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ABSTRACT 

 

The vast majority of studies in portfolio optimization problem are conducted 

under a single portfolio framework. In the financial industry, the trading of multiple 

portfolios is usually aggregated and optimized simultaneously. When multiple 

portfolios are managed together, unique issues such as market impact costs must be 

dealt with properly.  

Conditional Value-at-Risk (CVaR) is a coherent risk measure with the 

computationally friendly feature of convexity. In this thesis, we propose the novel 

combination of CVaR with multiportfolio optimization (MPO) problem. To the best of 

our knowledge, this is the first work to use CVaR to measure risks in MPO problem 

and investigate the impact of CVaR on MPO problem. 

This thesis uses mathematical programming approaches to model MPO 

problem with CVaR. Four MPO models are developed considering fairness. The 

models are solved by GAMS software. Numerical experiments are conducted and 

analysed. The comparisons with existing methods and sensitivity analysis are reported. 
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Chapter 1 Introduction 

1.1 General Overview 

Ever since the breakthrough of Harry Markowitz’s publication on theory of 

portfolio selection in 1952, the concept of portfolio optimization has been 

fundamental in the understanding, development and implementation of decision 

making in the financial industry. Popularly referred to as the Modern Portfolio Theory, 

Markowitz’s topic of portfolio optimization has received huge attention from both 

academic and industrial area. Markowitz’s idea of incorporating risk in portfolio 

investment decisions and applying a disciplined quantitative framework to the 

management of portfolio investment was novel when it was first introduced. Ever 

since the introduction of the theory, researchers have been exploring and studying 

different facets and extensions of portfolio optimization theory for decades. Among 

which, the problem of multiple portfolio optimization needs further study, given the 

small amount of existing studies and its closeness to real life financial industry 

practice.  

To address the portfolio selection problem with the tool of optimization, 

Markowitz formulated the classic single-period single-account mean-variance 

optimization (MVO) problem, suggesting that the investor should choose the portfolio 

with the smallest amount of risk measured by variance of the return of the portfolio to 

achieve a particular target return objective. This idea by Markowitz is revolutionary 

for taking diversification into consideration and regards financial decision-making as 

quantitative trade-off between portfolio return and risk. Markowitz’s famous MVO 

model addresses the decision-making process of portfolio selection through means of 
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mathematical optimization. However, it is crucial to mention that while diversification 

in the portfolio position could help with reducing risk, it could not generally and 

thoroughly eliminate risk. Through ensuring a diversified portfolio position, risk can 

be reduced without changing the expected portfolio return [Markowitz, 1952]. 

Before the introduction of Markowitz’s modern portfolio optimization theory, 

financial risk was considered as a correcting factor of expected return, and risk-

adjusted returns were defined on an ad-hoc basis. At that time, the investment 

industry’s main focus when making financial decisions was on how to find out and 

invest in investment assets that have lower price relative to their financial potential, or 

to put in other way, have high expected returns. Markowitz argued that not only the 

expected return should be included, it is equally if not more important to take risk 

from the investment into consideration. In his work, Markowitz used the variance of 

an asset’s future return as risk measure.  Markowitz’s work shows that the riskiness of 

a single asset is not what is important to the total expected return, but it is its 

covariance with all other investable assets in the portfolio that really matters. The 

decisions concerning whether to hold certain assets or not depend on what other assets 

the investor choose to hold. To acquire the covariance between each assets, however, 

requires huge amount of data (historical or simulated), which hinder its widespread in 

practice. Latter models managed to reduce the size of data requirements by 

eliminating the estimation of correlation between different assets. Furthermore, 

Markowitz’s traditional model is limited only to the case with elliptical distributions 

such as normal or t-distributions. 

In the past 60 years alongside the development of portfolio theory in academic 

area, many attempts had been made to try to overcome the shortcomings of 
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Markowitz’s traditional model and move the research topic closer to the real-world 

financial industry practice, introducing several new different risk measures which are 

more computationally attractive, and taking several facets of significant real-world 

impact in portfolio optimization problems into consideration.  

Topics concerning portfolio optimization, such as dealing with the optimization 

problem of multiple accounts simultaneously or addressing the portfolio optimization 

problem in a multi-period framework, came into sight and draw attention from both 

the academia and financial industry in the past decade. After reviewing a great amount 

of literature and reports, we believe that it is conclusive to say that up till today, after 

more than 60 years of its introduction, the classical framework of portfolio 

optimization still needs modification when used in practice, and the topic of portfolio 

optimization problem still deserves more research efforts into [Kolm and Tütüncü. et 

al, 2013]. 

1.2 Proposed Research 

1.2.1 Research Topic 

For a portfolio investment and management process, if independent investors 

choose to authorize a financial service provider to manage the process on their 

behalves, they give the financial institutions or the portfolio manager access to their 

investment account with a certain amount of initial capital (investment fund, cash or 

existing portfolio position) and personalized investment preferences or targets. These 

providers range from different sizes and scales, from wealth management firms 

serving few individual investors to large investment firms performing on behalf of 

more than hundreds of accounts. The vast majority of the existing studies in the area 

of portfolio optimization problem was done based on the assumption that portfolios 

http://primo-pmtna01.hosted.exlibrisgroup.com/primo_library/libweb/action/search.do?vl(freeText0)=+T%c3%bct%c3%bcnc%c3%bc%2c+Reha+&vl(64785719UI0)=creator&vl(591908681UI1)=all_items&fn=search&tab=default_tab&mode=Basic&vid=UWINDSOR&scp.scps=scope%3a(UWINDSOR_COURSE)%2cscope%3a(%22UWINDSOR%22)%2cscope%3a(UWINDSOR_DIGITALCOMMONS)%2cprimo_central_multiple_fe&ct=lateralLinking
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(or accounts) are being managed in isolation by the advisors without considering any 

interrelationship between each account [Iancu and Trichakis, 2014]. However, in 

practice, those financial advisers in charge with the investment activities of several 

clients rarely mange a single portfolio (or account) in isolation for the consideration of 

efficiency in operation. Regardless of the size and scale of such financial institution, 

they usually serves multiple investment clients, thus multiple investment accounts 

would be allocated to a single financial adviser. Since one adviser would end up 

managing more than one investment account, in reality they provide services to 

multiple accounts simultaneously and act on behalf of multiple portfolios in optimal 

selection of assets, rebalance, or liquidation of the portfolio. In this thesis, we regard 

such problem as the multiportfolio optimization problem. The closeness to industry 

practice alongside with the lack of sufficient existing research focus on multiportfolio 

optimization problem certainly draws our research interests hence the proposition of 

this thesis.  

When the advisors offer services to multiple portfolios with either similar or 

different sizes, compositions, potentially different targets and requirements, and levels 

of risk preferences, etc., they need to address issues such as the uncertain returns, 

portfolio position constraints, and level of risks involved. These issues are quite 

common and arguably similar with the classical single portfolio optimization problem. 

The realization of the industrial practice brings a natural question to ask. The question 

is that can the existing models and results for single portfolio problem proposed by 

previous studies be implemented when the optimization of more than one portfolio is 

dealt with simultaneously. It is realized by leading practitioners from top financial 

institutions that the answer to the suggested question is provably negative: because the 

number and/or size of portfolios being managed in a whole result in unique issues that 
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do not exist in single portfolio optimization problem. One of the unneglectable 

differences from the classical model is the transaction cost incurred when pooling 

multiple trades together, which if not dealt with properly can counteract net 

investment returns. A small amount of researchers from the academia or the industry 

realized this need and did research into multiportfolio optimization with transaction 

cost, trying to capture all the relevant aspects concern with the multiportfolio 

optimization problem.  

Although some researches addressed and studied multiportfolio optimization 

under transaction cost with a considerable degree of thoroughness, we think there 

remains improvements to be done, which will be fully discussed and studied later in 

the thesis. Instead of using more advanced and more computationally attractive risk 

measures, almost all the existing research on this topic are agnostic as to how risk is 

measured, and the usage of variance as a risk measure is employed in those researches. 

No existing research has studied the impact of risk measure in the multiportfolio 

optimization problem. Conditional Value-at-Risk (CVaR) has several attractive 

mathematical properties, such as convexity and it is a coherent risk measure  

[Sarykalin, Serraino and Uryasev, 2008]. To the best of our knowledge, the 

combination of CVaR and multiportfolio optimization problem was not studied by 

previous works. Considering the increasingly important role the Conditional Value-at-

Risk (CVaR) is playing, for reason of regulatory requirements from Basel III (2012) 

and for reason of its advanced mathematical feature as a risk measure, we propose in 

this thesis to integrate the more advanced risk measure of CVaR into the 

multiportfolio optimization problem. 
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1.2.2 Research Methodology and Solution Approach  

This thesis uses operations research approaches to formulate and solve the 

problem. Specifically, linear programming, nonlinear programming, mixed integer 

linear programming and multi-objective optimization are utilized in the research.  

Numerical experiments using real life financial market data are conducted to test 

the proposed models and the results are analysed in later part of the thesis. Numerical 

tests with different problem size (number of investment accounts and number of 

investable assets) is designed and run and its results analysed and verified. The 

comparisons with existing models are conducted and sensitivity analysis is reported to 

highlight the impact of different parameters. 

The software to be used would include but not limited to the follow: GAMS 

(General Algebraic Modelling System) and its solvers. MS Excel is used to pre-

process the data collected from the real world financial market, and MATLAB is used 

in numerical analysis of the results from GAMS. 

1.2.3 Organization of Thesis 

The structure of this thesis is as follow. Following this introductory part is 

Chapter 2 Literature Review, which presents background information to facilitate the 

studies in this thesis. We first provide a brief review on Markowitz’s classical 

portfolio optimization model, as well as a brief introduction on some existing models. 

Secondly, we introduce existing literatures on multiportfolio optimization problem 

and the main focus and contributions of those works. We then provide definitions and 

comparisons from previous literature of two popular risk measures: Value-at-Risk and 

Conditional Value-at-Risk, focusing on the mathematical and computational 
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advantage of CVaR over VaR. Last two sections of this Chapter focus on reviewing 

the studies in market impact costs and different approaches to ensure fairness in 

multiportfolio optimization.  

Chapter 3 is the modelling for the multiportfolio optimization problem we 

proposed. This chapter discusses in details of the five-step optimization scheme we 

developed and the model notations and assumptions, the formulation of functions for 

each accounts and how we allocate the mark impact costs incurred during the 

optimization to each account. This chapter is highlighted with the model we 

developed which integrates Conditional Value-at-Risk as risk measure in the 

constraints. The formulation with variance as risk measure is presented as well for the 

comparison with the proposed CVaR method in later numerical experiments.  In this 

chapter, a total of four models are developed and they all use the five-step 

optimization scheme we propose.  

Chapter 4 contains the solution approach and preliminary numerical results 

using real life financial market data from the New York Stock Exchange (NYSE). We 

provide a brief introduction on the optimization software GAMS and its integrated 

solvers, followed by a detailed explanation into how the real world stock data from 

NYSE is chosen and prepared. Discussion on the choices of values of all crucial 

parameters in all four models, and scenario generation procedure are provided. We run 

the numerical tests for all four models, perform sensitivity analysis of the results, and 

conduct comparisons of performances of different risk measures and approaches of 

splitting the market impact cost.  

Chapter 5 presents a summary of the work in this thesis and the conclusion of 

the thesis. We once again summarize and highlight the contribution of our research, 
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and provide outlook of the possible extensions of the thesis and recommended future 

works.   
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Chapter 2 Literature Review 

Modern Portfolio Theory starts with the seminal work by Harry Markowitz 

published in 1952. In the paper, Markowitz formulated the mathematical model which 

has then been regarded as the foundation of modern portfolio model. From an 

investor’s point of view, the whole purpose of portfolio managing is to gain the 

highest return possible under a limited amount of capital. To optimally allocate the 

limited capital between different investable assets seems an easy and solvable problem, 

however, several factors have to be taken into account, making the portfolio 

optimization problem more complicated to solve.  

2.1 Markowitz’s MVO model  

The basic concept and essence of Markowitz’s modern portfolio theory lies in 

the balance between expected returns and risk. Markowitz presented several types of 

hypothesis or rule when choosing a portfolio: 1) the investor should strives to 

maximize the discounted value of expected future returns. 2) The investor should seek 

maximized expected return while insuring diversification. The rule, to be more 

specific, requires the investors to invest the funds among diversified securities with 

highest expected return. 3) The investor should attempt to maximize expected returns 

at a given risk, or equivalently at a given expected return level try to minimize 

portfolio risk [Markowitz, 1952]. 

The first and second hypothesis were then proven to be wrong or inadequate 

later in the paper, for the reasons of either ignoring the superiority of diversification 

(the first hypothesis) or neglecting the effect of variance of future returns(the second 

hypothesis). It is easily understandable that, although the most desirable option, the 
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portfolio with maximum anticipated return may not necessarily be the one with 

minimum variance. In practice, the investor must consider the trade-off between 

expected return and variance (E-V); to gain expected return by tolerating the variance, 

or to give up some expected returns to reduce the risk. However, the E-V rule does 

agree with any undiversified security which have an extremely higher return and 

lower risk than all other securities. The E-V rule is the fundament mentioned above 

for further research studies in the area of finance and portfolio, with a formal name 

Modern Portfolio Theory (MPT). The model formulated following the E-V rule is 

based on mean of the return and variance of the return, hence the name Mean-

Variance Optimization Model (MVO). In MVO model, risk is associated with the 

variance (standard deviation) of the distribution of portfolio return, the deviation from 

the expected return of the portfolio.  Out of the set of n investable assets S, assuming 

the uncertain future return of asset j (j=1,…, n) is rj, and the standard deviation of the 

uncertain return is 
j , so that the vector of the expected return of all the assets is

T

n ],...,,[ 21   , where )( jj rE . Let vector T

nxxxx ],...,,[ 21  represent the 

proportion of the total funds invested in asset j, and 
j

jx 1 . Then for a certain 

portfolio combination, the variance of total expected return is

   
i j

jiji

j j ji

jjiijijjjj rrCovxxrErrErExxrExrxExV ),())]())(([(]))([()(
,

2

And the standard deviation of the future return is
)()( xVx pp 

. Using the variance 

of the future return as a measure of risk of the portfolio optimization model, as 

mentioned above, with the expected return (mean) the objective function of 

Markowitz’s model is to choose among a number of investment combination and 

choose a portfolio with the least risk (variance) of return that achieve a certain 

expected return (mean) [Markowitz, 1952]. There are three equivalent formulations of 
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the Mean-Variance Model: (1) the portfolio variance minimization formulation, 

subject to target return value R, },:.|)({min XxRxtsxV T  ; (2) the expected 

return maximization formulations, subject to certain risk constraints, 

},)(:.|{max XxxVtsxT   ; and (3) the risk aversion formulation. 

