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Abstract 

In this dissertation, I investigated the function and evolution of plumage-based visual signals in 

trogons (Trogoniformes), and assessed the influence of individual parameters in the receptor-

noise model of colour discriminability. In Chapter 2, I investigated the function of tail raising in 

the elegant trogon. For this purpose, I used observational and experimental data collected in 

Costa Rica. Results demonstrated that tail raising in the elegant trogon is a multifunctional signal 

that targets both conspecifics and heterospecifics. Specifically, trogons used this behaviour 

during intra and intersexual interactions, and the experiment confirmed that tail raising is a 

pursuit-deterrent signal. In Chapter 3, I experimentally tested which plumage patches are used 

in species recognition in two species of trogons: the black-headed trogon, which is sympatric 

with a similar-looking congener, and the elegant trogon, which is not sympatric with a similar-

looking congener. The results suggested that while both species use the back and belly colour as 

specie- recognition traits, the black-headed trogon but not the elegant trogon also assessed the 

tail banding pattern. In Chapter 4, I investigated the relationship between sympatry and 

plumage divergence in the genus Trogon. My results demonstrated that Trogon taxa diversified 

more rapidly, and that plumage trait divergence increased with sympatric overlap in South 

American but not Central American taxa. Together, my findings suggested that the rapid 

colonization of South America following the Great American Interchange resulted in 

reinforcement through character displacement or trait sorting. In Chapter 5, I investigated how 

dichromatism scores are influenced by individual parameters of the receptor-noise model of 

chromatic contrast threshold, using an avian-based tetrachromatic approach. I systematically 

tested parameter values for ambient light environment, photoreceptor sensitivities and 

densities, transmission properties of the ocular media and oil droplets, and compared the 
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sensory experience of species for which the visual system has been fully characterized. My 

results demonstrated that oil droplet characteristics, photoreceptor densities, and the sensitivity 

of the SWS1 photoreceptor (ultraviolet sensitive or not) had the most influence on 

dichromatism scores. I encourage the complete characterization of visual systems when 

possible, and my results will inform researchers when making inferences about tetrachromatic 

visual models. 
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Animal Communication 

The study of animal communication has greatly contributed to our understanding of natural and 

sexual selection (Bradbury and Vehrencamp 2011), the fundamental tenets of biology. This field 

of research is particularly rich because of the various modalities by which animals can convey 

information to one another. Indeed, animals can communicate by acoustic (Kroodsma and Miller 

1982, Gerhardt and Huber 2002), visual (Hill and McGraw 2006a, Matthews and Matthews 

2009), chemical (Bell and Cardé 1984, Vandenbergh 2012), electrical (Kramer 1990), and 

vibrational (Markl 1983, Lewis and Narins 1985, Hill 2008) means. Because of this diversity of 

signalling and sensory modalities, studies in animal communication cover a broad range of 

proximate and ultimate questions including physical, physiological, anatomical, and behavioural 

topics. Indeed, the study of animal communication is one of the most integrated fields in 

biology. From a sender’s perceptive, investigations have focussed on how a signal is produced 

(e.g., Bennet-Clark 1970, Aroyan et al. 2000, Elemans et al. 2004), how it propagates (e.g., 

Naguib and Wiley 2001, Boncoraglio and Saino 2007), its cost (Olson and Owens 1998, Gil and 

Gahr 2002), how it is learned and/or developed (Beecher and Brenowitz 2005, Shawkey et al. 

2014), and its physical and/or chemical attributes (Wyatt 2003, McGraw 2006a, b). Studies 

concerned with understanding the receiver’s perspective have focused on sensory organs (Land 

and Nilsson 2012), the neuroscience of perception (Guilford and Dawkins 1991), cognition (Hunt 

1996, Prior et al. 2008), and thresholds of detection (Vorobyev and Osorio 1998). The 

importance of signals in the interactions between senders and receivers has also generated 

much research. Major topics of interest include the reliability of signalling (Searcy and Nowicki 

2005), the function and evolution of signals (Searcy and Nowicki 2005), and communication 

networks (McGregor 2005). 
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Function and evolution of plumage colouration in birds 

Visual communication can take place through active signals (body movements) or passive signals 

(colour of plumage patch). In many circumstances, such as during ritualized courtship displays, 

behaviours are used to present and emphasize passive signals. Birds in particular have a long 

and rich history in studies of visual signals (Hill and McGraw 2006a, b). For example, Darwin 

(1871) discussed how plumage dichromatism was unlikely to have evolved through the process 

of natural selection, developing the hypothesis that sexual selection was probably responsible 

for differences between the sexes. Since then, bird models have been central in the 

development of several hypotheses formulated to explain the evolution of conspicuous 

secondary sexual ornaments, the maintenance of honest signals, and the benefits of mate 

choice. Bird examples have been used to advance Fisher’s runaway selection (Fisher 1915, 

Andersson 1994) and sexy son hypotheses (Fisher 1930, Weatherhead and Robertson 1979), 

Zahavi’s handicap model (Zahavi 1975, 1977), Hamilton and Zuk’s hypothesis (Hamilton and Zuk 

1982), the good genes hypothesis (Møller and Alatalo 1999, Griffith et al. 2002), and the 

compatible genes hypothesis (Kempenaers et al. 1999, Neff and Pitcher 2005, Akçay and 

Roughgarden 2007). 

Visual communication can involve conspecifics or heterospecifics, but most visual signals 

have been studied in the context of intraspecific communication. In birds, for example, the 

colours of plumage patches and behaviours that display these patches have been thoroughly 

documented in intraand intersexual interactions (Hill and McGraw 2006a). In contrast, visual 

behaviours targeting heterospecifics are poorly documented. Stotting is one of a few well-

studied examples.  Several species of ungulates, especially gazelles, propel themselves high in 

the air with stiff legs in the presence of a potential predator. The pursuit-deterrent hypothesis, 

the currently favoured explanation for this behaviour (Caro 1986), states that such displays are 
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honest signals of condition and convey unprofitability to predators. Behaviours with the same 

function have been observed in birds. For example, common moorhens (Gallinula chloropus) 

flash white under-tail coverts and turquoise-browed motmots (Eumomota superciliosa) wag 

their tails in the presence of potential predators (Alvarez 1993, Murphy 2006, 2007). Tail 

displays seem to be generally common in birds but whether they functions as conspecific signals 

or heterospecific signals has rarely been investigated. 

The function of animal colours such as those found on the plumage of birds has often 

been studied in the context of mate choice, but rarely investigated for use in species recognition 

(Ord and Stamps 2009). This is surprising since closely related species often look similar, and 

there is evidence for character displacement of sexually selected visual traits (Sætre et al. 1997). 

Because the proper recognition of heterospecifics can prevent hybridization between incipient 

species (Price 2007), divergence in plumage traits could mediate pre-zygotic isolation through 

reinforcement. Therefore, evaluating which visual traits are used for species recognition can 

inform our understanding of interspecific communication and the ultimate mechanism of 

speciation. Furthermore, it is important to understand which conditions lead to differences in 

these traits. Evidence from pairs of closely related species has demonstrated that rapid 

sympatry can drive trait divergence (Martin et al. 2010), especially at intermediate levels of 

geographic overlap (Martin et al. 2015). However, the divergence of sexually selected colours 

has rarely been investigated in large groups of closely related species, which would be 

particularly informative to understand the evolution of visual signals. In all cases, to properly 

address questions that pertain to animal colouration, colours should be adequately quantified. 
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Quantification of colour 

It has long been understood that animals do not all share the same visual sensory experience. 

Early experimental evidence demonstrated that while some animals perceive fewer colours than 

humans (Allen 1879), others could detect wavelengths outside the normal human range of 

vision, particularly in the ultraviolet (Kühn 1924). Nevertheless, the description of animal colours 

remained subjective to human perception until recently (Burtt 1986, Burkhardt 1989, Bennett et 

al. 1994). For example, feathers were described by matching their colour to that of a standard in 

the Munsell book of colours (Munsell Color Company 1976, Zuk and Decruyenaere 1994), or by 

calculating colour values based on the standard observer (Wyszecki and Stiles 1982, Burtt 1986, 

Andersson and Praguer 2006). Discussions regarding the pitfalls of relying on the subjective 

human visual experience to quantify colours (Burkhardt 1989, Bennett et al. 1994) prompted the 

widespread use of spectrophotometry as the most objective method to quantify the reflective 

properties of animal colours (Andersson and Prager 2006). Spectrophotometers collect spectral 

data across any range of wavelengths, which is particularly useful in the study of ultraviolet 

perception in animals such as birds (Bennett and Cuthill 1994). 

 Several methods can be used to extract quantitative information and compare colours 

from reflectance spectra; each one has advantages and disadvantages, and is applied in 

different contexts. From a descriptive approach, tristimulus variables have been developed to 

interpret spectral curves, of which measures of hue, saturation, and brightness are the most 

commonly used (Montgomerie 2006). Hue is generally defined as the wavelength which 

contributes the most to the total reflectance, saturation is a measure of a colour’s purity, and 

brightness is a measure of the total amount of light reflected by a surface (Montgomerie 2006). 

Together, hue and saturation describe the chromatic component of a colour, whereas 

brightness describes the achromatic component. Because they describe physical properties of 
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spectral curves, colour metrics are comparable across studies and intuitive measures. However, 

because they do not incorporate the ambient light or the receiver’s psychophysiology, and 

therefore do not quantify the discriminability between colours, tristimulus scores have been 

criticised when used to infer how visual signals may be perceived (Delhey et al. 2014).  

The comparison of several colours can be achieved by applying principal component 

analysis directly to multiple spectra (Endler 1990, Grill and Rush 2000), with the resulting 

components representing the wavelengths that contribute most to among-colour differences. 

This method has the benefit of simultaneously comparing several colours, but the multivariate 

assumptions of multivariate normality, sphericity, and independence of spectral measurements 

are often violated (Endler and Mielke 2005). Furthermore, the principal components are loaded 

differently for every data set, even from the same species, preventing direct comparison of 

results among studies. As a consequence, analysis of colours by principal component analysis is 

now uncommon. 

To incorporate some element of psychophysiology in the measurement of colours, 

Endler (1990) proposed analyzing spectral curves using segment classification. This method 

incorporates the ambient light environment, and generates unitless colour coordinates by 

breaking down spectral data into equally-spaced regions, and comparing the relative stimulation 

of the short wavelength cone to the medium cone, and the long wavelength cone to the short 

wavelength cone. Segment classification is based on an opponency mechanism of colour vision 

(Wyszecki and Stiles 1982, Endler 1990), and as such, it is a receiver-independent classification 

scheme of colours, and captures common properties of many trichromatic vertebrate visual 

systems. This method has rarely been implemented (Endler and Théry 1996), perhaps because it 

may not properly capture the sensory experience of birds, which are tetrachromatic not 
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trichromatic, and because a large number of spectral curves can generate the same colour 

coordinates (like the RGB colourspace, Wyszecki and Stiles 1982).   

With the understanding that birds and other animals are tetrachromatic, Goldsmith 

(1990) proposed a tetrahedral colourspace model that could encompass all the colours 

perceived by birds. Further developed by Endler and Mielke (2005) and then by Stoddard and 

Prum (2008), colours are positioned in a three-dimensional space using coordinates 

representing the stimulation of the four cones, based on photoreceptor sensitivity functions. 

Several methods have been developed to compare the position in space of two or more points, 

their spread, volume, and the volume overlap of two or more clouds of colour points (Endler 

and Mielke 2005, Stoddard and Prum 2008, Maia et al. 2013). These methods of comparing 

colours have been very popular because they are likely a good approximation of the visual 

sensory experience of birds, require at a minimum only spectral and cone sensitivity data, but 

can also accommodate several other characteristics of the visual system that can influence the 

sensory experience.  

To date, the most comprehensive model of animal vision is that proposed by Vorobyev 

and Osorio (1998). Their model, which uses receptor-noise as a determinant of colour 

thresholds, quantifies the chromatic contrast between two colours while considering the 

ambient light environment, the light transmission properties of the ocular media, the 

photoreceptor sensitivities and densities, the threshold sensitivity of the photoreceptors (Weber 

fraction), and in several taxa, the transmission properties of oil droplets found anteriorly to the 

photoreceptor (Vorobyev and Osorio 1998). Recently, methods have been developed to include 

photoreceptor density in calculations of colourspace distances (Pike 2012, Delhey et al. 2014), 

allowing the distances between points to be measured in just-noticeable-differences (Vorobyev 

and Osorio 1998). This popular model has been extensively used since it was initially proposed 
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because it provides the best approximation of an animal’s visual sensory experience and the 

units of measurements, just-noticeable-differences, are intuitive. However, the visual systems of 

very few animals have been completely characterized and researchers almost always have to 

make assumptions regarding one or many of the parameters listed above. The potential 

consequences of wrongful parameterization have been pointed out (Renoult et al. 2010), but 

the influence of individual parameters has never been systematically investigated. 

 

Study group: the Trogons 

The trogons and quetzals family (Trogonidae) comprise a pantropical group of approximately 40 

species (Collar 2001), which arguably include some of the most beautiful birds in the world. 

Systematic classification of the group has been hampered by a highly conserved body plan 

throughout the order and a unique heterodactyl toe arrangement that is found in no other 

family of birds. An ancient lineage, their closest living relatives are considered to be the 

Coraciiformes (kingfishers, rollers, bee-eaters, Hackett et al. 2008), but they have been placed as 

sister clade to the Coliiformes (mousebirds) of Africa (Espinosa de los Monteros 2000). Their 

plumage is characterized by vibrant colours on most parts of their body. While the males of 

Neotropical and African species bear bright iridescent feathers on their upperparts and 

carotenoid based colours on their underparts, the Asian trogons seem largely coloured by 

carotenoids and melanins (Collar 2001). All species have a relatively long tail that displays 

barring patterns that vary across species. The phylogeny of trogons is well established at the 

genus level, but studies of the arrangements of clade groupings are equivocal (Hosner et al. 

2010, Quinteros and Espinosa de los Monteros 2011). The two main phylogenetic hypotheses 

place either the African trogons (Hosner et al. 2010) or the New World trogons (Quintero and 

Espinosa de los Monteros 2011) as basal. 
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Trogons of the Neotropical genus Trogon, the focus of this dissertation, comprise of a 

group of 16 species for which 55 subspecies have been described (DaCosta and Klicka 2008, 

Forshaw 2009, Remsen et al. 2014). As with all other trogons, members of this genus have a 

highly conserved body plan and plumage patterns. Males bear iridescent feathers on their head, 

mantle, rump and upper-tail (ranging from deep purple to copper) and carotenoid-based colours 

on their belly and breast (red, orange, or yellow, Thomas et al. 2014). All species possess a long 

tail that ranges in barring pattern from all white to all black, and many have a white band 

separating the upper breast from the belly. The plumage colour of specific patches can vary 

considerably within species. For example, the rump of T. rufus varies from copper-green in the 

sulphurous subspecies to a purple-blue in the rufus subspecies. The genus Trogon is distributed 

from southern Arizona to southern Brazil, and is found across a broad range of habitats (Collar 

2001, Forshaw 2009). Ancestral area reconstruction has demonstrated that the genus originated 

in Central America, and colonized South America through multiple migration events during and 

after the completion of the Isthmus of Panama (DaCosta and Klicka, 2008). Areas of tropical 

lowland can harbour many sympatric trogon species and/or subspecies. In general, trogons have 

been poorly studied. The natural history of very few species has been described in detail, and 

little is known about their biology and ecology. 

 

Dissertation overview 

In this dissertation, I investigate the signalling function and evolution of a tail raising 

behaviour in the elegant trogon (Trogon elegans) using observational data and a model 

presentation experiment. Also using a model experiment, I assess which plumage patches are 

used for species recognition by two species of trogons. To understand the evolution of plumage 
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colouration at the genus level, I investigate the relationship between geographic overlap 

(sympatry) and plumage divergence across all subspecies of the genus Trogon. Finally, to clarify 

the potential consequences of parameterization error in receptor-noise models of avian vision, I 

systematically test the influence of individual parameters on the avian perception of sexual 

dichromatism for 70 species of Galliformes. 

 In chapter 2, I investigated the function of tail raising in the elegant trogon, a behaviour 

whereby the tail which normally rests vertically is rapidly lifted horizontally and slowly brought 

back down. The first goal of the project was to characterize the contexts in which elegant 

trogons perform tail raising displays. For this purpose, I conducted over 450 hours of 

behavioural observations of free living birds in Costa Rica. The second goal of the project was to 

determine the function of tail raising in the presence of heterospecifics. For this purpose, I 

presented elegant trogons with models of a potential predator, and models of a non-

threatening control, to test the predictions of three competing hypotheses: the pursuit-

deterrent hypothesis, the conspecific warning signal hypothesis, and the self-preservation 

hypothesis. This chapter was published in Behavioral Ecology.  

In chapter 3, I experimentally tested whether the black-headed trogon (Trogon 

melanocephalus) and elegant trogons use plumage traits for species recognition and if so, which 

characteristics are used. I presented the two focal species with conspecific models, control 

models, and modified models that differed in the colour of the back or belly, or the pattern of 

banding on the tail. Furthermore, because the black-headed trogon is sympatric to the similar-

looking violaceous trogon (Trogon violaceus) but the elegant trogon does not have a similar-

looking sympatric congener in Costa Rica, I evaluated whether the presence of a similar-looking 

sympatric congener influenced which traits are used in species recognition. 
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 In chapter 4, I investigated the influence of the colonization of Trogon into South 

America on plumage trait divergence and taxa diversification. The first objective was to compare 

diversification rates in Central and South American taxa by modelling continent-specific 

speciation and extinction rates. The second objective was to test whether character 

displacement and/or phenotype sorting were responsible for trait divergence. This was 

determined by collecting over 3500 spectral measurements of plumage characteristics from 

almost 150 museum specimens and testing whether the proportion of sympatric overlap 

explained plumage disparity among subspecies. The third objective evaluated whether the 

presence in sympatry of several species of trogons influenced the range of plumage colour 

values found in particular communities.  

In chapter 5, I systematically evaluated the influence of individual parameters on the 

quantification of chromatic sexual dichromatic in tetrachromatic visual models. I used the 

receptor-noise model for colour discrimination developed by Vorobyev and Osorio (1998) to 

calculate the chromatic contrast (in just-noticeable-differences) of 15 colour patches for each of 

70 species of Galliformes. I investigated the influence of light environments, photoreceptor 

sensitivities, oil droplet characteristics, ocular transmission, and photoreceptor densities on the 

total dichromatism scores, the dichromatism rank of species in relation to one another, and the 

dichromatism scores of individual patches. The main objective of the study was to determine 

the relative influence of each parameter and to guide researchers when implementing visual 

models for their study species.  

Overall my dissertation uses a diversity of methods to understand visual communication 

in the genus Trogon, and the influence of proper parameterization in avian visual models. I 

incorporate observational and experimental field methods, as well as museum-based data 

collection, to provide insight into the function and evolution of plumage colouration in Trogons. 
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I also use modelling to understand how our assumptions regarding visual systems can influence 

our quantification of avian sensory experiences. My research contributes to the understanding 

of multifunctional visual signals, the use of visual traits in species recognition, the mechanisms 

that influence visual character diversification, and the importance of proper parameterization in 

avian visual models. Furthermore, this dissertation provides an important contribution to our 

knowledge of trogons, a tropical group of birds that is poorly studied. Together, my 

contributions should be of significant value to behavioural ecologists and evolutionary biologists 

alike, and should guide future research in visual ecology.  
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Chapter 2 

 

A multifunctional visual display in elegant trogons targets conspecifics 

and heterospecifics 
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Summary 

Avian visual displays often target either conspecifics or heterospecifics, but few visual displays 

have been described where both conspecific and heterospecifics are the intended receivers. In 

this study combining observational and experimental approaches, we present evidence that a 

tail raising display performed by the elegant trogon (Trogon elegans) is used in multiple contexts 

and is directed at conspecifics and heterospecifics. We observed tail raising displays towards 

conspecifics in both inter- and intrasexual contexts, as well as towards heterospecifics. Displays 

performed towards heterospecifics were directed at humans, monkeys, or birds of prey, all of 

which could have been perceived as potential predators. We experimentally tested the possible 

functions of tail raising behavior in the presence of a predator by presenting elegant trogons 

with models of a natural predator and a non-threatening control. Tail raising displays were much 

more likely to occur when trogons were in the presence of a predator model (48% of trials) than 

a control model (6% of trials). The presence of conspecifics did not influence tail raising 

propensity (conspecifics present:  44% of trials, conspecifics absent:  50% of trials). Our results 

suggest that tail raising in trogons is a multifunctional visual display that may function as an 

inter- and intrasexual conspecific signal as well as a pursuit-deterrent signal directed at 

predators.  
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Introduction 

Visual displays in animals can take many different forms, and are often directed at specific 

receivers. In the presence of other males during agonistic encounters, for example, cuttlefish 

display specific body patterns (Adamo and Hanlon 1996), hermit crabs wave enlarged chelipeds 

(Arnott and Elwood 2010), and many birds perform ritualized threat displays (Hurd and Enquist 

2001). These displays can prevent the escalation of aggression between individuals and reduce 

the probability of harmful interactions. In the presence of females during mate attraction and 

courtship, male fireflies use bioluminescent flashes (Branham and Wenzel 2003, Lewis and 

Cratsley 2008), anoles bob their heads while presenting an extended colorful dewlap (Tokarz 

1995), and many birds perform stereotyped dances (Gill 2007). In many species, the same 

displays can be used in both intra- and intersexual contexts. For example, male ruby-crowned 

kinglets (Regulus calendula) will raise their conspicuous red crest when confronting territorial 

intruders or when displaying to a female during courtship (Martens and Päckert 2006). 

Not all visual displays are directed towards conspecifics; a number of behaviors appear 

to be targeted at heterospecifics. In birds for example, the turquoise-browed motmot 

(Eumomotus superciliosa) wags its tail from side to side in the presence of potential predators, a 

behavior identified as a pursuit-deterrent signal (Murphy 2006, 2007). This display warns 

potential predators that they have been detected and that a capture attempt would be 

unprofitable. The sunbittern (Eurypyga helias) also displays towards heterospecifics. It spreads 

out its wings, exposing large “eyespots”, to scare away predators or individuals of other species 

with which they compete for food resources (Frith 1978). The tail wagging in the turquoise-

browed motmot and wing spreading of the sunbittern are used in the presence of 

heterospecifics, but do not seem to be used for signaling to conspecifics. In fact, relatively few 

visual displays have been adequately demonstrated to serve in both intraspecific and 
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interspecific contexts, especially in birds (Table 2.1). One exception is the crest raising display of 

the royal flycatcher (Onychorhynchus coronatus). In this species, male and females raise their 

crests during courtship, aggressive intrasexual encounters, and when confronting 

heterospecifics near their nests (Rieveley 2010). 

Elegant trogons (Trogon elegans), perform a conspicuous visual display whereby the tail 

is rapidly lifted above the horizontal and returned to its normal vertical position in a slow, 

controlled manner. When performing this display, birds can usually be heard producing a 

clucking sound (described in Taylor 1994). When positioned with their green back facing the 

observer, elegant trogons appear generally inconspicuous against the background vegetation; 

this display increases an individual’s detectability because of the movement involved, and 

because it exposes the bright red belly and undertail coverts. This behavioral display has been 

mentioned twice in the literature. Cully (1986) was the first to note that elegant trogons 

produced this display in the presence of a live, tethered, great horned-owl (Bubo virgianus) near 

their nest, and Hall and Karubian (1996) described this behavior in the context of a mating 

display. The production of tail raising displays in the presence of heterospecifics and conspecifics 

raises questions regarding the general function of this display and the evolution of 

multifunctional displays in general. The first objective of our study was to characterize the 

contexts in which elegant trogons perform tail raising displays. For this purpose, we conducted 

behavioral observations of free living birds. The second objective of our study was to determine 

the function of tail raising in the presence of heterospecifics. For this purpose, we conducted an 

experiment testing the predictions of three competing hypotheses. 

The conspecific warning signal hypothesis was developed in the kin selection framework 

(Maynard Smith 1965, Sherman 1977) and presumes that displays in the presence of a potential 

predator are directed at related individuals (kin). The display is designed to inform individuals 
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that have not yet detected the predator of the potential threat.  A specific prediction of this 

hypothesis is that birds should not display in the presence of a potential threat if conspecifics, 

specifically kin, are not in visual range of the individual producing the displays. 

The self-preservation alarm signal hypothesis states that signals target conspecifics with 

the intent to trigger a reaction to deter or reduce the chance of a predator being successful by 

mobbing or confusing the predator (Sherman 1985). A specific prediction of this hypothesis is 

that on detecting a predator and after a display, conspecifics should approach the individual 

displaying (to form a larger and threatening group), mob the predator, or scurry in all directions 

to confuse the predator. The pursuit-deterrence hypothesis states that signals in the presence of 

predators target the potential predator, not conspecifics, and informs that predator it has been 

detected and an attempt at capture would be unprofitable (Woodland et al. 1980, Caro 2005). A 

specific prediction of this hypothesis is that individuals should display in the presence of 

potential predators regardless of the presence or absence of kin within visual range.  

 

Methods 

The elegant trogon is a member of the Trogoniformes and ranges from the southern United 

States to northern Costa Rica (Collar 2001; Forshaw 2009). The species is sexually dimorphic: 

males have bright iridescent green upperparts while females have coffee-brown upperparts. 

Females display white feathers on their breast and faded red feathers on their undertail coverts; 

males display brightly colored red feathers on their breast and undertail coverts. Immature 

males, which exhibit delayed plumage maturation, have patchy brown and red breast feathers 

(Kunzmann et al. 1998). They can be easily discriminated from mature males for more than one 

year after fledging. Differences between immature females and adult females are more subtle, 
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but the two can be discriminated by tail feather wear: immature females leave the nest with 

well frayed feathers which are first molted at least a year after fledging (personal observation). 

Furthermore, immature females have a white tip on the tertials, which is lacking in older 

females (Pyle 1997). Both the male and female contribute to modifying nest cavities by taking 

turns to enlarge the opening. Males and females share responsibilities when incubating the eggs 

and feeding the nestlings (Kunzmann et al. 1998).  

We conducted our research in Sector Santa Rosa, Guanacaste Conservation Area, Costa 

Rica (10˚ 40’N, 85˚ 30W). Our study site of nearly 9 km2 is characterized by a mix of secondary 

dry deciduous forest, which has been in a regeneration state since the 1980’s, and older forest 

stands of evergreen tree species (Janzen 1988). Elegant trogon breeding density at this location 

is high; surveys during 2010 and 2011 estimated 20 to 30 breeding pairs per square kilometer 

across the entire study area.  

 

Observation of natural tail raising occurrences 

We recorded observations of trogons raising their tails during two 2 ½ -month periods: April 18 

to June 28 2010, and April 30 to July 12 2011. Trogon observations were conducted in three 

different contexts: 1) opportunistically during trail surveys, 2) when following individuals located 

on a previous day to document their behaviors and find their nests, 3) during focal nest watches. 

We estimate that approximately 300 hours were dedicated to observing elegant trogons to 

quantify tail raising behaviors in 2010, and 150 hours in 2011. Nest initiation and the start of the 

breeding season in Santa Rosa is triggered by the arrival of the seasonal rains which usually start 

early to mid- May. Therefore, in both field seasons, we collected behavioral data both before 

and during the breeding season. 
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When tail raising behaviors were observed, we noted the sex and age (immature or 

adult) of the individual raising its tail and of any conspecifics in the area. Individuals were 

considered in the area when they could be seen or heard within visual range of the displaying 

individual. We noted the location of each observation to the nearest 5m by GPS and locations 

were geo-referenced on ArcGIS (ESRI 2013). We inferred the context of the display based on the 

interactions of the individuals and species present. The elegant trogons in our population are 

not banded; therefore, we could not determine the exact identity of individuals we observed 

displaying. However, based on local breeding density and time spent following individuals on 

foraging bouts, we estimated that territory size extend 100m from the nest site at most. 

Therefore, we considered any locations separated by more than 200m of each other to be 

observations of different individuals. On several occasions, we observed trogons raising their 

tails when we, the observers, were most likely the cause of the behavioral displays. This most 

often occurred when flushing an unsuspecting bird, immediately triggering a tail raising 

response. On other occasions we were certain that the displaying individuals were unaware of 

our presence because 1) we first heard the trogons displaying and crept-up to observe the 

displays without the birds ever looking in our direction, or 2) we observed the display when 

conducting nest watches under camouflaging textile from at least 20m away. None of the tail 

raising responses reported here were triggered on purpose by approaching birds or by making 

our presence obvious. 

  To avoid including the same individual in the same group context more than once in our 

analyses, we randomly selected a single observation in each year from those made in any given 

area (separated by at least 200m). While an individual from a specific location could have been 

included twice (from two different years) in our observations, the group context would always 

have been different. 
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Model presentation experiment 

We conducted our experiment between May 1 and July 15 2011. To simulate the presence of a 

potential aerial predator, we fabricated models closely resembling the collared forest-falcon 

(Micrastur semitorquatus, Figure 2.1a, b). This species is known to consume trogons on 

occasions (L. Sandoval, personal communication) and regularly consumes birds of similar size 

(Thorstrom 2000). As a non-threatening avian control, we fabricated models closely resembling 

the squirrel cuckoo (Piaya cayana, Figure 2.1c, d). This species is an appropriate control to the 

collared forest-falcon for the following three reasons: 1) it is very similar in total length (forest-

falcon 51-57 cm; cuckoo 45-50 cm), 2) it has a long narrow tail, 3) it often perches relatively 

upright. Therefore, the general silhouette of the squirrel cuckoo is similar to that of the collared 

forest-falcon. The squirrel cuckoo is not a parasitic species and its main diet is similar to that of 

trogons and does not include any birds (Payne 1997). Both the forest-falcon and cuckoo are 

common in Sector Santa Rosa. 

