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Abstract

World wide, one in nine women is diagnosed with breast cancer in her lifetime and breast

cancer is the second leading cause of death among women. Accurate diagnosis of the

specific subtypes of this disease is vital to ensure that the patients will have the best possible

response to therapy. In this thesis, we use different machine learning techniques to select the

most informative biomarkers for the recently proposed ten subtypes of breast cancer. Unlike

existing gene selection approaches, we use a hierarchical based classification approach that

selects genes and builds the classifier concurrently in a top-down fashion. We also propose

a new bottom-up hierarchical approach to obtain the most informative genes for different

subtypes, while we identify the similarity level between these subtypes. Our results support

that this modified approach to gene selection yields a small subset of genes that can predict

each of these ten subtypes with very high accuracy. The bottom-up approach, on the other

hand, provides an insightful structure for further analysis of these subtypes.
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Chapter 1

Introduction

The human body consists of trillions of living cells [42]. Normal body cells grow, divide

into new cells, and eventually die. The dividing rate of normal cells varies at different

stages of each person’s life. For example, normal cells divide faster in early years to allow

the person to grow appropriately. In an adult person, most of the cells divide only to replace

the existing cells that are about to die or to repair wounds and injuries. When cells in a

specific part of body start to grow out of control, they become cancerous. Although there

are many types of cancer, they all start because of out-of-control growth of abnormal cells.

Cell growth in cancer cells is different from normal cells. Instead of dying, cancer cells

continue to grow and form new cancer cells. They can also grow into (invade) other tissues,

which is not a typical behavior in normal cells. Cancer cells may contain a damaged copy of

DNA. DNA is in every cell and directs all cell actions. When DNA becomes damaged, the

cell tries to repair itself and if it does not succeed, the cell dies. However, the damaged DNA

in a cancer cell is not repaired, and the cell does not die as it is suppose to. Instead, that

1
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cell keeps creating cells that contain the similar damaged DNA. While people can inherit

damaged DNA, most of the DNA damage can be caused by mistakes that happen while the

normal cell is reproducing or by the effects of our environment, though there is still no clear

cause for most types of the cancer.

In most of the cases, the cancer cells form a tumor. Some cancers such as leukemia

rarely form tumors. Instead, these cancer cells involve the blood and circulate through

other tissues. Cancer cells often travel to other parts of the body, where they begin to grow

and form new tumors that replace normal tissue; this process is called metastasis. Different

types of cancer can behave very differently. For example, brain cancer and breast cancer are

very different diseases that grow at different rates and respond to different treatments. For

this reason, people need specific treatment that is aimed at their particular kind of cancer.

On the other hand, machine learning is the subfield of artificial intelligence that studies

problems that generalize from past experience. This thesis looks at classification, where an

algorithm tries to predict the label of an unknown sample. A sample is a single set of fea-

tures (here, gene expression levels for a cancer sample) plus a label, which is the category

(for example, basal or luminal) the sample falls in. The machine learning algorithm takes

many of these samples, called the training set, and builds an internal model. Using that

model, the system can then predict the labels of new samples, called the testing set. Feature

selection, classification and clustering are among the most important applications of ma-

chine learning in bioinformatics, which we also use in this thesis to address the underlying

problem.

As one of the examples of classification methods, support vector machines (SVM) are
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machine learning methods that have been proposed based on statistical learning theory [69],

and have been used extensively in a wide range of applications in bioinformatics. The SVM

follows a data-driven approach towards solving classification problems. High accuracy,

generalization, and capacity to handle high-dimensional data such as gene expression are

among the advantages of using SVM for transcriptome analysis [58].

1.1 Motivation

Breast cancer is one of the leading causes of cancer related deaths among women in North

America [1]. Breast cancer is not just one disease, but rather a combination of different

diseases that occur in the same site. There are different types of breast cancer that can

be distinguished based on gene expression characteristics. Appropriate diagnosis of the

specific subtypes of breast cancer is very important to ensure that the patient response to

the therapy in the best approach.

A study using a collection of over 2,000 breast tumors has revealed that breast cancer

can be categorized into at least ten subtypes, based on Dunn’s index [2]. In that study,

using a combination of copy number variations (CNVs), copy number aberrations (CNAs)

and single nucleotide polymorphisms (SNPs) along with gene expression data led the re-

search group to obtain ten distinct subtypes of breast cancer. In this thesis, the focus is on

identifying a small subset of genes that can reliably predict each of these ten breast cancer

subtypes using gene expression information.
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1.2 Problem

The problem that we have addressed in this work is to find a small subset of genes that

can predict the newly discovered ten breast cancer subtypes with the highest accuracy.

Since there are two main criteria (level of accuracy and number of genes), we face a multi-

objective problem in optimization [37]. Moreover, we aim to find the similarity between

these ten subtypes using a bottom-up clustering approach.

1.3 Contributions

The main contributions of this thesis are:

• Using a hierarchical top-down approach for developing a prediction model for newly

discovered ten subtypes of breast cancer.

• Proposing a bottom-up approach based on different similarity measures for clustering

subtypes, producing a tree-based model with a semi-balanced topology.

• Using different classification methods with in-depth comparison of their performances

on the METABRIC dataset.

• Evaluating the proposed models using different performance measures and compar-

ing their performances for various cases.
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1.4 Thesis Organization

This thesis comprises six chapters. Chapter 2 discusses breast cancer and its subtypes. In

Chapter 3, we provide an introduction to the machine learning techniques used in this thesis.

Chapter 4 includes the methods and materials that we have used to address the underlying

problem. Chapter 5 includes the results of the experiments that we conducted, as well as

the relevant comparisons and discussions. Finally, in Chapter 6, a conclusion on this thesis

is made and future works are discussed.



Chapter 2

Breast Cancer

Breast cancer consists of a group of cancer cells that can grow into surrounding tissues or

spread to distant areas of the body. Breast cancer is a heterogeneous disease [50], which

means that some tumors are very aggressive and respond poorly to treatment, while others

respond well and lead to better patient survival.

Breast cancer is increasingly considered to be not just one disease, but a group of dis-

eases distinguished by different molecular subtypes, risk factors, clinical behaviors, and

responses to treatment. Distinct molecular subtypes of breast cancer have been identi-

fied using gene expression profiles, a process that is both complex and costly [50]. More

convenient approximations of molecular subtypes have been identified by using biological

markers, including the presence or absence of estrogen receptors (ER+/ER-), progesterone

receptors (PR+/PR-), and human epidermal growth factor receptor 2 (HER2+/HER2-) [52].

Molecular subtypes are increasingly being used for research purposes; however, questions

remain about their usefulness to further tailor breast cancer treatments and predict breast

6
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cancer prognosis [26, 52].

2.1 Stages of Breast Cancer

The prognosis of breast cancer is strongly influenced by the stage of the disease. There

are two main systems for describing the stage of cancer. The TNM classification system

uses information on tumor size and the extend that the tumor spreads within the breast (T),

the extend of spread to the nearby lymph nodes (N), and the absence or presence tumor

invasion to distant organs (M) [22]. Once T, N, and M are determined, a stage of 0, 1, 2, 3,

or 4 is assigned, with stage 0 being in situ, stage 1 being early stage of cancer, and stage 4

being the most advanced level of the disease. The TNM staging system is commonly used

in clinical settings. The Surveillance, Epidemiology, and End Results (SEER) Summary

Stage system is more simplified than the TNM system. The SEER system is commonly

used for public health research and planning as well as reporting cancer registry data [77] .

Based on the SEER system, the local stage refers to cancers that are confined to the breast,

which corresponds to stage 1 and some stage 2 cancers in the TNM system. Regional stage

refers to tumors that have spread to surrounding tissue or nearby lymph nodes (generally

corresponding to stage 2 or 3 cancers, depending on the size of the tumor and lymph node

involvement level). Distant stage refers to cancers tumors that have metastasized to other

distant organs or lymph nodes above the collarbone (corresponding to stages 3c and 4 in

the TNM system) [65].
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2.2 Breast Cancer Subtypes

There are at least five major molecular breast cancer subtypes according to the gene expres-

sion profiles of tumor samples in previous studies [50]. They are basal-like, HER2, luminal

A, luminal B and normal-like. These subtypes are characterized by different clinical out-

comes and respond to different treatments [30, 50, 60, 61].

About 40% of breast cancers are luminal A, making it the most common breast cancer

subtype [49]. These tumors tend to be ER+ and/or PR+ and HER2-, slow-growing, and less

aggressive than other subtypes. Luminal A tumors are associated with the most favorable

short-term prognosis, in part, because the expression of hormone receptors is predictive of

a favorable response to hormonal therapy; however, long-term survival is similar to or even

lower than some other subtypes [9].

About 10% to 20% of breast cancers are luminal B [49, 72]. Like luminal A tumors,

most luminal B tumors are ER+ and/or PR+, but they are distinguished by either expression

of HER2 or high proliferation rates (high numbers of cancer cells actively dividing) [17].

About 10% to 20% of breast cancers are basal-like, and the majority of basal-like

breast cancers are referred to as triple negative because they are ER-, PR-, and HER2- [14,

72]. Basal-like tumors are more common in African American women and premenopausal

women [32]. Women diagnosed with basal-like breast cancer have a poorer short-term

prognosis than those diagnosed with other breast cancer subtypes because there are no tar-

geted therapies for these tumors.