}:.|)({max XxtsxVx p

T   (𝝀 here is a parameter of risk aversion determined by 

investors representing trade-off between expected portfolio return and risks. X is the 

set of all feasible portfolio positions) [F.J.Fabozzi, 2000].  

2.2 Multiportfolio Optimization Problem  

In practice, financial service providers rarely manage a single portfolio (or 

account) because they typically offer their services to multiple clients simultaneously. 

These providers could be from wealth management firms having few individual 

clients to large investment firms serving a large number of pension, mutual, and 

insurance funds.  An investment manager may need to take charge of multiple 

portfolios from different clients, with either similar or different sizes or compositions, 

reflecting potentially different objectives and requirements, levels of risk aversion, etc. 

[Iancu and Trichakis, 2014].  

From a regulatory viewpoint, when providing financial services to clients, 

investment advisers are obligated to follow the best execution rules, which states that: 

“As a fiduciary, an adviser has an obligation to obtain ‘best execution’ of client’s 

transactions. In meeting this obligation, and adviser must execute securities 

transactions for clients in such a manner that the clients’ total cost or proceeds in each 

transaction is the most favourable under the circumstances” [Securities and Exchange 

Commission, 2011]. Research paper from Deutsche Asset Management in New York 
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points out that to provide financial investment management services to large numbers 

of clients as efficiently as possible relies increasingly on large-scale quantitative 

portfolio construction methods. Ensuring efficiency in practice usually dictates 

pooling trades and performing execution of several different investing accounts 

together. 

Goal of multiple portfolio selection problem is fundamentally different from that 

of the classical single portfolio selection problem. It is a crucial knowing that when 

being managed simultaneously, investment decisions made for single client affect 

others’ investment outcomes. As a result, instead of simply optimizing each 

investment accounts independently, advisors must implement a process different from 

existing ones that serves to mediate between accounts in decision-making [O’Cinneide 

et al., 2006]. 

O’Cinneide et al. (2006) propose that multiportfolio optimization combines the 

objectives of all clients in a simple way and evaluates transaction costs according to 

aggregate trading needs. The multiportfolio optimization framework optimize all 

positions and trades for all participating accounts in one optimization model. They 

argue that multiportfolio optimization is the correct answer to the problem of pooled 

trading because it addresses the unique competitive equilibrium between participating 

accounts in the market for liquidity. O’Cinneide et al. believe that multiportfolio 

optimization makes the same decisions for the clients as they would make for 

themselves if they were trading competitively in the market for liquidity. This 

conclusion here might not be necessarily true, since individual clients do not have 

access to the trading decision made by other competitors in the market as a financial 

advisor managing several accounts simultaneously could have acquired. They also put 
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emphasis on the issue that when making decisions concerning trading, fairness and the 

common good of all clients must be considered. They formulated an optimization 

problem that optimizes the portfolios of all clients in an overall sense, which means 

the objective is to maximize social welfare, i.e., the sum of the objectives functions of 

individual accounts. The authors argued that through this process fairness for each 

client ensured, and call this process multi-account optimization (in this thesis we 

regards multi-account and multiportfolio as the same). 

The firm Axioma argues that multiportfolio optimization is the next stage in the 

progressive evolution of modern investment technologies and platforms, and this 

technique benefits all parts by making the aggregated trades optimal and fair under 

given information. Unlike other naïve strategies that sacrifice optimality to achieve 

fairness, such as randomization and representative accounts, multiportfolio 

optimization achieves both optimality and fairness during a pooled-trade execution. 

[Axioma Advisor, 2006] 

Savelsbergh et al. (2010) emphasized that the simultaneous optimization of 

multiple portfolios needs to be conducted carefully due to possible unintended 

inequalities in the distribution of investment returns among portfolios, favouring one 

investment account over another.  They examined both collusive solution, in which 

the total welfare is maximized, and Cournot-Nash equilibrium solution, in which 

objectives of each account is optimized under the assumption that the trading of all 

other accounts are known and fixed. The paper concludes that both solution method 

have corresponding advantages and disadvantages, thus no specific preference over a 

certain solution is made. However, later work by Iancu et al. argues that A Cournot-

Nash equilibrium solution is neither necessarily Pareto optimal nor fair, for the fact 
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that accounts are made to participate in artificial game which probably violates the 

Securities and Exchange Commission rules.  

Stubbs and Vandenbussche (2009) did a thorough review on the topics of 

multiportfolio optimization techniques and properties. They studied the advantages 

and disadvantages of two economic approaches: the Cournot-Nash equilibrium, and 

the collusive solution, and presented a unified framework which is able to solve both 

problems. The focus of this research paper can be justified as fairness between 

individual investment accounts, for the authors argued that multiportfolio framework 

can be bias if the issue of fairness is not addressed properly. They also mentioned that 

definitions of fairness over multiple investment accounts vary among portfolio 

managers depending on each specific case of investment offering.  

Yang et al.(2013) address the multiportfolio optimization problem from a non-

cooperative game theory approach; they model the problem as a Nash Equilibrium 

problem and hence consider a generalized NEP for the case where global constraints 

are imposed on all accounts, and total welfare is maximized as objective function. 

In the paper published in 2014 by Iancu and Trichakis, a thorough discussion of 

the existing methods employed in the financial industry as well as introduced in the 

literature is provided. The authors summarize previous works and bring up three 

unique issues faced by financial service providers compared to the classical single 

portfolio model. Firstly, the benefits of rebalancing could be sharply reduced if the 

problematic interactions between trading activities of multiple accounts is ignored. 

Secondly, there are potential gains from a joint optimization framework and the 

coordination of the rebalancing trades of individual portfolios. Lastly, when and what 

information to share to ensure an unbiased distribution of the resulting gains among 
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all the portfolios.  They proposed a novel, tractable approach by introducing a model 

addresses all three above mentioned challenges taking general market impact cost into 

consideration.  

 2.3 Risk Measures: VaR and CVaR 

Ever since the introduction of the classical model, multiple alternative methods 

of risk management have been studied in the vast majority of literature of modern 

portfolio theory. The MVO model are only the very basic measures in a portfolio 

selection. The concept of risk management involves various perspectives, from a 

mathematical perspective in financial industry, risk management is a procedure for 

shaping a loss distribution (such as an investor’s risk profile).  Though widely studied, 

among a great deal of innovations in the risk measurements, only a few have been 

accepted and adapted in real life financial daily operations by practitioners. Beside the 

implementation of variance or standard deviation as the measurement of risks, other 

well-known and widely used measure of risk including Value-at-risk and Conditional 

Value-at-risk also draw attention as practical methods of risk management in portfolio 

optimization problem.   

2.3.1 Value-at-Risk 

Value-at-Risk works on a given investment time horizon and confidence level α. 

Given a specified confidence level α (commonly set at 0.90, 0.95, and 0.99), the aVaR  

value of a portfolio is the lowest amount of loss L such that the loss will not exceed 

this threshold value L with a probability of α. Let L  be the random variable with a 

cumulative distribution function }{)( lLPlFL  , here L  stands for loss.  
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Definition 1 (Value-at-Risk). With a given confidence level α, )(LVaR is a lower α-

percentile of the random variable L : 

})(|min{)(   lFlLVaR x  

If loss is a normally distributed random variable ),(~ 2NL , then VaR is 

proportional to the standard deviation [Sarykalin, Serraino and Uryasev, 2008]: 

 )()()( 11   LL fFLVaR  

However, the easiness and intuitiveness in the formulation of VaR is 

counterbalanced by unfavourable mathematical properties; a lack of both convexity 

and continuity as a result of being a function of the confidence level α bring numerical 

difficulties into the problem. It will be discussed and analysed in later part of this 

paper.  

2.3.2 Conditional Value-at-Risk 

Conditional-Value-at-Risk (CVaR) was introduced as a new approach to reduce 

the risk of high losses during portfolio optimization, its other names includes mean 

excess loss, mean shortfall, or tail VaR. As defined above, given a probability α as 

confidence level, aVaR  is the threshold value of loss of a portfolio, so that the loss 

will not exceed this value with a probability α. The CVaR is the conditional 

expectation of losses above the threshold value of loss. CVaR is, by definition, 

always no less than the aVaR . Consider a random loss function ),( yxf  associated 

with the decision vector x and a random vector of y of risk factors. x  can represent a 

portfolio selection decision, just as defined above, however, other interpretations are 
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also possible. The vector y represents uncertainties such as uncertain returns, or 

market variables that can affect the loss, with a probability density function )(yp . 

Definition 2 (Conditional-Value-at-Risk):  With )(yp  given, the CVaR  can be 

denoted by 










VaRyxf

dyypyxfCVaR
),(

1 )(),()1(  

However, an analytical expression )(yp  for the implementation of the approach 

is not needed. It is sufficient to have an algorithm (code) which generates random 

samples from )(yp . A two-step procedure can be used to derive analytical expression 

for )(yp  or construct a Monte Carlo simulation code for drawing samples from )(yp

[Rockafellar and Uryasev, 2000]. 

Rockafellar and Uryasev proposed an alternative approach for CVaR calculation, 

it is a minimization formula that works as a replacement for CVaR .  Define a 

function  


 

y

dyyplyxfllxF )(]),([)1(),( 1  

Such that  

),(min lxFCVaR
l




  

Function ),( lxF  has a favourable mathematical feature, as a function of loss, 

),( lxF  is convex and continuously differentiable, so that a local minimum equals to 

a global minimum, which is crucial in optimization problems. 
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Figure 2.1 Graphical Representation of Maximum Loss, CVaR, and VaR (Uryasev and Rockafellar, 

2000) 

According to the definition of CVaR and VaR, Figure 2.1 shows a graphical 

representation of the relationship between the value of CVaR, VaR and maximum loss. 

Rockafellar and Uryasev (2000) argues that CVaR is a superior risk measure to 

VaR in optimization applications in many ways.  When returns of the portfolio R is 

discretely distributed, VaR is nonconvex and discontinuous with respect to portfolio 

positions Tx , these properties makes the VaR hard to optimize computationally. VaR 

does not consider scenarios where loss exceeds VaR. This property of failing to 

consider extreme tails, however, is considered to be an advantage with a poorly 

constructed models with inaccurate estimation, where the use of VaR can disregards 

the tail part of the distribution.  Also, another complaints on the shortcoming of VaR is 

the violation of subadditivity, hence not being a coherent risk measure. One of the 

attractive mathematical properties of CVaR is that it is a coherent measure of risk 

(according to the classification scheme proposed by Artzner (1999), four axioms of 

subadditivity, homogeneity, monotonicity and risk free condition holds). It is a 
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continuous function with respect to confidence level α, and a convex function of 

portfolio positions vector Tx .  

CVaR measures outcomes that hurt the most, which gives itself a clear 

engineering interpretation. It can be reduced to convex programming, in some cases, 

to linear programming (i.e., for discrete distributions). This attractive feature can 

greatly reduce the computational complexity in optimization problem [Sarykalin, 

Serraino and Uryasev, 2008]. 

From the point of regulatory requirements, advantages of CVaR are recognized 

by financial supervision committees. Basel Committee (2012) propose in the Basel III 

regulations to move the quantitative risk metrics system from VaR to Expected 

Shortfall (also known as CVaR or tail-VaR).  

The conclusion, on the different usage of VaR and CVaR in different situation, is 

that CVaR is preferable with an accurately constructed model for tail loss, while VaR 

is a better choice when an acceptable good model for tail loss is not available.  But it 

is still important not to ignore the properties of VaR that bring difficulties into 

optimization.   

2.4 Transaction Cost in Multiportfolio Optimization Model 

In financial and other related area, transaction cost is “costs of using the price 

mechanism” [Coase, 1937] or “costs of market transactions” [Coase, 1960]. It is a cost 

incurred when monetary exchange occurs. Transaction costs can be generally divided 

into two categories: explicit (such as bid-ask spreads, commissions and fees), and 

implicit (such as price movement risk costs and market impact costs). Among which, 

as the implicit part of the transaction cost, market impact cost is mostly widely 
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accounted for in existing literatures of multiportfolio optimization problem. Market 

impact is the effect a trader has on the market price of an asset when it sells or buys 

the asset. It is the extent to which the price moves up or down in response to the 

trader’s activities. For example, the selling of a large number of shares of a particular 

stock may drive down the stock’s market price [Fabozzi et al. 2010]. 

An important component of the objective function of modern portfolio 

rebalancing techniques that rely on optimization is the trading costs. As a result of the 

buying or selling activities which may drive the asset’s market price down or up, the 

actual price of a certain asset usually differs from the expectation (usually worse than 

expected price) [Savelsbergh et al. 2010]. 

Under the multiportfolio optimization settings, the transactions costs incurred by 

each portfolio heavily depend on the trading activity of other portfolios.  That is to say 

that the transaction costs for a given account may depend on not only the account’s 

own trading requirements but also the overall level of trading. In a multiple portfolio 

setting, transaction costs typically increase for each account when trading of the 

accounts are pooled [O’Cinneide et al., 2006]. 

One of the primary type of transaction costs is the market impact costs, it is 

where the core of the difference between single and multiportfolio selection problem 

lies. These market impact cost originate from price impact and limited “at-the-money” 

liquidity [Iancu and Trichakis, 2014]. 

The critical problem of how to keep track of transaction costs and mediate 

between accounts to ensure fairness arise. In practice, the market impact costs is 

commonly split over all accounts proportional to its holding of the total trade for a 
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particular asset, which is called the pro rata scheme. Even though this scheme is 

easily understandable and applicable and sometimes regarded as fair [Fabozzi et al. 

2007], it works only under the assumption that the market impact costs are separable 

across assets, and it also fails to properly reflect all interactions between the accounts 

which leads to unfairness. In literature, the issue of splitting market impact costs is 

seldom discussed, the market impact cost is either not considered or split in the pro 

rata fashion [Iancu and Trichakis, 2014]. 

Assume 
0

jw  is the initial portfolio holding of an account on behalf of asset j, 

then jw is the optimal portfolio holdings of this account. There are many different 

models for the transaction cost t .  

1) The simplest one is the linear transaction costs, which is under the 

assumption that the costs are proportional to the trading size. Given a certain 

percentage
jc , the transaction cost function could be formulated as: 




n

j

jij wwc
1

0
.  

2) To take a step further from the linear model, a piecewise-linear transaction 

model is more realistic, especially for large trades. The costs increase alongside with 

the increase in the trading size. Here we do not include the formulation because 

piecewise-linear transaction cost is not the main focus of this thesis.  