Experimental designs that involve model presentation often rely on stuffed specimens 

(e.g. Götmark 1992, Götmark 1997). However, we elected to produce realistic looking models 

from craft materials rather than risk damaging valuable museum specimens, or collecting 

animals for the purpose of this experiment (Caro and Melville 2012). We constructed our 

collared forest-falcon model (Figure 2.1a) using peregrine falcon (Falco pelegrinus) polyresin 

decoys to which we glued two layers of commercially available black and white feathers in the 

color patterns found on the forest-falcon (Figure 2.1b). The first layer consisted of downy 

material, and produced a lofty, wind-sensitive layer. The second layer consisted of contour 

feathers that were positioned on the model to reflect the natural arrangement of feathers on 

live birds. The long tail was produced with commercially available black turkey (Meleagris 

gallopavo) feathers which were modified and arranged to match the shape and size of live 
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forest-falcons. We constructed our squirrel cuckoo models (Figure 2.1c) using generic dove 

plastic decoys to which we glued two layers of custom-dyed feathers (Rit®) to match the 

patterns found in the live birds (Figure 2.1d). Two layers of feathers were applied to the decoys 

to give them a realistic feel and appearance. We produced two predator models and two control 

models. 

Forty trial locations were selected from candidate sites at which individuals or groups of 

trogons had previously been observed and all trials were separated by at least 200m. The sites 

selected were forested (i.e. no trials in open areas), had relatively good visibility (15m in each 

direction), and did not include natural (e.g. river) or artificial (e.g. trail) features within 15m of 

the model which could have influenced the behavior of the birds near the model. For all trials, 

the model was positioned at the top of a 3m tall metal pole camouflaged with paint to resemble 

the background, near a realistic perch site. At the beginning of each session, the model was 

covered by camouflage textile tied to a clear fishing line. A loudspeaker was hidden at the base 

of the pole. The observer, also hidden under camouflage textile, was located at least 10m away 

from the model, sometimes up to 18m away. After setup, the observer waited 10 minutes under 

camouflage before starting the trials to avoid influencing the behavior of the trial subjects. 

Trogon subjects were drawn to the trial location using playback of an adult male call recorded 

the previous year (2010) outside of the area in which this experiment was conducted. Individual 

recognition based on call characteristics has not been demonstrated in this species. However, 

variation among individuals is distinguishable to the human ear, and using a call recorded 

outside the study area was meant to exclude the possibility that the call could be recognized as 

kin by any of the subject individuals. Playback of the trogon call was used for a maximum of 6 

minutes to attract individuals. If an individual did not show up during that time period the trial 

was aborted. 
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Once a subject individual(s) arrived within visual range of the model (usually within 

12m), the camouflage was removed by drawing the line and a second playback was concurrently 

initiated to replace the trogon calls. The playback consisted of a series of calls characteristics of 

the model species being displayed. The recordings were six minutes long and consisted of one 

minute of calls followed by one minute of silence, three times in a row. Trials always lasted six 

minutes even if the subject birds had left the area. Two versions of the recording were used for 

the predator model and two versions of the recording were used for the control model so that 

trial subjects were presented with one of four possible combination of model and playback. 

For each successful trial, we recorded the following observations: 1) date, time, location 

(georeferencing coordinates) of the trial site, 2) composition of the trial subjects (number of 

individuals, sex and age), 3) perches used by the birds, 4) time at which perch changes occurred, 

5) number of tail raising displays at each perch, 5) whether the model was attacked or harassed 

by the target individual or any other bird. A trial was considered successful if at least one bird 

remained within visual range of the model for at least two minutes. The actual distance between 

the perches used and the model were determined with a measuring tape (to the nearest 0.25m) 

and the perch heights were estimated (to the nearest 0.5m). Reported distances are the linear 

distance between the model and the perches. Conspecifics were considered to be in the area if 

they could be visually detected but also if they could be heard within 20m of the model’s 

location. 

Because we conducted both predator and control model trials at some but not all sites, 

and because group composition often changed between trials conducted at the same sites, we 

do not treat trials at the same location as paired trials. All analyses were conducted using the R 

programming language (R Development Core Team 2013). 
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Results  

Observation of natural tail raising occurrences 

We documented 22 tail raising events at 14 locations in 2010 and 18 tail raising events at 14 

locations in 2011. Across both years, individuals directed their display towards heterospecifics in 

24 cases: 18 towards humans and six towards other species (Table 2.2). All displays towards 

humans were observed during surveys, never when discreetly following birds or when 

conducting nest watches. These occurred before and during the nesting period; birds were 

usually flushed from or located near a trail and started displaying after detecting us (distance 

from observer = 14.5m ± 8.6m SD; max = 32m, min = 7m).  

In 12 of the 40 observations, the individuals directed their display towards conspecifics, 

either in intraspecific or interspecific contexts (Table 2.2). Males displaying to other males lead 

to chases and/or displacements in three of the five interactions and we observed a nest-

attending male chasing an intruding male after the paired female had raised her tail multiple 

times in the direction of the trespasser.  In only four cases we were not able to determine the 

context of the display because we were unsure if the individual displaying had detected us. 

After removing observations from locations where we witnessed a tail raising display on 

more than one occasion, 28 observations remained for analyses. We estimate that we observed 

23 different individuals tail raising in 2010 and 15 in 2011. Tail raising was equally likely to be 

observed when either one, or two or more individuals were present (13 lone birds, 15 in groups; 

binomial test probability = 0.46, 95% CI = 0.27 – 0.66, p = 0.85). When observing groups, we 

detected multiple individuals displaying as often as we observed lone individuals displaying 

within a group (seven multiple individual displays, eight lone individual displays; binomial test 

probability = 0.53, 95% CI = 0.27 – 0.79, p = 1.00). In general, males were more likely than 
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females to be observed displaying (25 males, 13 females; binomial test probability = 0.66, 95% CI 

= 0.49 – 0.80, p = 0.07), mainly because males were more likely to display towards conspecifics 

(11 males, 1 female; binomial probability = 0.92, 95% CI = 0.62 – 1.00, p = 0.006). In contrast, 

males were detected displaying to heterospecifics as often as females (14 males, 12 females; 

binomial test probability = 0.54, 95% CI = 0.33 – 0.73, p = 0.85). 

 

Model presentation experiment 

From 74 trial attempts, we attracted one or more elegant trogons close enough to initiate the 

experiment in 40 trials. We excluded data from one additional trial because a male started 

chasing another male towards the end of the trial, potentially confounding the reasons why tail 

raising may have occurred. Therefore, we included 39 trials from 25 different locations in our 

analyses, including 23 predator trials and 16 control trials. The average distance between arenas 

was 274m ± 36m SE (Max: 1100m; Min: 203m). In 24 of the trials we attracted only one bird to 

the area; 23 were males (three immature) and one was female. We attracted 2 individuals in 13 

trials, and 3 individuals in 2 trials. 

Because we did not have any influence over where the individuals landed in the arena, 

our initial analyses explored the possibility that initial conditions might have influenced the 

behavior of the trogons during the trials. The distance separating the initial perch of the test 

subject and the predator model (7.5m ± 0.44) was no different than the distance to the control 

model (8.1m ± 0.6 SE; t = 0.76, df = 29, p = 0.46). Furthermore, there was a clear indication that 

models were detected (subjects looking directly at the model) in the same proportion of trials 

(predator model: 16 of 23 trials, control model: 11 of 16 trials; Odds ratio = 0.96, 95% CI= 0.19 - 

4.93, p = 1.00), and the experimental subjects were also startled by the exposure of the model in 
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equal proportions (predator model: 7 of 23 trials, control model: 3 of 16 trials; Odds ratio = 1.87, 

95% CI= 0.34 – 13.43, p = 0.48). Therefore, there was no significant difference in the initial trial 

conditions. 

Tail raising displays were much more likely to occur when trogons were in the presence 

of a predator model (Figure 2.2a; Odds ratio = 12.9, 95% CI= 1.50 – 628.1, p = 0.01). However, 

the presence of conspecifics did not influence tail raising propensity (Figure 2.2b; Odds ratio = 

0.80, 95% CI= 0.10 – 5.70, p = 1.00). Furthermore, when more than one trogon was present 

during predator model trials, we did not observe a single mobbing event. 

The initial perch distance from the predator model influenced tail raising rate, which 

was best described by an exponential decay model, where tail raising rate was highest when the 

subject was near the predator model and decreased rapidly with increasing distance from the 

model (Figure 2.3; F1,22 = 5.33, p = 0.03). For birds that stayed within the arena for at least 4 

minutes, tail raising rate decreased over time (Repeated measures t = 3.21, df = 8, p = 0.01). 

 

Discussion 

In this study, we document that tail raising in the elegant trogon is performed towards 

conspecifics both in intersexual and intrasexual interactions, and towards heterospecifics. 

Furthermore, the results from our experiment support the pursuit-deterrent function of tail 

raising in the presence of potential predators. These results imply that tail raising in this species 

is a visual communication behavior with multiple functions and inter- and intraspecific intended 

receivers. While such display behaviors have been documented in a few species of lizards, 

pursuit-deterrent visual signals that are also used in intraspecific communication have not 

previously been unequivocally demonstrated in birds or mammals (Table 2.1).   
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During natural observations, we documented individuals displaying towards conspecifics 

in five different contexts (Table 2.2), and these situations can be separated into two distinct 

probable functions: signals of dominance or aggression, and behaviors associated with courtship 

and mating rituals. During intraspecific male-male interactions, many tail raising displays 

resulted in one individual chasing another away. Therefore, it is probable that in certain 

situations tail raising signals dominance status and/or the intent to engage in aggressive 

behavior. Such pre-aggression signals are common in birds (Andersson 1980), are often 

stereotyped, and can prevent violent confrontations (Hurd and Enquist 2001). However, our 

conclusions are based on limited observations, and further documentation of this behavior in 

natural and experimental contexts is needed. 

When we observed elegant trogons tail raising in the presence of a heterospecific, the 

target receiver was always a potential predator. Of the six species targeted by tail raising 

behavior, four were birds of prey that incorporate birds the size of trogons in their diets (de Silva 

et al. 1997, Panasci and Whitacre 2000, Schulze et al. 2000, Thorstrom 2000). Such birds of prey 

have been observed targeting trogons in Costa Rica, including a black-throated trogon (Trogon 

rufus) depredated by a collared forest-falcon (L Sandoval, personal communication). On one 

occasion, we observed elegant trogons displaying towards a Geoffroy’s spider monkey (Ateles 

geoffroyi), a species that is not known to include birds or eggs in their diet (Henderson 2002). 

However, white-headed capuchin monkeys (Cebus capucinus) are common in Santa Rosa and 

are known to depredate adult birds, their eggs, and nestlings (Wainwright 2002). It is possible 

that elegant trogons have not developed the ability to distinguish between monkey species and 

display towards any monkey encountered. It also seems highly possible that the trogons would 

consider humans as potential predator, explaining why we were often the target of tail raising 

displays.  
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During our experimental trials, birds presented with predator models raised their tail 

regardless of the absence of conspecifics within visual range (prediction of the conspecific 

warning signal hypothesis), and this behavior never triggered a mobbing of the predator 

(prediction of the self-preservation alarm signal hypothesis). These results generally support the 

idea that tail raising in elegant trogons is a pursuit-deterrent signal. Caro (1995) argued that the 

exclusion of the conspecific warning signal and the self-preservation alarm signal hypotheses 

was not satisfactorily sufficient to claim a pursuit-deterrence function to behaviors; conclusive 

evidence of pursuit deterrent signals must include a demonstration that potential predators are 

deterred by the signal. However, he suggests that a reduction in rate of display once the 

predator retreats or is located further away as a reasonable argument (Caro 1994, 1995). In our 

experiment, we could not move the models once the trials had started but two behaviors 

support the idea that birds reduce their rates of display once the potential threat had been 

warned that it has been detected. First, the rate of signaling decreased significantly with 

increase in distance between the model and the first trogon perch. This suggests that indicating 

presence awareness to the predator is more pressing when the threat is nearby. Second, all 

birds that remained in the trial arena reduced the rate at which they displayed. This further 

suggests that once the trogons had been satisfied that the perceived threat had been reduced, 

the need for signaling their awareness of the predator was also reduced. While not directly 

demonstrating that predator behavior is implicitly affected by the display, the experimental 

results suggest that pursuit-deterrence is the most likely function of the behavior. 

All situations in which the elegant trogon has been observed raising its tail are contexts 

where high levels of excitement could be expected, and this suggests the possibility that tail 

raising in trogons is not meant to signal specific information but is a by-product of agitation in 

general. However, if this were true, trogons would not perform this display when in the 
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presence of a potential predator, especially one that has not yet detected them. In addition, 

since nest depredation rates in this species and in trogons in general is very high (Gonzales-Rojas 

et al. 2008, Steward and Pierce 2011), displaying at the nest during the excavation process could 

potentially draw the attention of nest predators and impose large costs to the individuals 

involved in the display. Therefore, we contend that a conspicuous behavior such as tail raising 

serves an adaptive function and is not the result of agitation. 

  Multifunctional signals are not uncommon in birds (e.g. Hoi and Griggio 2008) and other 

taxa (e.g. Morris et al. 2007). The multiple functions of bird songs, for example, are well 

documented in intersexual, intrasexual, and interspecific contexts (Catchpole and Slater 1995). 

However, visual signals with a similar diversity of contexts and functions seem to be either very 

uncommon or undescribed. As previously mentioned, only the crest raising display of the royal 

flycatcher has been described as a visual signal to multiple receiver types (Rieveley 2010), and 

the tail raising behavior in purple gallinule (Gallinula chloropus) and common moorhen 

(Porphyrio porphyrio) may target both inter-and intraspecifics (Table 2.1). 

Our study demonstrates that elegant trogons perform their tail raising behavior in 

multiple contexts. This is a rare demonstration of a visual display targeting both conspecifics and 

heterospecifics, and our findings highlight an understudied topic in animal visual 

communication. Future studies should experimentally determine the exact functions of these 

displays and investigate how they evolved. This work also highlights the need for studies to 

successfully document the extent of multifunctional visual displays. Elegant trogons are not the 

only trogon species to perform tail-raising displays: we have also observed other trogon species 

perform tail raises when startled by humans. However, it is unknown whether or not these 

displays are also performed in intraspecific contexts. Furthermore, several members of other 

groups such as motmots (Snow 2001), and kingfishers (Woodall 2001) also raise or wag their tail 
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in the presence of potential predators. A comparative analysis of such behaviors would provide 

a greater understanding of the evolutionary history of multifunctional visual displays in birds. 
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Table 2.1 Summary of evidence for visual pursuit-deterrence behaviors in vertebrate animals. In birds and mammals, in contrast to lizards, there 

is no strong evidence that these visual signals are used in both inter- and intraspecific communication. 

Species Behavior Type and strength of evidence for 
pursuit-deterrence function 

Context of conspecific signaling 

Birds    
Eumomota superciliosa1,2 Tail wag Experimental 

Excluded other possible functions 
No evidence1,2 

    

Gallinula chloropus3,4 Tail raise Observational  & Experimental 
Conspecific signaling not excluded 

Intra- and intersexual28 

    

Motacilla alba5 Tail wagging Observational 
Conspecific signaling not excluded 

No evidence5 

    

Porphyrio porphyrio3,6 Tail raise Observational 
Conspecific signaling not excluded 

Intra- and intersexual29 

    

Sayornis nigricans7 Tail pump Observational 
Conspecific signaling not excluded 

No Evidence30 

Lizards    
Anolis cristatellus8,9 Push-up 

Dewlapping 
Experimental 
Excluded other possible functions 

Intra- and intersexual31 

    

Anolis sagrei10 Dewlapping Observational 
Conspecific signaling not excluded 

Intra- and intersexual10 

    

Callisaurus draconoides11,12,13,14,15,16 Tail waving Experimental 
Excluded other possible functions 

Intra- and intersexual32 

    

Carlia jarnoldae17 Tail display Observational 
Conspecific signaling not excluded 

Intra- and intersexual17 
 

    

Cnemidophorus murinus18 Arm waving Experimental No evidence33 
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Excluded other possible functions 
    

Cophosaurus texanus19 Tail raising Experimental 
Excluded other possible functions 

No evidence19,32 

    

Holbrookia propinqua19 Tail raising Experimental 
Excluded other possible functions 

Intra- and Interspecific32 

    

Gonatodes albogularis20 Tail wave Experimental 
Conspecific signaling not excluded 

No evidence20 

    

Leiocephalus carinatus21,22 Tail curling Observational 
Excludes other possible functions 

Intra- and intersexual21,22 

    

Oplurus cuvieri23 Push-up  
Dewlapping 

Experimental 
Conspecific signaling not excluded 

Intra- and Intersexual34 

    

Podarcis muralis24 Foot shaking 
(Type 3) 

Experimental 
Conspecific signaling not excluded 

No evidence24 
(Type 1 and 2 signal conspecifics) 

Mammals    
Alcelaphusb uselaphus25 Stotting 

Leaping 
Experimental 
Conspecific signaling not excluded 

No evidence25 

    

Aepycerosm elampus25 Stotting 
Leaping 

Experimental 
Conspecific signaling not excluded 

No evidence25 

    

Connochaetesta urinus25 Stotting 
Leaping 

Experimental 
Conspecific signaling not excluded 

No evidence25 

    

Damaliscus korrigum25 Stotting 
Leaping 

Experimental 
Conspecific signaling not excluded 

No evidence25 

    

Eudorcas thomsonii25 Stotting 
Leaping 

Experimental 
Conspecific signaling not excluded 

No evidence25 
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Gazella granti25 Stotting 
Leaping 

Experimental 
Conspecific signaling not excluded 

No evidence25 

    

Odocoileus virginianus26,27 Tail raise Experimental 
Conspecific signaling not excluded 

No evidence26,27 

    
1
Murphy 2006, 

2
Murphy 2007, 

3
Alvarez 1993, 

4
Randler 2007, 

5
Randler 2006, 

6
Woodland et al. 1980, 

7
Avellis 2011, 

8
Leal and Robles 1997, 

9
Leal 1999, 

10
Vanhooydonck et al. 1999, 

11
Cooper 2010a, 

12
Cooper 2010b, 

13
Cooper 2011a, 

14
Cooper 2011b, 

15
Eifler and Eifler 2010, 

16
Hasson et al. 1989, 

17
Langkildeet al. 

2004, 
18

Cooper et al. 2004, 
19

Dial 1986, 
20

Alonso et al. 2010, 
21

Cooper 2001, 
22

Cooper 2007, 
23

Ito and Mori 2012, 
24

Font et al. 2012, 
25

Caro 1994, 
26

Bildstein 

1983, 
27

Caro et al. 1995, 
28

Bannor and Kaviat 2002, 
29

West and Hesse 2002, 
30

Wolf 1997, 
31

Losos 2009, 
32

Clark 1965, 
33

Magnusson 1996, 
34
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Table 2.2 Elegant trogons (Trogon elegans) were observed performing tail raising displays in 

various contexts 

 

Receiver Context 
Number of  
observations 

   
Intrasexual Male-Male competition for female 1 

 Male-Male competition for territory 5 

   

Intersexual Courtship display 1 

 Nest building/preparation 4 

 Territorial intrusion 1 

   

Heterospecific Spectacled owl (Pulsatrix perspicillata) 1 

 Roadside hawk (Buteo magnirostris) 2 

 Double-toothed kite (Harpagus bidentatus) 1 

 Collared forest-falcon (Micrastur semitorquatus) 1 

 Geoffroy’s spider monkey (Ateles geoffroyi) 1 

 Humans 18 

   

Unknown  4 

 
   Total 40 
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Figure 2. 1 Examples of the models (A and C) used during experimental trials and photographs of 

live specimens (B and D) for comparison. A and B collared forest-falcon (Micrastur 

semitorquatus; Mike Dazenbaker); C and D squirrel cuckoo (Piyana cayana; Fransisco 

Piedrahita). 
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Figure 2. 2 A) Elegant trogons were more likely to raise their tail in the presence of a predator 

model than in the presence of a control model, but B) the presence or absence of conspecifics 

did not influence tail raising behavior of elegant trogons presented with a predator model. 

Numbers above bars indicate proportion of trials during which tail raising was observed.  



 

46 
 

 

 

 

Figure 2. 3 The influence of first perch distance from a predator model on tail raising rate in the 

elegant trogon was best described by an exponential decay curve (dashed line). 

 

 

 



 

 

 

 

 

 

Chapter 3 

 

Sympatric black-headed and elegant trogons (Aves: Trogoniformes) focus 

on different plumage characteristics for species recognition 
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Summary 

Divergence of sexually selected secondary characteristics is an important pre-zygotic isolation 

mechanism which promotes speciation. The ability of individuals to distinguish conspecifics from 

similar-looking congeners has important evolutionary consequences, yet few studies have 

determined which specific visual characteristics are used for species recognition, and if closely 

related species use the same characteristics. In particular, sympatry with similar congeners may 

influence which traits are important in species recognition. In this study, we experimentally 

tested which traits influenced species recognition in two species of trogons, only one of which 

was sympatric with a similar-looking congener. We presented elegant trogons and black-headed 

trogons with models that closely resembled conspecifics, and models that differed in either the 

colour of the belly, the colour of the upperparts, or the tail-barring pattern. Elegant trogons 

showed significantly more aggression towards the conspecific model and the tail model, 

suggesting that they could not distinguish between the two model types, or that these two 

models were equally threatening, and that belly colour and upperpart colour are more 

important for species recognition in this species. In contrast, the black-headed trogon 

approached all models very closely, except for the conspecific model. We interpret this 

counterintuitive behaviour as a reluctance to approach an unknown conspecific, suggesting that 

all three plumage traits are important for species recognition in this species. Because the 

elegant trogon is not sympatric with a similar congener, we argue that elegant trogons may lack 

the ability to discriminate fine-barring tail differences or may simply overlook this trait. In 

contrast, all three plumage traits appear to be important for species recognition in black-headed 

trogons. Our findings suggest that sympatry with the similar-looking violaceous trogon may have 

influenced species recognition in this species, favouring the use of all three plumage 

characteristics, including tail banding patterns, which differ between black-headed and violaceus 
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trogons. Our study is the first experimental evidence of specific plumage patches being used for 

species recognition in two sympatric congeners, and strongly suggests that the presence of a 

similar-looking congener can influence which traits are important in species recognition. 

 

Introduction 

The ability of individuals to discriminate between members of the same species and members of 

other closely-related species has important evolutionary consequences (Ord & Stamps, 2009). 

Most animals defend territories against conspecifics to prevent the takeover of important 

ecological resources such as foraging and nesting sites (Maher & Lott, 1995), which incurs large 

costs. These include expending energy during displays (e.g., Brandt, 2003), time lost to other 

activities such as foraging (e.g., Barnett & Briskie, 2011), and possibly sustaining injuries during 

physical contests (e.g., Lombardo, 1986). When similar-looking species coexist, species-specific 

characteristics are assumed to allow accurate species recognition and prevent unnecessary 

interactions with heterospecifics (Andersson, 1994; Bradbury & Vehrencamp, 2011). Mistakes in 

species recognition can also lead to potential cross-species mating, which often produces 

offspring with reduced viability (Martin & Martin, 2001). Thus, the evolution of species 

recognition traits is important in the context of male-male aggression and female mate choice.   

Characteristics used to distinguish conspecifics from heterospecifics are varied, and span 

all sensory modalities. Across taxa, acoustic traits (e.g., de Kort & ten Kate, 2001; Teufel et al., 

2007; Rollo & Higgs, 2008), olfactory traits (McLennan & Ryan, 1999; Shine et al., 2002; 

Rollmann et al., 2003; Nunes et al., 2008), and visual traits (Pearson & Rohwer, 2000; Couldridge 

& Alexander, 2002; Michaelidis et al., 2006; Ord & Stamps, 2009) have all been implicated in 

species recognition. In a limited number of taxa, even electric discharges (Hopkins & Bass, 1981) 

and vibrations (Hill, 2008) are species-specific. In birds, the ability to discriminate between traits 
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of closely-related species has usually been evaluated using vocal characteristics (Ord & Stamps, 

2009). In Streptopelia doves for example, species respond more aggressively towards 

vocalizations of their own species, and the degree to which they respond to the calls of 

congeners reflects their phylogenetic relationship (de Kort & ten Cate, 2001; de Kort et al., 2002, 

den Hartog et al., 2007). While recent studies have shown that sympatry has an important 

influence on plumage divergence among closely related species (Martin et al., 2015), the 

particular plumage colours or patterns used in species recognition have rarely been studied 

(reviewed in Ord & Stamps, 2009; Ord et al., 2011), with some notable exceptions. For example, 

Montagu’s harriers (Circus pygargus) and Hen harriers (Circus cyaneus), which are sympatric and 

only differ subtly in the colour of underparts and upperwing, are less aggressive towards 

taxidermied models of heterospecifics than conspecifics (García, 2003). Blackcaps (Sylvia 

atricapilla) can also discriminate between their own species and taxidermied models of Garden 

warblers (Sylvia borin), which differ in contour feather colour and the presence or absence, 

respectively, of a black crown (Matyjasiak, 2004). Furthermore, in an experiment involving 

taxidermied incipient Monarcha flycatchers, Uy et al. (2009) demonstrated increased aggressive 

responses with increased similarity in plumage. While the evidence so far suggest that overall 

plumage patterns alone are sufficient for species recognition, no study to date has 

demonstrated the extent to which plumage patches must differ for proper species recognition 

to occur, and whether closely-related species assess the same traits. Furthermore, no study has 

directly manipulated plumage traits in model presentation experiments to exclude the 

possibility that other cues such as bill shape and size, and body size could be used for species 

recognition. Because the divergence of secondary sexual characteristics is an important step in 

pre-mating isolation (Price, 2007), insight into how species recognize members of their own 
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species is central to understanding the speciation process, particularly when closely-related 

species coexist in sympatry. 

The avian genus Trogon comprises approximately 20 species with highly conserved 

plumage patterns (Collar, 2001; Forshaw, 2009). Up to six different species are sympatric in the 

lowlands of the Amazon suggesting that plumage traits may be important for species 

recognition. Males of all species possess a red or yellow belly (orange in one subspecies and one 

race) and display iridescent upperparts that range in colour from copper-green to purple-blue. 

Patterns on the ventral surface of the large and conspicuous tail vary from completely white to 

completely black, to banded with thin and/or thick white-on-black bands. As such, these three 

plumage characteristics (belly colour, upperpart colour, and tail barring pattern) are potential 

candidates for species recognition traits in males of this genus. In this study, we experimentally 

tested in two species of trogons 1) which plumage characteristics are used in species-

recognition and 2) whether the presence of a similar-looking sympatric congener influences 

which traits are used in species recognition. We conducted our study on black-headed trogons 

(Trogon melanocephalus) and elegant trogons (T. elegans). At our study site in Costa Rica, the 

black-headed trogon is sympatric with the similar-looking violaceous trogon (T. violaceus); the 

elegant trogon coexists with both species but does not have a similar-looking sympatric 

congener in Costa Rica. We presented these two focal trogon species with conspecific models 

and modified models that differed in breast colour, upperpart colour, or tail barring pattern to 

assess which traits are important for species recognition in each species.  

 

Methods 

We conducted our experiment during the breeding season of all three trogon species, between 

May and July 2012, in the Guanacaste Conservation Area, Sector Santa Rosa, Costa Rica (10˚ 
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40’N, 85˚ 30’W). Our study site of nearly 10 km2 is characterized by a mix of secondary dry 

deciduous forest, which has been in a regeneration state since the 1980’s, and older forest 

stands of evergreen tree species (Janzen, 1988). 

The male elegant trogon displays green upperparts and a red belly (Figure 3.1). Its tail 

pattern is a series of thick white bars interspersed by equidistant thin white and black bars (Pyle, 

1997); no other bird in our study area shares similar characteristics (Stiles & Skutch, 1989). The 

male black-headed trogon displays a yellow breast and belly, a black head, and blue-green to 

purple-blue upperparts. The ventral surface of its tail is solid white. The violaceous trogon is very 

similar to the black-headed trogon but its head is purple-blue, which often appears black from a 

distance. The tail banding pattern of the violaceous trogon is very similar to that of the elegant 

trogon. The black-headed and violaceous trogons are not known to hybridize (McCarthy, 2006) 

or compete for nest sites, but they can be seen in the same trees foraging for fruit or insects, 

especially caterpillars, which both species feed to their young (Forshaw, 2009). The males can 

easily be distinguished from the females by plumage in both black-headed and elegant trogons 

(see plates in Collar, 2001).  

 

Models 

To determine which plumage characteristics might be used as species recognition traits by the 

two focal trogon species, we presented individuals of each species with bird models that were as 

similar as possible to conspecifics, and models that were different from conspecifics in either tail 

banding pattern, upperpart colour, or belly colour.  Experiments that involve model 

presentations often rely on taxidermied specimens (e.g., Götmark, 1992; Götmark, 1997; Uy et 

al., 2009). However, we elected to produce realistic looking models from craft materials rather 
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than risk damaging valuable museum specimens, or collecting animals for the purpose of this 

experiment (Caro & Melville, 2012). Moreover, we have shown previously that elegant trogons 

responded as expected to predator and control models (Bitton & Doucet, 2014). We produced 

models that were as similar as possible to elegant and black-headed trogons (‘Conspecific’ 

models), and models that differed from these only in the back colour (‘Back’ model). In addition, 

we produced interchangeable plastrons and tails which, when placed on the ‘Conspecific’ 

model, allowed us to produce models that differed only in belly colour (‘Belly’ model), or tail 

banding pattern (‘Tail’ model). As a control, we constructed models resembling the squirrel 

cuckoo (Piaya cayana, ‘Control’ model), a similar-sized species that does not prey on trogons 

and does not parasitize nests (Payne, 1997). This cuckoo is common in the study area and does 

not elicit aggressive responses from elegant trogons (Bitton & Doucet, 2014). 

