* + uzx® + upx? + ugx + uy,
v(x) = v3x3 + v,x% + vyx + vy;
Initial | Uy = u3; Usg = Uglig; Usy = Uglly; Usy = Ugtiy; Uspg = ugUss;
input | Usyy = uyUss; Uss = usty; Upg = usttg; Uz = UslUo; Upy = UslUy;
variables | U, = uzu,; Uy, = upug; Uy = U U, = u3; Uz = uf; Uy = ug;
Output | D' = [u',v'] = 2D, Cost
u'(x) = x* +ujx® + upx? + ufx + uy; (I,M,S)
v'(x) = vix3 + vix? + vix + v);

Step Expressions Cost
1 Ag =Uy—uy, Ay = Uzz —uy; Ay = Upz — ug; Az = Upg; (0,0,0)
2 By = —u3zUy + 2U3 — uq; By = —Uszy + Uy + Uyz — ug; (0,1,0)

By, = —Uszy + Uyz + Upz; Bs = Uy — Usp;
3 CO = Ul - 3U32 + 2U13 + U2 - uO; (0,4’,0)

C; = u3zUsy — 2u3U, + 2U 5 + Upys;

Cy = uzUszy — 2U3y1 — Uz + Uz + Upy;
C3 = uzUszg — 2U3zz0 — Up + Upy;

4 Dy = —u3U; + 3U3, + uzUs, + 2U;, — 4U3; — 3usU, + 2U3; (0,16,0)
Dy = u3Uszy —ugUszy, — 4Uszp, + Uz + 2Uy, + 3U U, — uyUy;

D, = 2Uy; — UgUs3q + 3u U35 — 2u3U; — u U, + u3Uyg — 2U550 —
Ug; D3 = —UgUzg + 3uyUzg — 2ugUss — ugU; + Uy;

5 My, = 10C,v3 + 10Byv, + 104,v; + 10u3vy; M; = 8Byvs + (0,19,0)
8Ayv, — 8uzv; + 8vy; M, = 64,v; — 6UzV, + 6V4;

M; = —4uyv; + 4v,; My = 2v3; Mg = 10C;v3 + 10B;v, +
104,v; + 10uyvy; Mg = 8B,v3 + 84,v, — 8u,vy; M; = 6A,v3 —
6U, V5 + 6Vy; Mg = 2v5,;

6 €0 = 9Dy + 7f;By + 6f; Ay — 5fsus + 4fs; (0,6,0)
€, = 9D, + 7f;B1 + 6f¢A; — 5fsu; + 3f3;
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7 Ag= My — M,Ay — M3A; — M4A,; Aj= My — usM, + u, M3 + uqyMy; (0,13,0)
Ay= M5 — M;Ay — MgAy — MoAy; Az= Mg — usM; + uy; Mg + uy Mo
8 0y = €9 — Myv3 — M3v, — Myvy; 01 = €, — M;v3 — Mgv, — Mgvy; (0,6,0)
9 inv = (AzAy — A,A)7L; (1,2,0)
10 Computing the co-efficient of Jacobian Variety Curve: y = lsx> + (0,12,0)
Lix* + L3x3 + Lx? + Lix + 1y:
ls = inv - (8360 — A16,); Uy = inv - (800, — Az0);
l; =vs3 +uzly, — Apls; L, = vy, +uyly, — Aqls;
L =vy+uly —Ayls; Iy = vy + uply, — Asls;
11 Compute u'(x) = x> + upx? + ujx + uy: (0,8,2)
uy = —2uz; up = IZ —uz(2us) — (2up + Uy);
uy = 2Ll — 1 —u5ug) + u3(2u, + Uy) — (2uy + 2U,3);
uy = 2lsly + 15 —uyRug) — ub,Quy + Uy) — us (Quy + 2U,3) —
(Cug + Uy + Uy);
12 0 = ug —uy AL = uguy —up; Ay = ugug — ug; A = uzug; (0,3,1)
13 Compute v'(x) = vyx? + vix + vy: (0,8,0)
v = Agls —uily + l3; vy = Al —ujl, + 1y
v = ASls —uily, + 1 vy = A5l — ugly + s
Sum (1,98,3)
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Chapter 6

Discussions and Future Works

In the field of cyber — security, especially for public key infrastructure. There is a demand for shorter key
size and faster computation. Shorter key size is needed since the mobile devices stores limited amount of
space and faster computation is necessary because of limited power supply and processing capabilities.
Elliptic Curve Cryptosystem has been studied extensively and has already been implemented in our mobile
devices such as Blackberry to public key cryptosystem. The key size used by the ECC is much shorter
than of RSA and provides the same security strength. However, it is believed theoretically that the Hyper
Elliptic Curve Cryptosystem can provide the same security strength with much shorter key size of ECC.