About 10% of breast cancers produce excessive HER2 (a growth-promoting protein)

and do not express hormone receptors (ER- and PR-) [49]. Similar to the basal-like sub-
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type, these cancers tend to grow and spread more aggressively than other breast cancers

and are associated with poorer short-term prognosis compared to ER+ breast cancers [9].

However, the use of targeted therapies for HER2+ cancers has reversed much of the adverse

prognostic impact of HER2 overexpression.

A recent study using a collection of over 2,000 breast tumors has revealed that breast

cancer can be categorized into at least ten subtypes, based on Dunn’s index [18]. Accurate

prediction of cancer subtypes can aid in directing patient’s therapies. Techniques such as

breast MRI, mammography, and CT scan, examine the phenotypic mammary change, but

do not provide information to direct therapy. Genomic techniques provide high-throughput

tools useful for diagnosis and treatment of breast cancer. The huge amount of genomic

data and resources that have been generated, have allowed researchers to use unsupervised

machine learning techniques to establish distinct tumor subtypes [50, 66].



Chapter 3

Machine Learning

Machine learning is a subfield of artificial intelligence that studies problems that generalize

from past experience. In this thesis, we use different machine learning methods such as

classification, feature selection and clustering.

In general, a learning problem considers a set of n samples of data and then tries to

predict properties of unknown data. If each sample is more complex than a single number,

it is said to have several attributes or features. We can separate learning problems into two

main categories: supervised learning and unsupervised learning.

In some cases, we have samples that belong to two or more classes and we want to

learn, from already-labeled data, how to predict the class of unlabeled data. These types

of problems are categorized as supervised learning problems. An example of a supervised

learning problem could be cancer subtype identification, for example, in which the aim is

to assign a patient (or sample) to one of the subtypes of a specific cancer, such as breast

cancer.

10
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Unsupervised learning, in which the training data consists of a set of input vectors X

without any corresponding target values. The goal in such problems can be to discover

groups of similar examples within the data, in which case it is called clustering, or to de-

termine the distribution of data within the input space, known as density estimation, or to

project the data from a high-dimensional space onto a two or three dimensional space for

the purpose of visualization.

3.1 Classification

Classification is one of the main supervised learning applications. The aim of classification

is to assign objects to one of the given classes. For a specific classification problem, the

aim is to develop an application that can classify objects correctly with a reasonably high

accuracy.

The classification problem can be stated as follows: A sample is a pair, (xi,zi), where

xi is a p-dimensional feature vector. Usually, xi ∈ Rp, and zi is the label of the sample,

which indicates the class that the sample belongs to. The input to the classifier is a set of

measurement vectors along with their known classes. This set, called the training set, is

used to build the classifier. Once the classifier is built, given a new test sample, x, its class

can be predicted by the classifier.

The high-dimensional nature of many classification tasks, i.e., the very large number of

available features, may impose a problem for classifiers, especially when there are relatively

few samples. Therefore, in many cases, a small subset of the available features need to be

selected; this task is called feature selection. We discuss about feature selection in more
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detail in the next sections.

The main goal of designing a classifier is to build an algorithm that is as accurate as

possible when it comes to classifying new test samples. This challenge is not a straightfor-

ward task due to several reasons. The first problem is that we are often given a relatively

small training set, which is usually the case when it comes to analyzing biomedical data.

Thus, the classifier has to infer a general behavior from relatively few samples. The next

problem is that we assume that the training set faithfully represents the test set, or the real

world. However, specifically when the sample size is small, it is less likely to accurately

represent the real world, and more likely to be biased. Another problem is the complexity

of the model and its relationship to performance and generalization capabilities. If the clas-

sifier is too simple, it may fail to capture the underlying structure of the data. On the other

hand, if the classifier is too complex and there are too many free parameters, it may lead

to overfitting, where the learned model highly fits the training set, but performs poorly on

test samples. Thus, achieving optimal performance on the training set is not the main goal

and not even a requirement for a classifier. It may be possible that a classifier can achieve

100% classification accuracy on the training set but the expected performance on a test data

is poorer than what could be achieved by different methods that have less performance on

their training dataset.

Another problem is the definition of optimality. There are several ways of measuring

the performance of the classifier. For binary classification problems the most common one

is the error rate. But even this is not a simple task, as the error rate needs to be estimated

and usually can not be directly calculated.
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There are many methods for estimating the generalization error, e.g., the test-set method,

cross validation, bootstrap, jackknife, and others. [76]. The focus of this work is on cross

validation techniques, in particular, the ten-fold cross-validation method.

Cross-validation calculates the error by repeatedly partitioning the given training set

into two disjoint subsets: the training subset and the test subset. When a sample belongs to

the test subset, its label is hidden from the classifier that has been built based on the training

subset only, and the prediction of its class can be compared to its true class. The process is

repeated with several partitions and gives an estimate of the performance of the classifier.

The k-fold cross-validation partitions the given training set into k subsets (preferably of

equal size). Then, training is done on k-1 subsets and testing is done on the remaining

subset. This process is repeated as each subset is taken to be a test set, in turn.

Generally speaking, there are two approaches for developing a classifier: parametric

and nonparametric. In parametric approaches [25], there is a priori global knowledge of

data distributions. The nonparametric approach, on the other hand, does not have this a

priori knowledge about the data distributions. There are different types of nonparametric

classification approaches such as neural networks, fuzzy systems, decision trees, random

forests and SVMs. In the next section, we discuss some of these classifiers in more detail.

3.1.1 Support Vector Machines

SVMs [67, 68, 71] are very popular linear discrimination methods built based on a simple,

yet powerful idea. The idea is to use the support vectors for separating classes. A separating

hyperplane H is the best if it has the largest margin. The margin can be defined as the
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largest distance between two hyperplanes parallel to H on both sides that do not contain

sample points between them. For a better demonstration, Figure 3.1 shows an example

of such hyperplane. We can see that there are different separating hyperplanes that can

be used based on the given training set. The separating hyperplane that leaves the closest

points from different classes at maximum distance from it is preferred, as the two groups

of samples are separated from each other by the largest margin. This provides the least

sensitive model to minor errors.

As mentioned earlier, SVMs are supervised learning methods, based on the statistical

learning theory, which are designed for classification and pattern recognition. The SVM

works by estimating a function called linear discriminant function that models the problem

[6, 70, 71]. The SVM could also be modeled as a non-linear classifier with the use of differ-

ent kernel functions. We examine both linear SVM and non-linear SVM in our approach.

We have tried various kernel functions such as polynomial of degrees 2 and 3, radial basis

function (RBF), and the sigmoid function as kernels.

In essence, the SVM maps the input samples onto a higher dimension feature space, and

tries to find a hyperplane that separates the classes with the largest margin possible in the

new space. In case that the problem is not linearly separable, based on the idea of the soft-

margin, the SVM chooses a hyperplane that separates the samples as clearly as possible. In

this thesis, we used Weka data mining tool with LibSVM for our implementation [27].

Normally, SVMs are formulated for two-class problems. However, there are some types

of SVM that can handle multi-class problem, such as pairwise SVMs and one-against-all

SVMs. Pairwise SVMs convert an n-class problem into an n(n− 1)/2 pairwise problem
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Figure 3.1: Separating hyperplanes and margin. Two different possible separating hyper-
planes are shown (solid lines). A separating hyperplane with small distance from closest
points (top) and a separating hyperplane that leaves the closest points at maximum distance
from it (bottom). The dash lines identify the margin.
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[64]. This covers all the pairs of the classes. In a one-against-all SVM, an n-class prob-

lem is converted into n two-class problems and for the jth two-class problem, class j is

separated from the remaining classes [70]. Both of the aforementioned formulations may

produce unclassifiable regions if a discrete decision function is used. As discussed in the

next chapter, we use a tree-based SVM scheme to overcome this issue.

3.1.2 Decision Trees

A decision tree is a tree structure that allows us to show dependencies among features

and the underlying classes. It can also be used to identify the corresponding class for an

unknown sample [54]. The tree consists of the root, internal nodes and leaves. All internal

nodes and the root node represent features, while leaves indicate the classes depending on

the value of the attributes on the path from the root to a particular leaf. An illustration

of a decision tree for playing tennis is shown in Figure 3.2. As shown in the figure, the

decision tree provides a decision based on three attributes: outlook, humidity and wind.

For exmaple, if the outlook is sunny and humidity is normal, the decision for playing tennis

is yes, while if the outlook is rainy and the wind is strong, the decision is no.

Each decision tree is constructed recursively, using a set of learning samples. In every

recursive step, samples from previous steps are divided into smaller subsets depending

on the value of the best attribute, which maximizes the criteria over the current subset of

samples [55].

When the tree is constructed, it can be then used for classification of new unknown

samples. Given the simple structure of the decision tree, finding the corresponding class
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Figure 3.2: A decision tree for playing tennis based on three attributes: outlook, humidity
and wind.

is straightforward. To acheive this, only a few comparisons on attribute values need to be

performed starting from the root of the tree. At each internal node, the case’s outcome is

determined and the comparison shifts to the one of the sub-trees, based on the outcome of

the previous step. When a leaf is reached, the class is determined.

3.1.3 Random forest

A random forest consists of a set of decision trees T, in which each of them depends on the

value of a random vector that has been sampled independently and with the same distribu-

tion for all trees in the forest [47]. Figure 3.3 shows an illustration of a random forest. Each
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Figure 3.3: An example of a random forest containing n trees. For an unknown sample x,
each tree votes for one of the classes, and the final class is determined by voting.

tree in the forest is grown as follows [11]:

• Let N be the number of samples in training set. We select Nr samples randomly with

replacement to use them as training set for growing each tree.