We used a plastic dove decoy similar in shape and size to the trogons as a base for all 

our models, and we glued feathers on top. We used a base layer of wind-sensitive downy 

feathers and covered these with pennaceous feathers to make the models realistic-looking (see 

Němec et al., 2014 for details on the importance of life-like models). We used a similar 

technique to produce the belly plastrons using rigid fabric as a base. We placed Velcro® on the 

plastic dove models, and the plastrons and tails, to facilitate the interchange of the 

modifications. For each of the two experimental subject species (elegant and black-headed 

trogons), we produced three ‘Conspecific’ base models and three ‘Back’ base models. In 

addition, we produced five red and five yellow belly plastrons, as well as three elegant trogon 

type tails and three black-headed type tails for each of the two back colours (i.e., 12 tails in all). 

Therefore, by combining the bases (three), plastrons (five), and tails (three) we could generate 

45 ‘different’ models for each treatment (3 X 5 X 3). This allowed us to use a unique stimulus for 
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each trial to avoid simple pseudoreplication (Kroodsma, 1989; Kroodsma et al., 2001). We also 

produced three squirrel cuckoo control models. 

To insure that the model feather colours matched those found on real trogons, we 

compared dyed feathers to real feathers using reflectance spectrometry and compared feather 

colours using an avian visual model. We first produced a library of coloured feathers by mixing 

commercially-available fabric dyes (Rit©). We objectively measured the reflective properties of 

the dyed feathers and those of real birds (three males of each species) obtained from museum 

specimens using an Ocean Optics USB 2000 spectrophotometer in conjunction with a PX-2 

xenon light source (Ocean Optics, Dunedin, FL). For the dyed feathers and the red and yellow 

belly trogon feathers, we used a bifurcated probe fitted with a rubber stopper at the tip. The 

stopper kept the probe at 5mm from the feather surface and excluded the ambient light. To 

capture the iridescent nature of green and blue upper-back feathers of the trogons, we used 

two standard fibre-optic probes (instead of the bifurcated probe) in conjunction with a 

goniometer, which permits measurements of specular and diffuse iridescence (Meadows et al., 

2011). For each of three green and three blue feathers, we collected reflectance measurements 

at 10° increments between near normal incidence (85°) and 55°. This was done by concurrently 

moving both the light source arm and spectrophotometer arm of the goniometer to measure 

specular reflectance, and by moving the spectrophotometer arm alone to capture diffuse 

reflectance. Reflectance measurements were all relative to that of a diffuse pure white standard 

(WS-1; Ocean Optics). For each colour, we chose the dyed feathers that best matched the real 

feathers by selecting colours that were either included in or very near the 3-dimensional volume 

created by the colours of the real trogons in tetrahedral colourspace (Figure 3.2). In the visual 

model we used an ideal illuminant (pure white light) and the visual system of an average bird 

possessing a short wavelength cone that peaks in the ultraviolet, as found in another species of 
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trogon (Ödeen & Håstad, 2013). We used these idealized parameters because trogons are found 

at different heights in the forest canopy and in a variety of habitats where light and background 

conditions change substantially. The avian visual model values were generated using the ‘pavo’ 

package in R (Maia et al., 2013; R Development Core Team, 2014). 

 

Field experiment 

For each focal species (elegant and black-headed trogon), we presented five types of models in 

an arbitrary order at each trial location: 1) a ‘Conspecific’ model with correct back colour, belly 

colour, and tail patterning, 2) a ‘Belly’ model with a different belly colour, 3) a ‘Back’ model with 

a different back colour, 4) a ‘Tail’ model with a different tail barring pattern (‘Tail’), and 5) a 

‘Control’ model of a squirrel cuckoo. 

Trogon territory sizes at our study site are less than 100m in radius (Bitton & Doucet, 

2014), as in other parts of their range (Corcuera & Butterfield, 1999). To prevent testing the 

same individuals more than once with the same treatment, we separated trial locations by at 

least 200m. We raised the models to 3m near a natural perching branch using a camouflaged-

painted tripod below which a remotely-controlled loudspeaker was hidden. We hid the models 

under camouflaging textile, which could be removed using a clear fishing line. The observer was 

also under camouflage, at least 10m away from the model. After the initial setup was complete, 

the observer waited 10 minutes before beginning the trial to avoid potentially influencing the 

behaviour of the experimental subjects. We attracted trogons to the area using playback of an 

adult male species-specific territorial vocalization obtained in a previous year (2011). The 

playback vocalization was that of a single individual unfamiliar to the test subjects (recorded 

outside of the study area) and consisted of a loop of the same 1 minute vocalization bout. We 
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broadcast playbacks a maximum of 10 minutes to attract a subject. Model presentation trials 

were either initiated as soon as a focal individual was in direct sight of the model feature of 

interest (i.e. subject had to be able to see the tail in ‘Tail’ model trials), or aborted if no bird 

approached close enough after 10 minutes of playback. The playback vocalization continued 

throughout the trial for two main purposes: to maintain the attention of the focal individual, 

and to simulate a territorial intrusion. 

We initiated model presentation trials by removing the camouflaging textile from the 

model and trials always lasted 10 minutes in addition to the time needed to attract a model, 

regardless of whether or not the experimental subjects remained within view of the model. We 

recorded behavioural observations with a small hand-held recorder (Edirol R-09, Roland) and 

supplemented our data by taking measurements after the trial had ended. For each successful 

trial we took note of the distance between the observer and the model (in meters), the time 

before a bird was heard or sighted after initiating the playback (in seconds), the time between 

the start of the playback and the exposure of the model (in seconds), the perches used and at 

what time, and any kind of aggressive display. Elegant trogons, but not black-headed trogons, 

are known to perform tail raises as a signal of aggression in the presence of conspecifics (Bitton 

& Doucet, 2014). Therefore, aggressive displays included tail raises and flights at the model 

(displacement or attack attempts) for elegant trogon trials, but we only recorded flights at the 

model in black-headed trogon trials. After the end of a trial, we measured the horizontal 

distance between perches to the nearest 10 cm using a measuring tape and estimated the 

height of the perch by eye to the nearest 0.5 m. We calculated the linear distances between the 

model and the perches based on those measurements for use in the analyses. We used the 

amount of time before a bird was heard or visually located, and time to beginning of trial as 

measures of the focal subject’s motivational state. Trials in which birds could be heard calling 
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before the start of the playback were not included in analyses that included this time of first 

response as a factor. In addition to observations of tail raises and displacement attempts, we 

investigated the effects of model type on the distance of closest approach and the time at which 

birds reached this location (henceforth latency to closest approach).   

We conducted successful trials of at least one model presentation at 49 different 

locations (average distance between location = 270m ± 8m SE; range: 200m – 420m). We 

initiated 427 trials, of which 200 were successful at attracting a trogon near enough to conduct a 

full trial. We conducted 99 trials with elegant trogons (Control: n = 19, Conspecific: n = 20, Tail: n 

= 20, Back: n = 20, Belly: n = 20) and 101 trials with black-headed trogons (Control: n = 20, 

Conspecific: n = 20, Tail: n = 20, Back: n = 20, Belly: n = 21). The average distance between the 

observer and the model was not different between model types for the elegant trogon trials (P = 

0.99), the black-headed trogon trials (P = 0.70), or between trials conducted to each of the two 

species (P = 0.66). Moreover, the average distance between the model and the focal individual 

at the beginning of each trial was not different between model types for the elegant trogon 

trials (P = 0.43), for the black-headed trogon trials (P = 0.87), or between trials conducted to 

each of the two species (P = 0.58). There was no significant correlation between the time before 

a bird was heard or visually located, a measure of motivational state, and the distance of closest 

approach to the model in either elegant trogon trials (n = 91, Pearson’s r = -0.04, P = 0.69), or 

black-headed trogon trials (n = 97, Pearson’s r = -0.02, P = 0.82). Furthermore, there were no 

significant correlation between the distance of closet approach and the latency to closest 

approach for either elegant (n = 91, Pearson’s r = -0.01, P = 0.91) or black-headed (n = 97, 

Pearson’s r = -0.07, P =0.51) trogon trials.   
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Analyses 

To determine the influence of model type on the distance to closest approach and latency to 

closest approach (both log transformed to normalize the data), we used two-way ANOVAs with 

model type, species, and the interaction between the terms as independent variables. To 

understand the influence of model type on the number of tail raise displays and displacement 

attempts, we first conducted a 1X5 Fisher’s Exact test because the distribution of values did not 

meet the assumptions of standard contingency table analyses (see Results). This was followed 

by pairwise comparisons of model types using 1X2 Fisher’s Exact tests. We present results ± SE. 

 

Results 

There was a significant effect of species (ANOVA, F1,180 = 15.98, P < 0.001) and species by model 

type interaction (ANOVA, F4,180 = 8.49, P < 0.001) on the distance of closest approach to the 

models. To understand the interaction term, we conducted a one-way ANOVA separately on 

each species. There was a significant difference in distance of closest approach between model 

types during black-headed trogon trials (ANOVA, F4,93 = 6.00, P < 0.001). Post hoc Dunnett’s tests 

revealed that experimental subjects approached the ‘Control’ (Estimate = -0.47 ± 0.17, t = -2.77, 

P = 0.024), ‘Back’ (Estimate = -0.96 ± 0.17, t = -5.79, P < 0.001), ‘Belly’ (Estimate = -0.61 ± 0.17, t 

= -3.64, P = 0.002), and ‘Tail’ (Estimate = -0.61 ± 0.17, t = -3.68, P = 0.001) models more closely 

than the ‘Conspecific’ model (Figure 3.3). There was also a significant difference in distance of 

closest approach between model types during elegant trogon trials (ANOVA, F4,87 = 4.78, P = 

0.002). ). Post hoc Dunnett’s tests revealed that experimental subjects approached the 

‘Conspecific’ model more closely than the ‘Control’ (Estimate = 0.64 ± 0.22, t = 2.93, P = 0.015), 

‘Back’ (Estimate = 0.58 ± 0.22, t = 2.68, P = 0.03), and ‘Belly’ model (Estimate = 0.88 ± 0.22, t = 
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3.99, P < 0.001), but not the ‘Tail’ model (Estimate = 0.28 ± 0.22, t = 1.30, P = 0.50, Figure 3.3). 

There were no effects of species (ANOVA, F1,180 = 0.29, P = 0.59), model type (ANOVA, F4,180 = 

0.50, P = 0.74), or the interaction term (ANOVA, F1,180 = 0.07, P = 0.99) on latency to closest 

approach. Removing the interaction term did not improve the model (ANOVA, species: F1,184 = 

0.30, P =0.59; model type: F4,184 = 0.51, P = 0.73).  

We detected aggressive displays in 19 elegant trogon trials, including 15 trials with at 

least one tail raising display. Tail raising displays were not equally distributed across all model 

types (Fisher’s exact test; P = 0.002, Figure 3.4). The ‘Control’ model did not elicit any tail raises, 

the ‘Belly’ and ‘Back’ models each elicited tail displays in one trial, the ‘Conspecific’ model 

elicited displays in seven trials, and the ‘Tail’ model elicited tail raises in six trials. Pairwise 

Fisher’s exact tests revealed that the ‘Conspecific’ and ‘Tail’ models elicited tail raises in 

significantly more trials than almost all other model types (Table 3.1). Flights towards the model 

were observed in four trials, all when presenting the ‘Tail’ model.  Therefore, aggressive displays 

(tail raises plus flights towards models) were not equally distributed among all model types (P  < 

0.001), and were more common in trials with ‘Conspecific’ and ‘Tail’ models than for any other 

model presented (Table 3.1). We did not detect any aggressive displays in black-headed trogon 

trials.  

 

Discussion 

In this study, we used a model presentation experiment to investigate the plumage 

characteristics used for species recognition in two coexisting species of trogons: the black-

headed trogon, which is sympatric with the similar-looking violaceus trogon, and the elegant 

trogon, which is not sympatric with a similar-looking congener. Elegant trogons were equally 

aggressive towards the similar-looking model and one with a modified tail, but did not behave 
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aggressively towards the models with modified back or belly colours. Furthermore, elegant 

trogons approached the conspecific model closer than all but the modified tail model. These 

findings suggest that conspecific and modified tail models were both recognized as conspecifics, 

whereas the other models were not. In contrast, the black-headed trogon approached within 

very short distance all models except the conspecific model. Thus, black-headed trogons clearly 

distinguished between conspecific models and all other model types, but maintained their 

distance from this conspecific intruder. Although this behaviour may seem counterintuitive, 

reluctance to approach or even retreating from aggressive conspecific intruders has been shown 

in several song playback studies (e.g., Illes et al., 2006; de Kort et al., 2009). Our findings suggest 

that these two coexisting species of trogons use different cues for species recognition, and that 

their sensitivity to different traits may be influenced by the presence or absence of sympatry 

with a similar-looking congener. 

Both elegant and black-headed trogons did not seem to consider models that differed in 

either the back or belly colour as members of their own species. These results are not 

unexpected considering that the differences between the ‘Conspecific’ and ‘Back/Belly’ models 

were large patches that differed in colouration. Much smaller differences in plumage traits have 

been shown to be sufficient for species (Matyjasiak, 2004) and individual recognition (Godard, 

1991). However, elegant trogons were more aggressive towards ‘Conspecific’ and ‘Tail’ models 

than towards other model types, whereas black-headed trogons behaved differently towards 

‘Conspecific’ models than with all other model types.  Together, our results imply that elegant 

and black-headed trogons do not use exactly the same species-recognition characteristics and 

suggest that the presence of a similar-looking sympatric congener may influence the use of 

species-identity cues. Social learning and differential discrimination abilities at the population 

level could explain our results. 
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The ability to recognize conspecifics from heterospecifics has been demonstrated to 

result from social learning of songs (Catchpole & Slater, 2003) and plumage characteristics 

(Hansen & Slagsvold, 2003) in a large number of species. While song and plumage recognition is 

often acquired through imprinting in nestlings, evidence shows that regular interactions with 

heterospecifics that use similar resources lead to recognition of heterospecifics at later stages in 

life (e.g., Catchpole, 1978; Grether et al., 2009). This has been demonstrated in black redstarts 

(Phoenicurus ochruros, Gmelin), for example, where individuals are aggressive towards 

playbacks of the common redstart (Phoenicurus phoenicurus, Linnaeus) in areas of sympatry but 

not allopatry (Sedláček et al., 2006). The black-headed trogons at our study site regularly come 

in contact with violaceous trogons, providing ample opportunities to learn the differences in tail 

barring patterns between conspecific and heterospecifics. In contrast, elegant trogons at our 

study site, which have bright red bellies, are only sympatric with yellow-bellied trogons and 

would not need to assess tail barring patterns to recognize conspecifics. The ability of black-

headed trogons to recognize violaceous trogons may be local (i.e., population level); an 

experiment with black-headed trogons in an area where they are not sympatric with violaceus 

trogons could determine whether learning plays a role in heterospecific recognition in this 

study. Similarly, an experiment with elegant trogons in an area where they are sympatric with a 

similar-looking congener could yield important insights about the role of learning in species 

recognition. 

Differences in species recognition between elegant and black-headed trogons could 

arise from each species focussing on particular traits, but could also possibly arise from 

differences in their discrimination ability. Indeed, the costs of incorrect species discrimination 

are expected to exert a strong selective pressure for accurate transmission on the part of the 

signaller, but also on the perceptive ability of the receiver (Tobias & Seddon, 2009). For 
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example, playback experiments in closely-related Thamnophilidea antbirds with convergent 

songs demonstrated that females are able to distinguish between conspecific and 

heterospecifics, and recognize mates from strangers, even when songs are extremely 

stereotyped (Seddon & Tobias, 2010). This ability to discriminate among conspecifics is not 

present in males (Tobias & Seddon, 2009), demonstrating that even within species the 

perceptive abilities of the receiver can differ, and are potentially influenced by the differential 

cost of species misidentification within and among species. Females misidentifying 

heterospecific males would incur much larger costs, by producing potentially unfit hybrids, while 

males would only incur the costs associated with wasted time, misdirected aggression, and the 

risk of physical injury (Tobias & Seddon, 2009; Seddon & Tobias, 2010). In areas where similar-

looking congeners occur, it is therefore possible that the perceptual abilities of individuals are 

fine-tuned to small differences in trait differences.  

Several mechanisms, in different contexts, could promote the evolution of fine 

discriminating abilities. For example, sympatric closely-related species in which hybrid matings 

sometimes occur would be expected to recognize heterospecifics within the sympatric area, but 

not necessarily in the adjoining allopatric zones. The increased ability to recognize a 

heterospecific would evolve as part of a multifaceted reinforcement mechanism, favour 

assortative mating, and thus decrease the opportunity for hybridization (Coyne & Orr, 2004). 

Similarly, incipient species would be expected to have better heterospecific discriminating ability 

than fully established species, especially in cases where speciation is driven by slight changes in 

the ecological niche of the diverging populations (Price, 2007); failure to discriminate between 

diverging groups could lead to a collapse of the species pair through indiscriminate hybridization 

(e.g. Behm et al., 2010). Finally, as in our study, we could expect species with sympatric similar-

looking congeners to have better discriminating abilities than species without sympatric closely-
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related congeners, even in the absence of hybridization. Since the cost of misidentification 

would be relatively low in this context, we could expect the precision of species recognition to 

be weaker than in the situations explored above, and would not evolve as a mechanism of 

reinforcement following secondary contact but, rather, would evolve in the context of 

competitor recognition. Even in the absence of competition for resources, individuals can avoid 

the cost of aggressive interactions by recognizing non-competitive heterospecifics (Anderson & 

Grether, 2009; Anderson & Grether, 2010). Because divergence in traits can occur through 

agonistic character displacement (Grether et al., 2009, Okamoto & Grether, 2013), perhaps 

interspecific interference competition could also lead to an increase in perceptual abilities that 

facilitate species recognition. 

The elegant trogon subjects in our experiment showed the same level of aggression 

towards the ‘Conspecific’ model and the ‘Tail’ model.  Even if the individuals had the capacity to 

discriminate between the different traits, it is still possible that they did not attend to the 

differences for two reasons. First, when species rely on several sources of information such as 

multiple coloured plumage patches, individuals may not notice small differences when initiating 

a response (Hankinson & Morris, 2003). However, the aggressive behaviours of elegant trogons 

towards the models always came after a relatively long period of visual assessment.  In fact, the 

fastest display of aggression occurred after over a minute of close-range evaluation, sufficient 

time to evaluate the differences in characteristics between the model and conspecifics.  The 

hypothesis that elegant trogons did not assess differences in tail-barring patterns because they 

do not notice small details should be tested by presenting a range of tail barring differences. 

Second, individuals would not react towards a modified signal if the response potentially 

incurred greater costs (such as reciprocal aggression) than not responding (Bradbury & 

Vehrencamp, 2011). We consider this explanation improbable in the context of our experiment 
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because a large majority of the aggressive displays consisted of tail raises, which are low cost 

because they are not energetically demanding and, most importantly, do not risk injuring the 

individual. Therefore, our results suggest that elegant trogons simply dismissed small difference 

in tail-barring, or did not have the ability to distinguish between the ‘Conspecific’ model and the 

‘Tail’ model.  

Our study revealed that two coexisting trogons use different plumage traits for species 

recognition, and provides evidence that the presence of a similar-looking congener can 

influence the use of visual species recognition characteristics. The lack of ability to distinguish 

between two traits could result from simply ignoring those differences or inferior discrimination 

ability. Our findings also suggest that learning may play a role in species recognition, since both 

of our focal species are sympatric with similar-looking congeners in parts of their range but not 

others. Experiments conducted in different populations, with different sympatric species 

present, would help elucidate the exact mechanisms responsible for our results. Nonetheless, 

this study provides the first experimental evidence of species recognition based on a specific 

plumage patch in two sympatric congeners, and the first to demonstrate that the presence or 

absence of a similar-looking congener can influence which visual traits are used for species 

recognition. Because the evolution of divergent sexually selected traits and their assessment by 

conspecifics promote pre-mating isolation and speciation, our study demonstrates the 

importance of sympatry on these processes. 

 

Acknowledgements 

We thank Stephanie Ly for preparing a library of dyed feathers and helping with the production 

of models. Cory Ochs assisted with the production of the models and conducted experimental 

trials in the field. Staff members at the ACG Sector Santa Rosa, especially Roger Blanco, provided 



 

65 
 

excellent logistical support. We thank Janet Hinshaw at the University of Michigan Museum of 

Zoology, and John Bates and David Willard of the Field Museum of Natural History in Chicago for 

providing access to specimens and feather samples of the two species of trogons. Funding was 

provided by the National Science and Engineering Research Council of Canada in the form of a 

Canada Graduate Scholarship and a Michael Smith Foreign Studies Supplement to P.-P.B., as well 

as Discovery and Equipment grants to S.M.D, and by an American Ornithological Union Award to 

P.-P.B. This study was conducted in compliance with laws in Canada and Costa Rica, and 

respected Canadian and Costa Rican animal care protocols (Permit #ACG-PI-016-2011).  

 

References  

Anderson, C.N. & Grether, G.F. 2009. Interspecific aggression and character displacement of 
competitor recognition in Hetaerina damselflies. Proc. R. Soc. Lond. B Biol. Sci. 277: 549-555.  
 
Anderson, C.N. & Grether, G.F. 2010. Character displacement in the fighting colours of Hetaerina 
damselflies. Proc. R. Soc. Lond. B Biol. Sci. 277: 3669-3675. 
 
Andersson, M.B. 1994. Sexual selection. Princeton University Press, Princeton, New Jersey. 
 
Barnett, C.A. & Briskie, J.V. 2011. Strategic regulation of body mass and singing behavior in New 
Zealand robins. Ethology 117: 28-36. 
 
Behm, J.E., Ives, A.R. & Boughman, J.W. 2010. Breakdown in postmating isolation and the 
collapse of a species pair through hybridization.  Am. Nat. 175: 11-26. 
 
Bitton, P-P. & Doucet, S.M. 2014. A multifunctional visual signal in the elegant trogon Trogon 
elegans targets conspecifics and heterospecifics. Behav. Ecol. 25: 27-34. 
 
Bradbury, J.W. & Vehrencamp, S.L. 2011. Principles of animal communication, 2nd edn. Sinauer, 
Sunderland, Massachusetts. 
 
Brandt, J.M. 2003. Lizard threat display handicaps endurance. Proc. R. Soc. Lond. B Biol. Sci. 270: 
1061-1068. 
 
Caro, T. & Melville, C. 2012. Investigating colouration in large and rare mammals: the case of the 
giant anteater. Ethol. Ecol. Evol. 24: 104-115. 
 



 

66 
 

Catchpole, C.K. 1978. Interspecific territorialism and competition in Acrocephalus warblers as 
revealed by playback experiments in areas of sympathy and allopatry. Anim. Behav. 26: 1072-
1080. 
 
Catchpole, C.K. & Slater, P.J. 2003. Bird song: biological themes and variations. Cambridge 
University Press, United Kingdom. 
 
Collar, N.J. 2001. Family Trogonidae (Trogons). In: Hand-book of the birds of the world, Vol. 6. 
Mousebirds to Hornbills (J. del Hoyo, A. Elliott & J. Sargatal, eds), pp. 80-129. Lynx Editions, 
Barcelona, Spain. 
 
Corcuera, M.D.R.P. & Butterfield, J.E. 1999. Bird communities of dry forests and oak woodland of 
western Mexico. Ibis 141: 240-255. 
 
Couldridge, V.C.K. & Alexander, G.J. 2002. Color patterns and species recognition in four closely 
related species of Lake Malawi cichlid. Behav. Ecol. 13: 59-64. 
 
Coyne, J.A. & Orr, H.A. 2004. Speciation. Sinauer, Sunderland, Massachusetts. 
 
de Kort, S.R. & ten Cate, C. 2001. Response to interspecific vocalizations is affected by degree of 
phylogenetic relatedness in Streptopelia doves. Anim. Behav. 61: 239-247. 
 
de Kort, S.R., den Hartog, P.M. & ten Cate, C. 2002. Vocal signals, isolation and hybridization in 
the vinaceous dove (Streptopelia vinacea) and the ring-necked dove (S. capicola). Behav. Ecol. 
Sociobiol. 51: 378-385. 
 
de Kort, S.R., Eldermire, E.R., Cramer, E.R. & Vehrencamp, S.L. 2009. The deterrent effect of bird 
song in territory defense. Behav. Ecol. 20: 200-206. 
 
den Hartog, P.M., de Kort, S.R. & ten Cate, C. 2007. Hybrid vocalizations are effective within, but 
not outside, an avian hybrid zone. Behav. Ecol. 18: 608-614.  
 
Forshaw, J.M. 2009. Trogons: A natural history of Trogonidae. Princeton University Press, 
Princeton, New Jersey. 
 
García, J.T. 2003. Are simple plumage traits sufficient for species discrimination by harrier 
males? J. Avian Biol. 34: 402-408. 
 
Godard, R. 1991. Long-term memory of individual neighbours in a migratory songbird. Nature 
350: 228-229. 
 
Götmark, F. 1992. Antipredator effect of conspicuous plumage in a male bird. Anim. Behav. 44: 
51-55. 
 
Götmark, F. 1997. Bright plumage in the magpie: does it increase or reduce the risk of 
predation? Behav. Ecol. Sociobiol. 40: 41-49. 
 



 

67 
 

Grether, G.F., Losin, N., Anderson, C.N. & Okamoto, K. 2009. The role of interspecific 
interference competition in character displacement and the evolution of competitor 
recognition. Biol. Rev. 84: 617-635. 
 
Hankinson, S.J. & Morris, M.R. 2003. Avoiding a compromise between sexual selection and 
species recognition: female swordtail fish assess multiple species-specific cues. Behav. Ecol. 14: 
282-287. 
 
 Hansen, B.T. & Slagsvold, T. 2003. Rival imprinting: interspecifically cross-fostered tits defend 
their territories against heterospecific intruders. Anim. Behav. 65: 1117-1123. 
 
Hill, P.S.M. 2008. Vibrational communication in animals. Harvard University Press, Cambridge, 
Massachusetts. 
 
Hopkins, C.D & Bass, A.H. 1981. Temporal coding of species recognition signals in an electric fish. 
Science 212: 85-87. 
 
Illes, A.E., Hall, M.L. & Vehrencamp, S.L. 2006. Vocal performance influences male receiver 
response in the banded wren. Proc. R. Soc. Lond. B Biol. Sci. 273: 1907-1912. 
 
Janzen, D.H. 1988. Ecological characterization of a Costa Rican dry forest caterpillar fauna. 
Biotropica 20: 120-135. 
 
Kroodsma, D.E. 1989. Suggested experimental designs for song playbacks. Anim. Behav. 37: 600-
609. 
 
Kroodsma, D.E., Byers, B.E., Goodale, E., Jonhson, S. & Liu, W. 2001. Pseudoreplication in 
playback experiments, revisited a decade later. Anim. Behav. 61: 1029-1033. 
 
Lombardo, M.P. 1986. A possible case of adult intraspecific killing in the tree swallow. Condor 
88: 112 
 
Maher, C.R. & Lott, D.F. 1995. Definitions of territoriality used in the study of variation in 
vertebrate spacing systems. Anim. Behav. 49: 1581–1597. 
 
Maia, R., Eliason, C., Bitton, P-P., Doucet, S. & Shawkey, M. 2013. pavo: an R package for the 
analysis, visualization and organization of spectral data. Methods Ecol. Evol. 4: 906-913. 
 
Martin, P.R. & Martin, T.E. 2001. Ecological and fitness consequences of species coexistence: a 
removal experiment with wood warblers. Ecology 82: 189-206. 
 
Martin, P.R., Montgomerie, R. & Lougheed, S.C. 2015. Color patterns of closely related bird 
species are more divergent at intermediate levels of breeding-range sympatry. Am. Nat. In 
Press. 
 
Matyjasiak, P. 2004. Birds associate species-specific acoustic and visual cues: recognition of 
heterospecific rivals by male blackcaps. Behav. Ecol.  16: 467-471. 
 



 

68 
 

McCarthy, E.M. 2006. Handbook of avian hybrids of the world. Oxford University Press, New 
York. 
 
McLennan, D.A. & Ryan, M.J. 1999. Interspecific recognition and discrimination based upon 
olfactory cues in northern swordtails. Evolution 53: 880-888. 
 
Meadows, M.G., Morehouse, N.I., Rutowski, R.L., Douglas, J.M. & McGraw, K.J. 2011. 
Quantifying iridescent coloration in animals: a method for improving repeatability. Behav. Ecol. 
Sociobiol. 65: 1317-1327. 
 
Michaelidis, C.I., Demary, K.C. & Lewis, S.M. 2006. Male courtship signals and female signal 
assessment in Photinus greeni fireflies. Behav. Ecol. 17: 329-335. 
 
Němec, M., Syrová, M., Dokoupilová, L., Veselý, P., Šmilauer, P., Landová, E. et al. 2014. Surface 
texture and priming play important roles in predator recognition by the red-backed shrike in 
field experiments. Anim. Cogn.  18: 259-268. 
 
Nunes, T.M., Nascimento, I.C., Turatti, N.P., Lopes, N.P. & Zucchi, R. 2008. Nestmate recognition 
in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim. 
Behav. 75: 1165-1171. 
 
Ödeen, A. & Håstad, O. 2013. The phylogenetic distribution of ultraviolet sensitivity in birds. 
BMC Evol. Biol. 13: 36. 
 
Okamoto, K.W. & Grether, G.F. 2013. The evolution of species recognition in competitive and 
mating contexts: the relative efficacy of alternative mechanisms of character displacement. Ecol. 
Lett. 16: 670-678. 
 
Ord, T.J., King, L. & Young, A.R. 2011. Contrasting theory with the empirical data of species 
recognition. Evolution 65: 2572-2591. 
 
