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Abstract

Objective assessment of image quality is the process of automatic assignment of a
scalar score to an image such that the rating or score corresponds to the score pro-
vided by the Human Visual System (HVS). Despite extensive studies since the last
two decades, it remains a challenging problem in image processing due to the pres-
ence of different types of distortions and limited knowledge of the HVS. Existing
approaches for assessing the perceptual quality of images have relied on a number of
methodologies that directly apply known properties of the HVS, construct hypotheses
considering the HVS as a blackbox and use hybrid approaches that apply both of the
techniques. All of these methodologies have relied on different types of visual features
for Image Quality Assessment (IQA).

In this dissertation, we have studied the problem of different types of IQA from the
feature extraction point of view and showed that effective combinations of simple vi-
sual features can be used to develop IQA approaches having competitive performance
with the state-of-the-art. Our work is divided into four parts each having the final
goal to bring about performance improvement in the areas of Full-Reference (FR)
and No-Reference (NR)-IQA. We have gradually moved from FR to NR-IQA in the
works presented in this dissertation. First, we propose improvements in two existing
FR-IQA techniques by introducing changes in the features used. Next, we propose a
new FR-IQA technique by extracting image saliency as global features and combining
them with the local features of gradient and variance to improve the performance.
For NR-IQA, we propose a novel technique for sharpness detection in natural images
using simple features. The performance of this method provides improvement over
the existing methods. After working with the specific purpose NR-IQA, we propose a
general purpose technique using suitable features such that no training with pristine

or distorted images or subjective quality scores is required. This technique, despite

vi



having no reliance on training, provides competitive performance with the state-of-
the-art techniques. The main contribution of the dissertation lies in identification
and analysis of effective features and their combinations for improving three different

sub-areas of IQA.
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Chapter 1

Introduction

The work presented in this dissertation is related to the investigation of improve-
ments in full-reference and no-reference image quality assessment using feature com-
binations. Before delving into the details of the work proposed here, we discuss some
preliminaries related to the work along with the motivation and objective of the

proposed research.

1.1 What is Image Quality Assessment?

The set of words ‘Image Quality Assessment’, when taken literally, amounts to the
evaluation of certain attributes of images. However, the phrase has a restricted and
specific meaning when studied under the context of modern image processing. Image
Quality Assessment (IQA) refers to the automatic evaluation of the quality of digital
images in keeping with the judgment of humans. Quality of any image refers to its
collective attributes that determine its appearance and ability to convey information
to the human observer. Hence, this quality is purely subjective in nature. Thus, IQA
techniques aim to automatically predict the image quality by using mathematical
and computational models in keeping with the human observers. Many a times,
the phrase ‘objective image quality assessment’ is used specifically to differentiate
the process of automatic evaluation of perceptual image quality from the subjective
evaluation of image quality. The subjective evaluation of image quality is necessary
for several image processing applications as human beings are the ultimate users and

hence judges of the attributes of an image. We present a discussion on the subjective



and objective methods of image quality assessment to understand their respective
needs towards improving image processing methodologies. In the remaining part of
this dissertation, the image assessed for quality evaluation is termed as a test or query
or distorted image. The pristine quality counterpart of the test image, if exists, is
called the reference image. The same applies when image sequences are discussed

instead of images.

1.2 Subjective Methods of Image Quality Assess-
ment

Subjective evaluation is considered to be the most reliable way of assessing the image
quality [111]. However, any human observer has his own perception of quality which
may differ from that of other observers. Hence, subjective methods employ the opinion
of many viewers to evaluate the quality of any image. The observers need to rate any
image under identical viewing conditions and also need to have a pre-defined rating
scale to maintain uniformity throughout the evaluation process. Hence, International
Telecommunication Union (ITU) has recommended some standards for carrying out
subjective tests for quality assessment of images. The basic set of recommendations
is provided in ITU-R Rec.BT.500 [26] through the work of Video Quality Experts
Group (VQEG). Though the recommendations are presented for videos, they are
equally applicable to images as videos consist of sequence of images. Depending on
the type or variations in the stimulus presented to the observers and scale of ratings

provided, the three commonly used test methodologies are as follows:

1. Double Stimulus Continuous Quality Scale (DSCQS): In this procedure,
multiple sequence pairs comprising of reference and test sequences are displayed
to the human observer twice. The duration of the sequences is restricted to the

typical value of 10 seconds. However, the observer is not informed about the



order of appearance of the reference and the test images as the order is decided
randomly in each trial. An example of such a trial is presented in Fig. 1.1(a).
Here, S1 and S2 are two sequences forming a reference and test sequence pair,
not necessarily in the same order as mentioned. They are displayed twice after
which the observer provides ratings for each of S1 and S2 in a numerical contin-
uous scale ranging from 0 to 100 as shown in Fig. 1.1(d). The difference of these
two ratings is considered as the rating of the test sequence, as it is reasoned to
remove the subjective bias caused by the observer experience and the sequence

content.

. Double Stimulus Impairment Scale (DSIS): Though this is also a double
stimulus procedure, the presentation of stimulus varies in two different ways
from that in DSCQS. Firstly, the reference sequence is always presented before
the test sequence. Secondly, there is no repetition of the same sequence pair.
Each trial of this standard is shown in Fig. 1.1(b). The user rating is provided for
the test sequence in a discrete five-level scale which is shown in Fig. 1.1(e). The
scale assesses the visibility of degradation present in test images as compared
with the reference image and classifies from ‘imperceptible’ to ‘very annoying’

as presented in the figure.

. Single Stimulus Continuous Quality Evaluation (SSCQE): As the name
itself says single stimulus, only the test sequence can be displayed to the ob-
server. However, the sequences are much longer in duration and this method
enables the collection of observer ratings dynamically with the help of a slider.
The ratings are provided in continuous scale. The stage 1 test protocol for this
method comprises of set Test Session (T'S) (without separation) which is at least
30 minutes in duration. Each TS is segregated to a Programme Segment (PS)
(duration of at least 5 minutes) signifying a specific type of video content (for

e.g., news, drama, sports etc.) and processed according to one quality param-
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Figure 1.1: Trials in (a)DSCQS (b)DSIS and (¢)SSCQE representing the variations
in the stimuli. Continuous quality scale is presented in (d) and discrete
scale is shown in (e).

eter or Test Condition (TC). Rating is provided by the user at a frequency
of two ratings per second. The relevant diagram for this method is shown in

Fig. 1.1(c).

Each of these procedures has different types of utilities that are suited to varying
applications and suffers from limitations [120]. Since DSCQS techniques allow rapid
evaluation of a test sequence with the help of reference after double viewing, the
procedure works well to identify small differences in quality between the reference
and test images. On the other hand, clearly visible degradations are better evaluated
by DSIS. However, these methods rely on human memory and suffer from recency
effect implying that more weight will be placed on whatever is retained by the mem-
ory. In this case, usually more weight is placed on the degradation seen in last 5-10
seconds [12]. Also, repetition and use of the reference image make the user familiar
with the image content. Based on these drawbacks, SSCQE is developed and it finds

application both in time-varying quality evaluation and aids instantaneous evalua-



tion. However, it has video content bias and is affected by the reaction times of the
observers.

All of the test procedures discussed above need a minimum number of human
observers to perform the related tasks. All the human observer ratings collected are
then used to form the Mean Opinion Score (MOS) for each test sequence. However, in
the updated report [107] by VQEG, Differential Mean Opinion Score (DMOS) scores,
calculated using the difference between the rating for test and reference images, are
used as subjective scores. Thus, the subjective methods require the support of human
observers making it less economical and slow to be suited for real-world applications
in image processing [111]. Therefore, objective methods for assessing the perceptual
quality of images are needed for many real-world applications. However, for the
performance evaluation of objective IQA methods, subjective scores in the form of
MOS or DMOS are needed and subjective methods are applied to generate these

scores in the existing databases.

1.3 Objective Methods of Image Quality Assess-
ment

Objective methods of assessing image quality come up with a scalar score generated
by computational models. The scalar score represents the quality of the test image. If
the generation of the score requires the help of full information from the correspond-
ing reference image, the method is called Full-Reference (FR). If no information is
used from the corresponding reference image, the objective IQA technique is called

No-Reference (NR). NR-IQA is also called Blind Image Quality Assessment (BIQA).
Throughout this dissertation, these two terms will be used interchangeably. If partial
information from the corresponding reference image is used to produce the objective

quality score from the distorted image, the method is called Reduced-Reference (RR).



By partial information, we refer to some features (for example, mean, variance, edge
information etc.) available from the reference image, instead of the availability of the
reference image itself. Further details about this classification can be found in [111].
As the works proposed in this dissertation are related to FR and NR-IQA, we have
devoted the Chapter 2 of our dissertation for the earlier works related to these. How-
ever, the evaluation methodology and databases used for FR and NR-IQA bear a lot
of similarity. Hence, we discuss about the databases and evaluation methodologies in
the current chapter. Also, the applications of objective IQA techniques are discussed

in details.

1.3.1 Significance of IQA Databases

In general, the databases used for IQA contain pristine quality images which can be
used as reference images along with the distorted images and corresponding MOS/DMOS
values. They may also contain information about the type and intensity of degra-
dation applied to the pristine image to generate the distorted image, the number
of human observers employed, the raw scores provided by the observers and details
about the subjective tests conducted to generate the MOS/DMOS values. Through-
out our work, we have used all or relevant ones from a set of six benchmark databases
which are most commonly used for the evaluation of objective IQA techniques. The

details of these six databases are as follows:

1. Laboratory for Image and Video Engineering (LIVE) Database [94]:
The database is developed by LIVE at the University of Texas at Austin, USA.
It consists of 29 reference and 779 distorted color images rated by 29 subjects.
Images degraded by five types of distortions namely, JPEG compression (jpeg),
JPEG2000 compression (jpeg2k), white noise (wn), Gaussian blur (gblur), and
JPEG2000 bit error generated by transmission through a simulated Rayleigh

fading channel (also referred as fastfading) are present in this database. The



numbers of images with each of these degradations are 169, 175, 145, 145 and
145 respectively. These distorted images were generated with 5-6 levels of the
corresponding distortion. The subjective scores are given in the form of DMOS

and lie in the range 0-112.

. Categorical Subject Image Quality (CSIQ) Database [42]: The database
is developed by the Oklahoma State University, USA with the help of 35
subjects. It consists of 30 reference and 866 distorted color images. Images
having six types of distortions namely, jpeg, jpeg2k, additive white Gaussian
noise (awgn), gblur, additive pink Gaussian noise (apgn) (also called fnoise),
and global contrast decrement (global-contrast) are present in the database.
Every distortion type except the global contrast decrement (116 images) has
150 images each. 4-6 distortion levels were applied on the pristine images to
generate them. The subjective scores are given in the form of DMOS and lie in

the range between 0-1.

. Tampere Image Quality Database 2008 (TID2008) [79]: The database
is developed by Tampere University of Technology, Finland with the help of
838 human observers. It has 1700 distorted images generated from a set of 25
pristine color images. 17 types of distortions are applied with 4 different levels
on each pristine image. The distortions present in the database are awgn, more
intense additive Gaussian noise in color channels compared to luminance chan-
nels (awgn-pink), spatially correlated noise (spatial-corr-noise), masked noise,
high frequency noise, impulse noise, quantization noise, gblur, denoising, jpeg,
jpeg2k, JPEG transmission errors (jpeg-trans-error), JPEG2000 transmission
errors (jpeg2k-trans-error), non eccentricity pattern noise (pattern-noise), local
block-wise distortions of different intensities (blockwise-distortion), and con-
trast change. The subjective scores are given in the form of MOS and lie in the

range between 0-8.



4. A57 Database [8]: This database is developed at the Cornell University, USA
with the help of 15 human observers. It consists of 3 reference grayscale images
and 54 distorted images generated by 6 distortions in three different levels. The
distortions are jpeg, jpeg2k, awgn, jpeg2k using the dynamic contrast based
quantization, gblur, and uniform quantization applied on the LH subband of a
5-level Wavelet decomposition of the pristine image. The subjective scores lie

in the range between 0-1.

5. Multimedia Information and Communication Technology (MICT)
Database [30]: The database is developed by MICT Laboratory at the Uni-
versity of Toyama, Japan with the help of 16 human observers. There are 14
reference color images and only two types of distortions jpeg and jpeg2k are
applied at 6 different levels to each of these reference images to generate 168
distorted images (84 for each distortion). The subjective scores are given in the

form of MOS and lie in the range 1-5.

6. IRCCyN/IVC Image Quality Database [4]: The database is developed
by Institut de Recherche en Communications et Cybernétique de Nantes (IR~
CCyN), France with the help of 16 human observers. It has 10 pristine quality
images and 4 different types of distortions are applied at several levels to differ-
ent images. jpeg, jpeg2k, LAR coding, and gblur are the applied distortions. In
some images, jpeg is applied to all channels and to the luminance channel only
for generating separate images. The total number of distorted images present
in the database is 185. The subjective scores are given in the form of MOS and

lie in the range between 1-5.

1.3.2 Techniques to Evaluate an IQA Method

To evaluate the performance of an objective IQA method, five evaluation measures for

the quantitative analysis of the proposed method are used. These evaluation measures



are Spearman’s Rank-Order Correlation Coefficient (SROCC), Kendall’s Rank-Order
Correlation Coefficient (KROCC), Pearson’s Linear Correlation Coefficient (PLCC),
Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). SROCC and
KROCC are non-parametric rank based correlation measures and useful for judging
the prediction monotonicity of any IQA method. Higher values of SROCC and
KROCC indicate that the objective assessment scores are more consistent with the
corresponding MOS/DMOS values and therefore the assessment method is better.
On the other hand, PLCC is a measure of prediction accuracy whereas MAE and
RMSE are the measures of prediction error [107]. Therefore, higher values of PLCC
and lower values of MAE and RMSE are desirable. For PLCC, MAE and RMSE;,
a b-parameter logistic function [93] is used for mapping between the subjective and

objective scores. The logistic function is given by

1
1+ exp(Ba(x — B3))

where (01, B2, B3, B, B5) are the 5 parameters. As per [107], the logistic transform

Predicted Quality(z) = ( |0.5 + Byx + S5, (1.1)

is used to bring the objective scores in a common ground with the DMOS/MOS
by providing a non-linear mapping between them. However, this logistic function
provides monotonic non-linear mapping. The measures SROCC and KROCC are
based on magnitude-wise ranking of data values and hence do not depend on the
mapping. SROCC has been widely used due to its simplicity. Hence, we have used
SROCC for parameter selection and distortion wise performance. For analysis of the
overall performance of the proposed method(s), SROCC, KROCC, and PLCC are
used. This is because their absolute values lie between 0 and 1, irrespective of the
ranges of subjective scores in different databases. In contrast, MAE and RMSE values

are dependent on the ranges of the subjective scores given in the respective databases.



1.3.3 Applications

There are three major applications of IQA as mentioned in [111]. They include
the monitoring of image quality in image processing applications, benchmarking of
image processing systems and algorithms, and optimizing image processing systems
and their parameter settings. Perceptual models of IQA and properties of Human
Visual System (HVS) have often inspired the areas of digital watermarking [33, 39]
and steganalysis [1] for better schemes. Visual quality assessment methods have
found applicability in evaluation of image fusion [87], image and video coding [115,
123], evaluation of image denoising techniques [127] and perceptual feature based
automatic parameter selection [67] for image denoising. The recent applications of
IQA include evaluation of image deblurring [55] and image super resolution [126] as
well. Stereoscopic image quality [24, 50] and medical image quality evaluation [5, 66]

have also emerged as two application based research directions for IQA.

1.3.4 Challenges

When automatic assessment of image quality emerged as a research area in image
processing, it was meant to attain an objective that was self-explanatory with a fixed
set of problems. The objective is to perceptually evaluate different types of distor-
tions as per the HVS. We have discussed about distortions in the databases already.
Evaluating different types of distortions with the limited knowledge of HVS makes
the job of image quality assessment very difficult. However, along with the research
and development taking place in this field, we have more challenges to combat with in
order to achieve a complete and practical solution. Thus, the earlier set of challenges
are prevailing and getting augmented with the newly identified significant problems
as various directions for potential solutions are revealed through different research
works. The definition of quality of an image is itself dubious as the observer’s cog-

nitive ideas and the task assigned alter the results. Presence of prior information
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regarding the pristine image and earlier ideas about the image content affect the
user’s decision [99, 111]. However, due to the similarity in visual processing strategies
in humans, they can consistently judge, if a digital manipulation has enhanced or
degraded the quality of any image. The models of HVS developed mainly incorporate
the properties of V1 cortex of human brain. However, much of information from other
parts of the brain has not been incorporated and is not available for the purpose of
incorporation [7]. Also, the models are found simpler when compared to the com-
plexity of HVS and natural images [111]. The existing state-of-the-arts IQA methods
evaluate images degraded by a single type of distortion only. Also, there exists no
FR-IQA technique that works better than all others methods across all distortions
present in all databases. Hence, substantial improvement is needed to achieve this.
Researchers on NR-IQA techniques are also trying to improve their performances

amidst all the challenges prevailing.

1.4 Motivation

As discussed earlier, various application areas of IQA along with its challenging prob-
lems make it an interesting area to work with. This has invariably left a positive
influence as well as the present surge in the development of different types of IQA
methods and has created a diversity towards achieving the goal. In spite of the lim-
ited knowledge of HVS, the various methodologies that showed effectiveness towards
the partial solution of the problem are indeed fascinating. All of these methodologies
depend on different types of features and their combinations to evaluate perceptual
quality images. However, there still exist several limitations and hence the need to
improve. This has inspired us to explore, investigate and make contributions towards
the field of IQA in general. The motivation to work on each selected sub-area of IQA

is mentioned along with the discussion of related works presented in Chapter 2.
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1.5 Objective and Scope

The effort culminated in this dissertation has been targeted towards FR-IQA and
NR-IQA. The main objective of the dissertation is to know and explore the state-of-
the-art techniques in the related areas and be able to contribute towards some of the
existing problems by making improvements. By investigating on effective combination
of features, we have tried to contribute towards three diversified channels of IQA.
To begin with, during the initial years of the work we tried to make changes in
some of the existing approaches. Next, we have worked towards developing a novel
FR-IQA method based on diverse feature combinations and our understanding and
interpretation of perceptual quality assessment. From there on, we have tried to
work on NR-IQA using effective features. First, we focused on a distortion specific
NR-IQA. The specific distortion chosen is absence of sharpness or presence of blur
because it is one of the commonly occurring distortions. Then, we have moved on to
the general purpose NR-IQA. Through this dissertation, we have made simultaneous
efforts to gather knowledge and make contributions in the field of IQA. Our focus
in this dissertation has remained confined within the limits of various types of IQA
problems and different solution approaches to these problems using visual feature

combinations.

1.6 Main Attributes

The major attributes of the dissertation are enlisted as follows:

e As an initial step in the field of IQA, we have studied and tried to improve the
existing techniques Feature-Similarity Index (FSIM) [129] and Spectral Resid-
ual based Similarity (SR-SIM) [128] by using modification of various features.
With the proposed modifications, the performance of the techniques has been

enhanced.
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e A methodology is proposed for FR-IQA using the combination of global and
local features of distortions. This approach achieves improved performance
in two databases as compared to the state-of-the-art techniques. The overall
performance of the proposed method is also better than the state-of-the-art

techniques.

e A methodology is proposed for blind evaluation of image sharpness using sim-
ple combination of features indicating high frequency content in images. The
proposed technique improves over the performance of the state-of-the-art tech-

niques in several databases.

e A general purpose technique for blind evaluation of image quality is proposed.
The methodology is unique as it does not use training with any of the three
data, namely, pristine images, distorted images and subjective score of quality
and relies only on features. In spite of this, the approach achieves competitive

performance with the state-of-the-art techniques in several databases.

1.7 Organization

The work presented in the dissertation has been segmented into several chapters in
accordance with their main features to facilitate continuity and improve readability.

The dissertation is organized as follows:

e Chapter 2 presents the earlier works related to FR-IQA and NR-IQA.

e Chapter 3 presents the basic ideas for improvements in two existing techniques,

and analyzes the results obtained by these improvements.

e Chapter 4 proposes a new FR-IQA technique based on the combination of local

and global features of the reference and distorted images.
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e Chapter 5 proposes a specific purpose NR-IQA technique to evaluate perceptual

sharpness using high frequency content based features in images.

e Chapter 6 proposes a general purpose NR-IQA technique using features from
different scales of the image to successfully evaluate the quality of a distorted

image without the need for any kind of training for its execution.

e Chapter 7 concludes the dissertation by discussing its contributions, limitations

and the scopes for future work.
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Chapter 2

Related Works

In this chapter, we discuss the existing works related to the research work presented
in this dissertation. The presentation of related works is in the same order as the
rest of the chapters are arranged. First, the literature related to the FR-IQA is
discussed. Next, the existing techniques corresponding to the special purpose NR-
IQA are discussed. Finally, the literature related to existing general purpose NR-IQA
is discussed. This allows a modular representation of the related research work which
are connected with the common thread of IQA and yet, diverse enough in their

applicability and procedures.

2.1 FR-IQA Techniques

In the broad area of signal processing, Peak-Signal-to-Noise Ratio (PSNR) is signifi-
cantly used as an effective measure for comparison of signals and the measurement of
signal fidelity. However, in the role of a measure for perceptual image quality, PSNR
is not consistent enough [112]. As determined by experimental results presented in
the works [114, 129], PSNR is good enough for the perceptual quality evaluation of
noisy images, but it is not effective as an IQA method for other kinds of distortions.
Interestingly, calculation of PSNR does not involve the spatial relationships with the
neighboring pixels and it is one of the best perceptual evaluators for mainly content-
independent noise [114, 129]. Still, the general applicability of PSNR is very low
when considered with other types of distortions or across several types of distortions.