• If F is the number of features in dataset, a number f << F is specified in such a way

that at each node, m variables are selected at random out of all the features. The value

of m is fixed during the forest growing phase. There is no pruning to the trees and

each tree can be grown to the largest extent possible.
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Decision making in the random forest is based on voting. When a new sample comes,

each tree in the forest classifies the sample and votes to one of the classes. At the end of the

procedure, the class with the highest number of votes is declared as the class corresponding

to the new sample.

The performance of the random forest depends on two factors [11]: The correlation

between any two trees in the forest and the strength of each individual tree. Increasing

the correlation between the trees reduces the performance of the forest, while increasing

the performance of each individual tree improves the performance of the forest. Using a

small number of features decreases the correlation between the trees, while at the same

time, it reduces the performance of the individual trees as well. Increasing the number of

features used in each tree, on the other hand, increases the performance of the tree, while,

at the same time, it increases the correlation between the trees in the forest. Somewhere in

between is an optimal range for the number of features used in each tree, which is usually

quite wide [11].

3.2 Clustering

Unlike classification, which is usually supervised, clustering techniques are unsupervised

thechniques used when the labels of a given dataset are unknown. The goal of clustering is

to partition the instances into groups or clusters that are more similar to each other rather

than to instances from other clusters [56].

Generally speaking, clustering techniques can be placed into one of two categories,

partition-based and hierarchical [33]. Partition-based approaches divide the data into a
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pre-set number of clusters. Hierarchical clustering algorithms, on the other hand, create a

tree-like structure, wherein subgroups are merged until become one group.

3.2.1 Partition-based Clustering

One of the best-known partition-based clustering approaches is the k-means algorithm [43],

where k is the desired number of clusters. The k-means algorithm begins by selecting

K instances and defining an initial centroid for each of the k clusters as the location of the

instance itself. The k centroids are then repeatedly updated by alternating between assigning

instances to the closest centroid, in terms of a specific distance function. In the next step, the

new centroid is calculated again based on the arithmetic or geometric mean of the features

of the instances that have been assigned to the cluster. There are different distance metrics

that can be used such as Euclidian distance, city block and Pearson correlation [19]. There

are different methods for initialization of k-means, for which a comprehensive analysis of

the common techniques can be found in [15].

Expectation-maximization (EM) [20] is another clustering technique that tries to cluster

data with the assumption that the samples have been generated from n probability distribu-

tions, and attempts to estimate the parameters of these distributions. Cluster memberships

are determined based on the probability distribution that most likely generates each sample.

One of the common distribution used in EM is the mixture of Gaussians model, which as-

sumes that the probability distributions are multivariate Gaussians [8]. The goal of EM is to

compute the maximum likelihood estimation of the parameters for Gaussian distributions

(means and the variances) based on the data.
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Non-parametric clustering approaches have a different assumption about the definition

of the clusters. For example, in density-based clustering techniques, the clusters are defined

as contiguous regions of high density separated by regions of low density [35]. Since these

methods do not make any assumption about the underlying distribution of the data, they

can define clusters with arbitrary shapes. One of the most well-known non-parametric

clustering methods is spectral clustering [73].

3.2.2 Hierarchical Clustering

One of the other categories of clustering methods consist of hierarchical clustering tech-

niques. Hierarchical clustering is one of the most straightforward methods among different

ways of forming clusters. The main idea behind this technique is that the objects being

more related to nearby objects than to objects farther away. Hierarchical clustering can be

either agglomerative, which considers each sample as a separate cluster and then merges

the clusters; or divisive, which starts by considering all samples as a single cluster and then

divides the cluster into sub-clusters, and so on. [34]. Agglomerative hierarchical cluster-

ing considers each sample as a cluster. Any two samples that have the smallest distance

from each other are joined into a single cluster. At each step, one of these three scenarios

can happens: individual samples are added to existing clusters, two individual samples are

combined, or two existing clusters are combined.

The distance between two clusters with more than one sample in the cluster can be

defined in various ways. For example, the average distance between all pairs of samples is

formed by taking one member from each of the two clusters and calculating the distance
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between them. The largest or smallest distance between two sample from different clusters

can be taken. There are different methods for measuring the distance between clusters.

However, different methods may produce different solutions. Linkage criteria determine

the proximity of the objects to each other using distance information. Once the proximity

between the objects in the data set has been computed, the objects are paired into binary

clusters and the process continues until a hierarchical tree is formed. The arrangement of

the clusters produced by the hierarchical clustering can be illustrated with a dendrogram,

which is a useful approach to illustrate the clustering of genes or samples in bioinformatics

and computational biology.

Most of the agglomerative hierarchal clustering algorithms can be considered as one of

the variants of three standard algorithms: single linkage, complete-linkage, and minimum

variance [33]. These algorithms initialize every instance as a separate cluster and combine

the clusters based on the minimum, maximum or average distance between the clusters.

The algorithm terminates once all the instances have been merged into a single cluster. The

mergers are usually presented visually as a dendrogram, which shows every merger of the

algorithm starting at the beginning with each instance as a single cluster.

In single linkage, the distance between two clusters is equal to the distance between the

two nearest neighbors in such a way that two neighbors belong to different clusters. Figure

3.4 shows an example of single linkage distance evaluation between two clusters.

Complete linkage, on the other hand, evaluates the distance between two clusters based

on the distance between the furthest neighbors in such a way that each neighbor belongs to

one of the clusters. Figure 3.5 shows an example of complete linkage distance evaluation
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Figure 3.4: Single linkage distance evaluation between two clusters.

between two clusters.

Figure 3.5: Complete linkage distance evaluation between two clusters.

Instead of relying on a pair of samples for determining the distance between two clus-

ters, average linkage takes the distances between all pairs of samples into account and

calculates the average of all possible distances. In other words, the distance between two

clusters using the average linkage method can be computed as follows:
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AverageDist =
1
|A| |B| ∑x∈A

∑
y∈B

d(x,y) (3.1)

where A and B are two clusters.

Ward’s method is one of the other approaches that uses analysis of variance to evaluate

the distances between clusters [34]. Ward’s minimum variance method is a special case

of the objective function approach originally presented in [75]. Ward’s method works as

follows:

• Using analysis of variance to evaluate the distances between clusters.

• Minimizing the sum of squares of any two (hypothetical) clusters that can be formed

at each step, as follows:

di j =
Ni×N j

Ni +N j

√
||ci− c j||2 (3.2)

where Ni and N j are the numbers of samples in cluster i and j respectively and ci and

c j denote the centers of the clusters; ||.|| is the Euclidean norm.

• The mean and cardinality of the new merged cluster, k, is computed as follows:

ck =
1

Ni +N j
Nici +N jc j, (3.3)

Nk = Ni +N j (3.4)

This process continues until all the clusters are merged into a single cluster.
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3.3 Feature Selection

One of the main problems associated with machine learning and pattern recognition is the

so-called curse of dimensionality [63]. If the samples have many features (which is usually

the case in most of the biological data), it makes the data analysis time consuming. The task

of feature selection is to reduce the dimension of the data (removing redundant features) as

much as possible while still retaining as much relevant information as possible [76]. There

are many benefits of using feature selection, especially when dealing with a very large

number of features. Feature selection can remove redundant or irrelevant information and

obtain a better classification performance. Moreover, reducing the number of features used

by the classifier can increase the generalization capability of that model [63]. Thus, one

of the goals in this study is to obtain a small subset of features (genes) that can effectively

identify the subtypes of breast cancer without losing the generalization ability of the model.

Feature selection can be done in two ways: One way is to rank the features based on

some criterion and select the top k features. This approach is called filter method, since the

optimality of a feature is evaluated independently. Another way is to select a subset of fea-

tures with minimum learning performance deterioration. This approach is called wrapper

method. In this method, the subset selection algorithms can automatically determine the

number of selected features, while filter methods need to rely on some given threshold to

select relevant features. Filter methods, on the other hand, are usually much faster than the

wrapper methods, since they evaluate each feature independently, while in wrapper meth-

ods, all the relationships between features also need to be considered. In the next section,

we discus about two feature selection methods from both approaches.
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3.3.1 Chi-squared Method

Chi-squared is an efficient feature selection method for numeric data that automatically and

adaptively discretizes numeric features and selects features as well [38]. Chi-squared is a

univariate filter based on the χ2 statistic [39]. This method evaluates the worth of each

feature by computing the value of the chi-squared statistic with respect to the class. The

higher the value of chi-squared, the more relevant the feature will be, with respect to the

class. Since this method evaluates the relevance of each feature independently, the method

is usually fast in terms of the running time. This is very important when there are many

features in a given dataset (such as biological datasets).

3.3.2 minimum Redundancy Maximum Relevance (mRMR)

The mRMR method [48] selects those features that have the highest relevance with the

target class and the lowest redundancy. In other words, mRMR selects features that are

maximally dissimilar to each other. Both optimization criteria (Maximum- Relevance and

Minimum-Redundancy) are based on mutual information. Peng et al. [48] proposed the

minimum redundancy maximum relevance (mRMR) method, where the criterion is given

by the following formula:

mRMR = max
j∈Q−S

[
I( f j,y)−

1
|S|∑s∈S

I( f j, fs)

]
(3.5)

where f j is the jth variable in the initial F-dimensional feature space, fs is a variable that

has already been selected in the feature subset S, s is an individual feature and Q contains

all the features in the initial feature space. Moreover, S contains the selected features and
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Q− S contains those features that are not selected. Also, |S| denotes the cardinality of

the selected subset. In practice, the mRMR filter approach is highly successful in many

applications [10, 13, 36, 45], thereby justifying the intuitive concept that selecting features

based on the compromise between relevance and redundancy may be more appropriate than

relying solely on the naı̈ve idea of selecting features only on the basis of relevance.