Ord, T.J. & Stamps, J.A. 2009. Species identity cues in animal communication. Am. Nat. 174: 585-
593. 
 
Payne, R.B. 1997. Family Cuculidae (Cuckoos). ). In: Hand-book of the birds of the world, Vol. 4. 
Sandgrouse to Cuckoos (J. del Hoyo, A. Elliott & J. Sargatal, eds), pp. 508-607. Lynx Editions, 
Barcelona, Spain. 
 
Pearson, S.F. & Rohwer, S. 2000. Asymmetries in male aggression across an avian hybrid zone. 
Behav. Ecol. 11: 93-101. 
 
Price, T. 2007. Speciation in birds. Roberts and Company Publishers, Greenwood Village, 
Colorado.  
 
Pyle, P. 1997. The identification guide to North American birds Part 1, Columbiadae to 
Ploceidae.creek Press, Bolinas, California. 
 



 

69 
 

R Development Core Team. 2014. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 
 
Rollmann, S.M., Houck, L.D. & Feldhoff, R.C. 2003. Conspecific and heterospecific pheromone 
effects on female receptivity. Anim. Behav. 66: 857-861. 
 
Rollo, A. & Higgs, D. 2008. Differential acoustic response specificity and directionality in the 
round goby, Neogobius melanostomus. Anim. Behav. 75: 1903-1912. 
 
Seddon, N. & Tobias, J.A. 2010. Character displacement from the receiver’s perspective: species 
and mate recognition despite convergent signals in suboscine birds. Proc. R. Soc. Lond. B Biol. 
Sci. 277: 2475-2483. 
 
Shine, R., Reed, R.N., Shetty, S., Lemaster, M. & Mason, E.T. 2002. Reproductive isolating 
mechanisms between two sympatric sibling species of sea snakes. Evolution 56: 1655-1662. 
 
Sedláček, O., Cikánová, B. & Fuchs, R. 2006. Heterospecific rival recognition in the black redstart 
(Phoenicurus ochruros). Ornis Fennica 83: 153-161. 
 
Stiles, F.G. & Skutch, A.F. 1989. A guide to the birds of Costa Rica. Cornell University Press, 
Ithaca, New York. 
 
Tobias, J.A. & Seddon, N. 2009. Signal design and perception in Hypocnemis antbirds: evidence 
for convergent evolution via social selection. Evolution 63: 3168-3189. 
 
Teufel, C., Hammerschmidt, K. & Fisher, J. 2007. Lack of orienting asymmetries in Barbary 
macaques: implication for studies of lateralized auditory processing. Anim. Behav. 73: 249-255. 
 
Uy, A.C., Moyle R.G. & Filardi, C.E. 2009. Plumage and song differences mediate species 
recognition between incipient flycatcher species of the Solomon Islands. Evolution 63:153-164. 



 

70 
 

Table 3.1 Elegant trogons performed more aggressive displays when presented with a 

‘Conspecific’ and ‘Tail’ model than when presented with ‘Control’, ‘Belly’, and ‘Back’ models (see 

methods for model type definitions). Values presented are from Fisher’s exact tests and 

significant tests are in bold. Displacements attempts were only observed during ‘Tail’ trials and 

did not influence the results of other trial results. 

 

Aggressive display Model comparison Odds 
ratio 

95% CI  
Odds ratio 

P 

     

Tail raises only ‘Conspecific’ vs ‘Tail’ 0.80 0.17 – 3.65 1.00 
 ‘Control’ vs ‘Conspecific’ 0.00 0.00 – 0.59 0.008 
 ‘Control’ vs ‘Tail’ 0.00 0.00 – 0.76 0.02 
 ‘Control’ vs ‘Belly’ or ‘Back’ 0.00 0.00 – 41.05 1.00 
 ‘Conspecific’ vs ‘Belly’ or 

‘Back’ 
0.10 0.00 – 0.96 0.044 

 ‘Tail’ vs ‘Belly’ or ‘Back’ 0.13 0.00 – 1.24 0.09 
     
Tail raises +  ‘Conspecific’ vs ‘Tail’ 0.55 0.12 – 2.27 0.52 
displacement 
attempts 

‘Control’ vs ‘Tail’ 0.00 0.00 – 0.31 < 0.001 

 ‘Tail’ vs ‘Belly’ or ‘Back’ 0.06 0.00 – 0.50 0.003 
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Figure 3. 1 Our experimental trials were conducted on the elegant trogon (Trogon elegans), 

which does not have a similar-looking congener in our study area, and the black-headed trogon 

(T. melanocephalus), which is sympatric with the violaceous trogon (T. violaceus). Painting 

credit: John Sill, with permission from owner. 
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Figure 3. 2 The hue of the dyed feathers (coloured circles) on the models closely matched the 

hue of museum specimens (black triangles) in avian colourspace. Black-headed trogons have 

blue upperparts and yellow bellies, elegant trogons have green upperparts and red bellies. The 

Mollweide projection is a two-dimensional representation of the three-dimensional tetrahedral 

colourspace. Colours of the open circles are approximations of the perceived hues generated 

from the spectral data. U, S, M, and L mark the ultraviolet-, short-, medium- and long-

wavelength sensitive photoreceptors, respectively, which are also marked with a solid circle 

symbol. 
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Figure 3. 3 Black-headed trogons approached ‘Conspecific’ models less than any other model 

type, and elegant trogons approached ‘Conspecific’ models more than all but the ‘Tail’ models 

(see Methods and Results for more details). Boxes show median (50th percentile) and 

interquartile range (25th to 75th percentile); whiskers indicate the 95% confidence intervals. 

Open circles are data points that fall outside the 95% confidence range. 



 

74 
 

 

 

Figure 3. 4 Elegant trogons performed more tail raises when presented with models resembling 

conspecifics and models for which only the tail was modified, than when presented with other 

model types.  



 

 

 

 

 

 

 

 

 

Chapter 4 

Increased plumage divergence with sympatry in a rapid and recent 

diversification of the avian genus Trogon 
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Summary 

The concept of character displacement can explain the diversification of phenotypes in closely 

related species. Applied to polymorphic species, this hypothesis has offered a framework to 

study reinforcement and speciation. The formation of the Panamanian land bridge between 

North and South America, followed by the Great American Interchange of biota, led to adaptive 

radiations in a number of avian taxa (e.g, oscines). This natural experiment has been 

instrumental in understanding patterns of biodiversity in the Western hemisphere, but the 

impact of the Great American Interchange on the diversification of sexually selected traits 

remains poorly explored. Using a combination of comparative methods, visual modelling of 

plumage coloration, and functional diversity measures, we show that taxa in the genus Trogon, 

which originated in Central America, diversified more recently and more rapidly in South 

America following the Great American Interchange. Concordantly, we show that sympatric 

extant taxa diverged more in plumage traits in South America than in Central America. Together, 

our results suggest that character displacement or linage sorting in an area of high 

diversification has shaped plumage patterns at the subspecies level across an entire continent. 

Our study is unique in demonstrating the impact of the Great American Interchange on the 

evolution of phenotypic characteristics in a widespread group of birds. 
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Introduction 

Character displacement has been a powerful hypothesis to explain the divergence of 

morphological traits (ecological character displacement) and sexually selected traits 

(reproductive character displacement) between closely related species (Darwin 1859, Brown 

and Wilson 1956, Pfennig and Pfennig 2010, Stuart and Losos 2013). Invoked in classic models of 

speciation (Mayr 1963, Coyne and Orr 2004, Price 2008), character displacement is based on the 

premise that competitive interactions between incipient species that diverged in allopatry 

promote an increase in trait differences in the event of secondary contact. Competition for 

limited resources has been demonstrated to be a key mechanism in the rapid speciation of 

adaptive radiations (reviewed in Schluter 2000, Dayan and Simberloff 2005, and Stuart and 

Losos 2013), and the cost of inbreeding and production of low-fitness hybrids may have played 

an important role in promoting the evolution of reproductively isolated species (Serviendo and 

Noor 2003, Coyne and Orr 2004). In the initial postulation of character displacement, Darwin 

(1859) suggested that the most closely related forms should demonstrate the largest amount of 

competition, and thus character divergence would occur in the descendants of a single species. 

Indeed, ecological character displacement has been best demonstrated in recent adaptive 

radiations and species complexes (Anolis lizards: Losos et al. 1994, Losos et al. 1993; three-spine 

sticklebacks Gasterosteus aculeatus: Schluter and McPhail 1992; spadefoot toads of the genus 

Spea: Pfennig and Murphy 2000, Pfennig and Murphy 2002, Pfennig and Murphy 2003; Darwin’s 

finches: Grant and Grant 2006). In contrast, evidence for character displacement of secondary 

sexual traits has been more commonly tested by comparing pairs or groups of related species 

(Brown and Wilson 1956, Sætre et al. 1997, Marshall and Cooley 2000, McNaught and Owen 

2002, Martin et al. 2010, Anderson and Grether 2010). These studies, which test for greater 

phenotypic differences between species in sympatry than in allopatry, have demonstrated the 



 

78 
 

importance of past sexual selection on diverging characters and reproductive isolation. 

Targeting incipient species, further studies of character divergence have investigated the source 

of intraspecific polymorphism (i.e. subspecies or race level differences) and have provided an 

understanding of the early stages of speciation (Goldberg and Lande 2006, Richards-Zawacki and 

Cummings 2010). Similarly, the evaluation of reproductive character displacement of a complete 

genus at the subspecies level could prove particularly informative for understanding the 

evolution of secondary sexual ornaments in closely related species, but few studies have taken 

this approach.  

 The rise of the Isthmus of Panama linking the North and South American continents 

around 3-3.5 million years ago (Mya) allowed the Great American Interchange of previously 

isolated biota (Stehli and Webb 1985). The mixing of these flora and fauna affected biotic 

assemblages, competitive interactions, and rates of extinction and speciation on both 

continents, and is thus an important contributor to the wealth of extant biodiversity in the 

Neotropics (e.g. Marshall 1988, Burns and Racicot 2009, Weir et al. 2009, Smith and Klicka 2010, 

Pinto-Sánchez et al. 2012, Leite et al. 2014). The range expansion of species to previously 

inaccessible areas and the associated exposure to novel habitat and resources likely allowed for 

the evolution of novel traits and ecotypes, further promoting diversification and potential 

speciation (Blackburn et al. 2013, Coyne and Orr 2004, Hollingsworth et al. 2013). While our 

understanding of the Great American Interchange impact on lineage diversification has greatly 

improved in recent years due to phylogenetic studies (e.g. Reaves and Bermingham 2006, Weir 

et al. 2009, Smith and Klicka 2010, Pinto-Sánchez et al. 2012), the ensuing consequences on trait 

evolution has rarely been investigated.  

Trogons of the Neotropical genus Trogon comprise a group of 16 species for which 55 

subspecies, including one to eight subspecies per species, which have been described using 
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traditional taxonomic methods and confirmed using mitochondrial sequences (DaCosta and 

Klicka 2008, Forshaw 2009, Remsen et al. 2014). All species have a highly conserved body plan 

and similar plumage patterns that diverge in coloration. Males bear bright iridescent feathers on 

their upperparts (ranging from deep purple to copper) and carotenoid-based colors on their 

underparts (red, orange, or yellow). All species possess a relatively long tail of which the under 

part can be all white or black, or with conspicuous barring patterns. Many have a white band 

separating the upper breast from the belly. Among subspecies of the same species, the plumage 

color of specific patches can vary greatly. For example, the rump patch of T. rufus varies from 

copper-green in the sulphurous subspecies to a purple-blue in the nominate subspecies. In fact, 

almost all subspecies described are based on variation in the plumage of males (Forshaw 2009). 

Members of the genus Trogon range from southern Arizona to southern Brazil.  Ancestral state 

reconstruction suggests that the genus originated in Central America, colonized South America 

through multiple migration events during and after the completion of the Isthmus of Panama, 

and subsequently diversified within South America (DaCosta and Klicka 2008). Currently, some 

areas harbour many sympatric trogon species and/or subspecies (e.g., five species in lowlands of 

Panama, up to six species in Amazonian forests), suggesting secondary contact among forms 

that diversified following the Great American Interchange. With its continuous distribution 

across the Neotropics, evolutionary history shaped by the Great American Interchange, and 

extant sympatry of recently evolved lineages, the genus Trogon provides an ideal system for 

understanding the evolution of plumage coloration at the subspecies level. 

The first objective of this study was to compare diversification rates in Central and South 

American taxa of the genus Trogon by modeling continent-specific speciation and extinction 

rates in a phylogeographic context. Our second objective was to test whether character 

displacement is a possible mechanism of plumage evolution on each continent. To achieve this 
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we tested whether the proportion of sympatric overlap explains measures of plumage disparity 

among subspecies. Our third objective was to determine whether the presence in sympatry of 

several Trogon taxa influenced the range of plumage color values. Indeed, the divergence in 

characteristics functionally adapted to the exploitation of limited resources is expected to lead 

to a greater range, and a reduction in overlap, of trait values (MacArthur and Levins 1967, 

Bulmer 1974), and the costs of hybridization between incipient species can be expected to 

promote the divergence of sexually selected ornaments. Because multiple traits or several 

morphological aspects of the same trait (e.g. width and depth of beaks) can concurrently 

change, measures of disparity in multidimensional morphospace are more informative than the 

individual characterization of traits (Gotelli and Graves 1996, Stubbs and Wilson 2004, Schamp 

et al. 2008). Similarly, the divergence in plumage color trait values of multiple sexually selected 

characteristics can be assessed by comparing their distribution in colorspace, a conceptual 

multidimensional space that encompasses all the colors that can be perceived by an animal 

considering its species-specific visual system (Endler and Mileke 2005). This analytical tool has 

been very useful for studying the evolution of plumage coloration in large groups of species (e.g. 

Stoddard and Prum 2008), but has yet to be used to evaluate color pattern differences in 

sympatric species.   

 

Methods 

We determined diversification rates of Central American and South American subspecies of the 

genus Trogon for which gene sequences were available on Genbank using binary state 

speciation and extinction models, and calculated time since speciation at each node from 

ancestral state reconstructions.  To evaluate the influence of sympatry on plumage divergence, 

we compared plumage characteristics using a bird specific visual model, calculated the genetic 
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distance, and quantified the proportion of geographic overlap between all pairwise trogon 

subspecies. To investigate the use of colorspace by geographically overlapping species, we 

collected plumage color data on all subspecies of the genus Trogon for which we could gain 

access to museum specimens and performed a series of randomization tests. 

 

Phylogenetic analyses 

We estimated the phylogenetic relationships among 41 Trogon taxa using DNA sequence data 

from the mitochondrial gene NADH dehydrogenase subunit 2 (ND2). A representative sequence 

for each taxon was retrieved from GenBank (Table S4.1), and a time-calibrated ultrametric 

phylogeny was estimated using BEAST v1.8 (Drummond et al. 2012). Two runs were completed 

with the GRT+I+Γ model of sequence evolution, a lognormal relaxed clock, a calibration rate of 

3.41% divergence per million years (DaCosta and Klicka 2008), the birth-death with incomplete 

sampling tree model, 50 million generations, and sampling every 50,000 generations. 

Convergence between runs was evaluated using Tracer v1.5 (Rambaut and Drummond 2009). 

We conservatively removed the first 500 trees from each run as burn-in, and combined the 

remaining samples from each run to form a posterior distribution of 1000 trees. The maximum 

clade credibility tree from this posterior was used to evaluate the geography of ancestral nodes 

and compare speciation times in Central and South America. Following DaCosta and Klicka 

(2008) for repeatability, we traced the geographic history in Mesquite v2.75 (Maddison and 

Maddison 2005) using a parsimony model and four character states (Central America, Chocó, 

Andes, and cis-Andes). Character states for ambiguous nodes under a parsimony model were 

resolved using the most likely state under a maximum likelihood model, and the average age for 
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Central America and South America (Chocó+Andes+cis-Andes) nodes was compared using a t-

test in R (R Core Team 2014). 

Comparative analyses 

We assessed the influence of the Great American Interchange on diversification patterns in 

Trogon using the binary state speciation and extinction (BiSSE) model (Maddison et al. 2007). On 

each of the 1000 trees in the posterior distribution derived from the BEAST analysis, we ran the 

model in R using the diversitree package (FitzJohn 2012). Extant taxa were coded as either 

Central America (CA: state 0) or South America (SA: state 1), and the sampling.f option was used 

to account for incomplete sampling (only 80% of all Central America and 71.4% of South 

American taxa were sampled, using taxonomy in Collar 2001). Since ancestral state 

reconstructions find that CA is the most parsimonious state of the root node (see Results; 

DaCosta and Klicka 2008), we also used the root.p option to constrain this node to a CA 

character state. Maximum likelihood (find.mle function) was used to estimate six parameters in 

the full BiSSE model: speciation in CA (lambda0) and SA (lambda1), extinction in CA (mu0) and 

SA (mu1), and state transitions (q01: CA to SA; q10: SA to CA). Speciation and extinction 

parameters were used to calculate net diversification (r) in each region (e.g., r0 = lambda0 - 

mu0). We also used the Akaike information criterion (AIC) to compare results from the full 

model to four constrained models: equal speciation (lambda0=lambda1), equal extinction 

(mu0=mu1), equal state transitions (q01=q10), and full constraint (lambda0=lambda1, 

mu0=mu1, and q01=q10). 
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Plumage characteristics and visual model 

Members of the genus Trogon generally differ in seven plumage areas. The head, mantle, rump 

and dorsal part of the tail range in color from non-iridescent black to iridescent hues that vary 

from violet to copper. The belly is either red or yellow, except in the case of one subspecies (T. 

surrucura aurantius) and one race (T. collaris puella aurantiiventris), which display an 

intermediate orange. Some species display a clearly defined white breast band while others do 

not, and banding patterns on the ventral part of the tail varies greatly; some species bear 

completely white or black tails, most present alternating black and white bands of varying 

thickness.  

We used spectrophotometry to objectively assess the colors displayed on the head, 

mantle, rump, dorsal part of the tail, and the belly of three different males per subspecies 

(accession numbers in Table S4.2; spectral data available in digital repository Dryad - 

http://datadryad.org/). We selected individuals from thoughout the subspecies range to best 

represent the within-subspecies variation even if among subspecies differences in plumage 

charateristics are much greater than within-subspecies differences (Forshaw 2009). Our 

apparatus consisted of a USB 4000 spectrophotometer (Ocean Optics, Dunedin, Florida) 

combined with a PS-2 Xenon pulsed light source, and connected to a bifurcated probe with a 

rubber stopper that maintained the light source 3mm above the feather surface and blocked 

external light (Andersson and Prager 2006). Therefore, all measurements were taken with the 

angle of reflectance at normal incidence (0°). We obtained five measurements from each 

plumage patch, changing the location of the measurement each time.  We calculated spectral 

reflectance values in the visual range of birds (300nm to 700nm) relative to a pure white 

standard (Spectralon, Ocean Optics). We binned these values in 1nm wavelength intervals, and 

we aggregated the five repeated measurements by taking the mean at each wavelength. 

http://datadryad.org/
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Since birds possess four photoreceptors, the colors they perceive can be represented in 

a three-dimensional tetrahedron with the four cones at the apices (Goldsmith 1990, Endler and 

Mielke 2005, Stoddard and Prum 2008). For each individual plumage patch, we calculated the 

differences in color characteristics between all pairwise subspecies as the Euclidean distance in 

tetrahedral colorspace (Endler and Mielke 2005, Stoddard and Prum 2008). Even though 

Euclidean distances cannot be directly used to assess how differently two colors are perceived, 

they are highly correlated with perceptual distances (Pike 2012). In the tetrahedral colorspace 

model we assumed 1) general photoreceptor sensitivity values for species that possess an 

ultraviolet photoreceptor (based on Trogon curucui; Ödeen and Håstad 2013), and an ideal 

(wavelength independent) illuminant. Trogons are found in a variety of light environments, and 

using ideal illuminant values allows all colors to be compared objectively. We calculated the 

visual model values in R (R Core Team 2014) using the pavo package (Maia et al. 2013).   

In addition to plumage color, we scored two prominent plumage patterns to further 

assess trait disparity among species. We qualified the breast band as either present (score of 1) 

or absent (score of 0), and the divergence score was calculated as the absolute difference 

between the two subspecies (i.e. only 0 and 1 possible). We also visually quantified the 

proportion of the tail covered by white with values ranging from 0% (black tail) to 100% (white 

tail), and the divergence score was calculated as the absolute difference between the two 

subspecies. To avoid giving specific plumage patches more weight in the overall distance score, 

we normalized the color Euclidean distances so that the maximum value for a specific plumage 

patch between two taxa was 1. The overall distance score was the sum of all seven plumage 

difference values (head, mantle, rump, dorsal tail, and belly color, plus chest band and ventral 

tail patterns) with a theoretical minimum of zero and maximum of seven. 
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Measurement of genetic distances and sympatry among subspecies 

Because subspecies rarely overlap in geographic range, and because phenotypic similarity is 

often highly correlated with phylogeny (Webb et al. 2002, Losos 2008), we calculated 

uncorrected p-distances as a measure of genetic relatedness among taxa (Takahashi and Nei 

2000, Nei and Kumar 2003) from all published ND2 sequences from GenBank (accessed Dec 

2011). In total we obtained 145 sequences representing 43 out of 55 accepted subspecies 

(Forshaw 2009); all of the subspecies missing were from range-restricted taxa. We aligned 

sequences with ClustalW (Thompson et al. 1994) and we calculated distances between all 

pairwise subspecies using MEGA 5 (Tamura et al. 2011). We obtained range maps for all species 

from NatureServe’s InfoNatura repository (http://www.natureserve.org/infonatura/), and 

subsequently partitioned them into subspecies-level range maps based on geographic range 

descriptions included in Johnsgard (2000), Collar (2001), and Forshaw (2009). The proportion of 

overlap between subspecies was calculated using Quantum GIS (Quantum GIS Development 

Team 2014) as a percentage of the smallest distribution (Barraclough and Volger 2000, Martin et 

al. 2010), such that a distribution completely covered by that of another species would yield a 

score of 1 (i.e. 100%). We also used QGIS to determine the latitude and longitude of the 

subspecies polygon centroid, which we used to classify subspecies as being located mostly in 

Central America or South America. 

 

Statistical analyses 

To test the hypothesis that geographic sympatry influences plumage dissimilarity between 

Trogon subspecies (i.e. character displacement), we compared generalized linear mixed models 

(GLMM) fit by restricted maximum likelihood. GLMMs were conducted in SPSS (IBM Corp 2013) 

http://www.natureserve.org/infonatura/
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including only pairwise comparisons of subspecies with some degree of sympatry (sympatry > 0), 

and included subspecies identity as the within-subject random factor. We compared a group of 

a priori candidate models with plumage dissimilarity as the dependent variable and, in various 

ecologically relevant combinations, sympatry, genetic distance, clade (categorical: brown-

back/grey-backed, see DaCosta and Klicka 2008), location (categorical: Central America/South 

America), and latitude and longitude as independent factors (see Table S4.3 for full set of 

candidate models). In some models, we included the first-level interaction between clade and 

sympatry and/or between location and sympatry. The independent factors ‘sympatry’ and 

‘genetic distance’ were kept in all models except for the intercept-only model. A global model 

included all the independent factors and the two first-level interactions. The models that best fit 

the data were selected using Akaike’s information criterion corrected for sample size (AICc; 

Akaike 1973, Hurvich and Tsai 1989, Burnham and Anderson 2002).  We used the sample size 

corrected criterion because the ratio between sample size and number of parameters was 

smaller than 40 in a few models. The best fitting models where considered equally plausible 

when the AICc value differed by no more than 2.00 (ΔAICc < 2.00) compared with the model 

with the lowest value. 

To understand which plumage characteristics contributed the most to the best fitting 

model, we performed post-hoc GLMMs using each of the seven plumage characteristics as the 

dependent variable. We kept the same independent factors as in the best-fit model. For crown 

color, mantle color, rump color, tail color, belly color, and proportion of white in the tail we used 

linear regression mixed models with a normal distribution and an identity link for the dependent 

variable; for the presence or absence of the white breast band we used a binary logistic 

regression model with a binary distribution and a logit link. 
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To further investigate the potential for character displacement in Trogon evolution, we 

identified two areas, one in Central America where five species overlap, and one in South 

America where six species overlap (see Figure 4.1 for provenance of museum specimens 

measured and subspecies assemblages). We evaluated the use of tetrahedral colorspace using 

two functional diversity measures (Mouchet et al. 2010). The first, functional attribute diversity 

(Walker et al. 1999), measures the sum of pairwise distances of all plumage patches between 

species found in a community. For colors, this represents the overall dissimilarity between 

species at the plumage-patch level as measured by the Euclidean distance between the points in 

tetrahedral colorspace. The second measure, sometimes known as functional richness (Cornwell 

et al. 2006), evaluates the overall volume used by the community of species as the smallest 

possible convex hull volume that includes all points in multidimensional morphospace. If 

competition occurs in colorspace, divergence in traits would be expected to lead to greater 

volume use. To determine whether the plumage characteristics of species found in large 

assemblages maximized pairwise distances within patch colors and/or used a larger than 

expected colorspace volume, we calculated the functional diversity measure values of the actual 

assemblages, and compared them to null distributions generated by calculating the diversity 

measure values for all possible assemblages of subspecies, including only species found in the 

specific areas. For example, the functional diversity attribute null distribution for the 

Panamanian lowland test included the 320 unique values generated by calculating the sum of 

pairwise distances of all plumage patches for each possible combination of subspecies of the 

five species that co-occur, without resampling at the species level (i.e. five species with 2, 2, 4, 4, 

and 5 subspecies respectively). We calculated the Euclidean distances and the convex hull 

volumes using the R package pavo (Maia et al. 2013). The values of the diversity measures from 

the actual assemblages were considered statistically different than expected by chance if they 
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were greater or smaller than 97.5% of the null distribution values (two-tailed test with 0.05 

significance level thresholds). 

 

Results 

The diversification of Trogon taxa has occurred much more recently in South America than in 

Central America. This was supported by our ancestral state reconstruction on the maximum 

clade credibility tree which revealed that the average node depth of Central American taxa (4.08 

± 0.77SE Mya) was statistically greater than the South American taxa (1.51 ± 0.23SE Mya; 

independent t-test: t = 2.79, df = 38, P = 0.008; Figure S4.1), indicating that South American 

Trogon species diversified more recently. Furthermore, the BiSSE analysis suggested that South 

American Trogon taxa diversified at faster rate than those of Central America. Although the fully 

constrained BiSSE model was the most likely model in most iterations (Table 4.1), the average 

ΔAIC of the equal speciation rate model was below 2.0 in more than half of the trees, and 

therefore equally plausible. In this model, South American taxa had lower distributions of 

extinction rates (95% value interval: Central America mu0 = 0.320 – 1.499, South America mu1 = 

9.462E-8 – 0.578; Figure 4.2) which led to overall greater diversification rates in South American 

taxa (r1 = 0.583 – 1.58) compared to Central American taxa (r0 = -0.756 – 0.144; Figure 4.2). In 

this model, transitions of character states from Central America to South America (: q01 = 0.002 

– 0.369) were similar to the opposite transition (q10 = 0.159 – 0.461; Figure 4.2). 

 When testing the influence of sympatry, genetic distance, clade, geographic location, 

and latitude/longitude on plumage dissimilarity, three of the candidate generalized linear mixed 

models were considered as equally plausible (ΔAICc ≤ 2.00, Table 4.2). The most parsimonious 

model included sympatry (GLMM, t = 2.02, df = 285.57, P = 0.45) and genetic distance (GLMM, t 

=8.00, df = 274.36, P < 0.001). The second most parsimonious model included sympatry (GLMM, 
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t = 1.90, df = 284.02, P = 0.06), genetic distance (GLMM, t = 6.21, df = 270.05, P < 0.001), clade 

(GLMM, t = 2.16, df = 41.57, P = 0.04), and location (GLMM, t = 0.75, df = 39.65, P = 0.57). The 

more complex model included sympatry (GLMM, t = -1.12, df = 280.90, P = 0.26), genetic 

distance (GLMM, t = 6.37, df = 267.38, P < 0.001), clade (GLMM, t = -2.035, df = 40.14, P = 0.049; 

grey-backs plumage differences: 3.05 ± 0.15 out of a possible 7.00; brown-backs: 2.64 ± 0.14), 

location (GLMM, t = 1.96, df = 83.11, P = 0.05; Central America), and the interaction between 

location and sympatry (GLMM, t = -2.49, df = 281.65, P = 0.013; Central America). To investigate 

the nature of the location by sympatry interaction in this model, we separated the data based 

on whether the subspecies were located in Central America or South America and analysed the 

influence of sympatry, genetic distance, and clade on plumage differences (GLMM with 

subspecies as within species random factor). There was a strong positive relationship between 

sympatry and plumage differences in South American subspecies (GLMM, t = 2.98, df = 176.05, P 

= 0.003; after controlling for genetic distance, GLMM, t = 4.18, df = 174.29, P < 0.001; and clade, 

GLMM, t = -0.63, df = 29.31, P = 0.53; brown clade; Figure 4.3), but no effect of sympatry on 

plumage differences in Central American species (GLMM, t = -0.99, df = 101.03, P = 0.323; after 

controlling for genetic distance, GLMM, t = 4.83, df = 97.73, P < 0.001, and clade, GLMM, t = -

2.41, df = 15.54, P = 0.03; brown clade; Figure 4.3). The post-hoc analyses of the effect of 

sympatry on differences in the seven plumage characteristics (dependent variables), including 

only South American subspecies, suggested that crown color (GLMM, t = 2.34, df = 177.71, P = 

0.02), tail banding pattern (GLMM, t =2.28, df = 175.52, P = 0.02), and the presence or absence 

of the white chest band (logistic regression GLMM, t = 2.07, df = 144, P = 0.04) contributed the 

most to the observed pattern.   

