Behrens-Fisher Analogs for Discrete and Survival Data

S.M. Khurshid Alam
University of Windsor

Follow this and additional works at: http:// scholar.uwindsor.ca/etd

Recommended Citation

Alam, S.M. Khurshid, "Behrens-Fisher Analogs for Discrete and Survival Data" (2014). Electronic Theses and Dissertations. Paper 5105.

Behrens-Fisher Analogs for Discrete and Survival Data

by

S. M. Khurshid Alam

A Dissertation
Submitted to the Faculty of Graduate Studies through the Department of Mathematics and Statistics in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor
Windsor, Ontario, Canada
(c) 2014 S. M. Khurshid Alam

Behrens-Fisher Analogs for Discrete and Survival Data

by
S. M. Khurshid Alam

APPROVED BY:

Dr. J. Koval, External Examiner University of Western Ontario
Dr. Y. Aneja Odette School of Business
Department of Mathematics and Statistics
Department of Mathematics and Statistics

Department of Mathematics and Statistics

Dr. S. R. Paul, Advisor
Department of Mathematics and Statistics

Author's Declaration of Originality

I hereby declare that this dissertation incorporates the outcome of joint research undertaken in collaboration with my supervisor Professor S. R. Paul. I also declare that no part of this dissertation has been published.

I certify that, to the best of my knowledge, my dissertation does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my dissertation, published or otherwise, are fully acknowledged in accordance with standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained written permission from the copyright owner(s) to include such material(s) in my dissertation and have included copies of such copyright clearances to the appendix.

I declare that this is a true copy of my dissertation, including any final revisions, as approved by my dissertation committee and the Graduate Studies Office, and that this dissertation has not been submitted for a higher degree to any other University or Institution.

Abstract

Discrete data often exhibit variation greater or smaller than predicted by a simple model. Negative binomial distribution and beta-binomial distribution are popular and widely used to accommodate the extra-Poisson and extra-binomial variations respectively in analyzing discrete data. Weibull distribution is one of the most popular distributions in survival data analysis. Often both discrete and survival data appear in groups and it may be of interest to compare certain characteristics of two groups of such data. The purpose of this dissertation is to deal with Behrens-Fisher analogs for data that follow negative binomial, beta-binomial and Weibull distributions.

We first develop six test procedures, namely, $L R, L R(b c), T^{2}, T^{2}(b c), T_{1}$ and T_{N}, for testing the equality of two negative binomial means assuming unequal dispersion parameters. A simulation study is conducted to compare the performance of the test procedures. Two sets of data are analyzed. For small to moderate sample sizes, the statistic T_{1} shows best overall performance. For large sample sizes, all six statistics perform well and are found similar in terms of maintaining size and power.

We, then, develop eight test procedures, namely, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$ and $C_{\text {ars }}$, for testing the equality of proportions in two beta-binomial distributions where the dispersion parameters are assumed unknown and unequal. These test procedures are compared through simulation studies and data analysis. The $L R$ test is observed to maintain the nominal level reasonably well accompanied with the best power performance. The next best is the performance of the statistic $C_{e q}$ in terms of nominal level and power.

Last but not least, we develop four test procedures, namely, $L R, C_{m l}, C_{c r}$ and $C_{t g}$, for testing the equality of scale parameters of two Weibull distributions where the shape parameters are unequal and compare these statistics through simulation studies and data analysis. For small sample sizes, the statistics $L R$ and $C_{m l}$ hold nominal level most effectively. The statistic $C_{c r}$ shows highest power although its level is also higher (liberal). For moderate and large sample sizes the overall performance of the statistic $L R$ is found to be superior to others.

Dedication

Dedicated to the Memory of My Grandmother.

Acknowledgements

All praises and glorifications are to Almighty Allah for all His blessings and divine gifts upon me and for giving me the opportunity and ability to carry out this research work.

I wish to express my sincere indebtedness and deepest sense of gratitude to my esteemed supervisor, Professor S. R. Paul for his supervision, guidance, encouragement and financial support from his NSERC grant throughout the preparation of this dissertation. The stimulation that I obtained from his spirit of academic research will guide me in my future career.

I am very grateful for having an exceptional doctoral committee and wish to thank Dr. M. Hlynka, Dr. A. Hussein and Dr. Y. Aneja for their critical review and constructive suggestions and comments which improved this dissertation. I would also like to express my gratitude to my external examiner Dr. J. Koval, Department of Epidemiology and Biostatistics, University of Western Ontario for his valuable suggestions and constructive criticisms. In addition, I extend my sincere gratitude to Dr. K. Y. Fung for her encouragement.