3) A more general formulation of the transaction cost is to assume that the 

transaction cost takes form: 


 0

ji

j

j wwt  , where 
j  is a coefficient calibrated 

from the data, and   generally takes the value more than 1. If 2 then the 

transaction cost takes a quadratic form. 
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2.5 Fairness in Multiportfolio Optimization Model 

In multiportfolio optimization, a central problem associated with the optimal 

solution is the fairness issue. Because the trading decision for one account affect the 

outcomes for other accounts, the advisor must take into consideration fairness and the 

common good of all clients [O’Cinneide et al., 2006]. Iancu and Trichakis (2014) 

points out that when one of the accounts is much larger in size than the others, smaller 

accounts can suffer from a shortage of liquidity. For those small accounts, the socially 

optimal solution is not fair in the sense that they can achieve a better return profile by 

acting alone. If the separate accounts belong to individual clients who care about their 

own utilities only, those “smaller” clients may not be satisfied with the socially 

optimal solution. 

It is understandable that the primary goal of optimization process is to strive for 

optimality, but under the multiportfolio setting, it is more than just necessary to obtain 

fairness in the allocation of trades across portfolios [Iancu and Trichakis, 2014]. 

Consider a simple example in which all accounts are optimized in isolation which 

means no sharing of information across the investors, if fairness is not ensured, then 

investment returns of the accounts can probably be very disproportionate [Savelsbergh 

et al. 2010]. Accounts that obtain less gains than that under the independent 

optimization setting would rightfully refuse to share information and participate in 

multiportfolio optimization.  

2.6 General Literatures on Portfolio Optimization Models 

The search for literature conducted using different combinations of the above 

keywords provided many papers related with these topics. In this section of the 
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chapter we introduce the general review of literature conducted while searching for 

desirable research topic. 

Fang and Lai (2006) considered liquidity to treat the uncertain expected return 

and risk as fuzzy numbers and proposed a linear programming model for portfolio 

rebalancing with transaction costs. Furthermore, based on fuzzy decision theory, a 

portfolio rebalancing model with transaction costs is proposed. 

Tanaka and Gotoh (2010) studied and implemented the constant rebalancing 

strategy for multi-period portfolio optimization via CVaR under nonlinear transaction 

costs. They quoted that to solve a multi-period portfolio optimization with a constant 

rebalancing strategy problem is considerably easy for log-optimal portfolio. But when 

a risk measure is taken into consideration in the model, the problem becomes 

nonconvex, plus if the size of the question is large, then even the state-of-the art NLP 

solvers would have difficulties finding local optimal solution. Furthermore, if 

transaction costs are introduced, these costs cannot be easily dealt with because 

transaction costs would prevent the problem from having a compact representation. 

The authors developed a local search algorithm for solving the constant rebalanced 

portfolio optimization problem under nonlinear transaction costs. In this algorithm, 

linear approximation problems and nonlinear equations are iteratively solved via a 

linear programming (LP) solver and Newton’s method, respectively. 

Skaf and Boyd (2009) formulated the multi-asset multi-period portfolio 

optimization problem as a stochastic control problem with linear dynamics and a 

convex quadratic objective, the mean-square error in achieving a desired final wealth. 

Without the consideration of transaction costs the optimal solution could be solved by 

dynamic programming. With transaction costs, however, the optimal solution is hard 
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to reach. To deal with the difficulty, the author then proposed two suboptimal policies 

based on the optimal policy for unconstrained cases.  

Wang and Li (2014) considered V-shaped transaction cost in rebalancing model 

with self-finance strategy, meaning that the investor will not supply any additional 

investment amount.. They pointed out the main contribution of the paper to be the 

introduction of a new constraint that confirms the rebalancing necessity of the existing 

portfolio needs to be adjusted. CVaR as risk measure is used in the objective function 

to be minimized.  

Yu and Lee (2009) considered several criteria including risk, return, short 

selling, skewness, and kurtosis. They studied a total of five portfolio rebalancing 

models to determine the important design criteria for portfolio model. They 

implemented a fuzzy multi-objective programming approach to found out that the 

rebalancing models that consider transaction cost, including short selling cost, are 

more flexible and their results can reflect real transactions.  For future study, they 

suggested that rather than a portfolio selection based on historical return, a portfolio 

selection that is able to predict future return can be developed in order to meet this 

fast-changing environment. 

Fabian (2008) proposed decomposition frameworks to solve two-stage 

stochastic portfolio optimization models with CVaR in the objectives function or as 

constraints. The two-stage decomposition framework has the 

decision/observation/decision/observation pattern.  

Zhang and Zhang (2009) improved the stochastic programming model with 

simulated paths proposed by Hibiki (2001) by applying genetic algorithm to solve a 
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multi-period portfolio optimization model with CVaR as risk measure to be minimized 

in the objective function. Moreover, proportional transaction costs and market 

imperfections are also considered in the model. The authors also mentioned that their 

genetic algorithm can solve the stochastic optimization model with transaction cost 

and large simulated paths very efficiently, while existing papers reported that large 

dimension of the stochastic model results in difficulty in computation and only a small 

number of simulated paths being considered for the brevity of computation.  

Meng and Jiang (2010) presented a time-consistent dynamic risk measure: the 

sum of CVaR of each period in the multi-period model. A Markov decision process 

model is used in getting the optimality equation. The model and the result was then 

applied in a multi-period portfolio optimization problem with the CVaR in the 

objective functions to be minimized.  

Najafi and Mushakhian (2015) characterized their multi-period portfolio 

selection model with three parameters: the expected value, semivariance and CVaR at 

a given confidence level α. The authors’ hybrid Genetic Algorithm (GA) and particle 

swarm optimization (PSO) algorithm to solve the multi-period model. Taguchi 

experimental design method is applied to ensure the parameters of the model are 

wisely chosen for the sake of the performance of the hybrid GA-PSO meta-heuristic 

algorithm.  

Kocak (2014) designed a portfolio selection method using a canonic coalition 

game, in which the players are the stock certificates traded in FTSE-100 (Financial 

Times and Stock Exchanges). Risk return values of the stock certificates were treated 

with clustering analysis technique based on the data for 330 days with the help of 

SPSS software. The proposed method is able to get the optimal solution out of 15 
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players (stock certificates) with different risk abilities, the obtained return was 

distributed in accordance with the weight of each player in the portfolio using Shapley 

Vector.  

Yang and Rubio (2013) considered the case of multiportfolio optimization, in 

which in practice individual investment accounts are usually pooled together for 

execution, so the aggregated effects such as market impact must be treated carefully. 

Multiportfolio optimization aims at finding optimal rebalancing between different 

investing accounts. The paper implemented non-cooperative game theory and 

presented a Nash Equilibrium problem. 

Wu and Chen (2015) consider a multi-period MV portfolio optimization under a 

dynamic risk aversion assumption (regime switching). According to the authors, in the 

real world, it is quite usual that the decision-making process in different portfolio 

selection period is conducted by different decision-makers (players), hence they treat 

the problem as a non-cooperative game and proposed that the decision-maker n can 

only choose the control the portfolio position strategy πn  to maximize objective 

function given that the successors choose the equilibrium strategy. The authors 

derived the subgame perfect Nash equilibrium strategy and equilibrium value function 

in closed-form. 

In brief conclusion, both stochastic programming of multi-period model and 

CVaR/VaR are used in the area of portfolio optimization for a relatively long period of 

time with many solution method including decomposition of the model, linear 

approximation, heuristic algorithms, etc. After searching and reviewing the literatures 

in these topics, we draw the conclusion that both multi-period portfolio optimization 

and stochastic programming method are well-studied topics in the area of portfolio 



27 
  

optimization, and the risk measures of CVaR, VaR, semivariance etc., are frequently 

seen in the objective functions or in the constraints.  
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Chapter 3 Modelling for MultiPortfolio Optimization Problem 

As discussed in Chapter 2, the uniqueness of multiportfolio optimization 

problem compared with the classical single portfolio optimization problem inevitably 

render both the academy and industry in search for mathematical models that can 

accurately and efficiently address the differences. To address the problem of 

multiportfolio optimization, based on existing literature we introduce our MPO 

models with Conditional Value-at-Risk (CVaR) as risk measures. And we also focus 

on the allocation of trading incurred market-impact costs. Compared with researches 

done in the past on the MPO problem, we mainly focus on two topics, namely, the 

measurement of risks and the allocation of costs between portfolios. Among the 

existing literatures on the MPO problem, the question of how risk is measured has 

never been given enough emphasis on. The introduction of the risk measure of CVaR 

in our model distinguishes our method from the existing researches. In terms of 

splitting the market impact costs, we implement both the industrial standard approach 

of splitting the market impact cost in a pro rata fashion, and the solution method by 

Iancu and Trichaskis (2014) to treat market impact cost as decision variables.  

In this chapter, we present the formulation of our multiportfolio optimization 

problem with CVaR as risk measure. The formulation with variance as risk measure 

will also be constructed.  

3.1 Introduction of Multiportfolio Optimization Modelling 

3.1.1 Problem Description  

We propose a multiportfolio optimization framework, where one financial 

advisor provides advisory services regarding portfolio selection and positions to n 
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accounts simultaneously. Thus, the problem of optimizing the portfolio selections of n 

accounts simultaneously from an investment pool consists of m assets is regarded as 

the Multiportfolio Optimization Problem. Note that one account represents one client 

served by the financial advisor. The trading activities of an account act on behalf of 

the client’s portfolio investment preferences and target, while properties such as total 

available investment funds represents the client’s monetary input. The three terms 

account, client, and portfolio are used interchangeably in our problem. The investment 

pool consists of a total number of m risky assets. As introduced above, when one 

financial advisor manages multiple accounts, all trading activities of the n accounts 

are pooled together in a whole by the advisor during the optimization process.  

To be more specific on the executions of trading of the assets under the 

multiportfolio framework proposed above, the term “pooling trades” indicates that the 

portfolio advisor combines all buying orders of a certain asset by all participating 

portfolios into one order, and submits the aggregated trades to the market at once, the 

same with all selling orders of a certain asset by all portfolios as well.  

The aggregation of trades under the multiportfolio framework inevitably leads to 

market impact costs that take as arguments the aggregated buying and aggregated 

selling orders submitted by the financial advisor. The costs is calculated on the 

aggregated trading activities of all accounts, and thus not split and charged to each 

accounts intuitively. This raises the question of how to appropriately split the cost 

between all accounts. The unique issue of transaction costs induced by the aggregation 

of trades across accounts distinguishes the MPO problem from the classical single 

portfolio optimization problem, and needs to be reckoned with. The MPO problem 

requires the issue of splitting the cost across accounts be addressed properly. Our 
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thesis consider both the implicit and explicit part of the transaction costs. For the 

implicit market impact cost, we use two different approaches to split the costs across 

the accounts, namely the pro rata approach and the decision variable approach. The 

explicit part of the transaction costs is modelled as linear transaction cost proportional 

to the trading size.  

To address the MPO problem, we designed four different optimization models, 

each with different decision variables or risk measures, for the above mentioned 

problem. The five steps optimization schemes are designed to perform from the 

advisor’s point of view and to help the advisor in the portfolio selection decision 

making process by providing the optimal portfolio position for each account 

participating in the multiportfolio optimization. Notations and assumptions used in the 

schemes are introduced and discussed in details in the following section of this 

chapter.  

3.1.2 Notations 

In this section we introduce indices, parameters, variables, and expressions that 

are used in the later part of the thesis.  

Model Indices, Parameters and Variables: 

Indices 

i - Index for portfolio (or accounts), },...,1{ nIi  ; 

j - Index for assets, },...,1{ mJj  ; 

s - Index for scenarios, Ss  where S is a finite set of scenarios; 
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Model Parameters： 

iC  -    Total available capital for the ith account;  

iw  -    The vector to denote the initial holding of the ith account, m

i w , i.e., 

ijw  denotes the  initial holding in the jth asset on behalf of the ith 

account;  

)(s

jy   -    The rate of return of the jth asset on the sth scenario; 

 -   The vector of expected return, m , i.e., 
j  denotes the expected 

return of the jth asset. 
j  is the mean of 

s

jy  across all scenarios; 

   -  The covariance matrix of the return of the assets, 
mm ; 

i   -  The risk preference coefficients for each account (client’s risk tolerance), 

1i , n

i   ; 

i  -  The minimum risk level for the ith account, this value is a result from the 

first optimization step in our optimization scheme. 

j  - Market impact cost coefficients for the jth asset. Calibrated from data, 

satisfying 0j  

   -   Constant for transaction cost model, 1 . 

Decision Variables： 
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 ix  - The vector to denote the portfolio position (in units of currency) of the ith 

account. Let mn

n  ),...,,( 21 xxxx be the matrix containing portfolio 

position for all accounts. m

i x , i.e., 
ijx  denotes the portfolio position 

in the jth asset on behalf of the ith account; 

Auxiliary Variables: 



ijx  - The buy order of the ith account on the jth asset, where

 0,max ijijij wxx 
; 



ijx - The sell order of the ith account on the jth asset, where

  0,max ijijij wxx 
; 



ix  -   The buy order vector of the ith account; 



ix  -   The sell order vector of the ith account; 



ijx  and 


ijx are positive variables. 

Functions: 

),( 

iit xx  - The market impact costs resulting from the execution of trades ix ; 

)( iiu x     - The utility derived by the ith account; the functions Iiiiu )}({ x  are 

required to be concave and expressed in units of currency for all 

accounts; 

iU         - The net utility derived by the ith account; 
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),...,( 1 nUUf   - The welfare function nf : . This function is assumed to 

be component wise increasing; 

The expressions for the functions above are given in later part of this section. 

Assumptions: 

a. The problem is considered under a stylized, single-period rebalancing 

framework; 

b. In this problem, the financial adviser provide portfolio selection, rebalancing 

or liquidation services to n distinct portfolio accounts; 

c. There exist a same pool of m risky assets that are investable for all the 

accounts. The available pool of assets could be the entire universe of stocks in 

the Standard & Poor 500, or New York Stock Exchange; 

d. All trading in this single-period framework is assumed to be not frictionless for 

all accounts, i.e., the transaction costs incurred during monetary transactions of 

all n portfolios are nonzero. This assumption is relaxed in Model IV;  

e. There exist both explicit (linear transaction costs) and implicit (market impact 

cost) part of transaction costs in the models. Only the market impact costs is 

considered in the first three models, and both market impact costs and linear 

transaction costs are considered in the last model; 

f. To follow the common practice in the financial industry, during one 

rebalancing period, the financial adviser pool all the buy and sell orders from 

all n accounts together into a single buy and single sell order, respectively; 

g. Possibility of cross-trading, where the financial advisor net buy and sell orders 

for the same asset offset without recording the trade, is forbidden. That is to 
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say, any trades on behalf of all the accounts must be operated through the 

market, no in-house trading is allowed in our model; 

h. The market impact costs is separable across assets, i.e., the buying and selling 

of a particular asset does not affect the market impact costs incurred during the 

buying and selling of the other assets. The expression of this assumption will 

be provided below; 

i. In our models, the market impact cost is split across the accounts after the 

optimization problem is solved. We employ two means of splitting the cost, to 

split it in pro rata scheme, or as decision variables set by the solver.  

j. The portfolio selection problem under a single-portfolio setting is formulated 

as maximizing the net utility Ui, which is represented by the portfolio return 

less market impact cost. Under a multiportfolio setting, the net utility Ui is then 

jointly optimized by solving a multi-objective optimization problem; 

k. Even if the financial adviser makes rebalancing decisions and places buying 

and selling orders for each portfolio separately, the transaction costs incurred 

by each portfolio would still depend on the activity of other portfolio. To put it 

in the form of the market impact cost,  >1;   

l. Shorting selling of any asset by any account is prohibited in the thesis.  