 When investigating the use of colorspace in high diversity assemblages of Trogons, the 

permutation tests suggested that pairwise differences in plumage patch color were not greater 
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than expected by chance in the Central American group (sum of pairwise distances of subspecies 

present in area of overlap: 7.08, possible permutations = 320, p = 0.55; Figure 4.4) or in the 

South American group (sum of pairwise distances of subspecies present in area of overlap: 

11.39, possible permutation = 1920, p = 0.22; Figure 4.4). Furthermore, we found that 

colorspace volume was not greater than expected by chance in neither the Lowlands of Panama  

where five species coexist (actual volume = 0.0133, p = 0.69; Figure 4.5) nor in the Amazonian 

basin of South America  where six species coexist (actual volume = 0.0089, p = 0.41; Figure 4.5).  

 

Discussion 

Within-species diversification of sexually selected phenotypic traits among allopatric 

populations, through selection or drift, is considered one of the first steps in the process of 

speciation (Coyne and Orr 2004). In the event of secondary contact, incipient species and 

differences in characters can collapse though gene flow (Behm et al. 2010), or further diverge 

through reinforcement and form distinct non-interbreeding species (e.g. Vallin et al. 2012). Our 

findings revealed that South American Trogon taxa diversified more recently and more rapidly 

than Central American taxa and that plumage divergence increased with the degree of sympatry 

in South American taxa, but not Central America taxa. These patterns provide evidence for 

greater and more rapid diversification rate of a clade of birds following the Great American 

Interchange, and further supports the influence of distribution range overlap on trait divergence 

and its potential role in rapid speciation.  

The genus Trogon originated in Central America and colonized South America through 

multiple range expansion events (DaCosta and Klicka 2008). Ancestral area reconstruction 

previously presented (DaCosta and Klicka 2008) and our BiSSE models (Figure 4.2) confirm that 

Trogon colonization events from South America to Central America following the Great 
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American Interchange were not very common. Our analysis of ancestral area estimation also 

showed that Central American trogons diversified mainly before the Great American 

Interchange while the South American species diversified significantly more recently (average 

node age: 4.1 and 1.5 Mya, respectively; Figure S4.1 inset). Furthermore, the BiSSE results 

suggest much greater diversification rates in South American taxa; since the speciation rate was 

held equal in our models, this suggests that the greater net diversification rate in South America 

was driven by greater rates of extinction or fusion of lineages in Central American species. This 

could have occurred if the Central American habitat approached ecological niche saturation 

before the Great American Interchange, which would have limited the opportunity for allopatric 

diversification, thus limiting the opportunity for species accumulation (Price et al. 2014). In 

contrast, the novel habitat encountered on the new continent, as well as the rapid colonization 

of the relatively much larger landmass of South America would have allowed for greater 

opportunity for increased trait variability (Meyers and Bull 2002, Milá et al. 2007), either 

through drift or selection, and perhaps relatively longer periods of taxa isolation between 

secondary contacts. Greater phenotypic differences among incipient lineages would then have 

allowed for increased reproductive isolation through reinforcement rather than the fusion of 

undifferentiated lineages. 

Our results suggest that the recent and rapid diversification of Trogon in South America 

was possible though the divergence of secondary sexual characteristics by means of character 

displacement or fusion of lineages. Plumage dissimilarity among subspecies was positively and 

significantly correlated with levels of sympatry across South America, evidence for 

reinforcement following secondary contact of partially differentiated lineages (Pfennig and 

Pfennig 2010, Martin et al. 2010). In contrast, we did not find any relationship between 

sympatry and color divergence in Central American species. In a study of several clades of birds, 
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Martin et al. (2010) showed that rapid sympatry in high latitude birds, but not in the tropics, had 

led to greater color divergence. They argued that the that rapid and frequent secondary 

contacts would have been driven by frequent range changes due to variation in environmental 

conditions driven by the Milankovitch Oscillations, which have greater impact on the variability 

of the climate at higher latitudes (Jansson and Dynesius 2002). Our results suggest a similar 

mechanism (i.e. rapid and frequent secondary contacts), but implicate the Great American 

Interchange as the cause of recent and rapid diversification and resulting divergence in plumage 

characteristics in sympatry trogon taxa. 

Traits that diverged under character displacement would be expected to have greater 

among-species variation than traits that were not under the same evolutionary pressure 

(Marchinko et al. 2004, Kirschel et al. 2009). In contrast, traits with discrete absence/presence 

character states would be expected to contribute relatively little to divergence in overall 

patterns. In South American trogons, differences in head color (continuous), tail banding pattern 

(continuous), and the presence or absence of a white breast band (discrete) exerted the most 

influence on overall plumage divergence of sympatric species. Among the five plumage patches 

that we quantitatively characterized using spectrophotometry, head color varied most 

(unpublished results), as would be predicted. However, the presence or absence of a breast 

band contributed to the overall plumage divergence. These results indicate that greater 

geographic overlap increases the probability that two species display opposite character states 

for this plumage patch; species with a white chest band are more often found with species 

without the white band. This situation is unlikely to result from in situ evolution of a novel 

phenotypic trait in areas of sympatry. Rather, it is more likely to occur through sorting of species 

with pre-existing variation acquired in allopatry, prior to secondary contact (Rice and Pfennig 

2007). One implication of these findings is that a trait does not need to be highly variable to 
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promote rapid diversification as long as it can contribute to reproductive isolation. Traits with 

such low variation may promote speciation in the early phases of reinforcement, but would 

potentially have much less influence on species recognition in areas of high congeneric diversity, 

because more than one species would display the trait. 

While we found evidence for divergence of plumage characteristics across species of 

trogons in South America, we did not find any evidence for an increase in functional attribute 

diversity (sum of pair-wise plumage patch Euclidean distance) or any evidence for an increase in 

the use of colorspace volume in large assemblages of trogons. These findings suggest that trait 

divergence following secondary contact occurred within the existing colorspace occupied by 

trogons. Morphological and physiological constraints in feather color production may offer a 

possible explanation for the lack divergence in colorspace in areas of high trogon diversity. 

Natural and sexual selection can only act on available phenotypic variation (Darwin 1859), which 

may be proximately constrained by the form of the feature under selection (Wainwright 1988). 

The colors of these trogons are possibly under such constraint. In males, the upperparts range in 

color from copper-green to violet (Forshaw 2009), and are produced exclusively by hexagonally-

packed hollow melanosomes found in the barbules of feathers (Durrer and Villiger 1966, Quitero 

and Espinosa de los Monteros 2011). While the theoretical range of colors that can be produced 

by these structures is relatively broad (Eliason et al. 2013), a large range of melanosome size is 

needed to produce a large range of colors.  However, the range of melanosome size in trogons is 

quite limited (Quitero and Espinosa de los Monteros 2011) compared to the range of sizes found 

among other species (Eliason et al. 2013), suggesting a limit on the range of iridescent colors 

that can be produced in this group. Similarly, the breast/belly colors are limited to reds or 

yellows with little variation (Forshaw 2009). This is similar to the caciques (genera Cacicus, 

Clypicterus and Ocyalus; family Icteridae) where the rumps are exclusively colored red or yellow 
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(Kiere et al. 2009). Discrete color changes such as those observed in trogons and caciques are 

possible when one or very few pigment types are responsible for the feather colors, and can 

change from one state to the other with the modification of a single step in the metabolism of 

diet-derived carotenoids (Brush 1990; McGraw 2006). This mechanism of color production 

almost precludes the production of other colors since multiple pigments are needed to produce 

intermediate colors (McGraw 2006; Friedman et al. 2014). Therefore, the color of trogon breasts 

and bellies seem mainly limited to specific discrete character states. Furthermore, unlike many 

taxa in birds, trogons do not display any colors that are produced by combinations of 

mechanisms. Indeed, the gamut of colors possible in birds is greatly increased when 

carotenoids, melanins, and/or structural colors are combined (Stoddard and Prum 2011). Even 

though our results suggest that colorspace in Trogon may be constrained, differences between 

sympatric species found in large assemblages do not need to be maximized as long as species 

recognition is possible.  

In this study, we found support for the role of plumage trait divergence in taxa 

diversification in a large group of closely-related Neotropical species using subspecies-level 

variation. Importantly, increased divergence in secondary sexual ornaments was associated with 

increased sympatry in South American but not Central American trogons. Our results suggested 

that this pattern was driven by faster diversification rates in South America following multiple 

colonisations by Central American taxa. The divergence in plumage traits between sympatric 

species likely occurred through character displacement in areas of secondary contact, and 

through the sorting of pre-existing discrete traits.  These findings add support to the role of 

sexual selection in promoting species recognition through trait diversification, and are unique in 

demonstrating the impact of the Great American Interchange on the evolution of plumage 

characteristics in a broadly distributed group of birds. 
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Table 4. 1 Summary statistics of 1000 binary state speciation and extinction (BiSSE) analyses 

comparing speciation, extinction, diversification, and state transition rates  in South and Central 

American trogon subspecies. Results are for the 1000 posterior distribution trees obtained from 

a BEAST analysis. The ‘Full’ model allows for different rates in all parameters, the ‘Constrained’ 

model has equal rates in all three parameters.  

Model Best 
(out of 1000) 

Worst 
(out of 1000) 

Average 
ΔAIC 

≤ 2 ΔAIC  
(out of 1000) 

     

Full 0 887 3.46 94 
Equal speciation rate 38 1 1.75 541 
Equal mutation rate 2 99 2.34 102 
Equal transition rate 6 12 2.09 348 
Constrained 954 1 0.023 999 
     

ΔAICc = AICi - AICmin 
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Table 4. 2 Summary of the top three best fitting generalized linear mixed models investigating 

the predictors of plumage color divergence among subspecies of the genus Trogon. All other 

candidate models were considered unlikely to be the best fitting (ΔAICc > 2.00). Models are 

presented in order of increasing ΔAICc.  

 

Model AICc ΔAICc Evidence ratio 
    

Sympatry 872.261 min 1.00 
Genetic distance    
Location    
Clade    
    
Sympatry 872.667 0.406 1.22 
Genetic distance    
    
    
Sympatry 873.552 1.291 1.91 
Genetic distance    
Clade    
Location    
Location*Sympatry    
    

ΔAICc = AICci - AICcmin 
Evidence ratio = exp(1/2(Δi)) 
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Figure 4. 1 Areas of high trogon diversity in Central America where five species coexist, and in South America where six species coexist (shaded 

in tan color). Colored circles indicate the approximate locations where the museum skins used for this study were collected, based on locality 

indicated on the specimen collection tag.
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Figure 4. 2 Posterior probability density distributions of speciation (lambda), extinction (mu), 

transition (q) and diversification (r) rates of South (SA) and Central American (CA) trogon 

subspecies using a binary state speciation and extinction (BiSSE) model with constrained 

speciation rates. Results are from independent BiSSE runs on each of the 1000 posterior 

distribution trees obtained from a Bayesian phylogenetic analysis.  
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Figure 4. 3 Plumage characteristic differences among subspecies of Trogon are related to the 

degree of sympatry in South American (solid symbols, solid line) but not in Central America 

(hollow symbols, dashed line). Plumage difference scores (unitless) are predicted values from a 

generalized linear mixed model including uncorrected p-distances as a measure of genetic 

relatedness and phylogenetic clade (categorical: Brown-backed and Grey-backed) as fixed 

factors, and subspecies identity as random within-subject factor. Regression lines generated 

using least square regressions on the plumage difference values predicted from the generalized 

linear mixed model. 
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Figure 4. 4 The functional attribute diversity of colors in Trogon-rich areas (measured as the sum 

of pairwise color distances of all plumage patches between species found in a community) is not 

greater than expected by chance in Central America or South America. Red line highlights actual 

value from the observed subspecies and null distributions were generated using permutations 

(see methods for details). 
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Figure 4. 5 The functional richness of colors in Trogon-rich areas (the smallest possible convex 

hull volume in colorspace used by the community) is not greater than expected by chance in 

Central America or South America. Red line highlights actual value from the observed subspecies 

and null distributions were generated using permutations (see methods for details). 



 

 

 

 

 

 

Chapter 5 

 

The importance of proper parameterization in tetrachromatic visual 

models when assessing sexual dichromatism
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Summary 

Perceptual models of animal vision have greatly contributed to our understanding of animal-

animal and plant-animal communication. The receptor-noise model of color contrasts has been 

central to this research as it quantifies the difference between two colors for any given species 

of interest. However, if the properties of the visual system are unknown, assumptions regarding 

parameter values must be made, generally with unknown consequences. This study models the 

avian visual system to systematically investigate the influence of variation in light environment, 

photoreceptor sensitivities, photoreceptor densities, and light transmission properties of the 

ocular media and the oil droplets.  We calculated the chromatic contrast of 15 plumage patches 

to quantify dichromatism in 70 species of Galliformes, a group of birds that display a wide range 

of sexual dimorphism. We found that the transmission properties of oil droplets, the 

photoreceptor densities, and the wavelength of maximum sensitivity of the SWS1 

photoreceptor can increase dichromatism scores by 50% to 100%. In contrast, the light 

environment, transmission properties of the ocular media, and the peak sensitivities of the 

SWS2, MWS, and LWS cones had a smaller impact on the scores. Our findings demonstrate that 

improper parameterization of tetrachromatic visual models can have large effects on measures 

of dichromatism, potentially leading to erronus inferences. We urge more complete 

characterization of avian retinal properties and recommend that researchers determine through 

opsin sequencing whether their species of interest possess an ultraviolet or near-ultraviolet 

sensitive SWS1 photoreceptor. 
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Introduction 

The study of animal visual systems has greatly enhanced our understanding of visual ecology 

and visual communication. Modeling the sensory experience of various taxa has permitted the 

study of animal-animal interactions such as mate choice among color morphs in butterflies 

(Limeri and Morehouse 2014), the evolutionary trade-off between predator driven crypsis and 

sexually selected conspicuousness in Dendrobates frogs (Willink et al. 2014), the influence of 

insect warning coloration on the predatory behavior of foraging birds (Cibulková et al. 2014), 

and the rejection of brood parasite eggs by host species (Croston and Hauber 2014, 

Spottiswoode and Stevens 2010). Furthermore, visual modeling of sensory experiences has been 

useful in studies of plant-animal interactions. These include, for example, the evolution of flower 

colors driven by pollinator visual systems (Muchhala et al. 2014), the evolution of seed color as a 

form of crypsis against foraging birds (Lev‐Yadun and Ne'eman 2013), crypsis in plants to avoid 

predatory herbivores (Niu et al. 2014), the ability of birds to detect and select high-lipid fruits 

(Schaefer et al. 2014, Cazetta et al. 2009), and the comparative ability of dichromat and 

trichromat primates in discriminating fruit from leaves (Melin et al. 2014). Central to these 

studies is the concept of color discrimination thresholds limited by photoreceptor noise 

(Vorobyev and Osorio 1998, Vorobyev et al. 1998). This psychophysiological model of chromatic 

vision quantifies color perception in animals (Kelber et al. 2003, Osorio and Vorobyev 2005, 

Osorio and Vorobyev 2008), with the caveat that the properties of the visual system, which must 

be included in the model, are well understood.  

Informative visual models must include the correct light environment, photoreceptor 

sensitivities, photoreceptor densities, transmission properties of the ocular media including the 

vitreous and aqueous humors, and for animals such as birds and turtles, the properties of the oil 

droplets which act as filters and micro-lenses (Hart and Vorobyev 2005, Stavenga and Wilts 
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2014). While molecular methods and microspectrophotometry are increasingly used to 

determine the physical properties of visual systems (e.g., Håstad et al. 2009, Lind et al. 2013), 

complete characterizations are available for relatively few species. Furthermore, groups of 

closely related species have rarely been compared (see Coyle et al. 2012 for an exception). To 

circumvent these lack of data, research using birds as models have relied on ‘average’ visual 

system information (calculations and data for ultraviolet sensitive and ultraviolet insensitive eye 

types presented in Endler and Mielke 2005), or used parameters from closely related species. 

Initial comparative analyses assumed a strong association between visual systems and 

phylogeny (Eaton 2005, Bridge et al. 2008, Renoult et al. 2010), but recent studies have shown 

that this is not always the case. Changes between ultraviolet sensitive (UV) and violet sensitive 

(VIS) eye types have occurred several times in some Orders (e.g., Passeriformes and 

Charadriiformes; Ödeen and Håstad 2013), and both UV and VIS eye types can be present within 

the same family (e.g., Maluridae: Ödeen et al. 2012). Furthermore, the very basic organizations 

of visual systems can differ among and within Orders. For example, a large majority of birds 

characterized to date possess four distinctive color-sensitive single cones (Short-wavelength-

sensitive 1 – SWS1, Short-wavelength-sensitive 2 – SWS2, Medium-wavelength-sensitive – 

MWS, and Long-wavelength-sensitive – LWS, e.g., Hart 2001a, 2001b) but exceptions have been 

found. The tawny owl (Strix aluco), and possibly more nocturnal raptors, lacks the UV – VIS 

SWS1 pigment and is therefore trichromatic (Bowmaker and Martin 1978; Ödeen and Håstad 

2003). In contrast, the bobolink (Dolichonyx oryzivorus; Passeriformes) possesses five distinct 

classes of single cones: four narrowly tuned photoreceptors and one broadband photoreceptor 

(Beason and Loew 2008). Clearly, not all birds share the same visual sensory experience. 

The wrongful parameterization of visual models could potentially lead to erroneous 

conclusions for a variety of ecological questions. In a striking demonstration, Renoult et al. 
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(2010) showed that visual system parameter assumptions can sometimes produce questionable 

results. In a preceding paper, Avilés and Soler (2009) found a significant relationship between 

the gape coloration of nestlings and the visual characteristics of parents in altricial birds, and 

suggested that these findings implied adaptive communication between parents and offspring. 

Among other assumptions, Avilés and Soler (2009) assumed phylogenetic inertia of the ability of 

species to perceive UV wavelengths, and treated owls as tetrachromats. Renoult et al. (2010) 

concluded that the significant relationships previously reported by Avilés and Soler (2009) were 

not valid (but see reply: Avilés and Soler 2010), that phylogenetic inertia should not be assumed, 

and that simple assumptions of visual system models can lead to misleading conclusions.  

The possible effects of differential visual model parameterization have been explored in 

diverse taxa. Studies have quantified the discriminability of objects between dicromats and 

trichromats (Perini et al. 2009, Cheney and Marshall 2009) and between trichromats and 

tetrachromats (Siddiqi et al. 2004, Håstad and Ödeen 2008). Others have tested the effect of 

different light environments (Avilés 2008, Holveck et al. 2010, Lind et al. 2013, Rick et al. 2012), 

photoreceptors sensitivities (Lind and Kelber 2009, Lind et al. 2013), photoreceptor densities 

(Ensminger and Fernández-Juricic 2014, Lind and Kelber 2009), oil droplet characteristics 

(Goldsmith and Butler 2003, Vorobyev 2003, Lind and Kelber 2009, Ronald et al. 2012), ocular 

media (Lind et al. 2013), and receptor signal-to-noise ratio (Lind and Kelber 2009). While these 

studies have been very informative when considered together, the use of different visual system 

starting points and non-standardized methods of presenting results have made it difficult to 

compare the relative effect of each parameter within a single context. In this study, we 

systematically test the effect of varying parameters on measures of sexual dichromatism among 

70 species of Galliformes, a group characterized by extreme variation in sexual dimorphism.  
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The receptor-noise model for color discrimination is commonly used to evaluate sexual 

dichromatism within species, and to characterize color divergence among closely related or 

incipient species (e.g., Burns and Schultz 2012, Macías‐Sánchez et al. 2013, Delhey and Peters 

2008). These values of sexual dichromatism have been used to study the evolution of 

dichromatism (Price and Eaton 2014), the influence of sexual selection on dichromatism (Pérez i 

de Lanuza et al. 2013, Huang and Rabosky 2014), the relationship between dichromatism and 

conspicuousness (Doucet et al. 2007), and factors that may account for congeneric color 

diversity (Ödeen et al. 2012). In addition, sexual dichromatism has been used as a proxy for the 

intensity of sexual selection in comparative studies (Seddon et al. 2013, Huang and Rabovsky 

2014). Although it has been demonstrated that human visual assessments produce different but 

similar approximations of dichromatism compared to tetrachromatic birds (Armenta et al. 2008, 

Håstad and Ödeen 2008, Seddon et al. 2010; Vorobyev et al. 1998), the effects of 

parameterization of bird visual models in assessments of dichromatism has never been 

systematically determined. In this study, we calculated the chromatic sexual dichromatism of 15 

color patches for each of 70 species of Galliformes using the receptor-noise model developed by 

Vorobyev and Osorio (1998). For each patch, sexual dichromatism is calculated as the just-

noticeable-difference (JND) in color between males and females. We evaluated the influence of 

light environments, photoreceptor sensitivities, oil droplet characteristics, ocular transmission, 

and photoreceptor densities on chromatic contrast values. The purpose of our study was to 

understand the relative effect of each model parameter on overall dichromatism values, and to 

guide researchers when making assumptions about visual systems in studies using visual 

models. 
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Materials and Methods 

Spectral measurements 

Species in the Order Galliformes exhibit a tremendous diversity in sexual dichromatism, ranging 

from completely monomorphic to highly dichromatic. Across the various species in this group, 

feather coloration is predominantly produced by melanin pigmentation or structural colors 

(Durrer 1977, Durrer and Villiger 1975), with some plumage patches colored by carotenoid 

pigments (Thomas et al. 2014). We selected 70 species, most of them broadly distributed across 

the Phasianidae (65 of 70 species), and measured 15 plumage patches on three males and three 

females of each species when available (list of species and specimen museum catalogue number 

in Table S5.1). We obtained spectral reflectance measurements using a USB 4000 

spectrophotometer combined with a PX-2 Xenon light source (Ocean Optics, Dunedin, FL). We 

collected measurements using a bifurcated probe with a rubber stopper tip, which blocked out 

ambient light and maintained the probe at normal incidence and 3 mm above the feather 

surface. We measured each region five times, haphazardly relocating the probe each time, and 

used the average of the five measurements and three individuals in subsequent analyses 

(Dalrymple et al. 2015). The range of colors across the species measured covered ~40% of the 

gamut of bird colors obtained by Stoddard and Prum in a comprehensive survey of plumage 

coloration (Figure 5.1; Stoddard and Prum 2011). 

 

General procedures 

We tested the general influence of visual model parameterization on the total dichromatism 

score of each of the 70 species, and further examined the dichromatism scores most affected by 

the different parameters. For each plumage patch, we compared the spectral reflectance of the 
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male color to that of the female color by calculating the chromatic contrast (the difference 

between the colors in JNDs). We calculated the total dichromatism score for each species as the 

sum of dichromatism scores across all patches. JND values smaller than 1 (i.e., non-

discriminable) were given values of ‘0’ to avoid inflating the dichromatism scores based on non-

detectable differences. Non-feathered facial patches were automatically scored as ‘0’ because 

skin colors quickly fade in museum specimens. This approach results in some scores being lower 

than if measurements had been taken from live birds, but these scores were not influenced by 

parameterization modeling.  

We thoroughly surveyed the literature with ISI Web of Science (accessed Dec 1st 2014) 

for all bird studies reporting quantitatively assessed visual system parameters (e.g., using 

microspectrophotometry), but did not use predicted values based on gene expression (e.g., 

SWS1 peak sensitivity based on opsin amino acid substitution, Ödeen et al. 2009). We compiled 

the information available on avian photoreceptor sensitivities (Table S5.2), oil droplet 

characteristics (Table S5.3), transmission properties of ocular media (Table S5.3), and 

photoreceptor retinal densities (Table S5.4). We summarized these data separating UV from VIS 

eye type. We also extracted from the literature the most commonly used light environments 

(see below for more details). 

We tested the influence of each visual model parameter by comparing dichromatism 

scores obtained from systematically changing the value of a single parameter. This was 

accomplished using the R package pavo functions (sensmodel, vismodel, and coldist; Maia et 

al. 2013, R Development Core Team 2014) modified to include the eye aperture used in Endler 

and Mielke (2005). Within-parameter effects were evaluated first by comparing each set of 

dichromatism scores against those obtained using the most commonly implemented visual 

models, the average VIS or UV eye type (Endler and Mielke 2005), followed by pairwise 
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comparisons to find the parameter values that produced the most divergent scores. The effects 

of parameterization were assessed in two ways: 1) by calculating the Pearson’s correlation 

coefficient between the total dichromatism scores, and 2) by comparing the ranks of the total 

dichromatism scores (as per Håstad and Ödeen 2008). We determined how many species 

maintained the same rank, the mean and standard deviation change in rank, and the maximum 

change in rank. The species most affected by the changes in parameterization, based on the 

absolute largest difference in total dichromatism score, and the species most affected based on 

change in rank, were selected for further analysis. For these species, we determined the number 

of patches (out of 15) considered non-distinguishable under each of the two visual models, the 

number of patches that changed by more than 1 JND, and the maximum dichromatism score 

change in a single patch  (in JNDs and percentage). 

   

Model parameterization 

Average visual model – Our basis for comparisons were the two average visual models (UV and 

VIS eye type) presented by Endler and Mielke (2005). In addition to the parameter values 

detailed in Table S5, we used the relative photoreceptor densities of the Pekin Robin (Leiothrix 

lutea; SWS1:SWS2:MWS:LWS = 1:2:2:4) as used originally by Vorobyev and Osorio (1998) and 

Vorobyev et al. (1998), and set the signal-to-noise ratio at 0.10, generating a Weber fraction of 

0.05 for the LWS photoreceptor (Maier 1992, Vorobyev et al. 1998, Olsson et al. 2015). 

 

Light environment – We compared the influence of the six most commonly used environmental 

illuminants (Endler 1993, Cronin et al. 2014): 1) forest shade, 2) woodland shade, 3) blue sky, 4) 

daylight D65 standard (Schanda 2007), 5) woodland gaps, and 6) cloudy sky. 
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Photoreceptor sensitivities – The large majority of avian species possess four color-

discriminating retinal visual pigments: two short-wavelength sensitive pigments SWS1 and 

SWS2, one medium-wavelength sensitive pigment MWS, and one long-wavelength sensitive 

pigment LWS. The spectral sensitivities of these pigments can be accurately estimated using a 

near-universal template (Govardovskii et al. 2000). The peak wavelength sensitivities of the four 

avian photoreceptors within species are not highly correlated (Hart and Vorobyev 2005), 

allowing for considerable variation in the individual sensitivity values within any given visual 

system. Therefore, we evaluated the influence of changes in single photoreceptor peak 

sensitivities, using the minimum and maximum reported for each photoreceptor type for each 

eye type (Table S5.6), and then compared visual models that expressed either all minimum or all 

maximum peak sensitivity values.  

 

Oil droplets – Each photoreceptor type is paired with a specific oil droplet type which acts as a 

cut-off filter and microlens (Vorobyev et al. 1998, Hart and Vorobyev 2005, Stavenga and Wilts 

2014). SWS1 photopigments are associated with non-filtering droplets (transparent – T type), 

SWS2 pigments with droplets clear in appearance (C type), MWS pigments with yellow droplets 

(Y type), and LWS pigments with red droplets (R types). The absorption profile of the oil droplets 

can be extrapolated if the wavelength at which the oil droplet transmittance equals 1/e (λo) and 

the absorptivity rate of decay (b) are known. In turn, these properties can be estimated from the 

cut-off wavelength (λ cut) and the gradient of line tangent to the absorbance spectrum (Bmid) at 

the wavelength at half-maximum absorbance (λ mid), the only values that are reported in some 

studies of oil droplet characteristics (formulae presented in Hart and Vorobyev 2005). Because 

there is no strong relationship between a visual pigment’s peak sensitivity and the absorbance 
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characteristics of its associated oil droplet type (Hart and Vorobyev 2005), we evaluated the 

influence of differences in extreme cut-off values within photopigment type first by changing 

single oil droplet parameters, and then by comparing visual systems with oil droplet values set 

with all maximums and all minimums, by eye type (Table S5.7). Extremes were selected based 

on λ cut, and actual values of either Bmid (if available from the literature) or Bmid calculated 

from λ mid (Table S5.3). 

 

Ocular media – Similar to oil droplets, the ocular media of the vitreous and aqueous humors acts 

as a cut-off filter. Recent work has demonstrated that phylogeny and eye type can be used to 

estimate the approximate high-pass cut-off values of the ocular media in birds (Lind et al. 2013), 

but that variability within UV and VIS eye types, and in certain groups, is very high (e.g., 

waterbirds). The absorption curves of ocular media in birds are all very similar and can be well 

approximated (function in Endler and Mielke 2005) when the wavelength at 50% transmission 

(T50) is known. We evaluated the influence of varying the T50 value between 314nm and 344nm 

for UV type eyes (the range of values known to exist for this eye type, Table S5.3), and between 

335nm and 395nm in VIS eye type (Table S5.3), using 10nm increments among models (Table 

S5.7).  

 

Photoreceptor densities – The relative densities of photoreceptors vary within and among 

species, and even within individuals with some evidence for bilateral asymmetry in at least two 

species (European starling Sturnus vulgaris and Blue tit Cyaniste caeruleus, Hart et al. 1998, Hart 

2001a). Furthermore, photoreceptor densities are more heavily influenced by the ecology of the 

species (diet, feeding behavior, habitat) rather than phylogeny (Hart 2001a). Therefore, patterns 

of receptor densities are difficult to predict. We tested the influence of this parameter by 
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selecting nine different photoreceptor densities (not including the original 1:2:2:4; see table S5.8 

for species and reasoning behind inclusion). So that the models would be comparable, we 

maintained the Weber fraction of the LWS photoreceptor at 0.05 in all cases by using a different 

signal-to-noise ratio for each model (Vorobyev and Osorio 1998). 