I would like to thank the Department of Mathematics and Statistics for providing me with the financial support in the form of Graduate Assistantships, Ontario Ministry of Training and Colleges for the Ontario Graduate Scholarship (OGS).

I must also thank my parents and younger brother and sisters for their support,
patience, love and prayers that helped me reach where I am today. All words of gratitude are unable to acknowledge their real contribution. Finally, a very special thanks goes to my wife Shaheena Sultana for her all out support and encouragement.
S. M. Khurshid Alam

June 13, 2014
Windsor, Ontario, Canada.

Contents

Author's Declaration of Originality iii
Abstract iv
Dedication vi
Acknowledgements vii
List of Tables xiii
1 Introduction 1
2 Some Preliminaries and Review of Current Literature 8
2.1 Behrens-Fisher Problem 8
$2.2 \sqrt{n}$ Consistent Estimators 9
2.3 Likelihood Ratio Test 10
$2.4 \quad C(\alpha)$ Test 10
2.5 Lindeberg Central Limit Theorem 12
2.6 Generalized Linear Models 13
2.7 Quasi-Likelihood 14
2.8 Extended Quasi-Likelihood 15
2.9 Bias to Order n^{-1} of the Maximum Likelihood Estimator 16
2.9.1 A Single Parameter n^{-1} Bias of the Maximum Likelihood Esti- mator 17
2.9.2 Multi-parameter n^{-1} Bias of the Maximum Likelihood Estimator 21
3 Testing Equality of Two Negative Binomial Means in the Presence of Unequal Over-dispersion Parameters 23
3.1 Introduction 23
3.2 The Tests 26
3.2.1 The Likelihood Ratio Test 26
3.2.2 The Likelihood Ratio Test Based on the Bias Corrected Maxi- mum Likelihood Estimates 27
3.2.3 The Score Test 30
3.2.4 $C(\alpha)$ Test Based on the Method of Moments Estimates of the Nuisance Parameters 33
3.3 Simulation Study 35
3.4 Examples 37
3.4.1 Example 1 37
3.4.2 Example 2 38
3.5 Discussion 39
4 Testing Equality of Two Beta Binomial Proportions in the Presence of Unequal Dispersion Parameters 57
4.1 Introduction 57
4.2 Parametric Tests 60
4.2.1 The Likelihood Ratio Test 60
4.2.2 $C(\alpha)$ (Score) Test 62
4.2.3 $C(\alpha)$ Test Based on Kleinman's (1973) Method of Moments Estimates of Nuisance Parameters 67
4.3 Semi-parametric Tests 68
4.3.1 $C(\alpha)$ Test Based on the Quasi-Likelihood and the Method of Moments Estimates by Breslow (1990) 68
4.3.2 $\quad C(\alpha)$ Test Based on the Quasi-Likelihood and the Method of Moments Estimates by Srivastava and Wu (1993) 73
4.3.3 $\quad C(\alpha)$ Test Based on the Extended Quasi-Likelihood Estimates 77
4.3.4 The Rao-Scott (RS) and the Adjusted Rao-Scott (ARS) statistics 82
4.4 Simulation Study 83
4.5 Examples and Discussion 87
5 Testing Equality of Scale Parameters of Two Weibull Distributions in the Presence of Unequal Shape Parameters 105
5.1 Introduction 105
5.2 The Tests 108
5.2.1 The Likelihood Ratio Test 108
5.2.2 The $C(\alpha)$ (Score) Test Based on Maximum Likelihood Estimates 110
5.2.3 The $C(\alpha)$ Test Based on Method of Moments Estimates by Cran (1988) 113
5.2.4 The $C(\alpha)$ Test Based on Method of Moments Estimates by Teimouri and Gupta (2013) 114
5.3 Simulation Studies 115
5.4 Examples 117
5.5 Discussion 118
6 Summary and Recommendations for Future Research Topics 127
6.1 Summary 127
6.2 Recommendations for Future Research 130
6.2.1 Behrens-Fisher Analogs for Zero-Inflated Discrete Data 130
6.2.2 Behrens-Fisher Analog for Censored Survival Data 131
Appendix A 133
A. 1 Derivation of the Biases of Maximum Likelihood Estimates of the Pa- rameters Under the Null Hypothesis 133
A.1.1 Derivation of the Second Order Quantities $\left(V_{r t}\right)$ and the Ele- ments of the Fisher Information Matrix $\left(I_{r t}\right)$ 134
A.1.2 Derivation of the Third Order Quantities $\left(W_{r t u}\right)$ and the Ex- pected Values ($J_{r t u}$) 136
A.1.3 Derivation of the Partial Derivatives of the Expected Values of Second Order Quantities $\left(K_{r t}^{(u)}\right)$ 138
A.1.4 The Biases of the Estimates of the Parameters 140
A. 2 Derivation of the Biases of Maximum Likelihood Estimates of the Pa- rameters Under the Alternative Hypothesis 141
A. 3 Derivation of the Terms Needed for the Score Test 144
Appendix B 147
B. 1 Expected Values of Negative of the Mixed Partial Derivatives in Beta Binomial Model 147
Bibliography 155
Vita Auctoris 165