3.4 Performance Evaluation

Assessing the performance of a classifier is very important and critical toward obtaining a

good and robust model. There are different types of performance metrics that we briefly

review here. Suppose that we deal with two classes: positive and negative. Table 3.1 shows

the confusion matrix of these two classes.

Table 3.1: Confusion matrix corresponding to the original and classified samples for two
classes.

Predicted class

Positive Negative

Actual class
Positive TP FN

Negative FP TN

• T P represents the number of true positives or the number of samples belong to class

positive that have been classified as positive.

• T N represents the number of true negatives or the number of samples belong to class
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negative that have been classified as negative.

• FP represents the number of false positives or the number of samples belong to class

negative that have been classified incorrectly as positive.

• FN represents the number of false negatives or the number of samples belong to class

positive that have been classified incorrectly as negative.

Using the above confusion matrix, different performance metrics can be calculated. For

example, Accuracy can be computed as follows:

Accuracy =
T P+T N

T P+FN +FP+T N
, (3.6)

F-measure uses both precision and recall measures to compute the score as follows:

F-measure = 2× Percision×Recall
Percision+Recall

, (3.7)

where

Percision =
T P

T P+FP
, (3.8)

Recall =
T P

T P+FN
, (3.9)

Another measure is the area under the ROC curve (AUC). The receiving operating char-

acteristics (ROC) curve shows the trade off between Specificity and Sensitivity (Recall).

where

Sensitivity (Recall) =
T P

T P+FN
, (3.10)
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Figure 3.6: An example of the ROC curve and the relation between AUC, Specificity and
Sensitivity.

Speci f ity =
T N

T N +FP
, (3.11)

Figure 3.6 shows an example of an ROC curve. The closer the area under the ROC

curve is to one, the better the performance of the classifier is.

3.5 Previous Work on Gene Selection for Breast Cancer

Analysis

Modeling today’s complex biological systems requires efficient computational models to

extract the most valuable information from existing data. Machine learning approaches can

help researchers to extract these information from biological and clinical data. for example

using a classification model, we can predict the subtypes of breast cancer. Some of the
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relevant approaches are briefly discussed here. Liu and colleagues proposed an entropy-

based method for classifying cancer subtypes [41]. In that method, the genes related to the

different cancer subtypes are selected by reducing the redundancy between genes. Another

method uses a classification model containing a two-layer structure named as mixture of

rough set (MRS) SVM [78]. In that model, the rough set classifier acts as the first layer to

determine some singular samples in the data, while the SVM classifier acts as the second

layer to classify the remaining samples. Recursive feature addition (RFA) is another method

that combines supervised learning and statistical similarity measures to select genes that

are relevant to the cancer subtype [40]. Mohamad et al. proposed a gene selection method

based on binary particle swarm optimization (BPSO)[46]. In that model, a small subset of

the most relevant genes is selected for cancer classification. Al-alaak et al. used a random

forest classification model to predict survival in breast cancer [2]. Menden et al. [44]

developed a machine learning model to predict the response of cancer cell lines to drug

treatment based on both the genomic features of the cell lines and the chemical properties

of the considered drugs. In another effort, Eshlaghy et al. [23] used decision trees, SVMs

and artificial neural networks to predict breast cancer recurrence. Rezaeian et al. used a

hierarchical classification model to predict the subtypes of breast cancer [53].
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Methods

In this chapter, we discuss the proposed methodology of our approach to the problem of

finding relevant genes corresponding to each subtype. To solve the problem, we used two

different strategies. In the first model, we used a top-down approach to obtain a hierarchical

tree in such a way that each leaf consists of one of the ten subtypes. This model is similar to

the one used in a previous study by Rezaeian et al. [53]. In that study, a smaller dataset was

used and also, the classification model was based on the older five breast cancer subtypes.

In the second approach, we used a bottom-up model to find the most similar subtypes in

each stage and merge them together in an agglomerative clustering fashion. We describe

each model in detail in the next sections.

31
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4.1 Datasets

In this study, we have used the METABRIC dataset [18]. The METABRIC dataset (ac-

cession number EGAS00000000083) contains the copy numbers and gene expressions of

2000 primary breast tumors with long-term clinical follow-up. In that study, the copy num-

ber aberrations and copy number variations generated using Affymetrix SNP 6.0 arrays and

gene expression data were obtained using Illumina HT 12 technology. The dataset contains

two sets of data, validation set and discovery set. Due to the lack of class labels in the val-

idation set, in this thesis we only used discovery set, which contains 997 samples from ten

subtypes of breast cancer. Each sample contains expression information of 48,803 probe

IDs. The numbers of samples corresponding to each subtype are listed in Table 4.1.

Table 4.1: The number of samples correspond to each of ten subtypes.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

76 45 156 167 94 44 109 143 67 96

Table 4.2 shows a snapshot of the METABRIC dataset. The rows of the table correspond

to the samples, while the columns of the table correspond to the expression level with

respect to probe IDs. Moreover, each sample has been labeled based on both ten subtype

and five subtype models.

Also, Table 4.3 shows the distribution of the samples across different subtypes based

on both five and ten subtypes categorization. As shown in the table, most of the samples

corresponding to normal subtype, are located in the Subtype 4. There is a similar relation-

ship between basal and Subtype 10, as well as Her2 and Subtype 5. All the other subtypes

(subtypes 1, 2, 3, 6, 7, 8 and 9) are occupied mostly by LumA and LumB samples.
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Table 4.2: Snapshot of the discovery set in the METABRIC dataset containing 997 samples
and 48,803 features.
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Table 4.3: Distribution of the 997 samples across different subtypes based on both 5 and 10
subtypes categorization.

For a better illustration, Figures 4.1 and 4.2 show the distribution of the samples across

both five and ten subtypes. The y-axis represents the percentage of samples, while the x-axis

represents the subtypes.

In addition, we used Hu’s dataset [31] for comparison proposes. Hu’s dataset (CEO
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Figure 4.1: Distribution of samples across ten subtypes.

accession number GSE1992) was generated by using different Agilent platforms. Each

platform contains 22,575 probe sets, and there are 14,460 common probe sets among these

three platforms. The dataset contains 158 samples from five subtypes of breast cancer (13

Normal, 39 Basal, 22 Her2, 53 LumA and 31 LumB) and 13,582 genes with unique unigene

IDs.

4.2 Data Pre-processing

The pre-processing of the data has been conducted based on the steps described in [18].

Using an R script [62], each BeadChip has been processed after its scan using the beadarray
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Figure 4.2: Distribution of samples across five subtypes.

package [21]. After processing the chip, the bead-level data are summarized and a series

of 48,803× 12 matrices of log2 of intensities are produced along with standard errors,

and the number of observations. In the next step, potential outlier arrays are removed

based on the bead-level QA scores obtained using the control probes on each array. A

multivariate outlier testing procedure [4] from the arrayMvout Bioconductor package was

used to identify arrays with poor quality based on the bead-level QA scores of all arrays.

The arrays that remain after this three-step procedure are used for subsequent analysis. In

addition, the comprehensive re-annotation of the Illumina HT-12 v3 platform [5] was used

by generating a list of suitable probes based on the following criteria: having a perfect

genomic match, not targeting the sex chromosomes, not containing a SNP, not containing
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a polyG tail at the end of the probe sequence, and having GC content between 38% and

64%, while the probe does not target genes from the PAM50 list. ER-positive and ER-

negative samples have been quantile normalized separately and averaged for obtaining the

target distribution. Each of the arrays was then normalized by quantile normalizing probes

belonging to the target distribution. Using the limma Bioconductor package [59], a linear

model was fit to remove any array mis-positioning with respect to the BeadChip. In the next

step, differential expression analysis was performed on a subset of the log2 of normalized

intensity matrix.

4.3 Top-Down Approach

In this approach, we build the model starting from the top of tree (root). This model is sim-

ilar to the one used in a previous study by Rezaeian et al. [53]. The difference between two

models is that in this work we target a recently proposed ten breast cancer subtypes as our

base model. Moreover, the dataset used for creating this model is based on METABRIC

dataset, which is 20 times larger than the dataset used in the aforementioned study. We

divide the process into two different steps, the training phase and the prediction phase. In

the training phase for gene selection and breast cancer subtyping, the complete gene pro-

file of each breast cancer subtype is compared against the others. The subtypes are then

organized by two main criteria. The first criterion is the level of accuracy with which the

selected genes identify the given subtype. The second criterion is the number of genes

identified. Clearly, applying two or more gene selection criteria is a multi-objective opti-

mization problem [37]. In this study, we select a small subset of genes that yields very high
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accuracy. The subtype that is ranked highest is removed and the procedure is repeated for

the remaining subtypes comparing each gene profile against the others. By repeating this

step, a hierarchical tree is created, where each leaf of the tree becomes a unique subtype.

The flowchart of the training phase is illustrated in Figure 4.3. Also, an example of

such a tree is illustrated in Figure 4.4. Suppose there are ten different subtypes, namely

{C1,C2, . . . ,C10}. The Training data is an f ×n matrix D = D1,D2, . . . ,D10 corresponding

to the ten subtypes. Di, with the size of f × ni is the training data for subtype Ci, while f

and Ni are the number of features (probe IDs) and the number of samples in subtype Ci,

respectively. The total number of samples for all ten subtypes n is n = ∑
10
i=1 ni.