3.1.3 Market Impact Costs and the Pro Rata Scheme  

As is proposed in the assumption, we take into consideration both the implicit 

and explicit part of the transaction costs. To model the implicit part of the transaction 

costs, we use a nonlinear formulation which takes as arguments the buy and sell 

orders for the jth asset by the ith account. 
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Let the market impact costs due to the execution of trades


ijx and


ijx be 
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As described in assumption (h), the total market impact cost is separable across 

assets, the expression for this assumption is as follow 
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The pro rata scheme 

The most common approach of splitting market impact costs incurred during 

pool trading of multiportfolio optimization is the pro rata approach, which indicates 

that each account is charged a cost proportional to its share of the total trade for a 

particular asset. In a pro rata fashion, for market impact costs that are separable across 

the assets, the trades for the jth asset are
Iiijx }{ , the ith account is charged a cost of  


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Which brings the total market impact cost charged to a particular portfolio i is 

expressed as follow 
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3.1.4 Utility Functions 

To express the total utility generated from the rebalancing trades for the ith 

account, the expected utility is )( ii xu . The most widely-used expression to quantify 

the utility is in units of currency, as follow 

i

T

iiu xx )( , Ii                                                                                

And if the risk is considered, the risk-adjusted expected utility function is as 

follow, 

Risku ii

T

ii   xx )( ,       Ii  

Note that the risk measure in the above expression can be replaced by CVaR, 

variance, which will be introduced as a major part of the model.  

The net expected utility iU  for the ith account, is the total expected return )( ii xu

for the ith account deducted the amount charged from that account as market impact 

costs. 

 iU )( iiu x - it ,      Ii  

3.1.5 Risk Measure 

Conditional Value-at-Risk (CVaR) as risk measure 

Mathematically, we follow the definitions and theorems proofed by Rockafellar 

and Uryasev (2000) to define our CVaR model in this thesis.  
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Known that the return on a portfolio is the sum of return made through 

individual assets invested in the portfolio being xT , the loss of the portfolio is then 

the negative of the return, taking the form  

xxf T

s  ),(  

Introducing a function




 



Ss

sxf
S

xF ]),([
)1(

1
),( 


 , function 

),(  xF is piecewise linear with respect to . 

Rockafellar and Uryasev (2000) proved the following theorems; 

THEOREM 1   As a function of  , ),(  xF  is convex and continuously 

differentiable. The aCVaR  of the loss associated with Xx can be determined from 

the formula 

),(min 


 xFCVaR   

THEOREM 2 Minimizing the aCVaR  of the loss associated with x over all Xx is 

equivalent to minimizing ),(  xF  over all RXx ),(  , in the sense that  

),(minmin
,




 xFCVaR
xx

  

The minimization of ),(  xF  over all RXx ),(   produce a pair ),(  x ,not 

necessarily unique, such that 
x minimize the aCVaR  and 

  gives the corresponding 

aVaR . Furthermore, ),(  xF is convex w.r.t ),( x , and aCVaR is convex w.r.t x, 
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when ),( sxf  is convex w.r.t x, in which case, if the constraints are such that X is a 

convex set, the joint minimization is an instance of convex programming. 

To make the function of aCVaR  more optimization-solver friendly, we 

introduce auxiliary variables syy ,...,1 for all S scenarios. And   xy T

ss )( ,  0sy , 

for all s. 

The introduction of function ),(  xF  makes the calculation of aCVaR easier 

for optimization software. For the formulation of our model, we apply this approach to 

calculate aCVaR . 

The Variance as risk measure 

Variance  of the portfolio is formulated as follow; 

xxT  

where  is the covariance matrix calculated from data.  

3.2 Modelling 

In this section, we introduce four different multiportfolio optimization models 

with 5-step optimization schemes, focusing on different approaches to measure risk 

and different approaches to model the market impact cost. In terms of risk measures, 

the above introduced variance and CVaR are utilized in the models as measurement of 

risks, respectively. The usage of CVaR as risk measure in the multiportfolio 

framework is novel to the existing research focusing on the problem of portfolio 

optimization and is one of the main contributions of our thesis.  
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The execution of dividing the market impact costs incurred during 

multiportfolio optimization practice and charge the costs to each individual portfolio 

according to certain rules is also a major focus of this section. Market impact costs in 

our models, due to its categorization as the implicit type of transaction costs, is 

estimated using a nonlinear, quadratic function which takes the trading of the assets as 

arguments. To split the costs, we implement two different approaches, namely the pro 

rata approach and the decision variable approach.  

3.2.1 Model I: Multiportfolio optimization scheme with variance risk measure 

The following part of this section discusses the modelling of the above 

mentioned 5-step scheme with the notations and assumptions introduced in Section 

3.1. We start simple and explain our 5-step optimization scheme with the classical risk 

measure variance. Model I takes variance as risk measure, and the market impact cost 

is split in a pro rata fashion across accounts. Detailed explanations of the objective 

functions and constraints for all five steps are provided below. 

Step1. Solve the following portfolio optimization problem for each account i 

independently with variance as objective function to be minimized. 

                            i

T

i xx min                                                                            (1)             

                                    iits Xx .                                                                         (2)       

In this step, we solve the variance minimization problem subject to a set of 

feasible trade constraint Xi in order to obtain the minimum value of the 

dispersion of the expected return of the portfolio. We regard the optimal 

objective value as the lower bound of the portfolio variance for the ith account. 

Here,  is the covariance matrix of all the assets calculated from historical data. 
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Let Ii

opt

i }{x denote the optimal solution obtained. Then the optimal value of 

the objective function is opt

i

Topt

ii xx  . 

Step2. Solve the following independent optimization problem for each account i, 

with net utility as objective function to be maximized subject to constraint for 

upper bound for variance.  

                                        )},()({max 
 iiii tu xxx                                                                     (3) 

                                iii

T

its  xx.                                                           (4) 

                            ii Xx                                                                              (5) 

where )( iiu x is the expected portfolio return, and ),( 

iit xx  is the market 

impact cost. 

In this step, we still consider the standard single account setting and maximize 

the expected portfolio net utility, subject to a constraint of the variance of the 

expected portfolio return.  

A more detailed formulation of this step is as below, 

                        ]})()[({max
1

 



 ijij

m

j

ji

T xxx                                                         (6)        

               
iits Xx .                                                                                  (7) 

               iii

T

i  xx                                                                     (8) 

                0, 

ii xx                                                                           (9) 

 

As previously mentioned, market impact costs charged to the ith account in 

trading of the assets are described as a nonlinear function, and impacts from 

the trading of assets by any other accounts ( }{\ iIa ) are neglected in this 
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step. This step is to solve a maximization problem of the expected return of the 

ith account with a constraint to limit variance of the portfolio return relative to 

a benchmark ii . The value of i , where 1i , is set by either the client or by 

the financial advisor.  

Note: The optimal solution IND

ix differs from the optimal solution opt

ix  

Step3.  Aggregate optimal buy and sell orders for each asset from Step 2 across 

all n accounts 

                                      )(
i

IND

ix ,



i

IND

i )(x                                                (10) 

Step 2 solves the individual net utility maximization problem for all n accounts, 

and as a result acquires the solution of n optimal solution of vector ix . 

However, the single portfolio optimization model of Step 2 overlooks the 

presence of other accounts participating in the investment markets, buying and 

selling the assets. The ignorance of the existence of other accounts can cause 

significant underestimation of the true market impact costs incurred by the 

trading activity of every account. To take into account the effects of 

aggregated trading of all accounts managed by the advisor, the buy and sell 

orders of each asset j are aggregated to calculate the total market impact cost. 

For the jth asset, the aggregated buy and sell orders from all accounts are 


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)( , respectively. The resulting market impact cost for 

the jth asset is then formulated as
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aggregated market impact cost across all m assets is

 
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Step4.  Split the aggregated market impact cost in a pro rata fashion  

The realized net utility of the ith account is, 
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After the buy and sell orders for the jth asset are aggregated as Ii

IND

ijx 

}){( and

Ii

IND

ijx 

}){( , respectively, the ith account is charged a market impact cost 

proportional to its share of the total trade for that particular asset [O’Cinneide 

et al., 2006], which is JjIixxt
x
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The realized net utility IND

iU  here is the expected return of the ith portfolio 

derived from Step 2, subtracts the proportionally split market impact costs 

charged to the ith portfolio. Note that the IND

iU  derived in this step is the net 

utility under the independent framework, where no information is shared 

across the accounts and each account is optimized in isolation.  

Step5.  Optimize multiportfolio simultaneously using maxmin objective function 

     )})(,...,)(,)(({max 222111 nnn tututuf  xxx                                           (12) 
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In this step the advisor optimize the portfolio selection problem of all the 

accounts jointly and at the same time split the market impact cost across all the 

accounts. Solution provided in Step 5 differs from the independent solution 

from the previous four steps, where trading information of individual accounts 

are not accessible by other participants. The objective function 

),...,,( 21 nUUUf  is a welfare function which takes the form of

}min{),...,,( 21 IND

i

IND

ii
n

U

UU
UUUf


 . IND

iU denotes the realized net utility for the 

ith account derived from the independent framework, while the realized net 

utility derived from the joint optimization framework is denoted by 

iiii tuU  )(x .  

The maxmin objective function is to maximize the minimum increase in 

realized net utility relative to the realized net utility IND

iU under the 

independent solution across all accounts. The maxmin function has well 

established fairness properties that provides trade-off between social welfare 

(sum of utilities) and fairness (equitable allocation of utilities) [Iancu et al., 

2014]. 

The result of the multiportfolio optimization scheme with variance risk 

measure, provided by Step 5, is the optimal portfolio position (how should the 

total available capital be allocated among assets) for each account i as well as 
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the amount of split market impact cost charged to each account i, and the 

derived realized net utility for each account i.  

3.2.2 Model II: Multiportfolio optimization scheme with CVaR risk measure 

As previously emphasized, the integration of CVaR  risk measure with the MPO 

framework is one of the major contributions that distinguish our thesis from the 

existing researches. In this section, we introduce Model II with the 5-step 

multiportfolio optimization scheme and CVaR  risk measure, and the final market 

impact cost for each account is split in a pro rata fashion across all participating 

accounts.  

In the notation, we declared the parameter ijw to represent the initial portfolio 

holding of the jth asset by the ith account, the corresponding decision variables ijx of 

the model is designed to provide represents the portfolio position at the end of the 

optimization period. The difference between the initial ijw  and final portfolio position 

ijx  is represented by the expression
  ijij xx . Under close examination of the unique 

structure of the formulation of CVaR , the necessity of separate discussion in Step 1 for 

the situation with 0ijw  and the situation with 0ijw raises. There are several major 

differences in the formulation of constrains for the first step of the 5-step scheme from 

the one in Model I. We provide two different cases of formulation, one for non-zero 

initial holding ( 0ijw ) and one for zero initial holding ( 0ijw ). The differences in 

the type of models between the two cases lie in the introduction of a new set of binary 

decision variables. Detailed explanations of the objective functions and constraints for 

each step are provided below.  
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For the formulation for Step 1, we introduce new notation: 

Binary variables: 

ijv  - Takes value 1 if the initial holding of asset j is sold by account i, and 0 if 

not sold. 

Step1. Solve the single portfolio optimization model for each account i  

Case1. Non-zero initial holdings 0ijw  

The CVaR  model is formulated as follow: 

                    )(min iCVaR x                                                                             (18) 

                
iits Xx .                                                                               (19) 

                     jxxwx ijijijij   ,                                                               
(20)

  

                    jvwx ijijij  ,               (21) 

                 jvCx ijiij  ),1(         (22) 

                 0, 

ii xx        (23)                                         

                 jbinaryvij ,        (24) 

The purpose of this step is to get the value of the objective function at the 

optimal point, and we regard this minimum value of CVaR  as the lower bound 

of the average portfolio tail loss. The model is a Mix Integer Programming 

problem, because ijv is a binary variable.  

Objective Function: to be specific on the formulation of CVaR , the objective 

function is  
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where the m-dimensional vector )(sy is the vector containing all assets’ rate of 

return in the sth scenario. 
i

Tsy x
)(  represents the loss of the portfolio in the sth 

scenario. This formulation of CVaR is the one introduced in Section 3.1.5. 

The formulation of CVaR is a nonlinear function, which renders its 

minimization of risk for the above single portfolio optimization model in this 

step difficult to solve. To make the minimization problem more 

computationally friendly, we follow the method of Rockafellar and Uryasev 

(2000) and introduce a vector of auxiliary variables },...,,{ 21 skkkk   to 

substitute the nonlinear expression   i

Tsy x
)( , one for each scenario.  

The optimization problem then can be written as, 

                     
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                               (26) 

                    iits Xx .                                           (27) 

                      Ssks  ,0                                (28) 

                   Ssyk i

Ts

s  ,)( x                               (29) 

                  
jxxwx ijijijij   ,
             (30) 

                  jvwx ijijij  ,                                                        (31) 

                  jvCx ijiij  ),1(              (32) 

                        0, 

ii xx              (33) 

                   
jbinaryvij ,

                                                   (34) 

Constraint (27) represents a set of feasible trade constraints, which impose 

certain requirements on the portfolio position decision variable vector ix . This 

set of constraints could include the total available capital constraint i

m

j

ij Cx 
1

.  
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By substituting the   i

Tsyk x
)( , auxiliary variable k takes the value of

),0max( )(  i

Tsy x , hence constraints (28) and (29). The formulation of 

aCVaR  then becomes a linear expression after the introduction vector of 

auxiliary variable k . The mathematical feature of linearity makes the 

minimization problem of CVaR computationally friendly and easier for 

analysis.  

Constraints (30) define the relationship between ijx and ijw . The difference 

between the initial ijw  and final portfolio position ijx  is the trading of asset j 

by account i in currency units, the expression is
  ijij xx . 

Constraints (31) and (32): By introducing the binary variable ijv , we can 

guarantee that between the buy order


ijx and sell order


ijx , there can be one and 

only one nonzero variable. It ban be interpreted as that during a single 

optimization period, we forbid any accounts to operate the buy order and sell 

order of the same asset at the same time.  The model given by (26)-(34) is a 

Mixed Integer Linear Program problem. 

Step 1 requires a number of n executions, each time with different feasible 

trade set iX  corresponding to each account.  To be more specific on the 

differences between each account’s iX , total available capital iC  varies across 

accounts. Outputs of this model are the optimal value of the objective function

i

opt

iCVaR  min)(x , i is then treated as input in the next step. Let Ii

opt

i }{x

denote the optimal solution obtained.  