List of Tables

3.1 Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=5, n_{2}=5, \alpha=0.05 \ldots 40$
3.2 Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=10, n_{2}=10, \alpha=0.05 .41$
3.3 Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=20, n_{2}=20, \alpha=0.05$
3.4 Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=50, n_{2}=50, \alpha=0.05 .43$
3.5 Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=5, n_{2}=5$
3.6 Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=10, n_{2}=10$
3.7 Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=20, n_{2}=20$
3.8 Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=50, n_{2}=50$
3.9 Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=5, n_{2}=5, \alpha=0.05$.
3.10 Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=10, n_{2}=10, \alpha=0.05$
3.11 Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=20, n_{2}=20, \alpha=0.05$
3.12 Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=50, n_{2}=50, \alpha=0.05$

3.13 Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2},
under null and alternative hypotheses; based on 5000 iterations and
$n_{1}=5, n_{2}=5$

3.14 Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2},
under null and alternative hypotheses; based on 5000 iterations and
$n_{1}=10, n_{2}=10$
3.15 Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=20, n_{2}=20$ 54
3.16 Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=50, n_{2}=50$ 55
3.17 Number of tumors for rats in treatment groups 1 and 2 56
3.18 Number of cycles required for smoker and non-smoker women to get pregnant 56
4.1 Empirical level (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups) 90
4.2 Empirical level (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3, 000 replications and $\alpha=0.05$ (Control and Medium Dose Groups) 91
4.3 Empirical level (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups) 92
4.4 Empirical level (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3, 000 replications and $\alpha=0.05$ (Control and Medium Dose Groups) 93
4.5 Empirical power (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}$, $C_{r s}, C_{a r s}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups) 94
4.6 Empirical power (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}$, $C_{r s}, C_{a r s}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups) 96
4.7 Empirical power (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}$, $C_{r s}, C_{a r s}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups) 98
4.8 Empirical power (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}$, $C_{r s}, C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups) 100
4.9 Data from Toxicological experiment (Paul (1982)). (i) Number of live foetuses affected by treatment. (ii) Total number of live foetuses. 102
4.10 Estimates of parameters obtained by different methods for treatment combinations of toxicological data in Table 4.9. 103
4.11 Test statistics and p-values for treatment combinations of toxicological data in Table 4.9. 104
5.1 Empirical level and power (\%) of test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$; based on 3000 iterations and $n_{1}=5, n_{2}=5, \alpha=0.05$ 120
5.2 Empirical level and power (\%) of test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$; based on 3000 iterations and $n_{1}=10, n_{2}=10, \alpha=0.05$ 121
5.3 Empirical level and power (\%) of test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$; based on 3000 iterations and $n_{1}=20, n_{2}=20, \alpha=0.05$ 122
5.4 Empirical level and power (\%) of test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$; based on 3000 iterations and $n_{1}=50, n_{2}=50, \alpha=0.05$ 123
5.5 Failure Times of Different Bearing Specimens 124
5.6 Estimates of parameters obtained by different methods for compound combinations of bearing specimens data in Table 5.5. 125
5.7 Test statistics along with p-values for compound combinations of bear- ing specimens data in Table 5.5 126