In this thesis, a brief introduction is provided in the first chapter. Then, in chapter 2 the mathematical
background of groups, rings, finite field and basic introduction of Hyper Elliptic Curve with examples.
Chapter 3, discusses the HECC is details such as group operation and its comparison with ECC. In the
chapter 4, we gave an overview of the existing computational methods and subsequently in chapter 5 we
have proposed an algorithm for faster computation for Hyper Elliptic Curve Cryptography. We also
discussed the process used derive the algorithm for curves of genus 2, 3 and 4. In the complexity
comparison table, we have noticed that the as the number of genus of the curve increases the number of
total operations to perform group operation decreases compare to the recent existing work. There is
significant rise in efficiency in terms of percentage from the recent previous work for the hyper elliptic

curves of genus 3 and 4.

In the future study, we can work on the hardware implementation of Hyper Elliptic Curve Cryptosystems,
i.e, key exchange and digital signature. Although this thesis is solely based on the computation in Affine
Space. Later we can derived an explicit formulae in projective space, which will delete the inversion
operation. As discussed in this thesis, inverse operation is computationally intensive. Would it be possible
to develop an explicit formulae algorithm of 0 inversion in affine space? The explicit formulae shown in

the thesis is takes the coefficient of the Mumford Representation of the Cartesian points as input. There is
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another method of transforming the Cartesian points into divisor class by Chow Representation [41], [42].
Is it possible to develop more efficient explicit formulae with Chow Representation instead of Mumford

Representation? All these options can be explored in the future.

Later, we can propose explicit formulae over the finite field of GF(2™).
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Appendix
A. MATLAB SCRIPT FOR PSEUDO CODE FOR CALCULATING: y*mod p

% Power Mod Calculator
% A = y.~2 mod p

syms Ay p

y = Input("Enter the range of y: ");
p input("Enter the value of mod p: );

>
I

mod(power(y,p),p);

y = ", num2str(y)]1;
y.~n mod p = ", num2str(A)];
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B. MATLAB SCRIPT FOR PSEUDO CODE FOR CALCULATING: (x3 + x) mod p
% Power Mod Calculator
% B = (X-~"3 + x) mod p

syms B x p

X = Input("Enter the range of x: ");
p = input("Enter the value of mod p: *);
B = mod((x."3 + X),p);

W=1["x =", num2str(xX)];
YA [ x."3 + x mod p = ", num2str(B)];

disp(W)
disp(2)
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C. MATLAB SCRIPT FOR PSEUDO CODE TO DETERMINE THE POINTS ON EC

% ElIlipticCurvePoints
% E = {(X,y): y*2 = x*3 + x mod p} U {O}

%
%
%
%

A =y.~"2 mod p

B = (-3 + x) mod p

A represents the left side of the equation
B represents the right side of the equation

symss ABXyp

y = 1nput("Enter the range of y: "); % range of y is from O:p-1
X = Input("Enter the range of x: "); % range of x is from O:p-1
count = O;

p = input("Enter the value of mod p: ");

disp("The valid co-ordinates or points in the curve®)

A
B

mod(y-"2,p);
mod((x-"3 + X),p);

for b = [1:p]
for a = [1:p]
if B(b) == A(a)

%Z = ["BL", num2str(b) ,"]", "===" , “A[", num2str(a)

71715

W = [*x = 7, num2str(x(b)) , " == " , 'y = 7,
num2str(y(a))]:

%disp(2)

WwW = [T(X,y) = (7, num2str(x(b)) ,",",
num2str(y(a)),")"1;

count = count + 1;

%disp(W)

end
end

end
count = count + 1;
Z = ["Number of Valid points = ", num2str(count)];

disp(2)
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D. MATLAB SCRIPT FOR PSEUDO CODE TO DETERMINE THE POINTS ON HEC

% HyperEllipticCurvePoints
% E = {(X,y): y*2 = x5 + 1184x"3 + 1846x"2 + 956x + 560 mod p} U {O}

%
%
%
%

= (y-"2) mod p

= (X."5 + 1184*x."3 + 1846*x."2 + 956*x + 560) mod p
represents the left side of the equation

represents the right side of the equation

A
B
A
B
symss ABXyp

y = 1nput("Enter the range of y: "); % range of y is from O:p-1
X = Input("Enter the range of x: "); % range of x is from O:p-1
count = O;

p = input("Enter the value of mod p: *);

disp("The valid co-ordinates or points in the curve®)

A
B

mod((y-"2).,p);
mod((X."5 + 1184*x.~3 + 1846*x.72 + 956*x + 560),p):

for b = [1:p]
for a = [1:p]
ifT B(b) == A(d)
W=["y) = (7, num2str(x(b)) .",",
num2str(y(a)).")"1;
count = count + 1;

disp(W)

end
end
end
count = count + 1;
Z = ["Number of Vvalid points = ", num2str(count)];

disp(2)
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