 

Case2.  No initial holding 0ijw  
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Under the hypothesis that there are no initial holding in any assets at the 

beginning of the optimization period, the minimization of risk is as follow: 

                                                   )(min iCVaR x                                                         (35) 

                                 
iits Xx .                                                              (36) 

Though Case 2 can be regarded as a special case for Case 1, we treat the two 

case separately because of the elimination of constraints (30)-(34) from the 

formulation. By eliminating the binary variable the model is reduced from a 

MILP problem in Case1 to a LP problem.  A more detailed formulation can be 

written as below: 
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Step2. Solve the single portfolio optimization problem for each account i, with net 

utility as objective function to be maximized subject to constraint for upper 

bound for aCVaR .  

                                               )},()({max 
 iiii tu xxx  (41) 
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The objective function consists of two parts: the expression )( iiu x represents 

the expected portfolio return for the ith portfolio, and ),( 

iit xx  is the market 

impact cost charged to aforesaid portfolio due to trading of assets in the 

available pool. 

In this step, we still consider the standard single portfolio setting and formulate 

an optimization problem of maximizing the expected portfolio net utility 

(expected portfolio return less market impact cost), subject to a constraint of 

the portfolio aCVaR  and the feasible trading. This is the expression of the 

advisor’s duty to achieve “best execution” for a single client, i.e. the maximum 

net utility. A more detailed formulation of this step is as below, 
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 (50)                     

                             0, 

ii xx  (51) 

From this point, we start to include market impact costs charged to the ith 

account in trading of the assets. The cost is calculated using the expression

])()[(
1

 



 ijij

m

j

j xx , which is a summation over the cost of trading each asset j. 

To be specific, the term “trading” includes the action of both buying (


ijx ) and 
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selling (


ijx ) of certain asset. Impacts from the trading of assets by any other 

accounts ( }{\ iIa ) are neglected in this step. The market impact cost takes 

nonlinear form because the total cost of a trade is a nonlinear function of the 

size of the trade. Nonlinear market impact costs are the rule rather than the 

exception [O’Cinneide et al., 2006].  

Constraint (46) is identical to constraints (36) and (38). In the following 

content of this chapter, if no additional explanation notice given, the feasible 

trade constraints are the same as (36).  

Constraint (48) is the expanded form of the CVaR  risk constraint. The left 

hand side of the inequality is the expression for CVaR , and the ii on the 

right hand side is the upper bound of ith account’s (client’s) tolerance of the 

average loss in the tail. The value of i  takes value greater than one and is 

customized by either the client herself if she has a certainty risk preference, or 

by the advisor.  

Constraints (49) and (50) have the same function as (28), (29), and (39),(40). 

Same as Step1, Step2 also requires a number of n executions, each time with 

different total available capital iC  in constraint (46) and i (known as output 

from Step1) in inequality (48).  

Note: The optimal solution IND

ix differs from the optimal solution opt

ix  from 

Step 1.  

Step3.  Aggregate optimal buy and sell orders for each asset from Step 2 across 

all n accounts 

  )(
i

IND

ix ,



i

IND

i )(x  (52) 
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Step 3 is the same with the Step 3 in Model I. The single portfolio net utility 

maximization problem for all n accounts are solved in Step 2, generating the 

solution of n optimal values of vector ix . In this step, optimal solution IND

ix for 

all the n accounts from Step 2 are categorized into two types and then 

aggregated as the buying  )(
i

IND

ix and selling



i

IND

i )(x , respectively.  

Step4.  Split the aggregated market impact cost in a pro rata fashion for each 

account 

We introduce the following realized net utility of the ith account:   
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Results of the aggregated buy Ii

IND

ijx 

}){(  and sell Ii

IND

ijx 

}){( orders from Step 

3 are then taken as input in the above function of IND

iU . The ith account is 

charged a market impact cost proportional to its share of the total trade for that 

particular asset which is JjIixxt
x

x
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aj
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ajj
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ij
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
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,),)(,)(( . 

Same as the Step 4 in Model I, we calculate the realized net utility IND

iU  for 

the ith account using the optimal solution IND

ix from Step 2 and aggregated buy 

and sell order from Step 3. The realized net utility IND

iU  here is the expected 

return of the ith portfolio derived from Step 2, minus the market impact costs 

charged to the ith portfolio in a pro rata fashion. Note that same as Model I, 
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the IND

iU  derived in this step is under the independent solution, where no 

information is shared across the accounts.  

Step5.  Optimize multiportfolio simultaneously using maxmin objective function 

                 )})(,...,)(,)(({max 222111 nnn tututuf  xxx  (54) 

          Iits ii  ,. Xx  (55) 
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            IiUtu IND

iiii  ,)(x  (59) 

            Iiii  ,0,xx  (60) 

Step 5 employs a joint optimization framework for all n accounts. All 

participating accounts are optimized simultaneously within a single run of the 

model, maximizing the welfare function }min{),...,,( 21 IND

i

IND

ii
n

U

UU
UUUf




same as that in Model I and splitting market impact cost in a pro rata fashion.  

The result of the multiportfolio optimization scheme with CVaR risk measure, 

provided by Step 5, is the optimal portfolio position (how should the total 

available capital be allocated among assets) for each account i as well as the 

amount of split market impact cost charged to each account i, and the derived 

realized net utility for each account i.  
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3.2.3 Model III: Split of market impact cost as decision variables  

Instead of following the method implemented in Model I and Model II to split 

the market impact cost across each account in a pro rata fashion, a set of decision 

variables for each account is introduced to assist the advisor in allocating the amount 

of market impact cost charged to each account. The model not only provides the 

optimal portfolio position ix , the corresponding split of market impact cost among the 

n accounts is provided as a result as well. 

We introduce the following new decision variable notation:   

ij   -  The amount of market impact cost charged to the ith account due to trading 

the jth asset; 

The decision of how to split the market impact cost among the n accounts under 

the proposed multiportfolio framework is made in the last step in the optimization 

scheme, i.e. Step 5 in both Model I and Model II. Since it is the unique method of 

treating market impact cost as decision variables that distinguishes Model III from the 

above two models, we choose to discuss Step 5 in Model III in detail in the following 

paragraph. Step 1 to Step 4 take the same form as they are in the above two models 

with the only difference lies in how risk is measured. Let the following model take 

CVaR as risk measure for example. 

Step 5. Optimize multiportfolio simultaneously using maxmin objective function 

with split of market impact cost as decision variables. 

                        )})(,...,)(,)(({max 222111 nnnuuuf   xxx  (61) 
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Values of i as well as IND

iU  were calculated in Step 1 and Step 4, respectively. 

Under the multiportfolio optimization framework, the advisor pools the trading 

of a certain asset in to a single buy and/or sell order in practice. Therefore, 

given a certain market impact cost model the total market impact cost incurred 

by the aggregated trading of the jth asset can be calculated accordingly. The 

market impact cost for the jth asset is denoted by the expression

),(
1 1

 
 


n

i

n

i

ijijj xxt , and then the total market impact cost for all m assets is the 

summation over set J, i.e.   
  


m

j

n

i

n

i

ijijj xxt
1 1 1

),( .  

The fourth constraint ensures that the decisions of the amount of market 

impact cost charged to the n accounts add up to the total market impact cost 

for all m assets.  
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3.2.4 Model IV: Adding real life constraints to the multiportfolio optimization 

Model 

The daily practice of MPO problems often require more specifications on 

investment policies and preferences that result in more complicated constraints in the 

optimization model than in the above introduced three models. In the formulation of 

Model I, Model II, and Model III, the feasible portfolio set Xi constraints implemented 

is the total available capital constraints ., IiCx i

j

ij   Model IV is formulated 

to capture other real world constraints, such as the total turnover constraints and the 

rebalancing constraints, etc., to make the model closer to the daily portfolio 

optimization practice. The constraints, either imposed by the clients according to their 

investment preferences or by financial regulations, when added actively to the 

optimization model we designed, can render different portfolio position decisions 

from previous ones.  

Model IV follows the 5-step optimization scheme structure used in the previous 

three models. Since both CVaR and variance have been integrated in the previous 

three models and the main focus of Model IV is the modelling of real life portfolio 

optimization common practice constraints, no specific preference is made towards 

how risk is measured in this model. The implementation of both variance and CVaR as 

risk measures in Model IV will be studied through numerical experiments in the 

following chapter. Here, for the consideration of keeping this section within an 

appropriate length, we only provide the formulation using CVaR.  

Fabozzi et al (2010) summarizes the constraints commonly used in daily 

practice of portfolio optimization including, but not limited to, no-short-selling 
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constraints, assets holding constraints, portfolio turnover constraints, cardinality 

constraints, minimum holding and transaction size constraints, and round lot 

constraints, etc. Those constraints are commonly used by individual investors or 

advisors representing financial firms, and reflect the above mentioned parties’ 

investment policy. The existence of those constraints in the model results in a more 

complicated model than previous designed three models.  

We use the same set of notations and variables introduced in Section 3.1 for the 

formulation of constraints in this part, whether one choose to model the risk using 

CVaR or variance. In addition to the already defined decision variables, sets and 

parameters, we introduce new decision variable and parameters notations as follow; 

Binary variables: 

ijz  - Takes value 1 if asset j is held by account i, and 0 otherwise. 

Sets:  

hD  - A subset of the total investment universe. Represents the set of assets of 

similar types or in the same industrial sector. Hh  

Parameters: 

u

hiP,  -  A vector of positive integers denoting the maximum number of assets in a 

certain subset hD that account i can hold. Value of u

hiP, is less than or equal to the 

cardinality of hD . h

u

hi DP ,  
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l

hiP,  -  Positive integers denoting the minimum number of assets in a certain 

subset 
hD that account i needs to hold. h

l

hi DP ,  

ib   -  Minimal amount (percentage) to hold an asset for account i, 

u

hiL ,   -  The upper bound of the percentage of holding for asset j (or subset hD  of 

assets) by account i among total monetary capital iC . 10 ,  u

hiL  

l

hiL ,   - The lower bound of the percentage of holding for asset j (or subset hD  of 

assets) by account i among total monetary capital iC . 10 ,  l

hiL  

jq   - Coefficients of the linear transaction costs functions for trading a certain 

amount of asset j 

Cardinality Constraints: 

Models developed in the previous sections are likely to generate assets 

selection decisions disregarding the feasibility of the decisions in everyday 

trading of the assets. To be more specific, the optimal decision variables 

provided by the models might recommends the account to hold very small 

amounts of a large number of assets, which can be unnecessarily costly when 

fixed costs of trading costs are taken into considerations in the daily practice.  

On the other hand, we now pay more attentions to the customization of the 

portfolio position decision, i.e. clients’ preferences on how their portfolios are 

constructed vary from each other.  

 HhIiPzP u

Dji

Dj

ij

l

Dji h

h

h
 



  ,,,,
 (70) 
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                                  JjIiz
C

x
bz ij

i

ij

iij  ,,  (71) 

Constraints (70) provide the upper bound and/or lower bound of the number of 

assets from subset hD the portfolio can/must hold. The m assets from the total 

investment universe can be further classified into multiple subsets of assets 

according to attributes such as assets type or industrial sector they belonged to.  

As defined, hD is a subset of the investment universe, consequently the 

subscript hDj  represents that asset j is contained within this particular subset

hD .  

Constraints (71) work alongside with Constraints (70), to ensure that if asset j 

is selected into portfolio i, then portfolio weight 10 
i

ij

C

x
, and 1ijz . If asset 

j is not selected, the value of the binary variable ijz is then automatically set to 

be 0 by the solver in the optimal solution. At the same time, we add the 

minimal holding constraint of an asset by account i: 
i

ij

iij
C

x
bz  , to avoid the 

situation where 0ijx  but 1ijz .  

Holding Constraints: 

                                  HhIiCLx i

u

hi

Dj

ij

h

 


,,0 ,  (72) 

or 

                                      HhIixCL
hDj

iji

l

hi  


,,,  (73) 
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While cardinality constraints set requirements on the number of assets, the 

issue of holding small amount of a large number of assets still exists. The 

holding constraints perform in conjunction with the cardinality constraints to 

set limitations on the upper and/or lower bound on the amount of an asset j that 

can/must be held by account i, therefore effectively eliminate trading of very 

small monetary amount.  

ijx is the dollar holding of asset j, and iC is the total investment capital of 

account i , and 10 ,,  u

hi

l

hi LL , thus on both left and right hand side of the 

inequality are the dollar values. 

Linear Transaction Cost Constraints: 

We propose that there exist a linear transaction cost for each asset related to 

the trading of said asset. The linear transaction cost we consider can be 

commissions, fees and regulatory charges one has to pay for trading in the 

market. It’s been stressed repeatedly in previous content of our thesis that, our 

formulation of the MPO model pays great attention to the unique issue of 

market impact costs incurred under MPO framework. The nonlinear market 

impact costs are incurred implicitly due to price impact caused by trading of 

the assets, while the linear transaction costs for trading the can be calculated. 

For the buying and selling of each asset j, the linear transaction cost is 

calculated as jq times the transaction )(   ijij xx . 

We propose the balancing constraints that maintain the total value of an 

account as follow:  
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                                                        (74) 

ijw on the right hand side of the constraint is the initial holding in asset j by 

account i. The value of ijw  sum up to equal to the total capital of account i. 

IiCw i

m

j

ij 


,
1

. Constraints (74) also emphasis that linear transaction 

costs incurred during the optimization period are financed by the total capital 

iC  of account i. Note that this is different from market impact costs, which are 

split after the optimization period.  

Similar to Model III, here we take the example of CVaR risk measures and use 

decision variables for market impact cost allocation to formulate the five-step 

optimization scheme with the above introduced three sets of constraints.  

Step1. Solve the single portfolio optimization model for each account i  

                              )(min iCVaR x                                                                  (75) 
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                                    Jjbinaryzij ,  (83) 

Step2. Solve the single portfolio optimization problem for each account i, with net 

utility as objective function to be maximized subject to constraint for upper 

bound for aCVaR   
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Step3.  Aggregate optimal buy and sell orders for each asset from Step 2 across 

all n accounts  
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Step4.  Split the aggregated market impact cost in a pro rata fashion  
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Step 5. Optimize multiportfolio simultaneously using maxmin objective function 

with split of market impact cost as decision variables. 
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The constraints in the five-step optimization scheme are explained either in the 

previous models or in the beginning of this section. The last step finds the final 

optimal portfolio solution with consideration of the real life constraints. 
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Chapter 4 Solutions and Numerical Results 

We present four different optimization models for the MPO problem in Chapter 

3. In this chapter, we provide detailed introduction and analysis for the solution 

method, optimization software programming, numerical tests and numerical analysis.  

The solution approach is applied with historical data from the stock market, we 

conducted numerical tests based on the historical data acquired for the four different 

models, and performed sensitivity analysis using the preliminary results from the tests 

to justify the performance and capability the four models we propose.  