Chapter 1

Introduction

Count data arise in many biological Anscombe (1949); Bliss and Fisher (1953); Bliss and Owen (1958); McCaughran and Arnold (1976); Margolin et al. (1981); Ross and Preece (1985)) and epidemiological (Manton et al. (1981)) investigations. The Poisson distribution, which is characterized by the fact that the variance is equal to the mean of the distribution, is a very widely used and popular model in analysing count data. However, in practice, it often occurs that the variance of the data exceeds that which would be normally expected. This phenomenon of over-dispersion in count data is quite common in practice. For example, Bliss and Fisher (1953) present a set of count data consisting of the number of European red mites on apple leaves for which the mean and the variance are 1.2467 and 2.2737 respectively showing that the variance exceeds the mean. In order to properly accommodate this over-dispersion in the count data, a popular and convenient model, as an alternative to the Poisson distribution, is the negative binomial distribution (see Engel (1984); Breslow (1984); Margolin et al. (1989); Lawless (1987); Manton et al. (1981)). For more references on applications of the negative binomial distribution see Clark and Perry (1989). Different authors
have used different parametrizations for the negative binomial distribution (see, for example, Paul and Plackett (1978); Barnwal and Paul (1988); Paul and Banerjee (1998); Piegorsch (1990)).

Scientists in various areas, for example, toxicology, teratology (Weil (1970); Klein$\operatorname{man}(1973)$; Williams (1975); Paul (1982)) and other similar fields (Crowder (1978); Otake and Prentice (1984); Donovan et al. (1994); Gibson and Austin (1996)), frequently encounter data in the form of proportions. Binomial model is a basic model to deal with the data of such kind. It happens quite often that the proportion data exhibit lesser or greater variability than predicted by the simple binomial model and the reason for this variability depends on the form of study. Weil (1970) observes that if the experimental units of the data are litters of animals then 'litter effect', that is, the tendency of animals in the same litter to respond more similarly than animals from different litters contribute to greater variability than predicted by simple model. This effect of litter is known as 'heritability of a dichotomous trait' (see Elston (1977); Crowder (1982)) or intra-litter or intra-class correlation. Apart from this, in some situations the intra-class correlation provides an index of disease aggregation (see Ridout et al. (1999)). A number of parametric and semi-parametric models have been used to incorporate the extra-binomial variation in analyzing data in the form of proportions. Among the parametric models are beta-binomial model (Skellam (1948)), the correlated binomial model (Haseman and Kupper (1979)), and the additive and multiplicative binomial models (Altham (1978)). The correlated and the additive binomial models are identical and give a first order approximation of the beta-binomial model (Srivastava and Wu (1993)). The beta-binomial is a commonly used parametric model because it is easy to use, flexible and extends readily to more complex models with extraneous variance as a function of covariates (Chen
and Kodell (1989)). Many authors (Paul (1982); Pack (1986ba)) have shown the superiority of the beta-binomial model for analyzing proportions and model fitting. In model fitting the superiority of the beta-binomial model over the others is that the beta-binomial model is more sensitive for departure from the binomial model and the likelihood under this model is the easiest to maximize. The beta-binomial model is preferred to the others in analyzing data sets because it is easier to use. This model has been employed in analyzing consumer purchasing behaviour (Chatfield and Goodhart (1970)), in studies of dental caries in children (Weil (1970)) and in toxicological data (Williams (1975)). With all these advantages, the beta-binomial model, however, takes into account only the positive correlation or over-dispersion between littermates. But in practice, the littermates may compete with each other and as a result, negative correlation among the littermates may occur. To overcome this drawback of the beta-binomial model, Prentice (1986) proposed an extension of the beta-binomial model which allows both positive and negative correlations (or over and under dispersions) among the binary variates corresponding to the littermates, which is known as extended beta-binomial model. For analyzing data, the extended beta-binomial model with over and under dispersion has been used by many authors (Otake and Prentice (1984); Prentice (1986); Paul and Islam (1998)).

An alternative approach to accommodate the over/under dispersion is the use of semi-parametric models and the method of moments, which are known to be robust to misspecification of the variance structure. For binomial data with over/under dispersion several semi-parametric models have been proposed that require the assumption of only the first two moments. These include models based on the quasilikelihood (McCullagh (1983); Wedderburn (1974); Williams (1982)), the extended quasi-likelihood (Nelder and Pregibon (1987)), the pseudo-likelihood (Davidian and

Carroll (1987)), the double extended quasi-likelihood (Lee and Nelder (2001)) and others based on optimal quadratic estimating equations (Crowder (1987); Godambe and Thompson (1989)). For the estimation of the mean and the dispersion parameters, several estimators based on the method of moments have been proposed by Breslow (1990); Kleinman (1973); Moore (1986) and Srivastava and Wu (1993).