This is where the development and enhancement of FR-IQA techniques became nec-
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Figure 2.1: Comparison of FR-IQA techniques based on bottom-up, top-down and
hybrid approaches.

essary [111]. Since, FR-IQA techniques already use full information of the reference
image, it is very important for them to have applicability across several distortions.
Therefore, from the last decade, different techniques have been developed for FR-
IQA to increase its general applicability. Discrete Cosine Transform (DCT) domain
based PSNR has been shown to have much better correlation with HVS in [80] and the
method is called PSNR-HVS-M. It is shown in [114] that under effective pooling strat-
egy, PSNR can act as a measure of perceptual IQA. There are FR-IQA techniques
that employ the properties of HVS directly and these methods are called bottom-up
methods for IQA. There are others, which have hypotheses supporting some proper-
ties of HVS or an assumption about the overall functionality of HVS. These methods
are called top-down techniques or methods relying on overarching principles. Some
existing methods of FR-IQA are combined approaches involving both of the aforesaid
techniques and hence may be termed as hybrid techniques [111]. A discussion on sev-
eral popular techniques of FR-IQA exhibiting their effective performance on different
kinds of distortions follows below.

The bottom-up methods in IQA relied on HVS based modeling in IQA. They
usually follow the four steps of pre-processing, channel decomposition, error normal-
ization and error pooling as shown in Fig. 2.1. We will describe each of these steps

briefly as they have relevance with several existing works related to IQA in general
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and the research proposed in this dissertation. As we find, some of these blocks are

also used to extract information in many existing IQA techniques.

1. Pre-processing: Pre-processing in an IQA technique may be an operation or
a set of auxiliary operations that are required to be performed before the ac-
tual procedures related to IQA start. They may include image registration as
the reference and distorted images need proper alignment with respect to each
other. Most of the IQA techniques need perfect registration of the reference
and test images to perform well. The other operations that may be involved
in the phase of pre-processing include color space conversion, color to grayscale
conversion, image size adjustment, conversion of pixel values to luminance val-
ues, application of Point Spread Function (PSF) simulating the optics of eye
and Contrast Sensitivity Function (CSF) following the dependence of eye on
the frequency to perceive a change in contrast. Often, CSF is modeled at the
later stage of channel decomposition instead of the pre-processing stage so that

channels of different frequencies may be obtained by a particular decomposition.

2. Channel Decomposition: Channel decomposition is inspired by the fact that
a large number of neurons in the primary visual cortex of the human brain are
efficient in processing visual stimuli of specific frequency, orientation and lo-
cation. This inspired the use of Fourier decomposition, Gabor decomposition,
DCT transforms, steerable pyramids, cortical transforms and log-Gabor trans-
forms. Often these transforms are used decompose the signals into different

frequency and orientations for further processing.

3. Error Normalization: The reference and test images are subjected to the
channel decompositions and the difference of their coefficients is called error.
This error is often processed by CSF to make it perceptually reasonable. Some-
times, contrast masking is also applied for normalization in terms of the error in

the neighborhood coefficients. More details about normalization can be found
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in [111].

4. Error Pooling: After the normalization, the job that remains is to derive
a scalar score signifying the distortion or quality. This process of deriving a
scalar score from the set of all errors is called pooling. Often these pooling
procedures are derived from the properties of HVS. The mean of the error of-
ten serve as the score which is called mean pooling. Similarly, we have max
pooling, percentile pooling, Minkowski pooling, information-weighted pooling
and saliency-weighted pooling as popular pooling strategies in the existing lit-

erature.

Some of the models that follow these four steps are: Daly model [14], Safranek
Johnson model [103], Lubin model [59, 60], Teo-Heeger model [104] and Watson’s
models [117, 118]. However, these models significantly differ in their ways of pro-
cessing information in each stage. In spite of the success of these methods, limited
knowledge of HVS and the specific problems [111] with these approaches triggered
research in IQA in a different direction which assumes the HVS as a blackbox and
hypothesize about its functionality and hence are overarching or top-down in nature.
In this regard, the most popular method for FR-IQA is Structural Similarity In-
dex (SSIM) [113]. The hypothesis in this method is about the sensitivity of the HVS
in the loss of structural information in images. This approach involves computation
of perceptual image quality using the luminance, contrast and structure comparison
images obtained from the reference and test images to form a quality map. The final
score is derived from the quality map as its mean value. In the past few years, several
modifications of SSIM have been proposed. These include Gradient based Structural
Similarity (GSSIM) [9] which calculates SSIM on gradient images and Multiscale
Structural Similarity Index (MSSSIM) [116] which iteratively downsamples the refer-
ence and test images to embed multiscale information in the IQA method to arrive

at the value of image quality. Content-partitioned structural similarity [44] classifies
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the images into four regions depending on the smoothness and edge properties. The
work presented in [96], analyzes the most effective values for the parameters used in
SSIM. These methods are based on high level properties of vision. Recently, Gradient
Similarity [52] combines low level properties of vision like masking effect and visibility
threshold along with structure, luminance and contrast comparison to formulate the
quality measure. Other approaches that use low and mid-level properties of vision are
Visual-Signal-to-Noise Ratio (VSNR) [8] and Most Apparent Distortion (MAD) [43].
VSNR identifies visual distortions and finds perceived contrast and global precedence
properties of the image’s edges while calculating the perceptual quality score. On the
other hand, MAD evaluates, if the amount of distortion present is near-threshold or
supra-threshold and applies different strategies in either case to evaluate perceptual
quality.

Information theoretic approach towards FR-IQA has been followed to formulate
Information Fidelity Criterion (IFC) [92] and Visual Information Fidelity (VIF) [91].
Information-Content Weighted Structural Similarity Index (IWSSIM) [114] uses lo-
cal information weighted pooling with MSSSIM to improve the correlation between
subjective scores and objective values. Therefore, IWSSIM is a bridge between in-
formation theoretic approaches and structural similarity. These approaches rely on
the mutual information between two images and the formulation is based on Gaus-
sian Scale Mixture (GSM). Multiscale transforms for IQA have been explored in
the works [15, 41, 76]. Using the Haar Wavelet and its space-frequency localization
properties, local contrast at various resolutions is used to find image quality in [41].
In [15, 76], coefficients from Discrete Wavelet Transform (DWT) have been used to
analyze image quality. Image saliency based approach [62], blockwise Singular Value
Decomposition (SVD) of images [95] are also shown to correlate well with HVS. The
aforementioned FR-IQA methods differ in principles as well as their execution times
and in their correlation with the subjective assessment of quality.

Recently, a phase congruency [38] based technique called FSIM /Feature-Similarity
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Index for Color Images (FSIM,.) [129] has been proposed. This technique relies on
calculating phase congruency and gradient information from the reference image and
the test images. The score is based on the similarity of the gradient information
and phase congruency values at the corresponding locations. In a similar framework
as FSIM, a faster technique called SR-SIM [128] has been developed and shown to
perform well in three databases. SR-SIM uses saliency maps derived from spectral
residual [32] technique to find perceptual similarity between pixels as well as to pool
the quality map obtained from the reference and distorted images. As already dis-
cussed, MAD [43] segregates the distortions present in an image as near threshold or
supra-threshold and uses dual strategies for evaluating those distortions. In the same
context, another approach is based on defining the distortions as additive or detail
loss based and combining their measurements. The method is called Additive and
Detailed Loss based Measure (ADM) [48]. A recent approach [121] uses the principal
of Internal Generative Mechanism (IGM) of human brain and dissolves the given im-
ages into predicted and disorderly parts. Then, the distortions on these two parts are
separately evaluated by different techniques and are combined to form the objective
score. MAD, ADM and VSNR employ the direct applications of the HVS proper-
ties like contrast sensitivity and visual masking. Most of the methods mentioned
in the previous discussions form the state-of-the-art techniques of FR-IQA as none
of the methods discussed can single-handedly outperform others across all databases
and distortions therein. Hence, our target in this domain has been to improve the
performance of the existing techniques and develop competitive techniques with the

existing ones.
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2.2 NR-IQA Techniques for Perceived Sharpness
Evaluation

As we already discussed in the previous chapter, the existing works on NR-IQA
or BIQA can be broadly separated into two genres namely: specific purpose and
general purpose IQA. After working with FR-IQA, we selected the problem of NR-
IQA to work with. Since removal of reference image created problems for a smooth
transition from FR to NR-IQA, we choose to work in specific purpose IQA first.
We fixed the specific purpose as perceptual sharpness. The antonym of sharpness is
blur. The absence of sharpness does not necessarily mean the presence of blur [108].
However, increase of blurriness hints about loss of sharpness. Hence, several works in
existing literature are found to treat both of the problems simultaneously. Since, the
dissertation concentrates on investigation of potential features in IQA, our literature
review takes a look at the different types features that have been used in this regard.

The existing techniques in the literature involve several visual cues to evaluate
perceptual sharpness or blur without the aid of any reference image. The set of vari-
ety of visual cues used for blur or sharpness is quite large. Depending on the type of
features used to evaluate blur or sharpness, the techniques can be classified as spa-
tial domain, transform domain and hybrid techniques. Though all of the approaches
mentioned below do not fall exactly into the category of quantifying perceptual dis-
tortions formed due to loss of sharpness, they give information about different types
of visual cues that aided in detecting sharpness or blur and the variety of techniques

that are developed over several decades to evaluate sharpness or blur levels.

2.2.1 Spatial Domain based Techniques

Spatial domain blur detection methods are those which rely solely on features ex-

tracted or pixel properties from the image in the space domain only. Image variance
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from entire image is used as a measure in [16] as variance is likely to decrease in an
image with the presence of blur. A globally sharp image has lower correlation between
adjacent pixels. Thus, when the previous pixel is predicted from the current one, the
prediction error is likely to be higher. The variance of this error is used determine a
globally blurred or sharp image [106]. Since, neighboring pixels are more correlated in
the blurred image compared to its sharper version, an autocorrelation function based
method is proposed in [2]. Image intensity histograms [36, 40] based methods are also
used to determine blur in auto-focussing applications, though they are not likely to
evaluate the perceptual degradation caused by it. By discriminating between different
levels of perceptible blur on the same image, a no-reference blur method is proposed
by Crete [13]. On the other hand, the image edge or gradient based features happen to
be widely used for determination of perceptual blur. The edge feature based methods
only rely on the edge width or the spread of edges. The work leading to this approach
is [65]; the width of an edge (vertical or horizontal) determined by separation of the
extrema positions closest to any edge. This width is considered to be the local edge
value and the average of such values over an image served to be the measure of the
blurriness of the image. The width of edge using the local gradient direction is used
the to measure blurriness in [78]. Degradations caused by the blur uniformly over an
whole image are also evaluated using Renyi entropy based anisotropy method [22].
However, depending on the image content, the perceived blurriness of an image varies
and this is incorporated through the concept of Just Noticeable Blur (JNB) in the
edge width[18] to determine the probability of blur detection for each block region
in an image. Finally, a Minkowski metric based pooling is used to determine overall
perceived blur. A modification to the same approach using cumulative probability of
blur detection is proposed in [75]. Combination of edge based features and variance
are used to obtain a sharpness method in [11]. Based on the argument that singu-
lar value decomposition of local gradient values represent the components along the

direction of significant change of gradient direction, a sharpness measure is proposed
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in [132].

2.2.2 Transform Domain based Techniques

Transform domain approaches began with failure of blurred image spectra to follow
the power law as done by natural images [19]. The kurtosis obtained from the Fourier
spectra is used to measure the image sharpness in [130]. Some blurriness evaluation
methods using high and low frequency power measures are presented in [21]. A
DCT based approach is proposed in [64]. 2D DCT coefficient based kurtosis is used
to calculate the image sharpness in [6]. Wavelet transform based blur detection
approaches are presented in [105, 109]. The techniques discussed so far did not involve
any kind of prior training. A Wavelet feature based on Support Vector Machine
(SVM) classification and confidence is used to design the quality score of degraded
images in [10]. A complex Wavelet based computation of local phase coherence [28],
called Local Phase Coherence Sharpness Index (LPC-SI), is shown to perform well
in four blur databases among the recent approaches developed for perceptual blur

detection.

2.2.3 Hybrid Techniques

Hybrid techniques are those which rely on both spatial domain and transform domain
methods to evaluate blur. The work proposed by Sadaka et.al [85] uses JNB and
incorporates foveal pooling into it using by Gabor filtering based visual attention map.
A combination of features obtained from local power spectrum, gradient histogram
span and color based maximum saturation is used to detect blur regions in a partially
blurred image and then used to classify these blur regions into motion and out-of-
focus blurred regions [54]. A recent approach S3 [108], uses both spatial and spectral
information to perceptually evaluate blur. In addition, they also come up with a

blur map to identify the sharp and blurred regions in an image. Apart from these
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Figure 2.2: Different types of BIQA methods.

techniques, the general purpose image quality assessment techniques also evaluate
distortions caused by blur. However, recent perceptual blur or sharpness evaluators
are shown to perform better than the general purpose techniques [28]. Our approach
in this area has been to combine the high frequency content and contrast based

features from natural images to compute the perceived sharpness in a natural image.

2.3 General Purpose NR-IQA Techniques

Recent years have witnessed a substantial proliferation of the general purpose BIQA
methods. In this section, our discussion focusses on general purpose BIQA as it is
related more to the proposed work. A summary of different types of existing methods
is shown in Fig. 2.2.

Most of the general purpose approaches are based on feature extraction and
training based on the given human scores in the databases. Since different kinds

of degradations affect an image’s properties and structures in different manner, these
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methods rely on features to train the way the degradations affect the human visual
systems. One of the first methods for general purpose IQA is Blind Image Quality
Index (BIQI) [71] which relies on identifying the type of degradation on the image
and then predict its perceptual quality value. This method can also be called as
the bridge between specific purpose and general purpose techniques. The accurate
identification of the degradation type prior to the quality assessment is very difficult
and most of the other approaches (discussed in the following paragraphs) omitted
this step and predicted the image quality directly.

The learning based methods, at first, mostly used properties of Natural Scene
Statistics (NSS) as features. Wavelet coefficient statistics are parameterized by gener-
alized Gaussian distribution and these parameters over various scales and orientations
are used as features to train SVM and Support Vector Regressor (SVR) in [71]. For
testing, similar features extracted from the query image are used to obtain probability
of the image belonging to different distortions (using SVM) and these probabilities are
combined with the distortion specific support vectors regressors’ outputs to predict
the quality. DCT coefficient statistics [84] and contourlet domain statistics [58] have
been used to train SVR and non-linear functions respectively. Another approach [102]
combined complex Wavelet domain statistics with distortion texture statistics and
blur/noise statistics to form features for training. The approach in [72] followed a
similar route to BIQI but with an enhanced set of NSS features and improved the per-
formance. A spatial domain approach that uses NSS properties is Blind /Referenceless
Image Spatial Quality Evaluator (BRISQUE) [68]. Several properties of mean sub-
tracted contrast normalized luminance coefficients are used as quality features in this
approach. The approach is much faster compared to previous NSS based approaches.
A method based on sparse representation of NSS features, called Sparse Represen-
tation of Natural Scene Statistics (SRNSS), is proposed in [29] and shown to be
performing well in several databases.

In another type of approach, Gabor Wavelet features from raw image patches are
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used to form visual codebooks and support vector regression is used to predict the
quality scores. This method requires images of same or similar degradations for train-
ing and is called Codebook based Image Quality (CBIQ) [124]. The number of feature
vectors are very high in this method. Another codebook representation based method
is Codebook Representation for No-Reference Image Assessment (CORNIA) [125]
which learns using the raw image patches but the learning procedure is unsupervised.
Entropy and gradients of the distorted image and its phase congruency images are
used as features to train a generalized regression neural network in [45]. The method
provided competitive performance with BIQI in LIVE database. The aforementioned
methods deviated from the NSS features but delivered competitive performance with
the NSS based methods.

All of the methods discussed earlier used training with features and DMOS/MOS
values provided in the databases. A recent approach called using a technique called
Quality Aware Clustering (QAC) uses learning but without the scores [122]. For
training, a dataset consisting of reference images and corresponding distorted images
of four common distortions is developed. Overlapping patches from a distorted image
are selected and evaluated against the reference patches by an FR-IQA method. The
similarity score obtained by the evaluation is normalized using the sum of the qual-
ity scores of the 10% lowest quality patches. This normalized score for each patch
becomes its indicator of quality instead of any DMOS/MOS score. The method
achieves competitive performance with the state-of-the-art techniques. Another tech-
nique [69] also trains without human scores and uses the NSS features introduced
in [68] to decide the Latent Quality Factors (LQF). The method achieves competi-
tive performance with some existing methods.

Some recent approaches [46, 70] work without training on human scores as well
on distorted images. The method in [70] generates a parameterized Multivariate
Gaussian Model (MVG) based on NSS from high quality images by drawing quality

aware features from it. For any distorted image, the distance between the NSS feature
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model and the MVG model fitted to the distorted image becomes the indicator of
quality. This method,named as Natural Image Quality Evaluator (NIQE), delivers
competitive performance with the state-of-the-art techniques in the LIVE database.
Another approach that uses no modeling is [46]. They use simple relationship with
the features of mean phase congruency, entropy and mean gradient magnitude to
accomplish their tasks and the method is called No-Reference Quality Index (NRQI).
However, prior to this, they use the first step of BIQI [71] to classify the distortions.
Hence, the method implicitly involves training on distorted images. Though the
performance of these techniques attempting to minimize training is not the best,
they provide a methodology to continue research in the direction of no-training IQA.
Any kind of training makes the IQA measure dependent on the training ensemble and
requires effort and time to generate the trained model. Motivated by these techniques,
we attempt to use the multiscale information from the image to establish an NR-IQA
technique, absolutely free from any training with human scores, pristine images or

distorted images.

2.4 Discussion on the Existing Approaches

The works related to the three sub-areas of IQA are presented in this chapter. In
the FR-IQA techniques, a generalized model for the bottom-up methods has been
outlined. However, the model’s use has been restricted by the advent of overarching
methods that search for features based on the hypotheses, though they may also use
the overarching blocks. The variety of features used to develop FR-IQA techniques are
visibly huge. As one progresses with the specific purpose NR-IQA, features affected by
a specific type of distortion are extracted and used for computing the score. Hence, in
some general purpose NR-IQA techniques, detection of the distortion type is followed
by the computation of quality score. In another direction in general purpose BIQA,

deviation from NSS models are captured. In a third direction, effective features
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are clustered by supervised or unsupervised learning. Efforts have also been spent to
reduce the elements used in the learning process for NR-IQA. The existing approaches
in three types of IQA discussed, insinuates at the effectiveness of features and their
combinations to arrive at the IQA score for an image. Also, the aim of several
techniques has been to provide feasible solution to the problem of IQA from an
engineering point of view rather than delving into the actual functionalities of HVS
and its mathematical modeling. Hence, we concentrate on searching effective features

and their combinations to improve the performance level in the three sub-areas.
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Chapter 3

Improvements in Existing Methods

This chapter presents our initial efforts in the field of IQA. We initiated with FR-
IQA and have tried to work with existing techniques in this field. We have changed
the features used in two existing techniques to improve the performance and have
reported our findings in this chapter. The common thing which binds these two
techniques is the framework which is used by both of these techniques. We discuss
about the framework and then propose changes in the features used in this framework.
The remainder of the chapter is arranged as follows. The framework is discussed
in details in Section 3.1. The modification made to the first technique related to
this framework and experimental analysis are discussed in Section 3.2. Section 3.3
discusses the changes made to the second technique and related experiments. Finally,

the chapter is concluded in Section 3.4.