 

Model visual systems – The physical properties of visual systems have been completely 

characterized in only eight species (see Results). These systems were compared to each other 

and to either the average UV or VIS system based on the peak wavelength sensitivity of their 

SWS1 photoreceptor. Because they are the most commonly used sets of parameter values, we 

also compared the dichromatism scores generated using the average UV and VIS eye type visual 

models. For all models we used a Weber fraction of 0.05 (the most commonly used) which was 

empirically determined for the LWS photoreceptor of Leiothrix lutea (Maier 1992), and 

confirmed through behavioral tests in domesticated chicken (Gallus gallus, Olssen et al. 2015).  

 

Results 

The total dichromatism scores across the 70 species were always highly correlated regardless of 

which visual system parameter was altered (summary in Table 5.1; details in Table S5.9 – S5.14). 

Pearson’s coefficient (r) of the largest differences, within parameter, ranged from 0.9998 when 

contrasting the extreme T50 ocular media values for the UV eye type, to 0.9660 when 

contrasting the photoreceptor densities of the Black noddy (Anous minutus) to those of the 

Wedged-tailed shearwater (Puffinus pacificus) in a UV eye type (Table 5.1, Figure 5.2A). 

However, there was considerable variation in the number of species that maintained the same 

total dichromatism rank, the mean rank change, and the maximum rank change. For example, 

the extreme T50 ocular media values for the UV eye type had a relatively small effect on the 
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overall ranks and rank changes (42 out of 70 with equal rank, an average rank change of 0.60, 

and maximum rank change of 4), but the differences in photoreceptor densities in the UV eye 

type had a large impact on the total dichromatism ranks (only 11 out of 70 with equal rank, an 

average rank change of 3.40, and maximum rank change of 13; Figure 5.2B). Comparisons of the 

dichromatism scores calculated with the commonly used average UV and average VIS eye sets of 

conditions displayed one of the largest difference in rank scores (Table 5.1, Figure 5.3). Overall, 

photoreceptor densities, oil droplet cut-off value for the VIS eye type (Figure 5.4), and the 

variation among model systems had the largest influence on the total dichromatism scores and 

rank differences. Variation in the transmission properties of the ocular media (within eye-type) 

and the photoreceptor sensitivities (within eye type) had less influence on the total 

dichromatism scores and on the ranks of species (Table 5.1). 

Analyzing the scores of individual species most affected by changes in condition values, 

based on the largest differences in total dichromatism scores, we found that large changes in 

plumage patch chromatic contrast (in JND) can occur when manipulating single parameters 

(Table 5.2). The maximum changes in percentage JNDs ranged from 12.48% (0.71 JNDs) when 

comparing the extreme T50 ocular media values for the UV eye type, to ~98% (21.16 JNDs) 

when comparing photoreceptor densities in a UV eye type (Figure 5.2C). Values of oil droplet 

transmission properties (Figure 5.4C) and different model systems also had large effects on the 

chromatic contrast of some patches (Table 5. 2). The species most affected in their total 

dichromatism scores almost always had the same number of non-dichromatic patches under the 

two sets of conditions (Table 5.2), but the number of patches that changed by more than 1 JND 

varied much across parameters. For the T50 ocular media value in a UV eye, none of the patches 

changed by at least 1 JND. In contrast, 12 patches changed by more than 1 JND when comparing 

the photoreceptor densities of A. minutus and P. pacificus using the VIS eye type. Overall, 
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individual patches were mostly influenced by condition changes in the photoreceptor densities 

and the variation among model systems. We also found large differences in patch dichromatism 

scores when comparing the average UV and average VIS eye type (Figure 5.3C). Variation in light 

environments, photoreceptor sensitivities, and ocular media values had relatively small but non-

negligible effects on the dichromatism scores of some patches (Table 5.2).  

When analyzing the scores of individual species most affected by changes in parameter 

values, based on the largest differences in total dichromatism ranks, we found that large 

differences in ranks were associated with changes in the number of distinguishable patches 

(number of patches with 0 JNDs) under the two conditions (Table 5.3). The parameter conditions 

that generated the largest changes in ranks also had large differences in the number of 

distinguishable patches under the different sets of parameters. For example, the extreme T50 

ocular media values for the UV eye type differed by only a single patch that changed by more 

than 1 JND (4 patches with JND < 1 for T50 of 314 compared to 5 for T50 of 344). In contrast, 

comparison of the A. minutus (8 patches with JND < 1) and P. pacificus (1 patch with JND < 1) 

photoreceptor densities in a UV eye type generated 12 patches with changes in JND > 1 (Table 

5.3).  In contrast to species most affected when comparing total dichromatism scores, we did 

not find large changes in plumage patch chromatic contrast (in JND) when manipulating single 

parameters. Indeed, none of the patches differed by more than 4.5 JNDs across all parameter 

values. Differences in light environment, photoreceptor sensitivities, and ocular media values 

generally had the least consequential effects on dichromatism scores of individual patches in 

species with the greatest change in dichromatism ranks; changes in photoreceptor densities, 

and comparisons of model systems generated the largest effects (Table 5.3). 
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Discussion 

Compared to fish and invertebrates, avian visual systems exhibit considerably less variation in 

physical and physiological properties (Cronin et al. 2014). Nevertheless, a number of studies 

suggest that variation in avian visual systems appears to be adaptive. Carotenoid-based signals 

are aligned with cone sensitivities across species of the Passerida clade of passerine birds 

(Bleiweiss 2014); the expression of opsin genes are associated with plumage dichromatism in 

New World warblers (Bloch 2015); the ocular media of UV eye types allow more UV light to 

reach the retina than the ocular media of VIS eye types (Lind et al. 2014); and the photoreceptor 

densities among species seem to be ecologically relevant (Hart 2001b). Other studies have failed 

to find alignment between the visual system and the behavior or ecology of species. Ultraviolet 

vision, for example, does not seem to have co-evolved with plumage coloration across most bird 

families (Lind and Kelber 2015, Coyle et al. 2012, but see Ödeen et al. 2012). Because there is 

relatively little variation in the properties of the visual system of birds, proper parameterization 

of visual models could be of paramount importance when investigating spectral tuning and the 

evolution of visual systems in birds. This also applies to studies of plumage dichomatism which 

have been used to investigate, among other topics, the influence of sexual selection on 

speciation (Seddon et al. 2013, Huang and Rabovsky 2014). 

In this study we systematically compared the effects of changing single parameters in 

visual models on total dichromatism scores, and ranks of dichromatism scores, in 70 species of 

Galliformes. We found very high correlations between the total dichromatism scores regardless 

of the differences among the models, but found that the rank of species could be greatly 

affected. These results imply that even though parameterization has little effect on the general 

distribution of the total dichromatism scores, changes in visual system assumptions can have 

large effects on the relative position of the total dichromatism score of species in relation to one 
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another. Furthermore, certain parameters had a large influence on the number of patches 

considered dichromatic (JND > 1), and the dichromatism scores of individual patches. Our 

findings suggest that the parameterization of avian visual systems should not be trivialized. 

 

Light environment – Some of the earliest research aimed at assessing the importance of visual 

model parameters demonstrated that differences in light environments made Trinidadian 

guppies (Poecilia reticulata) more conspicuous in the presence of conspecifics than in the 

presence of heterospecific predators (Endler 1991). The importance of this parameter was 

further demonstrated in behavioral trials which showed that the absence of UV wavelengths 

reduced the foraging efficiency of three-spined sticklebacks (Gasterosteus aculeatus; Rick et al. 

2012). In contrast, the light environment has almost no effect on the discriminability of vole 

urine against the vegetation background (~4% JNDs) suggesting little influence on the behavior 

of foraging raptors (Lind et al. 2013).  The results from these studies, and others (e.g., Avilés 

2008, Avilés et al. 2011, Holveck et al. 2010), indicate that the importance of the light 

environment in visual models is context dependent. In our study, differences in light 

environment had relatively small, but non-negligible, effects on the scores and ranks of total 

dichromatism in Galliformes. Some of the patches changed by more than 21% JNDs (> 3 JNDs), 

differences considerably larger than those modelled by Lind et al. (2013). Our largest observed 

differences included the D65 illuminant for both UV and VIS eye types (Table 5.3). This light 

environment is rich in blue (but not UV) wavelength and is likely to influence colors rich in red 

and UV wavelength such as those produced by some carotenoids (Goodwin 1980). Our light 

environment results should only be interpreted in the context of bright illumination since the 

receptor-noise model does not perform particularly well in dim light situation (Vorobyev and 

Osorio 1998). 
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Photoreceptor sensitivities – In a test of parameterization effects on models in foraging raptors, 

Lind et al. (2013) reported chromatic differences of ~16% ± 12% JNDs. These results were 

obtained by changing the SWS1 and SWS2 photoreceptor by 10nm towards short-wavelength 

sensitivity and the LWS by 10nm towards long-wavelength sensitivity. Our general results 

support these findings and demonstrate that differences greater than~40% JNDs are possible. 

These values were obtained by comparing all minimum-shifted and all maximum-shifted 

photoreceptor sensitivities (Table S5.3). However, changes in the sensitivity of single 

photoreceptors within eye type, even to the extreme known values across birds, had very little 

influence on dichromatism scores (Table S5.10). These results also support work presented by 

Lind and Kelber (2009), which found little influence of photoreceptor sensitivity in modelling 

chromatic differences between four colors (peak wavelength at 350, 450, 500, and 650 nm) 

against a green background. Overall, the parameterization of photoreceptor sensitivities should 

only have consequential influences on chromatic contrast calculations when all sensitivities are 

wrongfully shifted in the same direction (all towards short- or long-wavelengths) or when SWS 

and LWS photoreceptors are shifted in opposite directions. In contrast, changes in single 

photoreceptor sensitivities generally had limited effects on calculated JND scores. 

 

Oil droplet cut-off value – Variation in the transmission cut-off values of oil droplets had similar 

but potentially slightly larger influence on dichromatism scores than variation in photoreceptor 

sensitivities. Our results demonstrate that differences greater than 75% (> 8 JNDs in this case) in 

single patch chromatic contrasts are possible. Lind and Kelber (2009) also demonstrated the 

importance of this parameter. In a behavioral experiment comparing the measured and 

predicted visual sensitivities in two species of galliformes, the match between visual models and 
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behavioral results in tests of color discriminability improved tremendously by shifting the 

absorbance curves of oil droplets by 10nm in their models. Oil droplet properties of the avian 

eye should perhaps be given greater attention. Indeed, much variation has been found within 

species, both among individuals and between the sexes (Knott et al. 2012). Modelling of within-

species differences suggest chromatic contrast differences as large as ~30% JNDs in some parts 

of the visual spectrum (Ronald et al. 2012), sufficient to influence the perspective of the 

receivers, and potentially affecting foraging and mate choice behaviors. Furthermore, recent 

experiments have revealed that dietary carotenoid content can influence the transmission 

properties of oil droplets in double cones, indicating condition-based within-species variation in 

visual properties and the potential of diet to influence color vision (Knott et al. 2010). To date, 

the influence of variation in oil droplet characteristics on color discrimination have only been 

modeled, never behaviorally tested.  

 

Ocular media – The only other study to have explicitly modeled the influence of ocular media on 

chromatic contrasts found this parameter rather inconsequential (Lind and Kelber 2009). Our 

overall results (Table 5.1) agree with these findings but highlighted that this parameter is 

perhaps most important when modelling VIS eye types, not UV eye types (Table 5.3). 

Differences in this parameter will only influence the perception of UV-rich colors which are 

common in fruits and feathers that contain carotenoids (Goodwin 1980, McGraw 2006), vole-

urine used by foraging raptors to assess prey density (Viitala et al. 1995, Lind et al. 2013), and 

some structural colors assessed during mate choice (e.g., Hunt et al. 1998, Andersson and 

Andersson 1998). Particular consideration to this parameter should be made when modeling 

color discrimination of these UV rich colors. 
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Photoreceptor densities – The photoreceptor density was the single most important parameter 

in our models both in terms of changes in total dichromatism ranks and chromatic contrast of 

individual patches (Table 5.1 and 5.3). Individual patches changed by as much as 20 JNDs 

(~95%), values almost identical to those presented by Lind and Kelber (2009), which 

demonstrates the importance of this visual system trait. Differences in photoreceptor densities 

are likely to have large consequences on among-species ability to discriminate between similar 

colors and, as for variation in oil droplets absorbance curves, within-species variation may be of 

consequence as well. For example, differences in densities among house sparrows (Passer 

domesticus) generated chromatic contrast differences of ~16% (>3 JNDs) when evaluating the 

perception of the white wing bars against the brown wing background coloration (Ensminger 

and Fernández-Juricic 2014). Even if these plumage patches likely differ more in the achromatic 

component of the signal, these chromatic differences may still have implications for mate choice 

and agonistic interactions. Because the characterization of complete visual systems requires 

specialized equipment and skills, and the sacrifice of animals, our knowledge of photoreceptor 

densities come from relatively few studies (see Hart 2001b for an exception a majority of species 

characterized to date). Future research on the physical properties of avian retinas should obtain 

as much information as possible, including counts of different photoreceptor types. These data 

have the potential to make large contributions to our understanding of the visual ecology of 

birds. 

 

Model systems – Within eye types, there were relatively small differenced in total dichromatism 

scores among the model visual systems. However, our results suggest that one of the most 

influential parameters of visual models is whether a species possesses a UV or VIS eye type 

(Tables 5.1-5.3, Table S5.14). This is of particular importance since these are the two most 
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commonly used sets of parameters in avian visual modelling. Because there was a strong belief 

in phylogenetic inertia in eye type (e.g., Eaton 2005, Bridge et al. 2008), studies have usually 

modeled a single eye type (exceptions include: Uy and Endler 2004, Gomez and Théry 2007, 

Langmore et al. 2009). However, as demonstrated by Renoult et al. (2010), using the wrong eye 

type can entirely alter the conclusions of a study. Fortunately, determination of a species’ eye 

type does not require microspectrophotometry like many other physical characteristics of the 

retina. Even though not all SWS1opsin gene sequence variations have been compared to 

measured photopigment sensitivities, the peak absorbance of short-wavelength photoreceptor 

can usually be estimated (Ödeen and Håstad 2003, 2013). This method is relatively rapid, 

inexpensive, and could easily be implemented in any molecular laboratory (Ödeen and Håstad 

2003).  

Without doubt, sensory experiences are produced by the combined physical properties 

of sensory systems. However, our analyses only considered the effects of individual parameters, 

without comparing the potential compounding influence of variation in more than one visual 

model assumption. In certain instances, two or more parameters may cancel each other out 

(e.g., a short-wavelength shifted SWS1 value matched with a long-wavelength shifted ocular 

media value), but other combinations of wrongful parameters could dramatically alter 

calculated values. For example, a short-wavelength-shifted SWS1 photoreceptor sensitivity 

value matched with a photoreceptor density ratio that favours discriminability in the short 

wavelengths could mistakenly modify a UV-insensitive visual system to one that can detect small 

color differences in the UV range. It is also important to consider that animals do not perceive 

individual patches in isolation (Endler and Mielke 2005) and that the contrasts among several 

color patches may be evaluated differently than the sum of its parts, concepts that are currently 

being investigated (Cole and Endler 2015). In both of these scenarios, our results would provide 
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a low-end estimate of the potential difference between the perceived and calculated chromatic 

difference.  

Overall, our results suggest that if avian dichromatism scores are calculated by 

combining the chromatic contrast of several plumage patches and used in parametric analyses, 

individual parameters may have limited impact on subsequent analyses. However, if 

dichromatism scores are ranked (since they are often not normally distributed), or if individual 

patches are compared, a single parameter can have large influences on the position of a species 

in relation to another. To improve the reliability of avian visual models, information about 

photoreceptor densities and the sensitivity of the SWS1 photoreceptor should be investigated 

when possible. Because sequencing the SWS1 gene is cost effective, we recommend that 

researchers modeling avian visual systems determine, at least, whether their species of interest 

possess a UV or VIS eye type. 
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Table 5. 1 Summary of the visual system comparisons that generated the largest differences, 

based on the lowest Pearson’s r value, in the total dichromatism scores of 70 species of the 

Order Galliformes. Values reported describe how many species (out of 70) were assigned the 

same rank in the comparison (Equal rank), the average rank change (Rank change), the standard 

deviation of rank change (Rank SD), and the maximum rank change (Max change). See Methods 

and Results and Supplemental sections for more details. 

Parameter Eye 
type 

Conditions Pearson’s 
r 

Equal 
rank 

Rank 
change 

Rank  
SD 

Max 
change 

        

Light 
environment 

UV Sky vs D65 0.9986 28 1.17 1.56 10 

 VIS Ideal vs D65 0.9986 23 1.06 1.11 5 
        

Photoreceptor  
λmax 

UV All Max vs All Min 0.9986 26 1.00 1.19 6 

 VIS All Max vs All Min 0.9966 25 1.17 1.45 8 
        

Oil droplet cut-
off value 

UV R Min vs All Max 0.9983 35 0.83 1.17 7 

 VIS R Max vs All Max 0.9880 10 2.69 2.39 12 
        

Ocular media 
T50 values 

UV T314 vs T344 0.9998 42 0.60 0.92 4 

 VIS T335 vs T395 0.9976 20 1.20 1.15 5 
        

Photoreceptor 
Densities 

UV A. minutus vs  
P. pacificus 

0.9660 11 3.40 3.12 13 

 VIS A. minutus vs  
P. pacificus 

0.9760 9 3.00 2.91 12 

        

Model systems - Average UV vs 
Average VIS 

0.9903 15 2.37 2.40 13 

 - P. cristatus vs 
T. merula 

0.9847 12 3.17 2.85 14 
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Table 5. 2  Summary of the changes in dichromatism score of the species most affected by 

changes in the sensory exprience, based on the absolute largest difference in total dichromatism 

score among 70 species of Galliformes. Values reported describe the number of patches (out of 

15) without any discernable dichromatism (just-noticeable-differences < 1) under the first set of 

conditions (Condition 1 – 0 JND) and under the second set of conditions (Condition 2 – 0 JND), 

the number of patches that changed by more than 1 JND when comparing the first and second 

set of conditions (>1 JND change), the maximum dichromatism value change for a single patch 

(Maximum change in JND) and its percentage change (Maximum change in percentage). See 

Methods and Results for more details. 

Parameter Eye  
type 

Conditions Condition 1 
(0 JND) 

Condition 2 
(0 JND) 

>1 JND 
change 

Max 
change 
(JNDs) 

Max 
change  
(%)  

        

Light 
environment 

UV Sky vs D65 5 5 4 4.19 17.10 

 VIS Ideal vs D65 7 7 4 3.36 21.71 
        

Photoreceptor  
λmax 

UV All Max vs  
All Min 

0 0 4 3.28 17.98 

 VIS All Max vs  
All Min 

0 0 6 4.40 44.38 

        

Oil droplet cut-
off value 

UV R Min vs  
All Max 

0 0 9 4.73 28.53 

 VIS R Max vs  
All Max 

0 0 8 8.40 76.45 

        

Ocular media 
T50 values 

UV T314 vs T344 1 1 0 0.71 12.48 

 VIS T335 vs T395 7 7 4 4.82 31.60 
        

Photoreceptor 
densities 

UV A. minutus vs  
P. pacificus 

7 5 7 21.16 98.64 

 VIS A. minutus vs  
P. pacificus 

0 0 12 9.68 45.71 

        

Model systems - Average UV vs 
Average VIS 

1 1 7 7.71 45.01 

 - P. cristatus vs 
T. merula 

5 5 7 11.60 43.10 
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Table 5. 3 Summary of the changes in dichromatism score of the species most affected by 

changes in the sensory exprience, based on the largest difference in rank among 70 species of 

Galliformes. Values reported describe the number of patches (out of 15) without any 

discernable dichromatism (just-noticeable-differences < 1) under the first set of conditions 

(Condition 1 – 0 JND) and under the second set of conditions (Condition 2 – 0 JND), the number 

of patches that changed by more than 1 JND when comparing the first and second set of 

conditions (>1 JND change), the maximum dichromatism value change for a single patch 

(Maximum change in JND) and its percentage change (Maximum change in percentage). See 

Methods and Results for more details. NA values indicate that the score under one of the 

conditions is 0 JNDs. 

Parameter Eye  
type 

Conditions Condition 1 
(0 JND) 

Condition 2 
(0 JND) 

>1 JND 
change 

Max 
change 
(JNDs) 

Max 
change  
(%)  

        

Light 
environment 

UV Sky vs D65 2 4 2 1.26 NA 

 VIS Ideal vs D65 10 10 2 1.37 NA 
        

Photoreceptor  
λmax 

UV All Max vs  
All Min 

7 8 2 1.30 35.66 

 VIS All Max vs  
All Min 

7 3 4 1.32 NA 

        

Oil droplet cut-
off value 

UV R Min vs  
All Max 

9 7 2 1.04 NA 

 VIS R Max vs  
All Max 

9 2 13 2.18 127.45 

        

Ocular media 
T50 values 

UV T314 vs T344 4 5 1 1.08 NA 

 VIS T335 vs T395 4 4 4 4.21 30.57 
        

Photoreceptor 
densities 

UV A. minutus vs  
P. pacificus 

8 1 12 3.88 77.66 

 VIS A. minutus vs  
P. pacificus 

1 1 3 1.60 30.67 

        

Model systems - Average UV vs 
Average VIS 

2 10 12 2.20 128.04 

 - P. cristatus vs 
T. merula 

8 0 12 3.02 171.3 
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Figure 5. 1 A) Molleweide projection of the 2100 color patches used in this study when 

perceived by an average UV visual system under ideal illumination. The colors of the symbols are 

approximations of the colors of the patches based on a human visual system.  B) Total volume, 

defined by the smallest convex polygon that contains all colors (shaded area),  of tetrahedral 

colorspace occupied by the plumage patches compared in this study. SWS1, SWS2, MWS, and 

LWS refer to the ultraviolet-, short-, medium-, and long-wavelength photoreceptor, respectively. 

SWS1 

A) 

B) 

SWS2 

MWS 
LWS 
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Figure 5. 2 Comparison of the A) total sexual dichromatism scores (in just-noticeable 

differences), and B) total dichromatism ranks of 70 species in the Order Galliformes contrasting 

two visual systems differing only in their oil droplet cut-off values. Scores were obtained by 

modifying the average visual system parameters (see Methods).  Values on the x-axis were 

generated by modifying only the R-type oil droplet cut-off value (associated with the LWS 

photoreceptor) to the maximum value currently known to occur; values on the y-axis were 

generated by modifying the C-, Y-, and R-type oil dropet cut-off values (associated with the 

SWS2, MWS, and LWS photoreceptors, respectively) to the maximum values currently known to 

occur in birds. The dashed line represents the 1:1 reference line. The solid triangle symbol in A) 

identifies the species that experienced the greatest change in total dichromatism score, and the 

greatest change in rank in B). The sexual dichromatism score of each patch of the species 

highlighted in A), under the two sets of parameters, are presented in C). The sexual 

dichromatism score of each patch of the species highlighted in B), under the two sets of 

parameters,  are presented in D).  In C) and D), the solid triangle symbol identifies the patch that 

experienced the greatest change in dichromatism score. 
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Figure 5. 3 Comparison of A) the total sexual dichromatism scores (in just-noticeable 

differences),  and B) total dichromatism ranks of 70 species in the Order Galliformes contrasting 

UV eye type visual systems differing only in their photoreceptor densities.  Values on the x-axis 

were generated using the parameters associated with the ‘average UV eye-type’ visual system 

but with the photoreceptor densities found in Anous minutus; values on the y-axis were 

generated with the ‘average UV eye-type’ visual system but with the photoreceptor densities 

found in Puffinus pacificus (see Methods). The dashed line represents the 1:1 reference line. The 

solid triangle symbol in A) identifies the species that experienced the greatest change in total 

dichromatism score, and the greatest change in rank in B). The sexual dichromatism score of 

each patch of the species highlighted in A), under the two sets of parameters,  are presented in 

C). The sexual dichromatism score of each patch of the species highlighted in B), under the two 

sets of parameters, are presented in D). In C) and D), the solid triangle symbol identifies the 

patch that experienced the greatest change in dichromatism score. 
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Figure 5. 4 Comparison of A) the total sexual dichromatism scores (in just-noticeable 

differences),  and B) total dichromatism ranks of 70 species in the Order Galliformes contrasting 

the two most commonly used bird visual systems.  Values on the x-axis were generated using 

the parameters associated with the ‘average UV eye-type’ visual system; values on the y-axis 

were generated with the ‘average VIS eye-type’ visual system (see Methods). The dashed line 

represents the 1:1 reference line. The solid triangle symbol in A) identifies the species that 

experienced the greatest change in total dichromatism score, and the greatest change in rank in 

B). The sexual dichromatism score of each patch of the species highlighted in A), under the two 

sets of parameters,  are presented in C). The sexual dichromatism score of each patch of the 

species highlighted in B), under the two sets of parameters, are presented in D). In C) and D), the 

solid triangle symbol identifies the patch that experienced the greatest change in dichromatism 

score. 
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Studies of visual communication continue to be central to our understanding of animal 

behaviour, evolution, and speciation. In this body of work, I provided the first experimental 

evidence for visual communication in trogons, an ancient group of pantropical birds. Specifically, 

I demonstrated in chapter 2 that tail raising in elegant trogons is a multifunctional display that 

targets, and likely conveys information to, conspecifics and heterospecifics. In chapter 3, I 

discovered that different plumage traits are used in species recognition in the elegant and black-

headed trogon. Furthermore, I demonstrated that sympatry with a similar-looking congener may 

influence which visual traits are assessed for species recognition. My findings in chapter 4 imply 

that the colour of plumage patches in trogons evolved as a result of reinforcement following 

secondary contact, and identified the rapid colonization of South America following Great 

American Interchange as one of the driving forces of plumage trait diversification in this group. 

Finally, I presented in chapter 5 the first systematic study of the influence of visual model 

parameters on dichromatism scores using galliform birds. My results clearly demonstrate the 

importance of proper model parameterization, and emphasize the importance of the complete, 

rather than partial, characterization of visual systems. Overall, my findings make a significant 

contribution to our understanding of visual communication in birds. 

 

Function of visual signals in Trogons  

The functions of signals were originally studied in the framework of one sender one receiver 

(examples in Searcy and Nowicki 2005), but it was later demonstrated that certain signals can 

target several individuals and/or species (McGregor 2005). In some cases, the same signal can 

even be used in different context and convey different meanings (Mennill and Vehrencamp 
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2008). Multifunctional signals may not be uncommon but have received relatively little 

attention. Because understanding the function of a signal is the first step in determining how the 

signal evolved and how it contributes to the natural history of an animal, the study of 

multifunctional signals could be particularly revealing. Both male and female elegant trogons 

perform a conspicuous tail raising display whereby the tail, which is usually positioned vertically, 

is rapidly lifted horizontally and slowly returned to its original position. In Chapter 2 of my 

dissertation, I combined observational and experimental data to determine the functions of tail 

raising. I found that this behaviour is a multifunctional display that targets conspecifics and 

heterospecifics alike and is used by both male and females. Specifically, it is used during intra- 

and intersexual interactions such as courtship displays and aggressive territorial encounters, and 

is displayed towards potential predators as a pursuit-deterrent signal. Contrary to all previous 

studies in birds (Table 2.1), my experimental data excluded other potential functions of this 

display when performed in the presence of heterospecifics (e.g., it is not a conspecific warning 

signal). This study is therefore the first demonstration in birds of a visual signal that acts as both 

a pursuit-deterrent signal and an intraspecific signal. 

Many questions remain about the functions of the tail raising behaviour when directed 

at conspecifics. If tail raising displays are pre-aggression behaviours, are they part of a 

stereotyped sequence of events leading to aggression (Hurd and Enquist 2001), and if so, when 

in the series of elements does it occur? Is it a useful predictor of aggression and/or an efficient 

mean by which aggressive interactions can be minimized (Baker et al. 2012)?  Several of these 

questions would require extensive observational data as well as experiments, including perhaps 

the presentation of motorized models (Patricelli et al. 2006, Anderson et al. 2013). 

Tail displays may be a common form of pursuit-deterrent signalling in birds. Tail raising 

has been observed in several but not all species of trogons (e.g., found in the collared trogon but 
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not the black-headed trogon, pers. obs., Collar 2001) and several members of the Coraciiformes. 

For example, all motmots wag their tails (Snow 2001, Murphy 2006, 2007) and many kingfishers 

raise their tails and bob their heads (Woodall 2001). Tail raising, pumping, and wagging have 

been well documented in other avian Orders (studied examples presented in Table 2.1), but it is 

generally unknown how widespread the behaviour might be. Future studies should first develop 

a set of hypotheses with testable predictions that would guide investigations on the ecological 

conditions that may be necessary for the evolution of tail displays as pursuit-deterrent signals. 

Comparative analyses and ancestral state reconstructions would then inform us about when and 

why these behaviours have evolved (see Caro 1994 for a preliminary comparative study of 

stotting in ungulates). If the behaviours are also used for conspecific communication, as in the 

elegant trogon, it would be informative to determine whether the interspecific signalling 

displays have been co-opted from the intraspecific displays or vice-versa (Borgia and Coleman 

2000). 

 

Species recognition 

Studies of avian traits involved in species recognition have rarely focussed on visual 

characteristics, with a majority of the literature focussing on acoustic communication (Ord & 

Stamps 2009). The few studies to have assessed the use of plumage characteristics as species 

recognition traits (e.g., Uy et al. 2009) failed to manipulate specific plumage patches, limiting 

inferences about the usefulness of specific traits in species recognition. Furthermore, the 

influence of sympatry with a similar-looking congener on the use of plumage traits in species 

recognition had never been investigated. In Chapter 3, I presented the results of a model 

presentation experiment that determined which plumage traits are used for species recognition 

in the elegant trogon which is not sympatric with a similar-looking congener, and the black-



 

148 
 

headed trogon which is sympatric with a similar-looking congener. I found evidence that the 

colour of the belly and of the back is used for species recognition by both species. I also found 

that the elegant trogon was as aggressive towards similar-looking models as towards models 

that differed only in the under-tail barring patterns. This suggests that this species does not pay 

attention to this particular trait when examining models that otherwise resemble conspecifics. 