In many biomedical applications the primary endpoint of interest is the survival time or time to a certain event like time to death, time it takes for a patient to respond to a therapy, time from response until disease relapse (i.e., disease returns) etc. The importance of parametric models in the analysis of life time data is well known (Lawless (1982); Nelson (1982); Mann et al. (1974)). The use of Weibull distribution to describe the real phenomena has a long and rich history. The Weibull distribution has been considered to be a successful model for many product failure mechanisms. However, Lloyd (1967); Ku et al. (1972); Hammitt (2004) and McCool (1998), among others, have extended the use of the Weibull distribution to other branches of statistics, such as reliability, risks and quality control.

The traditional Behrens-Fisher problem is to test the equality of the means of two normal populations where the population variances are assumed unknown and possibly unequal. In various biological and epidemiological investigations over-dispersed data in the form of counts can appear in several independent samples where the variances are unequal and larger than the means. Likewise, in toxicological and other similar fields data may arise as the proportion of a certain characteristic in several groups where the intra-class correlations vary from group to group. Also, in life testing, reliability or survival analysis we may encounter data on different component types or cohorts, where assuming the Weibull model, with shape parameters unequal and unknown. Special cases, in all of the above three scenarios, are data in two
groups where one group is treated as control, while, the other as the group of interest or treatment group. It may be of interest, in the case of two groups over-dispersed count data situation, to test the equality of two means assuming that the variances are unknown and unequal. Similarly, testing the equality of proportions between two groups considering unequal over-dispersion parameters may be the objective where the data are in the forms of proportions. In addition, for survival data, interest may focus on testing the equality of scale parameters of two Weibull distributions assuming unequal shape parameters. These, in the sense of testing the equality of two mean or scale parameters in the presence of unequal dispersion or shape parameters, can be considered as analogous to the traditional Behrens-Fisher problem.

The main purpose of this thesis is to construct procedures for testing (i) the equality of two mean parameters for over-dispersed count and proportion data with unequal dispersion parameters; (ii) equality of two scale parameters for Weibull distributed survival data with unequal shape parameters and (iii) to study the performance, thought simulation studies, of the test procedures. We compare the performances of the test procedures in terms of empirical size and power.

In Chapter 2, we discuss some preliminaries and review the theory of likelihood ratio and $C(\alpha)$ tests $($ Neyman $(\overline{1959)})$. We also review the estimation procedures for the generalized linear models. In addition, we review the general bias correction results of Cox and Snell (1968) and present the Cordeiro and Klein (1994) formula for the biases of the maximum likelihood estimators in general parametric models.

In Chapter 3, we develop procedures for testing equality of two negative binomial means where the over-dispersion parameters are unequal. The test procedures, namely, the likelihood ratio test, the likelihood ratio test based on the bias corrected
maximum likelihood estimates of the parameters, the score test, the score test based on the bias corrected maximum likelihood estimates of the parameters and two tests, similar to Welch's (1937) V statistic, constructed from the $C(\alpha)$ statistic based on the method of moments estimates of the nuisance parameters.

In Chapter 4, we derive parametric and semi-parametric procedures for testing the equality of two proportions in the presence of unequal dispersion parameters. The likelihood ratio test, the $C(\alpha)$ (score) test based on the maximum likelihood estimates of the nuisance parameters and the $C(\alpha)$ test based on Kleinman's (1973) method of moments estimates of the nuisance parameters are the parametric tests. The semiparametric tests are, a $C(\alpha)$ test based on the quasi-likelihood and the method of moments estimates by Breslow (1990), a $C(\alpha)$ test based on the quasi-likelihood and the method of moments estimates by Srivastava and Wu (1993), a C (α) test based on the extended quasi-likelihood estimates, the Rao-Scott and the adjusted Rao-Scott tests by following Rao and Scott (1992). A simulation study is conducted to compare the relative performance, in terms of size and power, of the test procedures.

In Chapter 5, we deal with the Weibull distributed survival data and develop test procedures for testing the equality of scale parameters of two Weibull distributions where the shape parameters are assumed unequal. We develop a likelihood ratio test and three $C(\alpha)$ tests. Of the $C(\alpha)$ tests, one is based on the maximum likelihood estimates of the nuisance parameters, one is based on the method of moments estimates of the nuisance parameters by Cran (1988) and the other is based on the method of moments estimates of the nuisance parameters by Teimouri and Gupta (2013). A small scale simulation study is conducted to compare, on the basis of empirical size and power, the test procedures.

Finally, conclusions of the thesis with the summary of findings and a discussion of some topics for future study are presented in Chapter 6.