Note that the terms genes and features will be used indistinctly. In the first step, feature

selection and classification are applied for each class against the other classes, along with

a 10-fold cross-validation scheme. Assume that subtype C6 obtains the highest rank based

on both performance measure and number of genes contributing to that performance. Then,

a leaf for subtype C6 is created and the list of particular features is recorded to create an

internal node for connecting C6 and the rest of the tree. In the next step, the samples

corresponding to subtype C6 are removed from the dataset and the process continues in the

same fashion for the remaining subtypes; i.e. C1,C2,C3,C4,C5,C7,C8,C9,C10. In the next

round, C3 yields the highest rank among the remaining subtypes, and hence the feature list

is retained for creating the internal node, while a leaf is created for C3. This procedure is

repeated until there is no subtype to classify.

In the prediction phase, we use the previously identified genes to predict breast cancer

subtypes. Given the gene expression profile of a new patient, a sequence of classification
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Figure 4.3: Flowchart of the training phase.

steps are performed by traversing the tree from the root toward a leaf. At each node in the

path, only the selected genes for that node in the training phase are tested. If the patient’s

gene profile is classified as the corresponding subtype, then, the prediction phase termi-

nates. Otherwise, the sequence of classification tests continues until a leaf is reached, in

which case, the prediction outcome is the subtype associated with that leaf.
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Figure 4.4: Determining genes related to each breast cancer subtype using the topdown
approach. Gi is the subset of genes selected for subtype i.
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To obtain a list of genes corresponding to each Illumina probe, we used the bioDBnet

online tool (http://biodbnet.abcc.ncifcrf.gov/). BioDBnet is a network of the major biolog-

ical databases with an easy to use Web resources. It contains a vast amount of infomation

available in various formats and in various scattered resources. Some of the advantages

of this tool are the simplicity of the model, the number and types of databases integrated,

support for batch conversions and the integration process itself.

Also, to evaluate the performance of the model, we use accuracy, F-measure and AUC

measures. We also use Chi2 [38] as the feature selection method. After selecting relevant

genes, the samples are classified using SVM [71]. In this study we used the Soft-margin

SVM [1].

For the implementation, the Weka machine learning suite is used [27]. A gene selection

method based on the Chi2 feature evaluation algorithm is first used to find a subset of

genes. For classification, LibSVM [16] in Weka is employed. The Radial basis function

(RBF) kernel is used within the LibSVM classifier without normalizing the samples and

with default parameters.

4.4 Bottom-Up Approach

Using the top-down approach has its own advantages and disadvantages, depending on the

type of question we want to answer. One of the advantages of the top-down model is that

it conducts gene selection and builds the classifier simultaneously. On the other hand, the

samples corresponding to upper-level subtypes are removed during the classification and

feature selection of the downstream subtypes. This makes it hard to conclude the connection
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between genes corresponding to downstream nodes of the tree and their subtypes, since

those genes are obtained under specific circumstances, by removing the samples of the

upper-level subtypes from the dataset. To overcome this issue and achieve a more clear

interpretation between the subset of genes in each node and their corresponding subtypes,

we follow a bottom-up approach. In this approach, instead of building the tree from the root,

we build the tree starting from the leaves. The flowchart of the training phase is illustrated

in Figure 4.5

In the first step, the similarity between each pair of subtypes is computed and the ones

with the highest similarity (lowest distance from each other) will be merged into a single

subtype. Table 4.4 illustrates an example of pairwise comparisons between subtypes to

find the most similar ones at each stage. di, j represents the distance between subtype i and

subtype j.

The selected pair of subtypes falls into one of these three scenarios: an individual sub-

type is merged with an existing combined subtypes, two individual subtypes are combined,

or two existing subtypes are merged into a single cluster. Since at the beginning of the

procedure, there is no combined subtype yet, two individual subtypes with lowest distance

(highest similarity) are merged. Let us assume that these two individual subtypes are S3

and S8 because d3,8 is the smallest distance in the table. These two subtypes are merged

and form a new subtype which is the combination of these two. For the sake of simplicity,

we call it subtype S38. In the next step, these nine subtypes will be compared again in a

pairwise fashion. Table 4.5 illustrates the pairwise comparison between the newly gener-

ated subtype S38 and the remaining subtypes. This process continues until only one subtype
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Figure 4.5: Flowchart of the training phase.

remains.

The distance metric used in this experiment is the Euclidean distance. Moreover, four

different methods have been used to compute the distance between subtypes. These meth-

ods are: single linkage, complete linkage, average linkage and centroid-based linkage. Fig-

ure 4.6 shows an example of generated tree using the bottom-up approach and complete

linkage as distance function.
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Table 4.4: Computing the distance between each pair of subtypes; di, j is the distance be-
tween subtypes i and j.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8 d1,9 d1,10

S2 d2,3 d2,4 d2,5 d2,6 d2,7 d2,8 d2,9 d2,10

S3 d3,4 d3,5 d3,6 d3,7 d3,8 d3,9 d3,10

S4 d4,5 d4,6 d4,7 d4,8 d4,9 d4,10

S5 d5,6 d5,7 d5,8 d5,9 d5,10

S6 d6,7 d6,8 d6,9 d6,10

S7 d7,8 d7,9 d7,10

S8 d8,9 d8,10

S9 d9,10

Table 4.5: Computing the distance between each pair of subtypes after merging S3 and S8.

S1 S2 S4 S5 S6 S7 S9 S10 S38

S1 d1,2 d1,4 d1,5 d1,6 d1,7 d1,9 d1,10 d1,38

S2 d2,4 d2,5 d2,6 d2,7 d2,9 d2,10 d2,38

S4 d4,5 d4,6 d4,7 d4,9 d4,10 d4,38

S5 d5,6 d5,7 d5,9 d5,10 d5,38

S6 d6,7 d6,9 d6,10 d6,38

S7 d7,9 d7,10 d7,38

S9 d9,10 d9,38

S10 d10,38
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Figure 4.6: Tree generated using the bottom-up approach and complete linkage as distance
function.

In the next phase, we use classification and feature selection to determine which genes

are the most discriminative ones in terms of separating the subtypes in each branch of

the tree. For this, we used Chi2 [38] along with different classifiers, such as decision

tree, random forest and LibSVM [16], within the WEKA machine learning suite [27] to

determine the top k genes corresponding to each node.



Chapter 5

Results and Discussion

5.1 Experimental Results

In this chapter, we present the results obtained after applying the top-down and the bottom-

up approaches on the METABRIC dataset. Since two different approaches are presented

in this thesis, the results and analysis of each approach are discussed in separate sections.

The two approaches have some differences in terms of modeling the tree and the main

reason behind creating such a hierarchical structure. In the top-down approach, the main

goal is to obtain a tree with ability of predicting the subtype of an unknown sample with

very high accuracy. Although in the bottom-up approach we still aim for a model that

can classify an unknown sample with high accuracy, the main goal of the approach is to

identify the similarities among the ten subtypes and those genes that are most responsible

for differentiating these similar subtypes. On the other hand, there are some similarities

between the two models. For example, to evaluate the performance of the model, we use

46
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10-fold cross-validation for both approaches. Also, we consider accuracy, F-measure and

area under the curve (AUC) as performance measures for both the top-down and bottom-up

approaches.

5.1.1 Top-Down Approach

Table 5.1 shows the comparison between the SVM classifier with different numbers of

genes versus the presented hierarchical classification model (HCL). As shown in the Table,

using all genes decreases the overall accuracy of the model, since many of the genes are

irrelevant or redundant. For example, using all 48,803 probes, accuracy, F-measure and

AUC are just 59.27%, 0.554 and 0.765 respectively, while using a ranking algorithm and

selecting the top 89 genes (corresponding to the top 100 probes) for prediction increases

the accuracy, F-measure and AUC up to 72.31%, 0.718 and 0.842 respectively. Table

5.2 shows the top genes corresponding to the probes ranked by the Chi-Squared attribute

evaluation algorithm used to classify samples as one of the ten subtypes. We repeated

the same experiment using only the top 20 probes, which correspond to 18 genes. The

corresponding accuracy, F-measure and AUC are 57.97%, 0.558 and 0.759 respectively.

Table 5.3 shows the genes corresponding to the probes ranked by the Chi-Squared attribute

evaluation algorithm to classify samples as one of the ten subtypes.

Using the hierarchical decision-tree-based model makes the prediction procedure more

accurate. Using accuracy and F-measure provides the same hierarchical model and subset

of genes, while using AUC as the performance measure changes the order of the nodes

and the genes. Figure 5.1 shows the tree learned in the training phase and the set of genes
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Table 5.1: Comparison between hierarchical and non-hierarchical classification setups us-
ing LibSVM.
Classification Method Gene Selection Method # of Genes Accuracy F-measure AUC

LibSVM — all genes 59.27% 0.554 0.765

LibSVM Chi-Squared 89 72.31% 0.718 0.842

LibSVM Chi-Squared 18 57.97% 0.558 0.759

HCL HCL 80 91.7% - 98.8% 0.917 - 0.987 0.865 - 0.949

HCL HCL 42 90.7% - 97.1% 0.906 - 0.972 0.862 - 0.942

selected at each step using accuracy as the performance measure. As shown in the figure,

Subtype 6 has been selected as the first node, since the classifier yielded 98.8% accuracy

for discriminating Subtype 6 from other subtypes, which was the highest accuracy among

all subtypes. After removing the samples corresponding to subtype 6 and evaluating other

subtypes in a one-against-all fashion, Subtype 2 yielded 98.6% accuracy, which was the

highest among the nine remaining subtypes. This procedure continues until there is no

subtype to classify. Figures 5.2 and 5.3 show the trees obtained in the same way, but using

F-measure and AUC as the performance measures respectively.