4.1 Optimization Software: GAMS   

4.1.1 GAMS Introduction  

The General Algebraic Modelling System (GAMS) is a high-level modelling 

system for mathematical programming and optimization. It consists of a language 

compiler and a stable of integrated high-performance solvers. GAMS is tailored for 

complex, large scale modelling applications, and allows the users to build large 

maintainable models that can be adapted quickly to new situations. (GAMS Home 

Page) 

GAMS Language is formally similar to commonly used programming languages, 

which guarantee programming accessibility to users with programming experience. 

GAMS contains an integrated development environment (IDE) and supports plenty of 

mathematical programming model types including Linear Programming, Mixed 

Integer Programming, Mixed Integer Nonlinear Programming, and different forms of 

Nonlinear Programming.  
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4.1.2 GAMS Solvers 

A large number of solvers for mathematical programming models have been 

integrated in GAMS. Each solver uses specific algorithms to solve one or more than 

one types of models. According to the specific optimization model types of the four 

models developed in this thesis, we choose the CONOPT, CPLEX, and SBB solvers 

to solve the NLP, MILP, and MINLP models, respectively. Brief introductions of 

these solvers are provided below from GAMS Solver Manual; 

CONOPT: this is a large scale NLP solver. CONOPT is a feasible path solver 

based on the generalized reduced gradient (GRG) method. CONOPT contains 

extensions to the GRG method such as a special phase 0, linear mode iterations, and a 

sequential linear programming component. CONOPT can solve the LP, RMIP, NLP, 

CNS, DNLP, and RMINLP model types. 

CPLEX: GAMS/CPLEX is a GAMS solver that allows users to combine the 

high level modelling capabilities of GAMS with the power of CPLEX optimizers. 

CPLEX optimizers are designed to solve large, difficult problems quickly and with 

minimal user intervention. With proper GAMS licensing, access is provided to 

CPLEX solution algorithms for linear, quadratically constrained and mixed integer 

programming problems. While numerous solving options are available, 

GAMS/CPLEX automatically calculates and sets most options at the best values for 

specific problems. 

SBB: this is a GAMS solver for Mixed Integer Nonlinear Programming (MINLP) 

models. SBB is based on a combination of the standard Branch and Bound method 

known from MILP and some of the standard NLP solvers already supported by 
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GAMS. SBB supports all types of discrete variables supported by GAMS, including 

binary and integer variables. 

The choices of solvers in GAMS also need to take licensing issue and the size of 

the problems into consideration. Due to the large number of decision variables and 

constraints in our models, we need to choose the solvers (CONOPT, CPLEX, SBB) 

with Full License in GAMS in order to get the best performance out of the solvers.  

4.1.3 Data Exchange with Excel 

We take the advantage of GAMS’s ability to exchange data with Excel. GAMS 

can communicate with Excel via GAMS Data Exchange (GDX) files. A GDX file 

stores the values of GAMS symbols such as sets, parameters, variables and equations. 

GDX files act as an intermediate between GAMS and Excel by preparing data for a 

GAMS model, presenting and storing results of a GAMS model. We use the 

GDXXRW (in short of GAMS Data Exchange Excel Read and Write) utility to read 

and write Excel spreadsheet data. GDXXRW is competent to the task of reading and 

writing multiple ranges in an Excel spreadsheet. The processing speed of GDXXRW 

utility is satisfying, considering the scale of the current problem. 

The exchange of information between GAMS and Excel through GDX files is 

seamless and only requires few commands in the programming of the model. To 

import data from an Excel file to our GAMS code, the data in Excel is first written 

into GDX file then read into GAMS: Excel  GDX  GAMS. And to export the 

solution of our model to Excel is the reverse process: GAMS  GDX  Excel.  
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4.2 Data Selection and Preparation 

To conduct the numerical tests for the four models, we need to choose the values 

for the parameters in the models. We choose to use historical data of 20 stocks from 

New York Stock Exchange (NYSE).  The adjusted closing price for each stock for 

1500 scenarios is processed to get the return rates we need, as well as the covariance 

matrix between then 20 stocks.  

In Table 4.1 below, we present the stock symbols of the 20 stocks we choose as 

well as the sectors of industries in which they belong to.  

 Table 4.1 Symbols and industrial sector of the 20 stocks from NYSE 

No. Stock Symbol Sector 

1 BAC Financial 
2 F Consumer Goods 
3 GE Industrial Goods 
4 MSFT Technology 
5 T Technology 
6 GLW Technology 
7 CXW Financial 
8 ORCL Technology 
9 YHOO Technology 

10 KO Consumer Goods 
11 C Financial 
12 PFE Healthcare 
13 EDE Utilities 
14 CNP Utilities 
15 SGMA Technology 
16 RAD Services 
17 SYY Services 
18 AIG Financial 
19 AGM Financial 
20 S Technology 

 

4.2.1 Scenario Generation 

For the models using CVaR as risk measure, according to its formulation, we 

need to consider scenario generation techniques to provide data as input to the models. 
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We choose to use historical data from twenty stocks from NYSE. We set the time 

length t of the multiportfolio optimization period to be one month (22 trading days). 

There are many ways the return rate (usually called just return) can be calculated in, 

the two most common forms are the arithmetic return and the geometric return (also 

called the log return). We choose the log return over the arithmetic return due to its 

many merits (more explanation and discussion here).  

Denote the closing price for stock j of one certain day by st

jp , here st represents 

the business day. To calculate the monthly log returns for each stock for 1500 

scenarios from the historical data, we take logarithms of the ratio of ss t

j

tt

j pp /
 , here 

22t business days. Once the log returns for 1500 scenarios are calculated, the 

expected return for stock j is calculated as the mean of the 1500 scenarios.  

4.3 Numerical Studies 

In this section, we present numerical studies that illustrate the performance of 

the four models we developed. The optimization software GAMS and related solveres 

with the above introduced options and settings are used to implement the models and 

solve the problems. The studies involve with five clients trading simultaneously: 

number of accounts 5n , number of stocks 20m , and length of the optimization 

period 22t . The five accounts are with total available funds C1=100, C2=150, 

C3=200, C4=250, C5=300.  

4.3.1 Parameters Choices 

This section provides brief introduction on how the values of crucial parameters 

vectors are chosen in the numerical examples. These vectors are risk preference 
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coefficients i , market impact costs coefficients
j , linear transaction costs 

coefficients
jq , and   in the market impact cost function. Values of these vectors are 

required to be decided in advance by either the clients or the investment manager, and 

be treated as input data into the model.  

In terms of how risk preference coefficients ii ,  in the models are chosen, it 

has to be pointed out that the coefficients work as a way to shape the risks in Step 2 

and Step 5 from each models. The expression ii  on the right hand side of the risk 

constraint is the upper bound for the risk that client i can tolerate. Because i  is the 

minimum value of risk that portfolio i can expect to get, we require that the value of i

satisfies the inequity 1i  to ensure feasibility of the solution in Step 2 and Step 5.  

We argue that there’re upper bounds for coefficients ii , , and value of i used in the 

numerical tests has to lie in between the lower and upper bounds for the risk 

constraints to be effective. To decide the value, we perform tests on Step2 based on 

the input data for the 20 stocks for both CVaR risk measure and variance risk measure. 

The outcome of the tests suggests that ii  ,5.31  for models using the risk 

measure CVaR, and ii  ,121  for models using variance. The upper bounds are 

calculated at the solution that maximizes the return for the model in Step 2 but 

relaxing the risk constraints. 

In terms of the choices of linear transaction costs coefficients jq in Model IV, for 

simplicity, we set the value of all iqi , to be 0.01%. This means that a percentage of 

0.01% of the transaction size is charged to account i for trading any stocks under the 
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MPO framework. Linear transaction cost isn’t the main focus of this thesis, hence the 

simplicity in deciding the values.  

In terms of the choices of market impact costs coefficients j , they are 

calibrated from data to fit observed trading costs in the market [O’Cinneide, 2006]. 

Almgren, Thum and Hauptmann (2005) analysed a large set of data from the 

Citigroup US equity trading desks and used a simple but realistic theoretical 

framework to determine value of market impact costs coefficients, and they stressed 

that their results fit the stocks in NYSE. According to the research by Almgren, et al. 

(2005), we determine value of j to be 0.0000314. We assume market impact costs 

coefficients for trading all 20 stocks takes the same value for further simplicity.  

As for the formulation of the market impact costs, we follow the numerical 

studies in the works of O’Cinneide et al. (2006) and Iancu et al. (2014), and set the 

value of 2 . 

4.3.2 Random Number Generation for Initial Holdings 

We propose two different cases for the initial holdings and model formulation. 

For the first one we consider a general case where ijw takes non-zero values, 

indicating that the accounts have already entered the investment market and traded 

according to previously made decisions. The second situation is where there are no 

initial holdings, indicating that the accounts hold no assets at the beginning of the 

optimization period of the MPO model. Case 1 represents a more general situation, 

while case 2 is a special case for case 1. One can easily modify the input data of ijw to 
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fit the according assets holding position, and then start with the 5-step MPO scheme 

we proposed.  

In the following numerical examples, the input parameters jiwij ,,  we use in 

the models are random numbers generated by the Random Number Generator (RNG) 

in GAMS. The series of numbers generated from the RNG are pseudo-random 

numbers, we make sure in the GAMS code that all initial holdings are non-negative: 

0ijw for case 1 and 0ijw for case 2. And for Case 1, the initial holdings ijw sum 

up to each account’s total available money in the investment: iCw j

j

ij  , . Input 

file is then imported into GAMS using the data exchange utility GDXXRW By 

ensuring the initial holding parameters ijw  and portfolio position decision variables ijx

take non-negative value, we ensure that short selling of any stock is prohibited in the 

model as proposed in the assumption.  

4.3.3 Numerical Results 

To design the numerical tests for the 4 models proposed in this thesis, we follow 

the above discussed details in the first half of this chapter including choices of 

optimization software and solvers, data pre-processing and scenario generation, 

choices of parameters, etc.  

We present the preliminary results of the numerical tests for each model in the 

following section. The numerical examples are conducted in two different cases 

according to the above-discussed two situations with initial holdings. In Numerical 

Case 1, we consider the special case where there are zero initial holdings in all assets j 

for all accounts i. In Numerical Case 2, we overthrow the zero initial holding setting, 
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and consider the more general setting of random initial holdings. For Numerical Case 

1, we present results of Model I with variance risk measures, Model II with CVaR risk 

measures, Model III with both variance and CVaR risk measures. For Numerical Case 

2, we present the results of Model I with variance risk measures, Model II with CVaR 

risk measures, Model III with both variance and CVaR risk measures, and Model IV 

with both variance and CVaR risk measures. 

Case 1: without initial holding 

An investment advisor is in charge of 5n portfolios, investing in a market of 

20m  stocks from NYSE. Assume the manager start from zero holdings in all stocks 

for all portfolios, i.e. jiwij ,,0  . To put it in a more specific way of explanation, 

we consider the situation under which all the five accounts enter the market for the 

first time, so that their holdings on any of the 20 stocks are all zero. The value of i

used for risk control is set to 3 for all models. We run the GAMS codes designed for 

Model I, Model II and Model III, and the results generated by the program is shown in 

the following separate tables.  

 Model I: MPO scheme with variance risk measure and market impact costs split 

in pro rata fashion. 

   
Table 4.2 Value of variance for Model I (zero initial holding) 

Account 
Risk (Variance) 

Step1 Step2 Step5 

1 8.357 25.070 25.070 

2 18.803 56.408 56.408 

3 33.427 100.282 100.282 

4 52.230 156.690 156.690 

5 75.211 225.634 225.634 
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Table 4.3 Value of return, market impact cost, utility, and improvement rate for Model I (zero initial holding) 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.832 1.606 1.414 

 
0.067 0.582 0.279 

 
1.539 1.025 1.135 

 
10.76% 

2 1.248 2.397 2.166 
 

0.136 0.838 0.438 
 

2.261 1.559 1.727 
 

10.76% 

3 1.664 3.176 2.951 
 

0.218 1.065 0.613 
 

2.958 2.110 2.337 
 

10.76% 

4 2.080 3.943 3.759 
 

0.311 1.272 0.800 
 

3.632 2.671 2.959 
 

10.76% 

5 2.496 4.699 4.588 
 

0.412 1.459 0.999 
 

4.287 3.240 3.589 
 

10.76% 

 

Table 4.3 presents the numerical results for returns, impact costs and utility from 

Step 1 to Step 5. As shown in the table, the final utilities of all accounts increase by 

10.76% from the utilities of Step 4, which reflects that optimizing multiportfolio 

simultaneously can significantly improve the performance. The same improvement 

value for all five accounts represents the fairness.  

 Model II: MPO scheme with CVaR risk measure and market impact costs split in 

pro rata fashion. 

 
Table 4.4 Value of CVaR and VaR for Model II (zero initial holding) 

Account 

Risk (CVaR & VaR) 

Step1 Step2 Step5 

CVaR VaR CVaR VaR CVaR VaR 

1 5.621 4.457 16.864 11.919 16.574 5.234 

2 8.432 6.686 25.296 17.718 23.606 8.376 

3 11.243 8.914 33.728 23.440 33.136 15.042 

4 14.053 11.143 42.159 29.337 41.926 21.622 

5 16.864 13.372 50.591 35.010 50.591 41.384 
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Table 4.5 Value of return, market impact cost, utility, and improvement rate for Model II (zero initial holding) 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.813 2.189 1.875 

 
0.108 1.065 0.571 

 
2.081 1.124 1.305 

 
16.13% 

2 1.219 3.282 2.815 
 

0.242 1.596 0.857 
 

3.041 1.686 1.958 
 

16.13% 

3 1.626 4.376 3.755 
 

0.429 2.127 1.143 
 

3.947 2.249 2.612 
 

16.13% 

4 2.032 5.462 4.713 
 

0.662 2.642 1.438 
 

4.800 2.819 3.274 
 

16.13% 

5 2.438 6.524 5.718 
 

0.921 3.113 1.757 
 

5.603 3.410 3.960 
 

16.13% 

Table 4.5 presents the numerical results for returns, impact costs and utility from 

for Step 1 to Step 5 for Model II. As can be seen in Table 4.5, the improvement rate of 

all accounts is 16.13%. Returns for all five accounts increase in Step 2 and Step 5, 

compared with the results in Table 4.3 for Model I. The same increases are seen in 

utilities and improvement rate for all five accounts.  

 Model III: MPO scheme with variance risk measure and market impact costs split 

as decision variables. 