Chapter 2

Some Preliminaries and Review of

Current Literature

2.1 Behrens-Fisher Problem

In hypothesis testing a frequently encountered problem is to test the equality of two population means and the test statistic varies according to the nature of the populations involved. A widely used assumption regarding the distribution of populations is normality. Different scenarios appear depending on the sample sizes and assumptions on the variances of the populations. The Behrens-Fisher (BF) problem arises when testing the equality of the means of two normal populations where both variances are unknown and possibly unequal. This problem has been well known since it was discovered by Behrens (1929). Fisher (1935) used the fiducial theory of statistical inference to justify Behrens' solution. A number of solutions, both parametric and non-parametric, have been proposed for the Behrens-Fisher problem (see for example,

Fisher (1935, 1941); Scheffé (1943); Welch (1947); Aspin (1948); Cochran and Cox (1950); Qin (1991); Paul (1992); Dong (2004) and Tsui and Tang (2005)).

$2.2 \sqrt{n}$ Consistent Estimators

Definition: Consider $\left\{\hat{\theta}_{n}\right\}, n=1,2, \cdots$, a sequence of estimators. The sequence of estimates $\hat{\theta}_{n}$ is called \sqrt{n} consistent if the quantity $\left|\hat{\theta}_{n}-\theta\right| \sqrt{n}$ remains bounded in probability as $n \rightarrow \infty$ (see Lehman (1999)).

Theorem: Let $\hat{\theta}_{n}$ be a sequence of estimates of θ, and $\operatorname{var}\left(\hat{\theta}_{n}\right)=\mathrm{O}\left(\frac{1}{n}\right)$. Then this sequence of estimates is \sqrt{n} consistent.

Proof: According to Chebyshev's inequality, for a given $\epsilon>0$,
$P\left(\left|\hat{\theta}_{n}-\theta\right| \sqrt{n} \leq \epsilon\right) \geq 1-\frac{\operatorname{var}\left(\hat{\theta}_{n}\right) n}{\epsilon^{2}}$.
If $\hat{\theta}_{n}$ is a sequence of maximum likelihood estimates, then according to the asymptotic properties of maximum likelihood estimates, the distribution of $\hat{\theta}_{n}$ is normal with mean θ and variance $\frac{1}{n I(\theta)}$, where $I(\theta)$ is the Fisher information matrix defined as $I(\theta)=E\left[\frac{\partial}{\partial \theta} f(y \mid \theta)\right]^{2}$, where $f(y \mid \theta)$ is the probability density function of Y. This means that $\operatorname{var}\left(\hat{\theta}_{n}\right)$ tends to zero and n tends to infinity, that is, $\operatorname{var}\left(\hat{\theta}_{n}\right)$ is $\mathrm{O}\left(n^{-1}\right)$. This means that MLE is \sqrt{n} consistent. The method of moments estimators are also \sqrt{n} consistent estimates (Moore (1986)).

2.3 Likelihood Ratio Test

Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ be a random sample of size n from a distribution that has probability density function $f(y \mid \lambda)$, where $\lambda=(\theta, \phi)^{\prime}=\left(\theta_{1}, \theta_{2}, \cdots, \theta_{k}, \phi_{1}, \phi_{2}, \cdots, \phi_{s}\right)^{\prime}$ is a $k+s$ component vector. The likelihood function of the parameter λ for the given data is given by $L\left(\lambda \mid Y_{1}, Y_{2}, \cdots, Y_{n}\right)=\prod_{i=1}^{n} f\left(y_{i} \mid \lambda\right)$. Our interest is to test the null hypothesis $H_{0}: \theta=\theta_{0}=\left(\theta_{10}, \theta_{20}, \cdots, \theta_{k 0}\right)^{\prime}$ treating $\phi=\left(\phi_{1}, \phi_{2}, \cdots, \phi_{s}\right)^{\prime}$ as a nuisance parameter. The likelihood ratio test is based on the ratio of the maximized likelihood function under the null hypothesis to that under the alternative hypothesis and is defined as

$$
\Lambda=\frac{L\left(Y_{1}, Y_{2}, \cdots, Y_{n}, \theta_{0}, \hat{\phi}\right)}{L\left(Y_{1}, Y_{2}, \cdots, Y_{n}, \tilde{\theta}, \tilde{\phi}\right)}
$$

Under the null hypothesis, H_{0}, the quantity $L R=-2 \ln \Lambda=2\left(l_{1}-l_{0}\right)$ is distributed as chi-squared with k degrees of freedom if the sample size n is large. Here l_{0} is the maximized log-likelihood function under the null hypothesis and l_{1} is the maximized log-likelihood function under the alternative hypothesis.