3.1 Introduction

A recent work by Zhang et al. develops Feature Similarity Index (FSIM) using phase
congruency [38] for FR-IQA. In this section, we discuss the framework in details. The
block diagram of the framework used in their technique is shown in Fig. 3.1. This
framework is also inspired by the similarity calculation technique used in SSIM [113].
For the grayscale reference and test images Ir and I, the method applies the appro-
priate scale selection procedure mentioned in [110] to the images to obtain the images
I; and I, respectively. From the resulting images, the values of the phase congruency

maps PCY and PC) are calculated. Since, the phase congruency is contrast invariant,
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Figure 3.1: Block diagram of the framework used in FSIM.

the gradient magnitude features of the images are used to account for the sensitivity
of HVS on the local contrast. The gradient magnitude images GM; and GM, are
calculated using the Scharr operator [35]. Then, FSIM map is calculated for a pixel

z in I as
FSIM,yp(x) = PCljp ()G Mg (z) max (PCy (z), PCy(x)). (3.1)

where PC,;,, and GM,, are calculated as

. 2PC’1(x)PC'2(x) + € “
PCunts) = (et PG 7 5) &
and
. 2GM1<JI)GM2(I’) + €9 b
GMsim(x) N <GM12(ZL') + GM22(I') + 62) ’ (33)

Here, a and b are used to adjust the relative contribution of phase congruency similar-
ity and gradient magnitude similarity. For simplicity, the values of a, b are chosen to
be 1. €; and €, are constants in the equations required to avoid instability arising due
very low denominator values. max (PCi(x), PCy(x)) acts as the weight for pooling

and hence the FSIM measure is defined as

> FSIM ()

FSIM = S~ (PG (), POy () (34)

zev

Here, ¥ stands for the indices of the elements or pixels of I;. The processing changes a

little for color images. Color images are converted to YI(Q) space with Y’ component
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representing the luminance, ‘I’ and ‘Q’ components representing the chrominance
components respectively. From the luminance components of the test and reference

images, F'SIM,,q,, is calculated first. The chrominance similarities are calculated as

2.1P AP,
]Psim(a?) - 1($) 2(1’) + €3

TP (2) + IR () + €3 (3:5)

and

B QQpl(ZL‘)QPQ(ZL‘) + €4
stzm<x) N Q.Plz(,f) -+ QPQQ(I) + €4

where I P, and (QP, are chrominance components for the image I;. Here, €3 and ¢4

(3.6)

are again constants in the equations required to avoid instability arising due very
low denominator values. Using the luminance and chrominance similarity, feature

similarity color map F'SIM_,,, is formed by
FSIM epap(2) = (I Pyinn(2)Q Paivn (2)) FST M o (), (3.7)

where A is used for assigning importance to the chrominance similarities. Then the

feature similarity index for color images (FSIM,) is calculated as

> FSIM pmap()

FSIMe = 5= (PO (), POy (o))’ (38)

zevw

The values of FSIM and FSIM. overlap for grayscale images. P. Kovesi’s phase con-
gruency algorithm [38] is used in the implementation of FSIM and FSIM.. FSIM and
FSIM. demonstrated competitive performance with the state-of-the-art algorithms
on six publicly available databases. Using the aforementioned framework, we propose

two works in this dissertation depending on the following facts:

1. The prediction accuracy for noisy images remained low in FSIM. The design of
phase congruency is meant to derive dimensionless features (which are not in-
fluenced by noise) from noisy images as well and therefore as we will elaborately
discuss in the coming section, the sensitivity of phase congruency towards noise

is deliberately reduced under the assumption that the noise is additive with a
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constant power spectrum. However for the task of FR-IQA, the way of noise re-
duction and subsequent normalization of energy by the sum of amplitude might
suppress some features which are actually necessary for HVS. This hypothesis
is, therefore, the motivation for our proposed work which is explained in the
following section. The new method proposed using this technique is called

Phase Deviation Sensitive Energy Features based Similarity (PDSESIM).

. In another new FR-IQA method proposed by Zhang et al. [128], the framework
used in FSIM is used. However, the phase congruency features are replaced by
Spectral Residual (SR) based saliency map [32]. Following SR, several variants
of spectral measures for visual saliency have come up. These new variants differ
in their computational times as well as in performances and have established
themselves better than or competitive with SR as measures of visual saliency.
The effectiveness of these saliency measures in FR-IQA is still an open ques-
tion. In our work, a study to evaluate the performance of the recent spectral

approaches for visual saliency (hence spectral saliency) for FR-IQA is presented.

From FSIM to PDSESIM

First, we present a discussion on phase congruency and related schemes. Then, we

discuss the modifications, followed by our experiments and analysis.

3.2.1 Phase Congruency

Phase congruency is a method for feature detection from signals using the phase

information of signals. The method is proposed by Morrone et. al. [73, 74]. The

main idea of the method is : features of signal also correspond to those points where

phase congruency or similarity is maximum. This is shown by the Fig. 3.2 where

a 1-D triangular wave and its first few harmonics obtained by the Fourier series
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Figure 3.2: Demonstration of phase congruency among the harmonics of a trian-
gular wave and reconstructed signal using four harmonics.

are plotted. At the crests and troughs of the triangular wave, one can find the all
harmonics to be in phase together. It is shown in the work of Morrone, maximal
in-phase Fourier components correspond to points that belong to image features like
step edges, deltas, lines or combinations as well. Their model of feature perception
is called local energy model which proves that local energy of a signal is directly
proportional to the phase congruency of the signal and perceived features exist at

the points of maximum phase similarity of a signal. Let g(x) be a square integrable
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periodic (fp) waveform, the Fourier series of g(z) is given by

g(x) = Zan sin(2rn for +6,) n>0,a, >0. (3.9)

Here a,, and 6,, denote the amplitude and phase of the n'" harmonic of the expansion.

The Hilbert Transform of g(z) is defined as
gn(z) = — Z a, cos(2mnfor +6,) n > 0. (3.10)

By the definition itself, g, (x) does not have a DC component. Since g(z) and g (z)

form a quadrature pair, the local energy is defined as

n n

2 2

E(z) = (Z a, sin (2mn foxr + Qn)> + (— Z a, cos (2mn fox + Gn)> . (3.11)
Each component a, sin(2mn fox + 6,,) and b, cos(2mn foxr + 6,,) are the projections of
a function with amplitude a,, and argument modulo(27n fyx + 6,,,27) in the space
spanned by the orthogonal signals g and g,. Thus, E(z) is the magnitude of the
resultant signal formed by the sum of all such functions. If the argument of this
resultant signal is E which is also the amplitude weighted local mean phase an-
gle of all the Fourier terms at the point z, E(z) can be formulated as E(x) =

> ap cos(pn(x) — ¢(x)). This signifies, as the deviations of the phase of the Fourier

components from ¢(x) decrease, the value of local energy will increase, implying
higher similarity among the phases of the signal components. Now in Eqn. 3.11, if

the instantaneous phases of all harmonics are same then (27nfox 4 60,) = ¢(x) and

(3.12)

The phase congruency is therefore defined as

=

B

PC() (3.13)
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PC(x) is a dimensionless, positive quantity and bounded by the upper limit 1 as,
Fnax(z) = > a,. Kovesi [38], developed a convenient measure to calculate local
energy using de and even log Gabor Wavelets. As depicted in Eqn. 3.11, both of the
quadrature components are free from DC. Log Gabor Wavelets offer large bandwidth
with zero DC and they have Gaussian transfer function on logarithmic scale as defined
by Fields [20]. If ge,(x) and go,(z) are the responses of the even and odd log Gabor
filter respectively at scale n (signifying different center frequencies and geometric

scaling of a reference filter), the amplitude A, (x) is calculated as

\/gen x) + goy%(x). (3.14)

The quadrature signals g and g, that are required for the calculation of local energy

can be estimated as
~ Z gen () (3.15)

and

gn(z) =~ Zgon(x). (3.16)

n

Hence, direction of the unit vector representing the local energy is found as

u(x), up(x 9(z) gh( ) . 3.17
(u(@), un(z)) = (\/g >> (3.17)

)+ gn2(x) /g2 (x) + gn*(
Then local energy can be found using the dot product of the unit vector and filter

responses as

— Z A, cos(oy(x) — M)
= 3 [(gen(e) gon(e) (e o))’ (3.18)
= Z gen(z)u(z) + gon(x)un(z)] .

As noticed by Kovesi, the calculation of phase congruency becomes ill conditioned if

the values of the Fourier components become small, or if there is a single frequency in
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the signal. Hence, a small positive constant ¢ is added in the denominator to account
for this. Two additional changes are brought into the calculation of energy E(z). A
term more sensitive to the change of phase deviation is introduced to calculate the
energy of the signal. Increased value of phase congruency means the cosine of the
phase deviation (¢, () —@(z)) at the corresponding point is high and phase deviation
is low. Therefore, the sine of the phase deviation will be low in magnitude. Thus,

the energy contributed by each component is calculated as

Bn(2) = An(2) [cos(8n(2) = 6(2)) — [sin(6n(x) — 9(2)| (3.19)

where |sin(¢,(z) — gzﬁ(x))‘ is obtained from the cross product as

sin(6n(2) = 6())| = lgea(w)un(z) — gon(x)u(z)| (3.20)

This energy is proved to be more phase deviation sensitive measure for the phase
congruency. To obtain these filter banks in 2D, a Gaussian spreading function is
multiplied with a radially varying log Gabor function in the radial frequency-angle
(w, ) plane. Thus the 2D log Gabor function is obtained as

G(w,6) = exp (M)Xp <_M> (3.21)

2log(k/wo 2042

Here, wy is the filter’s center frequency which controls the scale n, the term (k/wy)
is responsible for the bandwidth and shape of the filter. 6y is responsible for the
orientation of the 2D log Gabor filter. The design of the log Gabor Wavelet filter
bank has been made such that a uniform coverage of the spectrum in all orientations
is obtained and so the ratio between the angular spacing between the filters and
oy is made constant. To reduce the sensitivity to noise, a noise circle is calculated
and values of energy greater than this noise Ny, (which is the radius of the circle)
are considered in the calculation of phase congruency. For each orientation 6, the

smallest scale filter has the largest bandwidth and hence the noise is calculated using
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that for 6y. The defnition of phase congruency becomes

> [En(x) — Ng, |
PCO() = =57 S A (2)

(3.22)

3.2.2 Proposed Modification

The proposed method uses phase deviation sensitive energy features instead of phase
congruency to form energy maps. The energy is phase deviation sensitive as it is
calculated in the way Kovesi used it to enhance the sensitivity towards the phase
similarity as shown in Eqn. 3.19. However, in the proposed method we refrain from the
calculation of Ny, which removes much of the noise actually present in the images. As
for the visual clarification, we show in Fig. 3.3, the phase congruency maps calculated
from a reference and distorted image (distorted with additive white Gaussian noise
) from LIVE database [94] along with the corresponding phase deviation sensitive
energy images calculated with and without noise adjustment. The dynamic range
of the energy images is adjusted to be within 0 to 1 for viewing. As revealed from
the diagram, though the noise present in the image (Fig. 3.3(e)) is creating a visual
disturbance, much of it is removed when the noise is adjusted (Fig. 3.3(h)). For the
energy maps without any noise adjustment, the visual distortions are visible in the
energy map (Fig. 3.3(g)). However, even after noise adjustment, the phase congruency
map still shows some undesirable visual disturbance in the said areas. This is due to
the fact, in the definition of phase congruency given in Eqn. 3.22, some amount of noise
causing the high energy is removed. However, such noise is also responsible for the
changes in the denominator as > A,(z). But the denominator remains unchanged
thereby leaving some traces of r?oise in the phase congruency maps. If the phase
deviation sensitive energy is less than the corresponding noise value in the appropriate
scale, the phase congruency value is zero otherwise the effect of noise is prevalent in
the denominator and therefore in PC(x). This feature is brought out by the images
as well. Fig. 3.3(h) shows that noise adjusted energy has left very little amount of
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noise or very low values of noise in the energy map. However, Fig. 3.3(f) is derived
from Fig. 3.3(h) by dividing each point of it by > A, (x), (z € V). Hence, more traces
of noise can be found in Fig. 3.3(f). Therefore,nwe use the phase deviation sensitive
energy features instead of the phase congruency values. Higher values of energy
features are required corresponding to noisy pixels as they are shown to influence the
HVS. It is shown in different works [52, 129], that, PSNR which relies just on pixel
differences without any knowledge of the their interdependence, is able to correlate
better as a perceptual measure of noise. Therefore, the differences arising due to
noise is important together with the interdependence of pixels. We calculate the
phase deviation sensitive energy features from the luminance component of reference

image as Fg as
Ea(z) =Y Eu(x). (3.23)

where E,;(x) calculated for I as per Eqn. 3.19. Similarly, we compute Fyy from the

test image. We form Esl and Esg which have values less than or equal to unity by

Ea(w) = Ea(w)) max(Ea(y); (3.24)
and
Eo(r) = Eg(z)/ max(E(y)); (3.25)

In this way, we normalize the energy range before comparison with each other. How-
ever, this is totally different from the earlier normalization by " A, (y), (y € V) as
it changed each energy value according to the energy response ai? each value of y. In
our case, the normalization is just a uniform scaling of all phase deviation sensitive
energy values. The energy similarity is calculated as

E ‘ (x> _ Q.Esl(l‘).ESQ(x) + €
T B+ By e

We calculate gradient similarity in our method and hence the phase deviation sensitive

(3.26)

energy based image similarity (PDSESIM) map is formed as

A A

PDSESIMyp(x) = By ()G M, () max (Esl(x), ESQ(m)>. (3.27)
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This is extended to color images by
PDSESIM 1ap(2) = (I Painn (2)Q Pain (2))* PDS EST M, (). (3.28)

For grayscale images, PDSESIM_yap(x) = PDSESIM,,,,(x). The proposed mea-
sure is calculated as

S PDSESIM ()

PDSESIM = —*=¥ - - : (3.29)
S max (Esl(x), E32<x))

zew

We have used the values of the parameter A = 0.3 as used in the implementation
in [129]. The values of the parameters for computing sensitive features are the same
as used in the implementation by Kovesi. The values of the parameters used to find

energy and gradient similarity maps are discussed in the following section.

3.2.3 Experimental Results

We discuss various experiments and their results to demonstrate the promise of the
proposed method. This section is divided into three parts for discussion on param-
eter selection, distortion-wise performance on individual databases and overall per-
formance in all the databases. The proposed method is evaluated in six databases
already discussed in Chapter 1. For analysis of the overall performance of the pro-

posed method, several evaluation measures have been used.

e Parameter Selection

The parameters for computing phase congruency are kept same as in the im-
plementation by Kovesi. The values of €3 and €4 used in chrominance similarity
measurement are the same as mentioned in [129]. Here, we discuss the selection
of parameters €; and €5 used to find the phase deviation sensitive energy feature
similarity (Eqn. 3.26) and gradient similarity (Eqn. 3.3) between the images.

The values of Esl and Esg vary from 0 to 1. Therefore the value of ¢; is varied
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from 0.05 to 0.95 with an interval of 0.05. €, is used for gradient images and its
value is varied from 10 to 250 with an interval of 10. Therefore, for each value
of €, we have 25 values of e5. Together we have 19x25 = 475 different pairs
for the values of (e, €2) each of which is denoted by an index value (j) varying
from 1 to 475. The SROCC values across the six databases obtained using each
index value j for PDSESIM and FSIM, is shown in Fig. 3.4. Starting from the
beginning, if a non-overlapping set of 25 indices are formed, each of those sets
correspond to a fixed value of ¢; and 25 different values of €. We notice a repet-
itive pattern of the SROCC values for each of such non-overlapping sets. As
revealed in the diagram, the highest SROCC value for PDSESIM has exceeded
the highest SROCC value obtained by FSIM, in every database. However, for
the following experiments we need to fix the parameter values. The maximum
value SROCC can take is 1. For every parameter index, we calculate the sum
of squares of deviation of corresponding SROCC value from 1. We call this
quantity ‘correlation error’ C'E; which is calculated for the j™ parameter index

as
6

CE; =Y (1-SROCCq;)’, (3.30)
d=1
where d represents each of the six databases and SROCCy ; is the SROCC value

in d*® database for j* parameter set. The plot of correlation error for all the
parameter indices is shown in Fig. 3.5. The minimum of the SROCC is obtained
for index value 7 = 10 which corresponds to the parameter values €; = 0.05 and

€, = 100. For the rest of the experiments, these values are used.

Distortion wise Performance in Different Databases

Though the aim of FR-IQA is to find generic measures for perceptual assess-
ment of quality for images, the distortion-wise performance of the methods is
crucial enough. If the distortion type is known, this analysis will facilitate the

selection of a distortion specific particular method. It may also happen, that

41



PINISA Suist sonfea HHOYS Ul suonendng (q) WISHSAd Sumsn sonfea DHOYS Ul suorenionfy (v) ;¢ 93

(@) (e)

S92Ipu| I8)Bweled S921pu| I8lsweled

05y 00 0SE 00€ 0S¢ 002 0ST 00T 05 0 0S¥ (04 0se 00g 0se 00z 0ST 00T 0S 0
o 980 - 980
= 88°0 880
2 £
-160 O r 60 O
(@] (@]
O O
< <
o =X
60 © N 260 ©
@ @®
w 2]
= -¥6°0 r 60
NN AN AN NN AN AN ANV AN A VAN
1 1 1 1 1 1 1 1 1 L Il Il Il Il Il Il Il Il

OAl —8002dlL — OISO— IAIT— LOIN— LSV —

42



0.056

0.054 N

0.052| N

0.05f- N

0.048

0.046 N

Correlation Error

0.044- D

0.042 |

0.04 .

] ] ] ] ] ] ] ] ]
0'0380 50 100 150 200 250 300 350 400 450

Parameter Indices

Figure 3.5: Variation of correlation error with parameter indices using PDSESIM.

a method has good overall performance for all databases; however, for one or

more distortions it is a bad evaluator of perceptual quality.

Here, we look into the distortion wise performance of the proposed method.
However, we have chosen only the largest three databases where number of
distortions is 5 or more. Thus, LIVE, CSIQ and TID2008 databases are cho-
sen. The results for the distortion-wise performance of the proposed method is
presented in Table 3.1. In the table, the top two performances for each distor-
tion type in each database are highlighted in bold. Next, the best performance
among the phase congruency related methods : Measure [56], FSIM, FSIM, and
PDSESIM is underlined. In the databases, distortion wise performance shows
that there exists no single approach that is superior to others in all cases. How-
ever, the proposed approach lies among the top two approaches in 12 of the 28
cases discussed here. These 12 cases belong to various distortions in different

databases. Hence, greater generalization ability is exhibited by PDSESIM than
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the other methods. For 9 of these 28 cases, VIF lies within the top two methods.
For most of the noises in the databases, the superiority of PSNR and PSNR-
HVS-M [80] is observed. Though PSNR is not among the top two performers
for wn in LIVE database, it is indeed very close to the second best. Also, we
notice that IWSSIM performs well for blur images in all of the three databases
and MSSSIM does the same in two databases. The comparison among the
Measure [56], FSIM, FSIM, and PDSESIM shows that PDSESIM has indeed
improved the generalization ability of FSIM, which is its closest contender. In
21 of the 28 cases, PDSESIM proves itself to be superior to the other three.
Also in each database, PDSESIM has performed better than the other three for
majority of the distortions. PDSESIM improves the performance for most of

the noises compared to Measure [56], FSIM and FSIM...

Overall Performance in Different Databases

Here, we evaluate the overall performance of PDSESIM across all databases.
This evaluation is very important as it conveys, how well a method is suited
to predict the perceptual quality caused by different types of distortions, taken
all together. We have 4 types of experiments here. In the first one, we show
graphically, how well the objective score is fitting with the subjective scores of
the database. Secondly, we compare the performance of the proposed method
with the state-of-the art methods quantitatively, using 5 evaluation measures in
6 databases. Thirdly, we compute the average performance of all the methods
in 6 databases. The final experiment compares the execution times of all the

methods.

In Fig. 3.7, the performance of the PDSESIM is presented for the 6 databases.
The fitting gives visual idea about the performance of the PDSESIM. The
quantitative evaluation is presented in Table 3.2. From the table, it is clear

that PDSESIM demonstrates improved performance compared to Measure [56]
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and FSIM in all databases and in 4 out of 6 databases compared to FSIM,. As
compared to the state-of-the-art methods, PDSESIM’s next strongest contender
is MAD which lies within top two performers in 3 of the 6 databases. PDSESIM
is the best performer in the TID2008 database which has maximum number of
images as well as maximum types of distortions. Also, FSIM,, IWSSIM, VIF
and VSNR has been in the top two performers in at least one database. However,
there exists no method which has performed equally well in all databases. To
further evaluate the performance of the proposed method, we averaged the
SROCC, KROCC and PLCC scores across all databases as shown in Table 3.3a.
In the case of simple averaging, we find PDSESIM performs best among all
the FR-IQA measures using all of SROCC, KROCC and PLCC. In weighted
averaging, the number of distorted images in each database (see Chapter 1,
Section 1.3.1), has been used as the weight for the databases. PDSESIM is the

best performer for all of the three correlation scores here as well.

Finally, we come to the comparison of execution times of the aforesaid measures.
The execution time has been found out by running the MATLAB codes for each
method on a computer with a Pentium Core 2 duo processor with frequency of
2 GHz using a pair of reference and distorted images of size 768 x512. It shows
from the Table 3.3b, that the processing times of PSNR, SSIM and VSNR are
very low. Compared to those, the processing times of IWSSIM, FSIM, FSIM,,
VIF, MAD and PDSESIM are much higher with PDSESIM having the lowest
execution time among all of these. In the earlier experiments, PDSESIM showed
improved performance distortion-wise and in overall performance evaluation.
Also, similar to FSIM., PDSESIM works on color images, but its execution
time is lower compared to that of FSIM which works on grayscale images only.
This is due to the omittance of noise circle calculation from the measure of

phase deviation sensitive energy.
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3.2.4 Discussion

Compared to the existing state-of-the-art approaches, the proposed method exhib-
ited improved performance in distortion wise perceptual analysis. The method also
demonstrated better generalization performance than its nearest competitors FSIM,
MAD and VIF in the different experiments conducted but has faster computation
time compared to these. Using several evaluation criteria depicting prediction mono-
tonicity, accuracy and error, the overall performance of the method is found to be
robust and competitive with the state-of-the arts. The robustness of the method is

also corroborated by the best overall average performance of PDSESIM across six

benchmark FR-IQA databases.

3.3 Comparison of Spectral Saliency based Tech-
niques

The framework discussed in the computation of FSIM is used to generate another
technique for FR-IQA. This technique uses saliency maps obtained from the reference
and distorted images using a technique called SR [32] for computing saliency instead
of the Phase Congruency (PC) maps. SR is one of the state-of-the-art techniques
in visual saliency detection. SR has been used earlier for FR-IQA but embedded in
a different framework [61, 63]. Other saliency based FR-IQA techniques use visual
saliency for the purpose of pooling in the later stages of the algorithm [114]. Since
visual attention is one of the integral properties of HVS which the IQA methods aim
to imitate, the justification of using image saliency for IQA is intuitive. Inspired by
the potential and performance of SR for FR-IQA, this work attempts to explore and
evaluate the performance of several recently developed spectral saliency detection
methods in FR-IQA. The spectral methods selected are those which have gradually

evolved being inspired from SR and showed better or competitive performance with
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the same. The current work is an effort to study how these newly emerged spectral
saliency methods support FR-IQA and evaluate their performance by comparison

with the state-of-the-arts and SR.