Table 4.6 Value of variance for Model III (zero initial holding) 

Account 
Risk (Variance) 

Step1 Step2 Step5 

1 8.357 25.070 25.070 

2 18.803 56.408 56.408 

3 33.427 100.282 100.282 

4 52.230 156.690 156.690 

5 75.211 225.634 225.634 

 

 
Table 4.7 Value of return, market impact cost, utility, and improvement rate for Model III with Variance risk 
measure (zero initial holding) 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.832 1.606 1.492 

 
0.067 0.582 0.356 

 
1.539 1.025 1.136 

 
10.87% 

2 1.248 2.397 2.238 
 

0.136 0.838 0.509 
 

2.261 1.559 1.729 
 

10.87% 

3 1.664 3.176 2.984 
 

0.218 1.065 0.645 
 

2.958 2.110 2.340 
 

10.87% 

4 2.080 3.943 3.730 
 

0.311 1.272 0.769 
 

3.632 2.671 2.961 
 

10.87% 

5 2.496 4.699 4.477 
 

0.412 1.459 0.884 
 

4.287 3.240 3.593 
 

10.87% 
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 Model III: MPO scheme with CVaR risk measure and market impact costs split as 

decision variables. 

 
Table 4.8 Value of CVaR and VaR for Model III with CVaR risk measure (zero initial holding) 

Account 

Risk(CVaR & VaR) 

Step1 Step2 Step5 

CVaR VaR CVaR VaR CVaR VaR 

1 5.621 4.457 16.864 11.919 16.864 1.257 

2 8.432 6.686 25.296 17.718 25.296 5.235 

3 11.243 8.914 33.728 23.440 33.833 15.647 

4 14.053 11.143 42.159 29.337 42.159 34.231 

5 16.864 13.372 50.591 35.010 55.748 36.364 

 

 
Table 4.9 Value of return, market impact cost, utility, and improvement rate for Model III with CVaR risk measure 
(zero initial holding) 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.813 2.189 1.474 

 
0.108 1.065 0.169 

 
2.081 1.124 1.305 

 
16.13% 

2 1.219 3.282 2.525 
 

0.242 1.596 0.567 
 

3.041 1.686 1.958 
 

16.13% 

3 1.626 4.376 3.665 
 

0.429 2.127 1.053 
 

3.947 2.249 2.612 
 

16.13% 

4 2.032 5.462 4.450 
 

0.662 2.642 1.176 
 

4.800 2.819 3.274 
 

16.13% 

5 2.438 6.524 6.762 
 

0.921 3.113 2.801 
 

5.603 3.410 3.960 
 

16.13% 

Table 4.7 shows the numerical results for returns, impact costs and utility from 

Step 1 to Step 5 for Model III with variance risk measure. A significant increase of 

utilities for all five accounts from Step 4 to Step 5 is seen, with value of 10.87%. 

Table 4.9 presents the numerical results for returns, impact costs and utility from Step 

1 to Step 5 for Model III with CVaR risk measure. The improvement rate for the five 

accounts is 16.13%, reflecting significant improvement from utilities in Step 4. 

Comparing the results from Table 4.7 with Table 4.9, the model with CVaR risk 

measure generates relatively higher returns, utilities, and improvement rates for all 

five accounts.  
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The improvement rate and utilities from Step 5 in Model III with CVaR risk 

measure (shown in Table 4.9) are the same with their corresponding part in Model II 

with CVaR risk measure (shown in Table 4.5). But, as shown in Tables 4.5 and 4.9, 

values of return and market impact costs from Step 1 to Step 5 are different for the 

two models. Model III causes a lower value of costs for account 1,2,3,4 and a higher 

costs for account 5 compared with Model II. These are caused by the differences in 

the ways of splitting market impact costs in the two models. The same with Model III 

with variance risk measure and Model I, utilities and improvement rates are 

approximately the same while returns and market impact costs are different.  

Case 2: with random initial holding 

We consider a similar setting to the one in Example 1, where the investment 

manager/advisor is in charge of 5n portfolios, investing in a market of 20m  

stocks from NYSE. In this example 2, we relax the previous assumption of no initial 

holding to a general case where there’re initial holdings on each asset by each account. 

The initial holdings jiwij ,,  are generated by random number generator in GAMS as 

previously introduced. We run the GAMS codes designed for Model I, Model II, 

Model III, and Model IV, and the results generated by the program is shown in the 

following separate tables. 

 Model I: MPO scheme with variance risk measure and market impact costs split 

in pro rata fashion. 
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Table 4.10 Value of variance for Model I 

Account 
Risk (Variance) 

Step1 Step2 Step5 

1 8.357 25.070 25.070 

2 18.803 56.408 56.408 

3 33.427 100.282 100.282 

4 52.230 156.690 156.690 

5 75.211 225.634 225.634 

 

 
Table 4.11 Value of return, market impact cost, utility, and improvement rate for Model I 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.832 1.607 1.467 

 
0.046 0.397 0.148 

 
1.560 1.209 1.319 

 
9.10% 

2 1.248 2.395 2.177 
 

0.102 0.591 0.209 
 

2.294 1.804 1.968 
 

9.10% 

3 1.664 3.171 2.915 
 

0.184 0.810 0.340 
 

2.987 2.360 2.575 
 

9.10% 

4 2.080 3.917 3.702 
 

0.254 0.962 0.477 
 

3.663 2.956 3.224 
 

9.10% 

5 2.496 4.667 4.518 
 

0.296 1.029 0.550 
 

4.371 3.637 3.968 
 

9.10% 

Table 4.11 presents the numerical results for returns, impact costs and utility 

from Step 1 to Step 5 in Model I with random initial holdings. As shown in the table, 

the final utilities of all accounts increase 9.1% from the results of Step 4, which 

reflects that optimizing multiportfolio simultaneously can significantly improve the 

performance. The same improvement value for all accounts represents the fairness.  

 Model II: MPO scheme with CVaR risk measure and market impact costs split in 

pro rata fashion. 

 
Table 4.12 Value of CVaR and VaR for Model II 

Account 

Risk (CVaR & VaR) 

Step1 Step2 Step5 

CVaR VaR CVaR VaR CVaR VaR 

1 5.621 4.457 16.864 11.553 16.727 5.040 

2 8.432 6.686 25.296 17.218 24.181 11.365 

3 11.278 9.006 33.833 23.038 33.614 27.238 

4 14.053 11.143 42.159 28.687 41.896 25.652 

5 18.583 13.875 55.748 38.183 50.260 38.397 



78 
  

 

 

 
Table 4.13 Value of return, market impact cost, utility, and improvement rate for Model II 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.813 2.187 1.899 

 
0.096 0.965 0.444 

 
2.091 1.222 1.454 

 
18.99% 

2 1.219 3.280 2.791 
 

0.212 1.429 0.589 
 

3.069 1.851 2.202 
 

18.99% 

3 1.683 4.383 3.605 
 

0.406 2.000 0.770 
 

3.977 2.382 2.835 
 

18.99% 

4 2.032 5.447 4.511 
 

0.636 2.515 1.022 
 

4.811 2.932 3.489 
 

18.99% 

5 2.432 6.934 5.728 
 

1.084 3.272 1.371 
 

5.850 3.662 4.357 
 

18.99% 

 

Table 4.13 presents the numerical results for returns, impact costs and utility 

from Step 1 to Step 5 in Model II with random initial holdings. As shown in the table, 

the final utilities of all accounts increase 18.99% from the results of Step 4, which 

reflects that optimizing multiportfolio simultaneously can significantly improve the 

performance. The same improvement value for all accounts represents the fairness.  

 Model III: MPO scheme with variance risk measure and market impact costs split 

as decision variables. 

Table 4.14 Value of variance for Model III with Variance risk measure 

Account 
Risk(Variance) 

Step1 Step2 Step5 

1 8.357 25.070 25.070 

2 18.803 56.408 56.408 

3 33.427 100.282 100.282 

4 52.230 156.690 156.690 

5 75.211 225.634 225.634 

 

 

Table 4.15 Value of return, market impact cost, utility, and improvement rate for Model III with Variance risk 
measure 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 
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1 0.832 1.607 1.482 
 

0.046 0.397 0.162 
 

1.560 1.209 1.320 
 

9.13% 

2 1.248 2.395 2.223 
 

0.102 0.591 0.254 
 

2.294 1.804 1.969 
 

9.13% 

3 1.664 3.171 2.965 
 

0.184 0.810 0.390 
 

2.987 2.360 2.576 
 

9.13% 

4 2.080 3.917 3.694 
 

0.254 0.962 0.468 
 

3.663 2.956 3.225 
 

9.13% 

5 2.496 4.667 4.444 
 

0.296 1.029 0.475 
 

4.371 3.637 3.970 
 

9.13% 

 

Table 4.15 presents the numerical results for returns, impact costs and utility 

from Step 1 to Step 5 in Model III using variance risk measure with random initial 

holdings. As shown in the table, the final utilities of all accounts increase by 9.13% 

from the results of Step 4.  Same with Case 1, utilities and improvement rates in 

Model III with variance risk measure and Model I (shown in Table 4.11) are 

approximately the same, but returns and market impact costs are different. 

 Model III: MPO scheme with CVaR risk measure and market impact costs split as 

decision variables. 

Table 4.16 Value of CVaR and VaR for Model III with CVaR risk measure 

Account 

Risk (CVaR & VaR) 

Step1 Step2 Step5 

CVaR VaR CVaR VaR CVaR VaR 

1 5.621 4.457 16.864 11.553 15.876 5.596 

2 8.432 6.686 25.296 17.218 22.470 11.449 

3 11.278 9.006 33.833 23.038 33.833 28.873 

4 14.053 11.143 42.159 28.687 42.159 32.171 

5 18.583 13.875 55.748 38.183 49.667 28.936 

 

Table 4.17 Value of return, market impact cost, utility, and improvement rate for Model III with CVaR risk 
measure 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.813 2.187 1.855 

 
0.096 0.965 0.401 

 
2.091 1.222 1.454 

 
18.99% 

2 1.219 3.280 2.539 
 

0.212 1.429 0.337 
 

3.069 1.851 2.202 
 

18.99% 

3 1.683 4.383 3.839 
 

0.406 2.000 1.004 
 

3.977 2.382 2.835 
 

18.99% 

4 2.032 5.447 4.578 
 

0.636 2.515 1.089 
 

4.811 2.932 3.489 
 

18.99% 

5 2.432 6.934 5.723 
 

1.084 3.272 1.366 
 

5.850 3.662 4.357 
 

18.99% 
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Table 4.17 presents the numerical results for returns, impact costs and utility 

from Step 1 to Step 5 in Model III using CVaR risk measure with random initial 

holdings. As shown in the table, the final utilities of all accounts increase by 18.99% 

from the results of Step 4. Same with Case 1, Model II and Model III saw a same 

value of utilities and improvement rate for all five accounts, but different returns and 

costs values, which are caused by the differences in costs allocation methods used in 

the two models.  

 Model IV: MPO scheme with variance risk measure and market impact costs split 

as decision variables. 

Table 4.18 Value of Variance for Model IV with Variance risk measure 

Account 
Risk (Variance) 

Step1 Step2 Step5 

1 11.314 33.943 33.943 

2 25.287 75.860 75.860 

3 44.916 134.747 134.747 

4 70.776 212.329 212.329 

5 101.080 303.240 303.240 

Comparing with the results in Table 4.10 for Model I (without the real life 

constraints), the risks of all accounts in Step1, Step 2, and Step 5 in Model IV increase 

about 33%, which are caused by the real life constraints. 

Table 4.19 Value of return, market impact cost, utility, and improvement rate for Model IV with Variance risk 
measure 

Account 
Return 

 
Market Impact Cost 

 
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.786 1.736 1.635 

 
0.051 0.457 0.239 

 
1.685 1.279 1.396 

 
9.14% 

2 1.187 2.611 2.460 
 

0.104 0.653 0.323 
 

2.507 1.958 2.137 
 

9.14% 

3 1.590 3.470 3.228 
 

0.208 0.946 0.473 
 

3.262 2.524 2.755 
 

9.14% 

4 1.950 4.284 4.078 
 

0.321 1.184 0.695 
 

3.963 3.100 3.383 
 

9.14% 

5 2.381 5.120 4.902 
 

0.399 1.314 0.748 
 

4.721 3.806 4.154 
 

9.14% 
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Comparing with the results in Table 4.11 for Model I (without the real life 

constraints), the utilities of all accounts increase about 5% at Step 5. With introduced 

extra constraints, we expect the utilities would decrease. However, increasing the 

tolerance of risk can increase our returns and the utilities. 

 Model IV: MPO scheme with CVaR risk measure and market impact costs split as 

decision variables. 

Table 4.20Value of CVaR and VaR for Model IV with CVaR risk measure 

Account 

Risk (CVaR & VaR) 

Step1 Step2 Step5 

CVaR VaR CVaR VaR CVaR VaR 

1 7.356 4.931 21.930 7.612 21.253 2.892 

2 10.849 7.426 28.844 16.269 29.677 6.153 

3 14.904 10.377 37.858 27.020 32.371 10.627 

4 19.366 13.540 45.417 36.133 36.854 22.310 

5 21.899 14.786 60.825 53.291 50.176 32.819 

Comparing with the results in Table 4.12 for Model II (without the real life 

constraints), the risks of all accounts in Step1 and Step 2, and 3 accounts in Step 5 in 

Model IV increase, which are caused by the real life constraints. 

Table 4.21Value of return, market impact cost, utility, and improvement rate for Model IV with CVaR risk measure 

Account 
Return 

 
Market Impact Cost 

  
Utility 

 Improve (%) 
Step1 Step2 Step5 

 
Step2 Step4 Step5 

 
Step2 Step4 Step5 

 
1 0.894 2.199 1.771 

 
0.107 1.026 0.371 

 
2.092 1.173 1.401 

 
19.45% 

2 1.369 3.423 2.812 
 

0.246 1.582 0.614 
 

3.177 1.841 2.199 
 

19.45% 

3 1.779 4.635 3.387 
 

0.480 2.233 0.517 
 

4.156 2.403 2.870 
 

19.45% 

4 2.131 5.440 4.233 
 

0.606 2.507 0.730 
 

4.834 2.933 3.504 
 

19.45% 

5 2.616 6.887 5.969 
 

1.053 3.299 1.684 
 

5.834 3.588 4.286 
 

19.45% 

Comparing with the results in Table 4.13 for Model II (without the real life 

constraints), the utilities decrease for three accounts and two increase, but all changes 

are small, which are caused by both risks and real life constraints. 



82 
  

4.3.4 Numerical Analysis 

The outcomes of the numerical tests are presented in previous tables. Based on 

the preliminary results from Section 4.3.3, we design a series of tests for the numerical 

analysis.  

 Efficient Frontiers  

To start with the basic and classical demonstration of trade-off between risk and 

return in the portfolio, we draw the graphs of efficient frontiers for both Model I (risk 

measure: variance) and Model II (risk measure: CVaR) under the setting with initial 

holdings. Figures 4.1 and 4.2 present the graphs of efficient frontiers for Model I and 

Model II. 