$2.4 \quad C(\alpha)$ Test

The $C(\alpha)$ test is based on the partial derivatives of the log-likelihood function with respect to the nuisance parameters and the parameters of interest evaluated at the null hypothesis. Let l be the \log-likelihood for the data. Define the partial derivatives
of the log-likelihood which are evaluated at $\theta=\theta_{0}=\left(\theta_{10}, \theta_{20}, \cdots, \theta_{k 0}\right)^{\prime}$ as

$$
\psi=\left.\frac{\partial l}{\partial \theta}\right|_{\theta=\theta_{0}}=\left.\left[\frac{\partial l}{\partial \theta_{1}}, \frac{\partial l}{\partial \theta_{2}}, \cdots, \frac{\partial l}{\partial \theta_{k}}\right]^{\prime}\right|_{\theta=\theta_{0}}
$$

and

$$
\gamma=\left.\frac{\partial l}{\partial \phi}\right|_{\theta=\theta_{0}}=\left.\left[\frac{\partial l}{\partial \phi_{1}}, \frac{\partial l}{\partial \phi_{2}}, \cdots, \frac{\partial l}{\partial \phi_{s}}\right]^{\prime}\right|_{\theta=\theta_{0}} .
$$

Under the null hypothesis and mild regularity conditions, $\left(\frac{\partial l}{\partial \theta}, \frac{\partial l}{\partial \phi}\right)$ has a multivariate normal distribution with mean vector 0 and variance-covariance matrix I^{-1} (Cramer (1946)), where

$$
I=\left[\begin{array}{cc}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{array}\right]
$$

is the information matrix with elements

$$
I_{11}=E\left(-\left.\frac{\partial^{2} l}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{0}}\right), I_{12}=E\left(-\left.\frac{\partial^{2} l}{\partial \theta \partial \phi^{\prime}}\right|_{\theta=\theta_{0}}\right), \text { and } I_{22}=E\left(-\left.\frac{\partial^{2} l}{\partial \phi \partial \phi^{\prime}}\right|_{\theta=\theta_{0}}\right)
$$ which are $(k \times k),(k \times s)$ and $(s \times s)$ matrices respectively. The $C(\alpha)$ test is based on the adjusted score $S=\frac{\partial l}{\partial \theta}-B \frac{\partial l}{\partial \phi}$, where B is the matrix of partial regression coefficients that is obtained by regressing $\frac{\partial l}{\partial \theta}$ on $\frac{\partial l}{\partial \phi}$. Bartlett 1953a) showed that $B=I_{12} I_{22}^{-1}$ and the variance-covariance matrix of S is $I_{11.2}=I_{11}-I_{12} I_{22}^{-1} I_{21}$. Thus the distribution of the adjusted score, S is multivariate normal with mean vector 0 and variance covariance matrix $I_{11.2}$, that is, $S \sim M N\left(0, I_{11.2}\right)$. Following Neyman (1959) the distribution of $S^{\prime} I_{11.2}^{-1} S$ is chi-squared with k degrees of freedom. As this statistic involves nuisance parameters $\phi=\left(\phi_{1}, \phi_{2}, \cdots, \phi_{s}\right)^{\prime}$, it is necessary to replace them by some suitable estimates for testing the null hypothesis. Moran (1970) suggested the use of some \sqrt{n} consistent estimators of ϕ that are

obtained from the data. Let $\tilde{\phi}=\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}, \cdots, \tilde{\phi}_{s}\right)^{\prime}$ be \sqrt{n} consistent estimators of the parameters $\phi=\left(\phi_{1}, \phi_{2}, \cdots, \phi_{s}\right)^{\prime}$. Hence following Neyman (1959) and replacing the nuisance parameters by some \sqrt{n} consistent estimators, the test statistic becomes $\chi_{C(\alpha)}^{2}=\tilde{S}^{\prime} \tilde{I}_{11.2}^{-1} \tilde{S}$, which is asymptotically distributed as chi-squared with k degrees of freedom. It is to be noted that if the nuisance parameter ϕ is replaced by its maximum likelihood estimate, $\hat{\phi}$, then the adjusted score function reduces to $S_{i}=\psi_{i}, i=1,2, \cdots, k-1$. The form of the $C(\alpha)$ statistic becomes $\hat{\psi}^{\prime} \hat{I}_{11.2}^{-1} \hat{\psi}$, which is a score test $(\overline{\mathrm{RaO}}(1948))$. Again, the score test is asymptotically equivalent to the likelihood ratio test (Moran (1970); Cox and Hinkley (1974)).