3.3.1 Selected Spectral Approaches

During the evaluation process, we change the approach for saliency extraction method
and generate the quality scores keeping the framework same. Here, we discuss the
different spectral saliency computation methods used to compute saliency maps used

during the evaluation.

1. Spectral Residual (SR): Calculation of SR involves the residual log am-
plitude (computed as the difference of log amplitude and low-pass filtered log
amplitude) and phase of the Fourier transform. The inverse Fourier Trans-
form (FT) is applied on the residual and the related phase to generate the
saliency maps. SR based saliency maps are used to computer the objective qual-

ity scores and hence this technique for score computation is evidently SR-SIM.

2. Phase Fourier Transform (PFT): The second approach to calculate the
saliency map is PFT [27] based saliency which uses the only the phase of Fourier
transform to compute the saliency maps. As shown in [27], a faster and better

computation of saliency map is obtained using PFT compared to SR.

3. Phase of Quaternion Fourier Transform (PQFT): Further innovation
led towards the use of PQFT [27] to form saliency maps. Instead of a two-
dimensional FT, the technique for computing Quaternion Fourier Transform
(QFT), represents each pixel of a color image as a quaternion comprising of
color, intensity and motion features (if possible). For the application of Quater-
nion Fourier transform, the color channels are required and hence, this method

works on color images only.
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. Eigen Spectral Residual (Eigen SR): As any quaternion can be represented
in a polar form with the help of its eigen axis and eigen angle which are used
for the generalization of the imaginary part of the quaternion, the approach
presented in [90] computes saliency map based on the eigen axes and eigen
angles of the quaternion. One of the techniques proposed in the work [90] is
called Eigen SR. The residual is calculated as the difference of log amplitude
and low-pass filtered log amplitude of the QF T of the image. Then inverse QFT
is applied on the residual and the related eigen axis and eigen angle to generate

the saliency maps.

. Eigen Phase of Quaternion Fourier Transform (Eigen PQFT): In the
same work [90], another technique called Eigen PQFT [90] is proposed for spec-
tral saliency determination. However, it differs in principle used in computation
of PQFT as the inverse QFT is calculated based on the log amplitude, eigen

axis and eigen angles instead of using quaternion phase as used in PQFT.

. Hypercomplex Fourier Transform (HFT): Another saliency detection ap-
proach using HFT based saliency detection has been recently introduced in [47].
The scale at which the saliency map will be perfect is decided by the saliency

entropy criterion.

. Discrete Cosine Transform (DCT): Apart from Fourier Transform, an
approach has used discrete cosine transform (DCT) to generate features for
image saliency called image signature [31]. This method can extract saliency

from both color and grayscale images.

. Quaternion Discrete Fourier Transform (QDCT): The earlier work re-
lated to image signature using DCT is further extended to QDCT [89] for image

saliency detection.
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As seen from the aforesaid methods, the computations for saliency map is done in
spectral domain using different transforms (Fourier, DCT). Also, the color channels
of the images are embedded using the concept of quaternion in several of the cases.
All of the aforementioned spectral saliency detection methods have been chosen for
this study. Therefore, altogether eight saliency determination algorithms have been

used to obtain the quality scores from the images.

3.3.2 Experimental Evaluation

In this section, we discuss on two topics. Since, the basic framework consists of the
parameters €1, €; and A, the values of these parameters are required for the evaluation.

The evaluation is carried out using six benchmark databases.

e Parameter Selection

First, we fix the value of X\ as it decides the contribution of gradient similarity
maps towards forming the STM,,,,,. The value of A is taken to be as 0.5 similar to
that mentioned in [128]. Next, we followed the same procedure for the selection
of the remaining parameters ¢; and €5 used to find the corresponding similarity
maps. Hence, the value of ¢, is varied from 0.05 to 0.95 with an interval of 0.05
and hence 19 different values are obtained. €5 is used for gradient images and
its value is varied from 10 to 250 with an interval of 10. Then we estimate the
correlation error, but the equation is slightly modified to

Np 0.5
1 2
CE, = (N_D ;(1 — SROCCy;) ) , (3.31)

where d represents each of the Np databases and SROCCy ; is the SROCC value
in d'® database for j*" parameter set. This equation is basically an average over
the relevant number (Np) of databases followed by a square root of the earlier
definition of correlation error mentioned in Eqn. 3.30 and hence does not change

the order of the error values for the FR-IQA measure. The plot of correlation
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error for all the parameter indices using different types of spectral saliency
based FR-IQA methods is shown in Fig. 3.6. The ¢; and €, values are chosen
corresponding to index (j) for which C'E; is minimum. This experiment reveals
different sets of parameter values for different saliency based approaches as
shown in Table 3.4. 1In this method of selecting parameters, equal importance
has been given to all of the databases which vary a lot in size, subjective score
range and in types of distortion present in images. Since, the FR-IQA methods
need to be consistent across several types of distortions, the parameters chosen
in this way can have better applicability with many distortions. The range of the
correlation error plots is also significant. A small range assures that the variation
in parameter values has less effect on the method whereas a bigger range shows
that Qs is more dependent on the parameters. Again, the lesser the higher
limits of C'E, the closer is the performance of the method to perfection. The
least higher limit in C'E' is exhibited by PQFT. Though the selected framework
is embedded in the FSIM and SR-SIM, it is quite dependent on the parameters.

Comparison Results

We have compared the seven aforesaid saliency based FR-IQA methods with
each other and also with state-of-the-art methods SR-SIM, MSSSIM, TWSSIM,
VIF, MAD and FSIM,. Since the quaternion based approaches process color
images only, there are no results for these approaches in A57 database which
contains grayscale images only. The results for FSIM. is equal to those obtained
using FSIM for grayscale images in A57 database. For SR based IQA, we have
used the parameters used in the implementation of SR-SIM [128]. The com-
parison among different IQA methods is summarized in Table 3.5. SR-SIM has
the best results for TID2008 database. PFT performs better in TID2008 and

IVC database. PQFT gives a consistent performance, though it has never been
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Figure 3.6: Correlation error across the databases for (a) SR, (b) PFT, (¢) PQFT,
(d) Eigen SR, (e) Eigen PQFT, (f) HFT, (g) DCT and (h) QDCT.
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among the top two performers except for one database. It performs consistently
well in all databases. Eigen SR performs better than SR-SIM in LIVE, IVC and
MICT datasets. In TID2008, IVC and MICT database, Eigen PQFT performs
better than PQFT. HFT and DCT based FR-IQA methods vary a lot from
the best results of each database. However, the performance of QDCT based
method is much better in all of the databases. In Table 3.6, we show the direct
and weighted average SROCC values across all databases obtained using dif-
ferent FR-IQA methods. We find that saliency based methods, SR-SIM, PFT,
PQFT and Eigen PQFT based methods have higher average SROCC. In [128],
SR-SIM is shown to be faster than several FR-IQA techniques. PF'T calculation
is faster than SR [27]. PQFT, Eigen SR and Eigen PQFT involve quaternion
fourier transform and hence are computationally expensive compared to PFT.
Therefore, among the methods that have competitive performance with the

state-of-the-arts, PF'T is the fastest.

3.4 Chapter Summary

We have presented improvements in two existing techniques tied by a common frame-
work. Firstly, we presented a phase deviation sensitive energy similarity index PDSESIM
for FR-IQA using phase deviation sensitive energy features computed using log Ga-
bor filters. The recent success of phase congruency based image features for FR-IQA
is the motivation for this work. However, the phase congruency algorithm used for
FR-IQA is less sensitive to noise depending on the noise removal technique used. The
noise adjusted phase deviation sensitive energy features are used to compute phase
congruency after normalization by filter amplitude response. Based on the sensi-
tiveness of the HVS on noise, we have proposed the use of phase deviation sensitive
energy features to evaluate perceptual quality of images. We have also demonstrated

a technique to find the suitable parameters required to compute the phase deviation
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sensitive energy similarity. Secondly, we have presented a comparative study of spec-
tral saliency based approaches for the purpose of FR-IQA. This study enables us
to see that several aspects of saliency based FR-IQA. Firstly, the raw values present
in the saliency maps formed are very important and though they may form better
saliency maps or help in better detection of salient areas, they may not help to design
a better FR-IQA method. Secondly, we show the dependence of the framework (used
in FSIM, and SR-SIM) on the values of the parameters. Thirdly, this study enabled
us to evaluate the relative capabilities of the spectral saliency based methods to form
an FR-IQA method. The future work involves using suitable saliency measures for

FR-IQA via a framework which has lesser dependence on parameters.
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Table 3.4: Different €; and ey values used with different spectral saliency based
FR-IQA framework.

PFT PQFT Eigen SR Eigen PQFT HFT DCT QDCT

€1 035 0.05 0.05 0.05 0.95 095 095
e2| 70 50 20 30 220 10 10
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Chapter 4

Full-reference image quality assessment by
combining global and local distortion

Imeasures

Full-reference image quality assessment (FR-IQA) techniques compare a reference and
a distorted/test image and predict the perceptual quality of the test image in terms of
a scalar value representing an objective score. The evaluation of FR-IQA techniques is
carried out by comparing the objective scores from the techniques with the subjective
scores (obtained from human observers) provided in the image databases used for the
IQA. Hence, we reasonably assume that the goal of a human observer is to rate the
distortion present in the test image. The goal oriented tasks are processed by the
human visual system (HVS) through top-down processing which actively searches
for local distortions driven by the goal. Therefore local distortion measures in an
image are important for the top-down processing. At the same time, bottom-up
processing also takes place signifying spontaneous visual functions in the HVS. To
account for this, global perceptual features can be used. Therefore, we hypothesize
that the resulting objective score for an image can be derived from the combination
of local and global distortion measures calculated from the reference and test images.
We calculate the local distortion by measuring the local correlation differences from
the gradient and contrast information. For global distortion, dissimilarity of the
saliency maps computed from a bottom-up model of saliency is used. The remaining
parts of the chapter are arranged in the following manner. The basic idea behind

the proposed approach is discussed in Section 4.1. The motivating factors for the
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proposed approach are presented in Section 4.2. The details of the proposed method
are presented in Section 4.3. The performance of the proposed method is analyzed in

Section 4.4. The concluding remarks are presented in Section 4.5.

4.1 Basic Idea

As already discussed in Chapter 2, Section 2.1, MAD, ADM and IGM apply different
strategies to separately evaluate different aspects of distortion. Inspired by all of
these, the aspect we focus on is the automatic evaluation of image quality based on
global and local perceptual visual cues and their combination. As explained in [98], vi-
sual processing is a simultaneous combination of bottom-up and top-down processes.
Bottom-up processing focuses on highlighting the relatively important regions in an
image [34]. On the other hand, top-down processing caters to goals and it searches
actively for local features [77] based on contextual information. In HVS, these pro-
cesses occur simultaneously and quickly. Whenever, a human subject is given the
task of evaluating perceptual quality, he has the final goal to rate the distortions
present. Based on this, we hypothesize that three main events taking place during
this evaluation: 1. Initially, the global image content determines the varying attention
(regionwise) of the evaluator; 2. existing regional distortions are used to assign local
quality evaluations; 3. finally, based on the attention, a refinement on the previous
evaluation is carried out and final rating is provided. To serve the first event, we
resort to the global perceptual features of the image. For the second step, local at-
tributes between the reference and test/distorted images are compared. Finally, third
step involves a pooling strategy taking place based on the global perceptual features.
In the present work, the perceptual quality of an image is expressed in terms of image
saliency maps (as global perceptual features) obtained from bottom-up saliency mod-
els, gradient information and local standard deviation (local features) also termed as

Root Mean Squared (RMS) contrast. The saliency map of an image represents global
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information about how often a particular pixel is gazed at. On the other hand, local
standard deviation and gradient information signify the local and contextual infor-
mation of any pixel. The local correlation between the global information obtained
from the reference and distorted images is computed. The local correlation between
the gradient information obtained from the reference and distorted images is also cal-
culated. These local correlations are combined with the local RMS contrast between
the images. From the experimental results, we find that the integration of simple
visual details of global perceptual difference information and local information may
result in an effective FR-IQA technique. It differs from its predecessors in terms of
treatment of local and global features by using the regional correlation. It has been
shown in [52], gradient is structure-variant as well as contrast-variant. Thus similar
variations in gradient magnitude values and standard deviation are expected for a
pixel. However, change in standard deviation may not be caused by change in gra-
dient magnitude only. Gradient orientation is also affected by presence of distortion.
Thus, the proposed approach applies all of these visual details to arrive at the quality
score. The performance analysis of the technique in six benchmark databases shows
the promise of the proposed method as a competitive technique in FR-IQA. Also, we
carry out analysis on distortion wise performance of the FR-IQA techniques using
color based representation. This representation of the results clearly shows that with
certain distortions, the FR-IQA techniques fail to perform well. The representation
also depicts the competitive performance of the proposed method as also analyzed in

Section 4.4.3.

4.2 Motivating Factors

The main motivation behind the proposed approach is to successfully combine simple
visual cues, representing the global and the local information present in an image,

to formulate a competitive FR-IQA technique. We have selected saliency maps as
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global perceptual features for an image. For local features, block based gradients
and standard deviations are used. The proposed technique obtains global distortion
information by comparing global features obtained from the reference and distorted
images using local correlation. The local distortion information is obtained by com-
paring local features using local correlation and local difference. In the following
sections, we describe the importance of each of the global features and the roles they
are expected to play as parts of an FR-IQA technique. Based on their properties,
we hypothesize that the effective combination of these simple features can result in a

competitive FR-IQA technique.

4.2.1 Global Features

The saliency map of an image is chosen as a representation of the global perceptual
features of an image. Since saliency maps have perceptual information contained in
them, they have been used as features and for pooling purposes [63, 128]. Given
saliency maps, it becomes easier to point out the pixels which are perceptually more
important than the others as they are more significantly gazed at. Many saliency
methods rely on bottom-up (task-independent and data driven) processing only. Some
techniques also apply top-down (task-driven, prior knowledge) approaches to enhance
saliency [17]. A comparison of several types of spectral saliency based FR-IQA is pre-
sented in Chapter 3, Section 3.3. We chose the bottom-up technique for saliency
calculation called spectral residual (SR) [32] and phase Fourier transform (PFT) [27]
to be used in our method owing to their simplicity, fast computation, high average
performance and applicability with both grayscale and color images (shown in Chap-
ter 3, Section 3.3). Thus, we present two versions of the proposed method using SR
and PF'T separately. These versions are named as global local distortion with SR
(GLD-SR) and global local distortion with PFT (GLD-PFT).

The saliency maps shown in the corresponding images as global features during our

discussion of the motivation, are computed using SR only. As shown in Figs. 4.1(d—
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f), saliency maps of different images (see Figs. 4.1(a—c)) having different distortions
look similar. Though the points of gazes remain similarly distributed visually, subtle
changes in values occur as shown in the Figs. 4.1(g-h)). Hence, the saliency maps do
not vary in similar way for different distortions. Though, the face of the girl remains
among the most salient parts in all the images, the changes in saliency values at
various pixels are different. Thus, global perceptual information varies for different
distortions and this change is conveyed by the saliency maps. This property of the
saliency maps is used in the proposed technique. The local correlations of the saliency
maps are expected to be higher if the variations of the saliency values in the block-wise
neighborhood of the same pixel are similar. However, this similarity indicates similar
variation in the global perceptual information for the neighborhood but same values of
saliency may not be present in both of the corresponding blocks of the images. Also,
local distortions may be ignored by the global representation. Hence, the use of local
visual cues remains important. Local standard deviation and gradient information

are used as local visual information and these are elaborated in the following section.

4.2.2 Local Features

As experimentally validated in the work of Bex and Makous [3], RMS contrast can
be used to detect contrast changes. Therefore, RMS contrast has been chosen to
extract local features for the proposed work. As per the definition of RMS contrast,
it is similar to the standard deviation of luminance values. In Fig. 4.2, we show
the RMS contrast maps for the reference and distorted images. Some structure dif-
ferences are present between the images in Figs. 4.2(d) and (e) as revealed in their
difference image Fig. 4.2(m). On the other hand, the dynamic range of RMS con-
trast is lower in Fig. 4.2(f) compared to that in Fig. 4.2(e) and hence their difference
shown in Fig. 4.2(n) bears much similarity with Fig. 4.2(e). The gradient magni-
tude image in Fig. 4.2(g) shows the outlines of the blocks of the image shown in
Fig. 4.2(a). The difference of gradient magnitude of the jpeg image and that of the
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(h)

Figure 4.1: (a) and (c) are the jpeg and global contrast decremented images ob-
tained from the reference image (b) [42]. The saliency maps of (a), (b)
and (c) are shown in (d), (e) and (f) respectively. The difference of the
saliency maps shown in (e) and (d) is (g). The difference of the saliency
maps shown in (e) and (f) is (h).
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reference image is shown in Fig. 4.2(0). This difference reveals smaller structural
changes compared to Fig. 4.2(m). For the global contrast decremented image, the
difference in gradient magnitude image Fig. 4.2(p) reveals magnitude changes (lower
dynamic range) but this image is much sharper than Fig. 4.2(n). The gradient ori-
entation image in Fig. 4.2(j) has changed significantly from Fig. 4.2(k). For jpeg
image, significant change in gradient orientation can be seen through the difference
image shown in Fig. 4.2(q). However, for contrast decremented image, the change
in gradient orientation is very less as shown in Fig. 4.2(r). Thus, the RMS contrast,
gradient magnitude and gradient orientation maps have different visual depictions for
different distortions as shown in the third row of the Fig. 4.2 and each of these local

features has its own relevance.

4.2.3 Correlation between the Feature Maps

We have used cross-correlation between the saliency maps, x-partial derivative maps
and y-partial derivative maps to find the relative local variations of the selected
features. The cross-correlation conveys whether the local and global information
we employ in our technique, cause uniform or varying changes throughout different
neighborhoods of the pixels. A block-wise correlation between the saliency maps is
sure to indicate how similarly the saliency varies in the reference and the distorted
images in the same neighborhood/region. Thus, from global perspective, we have the
idea about the variation of saliency in the respective local neighborhood of a pixel.
Similarly, for the x and y-partial derivatives of the local data, we get the varying trends
in neighborhoods along the x and y directions. Any edge present in an image is sure
to have a vertical and a horizontal component. These components are the x and y-
partial derivatives. Thus, the correlation between x-partial derivatives of the reference
and distorted images will depict the variation in neighborhood due to changes in
edge strengths in vertical direction. Similarly, in horizontal direction, the correlation

between y-partial derivatives is important. In Fig. 4.3, the importance of correlation
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maps are shown for the distortion jpeg. The block-wise correlation between the x-
partial derivatives (Figs. 4.3(e) and (g)) is found out for the reference and distorted
images (Figs. 4.3(a) and 4.3(b), respectively). Similarly, the block-wise correlation
between y-partial derivatives (Figs. 4.3(f) and (h)) is calculated. Therefore, two
correlation maps are obtained. The maximum and minimum of these correlation
maps are used to form the images shown in Figs. 4.3(j) and (k), respectively. The
difference between these two images is shown in Fig. 4.3(1) and it shows to what
extent the local data based maximum and minimum correlation varies. This figure
depicts all the edges of blocks formed in the distorted image and hence is indicative

of some structural changes.

4.3 Proposed Method

We describe the proposed method in details in this section. We sub-divide the section
into three parts. The first part describes the computation of global and local feature
information from the distorted images. The second part describes the use of these
information to form distortion map and computation of the quality score while the
third part analyzes the method using an example. The graphical depiction of the
proposed method is presented in Fig. 4.4.

4.3.1 Global and Local Feature Extraction

The reference and distorted/test images Ir and Iy are pre-processed to obtain the
images PIr and Plr respectively. The pre-processing steps are: (1) any color image is
converted to grayscale; (2) the grayscale image is subjected to the process of automatic
scale selection as mentioned in [110] and (3) the range of image intensity values is
restricted between 0 and 1. In the next step, we calculate the saliency maps, gradient

maps and local contrast maps. The saliency maps (Sg and Sr) of PIg and Plr are
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Figure 4.3: In the first row, (a) and (b) are the source and the jpeg images [42]; (c)
and (d) are the respective saliency maps; (e) and (g) are the respective
x - gradient maps while (f) and (h), the respective y-gradient maps.
(i) is the block-wise correlation between (c) and (d); (j) and (k) are
formed using the maximum and minimum of the block-wise correlation
between (e) and (g) and that between (f) and (h). (1) represents the
pixelwise differences between (j) and (k).

70



Pl

l

Pl

Pl Pl

L

Pl Pl

||

x-Gradient
and y-Gradient

Local Contrast

Compute Saliency

Vi V;

A

Y

GR, X GT, X

Correlation Correlation

between between
x-Gradients y-Gradients

X Y
c c

Maximum and minimum of

correlation values

Contrast Difference

Y

Gy

V£

Gradient Related
Difference

%k Sr

Correlation between
Saliency Maps

SM

C

LC ’
L
c
“»i Primary Final
Distortion Distortion
Map Map

D

——*|_Pooling_|—>

f

Quality
Score Q

Figure 4.4: A schematic diagram of the proposed framework used in GLD-SR and

GLD-PFT.