In contrast, the black-headed trogon approached all model types equally, except for the 

conspecific model. An interpretation of this counterintuitive reaction is that black-headed 

trogons did not recognize the other model types as members of their own species, thus 

approaching the playback to find the source of the vocalization, but stayed further away from 

conspecific looking models to avoid potential confrontations with an unknown individual. 

 These findings indicate that the black-headed trogon distinguished between the conspecific 

models and all other models, including those that differed only in the under-tail barring pattern. 

Overall, the research presented in Chapter 3 demonstrates that not all species, even closely 

related congeners, use the same visual characteristics for species recognition. My research 

further identifies the presence of a similar-looking sympatric congener as one of the possible 

ecological reasons for the differential use of species recognition traits among closely related 

species. It is uncertain if these differences in use of species recognition traits are learned at the 

population level or innate at the species/sub-species level. Because the ability of individuals to 

recognize conspecifics from similar-looking taxa has important evolutionary consequences, 

especially in incipient species (Price 2007), my research sheds light on a mechanism that may 

increase the ability of species to correctly identify members of their own species and avoid the 

costs associated with improper identification (Martin and Martin 2001). These findings should 

be of interest not only to behavioural ecologists, but also to evolutionary biologists interested in 
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traits important to reinforcement through pre-zygotic isolation, character displacement, and 

speciation. 

Because trogons have rarely been studied in the field, much work remains to be 

conducted to understand the functions of plumage colouration in this group. As it pertains to 

species recognition, other plumage patches such as the vermiculated scapular feather group, 

and non-feathered traits such as the colour of the eye ring, the bill, and the iris, could also be 

tested. Trait variation in some of these structures would be more subtle than the ones tested in 

my experiment and would provide complementary findings, especially regarding the 

discriminating ability of various species. Furthermore, my dissertation research and most similar 

studies (e.g., Matyjasiak 2004) have primarily investigated the plumage characteristics of males, 

not those of females. The genus Trogon is phylogenetically separated into two clades: one in 

which females bear brown upperparts, one in which females bear grey upperparts. Females also 

display either a pink or yellow wash on their bellies, and barring patterns on their tails and 

scapular feathers that differ from those of males. Since all brown-back females and all grey-back 

females are otherwise very similar among species, future studies could investigate whether any 

of these three characteristics are used for species recognition. Generally, more studies on visual 

traits used in species recognition are needed to understand the role of visual communication in 

pre-zygotic isolation (Ord and Stamps 2009). Field experiments involving incipient species with 

very small differences in traits would be best suited for determining the minimum difference 

between divergent characteristics necessary to be useful in species discrimination (Uy et al 

2009, Seddon and Tobias 2010). At the other extreme, it is important to determine why certain 

species are highly polymorphic with different races interbreeding (Roulin 2004). An emphasis on 

whether species recognition traits are innately assessed or learned will also add value to future 

studies (Phelps et al. 2006). In addition, because plumage patches are used in species 
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recognition in trogons, it is not unlikely that several colourful traits evolved by means of sexual 

selection. Indeed, in members of the genus Trogon males and females are highly dichromatic, 

and it is generally assumed that sexual selection would generate intersexual divergence in 

colour (Andersson 1994, Barraclough et al. 1995). However, it is yet to be demonstrated that the 

iridescent and carotenoid based plumage characteristics are selected by females, whether they 

are honest indicators of quality in any trogon. Future studies could evaluate the signalling value 

of the conspicuous coloration in male trogons, determine whether different patches indicate 

different aspect of individual quality or are integrated as a single signal (Hegyi et al. 2014), or 

preferred by females for other reasons (e.g., runaway selection, Andersson 1994). 

 

Evolution of plumage in Trogons 

The study of adaptive radiations has provided the most insight into the evolution of ecological 

and sexually traits and has been instrumental in our understanding of trait diversification and 

speciation (Coyne and Orr 2004, Price 2007). Many systems studied to date have involved island 

species (Losos et al. 1993, Losos et al. 1993, Grant and Grant 2006) with few continent-wide 

studies. The formation of the Panama land bridge connecting the North American and South 

American continents was followed by the Great American Interchange of biota and was 

responsible for several great diversifications of land birds (Burns and Racicot 2009, Smith and 

Klicka 2010). However, the consequence of the rapid colonization of South America on the 

evolution of ecologically and sexually selected traits had yet to be explored in birds. In Chapter 4 

of my dissertation, I investigated the evolution of plumage colouration in the genus Trogon, a 

group of birds previously demonstrated to have originated in Central America prior to the Great 

American Interchange (DaCosta and Klicka 2008). Using spectral data obtained from museums, 

and genetic and distribution data obtained from public sources, I used comparative analyses to 
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determine the impact of the colonization of Trogon into South America on plumage traits. My 

results demonstrated that diversification rates were more recent and more rapid in South 

American taxa than in Central American taxa. Furthermore, my findings indicate that the 

plumage traits of South American, but not Central American, trogons increase in colour 

divergence with increases in sympatry. Together, these results strongly suggest a role for 

reinforcement through pre-zygotic isolation of rapidly colonizing incipient taxa, resulting either 

from character displacement or trait sorting. In this chapter, I also tested the idea that the 

plumage traits of trogon communities comprising a large number of species would have 

diverged to maximize the distance in plumage traits among species, and maximize the use of 

colourspace. In contrast to my predictions, I did not find any evidence for trait divergence 

greater than expected by chance for assemblages of five and six species. These results suggest 

that trait divergence may not promote extreme diversification, as long as species recognition is 

possible. Nonetheless, functional diversity attribute metrics had never been applied to plumage 

colouration and may be useful tools in the study of other species complexes. Overall, the 

findings of this study will be of general interest to evolutionary biologist and biogeographers 

because it directly links the colonization of South America by a group of land birds following the 

Great American Interchange to rapid diversification of taxa and associated divergence in 

secondary sex traits. 

The findings presented in Chapter 4 generate more questions than answers. It was 

recently demonstrated that intermediate levels of sympatry lead to greater patterns of colour 

divergence in birds (Martin et al. 2015). This pattern does not seem to be present in trogons 

(Figure 4.3) but was not explicitly tested in this research. Furthermore, to determine whether 

character displacement or lineage sorting was responsible for the divergence in plumage 

patterns observed in sympatric South American trogon taxa, it will be necessary to compare the 
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plumage characteristics of species pairs both in sympatry and in allopatry (Brown and Wilson 

1956, Pfennig and Pfennig 2010), preferably controlling for other similar-looking species present 

in the same geographic area (Martin et al. 2015). The trogons are an interesting group for 

studying character displacement in visual characteristics because they exhibit high degrees of 

sympatry, they all share similar visual traits, and evidence suggests that they also use fairly 

similar niches (Collar 2001, Forshaw 2009). Therefore, this group would be particularly useful for 

studying ecological character displacement and may provide valuable insight into the 

mechanisms responsible for adaptive radiation and speciation following the colonization of a 

land mass. 

 

Parameters and visual models 

The receptor-noise model as the determinant of colour contrast thresholds (Vorobyev and 

Osorio 1998) has been extremely popular in the study of animal-animal and animal-plant 

communication. It has offered an easily applicable quantification method to compare colours as 

perceived by any animal. However, it has been criticised for requiring knowledge of visual 

system properties available for very few species (Endler and Mielke 2005). For this reason, 

assumptions about visual model parameters are made, often without considering the 

implications of wrongful parameterization (Renoult et al. 2010). Results from my dissertation 

will guide investigators when incorporating visual modelling in their research. My study was the 

first to systematically compare individual parameters of the receptor-noise model (Vorobyev 

and Osorio 1998), and showed that the light transmission characteristics of oil droplets, the 

photoreceptor densities, and the wavelength of maximum sensitivity of the SWS1 

photoreceptor can have serious consequences on calculated chromatic contrasts. In contrast, 

the light environment, the light transmission properties of the ocular media, and the wavelength 
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of maximum sensitivities of  the SWS2, MWS, and LWS photoreceptors have less influence on 

the quantification of the visual sensory experience of animals. While my analyses focussed 

mainly on the tetrachromatic visual system of birds, the results will also be useful in the study of 

other taxa. Indeed, certain species of fish, amphibians, reptiles, and insects are known to 

possess four or more photoreceptors that functionally act as tetrachromatic visual systems 

(Bowmaker 1998, Koshitaka et al. 2008). 

While a valuable contribution to the understanding of visual models, my research 

focussed on the influence of single parameters, without considering interaction effects in 

improperly parameterized models. Future studies should determine the consequences of 

mistakes in two or more parameters, which could be conducted systematically using software 

programs such as pavo (Maia et al. 2013). My research also points to the need for more 

information on the properties of visual systems, especially in the context of comparative 

analyses. This would allow the production of more accurate visual models, and would allow 

comparative studies on aspects of the visual system other than photoreceptor sensitivities. 

Indeed, most multi-species studies in birds have investigated spectral tuning (match between 

the visual system and the visual environment) by looking at the wavelength of maximum 

absorption of photoreceptors (e.g., Bleiweiss 2014). Further knowledge of the oil droplet 

properties and photoreceptor densities would be particularly important for understanding 

which ecological pressures drive the evolution of avian visual systems and the potential 

influence on sensory drive (Endler 1992). At a minimum, my research will help researchers 

improve the reliability of their visual models and allow them to make better-informed 

inferences regarding the perceptual abilities of their species of interest. 
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Conclusion 

My dissertation research generated interesting findings pertaining to the function and evolution 

of plumage colouration in trogons, and the influence of parameters in avian visual models. It 

provides the first experimental evidence of a multifunctional behavioural display in elegant 

trogons, the first experimental evidence of specific plumage patches being used for species 

recognition in two sympatric congeners, and the first demonstration of the influence of the 

Great American Interchange on divergence of secondary sexual traits in any land-based taxa. In 

addition, by demonstrating the relative influence of individual parameters in a 

psychophysiological model of animal vision, my dissertation can be used to guide researchers 

when making assumptions concerning the visual capabilities of their species of interest. My 

findings should be of general interest to ecologists, behavioural ecologists, and evolutionary 

biologists.   
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Formulae  

Chromatic contrast for tetrachromatic visual system 

 The receptor noise model (Vorobyev and Osorio 1998) states that the colour stimulus of surface 
x is defined by the quantum catch of each photoreceptor class i: 

 

where  is wavelength,  is the wavelength-specific reflectance spectrum of the object , 

 is the wavelength-specific spectral sensitivity of receptor , and  is the wavelength-

specific spectrum of ambient light. Integration in this study was calculated over the visible 
spectrum of birds, from 300 to 700 nm.  

The relationship between the quantum catch of two stimuli (a and b) for photoreceptor class i is: 

 

The standard deviation of the noise of a single photoreceptor cell is represented by . The 

effect of this noise on colour perception decreases with increase in the proportion of 
photoreceptors of a given class, such that the overall noise for a given class of photoreceptors is: 

 

where  is the density of photoreceptors of type  relative to the UVS densities, and  is the 

noise of type  of the four photoreceptor classes. All relative photoreceptor densities are 

calculated in relation to the UVS cone density.  

Incorporating the noise and the difference in quantum catch between two stimuli, the square of 
chromatic contrast ( ) of two stimuli in a tetrachromatic system is given by: 

 
  

Chromatic contrast is in units of just noticeable difference (or JND), representing chromatic 
discriminability. 

 

Ocular media  

The absorbance curve ( of the ocular media can be approximated using: 
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Formula optimized for λ T50 = 335.2; curves for other T50 are λ-axis shifted using λT50 – 335.2 
(Endler and Mielke 2005). 

 

Oil filter  

The average visual systems defined by Endler and Mielke (2005) use λ˳ (wavelength at which oil 

droplet transmittance is 1/e) and b (rate of decay) to calculate absorbance curves for C, Y, and R 

types. The R package pavo (Maia et al. 2013) uses λcut (cut-off wavelength) and Bmid (and the 

gradient of line tangent to the absorbance spectrum (Bmid) at the wavelength at half-maximum 

absorbance) because λcut is the most commonly reported value (e.g., Hart and Vorobyev 2005).  

When λcut and Bmid were not provided, they were calculated using the following equations 

(from Hart and Vorobyev 2005): 

 

 

For species for which b was not available we estimated Bmid: 
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Table S4. 1 Sample identification number and GenBank NADH dehydrogenase subunit 2 

accession numbers of the 41 species/subspecies included in the phylogenetic estimation, 

diversification analyses, and ancestral state reconstruction. Museum letter code identity: ANSP 

– American Museum of Science Philadelphia, CNAV – Colección Nacional de Aves, Instituto de 

Biología, Universidad Nacional Autónoma de México, FMNH – Field Museum of Natural History, 

LSUMNH – Louisiana State University Museum of Natural History, MBM – Marjorie Barrick 

Museum, STRI – Smithsonian Tropical Research Institute, NMNH – National Museum of Natural 

History (Smithsonian), MZUSP – Museu de Zoologia da Universidade de São Paulo, ZMUC – 

Zoological Museum University of Copenhagen.  

Species Subspecies Country Museum SampleID GenBank 

T. bairdii  Panama STRI TBA383 EU603767 

T. citreolus citreolus Mexico CNAV P002919 EU603770 

T. citreolus sumachristi Mexico CNAV PE25988 EU603771 

T. clathratus  Panama NMNH B02029 EU603772 

T. collaris castaneus Bolivia LSUMNH B22827 EU603775 

T. collaris collaris Guyana NMNH B10636 EU603778 

T. collaris extimus Panama NMNH B01545 EU603790 

T. collaris heotimus Panama LSUMNH B2141 EU603789 

T. collaris puella Mexico FMNH 394271 EU603783 

T. collaris virginalis Ecuador ANSP ANSP203
2 

EU603777 

T. comptus  Ecuador ANSP ANSP229
7 

EU603792 

T. curucui behni Paraguay LSUMNH B25715 EU603799 

T. curucui peruvianus Peru FMNH 433225 EU603801 

T. elegans ambiguus Mexico MBM JK03280 EU603805 

T. elegans elegans El Salvador FMNH 434014 EU603803 

T. massena hoffmani Panama MBM JK04273 EU603813 

T. massena massena Honduras MBM JK01022 EU603809 

T. melanocephalus  Honduras MBM JK01035 EU603818 

T. melanurus eumorphus Brazil FMNH 391999 EU603825 

T. melanurus melanurus Guyana ANSP ANSP824
4 

EU603830 

T. melanurus mesurus Ecuador ANSP ANSP468
3 

EU603829 

T. mexicanus  Mexico MBM JK03279 EU603838 

T. personatus assimilis Ecuador ANSP ANSP506 EU603852 

T. personatus duidae Venezuela LSUMNH B7596 EU603859 

T. personatus heliothrix Peru FMNH 397889 EU603857 

T. personatus personatus Colombia ZMUC 134954 EU603849 

T. personatus submontanus Bolivia ZMUC 115519 EU603848 

T. personatus temperatus Ecuador ANSP ANSP379
1 

EU603851 
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T. rufus chrysochoros Paraguay ZMUC 115780 EU603871 

T. rufus cupreicauda Ecuador ANSP ANSP221
6 

EU603862 

T. rufus rufus Guyana ANSP ANSP847
1 

EU603863 

T. rufus sulphureus Peru LSUMNH B27391 EU603872 

T. rufus teneullus Panama MBM GMS975 EU603867 

T. surrucura aurantiventrtri
s 

Brazil MZUSP X7 EU603875 

T. surrucurra surrucura Argentina NMNH B05982 EU603873 

T. violaceus concinnus Ecuador ANSP ANSP515
4 

EU603880 

T. violaceus ramonianus Bolivia LSUMNH B18257 EU603877 

T. violaceus sallei Honduras MBM GAV1688 EU603884 

T. violaceus violaceus Guyana ANSP ANSP866
4 

EU603882 

T. viridis chionurus Ecuador ANSP ANSP465
9 

EU603898 

T. viridis viridis Guyana NMNH B11332 EU603902 
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Table S4. 2 Accession numbers for all museum skins from which plumage characteristics were 

measured. Letter code preceding numbers indicate the museum identity: ANSP – American 

Museum of Science Philadelphia, FMNH – Field Museum of Natural History, LSUMNH – Louisiana 

State University Museum of Natural History, NMNH – National Museum of Natural History 

(Smithsonian), UMMZ – University of Michigan Museum of Zoology. 

Species Accession numbers 
    

T. bairdii FMNH72259 FMNH72257 FMNH72258 

T. citreoleus citreoleus FMNH119116 FMNH102577 FMNH12703 

T. citreoleus sumachristi UMMZ95656 UMMZ102334 UMMZ102336 

T. clathratus UMMZ132437 UMMZ132436  

T. collaris castaneus FMNH310556 FMNH299112 FMNH397885 

T. collaris collaris FMNH91962 FMNH41631 UMMZ87794 

T. collaris extimus NMNH238035 NMNH238533  

T. collaris exoptatus FMNH261142 FMNH261143 FMNH261147 

T. collaris heotinus NMNH484311   

T. collaris puella UMMZ102328 UMMZ101971 UMMZ102326 

T. collaris virginalis FMNH278528 FMNH278529 FMNH372522 

T. comptus ANSP157260 ANSP180260 ANSP182335 

T. curucui behni UMMZ90785 UMMZ98112 UMMZ111382 

T. curucui curucui FMNH63529 FMNH63530 FMNH63532 

T. curucui peruvianus FMNH283679 FMNH310557 FMNH248627 

T. elegans ambiguus UMMZ87803 UMMZ21305 UMMZ85777 

T. elegans elegans FMNH434014 FMNH212774 FMNH212773 

T. massena hoffmani FMNH111560 FMNH6964 FMNH302808 

T. massena massena FMNH95212 FMNH95214 FMNH95217 

T. melanocephalus FMNH120984 FMNH41590 FMNH119529 

T. melanurus eumorphus FMNH283676 FMNH153708 FMNH262791 

T. melanurus macroura FMNH48988 FMNH190784 FMNH72251 

T. melanurus melanurus FMNH120074 FMNH295591 FMNH260239 

T. melanurus mesurus ANSP183900 ANSP183901 ANSP185287 

T. mexicanus FMNH343219 FMNH183358 FMNH93699 

T. personatus assimilis ANSP180261 ANSP180262 ANSP181038 

T. personatus duidae AMNH270848 FMNH318851  

T. personatus heliothrix FMNH44271 FMNH44272 FMNH44273 

T. personatus personatus FMNH43354 FMNH99532 FMNH119402 

T. personatus 
submontanus 

UMMZ154015 UMMZ154016  

T. personatus temperatus NMNH436155 NMNH436156 NMNH446363 

T. rufus chrysochlorus UMMZ100718 UMMZ111061 UMMZ101727 

T. rufus cupreicauda FMNH255536 FMNH262664 FMNH292789 

T. rufus rufus FMNH260247 FMNH260246 FMNH295595 
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T. rufus sulphureus AMNH431982 FMNH248628 FMNH456560 

T. rufus tenellus FMNH73768 FMNH372524 FMNH372526 

T. surrucura aurantius AMNH242298 AMNH316669 AMNH317394 

T. surrucura surrucura FMNH75162 FMNH64469 FMNH75160 

T. violaceus caligatus FMNH190787 FMNH190786  

T. violaceus concinus UMMZ132454 UMMZ210616 UMMZ132456 

T. violaceus crissalis FMNH248626   

T. violaceus ramonianus LSUMNH71917 LSUMNH132155 LSUMNH153260 

T. violaceus sallaei UMMZ137725 UMMZ137722 UMMZ137724 

T. violaceus violaceus FMNH318854 FMNH260250 FMNH260249 

T. viridis chionurus NMNH461910 NMNH477622 NMNH484309 

T. viridis viridis FMNH318848 FMNH91968 FMNH120077 
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Table S4. 3 Parameters and AICc scores of all GLMM model ordered with decreasing number of 

parameters. Models included plumage differences as the dependent variable and subspecies 

identity as the within-subject random factor. 

 

Model Parameters AICc 
   

Global Sympatry 893.133 
 Genetic distance  
 Clade  
 Location  
 Latitude  
 Longitude  
 Clade*Sympatry  
 Location*Sympatry  
   
1) Sympatry 880.58 
 Genetic distance  
 Clade  
 Location  
 Clade*Sympatry  
 Location*Sympatry  
   
2) Sympatry 873.552 
 Genetic distance  
 Clade  
 Location  
 Location*Sympatry  
   
4) Sympatry 876.845 
 Genetic distance  
 Location  
 Clade  
 Clade*Sympatry  
   
5) Sympatry 872.261 
 Genetic distance  
 Location  
 Clade  
   
6) Sympatry 872.667 
 Genetic distance  
   
7) Intercept 901.815 
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Figure S4. 1 Molecular phylogeny of 41 Trogon species/subspecies and ancestral state 

reconstruction of ancestral areas. Numbers on nodes correspond to posterior probability 

support, and asterisks mark nodes that receive posterior probability values of 1.0 when 

outgroups are included in the analysis. Branch colors show ancestral state reconstruction results 

based on parsimony, with ambiguous results resolved using maximum likelihood. Inset:  Average 

node ages for Central American and South American (including Choco, Andes, cis-Andes) 

lineages show that diversification has been more recent in South America (t-test, P = 0.008).
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Table S5. 1 Catalogue numbers for all specimens measured. AMNH = American Museum of Natural History, New York; FMNH = Field Museum of 

Natural History, Chicago; ROM: Royal Ontario Museum, Toronto; UMMZ = University of Michigan Museum of Zoology, Ann Arbor. 

 

Scientific name Common name Male 1 Male 2 Male 3 Female 1 Female 2 Female 3 

Acryllium vulturinum Vulturine Guineafowl FMNH_192683 ROM_34.9.6.1 FMNH_405746 ROM_33.6.20.1 FMNH_192686 FMNH_406226 

Afropavo congoensis Congo Peafowl AMNH_763938 AMNH_305691 AMNH_763937 AMNH_763941 AMNH_305693 AMNH_305692 

Agriocharis ocellata Ocellated Turkey UMMZ_95038 FMNH_40755 FMNH_13216 FMNH_120862 ROM_37192 AMNH_61172 

Alectoris barbara Barbara Barbary Partridge FMNH_404276 FMNH_407988 FMNH_406930 ROM_33.9.1.125 FMNH_404277 FMNH_411638 

Alectoris graeca  Rock Partridge ROM_91811 ROM_36988 ROM_146344 ROM_146345 ROM_146343 FMNH_415114 

Alectoris rufa  Red-legged Partridge FMNH_408741 FMNH_408731 FMNH_408743 FMNH_408740 FMNH_409848 FMNH_408742 

Alectura lathami  Australian Brush-turkey FMNH_415316 FMNH_415320 FMNH_417123 FMNH_400782 AMNH_539307 AMNH_539306 

Arborophila rufogularis  Rufous-throated Hill Partridge ROM_37049 ROM_37050 ROM_37048 FMNH_84360 FMNH_84357 FMNH_217900 

Arborophila torqueola torqueola Common Hill-partridge ROM_37045 ROM_37046 ROM_37044 ROM_37047 FMNH_84368 FMNH_426050 

Argusianus argus  Great Argus FMNH_414261 ROM_26510 ROM_37157 FMNH_414262 FMNH_40724 AMNH_544057 

Bambusicola fytchii  Mountain Bamboo-partridge UMMZ_140962 UMMZ_140961 UMMZ_140960 UMMZ_140940 UMMZ_140915 UMMZ_140932 

Bambusicola thoracica  Chinese Bamboo-partridge UMMZ_57477 ROM_29067 FMNH_404463 UMMZ_57478 FMNH_404472 FMNH_406543 

Bonasa (Tetrastes) bonasia  Hazel Grouse ROM_36721 FMNH_414729 FMNH_412918 ROM_36722 FMNH_416633 FMNH_412919 

Bonasa umbellus  Ruffed Grouse FMNH_131131 ROM_36770 ROM_29214 ROM_80226 ROM_145996 ROM_36772 

Catreus wallichi Cheer Pheasant FMNH_426070 ROM_37101 ROM_01.10.1.18 FMNH_96808 ROM_67550 FMNH_16224 

Chrysolophus amherstiae Lady Amherst’ Pheasant FMNH_410562 ROM_23.2.27.1 ROM_68495 FMNH_111885 FMNH_67905 FMNH_408997 

Chrysolophus pictus Golden Pheasant FMNH_109179 FMNH_88551 UMMZ_84354 UMMZ_54313 ROM_69042 ROM_28221 

Coturnix coturnix  Common Quail ROM_75193 ROM_75194 ROM_33.9.1.130 ROM_81613 ROM_91.11.1.900 ROM_37019 

Coturnix japonica Japanese Quail ROM_37022 FMNH_406545 FMNH_411130 ROM_37023 FMNH_419107 FMNH_405133 

Crax rubra  Great Curassow FMNH_418523 ROM_112814 FMNH_15452 ROM_36563 FMNH_411741 FMNH_411742 

Crossoptilon auritum Blue Eared-pheasant ROM_35.11.15.6 ROM_66902 FMNH_109187 FMNH_109188 FMNH_410201 - 

Crossoptilon mantchuricum Brown Eared-pheasant ROM_21.3.6.2 ROM_34.3.23.5 ROM_37080 FMNH_392224 ROM_22.12.15.1 AMNH_543113 



 

168 
 

Francolinus francolinus  Black Francolin FMNH_413367 ROM_36995 FMNH_420353 FMNH_420345 FMNH_420336 FMNH_420351 

Francolinus pondicerianus  Grey Francolin FMNH_410845 FMNH_410848 FMNH_414052 FMNH_414055 FMNH_414054 FMNH_414053 

Francolinus squmatus  Scaly Francolin FMNH_423915 FMNH_417588 FMNH_417590 FMNH_403913 FMNH_423907 FMNH_417587 

Francolinus swainsonii Swainson’s Francolin ROM_121044 FMNH_410600 FMNH_423156 ROM_121043 ROM_91212 FMNH_486021 

Gallus gallus  Red Junglefowl FMNH_420755 FMNH_400745 FMNH_420759 FMNH_420737 FMNH_420742 FMNH_420770 

Gallus lafayettei Ceylon Junglefowl FMNH_401144 FMNH_422530 FMNH_401145 FMNH_422528 AMNH_543371 AMNH_203777 

Gallus sonneratii Grey Junglefowl FMNH_414948 FMNH_414949 FMNH_420789 FMNH_414947 FMNH_420785 FMNH_420802 

Gallus varius Green Junglefowl FMNH_405246 FMNH_405166 FMNH_406655 FMNH_406656 FMNH_405247 AMNH_543402 

Ithaginis cruentus  Blood Pheasant FMNH_109175 FMNH_109176 FMNH_403880 FMNH_404607 FMNH_403882 FMNH_109177 

Lophophorus impejanus Himalayan Monal FMNH_84350 ROM_01.10.1.37 ROM_37078 FMNH_84351 UMMZ_234309 ROM_37079 

Lophophorus lhuysii Chinese Monal FMNH_109196 FMNH_88542 FMNH_88543 FMNH_88544 AMNH_423702 AMNH_543110 

Lophophorus sclateri Sclater's Monal AMNH_543103 AMNH_543104 AMNH_543108 FMNH_97920 AMNH_543107 - 

Lophura edwardsi Edward’s Pheasant FMNH_76414 AMNH_348673 - UMMZ_119960 ROM_3510222 - 

Lophura leucomelana  Kalij Pheasant FMNH_210931 ROM_26812 ROM_29.1.20.1 FMNH_210937 FMNH_217897 FMNH_210934 

Lophura nycthemera  Silver Pheasant FMNH_408966 ROM_36.2.25.4 ROM_24112 ROM_1822810 ROM_19481 FMNH_408967 

Lophura swinhoii Swinhoe’s Pheasant FMNH_405134 ROM_32029 ROM_35.12.17.6 UMMZ_119958 ROM_3471898 FMNH_405135 

Meleagris gallopavo  Wild Turkey FMNH_93516 ROM_37176 ROM_31973 FMNH_160406 ROM_34.5.8.3 ROM_37181 

Numida meleagris  Helmeted Guineafowl ROM_33.9.1.141 ROM_114469 FMNH_405724 FMNH_405726 FMNH_405719 FMNH_192654 

Ortalis vetula  Plain Chachalaca ROM_36570 ROM_36571 ROM_81801 ROM_36572 ROM_81800 FMNH_409461 

Pavo cristatus Indian Peafowl ROM_26.3.23.144 FMNH_421426 ROM_37164 FMNH_420844 ROM_27.4.6.1 ROM_37165 

Pavo muticus Green Peafowl FMNH_404960 FMNH_92678 ROM_37166 FMNH_404962 FMNH_405167 FMNH_404961 

Perdix dauuricae  Daurian Partridge FMNH_96819 FMNH_406733 FMNH_56309 FMNH_56305 FMNH_56312 FMNH_56308 

Perdix hodgsoniae  Tibetan Partridge FMNH_408819 FMNH_67884 AMNH_541962 FMNH_408818 FMNH_109182 FMNH_109183 

Perdix perdix  Grey Partridge ROM_80227 ROM_74165 ROM_146348 ROM_36.1.4.1 ROM_37006 ROM_134533 

Phasianus colchius  Ring-necked Pheasant FMNH_404491 ROM_67044 ROM_29588 ROM_37135 ROM_31.5.27.7 ROM_29589 

Phasianus versicolor  Green Pheasant FMNH_405140 FMNH_405142 FMNH_405141 FMNH_405143 FMNH_405138 FMNH_405139 

Polyplectron bicalcaratum  Grey Peacock-pheasant FMNH_400753 FMNH_401330 FMNH_415143 FMNH_415142 FMNH_400754 AMNH_409108 
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Polyplectron chalcurum Bronze-tailed Peacock pheasant AMNH_543975 AMNH_543979 AMNH_257149 AMNH_543980 AMNH_543981 AMNH_543974 

Polyplectron emphanum Palawan Peacock-pheasant FMNH_426082 FMNH_416817 FMNH_416818 FMNH_404223 AMNH_544041 AMNH_544040 

Polyplectron germaini Germain's Peacock-pheasant FMNH_89970 AMNH_417029 AMNH_544015 ROM_37154 AMNH_544017 AMNH_544019 

Polyplectron inopinatum Mountain Peacock pheasant AMNH_543966 AMNH_543971 AMNH_804683 AMNH_543969 AMNH_203867 - 

Polyplectron malacense  Malaysian Peacock-pheasant AMNH_544026 AMNH_544022 - ROM_3250 AMNH_203879 - 

Pucrasia macrolopha  Koklass Pheasant FMNH_40731 ROM_01.10.1.16 ROM_37099 ROM_37100 FMNH_416216 FMNH_416217 

Rheinardia ocellata  Crested Argus FMNH_UCMROO AMNH_258935 AMNH_544046 FMNH_76415 AMNH_348697 - 

Syrmaticus ellioti Elliot’s Pheasant FMNH_96805 ROM_68392 ROM_95005 ROM_34.3.7.1 FMNH_39345 AMNH_543904 

Syrmaticus humiae  Hume’s Pheasant FMNH_415486 FMNH_415488 FMNH_415485 FMNH_415492 FMNH_415489 FMNH_415496 

Syrmaticus reevesii Reeve’s Pheasant FMNH_88552 UMMZ_119966 ROM_37139 UMMZ_119967 ROM_34.3.7.2 ROM_34.7.9.4 

Syrmaticus soemmerringii  Copper pheasant FMNH_405149 ROM_24.3.13.392 ROM_37140 ROM_98.4.8.2 FMNH_96965 FMNH_405147 

Tetrao tetrix  Eurasian Black Grouse FMNH_67078 ROM_2925 ROM_3198 ROM_9085 ROM_146360 FMNH_406927 

Tetrao urogallus  Western Capercaillie FMNH_404587 FMNH_67034 ROM_36582 FMNH_401633 FMNH_406928 FMNH_408409 

Tetraogallus himalayensis  Himalayan Snowcock FMNH_410838 FMNH_60618 AMNH_804741 ROM_36984 FMNH_420101 FMNH_410836 

Tetraogallus tibetanus  Tibetan Snowcock FMNH_426040 FMNH_410841 FMNH_410842 FMNH_420097 FMNH_420095 AMNH_540543 

Tetraophasis obscurus Verreaux’s Monal Partridge FMNH_410198 FMNH_410199 FMNH_109172 FMNH_410196 AMNH_540578 AMNH_204527 

Tetraophasis szechenyii Szechenyi’s Monal Partridge FMNH_409970 FMNH_411061 AMNH_540588 FMNH_67913 AMNH_291992 AMNH_540581 

Tragopan blythii  Blyth's Tragopan FMNH_415463 FMNH_415461 FMNH_399352 FMNH_415132 FMNH_415462 FMNH_415465 

Tragopan caboti Cabot's Tragopan FMNH_51135 FMNH_407536 ROM_10.2.21.24 FMNH_51136 FMNH_407663 ROM_156309 

Tragopan satyra Satyr Tragopan FMNH_414243 FMNH_84323 FMNH_84321 FMNH_84327 FMNH_84325 AMNH_817845 

Tragopan temminckii Temminck’s Tragopan FMNH_88534 FMNH_88533 FMNH_88537 FMNH_88536 FMNH_88540 FMNH_88541 

UCMROO = uncatalogued 
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Table S5. 2 Spectral parameters of cone visual pigments in avian species separated by eye type 

(UV range SWS1 or VIS range SWS1).  