Table 5.1 shows the performance of the model with different setups. In the first hier-

archical setup, only 80 genes are used to predict the subtypes that the patient belongs to.

The hierarchical model is able to increase the accuracy from around 72% to values be-

tween 92 and 99%, depending on the subtype, by using a new subset of genes based on this

hierarchical method, which contains nine genes less than the original method.

To decrease the maximum number of genes per node, we tested different numbers of

genes and a maximum of five genes per node yielding a very high performance to number

of genes ratio. Using the aforementioned hierarchical tree and five probes for each node, the
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Table 5.2: Genes corresponding to the top 100 probe IDs ranked by the Chi-Squared at-
tribute evaluation algorithm to classify samples as one of the ten subtypes.

PGAP3 FOXC1 GRB7 CKS1B UCHL5

ERBB2 PSMD3 CDCA7 CHEK1 BIRC5

WHSC1L1 INTS4 ERLIN2 PDSS1 CLNS1A

BRF2 MCM10 RRNAD1 CCNB2 NAT1

MIEN1 RAB11FIP1 GTPBP4 HEATR1 PPAPDC1B

NME3 TPX2 KIF2C ZMYND10 WHSC1L1

GRB7 TRIP13 CEP55 FAM83D CDC45

STARD3 CENPA CA12 KIF14 REEP6

TCAP MLPH CA12 RAB26 ABAT

GRB7 FAM171A1 TRMU HAPLN3 UBE2T

MELK PDSS1 HID1 SLC7A8 CIRBP

GSDMB CDCA8 RAD51AP1 SKP2 FAM64A

LSM1 NOSTRIN FOXM1 ROGDI DEGS2

MELK PROSC SLC52A2 CCNA2

PSAT1 EXO1 CAPN8 CCNE1

ORMDL3 UCK2 CDC20 ZG16B

FOXA1 MIR3658 MCM10 NDUFC2

GSDMB CENPA ILF2 NDUFC2

ALG8 ASH2L ASPM COG2

DDHD2 WWP1 LPIN1 IQCK
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Figure 5.1: Hierarchical decision tree for determining breast cancer type using selected
genes using accuracy as performance measure.
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Figure 5.2: Hierarchical decision tree for determining breast cancer type using selected
genes using F-measure as performance measure.
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Figure 5.3: Hierarchical decision tree for determining breast cancer type using selected
genes using AUC as performance measure.
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Table 5.3: Top 20 genes ranked by the Chi-Squared attribute evaluation algorithm to classify
samples as one of the ten subtypes.

PGAP3 MELK

ERBB2 GSDMB

WHSC1L1 LSM1

BRF2 MELK

MIEN1 PSAT1

NME3 ORMDL3

GRB7 FOXA1

STARD3 GSDMB

TCAP ALG8

GRB7 DDHD2

proposed model yields a prediction performance very close to that of the previous model

with ten probes for each node. These results are very interesting considering that we used

only 42 genes instead of 82 genes. Figure 5.4 shows the tree learned in the training phase

and the set of genes selected at each step using AUC as the performance measure.

From Table 5.1, we observe that using 80 to 82 genes, the proposed method achieves

the highest performance in terms of accuracy, F-measure and AUC. Using only 42 genes in

the last experiment also yields very high performance.

In a third experiment, considering accuracy as the performance measure, the proposed

model performs very well using different numbers of genes per node (see Figure 5.5). In

this comparison, we used Chi-Squared as the feature selection method and LibSVM as

the classification algorithm. As can be seen in the figure, while in most of the cases the



CHAPTER 5. RESULTS AND DISCUSSION 54

Figure 5.4: Hierarchical decision tree for determining breast cancer types using a maximum
of 5 selected genes in each node and AUC as performance measure.
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Figure 5.5: Comparison between minimum and maximum accuracy of the model using
different number of genes per each node.

maximum accuracy of the model is very similar and close to 98%, the minimum accuracy

varies from 85% to 92%. The reason behind this variation is that in most of the cases,

we have at least one node in the tree, which is able to achieve very high accuracy for

classifying its corresponding subtype even using one or two genes. In contrast, in some

other nodes, using less than three genes can not provide more than 90% accuracy. Thus,

for those nodes we have to increase the number of genes to keep the performance of the

classifier corresponding to that node at a high level.

Moreover, we compared several classification methods using the same Chi-Squared fea-



CHAPTER 5. RESULTS AND DISCUSSION 56

ture selection algorithm. Table 5.4 shows the result of this comparison based on the three

performance measures. For this comparison, we used Chi-Squared feature selection and

42 genes, based on the setup that corresponds to the last row of the Table 5.1. As shown

in the table, LibSVM performs better than the other classifiers. In terms of performance

measures, accuracy and F-measure provide a fair assessment, since they are prone to intro-

duce biased results in imbalanced classification problems, which is the case of the dataset

we use. Using AUC as the performance measure one can solve this issue and produce an

unbiased evaluation.

Table 5.4: Comparison between different classification methods using the HCL method
featuring chi-squared as feature selection and three performance measures.

Classification Method Accuracy F-measure AUC

LibSVM 90.7%-97.1% 0.906-0.972 0.862-0.942

Decision Tree 88.4%-94.9% 0.884-0.949 0.819-0.916

JRip 89.4%-95.3% 0.891-0.952 0.821-0.926

KNN 90.3%-96.6% 0.904-0.967 0.870-0.931

To provide an additional insight to the hierarchical classification model used in this

study, we have conducted the same gene selection and classification procedure for another

dataset from the study of Hu et al. [31]. Selecting a total of 18 genes for that dataset yields

very high prediction accuracy. Running the hierarchical model on the METABRIC dataset

yields very high accuracy too, though lower than those of Hu’s dataset (see Figure 5.6).

This is possibly due to the fact that the subtypes in the METABRIC dataset were origi-

nally obtained using an unsupervised classification model, while those of Hu’s dataset were

pathologically verified. After comparing the genes selected for both datasets, it is notice-
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able that only a few genes are in common for the corresponding subtypes. We then carried

out the same gene selection and classification on both datasets, extending the number of

genes up to 50 per node. The genes in common for both datasets are noticeable for the

subtypes compared: 9 for Basal, 6 for Normal, 12 for Her2 and 19 for Lum A/B. The large

number of common genes for Lum A/B (almost 40%) is consistent with the fact that these

two subtypes are quite similar, and hence the lower accuracy of the model for classifying

these two subtypes. It is also interesting to see that there are a very small number of genes

in common for the Normal subtype. This is possibly due to the presence of some hetero-

geneity in the normal sample tissues. It is also encouraging to see several genes associated

with specific subtypes. In particular, FoxA1 is common in the Basal subtype, which is con-

sistent with previous studies [7]. These genes are important targets for further studies, as

an extension of this work.

In addition, we found an interesting gene set within the luminal subtypes. It is shown

that the mis-regulation of both BUB1 and CENPM genes have been implicated in different

forms of cancer [12]. CDCA5 which encodes the protein Soronin, required for cohesin

binding to the chromatin [57]. CDKN3 is also implicated in cell cycle regulation [28] and

has been shown that, in several forms of cancer, CDKN3 is deleted or mutated [74].

5.1.2 Bottom-Up Approach

This section covers the results of the bottom-up approach for clustering the ten subtypes

in an agglomerative fashion. Several distance evaluation methods such as single linkage,

complete linkage, average linkage and the variance-based method using Ward’s distance
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measure have been applied. Figure 5.7 shows the tree obtained using the single linkage

method.

We repeated the same experiment using the average linkage and complete linkage dis-

tance methods. Figures 5.8 and 5.9 show the trees obtained using the average linkage and

complete linkage methods, respectively.

As shown in the figures, the complete linkage method provides a more balanced tree,

whereas the average linkage and single linkage provide a completely linear tree in terms of

subtype relationships.

We repeated the same experiment using the Ward’s distance method as well. Since

Figure 5.6: Schematic visualization of the trees obtained for Hu’s dataset (left) and the
METABRIC dataset (right).
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Figure 5.7: The hierarchical tree obtained using agglomerative clustering and single linkage
as the distance method.

Ward’s method takes the size of each cluster into account (i.e. the number of samples in

each subtype), it tends to merge smaller clusters first. Figure 5.10 shows the tree obtained

using the single linkage method.
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Figure 5.8: The hierarchical tree obtained using agglomerative clustering and average link-
age as the distance method.

Moreover, we used different performance measures such as accuracy, F-measure and

AUC. To achieve a more comprehensive comparison, we used three different classifiers:
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Figure 5.9: The hierarchical tree obtained using agglomerative clustering and complete
linkage as the distance method.

Decision Tree, Random Forest and LibSVM. Table 5.5 shows the comparison between

different distance methods based on the average of the performance measures in the tree.