71



found by spectral residual method [32]. The local contrast is calculated as

(0.5)
Vr(p) = [ﬁ > (PIn, - Mg] , (4.1)

vew
where p,, is the mean of the block w of size M x N surrounding the pixel p of image
PlIg. Similarly, one can compute the local contrast image Vp from Plp. Then, the

local contrast difference is found out as

(Vr(p) — VT(p))} ? _

(4.2)

LCy(p) = { 5

For the local contrast and gradient calculation, we use a 3 x 3 window. The x-
gradient (G, and Gr,) and y-gradient (Gg, and Gr,) images are found by the
Scharr gradient operator [35]. Next, we find the local correlation image S M. between
the global saliency maps. From the gradient images, the gradient magnitudes are

found out as

Grur(p) = (Gra(p) + G, ()2, (4.3a)
Gran(p) = (G7o(p) + G, (p)=. (4.3D)
The gradient orientations are calculated as
Gro(p) = arctan(Gry(p)/Gr+(p)), (4.4a)
Gro(p) = arctan(Gry(p)/Grs(p)), (4.4b)

such that the angles lie within [—m, 7]. We calculate the gradient related difference

as

|Gr,M(P)=Gr.m(p)l |Gr,0(P)—GT,0((D)l
max ( 7 , o )

Galp) = y (45

which considers the maximum of the differences of gradient magnitudes and gradient
orientations by using the function max(.). Since, the intensity values in the images

are restricted between 0 and 1, the gradient magnitudes can have a maximum value
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of V2. Hence, these magnitudes are divided by V2 such that their values remain
below 1. Again, the maximum difference between the orientation angles can be 2.
Therefore, the orientation difference is divided by 27 such that its maximum value is

restricted to 1.

4.3.2 Formation of Distortion Map

In order to form the distortion map first, the three local cross-correlation maps are
found out between the pair of saliency maps, x-partial derivative maps and y-partial
derivative maps. Thus, we have SM,, X, and Y, denoting the local correlation maps
corresponding to saliency maps, x-gradient maps and y-gradient maps respectively.
Now SM, is the correlation between the global features, and high value of this corre-
lation implies greater global similarity between the images. High values of correlation
for the local information imply similar local variation between the images. The maxi-
mum and minimum values of correlation between the local features for any pixel p are
computed as H.(p) = max(X.(p), Ye(p)) and L.(p) = min(X.(p), Ye(p)) respectively.

Now, we calculate the primary distortion measure for each pixel p as

_ max(|He(p) — Le(p)], (1 — Xe(p)), (1 — Ye(p)), (1 — SM.(p)))
2

x T(p), (4.6)

X w x Ga(p) ' (4.7)

Therefore, D, indicates a measure of difference between two pixels considering their

T(p) = | LCa(p)

local neighborhood as well as global perceptual importance. The first difference term
within the function max(.) in Eqn. 4.6 shows the difference in correlation caused by
varying changes in the neighborhoods along the horizontal and vertical directions.
The correlation differences between the local contrast and gradient difference are also
used to account for the local contrast and gradient changes. The difference in local
contrast and gradients are also considered to find their variation together. The cor-

relation ranges from -1 to 1. Hence, when any correlation term is subtracted from
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1, the maximum value it can take is 2. Hence, a division by 2 is carried out. Thus,
the maximum deviation of any type of correlation is captured in this equation. Re-
garding the calculation of T'(p) which uses the change in local distortion obtained
from the RMS contrast and gradient difference, if there exists high correlation within
the saliency maps, the difference/distortion values get effectively lowered. Therefore,
multiplication by (1—SM.(p)) has been used. Hence, the product of these three terms
are taken in Eqn. 4.7. The values of T'(p) will be larger when aforesaid differences are
higher along with smaller values of SM.(p) (smaller values of SM.(p) imply signifi-
cantly different local variations in global information of the reference and distorted
image). T'(p) is multiplied by the maximum change captured through correlations
calculated from global and local features. In this primary map, the treatment with
all pixels remains the same. However, this map can undermine local variations in
images as it relies more on the global variations.

Therefore, one more map is used based on the relative values of the correlation
between the local and global data. Higher correlation in the global features compared
to the local features does not indicate that the distortion is low, but local variations in
luminance/RMS contrast should be regulated or considered, if needed. Therefore, the
following map is formed for some selected pixels which are more correlated globally
than locally. We find the set ¢ of those pixels p for which the correlation between the
global features is greater than that between local features, meaning SM.(p) > L.(p).
The distortion measure for them is calculated in two ways: first, the changes in RMS
contrast are regulated and next, only the local differences are considered. For the

first part,
1
<L0d(P) X w> L ifp€ne

0, otherwise

A(p) = (4.8)

This equation says that if the correlation between global features is higher than the
minimum local correlation obtained from gradients, the local contrast difference has

to be given varied importance as decided by (1 — SM.(p)).
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On the contrary, local distortions present in some pixels in set 7g may be signif-
icant if the local changes are high . Hence, the product of RMS contrast difference

and gradient difference are considered for the second part.

[N

B(p) = (LCa(p) x Ga(p))? if p € ng | (19)

0, otherwise

The final distortion map is calculated as
Dy(p) = Dy(p) + A(p) + B(p). (4.10)

Finally, the quality score () is calculated as

5 Dy(p) x max(Sn(p). 51 0)

Q=k : (4.11)

5* max(Sa(p), Sr(p))

p=1
where Ny is the total number of pixels in PIr and saliency map values are used for
the pooling the map. k is a constant taken as 10000 in all our experiments. It scales
the objective scores which are otherwise very low. Multiplication by this constant
does not have impact on the quantitative results rather it makes the interpretation
of the scores easier. In the next section, we analyze the proposed method using the

(@ values obtained on a suite of distorted images.

4.3.3 Analysis using an Example

In the diagram shown in Fig. 4.5, we find the distorted images with their correspond-
ing primary distortion maps and saliency weighted final distortion maps computed us-
ing GLD-SR. The dynamic ranges of these maps have been adjusted to increase visual
details. The brighter an area is in the distortion map, the higher is its contribution
in the distortion map. The distortion map indicates the assessment of degradation of

the image prior to the pooling process. Also, this figure shows the difference between
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the primary and the final distortion maps. For example, the relative contrast of the
values is lower in the final map than the primary map. This is as if taking ‘one more
look” at the local distortions before evaluating the image. Hence, the final distortion
map is necessary to calculate. The averages of the saliency weighted final distortion
maps (the @ values) in Figs. 4.5(m-1), have increased gradually demonstrating the
increasing degradation of perceptual quality as we move from left to right. As the
images are arranged in increasing order of their DMOS values (provided in the CSIQ
database), the objective scores should be in the same order as well. Since the pro-
posed technique is a way to quantify the perceptual degradation, values of () increase
as perceptual degradation increases. The values of ) are found to be increasing in
the same order as the DMOS values. We find that the proposed technique is able
to maintain the same order of perceptual quality as given by human observers for
different types of degradations. We find that only parameter the proposed technique
has, is the window size which is fixed for all our experiments. Increasing window size
has no significant influence on the performance but it increases the computational

time.

4.4 Experiments and Performance Analysis

We are presenting the experiments and results of our proposed method in this sec-
tion. The experiments are carried out in six leading databases. The proposed method
has been compared with 12 other methods: PSNR, SSIM, MS-SSIM, VIF, VSNR,
MAD, IWSSIM, FSIM,., ADM, SR-SIM and IGM and PDSESIM. We have gradually
moved from global representation of experiments and results to a much detailed one.
In the first experiment, the average performance of the techniques across all distor-
tions and databases are considered. In the next experiment, we look at individual
performance of the FR-IQA techniques in 6 databases considering all distortions in a

database together, along with a statistical analysis using F-test. Finally, we look at
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Figure 4.5: The objective values obtained by the proposed method GLD-SR on six
images of CSIQ database [42]. The images (from left to right) in the
first row have different types of distortions: contrast decrement, awgn,
fnoise, jpeg2k, jpeg and gblur. The images are arranged in increasing
order of their DMOS scores and hence perceptual quality decreases from
(a) to (f). The respective DMOS values are shown below the figures in
first row. The middle row shows the corresponding primary distortion
maps. The final row shows the saliency weighted final distortion map
which is used to calculate the objective score ) using GLD-SR. The
respective () values are shown below the figures in the last row.
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the distortion wise analysis of the results in three largest databases. This three-fold
experimentation helps to deeply analyze the proposed method by several aspects and

shows its competitiveness to the state-of-the-art techniques.

4.4.1 Average Performance Comparison

The direct average for each evaluation measure shown in Table 4.1 is the arithmetic
mean of the corresponding measure computed from six databases. The weighted
average of an evaluation measure is the weighted mean of the measure values and the
number of images in a database acts as its weight. The top performances for each
evaluation measure in direct and weighted average are represented in bold font.We find
that the proposed method GLD-SR has the highest average values in terms of all of the
three measures for direct average. GLD-PFT has close performance with PDSESIM
using SROCC and KROCC. The average PLCC score for GLD-PFT is better than
all existing techniques and slightly below GLD-SR. For weighted average, GLD-PFT
is the best followed by GLD-SR and PDSESIM using all of the three correlation
scores. Thus, with the proposed methods GLD-SR and GLD-PFT, we have been
able to achieve improved results compared to the state-of-the-art techniques across

six databases considering all distortions together.

4.4.2 Database wise Performance Comparison

In this experiment, the overall performance of an FR-IQA technique in each of the six
databases is evaluated and the results are shown in Table 4.2, using all five evaluation
measures. The top three performances for each evaluation measure in each database
are highlighted in bold. As we can find, none of the FR-IQA techniques are among
the top three in all databases. VSNR, IWSSIM, ADM, SR-SIM and IGM are among
the top performers in only one of the databases. MAD, PDSESIM and the proposed

approaches GLD-PFT and GLD-SR are among the top performers in three to four
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databases; but the subset of these databases varies in each case. For the CSIQ and
IVC databases, the proposed approach GLD-PFT gives best performance using all
of the five evaluation measures. The performance of GLD-SR is better than the
existing FR-IQA techniques in CSIQ, TID2008 and IVC databases using some of
the evaluation measures. In TID2008 database, GLD-SR and GLD-PFT perform
better than several state-of-the-art FR-IQA techniques using some of the evaluation
measures.

To analyze the statistical effectiveness of GLD-SR and GLD-PFT, F-test has
been used. The F-test is carried out using the residuals of the objective scores (after
mapping) and the given subjective scores. The variance of the residuals for each
database is calculated for all the FR-IQA techniques. Depending on the number of
images in each database, the critical value of F-distribution F,, is determined at 95%
confidence level. For a given database, if the ratio of the larger variance to the smaller
one is greater than F,, the FR-IQA method with the smaller variance is significantly
better than the one with larger variance. The result of the F-test is shown in Figs. 4.6
and 4.7. Fig. 4.6 shows the statistical comparison of GLD-SR with other thirteen
techniques. Each cell in the figure with a numeric value has values containing -1’,‘0’ or
‘1’ only. ‘0" implies that GLD-SR is not statistically different from the corresponding
FR-IQA technique given in the row heading for the database provided in the column
heading. ‘1’ implies that GLD-SR is better than the FR-IQA technique in the given
databases indicated by the row and column headings respectively. Finally, ‘-1 implies
significantly worse performance. We have also colored the cells depending on the its
values (-1 : pink, 0 : grey, 1 : green) to make the comparison vivid. From the F-
test results shown in Fig. 4.6, we understand that the more number of green cells
signifies better performance of GLD-SR. Since, comparison of an FR-IQA technique
with itself will return a ‘0’, the row corresponding to GLD-SR is totally grey. Hence,
the maximum number of green cells expected is 13*6 = 78. The number green cells

obtained is 40. Hence, in 51.28% of the cases, GLD-SR has shown improvement.
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Similarly, GLD-PFT has improved in 52.56% of the cases as shown in Fig. 4.7. While
some performance decline is exhibited in the LIVE and MICT databases, in majority

of the databases (CSIQ, TID2008, A57 and IVC) performance has improved.

4.4.3 Distortion wise Performance Comparison

In our last experiment, three databases (LIVE, CSIQ, TID2008) with the highest
number of distorted images are chosen. In each of these databases, more than 4 dis-
tortions exist. Using SROCC, the performance of GLD-SR and GLD-PFT in compar-
ison with several existing FR-IQA techniques for different distortions is demonstrated
in Fig. 4.8. The top three performers for each distortion are highlighted in bold. An
interesting point to be noted here: 13 methods (out of 14) have been among the top
assessment methods for at least one distortion. Thus, this figure gives an insight
about the suitable methods, if the distortion is fixed. VIF and GLD-SR are among
the top methods for 9 distortions whereas, SR-SIM and IGM are among top methods
for 10 and 14 distortions respectively. For several types of noises in the TID2008
database, PSNR performs better than the other techniques.

Apart from this, each cell with a numeric value is highlighted with a specific color
depending on which group the value falls within. To elaborate, the background color
in each cell depends on the value contained in the cell. As per the convention, absolute
values of SROCC are shown and divided in four ranges. Hence, the range of absolute
SROCC values [0,1] is divided in four non-overlapping groups: group 1 [0 - 0.7999] is
represented by pink, group 2 : [0.8 - 0.8999] is presented by blue, group 3 [0.9 - 0.9499]
is presented by orange and group 4 [0.95 - 1] is presented by green. The grouping is
made non-uniform so as to segregate the strong performances in each distortion from
the moderate and weak performances. First, we take a look at the results of TID2008
database. For the distortions like pattern noise, block-wise distortion, intensity shift
and contrast change, the SROCC values for all of the techniques are very low. On

the other hand, most of the techniques have higher SROCC scores for distortions

81



8617°0 L6¢¥°0 IPCr'0 96050 90€¥'0 G88G'0 €0C¥'0 TOLV'O €9LV'0 GCEL0 92¢G°0 €0TG0 €69L°0 0LL8°0 | HSINY

cvee’o GEEE0 8CCE'0 <¢0LE0 TOVEOD TLVP'O LLCE'O0 F8IE0 €LIE0 06750 0GOF'0  TOLED L6€G°0 GL89°0 | HVIN

16€6°0 19€6°0 I8E6°0 GCT6'0 LSE6°0 €8L80 06€6°0 8¢e6'0 0T¢6°0 9¢08°0 9¢06°0  90T6°0  GT64°0€869°0°0] OO'1d

TE€LL0 €89.°0 6€9L°0 98¢L°0 09GL°0 GG¢L'0 9€9L°0 6€EL°0  90VL°0 €509°0 8GIL'0 €0CL0 6£69°0 8IS0 | DOOUM

9€€6°0 60€6°0 98¢6°0  Lc06°0 G9¢6'0 92060 €6¢6°0 GCI6°0 9PI6°0 €66L°0 ¥968°0 08680 68LL°0 ¥889°0 | DDOYUS OAI
L€CS0 ¢0€S0 167G°0  TI8Y'0 ¢8LG'0 GGCV'0 GLCG0 SLLYV'0 ¥8EP'0 €619°0 96050 099¢°0 T49GL°0 LTG6°0 | HSINY

196€°0 LT07°0 10¢v'0 67190 ¥¥PP'0 88CE'0 GTI0V'0 €S9€°0 €6¥E€°0 66570 ¢I0V'0  L8F'0 679560 97LL°0 | HAVIN

¥806°0 0906°0 6868°0  ¢IL80 0.88°0 SIP6°0 ¢L06°0 9¥T6°0 L9€6°0 8698°0 9ET6°0 72680 966L°0 86¥9°0 | DOId

0T2L0 08120 GLTL0  ¥ELI0 GL69'0 O0CBL'O €0EL'0 LESL'0 €CBL'O GVL9°0 STE€L0  620L°0 €g6S'0 E€VFP0 | DDOUM

01060 88680 €968'0  €G98°0 Gc¢8R8'0 8L€6°0 L9060 <C0T6°0 <9€6°0 8098°0 2LL06°0 ¥.88'0 0L8L°0 ¢€19°0 | OOOYUS | LOIN
¥4660°0 6980°0 LL80°0 89600 9€60°0 LI9TT'0 €€60°0 2L8ST'0 TSOT'0 0LLO'0LG6T0 LEET'0 8ECCO 6681T°0 | HSINY

6cL0°0 Gg90°0 ¥6L0°0  67.0°0 8LL0°0 ¥I600 #6100 ¢8TIT'0 9980°0 ¥LS0°0 LT¥PT°'0  6TTIT'0  LP8T'0 L09T'0 | HVIN

L1¢6°0 ¥5€6°0 IVE€6°0 <C6I6°0 L¥c6'0 €088°0 ¢Gc6'0 ¢99L°0 €706'0 0096°0 LET9'0  ¥6E8°0  6VIF0 L¥E90 | DODOTId

LG¥L°0 168L°0 €6LL°0 L8EL0 6LLL°0 <CI69°0 6€9L°0 088¢°0 €ECL0 TE€O8V8'026SV'0 6¢99°0 08L2°0 60€TV°0 [ DOOUM

001670 1S€6°0 66¢6°0 90060 S6¢6'0 GcL80 TI8I6'0  0GL2°0 €060 SS€6°07cc90  GEPR'0 659070 687190 | DOOYUS LSV
6609°0 ¢819°0 09€9°0 62290 9¥2C9°0 79990 ¢8¥9°0 G169°0 T6¥L0 ¥LCO'T L0080 L¥cl0  876L°0 8ITT'T | HSINY

TI19%°0  L29¥°0 9ILY'0  LPIP'0 €PSP'0 €887'0 898%'0 GPcG'0  €PSG0 G80L'0 LEBG'O 9T99°0 6ET90 81680 | HVIN

6068°0 6.88°0 L088°0  C¥88'0 PS8R0 €898°0 8GL8'0 <LG80 TIER0 L0990 GL08°0 6I¥80 T908°0 S¥SG°0 | DOId

0€0L°0 100L°0 680L4°0 €0TL°0 6VIL'0 <¢¥890 16690 9€99°0 GPP9°0 OFVESG0 €98G°0 €PS9°0  9509°0 969€°0 | DDOOUM

6788°0 L1880 C¢688°0 T068°0 €T68°0 LT98°0 O¥P88'0 69498°0 0¥VE€E80 970L°0 967L°0 8¢S8'0 18080 S¥cS'0 | DOOYUS |800¢dIL
0T80°0  Z180°0 ¢v0T’'0 02010 TcOT'0 L2600 090T°0 ¢80T'0 ZLT8O0°0 06ST°0 0860°0  89TT'0  G¢ST'0 9L9T°0 | HSINY

¢T190°0 6190°0 €0L0°0 86900 ¥€L0°0 8GL0°0 SGPL0°0 68200 T€90°0 8ETT'0 ¢vZ0°0 L980°0 ¥PIT'O €6IT°0 | HAVIN

GT1S6°0 9056°0 ¥rc6'0 L9260 Tvc6'0 ¥8c6°0 98160 <¢VI6'0 S0S6°0 9T08°0 LL26°0  9868°0 TPI80 666L°0 | OOTd

80180 1608°0 98LL°0  ¥.8L0 6TLL°0 OTLL0 ¥8IL0 <CCGL'0 €96L°0 6.¢9°0 ¢€GL0  98EL0  G¢€I9'0 8L09°0 | OOOUM

6¥S6°0 6€56°0 6566'0  €0P6'0 6TE6'0 €£E6°0 60€6'0  TIT6'0 99¥6°0 TEIS0 ¥6I6'0  GET6'0  89€8°0 LS08°0 | DOOYUS | OISO
L99€°8 L067'8 6C6V°L  LGG6°L <C6L0'8 CCC96 9€CSTL  LGLE'® 890679 €61S°616809°L €EVIO®  LEVG'® 6G9€°E€T| HSINY

¢I87'9 80099 6€EB'S 0cP0'9 €9¢€9 9ERVT'L 9€C8'G GO8E'9 TLOC'SI90V9¥I G609 T10L9°9 60169 €87'0T | HVIN

1266°0 9056°0 91960 19960 ¢9G%6°0 69€6°0 €196°0 61960 S296°0 8T0L0 ¥096'0 68¥6°0 67¥6°0 ¢cl80 | OO1d

L6¢8°0 06¢8°0 8LE8'0 0Gc8°0 66¢8°0 9L6L°0 S9€8°0 8LI®0 TC¥8'0 6L87°0 ¢8¢8'0 67080 €96L°0 99890 | DOOUM

1€96°0 ¥296°0 €996°0 18960 8T96°0 09¥6'0 S¥96°0 9956'0 6996°0 I879°0 9€96'0 €TS6°0  6.¥6°0 9G28°0 | DOOUS | HAIT

LAJ-ATO UYS-ATOD INISHISAd INDI INIS-US INAV "INISA INISSMI AVIN UNSA ATA INISS-SIN INISS UNSd Tpﬁmﬁ@ETmMQMGNQ

"soseqe)ep XIs ul [ AJ-(1'T5 PR YS-(IT5) JO uostreduiod pue UOIJRN[RAD d0URULIOMOJ 7§ 9[R],

82
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Figure 4.6: F-ratio test for comparing GLD-SR with thirteen other FR-IQA
techniques in six databases.
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Figure 4.7: F-ratio test for comparing GLD-PFT with thirteen other FR-IQA
techniques in six databases.
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like blur, denoising, jpeg2k and jpeg. PSNR performs much better than most of the
techniques in awgn, awgn-pink, spatial-corr-noise, masked noise, high frequency noise,
impulse noise and quantization noise. For jpeg-trans-error and jpeg2k-trans-error, we
have mixed results from the techniques but a strong performing technique is still
missing. On the other hand, in CSIQ database, some techniques have lower SROCC
values for contrast but other distortions are well dealt by most of them. Only SR-
SIM is found to have strong performance in all distortions in CSIQ) database. Most
techniques have high SROCC scores for all distortions in LIVE database except for
VSNR and PSNR. Also, SSIM, MS-SSIM, VIF, FSIM,, PDSESIM and GLD-PFT
have top performances for all distortions in LIVE database as indicated by the green
color. Most techniques perform very well in LIVE database. Except for f-noise in the
CSIQ database, all distortions present in the TID2008 database are present in LIVE
and CSIQ databases and most techniques have high SROCC values for the common
distortions present in LIVE, CSIQ and TID2008 databases. However, the percentage
of green cells shows a huge decline when LIVE and CSIQ databases are compared
with the TID2008 database.