 

Figure 4.1 Efficient Frontier for five portfolios computed from Model I with variance risk 

measure 
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Figure 4.2 Efficient Frontier for five portfolios computed from Model II with CVaR risk 

measure 

 

Figure 4.3 Efficient frontier: utility vs variance for five portfolios computed from Model I with variance 

risk measure 
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Figure 4.4 Efficient frontier: utility vs CVaR for five portfolios computed from Model II with CVaR 

risk measure 

There are five efficient frontiers in each of the two figures, each line represents 

one account. The line is the optimal combination of risk and return provided by the 

optimal solution from GAMS. Each point on the efficient frontier represents an 

optimal portfolio position that maximizes the return for the given level of risk. The 

efficient frontier is curved because of a diminishing marginal return to risk. Each 

minor increase of risk in the portfolio gains a smaller and smaller amount of return.  

The difference between Figures 4.3, 4.4 and Figures 4.1, 4.2 is that 4.3 and 4.4 

present the frontiers of impact costs adjusted utility vs risks (variance for Figure 4.3 

and CVaR for Figure 4.4). 

We choose Model I and Model II out of the four models for efficient frontier 

plotting because of the relative simplicity in model structure, such as number of 

decision variables and constraints, etc. 
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 Improvement Rate  

One significant measure of performance of the models is the improvement rate 

computed in the last step, which is also the value of the objective function
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the relative increase in utility iU   of Step5 compared with utility IND

iU under 

independent framework. The independent framework as introduced in Chapter 3 is the 

case where the accounts do not “cooperate” and are optimized independently, which is 

Step 1 to Step 4.  

Moreover, another important function of the improvement rate is that it is a 

measure of fairness. We study the improvement rate from the results of numerical 

tests provided in Section 4.3.3. Using the maxmin objective function, we find out that 

the values of improvement rate for all accounts are the same. This means that all 

accounts improve by exactly the same amount in percentage, which is the same as we 

have expected the maxmin scheme to be. By maximizing the minimum relative 

increase in utility, the maxmin function demonstrates an attractive feature that 

optimizes jointly over the trades and split of market impact costs. We consider the 

maxmin function we use as considerably fair among all accounts with various capital. 

As discussed in the introduction, the issue of fairness is one of the major 

considerations in MPO problem, and by utilizing the maxmin function we ensure 

fairness in our models.  
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Figure 4.5 Improvement rate (%) in different models using different risk measures 

We use two different measures of risk in the model formulations, namely, CVaR 

and variance. To compare the effects they have on the improvement rate, we analysis 

results from different models. As can be seen from Figure 4.5, we demonstrate the 

improvement rates of models using CVaR or variance as risk measures. For the x-axis 

tick, pro rata represents Model I and Model II where market impact cost is split 

proportionally. The label Decision Variable represents Model III, and the label 

Constraints represents Model IV. Note that for one certain model the values of all 

other parameters remain the same. It is shown from the bar chart, that in terms of the 

improvement rate, the models using CVaR perform relatively better than the ones 

using variance for the given same risk preference coefficients i . 
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Figure 4.6 Improvement rate of Model II with initial holdings when coefficient  increase from 1 to 4 

 

Figure 4.7 Improvement rate of Model I with initial holdings when coefficient  increase from 1 to 4 

 



88 
  

Alongside the analysis in Figure 4.5, to further study the improvement rate of 

the models with different risk measures, we conduct sensitivity analysis on how the 

changes of the risk coefficients i  affect the improvement rate of the accounts. Figure 

4.6 and 4.7 show the changes of improvement rate with respect to the increase of i  

with CVaR and variance risk measures, respectively. Figure 4.6 reveals that 

improvement rate strictly increases when i  increase. The growth trend of 

improvement rate is in an approximate S-curve. Improvement rate increases gradually 

in the interval of 31  i , and drastically in i3 . Figure 4.7 carries information that 

the increase of i in the interval of [1, 4] does not affect the improvement rate in a 

positively attracting way.  

From the analysis we conducted on this problem, we draw the conclusion that 

Model II performs better than Model I in terms of improvement rate, when the 

coefficients i  change in the interval of [1, 4]. Note that such conclusion does not 

deny the ability of variance as risk measure when it comes to the problem of assisting 

the model to achieve better return. We can only say that under the specific situation 

where the investment advisors or the clients lay much stress on the increase of the 

improvement rate, CVaR provides better outcome than variance does. And we also 

argue that, because improvement rate is an important performance measure under the 

multiportfolio framework, CVaR has an advantage over variance evidenced by this 

test. 

 Returns and market impact costs under independent optimization and jointly 

optimization framework 
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Figure 4.8 Changes of Return and Utility from Step 2 to Step5, taking Model II with initial holding as 

example 

Figure 4.8 reveals how return and utility change from Step 2 to Step 5. Recall 

that Step 2 acts in an independent optimization framework, under which utilities of the 

five accounts are been optimized isolated subject to risk constraints. The utilities are 

the returns of each account less its corresponding market impact costs. As previously 

mentioned, the formulation of market impact costs charged to each account in Step 2 

do not consider impacts from the trading by any other accounts. Due to such 

unrealistic overlook on interaction of all the accounts, market impact costs charged to 

each account are relatively low. This phenomenon is reflected by the bar chart.  Step 4 

computes the utilities by same return of each account from Step 2 subtracts the 

proportionally split market impact costs charged to the account.  Step 5 is under the 

joint optimization framework, the return generated for each account is relatively less 

than that from previous two steps. But utilities achieved in Step 5 is relatively more 

than that in Step 4, which means that the joint optimization framework manages to 
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incur considerably less market impact cost than the independent Step 4. This outcome 

is consistent with numerical tests results from all the four models, and is exactly the 

way we expected how the returns, utilities and market impact costs incurred would 

change. The pattern of the changes in returns, utilities and costs across this three steps 

conforms to the one we mentioned in previous part of the thesis. 

 Utility and market impact costs allocation approach 

Figure 4.9 Comparisons of return and utility in Model I and Model III using Variance risk measures 

with initial holdings 
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Figure 4.10 Comparisons of return and utility in Model II and Model III using Variance risk measures 

with initial holdings 

To address the allocation of market impact costs across all five accounts, in our 

thesis we present two approaches, namely, the pro rata scheme and decision variable 

scheme. Figures 4.9 and 4.10 shows the outcomes of return and utility by two 

different schemes using different risk measures. Figure 4.9 is a comparison of Model I 

and Model III, both with random initial holdings and variance risk measure. Figure 

4.10 is a comparison of Model II and Model III, both with random initial holdings and 

CVaR risk measure. From the numerical tests we conducted, come a result of same 

utilities in two models using different market impact costs allocation approaches.  

 Results of return and risks under different numbers of scenarios 
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Figure 4.11  Returns (4.11a), risks (4.11b) of Model II with random initial holdings for all 5 accounts 

across scenarios. Historical expected monthly return (4.11c) across scenarios  

To do the analysis with different scenario numbers, we take Model II with 

random initial holdings input as an example. Number of scenarios changes from 1200 

to 1800, and the line graphs in Figure 4.11 show how return and risk of all the 

accounts vary according to number of scenarios. The subplot below shows how 

expected monthly return rates from historical data for the twenty stocks change with 

number of scenarios from 1200 to 1800. Values of return are typically high in number 

of scenarios 1300 and 1700, and low in number of scenarios 1800. This has the same 

trend to the changes in monthly expected returns, where there’re considerable rise in 

the historical data in scenario number 1300 and 1700, and a notable fall in 1800. The 

changes in values of CVaR for the five accounts run counter to the changes in 

expected monthly return rates.  

 Results of return, utility and improvement rate under different value of market 

impact cost coefficients j  
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Figure 4.12 Portfolio return and utility of Model II with CVaR risk measure when market impact cost 

coefficient increase from 0.5 to 2 

 

Figure 4.13 Portfolio return and utility of Model III with CVaR risk measure when market impact cost 

coefficient increase from 0.5 to 2 

As declared in Section 4.3.1, in numerical tests the value of market impact cost 

coefficient 0000314.0j . To analyse the influence of the coefficient j  on portfolio 

return and utility, numerical analysis is provided. Figures 4.12 and 4.13 show that, in 

both Model II and Model III, portfolio return and utility for all five accounts under 

joint optimization framework decrease with the increase of cost coefficient j . Same 

numerical analysis is performed on Model I and Model III, and the result shows the 

same decreasing trend of return and utility when cost coefficient j  increases. As 
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space is limited, here we only provide the line graph of models under CVaR as 

examples.  

 

Figure 4.14 Improvement rate (%) for Model I and Model II when market impact cost coefficient 

increase from 0.5 to 2 

Figure 4.14 illustrates that the improvement rate for both Model I and Model II 

increase when market impact cost coefficient j  increases. In terms of the 

improvement rate, Model II with CVaR risk measure performs better than Model I 

with variance risk measure, except for data point 5.0 . Improvement rate under CVaR 

risk measure shows a drastically increasing trend. Another set of numerical analysis of 

improvement rate under risk measure CVaR and variance is conducted using Model III, 

and the increasing trend is the same with Figure 4.14.  
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

The thesis is set out to study the modelling of risk and allocation of trading 

incurred costs during the portfolio optimization under the multiportfolio framework. 

Instead of researching into the classical Markowitz Mean Variance Optimization 

problem under single portfolio framework, we see the optimization problem from an 

angle of multiportfolio that is more suitable to the practice of financial firms and 

investment advisors managing multiple investment accounts simultaneously.   

From the vast amount of literature searching and reviewing we conducted in the 

portfolio optimization related area, we can see that portfolio optimization problem has 

been a hot topic for a long period of time. But the area of multiportfolio optimization 

problem has not been regarded with enough academic attention that the topic deserves. 

To address the portfolio optimization problem under a multiportfolio framework, one 

must answer the question of how to allocate the market impact costs incurred during 

the trading. Another old and permanent question of the portfolio optimization problem 

is how risk is measured. In our thesis, considering the increasingly important role of 

CVaR in regulatory requirements from Basel III (2012) and for reason of its advanced 

mathematical feature as a risk measure, we propose a novel combination of the risk 

measure of CVaR with multiportfolio optimization problem. 

Our thesis focuses on the allocation of the market impact costs and portfolio risk 

measurements under the multiportfolio optimization framework. To address the 

problems, a five-step optimization scheme is proposed in the thesis. Following the 

five-step optimization scheme, we propose four different models. Model I uses 
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variance as risk measure and the pro rata fashion to split the incurred market impact 

costs. Model II uses CVaR risk measure and also the pro rata fashion to split the 

market impact costs. Model III focuses on the allocation of market impact costs and 

regards the split of costs as decision variables, CVaR and variance are used separately 

as two different formulations of this model. In Model IV, we introduce real life 

portfolio trading constraints such as cardinality constraints and holding constraints. 

Linear transaction costs are introduced in Model IV as well.  

The numerical studies are designed and conducted using the commercial 

optimization software GAMS. Different from many of the existing literatures using 

simulated data, we use historical stock data from the NYSE. The four models range 

from LP and NLP to MILP and MINLP, and we utilize the GAMS solvers CONOPT, 

CPLEX, and SBB. Two cases of numerical tests are conducted, one with zero initial 

holdings and the other case with random generated initial holdings. Based on the 

results from the tests, we design a series of numerical analysis to demonstrate the 

performance of our models. Although the types of the models make the problem hard 

to solve, our program is sufficient enough to provide optimal solutions for the problem.  

Through the numerical study and analysis with the real stock market data, the 

following observations and conclusions can be made: 

 The proposed five-step frame and models for multiportfolio optimization 

problem are effective, where two unique features of the problem, market 

impact costs and fairness, are addressed. Our numerical results show that the 

joint optimization framework can manage to incur considerably less market 

impact cost than the independent decision, and therefore increase the utilities 

of all accounts significantly.    



97 
  

 Comparing with the risk measure of variance, MPO with CVaR has the better 

performance in terms of improvement rate from independent optimization for 

each account when the given risk preference coefficients are the same for 

both variance and CVaR.  

 Our numerical results show that both pro rata and decision variable 

approaches to split market impact costs work well and the resulted utilities 

are the same for the both models though the returns and impact costs from the 

two models are different. 

 The results from the model with considering extra real life constraints show 

that the utilities can keep the high level as without those constraints if the 

customers can take higher risk.   

5.2 Contributions  

While all existing literatures in the area of multiportfolio optimization are not 

concerned with the choice of risk measure and use the traditional risk measure 

variance, our thesis proposes the novel and unique combination of the risk measure of 

CVaR with the MPO problem. In details, the contributions of this thesis include the 

follows. 

 To the best of our knowledge, this is the first work to use CVaR as the risk 

measure in MPO, and the optimization models that combine MPO with CVaR 

are proposed, while CVaR is suggested by Basel committee in 2012 to use for 

market risk management. This also is the first academic research to focus on 

how risk is measured under the multiportfolio framework. We also build the 

MPO model using the classical risk measure variance, and provide 

comparisons for the two risk measures. 
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 We propose a five-step multiportfolio optimization scheme, and build four 

models following the scheme. MILP and MINLP models are proposed to 

address market impact costs, fairness and other factors, which are not seen in 

the existing researches in the multiportfolio optimization area. Besides, we 

consider two cases:  without initial holding and with initial holding, propose 

related models, and verify the proposed schemes under the two cases.  

 Our thesis uses both pro rara and decision variables to allocate the market 

impact costs incurred during the portfolio optimization process. And 

numerical results are provided to demonstrate the performance of the two 

approaches. 

 We introduce some real life constraints into MPO, such as transaction costs, 

cardinality, and holding constraints, which are the first time to be considered 

in MPO though those have been considered in portfolio optimization. 

 We conduct numerical study and analysis by using the real historical data 

from NYSE to test the proposed models and approaches. Comparisons of two 

risk measures and allocation methods of impact costs are reported for MPO 

environment.   

5.3 Future Works 

Although our thesis provides a complete framework of our research ideas, to 

further develop the research in the future, we present the following recommendation 

for future studies: 

 Extending the current single-period multiportfolio framework to a multi-

period multiportfolio framework is a possible extension of this study. Since 

multiple period portfolio optimization problem is a topic that draws vast 
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research attention, the combination of multi-period and multiportfolio 

framework deserves further studies.  

 Another further work may develop different models or more accurate ways to 

measure the transaction costs incurred during the optimization process, 

especially under MPO framework. Further studies may focus on the 

modelling of both the implicit and explicit part of the transaction costs. For 

the explicit part, we recommend studying different formulations of the 

transaction costs, and taking both fixed, linear and nonlinear transaction costs 

into consideration. For the implicit part, such as market impact costs, we 

recommend further studying into the market pricing impact model and 

experiment with various models of the market impact costs. 

 From an application point of view, our five-step optimization scheme and 

models can be developed into an integrated Decision Support System, to help 

financial firms and advisors in decision makings of multiportfolio 

optimization problem.   
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