We repeated the same experiment and evaluated the minimum value of the performance

measures across all trees. Table 5.6 shows the comparison between the methods in the

worst case. As shown in Table 5.5, random forest performed better than decision tree and

SVM using any distance method in terms of achieving a greater AUC. Using accuracy as the

performance measure can be misleading since the classes (subtypes) contain an unbalanced

number of samples. For example in Figure 5.7, the number of samples in the root of the

tree is 67 for Subtype 9 versus 930 for the remaining subtypes. Using accuracy as the

performance measure and LibSVM as the classifier provides almost 95% accuracy, while
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Figure 5.10: The hierarchical tree obtained using agglomerative clustering and Ward’s
method as the distance method.

43 samples out of a total 67 samples in subtype 9 are misclassified. Using AUC, on the

other hand, yields 0.675 out of 1, which reflects the good performance of the model.

In addition, since Subtype 10 has a large overlap with Basal in the PAM50 index (see

Figure 4.1), creating a separate branch for this subtype at the top of the tree makes more
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Table 5.5: Comparison for using different distance methods to obtain the tree. The measures
are obtained using the average of performances in all nodes of the tree.

Distance Method Classification Method # of Genes Accuracy F-measure AUC

Single Linkage

Decision Tree

41

93.5% 0.933 0.875

Random Forest 94.5% 0.944 0.957

LibSVM 95.0% 0.948 0.872

Average Linkage

Decision Tree

42

92.4% 0.923 0.878

Random Forest 92.7% 0.926 0.942

LibSVM 93.9% 0.937 0.862

Complete Linkage

Decision Tree

37

89.8% 0.897 0.881

Random Forest 90.1% 0.899 0.928

LibSVM 91.5% 0.912 0.890

Ward’s method

Decision Tree

37

89.1% 0.890 0.874

Random Forest 90.8% 0.907 0.935

LibSVM 91.7% 0.916 0.881

sense, biologically. This behavior can be seen in trees generated with average linkage and

Ward’s method only. Moreover, as Figure 4.1 shows, most of the samples from class Her2

fall in Subtype 5 and there is a similar relationship between class Normal and Subtype 4.

The only model out of the four compared trees (single linkage, complete linkage, average

linkage and Ward’s method) that supports these observations, is the tree based on Ward’s

method. Also the genes corresponding to class 10 (see Figure 5.10), are known to be involed

in Basal subtype [7, 29]. ERBB2 gene, which is known as Her2 as well, is one of the genes

related to subtype 5. Moreover, both PGAP3 and MIEN1 genes, which correspond to class
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5, are shown to be over-expressed in Her2 tumor cells [51].

5.2 Discussion

The results demonstrate an impressive accuracy to predict these new breast cancer types

using only 40 to 80 genes. This could allow for the small number of genes to be utilized on

a custom array, reducing costs of the array as well as significantly reducing data processing

time and costs. It would be valuable to determine if these changes are reflected at the protein

Table 5.6: Comparison for using different distance methods to obtain the tree. The measures
are obtained using the lowest performance in all nodes of the tree.

Distance Method Classification Method # of Genes Accuracy F-measure AUC

Single Linkage

Decision Tree

41

87.2% 0.870 0.811

Random Forest 89.1% 0.890 0.909

LibSVM 89.8% 0.895 0.675

Average Linkage

Decision Tree

42

82.5% 0.823 0.797

Random Forest 82.8% 0.828 0.877

LibSVM 87.3% 0.873 0.683

Complete Linkage

Decision Tree

37

72.9% 0.729 0.732

Random Forest 75.8% 0.758 0.790

LibSVM 78.7% 0.765 0.699

Ward’s method

Decision Tree

37

77.9% 0.778 0.784

Random Forest 81.2% 0.813 0.858

LibSVM 81.0% 0.809 0.784
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level. This may lend itself to screening for subtypes based on tissue microarray technology,

enabling the use of paraffin embedded patient samples. This would significantly reduce the

technical problems inherent in obtaining quality RNA from routine clinical samples.

In the bottom-up approach, instead of using the whole model as a unified prediction

model, we aimed to compute the level of similarity between the ten subtypes. Moreover,

we aimed to determine which genes are the most responsible ones for separating similar

subtypes. The results presented here show that using different distance methods can lead

to different tree structures, which may or may not be balanced. Out of different distance

methods, we found that Ward’s method provides the most biologically promising three

structure where class 10 and 5, which consist most of the Basal and Her2 samples, are

separated from the rest at the top of the tree.

Resolving the biological roles for the individual genes that have emerged as unique

identifiers for each subclass may reveal novel directions for therapeutic intervention. Fur-

thermore, applying this method to more refined subtypes characterized using a combination

of platforms, or incorporating patient response to therapy could further decrease the number

of selected genes for each subtype and could reveal important aspects of breast cancer bi-

ology. Some preliminary results of this study have been published in [24] and an extended

version of the article is under review, to be published in BMC bioinformatics journal.



Chapter 6

Conclusions

In this research, our goal was to build a predictive model using a small subset of genes that

can accurately predict the newly discovered ten breast cancer subtypes using the METABRIC

dataset. Considering 997 samples, more than 48,000 features and 630 Gigabytes of raw

data, made the analysis of the METABRIC dataset truly challenging. Another challenge

that we faced was creating a balance between the number of selected genes and the perfor-

mance of the model.

Unlike the other models, which try to find a gene signature that classifies the type of

breast cancer in an all-against-all fashion, using the top-down hierarchical model helped us

to achieve a very high level of accuracy with a smaller subset of genes. Moreover, using

the bottom-up approach, we were able to identify the level of similarity between different

subtypes and yield the most significant genes that differentiate these subtypes.

66
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6.1 Contributions

The contributions of this thesis can be summarized as follows:

• Using a hierarchical top-down approach for developing a prediction model for the

newly discovered ten subtypes of breast cancer.

• Proposing a bottom-up approach based on different similarity measures for clustering

subtypes and producing a tree-based model with semi-balanced topology.

• Using different classification methods and in-depth comparison of their performances

on the METABRIC dataset.

• Evaluating the proposed models using different performance measures and compar-

ing their performances for various cases.

6.2 Future Work

Although the METABRIC dataset consists of a large number of samples, using bigger

datasets can help us better understand the features that predict these subtypes [3]. In this

study, we targeted gene expression levels as key features for subtype prediction and identi-

fication, achieving very high performance. Using other biological information such as copy

number variations (CNVs) and aberrations (CNAs) as well as single nucleotide polymor-

phism (SNP) can help build a more comprehensive model for identification of breast cancer

subtypes.
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Moreover, the development of breast cancer is usually caused by mutations of a small

number of genes, called driver genes, whose changes deregulate many biological processes

and, therefore, lead to initiation and progression of breast cancer. Finding those driver

genes can lead to a deeper biological insight of the relationships among these ten breast

cancer subtypes.



Bibliography

[1] Shigeo Abe. Support vector machines for pattern classification. Springer, 2010.

[2] Asmaa Al-Allak, Gianfilippo Bertelli, and Paul Lewis. Random forests: The new

generation of machine learning algorithms to predict survival in breast cancer. Inter-

national Journal of Surgery, 11(8):607, 2013.

[3] Hamid R Ali, Oscar M Rueda, Suet-Feung Chin, Christina Curtis, Mark J Dunning,

SAJR Aparicio, and Carlos Caldas. Genome-driven integrated classification of breast

cancer validated in over 7,500 samples. Genome Biology, 15:431, 2014.

[4] Adam L Asare, Zhong Gao, Vincent J Carey, Richard Wang, and Vicki Seyfert-

Margolis. Power enhancement via multivariate outlier testing with gene expression

arrays. Bioinformatics, 25(1):48–53, 2009.

[5] Nuno L Barbosa-Morais, Mark J Dunning, Shamith A Samarajiwa, Jeremy FJ Darot,

Matthew E Ritchie, Andy G Lynch, and Simon Tavaré. A re-annotation pipeline for
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Appendix A

Table A.1: Performance of the decision tree classifier along with the single linkage method
for building the tree.

Involved Subtypes Accuracy F-measure AUC

3 vs 4 87.9% 0.879 0.903

3,4 vs 7 87.2% 0.870 0.811

3,4,7 vs 8 89.7% 0.897 0.884

3,4,7,8 vs 6 97.7% 0.977 0.891

3,4,7,8,6 vs 10 94.9% 0.950 0.901

3,4,7,8,6,10 vs 2 97.7% 0.978 0.851

3,4,7,8,6,10,2 vs 5 98.5% 0.985 0.981

3,4,7,8,6,10,2,5 vs 1 93.1% 0.927 0.811

3,4,7,8,6,10,2,5,1 vs 9 94.5% 0.935 0.847

81
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Table A.2: Performance of the random forest classifier along with the single linkage method
for building the tree.

Involved Subtypes Accuracy F-measure AUC

3 vs 4 91.6% 0.916 0.970

3,4 vs 7 89.1% 0.890 0.927

3,4,7 vs 8 91.1% 0.911 0.953

3,4,7,8 vs 6 98.2% 0.982 0.986

3,4,7,8,6 vs 10 95.7% 0.956 0.961

3,4,7,8,6,10 vs 2 97.4% 0.974 0.991

3,4,7,8,6,10,2 vs 5 98.5% 0.985 0.996

3,4,7,8,6,10,2,5 vs 1 94.3% 0.943 0.925

3,4,7,8,6,10,2,5,1 vs 9 94.3% 0.941 0.909

Table A.3: Performance of the LibSVM classifier along with the single linkage method for
building the tree.