From the above discussion, one can conclude that there is no assurance of better
overall performance in a database, if the distortion wise performance is better. This
is because, relative assessment of different distortions will be required together for
overall performance. If the objective scores obtained from different distortions have
different ranges, the overall performance in the database is likely to be poor. As
we have seen, MAD has the best overall performance in LIVE database. Though
MAD has strong performance in four out of five distortions in LIVE database while
several others techniques have five strong performances, it still performs best when
all of the distortions are considered together. A closer look at the results show
that the proposed techniques follow a similar trend. GLD-SR and GLD-PFT have
strong performance in CSIQ database for four out of six distortions. However, their

overall performance is better than SR-SIM (6 strong performances), IGM (5 strong
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performances) as well as MAD, VIF, IWSSIM and ADM in CSIQ database. Hence,
both overall and distortion wise performance analysis are necessary to assess an FR-

IQA technique.

4.4.4 Discussion on the Parameters

A look into the details of the methods reveals about the adjustable parameters present
in the models. For PSNR, the definition is fixed and no adjustable parameters are
involved. For SSIM, window size is one of the parameters and based on that local
window size the structure, contrast and luminance similarity maps are generated.
This way of generating similarity maps is followed in FSIM,. and SR-SIM as well. It
is shown in Chapter 3, Section 3.3 that this framework introduces parameters based
on the number of similarity maps calculated and hence increases the effective number
of adjustable parameters for the method. MS-SSIM has parameters similar to SSIM
and the number of scales used also affects. However, number of scales and scale wise
weights are fixed for MS-SSIM. For VIF, different types of modeling techniques are
employed and in course of that, window size, number of Wavelet scales used and noise
variance of modeling neural distortions are introduced as the adjustable parameters.
MAD uses log-Gabor decompositions in which the scales and orientations need to be
pre-defined while VSNR has the number of scales as the only adjustable parameter.
ADM uses Wavelet decomposition to separate the image into two parts using 4 scales
to compute the necessary parts. IGM uses auto-regression based models to generate
the orderly and disorderly portions. The window size is a parameter as well as an-
other parameter is introduced by the constant required in the luminance comparison
maps. The saliency based method SR-SIM has window size and constants required by
the similarity maps as the adjustable parameters. Similarly, for PDSESIM, tunable
parameters are introduced by its similarity calculation framework.

Based on the discussion presented, we find that apart from PSNR, the parameter

dependency is evident among the existing FR-IQA techniques. The proposed method

86



134-019 ¥S-a719 NIS3sSad

W9I

NIS-¥S

wav

IS4

"soseqeiep 00ZALL Pue OISO ‘HAIT ut
LAd-ATH pue YS-q15 Jo uostredurod 91008 HNHOYS 9SIM UOILIOISI(] :{'F 9IN3Iq

NISSMI

avin

UNSA

dIA

WISS-SW  WISS

YNSd

a8ueyd 1senuod
Yiys-Ausuaiul
uoRI01sIp-asIMI0|q
asiou-usaned
Jouia-suesy-yzsadl
Joua-suen-sad(
dzsad]

Sed(
Buisiouap
inq8
asiou uopezipuenb
asiou asjndwi
asiou Aouanbaiy ysiy
asiou paysew
as|ou-1102-[eneds
yuid-uSme
uSme

800zalL

Sadf
»gBad(
asiouy

1sesjuod-jeqo|s
an|qg
uSme

IS

Buipepisey
iniq8
um
Sod(
JgSad|

ann

uooisig

aseqgeleq

87



is dependent on the saliency map but it does not compute the similarity map unlike
SR-SIM and PDSESIM. Hence, it has no tunable parameters apart from the window
size. A window size is required to calculate the local correlation between the maps
and it is same as the window size used to calculate the local standard deviation and

gradient information.

4.5 Chapter Summary

In this chapter, we have tried to approach the problem of FR-IQA by hypothesizing
about the simultaneous top-down and bottom-up processing that take place when a
human observer rates the subjective quality of an image. Global perceptual infor-
mation of the image stands for the bottom-up processing. On the other hand, local
visual cues as gradient information and local standard deviation are used to imitate
the top-down processing which is affected by the goal of the observer to rate the im-
age quality. The regional correlation of the global information between the reference
and test images and the same from the local information are used to compute the
global and local distortion values. These values are combined to arrive at the final
degradation score. Experiments carried out in six databases validate the promise of
the proposed approach. The promising performance of the proposed method can be
attributed to combination of local and global distortion measure which is a collection
of simple visual cues proven to be effective from the existing IQA research. At the
same time, this method also follows the drawback of the existing FR-IQA techniques
to evaluate the certain types of distortions with lesser accuracy. Thus, the future
work will be aimed at the distortion independent performance of the FR-IQA tech-
niques. Also, in the proposed approach, the luminance component has only been used
to formulate the technique. In future, we would study the effect of the chrominance

related information on the quality score.
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Chapter 5

No-reference Perceptual Sharpness

Assessment using High Frequency Content

A blind approach to evaluate the perceptual sharpness present in a natural image
is proposed. Though the existing literature demonstrates a set of variegated visual
cues to detect or evaluate the absence or presence of sharpness, we emphasize in the
current work that high frequency content and local standard deviation can form strong
features to compute perceived sharpness in any natural image, and can be considered
as an able alternative for the existing cues. Unsharp areas in a natural image happen
to exhibit uniform intensity or lack of sharp changes between regions. Sharp region
transitions in an image are caused by the presence of spatial high frequency content.
Therefore, in the proposed approach, we hypothesize that using the high frequency
content as the principal stimulus, the perceived sharpness can be quantified in an
image. When an image is convolved with a high pass filter, higher values at any pixel
location signify the presence of high frequency content at those locations. Considering
these values as the stimulus, the exponent of the stimulus is weighted by local standard
deviation to impart the contribution of the local contrast within the formation of
the sharpness map. The sharpness map highlights the relatively sharper regions in
the image and is used to calculate the perceived sharpness score of the image. The
advantages of the proposed method lie in its use of simple visual cues of high frequency
content and local contrast to arrive at the perceptual score, and requiring no training
with the images. The remaining parts of the chapter are arranged as follows. The
proposed method is discussed in details in Section 5.1. The related experiments

and results are summarized in Section 5.2. The chapter is concluded by a summary
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Figure 5.1: Block Diagram of the proposed method for evaluating perceptual sharp-
ness.

presented in Section 5.3.

5.1 Proposed Method

In this section, the proposed method is discussed in details. The block diagram of
the method is presented in Fig. 5.1. We describe the proposed method for a color
image for generalization. In case of a grayscale image, the steps for the color image
are performed for single channel only. Let I. be the color image whose perceptual
sharpness is to be determined. The pixel values of the image are scaled down between
0 and 1. At first, the image is transformed to YCbCr color space from RGB with the
channels [y denoting luminance and Iy, and I, denoting the chrominance channels.
This color space transformation is carried out as YCbCr space exhibits improved
perceptual uniformity with respect to RGB [49]. Next, we have used either high
pass filter (HPF) derived by subtracting Gaussian low pass filter (of width 3x3 and
standard deviation 0.25) from all pass filter or the Undecimated Wavelet Transform
(UWT) for extracting the high frequency content. These two filters are chosen as
they form very basic and simple techniques for extracting high frequency content.
The HPF based based technique will be referred as High Pass Filter based Sharpness
Measure (HPFSM) and UWT based technique is named as Undecimated Wavelet
Transform based Sharpness Measure (UWTSM). For the HPF, the filter is denoted
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by Hg in the spatial domain and standard deviation of the low pass filter from which
it is derived is indicative of its bandwidth. As calculated, the cut off frequency of 1D
high pass filter derived from the Gaussian low pass filter of standard deviation 0.25

_T_

is rad/s. For HPF, the high frequency content is then obtained by

4.934
H.Iy = Hg® Iy, (5.1)
H,IC(, = HG (%9 ICba (52)
H.Io = He ® Ioy, (5.3)

where ® denotes the two-dimensional convolution operation between two signals.
When UWT is used for extracting high frequency content, the diagonal subbands from
the single level UWT decomposition of all of the channels are chosen as H Iy, H ¢y
and H_Is,. The diagonal subbands are chosen as they are result of processing by two
high pass filters whereas each of other subbands are formed due to the application of
at least one low pass filter [100]. The MATLAB implementation of two-dimensional
UWT using ‘dbl’ has been used for our purpose. Next, from each of these matrices
locating and indicating high frequency content, the non-overlapping blockwise means
of the high frequency content is subtracted and the absolute values of the differences
are used to form matrices M H_Iy, MH _Ic, and MH_I, from H_Iy, H_Ic, and
H I, respectively. This process removes the blockwise high frequency content bias.
The block size b; used is fixed in all of our experiments. Now the local standard
deviation with the same block size is calculated for all overlapping blocks from the
image channels to obtain the matrices S_Iy, S_I¢, and S_Io, from Iy, Ic, and I,
respectively. The local standard deviation serves as the contrast measure in natural
images [3]. The standard deviation is used to weigh the high frequency content to

obtain the matrices Ty, Ty, and T¢,. Each element (7,7) of the matrices is calculated
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as follows:

[MH _Iy (i, j)]* x S_Iy (i, §)

Bd) = == S (D) 54)
CoN [MH,I b(i,j)]aXS,I b(l,j)

Teuli ) = zizl@fcwkﬁ) . (55)

T, (i, ) = Mo )" B len i) (5.6

Zk Zl(S—ICr(kJ))

Here, a denotes the exponent for high frequency content obtained from each channel.
We know from the aforementioned equations that, if the local contrast is high enough,
the high frequency content is weighted more. Now the total stimulus due to the high

frequency content weighted by local standard deviation is calculated as

To (i i T (i i Ten(i, 1
Now the raw sharpness map is generated by the following relation:
. abs (log(e)) + €
Sl ) = Lote) (5:5)

abs (log(T'S(i,j) +€)) + €
where € is a small positive number used to avoid instability during taking logarithm
and performing division. The values Ty (4, j), Tcw(4,7) and Tep(d, j) are always less
than 1 and greater than zero. Hence natural logarithm of their sum is negative. The
closer the sum is to zero, the more is the absolute value of the logarithm. For sharper
regions, higher values for contrast and high pass filtered content are expected. Hence,
the sum is closer to 1 and Sy,4p(7, j) is high. For blurred images, the sum will be closer
to zero and hence, the denominator will be high leading to lower values of S,,4, (%, 7).
In order to generate the sharpness score, the border of the sharpness map is discarded
depending on the block size, hence eliminating the border effect; the remaining map

is called BS,,qp. The perceptual quality score is finally obtained as

Qs = (max(BSap)) - (5.9)

where max(.) calculates the maximum value of the argument. The max(.) operator
here closely follows the approach of the HVS to combine visual responses in a non-

linear fashion [25] and thus we apply maximum pooling to arrive at the sharpness
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score. The BS,,q, lacks localization and hence we calculate the final localized map by
median filtering. In order to enhance the visualization of the sharper regions along

with localization, we do the following. First, we calculate v as

~ max(BSpap) + €

= ) 5.10
mean(BSp) + € (5.10)

The final localized blur map is calculated by
LBS4p = exp(y x block-median(BSy,qp, by + 2)) (5.11)

where block median(A, n) calculates overlapping blockwise median of the matrix A
for a block size given by n x n. Now we present two discussions on the intuitive

explanation and the parameters of the proposed method.

Intuitive Explanation of the Proposed Method

The proposed method actually echoes the psychometric function presented in [81]
which expresses the probability P, of detection of a stimulus S; by detector t is

dependent on the contrast C; related to the stimulus as
P, =1— 25" (5.12)

where ¢ is the exponent. From this equation, it is revealed that the product (S,C;)?
is of major importance in calculating the probability of detecting the stimulus. The
stimulus S; in our proposed method is the high frequency content derived after the
high pass filtering of the signal. We do a basic thresholding in the stimulus by
subtracting the blockwise mean as discussed earlier in this section. The C} is obtained
in the form of the local standard deviation. For each channel we calculate the product
of the exponentiated high frequency content and local standard deviation to obtain
Ty, Ty and Te,.. The exponent « can be compared to the exponent ¢ in Eqn. 5.12.
However, it differs from ¢ is one aspect; « values are used to exponentiate the principal

stimulus only. After that, a summation of these values takes place to generate a score.
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The final form of the measure in Eqn. 5.8, is used to increase the range of the values
obtained from proposed method. The most important part is therefore the argument
of the logarithm present in the denominator for calculating raw sharpness map in
this equation. As we designed the measure, the maximum value of the sharpness map
BSap is selected as representative perceived sharpness. Hence, it is theoretically
ensured in the final form that the value of the measure increases with the perceived

sharpness.

Discussion about the Parameters Involved

The block size b; and map exponent « are the two main parameters of the imple-
mentation. The block size b; is used in several computations and a fixed value of 7 is
used for it in every experiment. Larger values of b; increases the computation time.
« is the parameters which control the contribution of stimulus to determine the final
quality score. Hence, we have carried out experiments with the o values. The effect
of changing these values is shown in Fig. 5.2. As we see, the performance improves
remarkably for a value greater than 1. Since, the elements of the matrices M H_Iy,
MH _Ic, and M H_I¢, lie between 0 and 1, an exponent value less than 1 increases
the values. Exponent values greater than 1 decrease their values. We find from the
experiments that better performance are achieved, if the values of the stimulus remain
same or decrease. In the experiments, a = 2 is used as for a values greater than 1,

higher and less fluctuating SROCC values are obtained for all databases.

5.2 Experiments and Results

In this section, we discuss several experiments conducted using the proposed method.
First, we demonstrate the qualitative and quantitative results on perceived sharpness
for different sharpness levels on the same image. Second, we discuss the performance

of our methods on a set of different images with varying amount of blur. In the third
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experiment, the performance in four databases is presented. A comparative study
with several existing methods is presented in the fourth experiment. Four databases
are used for the experiments: LIVE database [94], CSIQ database [43], TID2008
database [79] and IVC database [4]. Pristine and corresponding blurred images are
available in these databases along with the subjective scores provided by the human

observers.

5.2.1 Different Blur Levels in Same Pristine Image

In the first experiment, we select a pristine image from the LIVE database and con-
sider its several blurred versions. As per [94], varying levels of blur are applied on
the pristine image ‘Parrot’ to generate four different images which are shown in the
first row of Fig. 5.3. The figures in the first row are arranged in the increasing order
of the corresponding DMOS values, signifying the degradation of perceptual quality
resulting due to blur or loss of sharpness. In the first two images, the birds can
clearly be identified as the part of the foreground. However, the distinction between
the foreground and background gradually diminishes as the DMOS increases. The
next two rows in the same figure shows the corresponding sharpness maps obtained
using HPFSM and UWTSM respectively. A close look in each of these images show
that the relative sharpness values at each pixel are presented in the sharpness maps.
The range of the values in the maps are adjusted for better visualization. The maps
produced by HPFSM and UWTSM are different as sharper regions are more discrim-
inated by UWTSM when compared to HPFSM. In Fig. 5.3(a), the birds’ outlines and
eye regions are very sharp compared to the background. As we proceed over from
Fig. 5.3(b) to Fig. 5.3(d), the sharpness difference between the backgrounds and the
birds drops gradually signifying the loss of relative sharpness between the background
and foreground. The scores from the proposed methods decrease in the same order as
that of the DMOS values. This experiment shows that the proposed methods follow
the rank order of the DMOS scores for different levels of blur applied on the same
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image. This experiment also shows that for varying levels of blur applied on the same

image, the maps produced are able to highlight relatively sharper regions.

5.2.2 Different Blur Levels for Different Pristine Images

The second experiment involves the performance evaluation of the proposed methods
using different pristine images. The first part of the experiment is qualitative and
second part is quantitative in nature. In the first part of the experiment, we test the
performance on the suite of images provided with the implementation of S3 [101].
These images have different areas with different levels of sharpness. The images and
corresponding sharpness maps are presented in Fig. 5.5. The first row of the figure
presents the original images with the following rows representing the maps obtained
from the proposed methods using HPF and UWT, and the ground truth respectively.
However, one point needs to be clarified, while comparing the maps obtained from
proposed method to the ground truth. The ground truths are generated using the
evaluation of the subjects on 16x16 non-overlapping blocks of the image whereas the
maps obtained from the proposed method are more localized. Therefore, a comparison
can be made in the following way: the right side of the Fig. 5.5(a) ‘Dragon’ has
relatively higher sharpness than that of the left side. The map from the proposed
method supports that. As we can see, the proposed methods using HPF and UWT
are able to identify the relative sharpness and blur in the images. In the Fig. 5.5(b),
‘Flower’, the flowers in the middle have considerably higher sharpness compared to
the background. The map in Fig. 5.5(h) supports it but as it is localized, it is able
to distinguish between the sharpness levels at the borders and middle portion of the
flower. Fig. 5.5(n), obtained using UWT also reflects the sharper areas in the flower
image. In the ‘Monkey’ image from Fig. 5.5(c), the left paws, fur closest to the
monkey’s face, monkey’s eyes and fur close to the right leg are sharper areas. The
same is supported by the map obtained using HPF in accordance with the ground

truth. For the same image using UW'T, the fur, eyes and paws are considered much
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sharper than the rest of the images. As seen from the ground truth of the ‘Orchid’
image shown in Fig. 5.5(d), the petals in the middle have higher sharpness than that
of the petals on the left. This is also captured by the maps obtained from the proposed
approach. The ‘Peak’ image as shown in Fig. 5.5(e) has a blurred background, and
the plants at the middle and left have more sharpness than the background. From
the maps (shown in Figs. 5.5(k) and 5.5(q)) generated by the proposed methods, we
can observe the same. Moreover, the plants at right have sharpness more than the
background and less than the plants in middle. This is also supported by the ground
truth. Finally, the ‘Squirrel’ image in Fig. 5.5(f) shows the wooden log and the squirrel
has more sharpness compared to the background. The eye, borders of the ears and
paws are sharper as shown by the proposed methods and the ground truth. This
experiment makes clear that the maps generated using UWTSM demonstrate more
contrast between the sharp and unsharp parts as compared to the maps generated
using HPFSM.

In the second part of the experiment, we use images with varying levels of blur
or lower sharpness generated from different pristine images. The LIVE database is
chosen for this experiment. There are 29 reference or pristine quality images present in
the LIVE database. Several images having varying Gaussian blur levels are generated
from each of these reference images. The decrease of the value of the proposed
methods with the increase of Gaussian blur is depicted in Fig. 5.4. Here, the values of
the proposed methods are plotted against the standard deviation ¢ of the Gaussian
blur applied to the pristine image. As seen from the figure, from each of the 29
reference images, the blurred images are derived by gradually increasing o values.
Thus, the subjective scores goes down gradually, indicating loss of sharpness and
perceptual quality. The objective scores obtained from both HPFSM and UWTSM
decreases gradually with the increasing o values. Therefore, the objective scores are
able to represent the loss of perceptual sharpness in each set of degraded images

derived from the same pristine image. Though it is evident that perceived sharpness
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depends a lot on the image content [28, 108], for the high levels of blur, the scores
are low signifying greater degradation. We also find that for HPFSM and UWTSM,

the ranges of sharpness score vary significantly.

5.2.3 Performance in Four Databases

In this experiment, the subjective scores in four databases are plotted against the
objective scores obtained from the methods for different images as shown in Fig. 5.6.
The scatter plot shows that a high degree of correlation exists between subjective
values and the scores obtained by the proposed method. This experiment takes
into account the performance across several images of varying content against the
subjective scores. The scores mostly follow a monotonic variation with the subjective
scores of all the blurred images taken together in a database for both HPFSM and
UWTSM. A global quantitative evaluation is required to compare this performance
with the existing methods and this is provided in the next section in comparison with

the other methods.

5.2.4 Comparisons with Other Methods

We compare the proposed method in four databases against several FR and NR qual-
ity measures. Peak signal-to-noise ratio (PSNR) and SSIM [113] are the two FR-IQA
techniques we compare with. We know that these FR-IQA techniques are moderately
performing techniques in state-of-the-art FR-IQA, and hence we get a clue about how
far behind is the NR techniques behind them. Considering the NR methods, we have
divided them as NR-Specific and NR-General. In this context, NR-Specific means
an NR quality measure that works only on blurriness or sharpness related distortion.
The NR-specific methods used in comparison are : H-metric [132], Q-metric [133],
JNBM [18], CPBD [75], S3 [108] and LPC-SI [28]. NR-General means the IQA tech-
nique is able to the assess the image quality for different distortions. BRISQUE [68]
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Figure 5.4: The variations of the objective scores with the Gaussian blur ¢ in LIVE
database using (a) HPFSM and (b) UWTSM.
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and BLIINDS [84] are the NR-General methods used for comparison here. The qual-
itative results obtained from the comparison process are presented in Table 5.1. The
best performer’s score in each database and for each evaluation measure is highlighted
in bold and the best method among the NR-specific methods is underlined. For LIVE
database, we find that SSIM has highest SROCC score, UW'T has highest PLCC and
lowest RMSE values and the proposed method provides highest KROCC value. In
CSIQ databases, the proposed methods using HPFSM and UWTSM perform remark-
ably better than all the methods for all types of evaluation measures. For TID2008
database, SSIM is the best performer for all evaluation measures but considering
NR-specific methods only, the proposed method improves the performance over the
existing ones to a large extent. As already revealed in the Fig. 4.8 presented in Chap-
ter 4, the best techniques in LIVE, CSIQ and TID2008 databases are VIF, GLD-SR
and IGM respectively. For IVC database, UWTSM, LPC-SI and H-metric achieve
the best performance using different evaluation measures.