Order Species Photoreceptor λmax (nm) References 

  UV  VIS SWS2  MWS  LWS  
 

 

        

Anseriformes Anas platyrhynchos  415 452 506 567 1 

 Branta canadensis  409 458 509 580 2 

Apodiformes Sephanoides sphanoides 371  444 508 560 3 

Columbiformes Columbia livia  404 452 506 566 4 

Galliformes Coturnix coturnix  418 450 505 567 5 

 Gallus gallus  418 453 507 571 4 

 Meleagris gallopavo  420 460 505 563 6 

 Pavo cristatus  424 458 505 567 7 

Gruiformes Grus americana  404 450 499 561 8 

Passeriformes Amadia fasciata 370  447 500 563 9 

 Corvus frugilegus    497 565 10 

 Dolichonyx oryzivorus 372   505 564 11 

 Erythrura gouldiae 370  440 500 562 9 

 Leothrix lutea 355  454 499 568 12 

 Lonchura maja 373  446 500 562 9 

 Neochmia modesta 373  442 500 565 9 

 Parus caeruleus 372  449 502 563 13 

 Passer domesticus   445 503 563 14 

 Ptilonorhynchus violaceus  410 454 511 562 15 

 Serinus canaria 363  440 501 567 16 

 Spinus tristis  399 442 512 580 17 

 Sturnus vulgaris 362  449 504 563 18 

 Taeniopygia guttata 359  427 505 566 4, 19 

 Turdus merula 373  454 504 557 13 

Procellariformes Puffinus pacificus  406 450 503 566 20 

 Puffinus puffinus  402 452   4 

Psittaciformes Melopsittacus undulatus 371  440 499 566 4 

 Platycercus elegans 365  440 509 567 21 

Spheniciformes Spheniscus humboldti  403 450  543 22 

Strigiformes Strix aluco   463 503 555 23 

Struthioniformes Rhea americana   447 506 571 24 

 Struthio camelus  405 445 506 570 24 
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Table S5. 3 Spectral absorption parameters for oil droplets and ocular media in avian eyes. See Methods for meaning of λcut, λmid and T50. 

Order Species λcut (nm) λmid(nm) SWS1 
Pigment 

OM 
T50 

Oil droplet 
reference 

OM 
Reference 

  C 
type 

Y 
type 

R 
type 

C 
type 

Y 
type 

R 
type 

    

Accipitriformes Accipiter nisus       VS 369  25 

 Buteo buteo       VS 375  25 

 Milvus milvu       VS 394  25 

Anseriformes Anas platyrhynchos 445 506 561 459 521 585 VS 371 1 1 

 Branta canadensis  506 559  526 598 VS  2  

Apodiformes Apus apus       VS 388  25 

 Sephanoides sephanoides       UVS 315  3 

Charadriiformes Larus marinus       UVS 344  26 

Columbiformes Columba livia 448 514 586 470 542 613 VS 337 4 27 

Falconiformes Falco tinnunculus       VS 379  25 

Galliformes Conturnix conturnix 446 511 566 461 528 589 VS  5  

 Gallus gallus 443 505 561 460 523 586 VS 351 4 27 

 Meleagris gallopavo       VS 355  6 

 Pavo cristatus 449 511 569 462 525 592 VS 364 7 7 

Gruiformes Grus americana 448 522 576    VS  8  

Passeriformes Ailuroedus crassirostris 421 508 558 438 526 580 VS 340 15 15 

 Amadina fasciata 423 516 575 439 535 598 UVS 316 9 9 

 Chlamydera maculata 428 515 571 449 533 595 VS 351 15 15 

 Chlamydera nuchalis 421 515 568 440 530 590 VS 349 15 15 

 Corvus frugilegus       VS 365  25 

 Cyanistes (Parus) 
caeruleus 

413 508 573 426 528 596 UVS 316 13 13 
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 Dolichonyx oryzivorus 412 502 561 429 519 584 UVS  11  

 Erythrura gouldiae 422 513 572 434 531 595 UVS 315 9 9 

 Leothrix lutea 392 506 566 419 530 591 UVS  12  

 Lonchura maja 422 510 567 434 524 589 UVS 317 9 9 

 Neochmia modesta 415 514 568 428 534 591 UVS 314 9 9 

 Parus major       UVS 314  25 

 Pica pica       VS 370  25 

 Ptilonorhynchus violaceus 423 514 567 435 534 591 VS 344 15 15 

 Scenopoetes dentirostris 424 514 567 438 532 589 VS  15  

 Sericulus chrysocephalus 418 511 567 431 528 589 VS 349 15 15 

 Serinus canaria 414 506 578 431 531 604 UVS  16  

 Spinus tristis 417 523 579 432 537 596 VS  17  

 Sturnus vulgaris 399 515 573 419 536 595 UVS 337 18 18 

 Taeniopygia guttata 414 510 571 432 537 597 UVS 321 4 25 

 Turdus merula 414 515 570 429 532 593 UVS 343 13 13 

 Turdus philomelos       UVS 335  25 

Podicipediformes Podiceps cristatus       VS 390  25 

Procellariiformes Puffinus pacificus 445 506 562 460 528 586 VS 335 20 20 

Psittaciformes Melopsittacus undulatus 411 507 566 429 544 592 UVS 320 4 27 

 Neopsephotus bourkii       UVS 334  25 

 Platycercus elegans       UVS 319  28 

Strigiformes Aegolius funereus       VS 335  25 

 Asio otus       VS 356  25 

 Athene cunicularia       VS 359  25 

 Strix aluco       VS 353  25 

Struthioniformes Rhea americana 417 506 556 439 524 585 VS  24  

 Struthio camelus       VS 369  24 
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Table S5. 4 Ratio of photoreceptor densities in avian retinas. Photoreceptor with lowest 

proportion was always given 1.00. 

Order Species SWS1 SWS2 MWS LWS Reference 

Anseriformes Anas penelope 1.00 2.10 4.28 4.17 29 

 Aythya affinis 1.00 2.73 4.09 4.23 29 

 Branta canadensis  1.00 3.16 4.18 5.92 2 

Apodiformes Sephanoides sephaniodes 1.00 2.60 4.40 3.00 3 

Charadriiformes Anous minutus 1.00 9.59 16.82 14.29 29 

 Larus novaehollandiae 1.00 1.87 2.38 2.34 29 

Columbiformes Streptopelia chinensis 1.00 1.25 1.61 1.43 29 

Coraciiformes Todiramphus sanctus 1.00 1.32 1.55 6.36 29 

Cuculiformes Eudynamys scolopacea 1.00 2.28 3.65 3.11 29 

Galliformes Gallus gallus 1.00 1.48 2.48 2.01 30 

 Pavo cristatus 1.00 1.88 2.20 2.11 29 

Gruiformes Gallinula tenebrosa 1.00 1.69 2.10 2.19 29 

Passeriformes Ailuroedus crassirostris 1.00 1.79 2.59 2.07 15 

 Chlamydera nuchalis 1.00 1.84 2.84 2.94 15 

 Entomyzon cyanotis 1.00 1.96 2.70 2.61 29 

 Leiothrix lutea 1.00 2.50 2.50 5.50 12 

 Manorina melanocephala 1.00 1.84 2.26 2.30 29 

 Parus caeruleus 1.00 1.89 2.67 2.67 29 

 Parus caeruleus 1.00 1.92 2.68 2.70 13 

 Ptilonorhynchus  violaceus 1.00 2.36 3.53 3.15 29 

 Ptilonorhynchus violaceus 1.00 1.69 2.88 3.12 15 

 Scenopoeetes dentirostris 1.00 2.40 3.09 2.77 15 

 Sericulus chrysocephalus 1.00 1.71 3.71 3.93 15 

 Spinus tristis  1.00 2.18 2.36 1.94 17 

 Sturnus vulgaris 1.00 1.36 3.70 3.77 29 

 Turdus merula 1.00 1.71 2.14 1.89 29 

 Turdus merula 1.00 1.78 2.21 1.96 13 

Pelecaniformes Phalacrocorax varius 1.00 2.45 5.83 1.43 29 

Procellariiformes Puffinus pacificus 1.47 1.00 1.53 2.12 29 

Psittaciformes Cacatua roseicapilla 1.00 1.24 3.96 4.18 29 

 Melopsittacus undulatus 1.00 1.89 2.94 2.48 29 

 Platycercus eximius 1.00 1.88 3.60 3.87 29 

 Trichoglossus chlorolepidotus 1.00 1.73 3.29 3.11 29 

 Trichoglossus haematodus 1.00 1.28 2.86 2.63 29 

Reference details at end of Supplementary material 

1 Jane and Bowmaker 1988 J Comp Physiol A 162:225-235; 2 Moore et al. 2012 J Exp Biol 

215:3442-3452; 3 Herrera et al. 2008 J Comp Physiol A 194:785-794; 4 Bowmaker et al 1997 Vis 



 

174 
 

Res 37:2183-2194; 5 Bowmaker et al 1993 Vis Res 33:571-578; 6 Hart et al 1999 Vis Res 39:3321-

3328; 7 Hart 2002 J Exp Biol 205:3925-3935; 8 Porter et al. 2014 J Exp Biol 217:3883-3890; 9 

Hart et al 2000 J Comp Physiol A 186:681-694; 10 Bowmaker 1977 Vis Res 17:1129-1138; 11 

Beason and Loew 2008 Vis Res 48:1-8; 12 Maier and Bowmaker 1993 J Comp Physiol A 172:295-

301; 13 Hart et al. 2000 J Comp Physiol A 186:375:387; 14 Hart and Hunt 2007 Am Nat 169:S7-

S27; 15 Coyle et al 2012 J Exp Biol 215:1090-1105; 16 Das et al 1999 Vis Res 39:2801-2815; 17 

Baumhardt et al 2012 Brain Behav and Evol 83:181-198; 18 Hart et al 1998 J Exp Biol 201:1433-

1446; 19 Yokoyama et al 2000 PNAS 97:7366-7371; 20 Hart 2004 J Exp Biol 207:1229-1240; 21 

Knott et al 2013 J Exp Biol 216: 4454-4461; 22 Bowmaker and Martin 1985 J Comp Physiol A 

156:71-77; 23 Bowmaker and Martin 1978 Vis Res 18:1125-1130; 24 Wright and Bowmaker 

2001 Vis Res 41:1-12; 25 Lind et al 2013 J Exp Biol 216:1819-1827; 26 Hastad et al 2009 J Comp 

Phys A 195:585-590; 27 Lind and Kelber 2009 Vis Res 49:1939-1947; 28 Carvalho et al 2011 Proc 

Roy Soc 278:107-114; 29 Hart 2001 J Comp Physiol A 187:685-698; 30 Kram et al 2010 PLoS one 

5:e8992 
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Table S5. 5 Parameters used to reproduce the average VIS and average UV avian visual systems 

presented in Endler and Mielke (2005). These visual systems were used as the starting point for 

comparison of the various parameters.  

Eye  
Type 

Parameter Ocular 
media (nm) 

UV/VIS SWS MWS LWS 

       

UV  324     
 Peak sensitivities (nm)  367 444 501 564 
 λ cut  NA† 411 511 572 
 Bmid  NA 0.0278 0.023 0.022 
       
VIS  352*     
 Peak sensitivities (nm)  412 452 505 565 
 λ cut  NA 447 510 572 
 Bmid  NA 0.0294 0.028 0.027 
       

*Endler and Mielke (2005) indicate a value of 362nm for the ocular media cut-off point but we could only reproduce 
the photoreceptor curves from their supplemental material when using 352nm. 

†Oil droplets associated with the SWS1 photoreceptor do not filter light between 300 and 700nm. 
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Table S5. 6 Summary of photoreceptor sensitivities of the four avian cone classes separated by 

eye type. Values were derived by compiling all known measurements of these parameters (See 

Table S5.2 for complete data and references). 

Cone 
class 

Eye 
type 

Minimum 
λmax (nm) 

Maximum 
λmax (nm) 

Mean ± SD 
λmax (nm) 

N 

      

SWS1 UVS 355 373 368 ± 6 14 

 VS 399 424 410 ± 8 14 

      

SWS2 UV 427 454 444 ± 7 13 

 VS 442 463 452 ± 6 17 

      

MWS UV 499 509 503 ± 3 14 

 VS 497 512 505 ± 4 16 

      

LWS UV 557 568 564 ± 3 14 

 VS 543 580 566 ± 9 17 
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Table S5. 7 Summary of oil droplet cut-off parameters of three avian cone classes and T50 of the 

ocular media, separated by eye type. Values were derived by compiling all known 

measurements of these parameters (See Table S5.3 for complete data and references). 

 

Parameter Eye type λ Min (nm) λ Max (nm) 
λ Mean ± SD 
(nm) 

N 

      

OM T50 UVS 314 344 324 ± 11  15 

 VIS 335 394 360 ± 17 24 

      

λ cut C UVS 392 423 413 ± 9 12 

 VIS 417 449 433 ± 13 15 

      

Bmid C UVS 0.0187* 0.0273*   

 VIS 0.0380† 0.0318*   

      

λ cut Y UVS 502 516 510 ± 4 12 

 VIS 505 523 512 ± 6 16 

      

Bmid Y UVS 0.0294‡ 0.0228*   

 VIS 0.0256* 0.0380†   

      

λ cut R UVS 561 578 570 ± 5 12 

 VIS 556 586 567 ± 8 16 

      

Bmid R UVS 0.0294‡ 0.0187*   

 VIS 0.0170* 0.0190*   

      

* Calculated from b 
† Obtained from literature 
‡ Calculated from λ cut and λ mid 
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Table S5. 8 Photoreceptor density ratios values selected for comparisons from all known ratios 

with the justification for including these in our analyses (See Table S5.4 for complete data and 

references).  

Order Species SWS1 SWS2 MWS LWS Reason for inclusion 
       

Anseriformes Branta 
canadensis  

1.00 3.16 4.18 5.92 Largest SWS2 value 
(Excluding A. 
minutus) 

Charadriiformes Anous minutus 1.00 9.59 16.82 14.29 Most skewed overall 

Columbiformes Streptopelia 
chinensis 

1.00 1.25 1.61 1.43 Smallest (Max/Mean) 

Coraciiformes Todiramphus 
sanctus 

1.00 1.32 1.55 6.36 Largest (Max/Mean)  
(Excluding A. 
minutus) 

Galliformes Pavo cristatus 1.00 1.88 2.20 2.11 Classic visual system 

Passeriformes Leiothrix lutea 1.00 2.50 2.50 5.50 Most skewed 
Passerine 

Passeriformes Average 1.00 1.91 2.79 2.96 Average passerine 

Pelecaniformes Phalacrocorax 
varius 

1.00 2.45 5.83 1.43 Most skewed MWS 

Procellariiformes Puffinus 
pacificus 

1.47 1.00 1.53 2.12 SWS2 not SWS1 
is smallest value 
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Table S5. 9 Summary of total dichromatism score changes of 70 species of the Order Galliformes when comparing the influence of changing light 

environments. Values reported describe the correlation between the scores (Pearson’s r), how many species (out of 70) were assigned the same 

rank in the comparison (Equal rank), the average rank change (Rank change), the standard deviation of rank change (Rank SD), and the maximum 

rank change (Max change). The simulations were conducted using both the ‘average UV’ and ‘average VIS’ eye types. See Methods and Results 

section for more details. Main comparisons are in relation to an ideal illuminant (wavelength independent) and final comparison presents the 

largest pariwise differences, based on the lowest Pearson’s r value.  

UV  
Eye type Pearson’s r 

Equal 
rank 

Rank 
change 

Rank  
SD 

Max 
change 

 VIS  
Eye type Pearson’s r 

Equal 
rank 

Rank 
change 

Rank 
SD 

Max 
change 

             

Forest 
Shade 0.9996 41 0.71 1.18 7  

Forest 
Shade 0.9992 32 0.77 0.95 4 

Woodland 0.9997 40 0.71 1.14 7  Woodland 0.9996 39 0.54 0.70 3 
Blue Sky 0.9999 51 0.31 0.55 2  Blue Sky 0.9999 61 0.20 0.58 3 
D65 0.9987 28 1.09 1.45 10  D65 0.9986 23 1.06 1.11 5 
Gaps 0.9995 32 0.89 1.16 7  Gaps 0.9991 25 0.91 0.97 4 
Cloudy 0.9996 37 0.77 1.16 7  Cloudy 0.9994 36 0.66 0.85 4 
             

Sky vs D65 0.9986 28 1.17 1.56 10  
Average vs 
D65 0.9986 23 1.06 1.11 5 
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Table S5. 10 Summary of total dichromatism score changes of 70 species of the Order Galliformes when comparing the influence of changing 

maximum photoreceptor sensitivity values. Values reported describe the correlation between the scores (Pearson’s r), how many species (out of 

70) were assigned the same rank in the comparison (Equal rank), the average rank change (Rank change), the standard deviation of rank change 

(Rank SD), and the maximum rank change (Max change). The simulations were conducted using both the ‘average UV’ and ‘average VIS’ eye 

types and modifying the photoreceptor sensitivity parameter using the values presented in Table S6. See Methods and Results section for more 

details. Main comparisons are in relation to the average visual system and final comparison presents the largest pariwise differences, based on 

the lowest Pearson’s r value. 

 

UV  
Eye type Pearson’s r 

Equal 
score 

Rank 
change 

Rank  
SD 

Max 
change 

 VIS  
Eye type Pearson’s r 

Equal 
score 

Rank 
change 

Rank 
SD 

Max 
change 

             

SWS1 Max 0.9999 46 0.43 0.67 3  SWS1 Max 0.9995 35 0.69 0.83 3 
SWS1 Min 0.9994 40 0.49 0.63 3  SWS1 Min 0.9995 45 0.51 0.79 3 
SWS2 Max 0.9999 56 0.23 0.52 3  SWS2 Max 0.9999 54 0.26 0.53 3 
SWS2 Min 0.9996 53 0.26 0.47 2  SWS2 Min 0.9999 63 0.11 0.36 2 
MWS Max 0.9999 64 0.11 0.40 2  MWS Max 1.0000 66 0.06 0.23 1 
MWS Min 1.0000 65 0.09 0.33 2  MWS Min 1.0000 58 0.17 0.38 1 
LWS Max 0.9994 44 0.43 0.63 3  LWS Max 0.9996 39 0.54 0.70 3 
LWS Min 0.9994 33 0.74 0.90 4  LWS Min 0.9992 46 0.43 0.65 2 
All Max 0.9999 47 0.40 0.65 3  All Max 0.9994 32 0.74 0.86 4 
All Min 0.9993 34 0.69 0.84 4  All Min 0.9988 39 0.66 0.95 5 
             
All Max vs 
All Min 0.9986 26 1.00 1.19 6  

All Max vs 
All Min 0.9966 25 1.17 1.45 8 
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Table S5. 11 Summary of total dichromatism score changes of 70 species of the Order Galliformes when comparing the influence of changing oil 

droplet cut-off values. Values reported describe the correlation between the scores (Pearson’s r), how many species (out of 70) were assigned 

the same rank in the comparison (Equal rank), the average rank change (Rank change), the standard deviation of rank change (Rank SD), and the 

maximum rank change (Max change). The simulations were conducted using both the ‘average UV’ and ‘average VIS’ eye types and modifying 

the oil droplet cut-off parameter using the values presented in Table S5.7. See Methods and Results section for more details. Main comparisons 

are in relation to the average visual system and final comparison presents the largest pariwise differences, based on the lowest Pearson’s r 

value. 

UV  
Eye type Pearson’s r 

Equal 
score 

Rank 
change 

Rank  
SD 

Max 
change 

 VIS  
Eye type Pearson’s r 

Equal 
score 

Rank 
change 

Rank 
SD 

Max 
change 

             

C Max 0.9998 55 0.26 0.56 3  C Max 1.0000 68 0.03 0.17 1 
C Min 0.9999 60 0.17 0.45 2  C Min 0.9976 37 0.83 1.25 8 
Y Max 1.0000 68 0.03 0.17 1  Y Max 0.9999 64 0.09 0.28 1 
Y Min 0.9998 57 0.23 0.54 3  Y Min 1.0000 62 0.11 0.32 1 
R Max 0.9999 60 0.14 0.35 1  R Max 0.9993 30 0.77 0.85 4 
R Min 0.9992 40 0.63 0.94 4  R Min 0.9993 47 0.37 0.59 3 
All Max 0.9998 55 0.29 0.64 3  All Max 0.9893 15 2.40 2.42 13 
All Min 0.9992 44 0.57 0.93 4  All Min 0.9966 29 0.89 1.11 7 
             
R Min vs All 
Max 0.9983 35 0.83 1.17 7  

R Max vs All 
Max 0.9880 10 2.69 2.39 12 
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Table S5. 12 Summary of total dichromatism score changes of 70 species of the Order Galliformes when comparing the influence of changing 

ocular media absorbance curves. Values reported describe the correlation between the scores (Pearson’s r), how many species (out of 70) were 

assigned the same rank in the comparison (Equal rank), the average rank change (Rank change), the standard deviation of rank change (Rank 

SD), and the maximum rank change (Max change). The simulations were conducted using both the ‘average UV’ and ‘average VIS’ eye types and 

modifying the ocular media absorption parameter by increments spanning the range of values presented in Table S5.7. See Methods and Results 

section for more details. Main comparisons are in relation to the average visual system and final comparison presents the largest pariwise 

differences, based on the lowest Pearson’s r value. 

UV  
Eye type 

Pearson’s 
r 

Equal 
rank 

Rank 
change 

Rank  
SD 

Max 
change 

 VIS  
Eye type 

Pearson’s 
r 

Equal 
rank 

Rank 
change 

Rank 
SD 

Max 
change 

             

T314 1.0000 60 0.14 0.35 1  T335 0.9998 53 0.29 0.54 2 
T334 1.0000 60 0.20 0.47 2  T375 0.9996 35 0.63 0.76 3 
T344 0.9999 60 0.51 0.81 4  T395 0.9986 21 1.06 1.06 5 
             
T314 vs 
T344 0.9998 42 0.60 0.92 4  

T335 vs 
T395 0.9976 20 1.20 1.15 5 
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Table S5. 13 Summary of total dichromatism score changes of 70 species of the Order Galliformes when comparing the influence of changing 

photoreceptor densities. Values reported describe the correlation between the scores (Pearson’s r), how many species (out of 70) were assigned 

the same rank in the comparison (Equal rank), the average rank change (Rank change), the standard deviation of rank change (Rank SD), and the 

maximum rank change (Max change). The simulations were conducted using both the ‘average UV’ and ‘average VIS’ eye types and modifying 

the photoreceptor density parameter using the values presented in Table S8. See Methods and Results section for more details. Main 

comparisons are in relation to the average visual system and final comparison presents the largest pariwise differences, based on the lowest 

Pearson’s r value. 

UV  
Eye type Pearson’s r 

Equal 
rank 

Rank 
change 

Rank  
SD 

Max 
change 

 VIS  
Eye type Pearson’s r 

Equal 
score 

Rank 
change 

Rank 
SD 

Max 
change 

             

Branta canadensis 0.9987 32 0.77 0.85 3  Branta canadensis 0.9989 29 0.91 1.00 4 
Anous minutus 0.9900 18 2.14 2.08 11  Anous minutus 0.9935 19 1.91 2.03 9 
Average Passerine 0.0999 35 0.66 0.80 3  Average Passerine 0.9995 46 0.43 0.65 2 
Leiothrix lutea 0.9995 44 0.51 0.76 3  Leiothrix lutea 0.9996 36 0.74 0.93 3 
Pavo cristatus 0.9985 25 1.06 1.13 5  Pavo cristatus 0.9985 34 0.83 1.08 5 
Phalacrocorax 
varius 0.9936 23 1.43 1.82 9  

Phalacrocorax 
varius 0.9948 21 1.26 1.28 7 

Puffinus pacificus 0.9924 12 1.74 1.59 6  Puffinus pacificus 0.9941 17 1.37 1.25 6 
Streptopelia 
chinensis 0.9947 20 1.49 1.47 6  

Streptopelia 
chinensis 0.9955 20 1.23 1.18 5 

Todiramphus 
sanctus 0.9996 38 0.57 0.75 3  

Todiramphus 
sanctus 0.9994 43 0.60 0.92 4 

             
A. minutus vs P. 
pacificus 0.9660 11 3.40 3.12 13  

A. minutus vs P. 
pacificus 0.9760 9 3.00 2.91 12 
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Table S5. 14 Summary of total dichromatism score changes of 70 species of the Order Galliformes when comparing the influence of changing the 

visual system. Values reported describe the correlation between the scores (Pearson’s r), how many species (out of 70) were assigned the same 

rank in the comparison (Equal rank), the average rank change (Rank change), the standard deviation of rank change (Rank SD), and the maximum 

rank change (Max change). The simulations were conducted using the parameters of species for which the physical properties of visual systems 

have been completely characterized, in addition to the ‘average UV’ and ‘average VIS’ systems. See Methods and Results section for more 

details. Main comparisons are in relation to the average visual system and final comparison presents the comparison between the ‘average UV’ 

and ‘average VIS’, as well as the largest pariwise difference, based on the lowest Pearson’s r value. 

UV  
Eye type Pearson’s R 

Equal 
score 

Rank 
change 

Rank  
SD 

Max 
change 

 VIS  
Eye type 

Pearson’s 
R 

Equal 
score 

Rank 
change 

Rank 
SD 

Max 
change 

             

M. undulatus 0.9986 34 0.86 1.13 5  G. gallus 0.9979 31 0.86 1.07 6 
C. caerulus 0.9992 37 0.66 0.87 4  P. cristatus 0.9993 35 0.69 0.84 4 
S. vulgaris 0.9989 28 0.89 1.00 4  P. pacificus 0.9879 17 1.91 1.93 8 
T. merula 0.9978 35 0.97 1.29 6  P. violaceus 0.9969 33 0.86 1.07 6 
             
Average UV vs 
Average VIS 0.9903 15 2.37 2.40 13        
P. cristatus vs 
T. merula 0.9847 12 3.17 2.85 14        
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