Involved Subtypes Accuracy F-measure AUC

3 vs 4 92.3% 0.923 0.922

3,4 vs 7 89.8% 0.895 0.838

3,4,7 vs 8 91.3% 0.912 0.870

3,4,7,8 vs 6 98.2% 0.982 0.906

3,4,7,8,6 vs 10 96.5% 0.964 0.905

3,4,7,8,6,10 vs 2 98.0% 0.981 0.927

3,4,7,8,6,10,2 vs 5 98.1% 0.982 0.985

3,4,7,8,6,10,2,5 vs 1 95.4% 0.952 0.819

3,4,7,8,6,10,2,5,1 vs 9 95.0% 0.941 0.675
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Table A.4: Performance of the decision tree classifier along with the average linkage
method for building the tree.

Involved Subtypes Accuracy F-measure AUC

3 vs 8 83.9% 0.840 0.856

3,8 vs 7 89.7% 0.897 0.911

3,8,7 vs 2 97.4% 0.974 0.962

3,8,7,2 vs 6 98.3% 0.984 0.937

3,8,7,2,6 vs 4 82.5% 0.823 0.820

3,8,7,2,6,4 vs 5 98.5% 0.986 0.979

3,8,7,2,6,4,5 vs 1 93.3% 0.932 0.797

3,8,7,2,6,4,5,1 vs 9 93.6% 0.924 0.850

3,8,7,2,6,4,5,1,9 vs 10 94.7% 0.945 0.789

Table A.5: Performance of the random forest classifier along with the average linkage
method for building the tree.

Involved Subtypes Accuracy F-measure AUC

3 vs 8 83.9% 0.840 0.922

3,8 vs 7 91.4% 0.914 0.955

3,8,7 vs 2 96.9% 0.969 0.982

3,8,7,2 vs 6 97.8% 0.978 0.986

3,8,7,2,6 vs 4 82.8% 0.828 0.877

3,8,7,2,6,4 vs 5 98.4% 0.984 0.993

3,8,7,2,6,4,5 vs 1 94.6% 0.944 0.938

3,8,7,2,6,4,5,1 vs 9 93.7% 0.934 0.896

3,8,7,2,6,4,5,1,9 vs 10 94.7% 0.946 0.933
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Table A.6: Performance of the LibSVM classifier along with the average linkage method
for building the tree.

Involved Subtypes Accuracy F-measure AUC

3 vs 8 87.3% 0.873 0.873

3,8 vs 7 92.9% 0.928 0.893

3,8,7 vs 2 97.4% 0.974 0.936

3,8,7,2 vs 6 97.4% 0.973 0.904

3,8,7,2,6 vs 4 85.8% 0.855 0.790

3,8,7,2,6,4 vs 5 98.2% 0.982 0.985

3,8,7,2,6,4,5 vs 1 95.8% 0.956 0.829

3,8,7,2,6,4,5,1 vs 9 94.7% 0.938 0.683

3,8,7,2,6,4,5,1,9 vs 10 95.6% 0.956 0.869

Table A.7: Performance of the decision tree classifier along with the complete linkage
method for building the tree.

Involved Subtypes Accuracy F-measure AUC

1 vs 3 95.3% 0.953 0.959

2 vs 7,8,1,3 96.8% 0.969 0.894

5 vs 6 99.3% 0.993 0.989

7 vs 8 91.7% 0.917 0.926

9 vs 10 92.0% 0.920 0.932

1,3 vs 7,8 72.9% 0.729 0.732

9,10 vs 4 90.3% 0.903 0.900

2,7,8,1,3 vs 5,6 90.3% 0.898 0.806

2,7,8,1,3,5,6 vs 9,10,4 79.5% 0.787 0.789
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Table A.8: Performance of the random forest classifier along with the complete linkage
method for building the tree.

Involved Subtypes Accuracy F-measure AUC

1 vs 3 96.0% 0.961 0.988

2 vs 7,8,1,3 96.8% 0.969 0.965

5 vs 6 98.6% 0.986 0.988

7 vs 8 91.3% 0.912 0.966

9 vs 10 90.2% 0.902 0.971

1,3 vs 7,8 75.8% 0.758 0.840

9,10 vs 4 93.3% 0.933 0.976

2,7,8,1,3 vs 5,6 91.3% 0.908 0.867

2,7,8,1,3,5,6 vs 9,10,4 77.1% 0.760 0.790

Table A.9: Performance of the LibSVM classifier along with the complete linkage method
for building the tree.

Involved Subtypes Accuracy F-measure AUC

1 vs 3 96.9% 0.970 0.961

2 vs 7,8,1,3 97.2% 0.972 0.934

5 vs 6 100% 1.0 1.0

7 vs 8 94.0% 0.941 0.941

9 vs 10 93.8% 0.939 0.934

1,3 vs 7,8 78.8% 0.787 0.787

9,10 vs 4 92.4% 0.924 0.924

2,7,8,1,3 vs 5,6 91.6% 0.911 0.827

2,7,8,1,3,5,6 vs 9,10,4 78.7% 0.765 0.699
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Table A.10: Performance of the decision tree classifier along with Ward’s method for build-
ing the tree.

Involved Subtypes Accuracy F-measure AUC

1 vs 9 86.0% 0.860 0.880

2 vs 7 94.8% 0.948 0.936

1,9 vs 6 94.1% 0.942 0.940

2,7 vs 8 87.2% 0.872 0.908

2,7,8 vs 3 77.9% 0.778 0.784

2,7,8,3 vs 6,1,9 83.9% 0.833 0.830

2,7,8,3,6,1,9 vs 4 86.2% 0.860 0.807

2,7,8,3,6,1,9,4 vs 5 96.6% 0.965 0.977

2,7,8,3,6,1,9,4,5 vs 10 95.3% 0.953 0.805

Table A.11: Performance of the random forest classifier along with Ward’s method for
building the tree.

Involved Subtypes Accuracy F-measure AUC

1 vs 9 89.5% 0.895 0.934

2 vs 7 95.4% 0.954 0.969

1,9 vs 6 95.7% 0.958 0.988

2,7 vs 8 89.9% 0.899 0.958

2,7,8 vs 3 81.2% 0.813 0.858

2,7,8,3 vs 6,1,9 86.1% 0.858 0.923

2,7,8,3,6,1,9 vs 4 88.5% 0.882 0.911

2,7,8,3,6,1,9,4 vs 5 96.6% 0.966 0.981

2,7,8,3,6,1,9,4,5 vs 10 93.9% 0.939 0.890
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Table A.12: Performance of the LibSVM classifier along with Ward’s method for building
the tree.

Involved Subtypes Accuracy F-measure AUC

1 vs 9 90.2% 0.902 0.901

2 vs 7 96.1% 0.961 0.953

1,9 vs 6 96.3% 0.962 0.936

2,7 vs 8 91.6% 0.916 0.916

2,7,8 vs 3 81.0% 0.809 0.784

2,7,8,3 vs 6,1,9 88.0% 0.876 0.832

2,7,8,3,6,1,9 vs 4 89.7% 0.893 0.811

2,7,8,3,6,1,9,4 vs 5 97.0% 0.971 0.946

2,7,8,3,6,1,9,4,5 vs 10 95.0% 0.950 0.851
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Requirements to be followed when using any portion (e.g., figure, graph, table, or textual

material) of an IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within

these papers) users must give full credit to the original source (author, paper, publication)

followed by the IEEE copyright line 2011 IEEE. 2) In the case of illustrations or tabular

material, we require that the copyright line [Year of original publication] IEEE appear

prominently with each reprinted figure and/or table. 3) If a substantial portion of the original

paper is to be used, and if you are not the senior author, also obtain the senior authors

approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the

references: [year of original publication] IEEE. Reprinted, with permission, from [author

names, paper title, IEEE publication title, and month/year of publication] 2) Only the ac-

cepted version of an IEEE copyrighted paper can be used when posting the paper or your

thesis on-line. 3) In placing the thesis on the author’s university website, please display the
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following message in a prominent place on the website: In reference to IEEE copyrighted

material which is used with permission in this thesis, the IEEE does not endorse any of

[university/educational entity’s name goes here]’s products or services. Internal or personal

use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted

material for advertising or promotional purposes or for creating new collective works for

resale or redistribution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a License from Right-

sLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada

may supply single copies of the dissertation.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html


Vita Auctoris

Forough Firoozbakht was born in 1981 in Shiraz, Iran. She graduated from the Azad Uni-

versity of Shiraz in 2009 with a Bachelor of Science degree in Computer Engineering. She

joined the University of Windsor’s School of Computer Science in September 2013 and

earned her Master of Science degree in Computer Science in December 2014.

90


	University of Windsor
	Scholarship at UWindsor
	2014

	Finding Informative Genes in Subtypes of Breast Cancer
	Forough Firoozbakht
	Recommended Citation


	Author's Declaration of Originality
	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem
	Contributions
	Thesis Organization

	Breast Cancer
	Stages of Breast Cancer
	Breast Cancer Subtypes

	Machine Learning
	Classification
	Support Vector Machines
	Decision Trees
	Random forest

	Clustering
	Partition-based Clustering
	Hierarchical Clustering

	Feature Selection
	Chi-squared Method
	minimum Redundancy Maximum Relevance (mRMR)

	Performance Evaluation
	Previous Work on Gene Selection for Breast Cancer Analysis

	Methods
	Datasets
	Data Pre-processing
	Top-Down Approach
	Bottom-Up Approach

	Results and Discussion
	Experimental Results
	Top-Down Approach
	Bottom-Up Approach

	Discussion

	Conclusions
	Contributions
	Future Work

	Bibliography
	Appendix 
	Appendix 
	Vita Auctoris