We also note the average performances of the methods in all four databases are
presented in Tables 5.2a and 5.2b. A direct computation of the average values for
SROCC, PLCC and KROCC reveals the proposed UWTSM has the best performance
among all the methods. However, when the values are weighted by the number of rel-
evant images present in the corresponding dataset, SSIM shows the best performance
with SROCC. UWTSM performs the best with PLCC while using KROCC, HPFSM
is the best performer. The NR-general techniques work on a lot of distortions and
hence achieving the best performance on a specific kind of distortion is difficult for

them.

5.3 Chapter Summary

We presented a technique for automatic assessment of perceived sharpness in natural

images. The technique emphasizes on the application of high frequency content with
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proper exponent as the stimulus and combining it with the contrast. The logarithm
of this combination is used to generate the sharpness map and sharpness score. The
performance of the proposed method is demonstrated to provide improved perfor-
mance over the state-of-the-art methods. The variation in the performance of the
proposed technique is also analyzed for varying values of the exponent and for two
types of high frequency content extraction methods using high pass filter and un-
decimated Wavelet transform. We have divided the experiments into several distinct
parts in order to properly visualize the consistency of performance. A maximum
pooling strategy has been adopted in our approach to arrive at the perceptual score.
The future work lies in studying the effect of different pooling strategies for perceived

sharpness evaluation.
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Chapter 6

Utilizing Image Scales for No-Training
NR-IQA

A new approach to blind image quality assessment (BIQA), requiring no training, is
proposed in this chapter. The approach is named as Blind Image Quality Evaluator
based on Scales (BIQES) and works by evaluating the global difference of the query
image analyzed at different scales with the query image at original resolution. The
approach is based on the ability of the natural images to exhibit redundant infor-
mation over various scales. A distorted image is considered as a deviation from the
natural image and bereft of the redundancy present in the original image. The simi-
larity of the original resolution image with its down-scaled version will decrease more
when the image is distorted more. Therefore, the dissimilarities of an image with its
low-resolution versions are cumulated in the proposed method. We dissolve the query
image into its scale-space and measure the global dissimilarity with the co-occurrence
histograms of the original and its scaled images. These scaled images are the low pass
versions of the original image. The dissimilarity, called low pass error, is calculated
by comparing the low pass versions across scales with the original image. The high
pass versions of the image in different scales are obtained by Wavelet decomposition
and their dissimilarity from the original image is also calculated. This dissimilarity,
called high pass error, is computed with the variance and gradient histograms and
weighted by the contrast sensitivity function to make it perceptually effective. These
two kinds of dissimilarities are combined together to derive the quality score of the
query image. This method requires absolutely no training with the distorted image,

pristine images or subjective human scores to predict the perceptual quality but uses
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the intrinsic global change of the query image across scales. The remaining parts
of the chapter is arranged as follows. The motivation is discussed in Section 6.1.
The details about different methods used are presented in Section 6.2. The proposed
approach is discussed in Section 6.3. The experiments and related analyses are pre-
sented in Section 6.4. Finally, the chapter is concluded through chapter summary

presented in Section 6.5.

6.1 Motivation

Recent approaches [46, 70] work without training on human scores as well on distorted
images. The method in [70] generates a parameterized multivariate Gaussian model
(MVG) based on NSS from high quality images by drawing quality aware features
from it. For any distorted image, the distance between the NSS feature model and
the MVG model fitted to the distorted image becomes the indicator of quality. This
method delivers competitive performance with the state-of-the-art techniques in the
LIVE database. Another approach that uses no modeling is [46]. They use simple
relationship with the features of mean phase congruency, entropy and mean gradient
magnitude to accomplish their tasks. However, prior to this, they use the first step of
BIQI [71] to classify the distortions. Hence, the method implicitly involves training
on distorted images. Though the performance of these techniques attempting to
minimize training is not the best, they provide a methodology to continue research
in the direction of no-training IQA. Any kind of training makes the IQA method
dependent on the training ensemble and requires effort and time to generate the
trained model. Motivated by these techniques, we attempt to use the multiscale
information from the image to establish an NR-IQA technique, absolutely free from

any training with human scores, pristine images or distorted images.

109



Table 6.1: List of symbols and their significance.

’ Symbol \Signiﬁcance

I1C, color image at scale s
I1Gy grayscale image at scale s
z Fourier transform of the image I
AS; . : z € [1, N]|approximate subbands from N level Wavelet dec. of I
DSy, : z € [1, N]|diagonal subbands from N level Wavelet dec. of I
HS; . : z € [1, N]jhorizontal subbands from N level Wavelet dec. of I
VSt : z € [1, N]|vertical subbands from N level Wavelet dec. of I
CH_I color co-occurrence histogram for image [/
GX; blockwise gradient along the horizontal direction of I
GY; blockwise gradient along vertical direction of
SDy blockwise standard deviation of
H_I one-dimensional intensity histogram of [

6.2 Features and their Significance

As BIQES is not based on any learning, it uses several properties and effects of the
different kinds of degradations on the image. In this section, we enlist all the different
features that have been used to formulate the proposed quality measure. All of these
features are affected by distortions and hence they have significant contribution in
shaping up the final form of the proposed method. The first and foremost techniques
are the ways to decompose the image into various scales. We have used simple
scale-space technique for evaluating changes in low pass components and Wavelets
to evaluate the high pass components. In course of explaining the features, we use

symbols which are all listed in Table 6.1.

6.2.1 Scale-Space

One of the motivations behind the development of scale-space theory [51] is to imitate
the multi-scale processing of images by human eyes. Natural images contain objects

which are relevant at particular scales. An image might have objects and structures
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that are relevant at different scales, but human eye is readily able to identify and
process the information presented by it. Thus, processing an image at various scales
adds flexibility to the processing technique. In decomposing image to various scales,
it is necessary to disallow the formation of any spurious detail which is not due to the
image of original size (called outer scale). At the same time, revelation of a structure
at proper scale (called inner scale) is necessary. To establish this, convolution with
Gaussian kernel and subsequent downsampling are required to form the proper scale-
space of an image [37]. As one moves from the fine to coarser scales, the smoothing
effect increases in the scales and the difference between the original and downsampled
images increases. In spite of the smoothing, significant changes sustain throughout the
coarser scales [37] as they are redundant in nature. However, for distorted images,
the redundancy is lacking. As one proceeds over scales, this difference is likely to
increase more for distorted images compared to the natural images. Using scale-
space decomposition for any scale (among the inner scales), a smooth version of the
original image is obtained. This version is dependent on the original image only. As
the resulting images at different scales represent the low pass or smooth versions of
original image, the comparison between these resulting images would mainly represent
the comparison of low pass components of original image. Global features from all
of the low pass versions at several scales are extracted, and compared with that of
the image of original scale. Co-occurrence histograms (discussed in Section 6.2.4)
extracted from the images at various scales, are used as the global features. To

compare the high pass versions, we resort to the Wavelet decomposition.

6.2.2 Wavelet Decomposition

Application of Wavelet transform on an image decomposes the image into various
subbands at different scales/levels. As pointed out in [82], occlusion (resulting due
to the projection of 3D data to 2D space) is the rule of image formation and that

restricts the Wavelet coefficients to be dependent with each other. Across various
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scales and orientations, the joint and pairwise histograms of Wavelet coefficients for
natural images are found to be non-Gaussian in nature [97]. But the maximum
interdependency of Wavelet coefficients occurs across scales as demonstrated in [53].
The nature of dependency of Wavelet coefficients for distorted images is different than
that of natural images [23]. Hence, we compare the features obtained from the Wavelet
coefficients across scales using the horizontal, vertical and diagonal subbands with
the features obtained from the original image to assess the quality. The distribution
of variance and local gradients across scales of the natural images are found to be
showing scale invariance [83]. Hence, we use these information across scales to obtain
the perceptual quality of the image.

The high pass versions could have been calculated directly from the scale-space by
upsampling the low pass version and finding its difference with the low pass version
in just the scale above. However, upsampling process may introduce artifacts in the
image. Therefore, Wavelet decomposition has been chosen and it is more effective due
to available Wavelet statistics of the natural images. On the other hand, approximate
subbands from the Wavelet decomposition are not used to compare the low pass
versions of the image as they are not only dependent on the original image but also

on the prior level of decomposition.

6.2.3 Fourier Transform

Fourier transform represents the global information of spatial image data in frequency
domain. It is not possible to obtain local information from the transform. However,
a global impression of the data is sometimes important as we show that log-spectra
of natural images roughly abide by the power law. In Fig. 6.1, we can see remarkable
change in the Fourier spectra due to different types of distortions of the same image.
The local kurtosis of DCT power spectrum has been used earlier for the sharpness
detection of images [6]. The diagram in Fig. 6.1 reveals that the kurtosis (k) of log

amplitude of the Fourier spectrum is also important. It has higher values for blur and
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Figure 6.1: (a) Image ‘Stream’ and its distorted versions due to (b) blur, (c¢) jpeg2k,
(g) wn, (h) jpeg, (i) Rayleigh Fading or fastfading [94]; (d)-(f) and (j)-(1)
represent the log amplitude of the Fourier transform of the images (after
conversion to grayscale) respectively. The kurtosis(x) and standard
deviation(o) of each of spectrum are also provided.
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noisy images. As shown in [88], these two distortions are greatly affected by the scale-
space decomposition. Again, the standard deviation for the blurred and noisy images
decreases, but for others the standard deviation increases. Thus, the ratio of kurtosis
to standard deviation (o) will be higher for blur and noisy images and this serves as
important cue in the formulation of the quality measure. Higher values of kurtosis
of the Fourier spectra signify that the high frequencies have comparable contribution
to the spectra. In other words, the amplitude does not diminish highly with the
increase of frequency. Lower standard deviation on the other hand shows that the
peak is strong. As we proceed to higher scale values in scale-space, the high frequency
information is lost mostly. The ratio (k/c), therefore, is supportive of the information
loss suffered as we proceed over scales in the scale-space decomposition. On the
other hand, detailed subbands in Wavelets decomposition, lose the low frequency
information over increasing levels. The loss will be more, if the contribution of low
frequency components are more in the spectrum. Hence, the standard deviation of
log amplitude spectrum is supportive of the loss in detailed subbands over increasing

levels in Wavelet decomposition.

6.2.4 Co-occurrence Histograms

Co-occurrence histograms can be regarded as the global representation of local in-
formation. Unlike image histograms which represent the frequency of occurrence of
an intensity level in an image, co-occurrence histograms model the neighborhood of
a specific intensity. They are found to generate effective features for finding image
saliency [57]. Given a grayscale image I, the normalized co-occurrence histogram

CH_I is calculated as

CHI(p.q) = 229 (6.1)

a Zpl qu ni(pr, (]1)7

where n;(p,q) counts the number of times the intensity value ¢ falls in the neigh-

borhood of p in the image I. The spatial relationship between neighboring pixels is
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captured by co-occurrence histogram which is two-dimensional. For a color image, co-
occurrence histogram is extracted from each channel. The co-occurrence histograms
of all three color channels taken together, is called color co-occurrence histogram. As
pointed out in [57], it is relatively tolerant to scales for natural images. However, for
the distorted images, the co-occurrence histogram varies significantly over the scales
as revealed by the experiments. Thus, the comparisons of the low pass versions of the
original image with the original image are carried out by the co-occurrence histograms
across different scales. We show in Fig. 6.2, that for distorted images, the mean dif-
ference of the co-occurrence histograms increase for distorted images compared to the

reference image.

6.3 Formulation of BIQES

The outline of the approach used in BIQES is presented in Fig. 6.3. We will present
the method with color image (having 3 channels). Then, the method can easily
be adapted to grayscale (single channel). This section is divided into three parts:
calculating quality differences in low pass versions, calculating high pass difference
from Wavelets and combining these two differences to generate the final form of the

distortion measure.

6.3.1 Computation of Distortion from Low Pass Versions

The image at original scale is processed in two ways. At first, the co-occurrence
histograms are extracted from the original image. For a color image /C', normalized
color co-occurrence histogram C'H_IC' consisting of co-occurrence histograms from
three channels as CH_IC1 ,CH_IC2 and CH_IC3 is formed. These co-occurrence
histograms are also referred as CH_ICT where T € {1, 2,3} represents each channel.
In the next step, the image is subjected to scale-space decomposition by Gaussian

filtering and subsequent downsampling for N levels. Thus, we have a set of N color
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Figure 6.2: First row (left to right) Image ‘Bikes’ and its distorted versions due to
white noise and blur respectively [94]; Second row presents the respec-
tive co-occurrence histogram from the first channel (red) of the color
image shown in the top row. Third to last rows present the respective
co-occurrence histogram from the first channel of the color image shown
in the top row at subsequent four scales. The numerical value below
each column is the mean of the total differences of the histograms at
each scale and the histogram in the second row. The numerical values
for the distorted images are greater than that of the reference image.
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images, represented by ICs where s € {1,2,.., N}. As already discussed in Section 6.2,
both of the scale-space and color co-occurrence histograms should exhibit relatively
higher scale invariance for natural images. For a distorted image, the difference of the
histograms at various scales (from the histogram obtained at outer scale) will be more
than that of a natural image. From each of these images, co-occurrence histograms
CH_ICT, where T' € {1,2,3} are generated. Thus, the low pass difference or error

at each scale s is calculated as
1
ts(p,q) = §Z|CHJCT(19, q) — CH_ICT(p,q)- (6.2)
T

Here, |.| denotes absolute value of the argument. An observation regarding the dif-
ference of the histograms needs to be mentioned here. As the low pass versions
are compared, considerable amount of information of the original image is retained,
rather than being filtered out. So, the values of t4(p, ¢) are small. Before combining
them over the scales, they are weighted by an appropriate factor ~, at scale s. The
explanation and way to calculate 7, are explained in Section 6.3.3. The combined

error from low pass versions at all scales is obtained as

Qu(pa) =D sts(pq)- (6.3)

6.3.2 Computation of Distortion from High Pass Versions

After finding the difference in low pass versions, the next step is to find the difference
in high pass versions. The color image is converted to grayscale (not required for
grayscale images) to form /G. Next, the x-gradient and y-gradient images G X and
GYjq are calculated using the simple pixel wise horizontal and vertical differences
from the IG. Afterwards, the blockwise standard deviations are calculated to obtain
SDjq. From these three images, the histograms H GX;q, H GY;¢ and H_SDjq are
calculated as global features. Next, an N-level Wavelet decomposition is applied on

IG. The CDF 9/7 Wavelet has been used for this purpose owing to its advantages over
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the others [119]. At each level z € {1,2,.., N}, the detailed subbands obtained are
represented as DStq ., HSrq,. and V Si¢ . and the approximate subband as ASiq ..
From each of these subbands the x-gradient images, y-gradient images and standard
deviation images are calculated. For example, in case of the the diagonal subbands
DSig,, these images are represented as GXpg,. ., GYps,.. and SDpg, .. From
all of these detailed subbands’ feature images, the 1D histograms are calculated as
global features. For example, in case of the diagonal subbands DS} ., the feature
histograms are represented as H GXps, ., H-GYps,,, and H_.SDpg,, .. Thus, a
part of the high pass difference or error is calculated from the gradient histogram
images as

Qui(b) = 0.5n. > (D.GX.(b) + D-GY.(D)) (6.4)

z

where
D_GX.(b) = max(al,|H.GXq(b) — H . GXps, . ()]
02 |H GX1a(b) — H.GXps, . (b)] (6.5)
) a2z|H—GXIG(b) - H—GXVSIG,Z (b) ’)
Here, max(.) finds the maximum of the elements and b denotes each bin of the one-
dimensional histogram. 7, is vector denoting the relative weights applied to the
subbands based on the experiments of weights for different scales [116] such that

>..nm. = 1. Also, al, and a2, are derived from the contrast sensitivity function

(CSF). We have used the CSF as presented in [131]:
C(f) = 2.6(0.0192 + 0.1148f)exp(—(0.1148f)*1) (6.6)

where f is the frequency expressed in cycles/degree and § = 2. The peak value
of C(f) occurs at f = 4, but the peak value is not 1. We denote the peak value
as Cpaz. For a viewing resolution of n, pixels/degree, the spatial frequency f, of

Wavelet decomposition level z will be

f: = ny2 *cycles/degree. (6.7)
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The viewing resolution [118] is calculated as
n, = dyd,tan(m/180) (6.8)

where d, is the viewing distance in centimeter and d,. is the display resolution is
pixels/centimeter. The product d,d, should at least be equal to the height (number
of rows) h of the original image and in the databases used for experiments often
the viewing distance is provided in terms of the screen or image height. Hence, the

equation can be re-written as
n, = n,htan(m/180) (6.9)

where n, is the ratio of the viewing distance and image height. In this way, the viewing
resolution is calculated for horizontal and vertical subbands. As shown in [43], we
take into account the oblique effect for the diagonal subbands. Hence, the viewing

resolution of the diagonal subband is n,/0.7. Hence, al, and a2, are evaluated as

al, = C(CJ;ZTT and a2, = % (6.10)

In this way, the errors from the different subbands are weighed using contrast sen-
sitivity based factors. The high pass error calculated using the standard deviation

histogram images are presented as
Qua(b) = 1.3 D_S.() (6.11)

where
D_S,(b) = max(al,|H-SDig(b) — H-SDps,.(b)]
,02;|H_SDiq(b) — H_SDpysg, ()| (6.12)
,a2:|H_SDjq(b) — H_SDys, (b)])

6.3.3 Combination of the Errors

In this section we perform three tasks. First, we explain the v, values required to

calculate the error (J;,. Next, we combine the errors to generate the final form of the
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proposed method. Thirdly, we discuss about the various parameters involved in the

calculation.

Calculation of ~

As presented in the earlier section, we have used N levels of scale as well as N levels
of Wavelet decomposition, though the variables s and z are used to denote each scale
and level respectively. To minimize the computations, we work with the same value of
scale and level at a time. This reveals two important factors. Firstly, while following
the scale-space, we use Gaussian filtering and downsampling. Therefore, we discard
all pixels at the borders. The Wavelet decomposition used, is the ‘bior4.4’(same as
CDF 9/7) presented in MATLAB. According to the implementation, the images at the
same value of scale and level are not of identical sizes. Again, in the low pass error we
compare the error resulting due to the original and low pass versions whereas for high
pass error, the original image and the high pass images are compared. Thus, error
values for the scale-space are much lower than that of the high pass error. To account
for that, we use the ratio (v, 1) number of the elements used to form the co-occurrence
histogram and the number of elements used to form high pass histograms. Secondly,
the low pass images obtained from the scale-space and Wavelet decomposition undergo
changes in the ranges of the coefficients. If the pixel values of the grayscale image are
normalized between 0 and 1 by dividing the pixel values by 255 (for 8-bit grayscale
images), scale-space preserves the range whereas Wavelet shifts the range from —r, to
r,, where r, is a positive real number. At the same value of scale and level, energies
of the low pass images also differ. This is also taken into account while designing -,
through the incorporation of v, » provided in Eqn. 6.15. Therefore, the 7, is calculated

as
1

s = —Ye1Vs.2- 6.13
7. N7,17,2 ( )
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Dividing by 1/N ensures that vg values normalize )}, over scales. vy is calculated as

_ Zp Zq nic, (p, q) .

.14
num(SDDSIGYZ) (6.14)

Vs,1

where num(.) gives the number of elements of the argument. -, 5 is obtained as

 [median((ASi¢../7.)%)
V2 = \/ median(cg(1C;)?) (019

where cg(.) denotes the color to grayscale conversion (after division of the input color

image by 255).

Final Form of the Method

After the errors @, Qg1 and Qg2 are generated, they are combined to form the final
quality score in the following manner. @, the mean of the error for low pass com-
ponents )7, multiplied by 100, is calculated. As discussed in Section 6.2.3, the ratio
of kurtosis to standard deviation serves as an important visual cue and is supportive
of the low pass error. Therefore, we calculate the two dimensional Fourier transform
ZG of the query image IG and find x and o from the log amplitude spectrum. The
ratio (k/o) is multiplied with the low pass error. From the high pass errors Q51 and

@2, we obtain total high pass error Qg as

Qu = (mean(Qp) + std(Qpu1) + mean(Qp2))/2. (6.16)

where std(.) is the standard deviation and mean(.) denotes the mean operation. Qp,
the mean of the error for high pass components )y multiplied by 100, is calculated.
As we notice in Section 6.2.3, the standard deviation ¢ is indicative of the dispersion,
and it increases for some distortions. The higher it is, the more significant should be
the high pass error as it results due to the loss of low pass information. Hence, Qg

is multiplied by . Finally BIQES is formulated as,

QS = ﬁ% +0Qy. (6.17)
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Discussion about the Parameters Involved

There are several parameters involved in the proposed method. First, the number
of scales or levels N. We have used a constant N = 4 for all our experiments.
The scale-space technique used Gaussian smoothing that requires a window size,
mean and standard deviation. The Gaussian functions over the different scales have
zero mean, with square windows of width {5,7,9,11} and the standard deviation
values of {1,2,4,8}. Next, in order to calculate the co-occurrence histogram, the
neighborhood size needs to be mentioned. A square window of size 3x3 is used to
calculate co-occurrence histogram.

The blockwise standard deviation is calculated for outer scale with a square block
of length 11. Over the next 4 scales, the block size decreases as {9,7,5,3}. For the high
pass error, we need to calculate the 1D histograms from the local standard deviation
and gradient images. We need range and size of bins to form the histograms. Before
Wavelet decomposition, the query image is converted to grayscale and normalized
between 0 and 1. Since we used the ‘bior4.4’ filter from MATLAB, the maximum
value of the coefficients in subsequent levels may increase. The maximum range after
four scales is calculated as 35.11. Therefore, for gradient images the range of the
histogram is [-70.22,70.22] and size of bins is g_hbin = 1/2000. The range of the
histogram for local standard deviation is lower and size of bins is higher depending
on the experiments. The range of histogram for standard deviation image is [0,4] and
size of bins is sd_hbin = 1/500. The sizes of bins for standard deviation and gradient
based histograms along with the proper scale value is decided from our analysis pre-
sented in Fig. 6.4. In this analysis, for scale values N = 2,3, 4, the SROCC values in
LIVE database are plotted for different combinations of bin sizes used for g_hbin and
sd_hbin. The values used for g_hbin are {1/5000, 1/4500, 1/4000, ...,1/500}. For each
of these 10 values of g_hbin, sd_hbin takes values from {1,/100,1/200,...,1/1000}.
Each unique combination of g_hbin and sd_hbin is represented by a unique index.

Thus, we have 100 such indices. Therefore, the SROCC values are plotted against
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these 100 indices in Fig. 6.4. As we see, with the increase of scale values, the perfor-
mance gets better. The best performance is obtained for scale value N = 4, index
number 65 pointing at combination of g_hbin = 1/2000 and sd_hbin = 1/500. Next
comes 1,, which is used to weigh the high pass error over scales. Such weights are
used in the experiments in [114]. Later, in [86], it is found that Gaussian distribution
can also be used as weights. Therefore, a zero mean Gaussian vector of length 4 and

standard deviation 1 is used to generate 7, values.

6.4 Experiments and Results

In this section, we present the experiments and the results of the proposed method.
It is observed that, the hypothesis that over the scales the similarity between query
images and the derived images at several scales decrease, is supported by most com-
mon distortions of additive noise, blur, jpeg2k and jpeg distortions. These are the
most common types of image distortions available and several other IQA meth-
ods [29, 84, 122] have showed to work on these selected distortions only. Of course,
this puts a restriction on the types of distortions. However, considering (a) the types
of distortions available in the IQA databases do not form an exhaustive set, (b)
BIQES can handle most common types of image distortions and (c) this is the first
attempt on the hypotheses used for training free NR-IQA, the generality of the pro-
posed method is not hampered. Four databases are used for the experiments: LIVE
database [94], CSIQ database [43], TID2008 database [79] and MICT database [30].
In the first part of this section, we do the experiments on the the proposed method

BIQES. In the next part, we provide a comparison study of the proposed method.

6.4.1 Experiments with the Proposed Method

The experiments in this section are carried out mainly in the LIVE database as it has

all the four kinds of common distortions. We also involve the fastfading distortion of
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the LIVE database in these experiments. The experiments show the performance of
the scores obtained from each of the low pass and high pass errors for all of the five
types of distortions shown in the database. In the first experiment, the quality score
resulting due to low pass error is checked against the subjective scores in the LIVE
database. The results are presented in Fig. 6.5. The blue curves in figure represent
the quality scores after mapping the scores obtained from the low pass errors with the
DMOS. As expected, it is found that for additive white noise and blur, the correlation
values are high, for jpeg, fastfading, they are moderate. However, the correlation is
very low for jpeg2k images. Thus, the low pass error itself is not satisfactory measure
of quality for jpeg2k images. We also find that this correlation is negative which means
that it contradicts with the measure, whereas other distortions support it. Generally
in literature, at the time of presenting these correlation values, absolute value is
presented. Nevertheless, the sign has an important part to play in determining the
overall performance of the quality measure in the database and in understanding its
relationship with the individual distortions. The sign of the correlation will be again
discussed in the later parts of the section. Also in this work, when no sign is indicated
for a distortion in any database, it means that the four important distortions have
correlation (SROCC) values of same sign. Thus, Fig. 6.5 shows that quality score due
to low pass error is well correlated with some of the distortions. The quality score
due to the high pass error is also checked against the subjective scores and the results
are presented in Fig. 6.6. The correlation for the distortions like jpeg2k, jpeg and
fastfading are high. The same for blur is low and additive Gaussian noise is negatively
correlated with it. From the figures, the range of the values of the two quality scores
also becomes clear. The score values due to low pass error are higher for additive
Gaussian noise, blur and fastfading. For jpeg2k and jpeg, the score values are quite
low. A look at the score values due to high pass error hints that the values for high
pass error are very low for additive Gaussian noise and blur, but those values are

high for jpeg2k, jpeg and fastfading. When these two scores are combined to form
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the final score, we find from Fig. 6.7 that all of the distortions have high degree of
correlation with the final scores. Also, all of the correlations have same sign showing
that the final quality score has consistent representation for each type of distortion.
The overall correlation is also shown to be high which assures that the ranges for high

pass and low pass errors have been mutually compensated in the final score.

6.4.2 Comparison with Other Methods

We compare the proposed method with several existing FR-IQA and NR-IQA tech-
niques such as PSNR, SSIM [113], BIQI [71], LBIQ [102], CBIQ [124], DIIVINE [72],
BRISQUE [68], SRNSS [29], NIQE [70], LQF [69], QAC [122], and NRQI [46] in dif-
ferent experiments presented here. All of the NR-IQA techniques used training either
with or without human subjective scores. The training and testing for these methods
vary greatly. Here, we compare the scores reported in the respective papers with our
methods in the LIVE database. Since all of the methods have used LIVE database,
the comparison in LIVE database comprises of all of the aforesaid methods. As we
can see from the comparison in the LIVE database, FR-IQA method SSIM perform
better than the NR-IQA methods. The better performing NR-IQA methods use both
human scores and distorted images for training in 4 : 1 ratio from the database. QAC,
LQF, NRQI and NIQE do not use human scores for training. Among these, QAC,
LQF and NRQI use distorted and pristine images for training. However, NIQE uses
only pristine images for training i.e learning MVG models from the pristine images.
Hence, it is technically closest to the proposed method. Though, NIQE performs
slightly better than BIQES in LIVE database, it uses training with pristine images
while BIQES scores are totally training free. Also, BIQES perform better than QAC
and NRQI in LIVE database. MICT databases has two distortions: jpeg2k and jpeg,
BIQES performs better than NIQE and significantly better than QAC, PSNR and
SSIM in this database. In CSIQ database, NIQE performs better than BIQES for
four distortions. In TID2008 database, BIQES perform better than both of PSNR,
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NIQE and QAC taking four distortions together. It is also important to mention
that the value of n,, used to calculate the CSF is used as 2 in LIVE database, 3 in
CSIQ and TID2008 databases (TTD2008 database has varying viewing parameters, 3
is taken considering the mean condition) and 4 in MICT database depending on the

parameters given in these databases.

6.4.3 A Look at the Common Limitations

We are going to look at some of the important analyses as brought out by our research.
We notice some similarity in the failure patterns of the methods QAC, NIQE and
BIQES. QAC and NIQE are trained without human subjective scores. QAC uses
both pristine and distorted images for training and NIQE relies on pristine images for
training while BIQES does not use any training. QAC does not rely on NSS features
but works by forming local quality maps and NIQE measures deviations from the
model fitted from training NSS properties of pristine images. BIQES combine low
pass error and high pass error. In other words, these NR-IQA techniques differ a lot
in their ways of functioning. All of them work on four common distortions. Their
failures on certain omitted distortions are also tied by a common thread. Among the
databases used in the experiments, all distortions of the LIVE and MICT databases
are used but in CSIQ and TID2008 databases some distortions are dropped. A
closer look at CSIQ database reveals that the distortions contrast and pink noise
are dropped. In TID2008, 17 distortions are enlisted; however, only 4 of them are
used. The performance of the aforesaid quality measures with the omitted individual
distortions is discussed in Table 6.6. In CSIQ database, all of QAC, NIQE and
BIQES perform poorly for contrast and fnoise. The negative sign here indicates
that a particular distortion is inversely correlated with the IQA method compared
to most of the distortions in the same database. Thus, inclusion of these distortions
will decrease the overall performance of a method though it performs favorably in

a set of distortions. In TID2008 database, all of the methods suffer from a sign
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Table 6.3: Performance comparison of BIQES in the MICT database.

| [SROCC KROCC PLCC MAE RMSE

PSNR | 0.6132 0.4443 0.6498 0.7746 0.9517
SSIM | 0.7870  0.5922 0.7995 0.5649 0.7551
QAC | 0.5189 0.3667 0.5388 0.8704 1.0563
NIQE | 0.8094 0.6093 0.8185 0.5552 0.7211
BIQES|0.8271 0.6361 0.8259 0.5191 0.7119

Table 6.4: Performance comparison of BIQES in the CSIQ database.

| [SROCC KROCC PLCC MAE RMSE|

PSNR | 0.9218 0.7489 0.9065 0.0830 0.1198
SSIM | 0.8766  0.6808 0.8465 0.1048 0.1509
QAC | 0.8415 0.6440 0.8734 0.1051 0.1377
NIQE | 0.8698 0.6835 0.8855 0.0990 0.1319
BIQES|0.8561 0.6584 0.8879 0.1020 0.1301

Table 6.5: Performance comparison of BIQES in the TID2008 database.

| [SROCC KROCC PLCC MAE RMSE

PSNR | 0.7985 0.5982 0.7572 0.8139 1.0339
SSIM | 0.9199 0.7506 0.9251 0.4675 0.6017
QAC | 0.7967 0.6085 0.7829 0.7367 0.9871
NIQE | 0.7832 0.5803 0.7940 0.7752 0.9627
BIQES|0.8223 0.6209 0.8103 0.6991 0.9289
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Table 6.6: Limitations of QAC, NIQE and BIQES with some distortions.

’Database\ Distortion ‘ QAC NIQE BIQES‘
oS contrast -0.2241 0.2273 -0.3140
Q foise 20,0022 0.2088 0.3133

awgn-pink 0.6624 0.6799 0.7021
spatial-corr-noise |0.1353 0.7419 0.6662
masked noise 0.6200 0.7577 0.6467
high frequency noise| 0.7985 0.8539 0.7750
impulse noise 0.8188 0.6877 0.6662
quantization noise |0.5690 0.8111 0.2351
TID2008 denoising 0.4198 0.6051 0.7935
jpeg-trans-error | 0.0190 0.1228 -0.3138
jpeg2k-trans-error |0.3672 0.4934 0.5368
pattern-noise -0.0058 -0.0162 0.0287
blockwise-distortion | 0.3275 0.1555 0.4285
intensity-shift 0.2704 -0.1371 0.2148
contrast change |-0.2377 0.0379 -0.6252

reversal in two types of distortions. All of the methods perform poorly with pattern
noise, JPEG transmission errors (jpeg-trans-error), JPEG2000 transmission errors
(jpeg2k-trans-error) and image contrast change. Thus, these are some areas where
these IQA methods are not sufficient enough to work. This is worth-studying as we
find that all of these methods have performed without the aid of human subjective
scores for the same set of distortions and identify their common problem areas. This
is particularly important for BIQES as it is training free but has its pros and cons

similar to the earlier methods.

6.5 Chapter Summary

We present a method of no reference image quality assessment. The method is ab-

solutely training free as neither subjective human scores nor pristine or distorted
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images are used to make the method aware of quality of distorted or pristine im-
ages. The quality score increases with the increase of distortions by evaluating the
query image only. Natural images have redundancy over scales. Using only this in-
formation, the query image is processed in different scales and information loss over
scales is primarily used to quantify the distortions. Some properties of natural images
present in image scale-space, Wavelet transform and Fourier transform are exploited
to formulate the quality score.

The proposed technique BIQES has been compared with the state-of-the-art and
related IQA methods in four databases. It is found that NR-IQA techniques devel-
oped on subjective scores based training are best performers but a large proportion
of images are required to train them. NR-IQA techniques that rely on pristine and
distorted images but not on human subjective scores for training, have achieved com-
parable performance with the earlier ones. BIQES compares favorably with these
methods without any training. Also, the common limitations of BIQES and other
NR-IQA are pointed out and they may provide a direction of working towards a better
technique for totally training free BIQA.
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Chapter 7

Conclusion

In a nutshell, this dissertation presents some ideas in the field of IQA and its related
problems. We started with the presentation of a relevant introduction to the prob-
lem of IQA and with the motivation to pursue the search for better solutions to the
related problems. With the help of a discussion on the relevant literature related to
the different areas, we broadly identified the problems and defined the course of the
research work presented in the dissertation. After setting up the necessary base for
presentation of our ideas in first two chapters, the next four chapters are developed
using the main attributes of the our research. We have presented ideas in the areas
of FR-IQA, specific-purpose and general purpose NR-IQA. In this concluding chap-
ter, we enlist the contributions and limitations of our work and discuss the possible

directions for future work.

7.1 Contributions and Limitations

We present the contributions and limitations of the our research works under three

broad topics as follows.

7.1.1 FR-IQA

We have proposed three techniques for FR-IQA. Two of these techniques are modifi-
cations made on an existing framework by changing features. In the first technique,
instead of the phase congruency features, phase deviation sensitive energy features

are used to improve the overall performance of the technique. The second work uses
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different spectral saliency based techniques in the same framework and studies their
performance on six databases. The third technique proposes a novel framework with
simple visual features. The salient points of these works are presented below as fol-

lows:

e FR-IQA techniques mainly aim to improve the generalized performance of any
IQA method over several types of distortions. Hence, distortion-wise perfor-
mance analysis of the methods are carried out in our works. We find that, so
far, there exists no technique in the literature that can ensure good performance
for all of the distortions in the vast set of distortions considered in our experi-
ments. Most of the methods work well in the databases with less than 6 types of
distortions. However, performance of these methods in databases having more
types of distortions needs improvement. Also, a set of distortions that needs
improved methods for perceptual quality evaluation are also found out. Hence

improving the general ability of FR-IQA techniques remains an open problem.

e The first and second works, both reveal the parameter dependence of the afore-

said framework using saliency features.

e The first two proposed methods fix the framework and search for the best gen-
eralized method. Though performance in some databases improve with the
proposed method, it is not guaranteed for every database. This may be at-
tributed to the fact that every feature has inclination to some specific property
of any image. When that property is highlighted, several other properties are
subdued. However, the overall performance in all databases improves by 0.5%

and this is important given the complexity of the task.

e Echoing the point mentioned earlier, the next proposed methods GLD-SR and
GLD-PFT, improve the performance on CSIQ and IVC databases by 2% and

0.4% respectively. Also they improve the overall performance in terms of
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weighted and direct averages computed over all six databases by 0.6%. These
figures are significant given the fact they raise the performance in two databases
and improve the overall performance compared to the existing techniques. The
statistical analysis shows that, considering individual comparison with all 13
different techniques in six databases, the proposed techniques are able to pro-
vide improvement in more than 50% of the cases. Also, the framework in-
troduced through GLD-SR and GLD-PFT has lesser dependence on the pa-
rameters. Hence, an effective and improved combination of visual features has

resulted from the proposed framework.

7.1.2 Specific Purpose NR-IQA

We have proposed a blind perceptual sharpness evaluation approach in natural im-
ages. Since, blurring is one of the main reasons behind the loss of sharpness in any
image, we evaluate the proposed approach in several IQA databases having blurred
images. Besides the evaluation of perceptual sharpness, the approach also generates a
sharpness map to highlight the sharper regions in any image. Several experiments are
carried out to show the performance of the proposed methods HPFSM and UWTSM
against different blur levels across different images. We show that the methods im-
prove over the performance of the state-of-the-art perceptual sharpness detection
techniques using quantitative analysis. The salient points of the proposed technique

are summarized below.

e We have discussed in Chapter 2, Section 2.2 about the various types of visual
features that have been used to detect and evaluate perceptual quality in to the
presence of blur or sharpness. However, the proposed method uses simple com-
bination of high frequency features and local standard deviation and combines

them as per the psychometric function presented in [81].

e The method evaluates the presence and absence of blur and also evaluates the
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perceived quality due to the presence and loss of sharpness.

e The performance of the method is analyzed for varying values of the exponent
used in the process. The values of the exponent greater or equal to 1 are shown

to improve the performance.

e Two types of high frequency features extracted using Gaussian high pass fil-
ter and Wavelets are shown to perform better than the state-of-the-art blind
sharpness evaluation techniques. The proposed versions of the technique have
improved 3% in average performance in terms of SROCC. This is significant
as the ideal performance is 10.2% higher than the performance of the existing
state-of-the-art techniques. As already seen with the FR-IQA methods, some
of them have very high correlation with the subjective scores. Thus, blind
sharpness evaluation needs more improvement to reach the high performance

exhibited by some FR-IQA methods in some of the databases.

7.1.3 General Purpose NR-IQA

We have proposed a general purpose NR-IQA technique, called BIQES, for perceptual
quality evaluation in natural images. It works for four distortions. It demonstrates
competitive performance with the state-of-the-art methods. The salient points of the

method are presented below.

e The proposed approach is a general purpose NR-IQA technique which does not

incorporate any training with the pristine or distorted images or quality scores.

e The principal visual cue is the difference of propagation of image information
through different scales between the pristine and distorted images. The mul-
tiscale information is captured by the scale space decomposition and Wavelet

transform on the image.
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e The method relies on image scale features for calculating with the high pass
and low pass errors using co-occurrence histograms and Wavelet transform.
These errors are combined using the kurtosis and standard deviation of Fourier
amplitude spectrum to arrive at the objective score. It is shown using graphical
analysis that each of these errors computed using various visual features has
a part to play in shaping up the proposed approach. Thus, the visual feature

combination is shown to have satisfactory success for training free BIQA as well.

e The property of being training free equips the method with the ability to elim-
inate time and effort for training. At the same time, it imposes restriction on
the method to simultaneously handle a vast number of distortions. This phe-
nomena is also observed with the methods that have tried to eliminate training
with pristine images and human scores from their working procedures. Thus,

the limitations of these methods are also identified.

7.1.4 General Summary

In general, when we look at the dissertation, we find a variety of features and their
combinations have been used for the purpose. The main features used are phase
deviation sensitive energy features, saliency maps based on different types of spec-
tral saliency measures, local gradient, local variance, high frequency based features,
low frequency based features, co-occurrence histograms, scale-space decomposition,
Wavelet decomposition, Fourier transform and kurtosis. To summarize, we have used
several image features throughout the different problems we have worked with. The
working principles of all the proposed methods are based on plausible hypotheses
rather than the actual functioning of the HVS, since it is unknown. Thus our ap-
proaches highlight that potential combination of features can be used in IQA and
they support the overarching avenue to find solution for the respective sub-areas in

IQA. They also find new opportunities in the sub-areas which are discussed next.
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7.2 Scope for Future Work

With each of proposed works in the dissertation, we have possible future directions
for carrying forward the results and findings of our work. As already mentioned, we
have used several types of features and their combinations supported by different hy-
potheses in our work. The same features can be used in different ways to facilitate the
application of different hypotheses. Thus, this work provides necessary evidence for
exploring the wide set of features already existing in the field of image processing and
computer vision today towards improving the state-of-the-art IQA and its different
sub-areas. Next, we discuss in details the future directions of work revealed in each

of the specific areas in IQA.

7.2.1 FR-IQA

For FR-IQA, we made efforts to enhance the generalized performance of existing
techniques. Next, we have proposed a new framework by combining global and local
distortion features to develop an improved IQA technique. The future directions of

work are found as follows:

e Several other existing frameworks can be modified by using different features
to improve their performance. As we know that the generalized performance
of FR-IQA techniques is very important so that a particular technique can be
used across several distortions altogether. By varying features in the existing

techniques, it may be possible to improve their performance.

e We have used specific features for generating global and local distortion from
the images. A possible future work may be directed towards using different
types of features for generating global and local distortion measures from the

images to improve the performance.
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7.2.2 Specific Purpose NR-IQA

The proposed technique on perceptual sharpness detection improves over the perfor-
mance of the state-of-the-art techniques. The future directions of work related to this

research are found as follows:

e The high frequency content in the image has been extracted by two techniques.
Several other features can be used for extracting the high frequency content and

their effect can be studied for perceptual sharpness evaluation.

e A single pooling strategy has been applied to arrive at the final score. Applica-

tion of different pooling strategies may be done to improve the performance.

e With our proposed approach, we have relied on a single psychometric model.
Different psychometric models based hypotheses can be developed and imple-

mented to improve the performance in blind perceptual sharpness evaluation.

7.2.3 General Purpose NR-IQA

For BIQA, we have presented an approach which is completely training free. It works
on four types of distortions taken together. Some future directions of work related to

this research are listed as follows:

e Different features may be used to improve the general applicability of the tech-

nique so that it can perform well across several distortions taken together.

e The work shows that completely training-independent IQA is feasible across se-
lected distortions. However, research based on different hypotheses and features

needs to be carried out in order to establish its potential.
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