2.5 Lindeberg Central Limit Theorem

The Central Limit Theorem: Let $X_{1}, X_{2}, \cdots, X_{n}$ denote the observations of a random sample from a distribution that has mean μ and positive variance σ^{2}. Then the random variable $Y_{n}=\frac{\left(\sum_{i=1}^{n} X_{i}-n \mu\right)}{\sqrt{n} \sigma}=\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma$ converges in distribution to a random variable which has a normal distribution with mean zero and variance 1 (Hogg et al. (2005)).

The central limit theorem holds whenever, for every $\epsilon>0$, the truncated variables U_{j} defined by

$$
\begin{aligned}
& U_{j}=Z_{j}-\mu_{j}, \text { if }\left|Z_{j}-\mu_{j}\right| \leq \epsilon s_{m} \\
& U_{j}=0, \text { if }\left|Z_{j}-\mu_{j}\right|>\epsilon s_{m}
\end{aligned}
$$

satisfy the condition $s_{m} \rightarrow \infty$ and $\frac{1}{s_{m}^{2}} \sum_{j=1}^{m} E\left(U_{j}^{2}\right) \rightarrow 1$, where $\mu_{j}=E\left(Z_{j}\right), \sigma_{j}^{2}=$ $\operatorname{var}\left(Z_{j}\right)$ and $s_{m}^{2}=\sum_{j=1}^{m} \sigma_{j}^{2}$. This implies that every uniformly bounded sequence of mutually independent random variables $\left\{Z_{j}\right\}$ obeys the central limit theorem, provided that $s_{m} \rightarrow \infty$.

Theorem: Let $U_{j}(\beta, \phi), j=1,2, \cdots, k$, represent an unbiased estimating function for β_{j} and let $U_{k+1}(\beta, \phi)$ represent an unbiased estimating function for ϕ. Then, by the Lindeberg central limit theorem

$$
\frac{1}{\sqrt{m}}\binom{U_{j}}{U_{k+1}} \xrightarrow{d} N_{k+1}\left(0, \sum_{0}\right)
$$

where \sum_{0} denotes the limiting variance-covariance matrix of U_{j} and U_{k+1}. The details of the proof of this theorem are given in Moore (1985).

2.6 Generalized Linear Models

A generalized linear model (GLM) is the generalization of ordinary linear regression models to accommodate non-normal response variables. It consists of three components, namely, a random component, a systematic component, and a link function and can be described as follows
i) Suppose that the joint probability function of the response variable Y with mean μ can be written in the form

$$
f(y ; \theta)=\exp \left[\phi^{-1}\{y \theta-b(\theta)\}+C(y, \phi)\right] .
$$

for some known functions $b(),. C($.$) , canonical or natural parameter \theta$, and constant ϕ which may be known or a parameter to be estimated. This is said to be in canonical form.
ii) The systematic component relates a set of explanatory variables with a linear predictor in the form

$$
\eta=\sum_{j=1}^{p} X_{j} \beta_{j} .
$$

iii) The link function is a monotone differentiable function of the mean that connects the random and the systematic components. The model links the mean μ to the linear predictor η by $\eta=g(\mu)$, where the link function $g($.$) is a monotone differentiable$ function.

The mean and the variance of Y are $E(Y)=b^{\prime}(\theta)$ and $\operatorname{var}(Y)=\phi b^{\prime \prime}(\theta)$ respectively (McCullagh and Nelder (1989, p. 29)).

2.7 Quasi-Likelihood

In numerous applications, the full distributional assumptions of the GLM are not always satisfied. To overcome the situation where the full distributional assumptions are not met, Wedderburn (1974) proposes the quasi-(log)likelihood, henceforth referred to as the quasi-likelihood (QL) model which takes into account only the first two moments of the random variable Y. The QL possesses properties similar to those of the log-likelihood and can be used for inferential purposes. Suppose $y_{1}, y_{2}, \cdots, y_{n}$ is a random sample of size n with mean and variance of the $i^{\text {th }}$ observation $\mu=E\left(y_{i}\right)$ and $\operatorname{var}\left(y_{i}\right)=\phi V(\mu)$ respectively, where V is some known function called the vari-
ance function and ϕ is a known constant or a parameter to be estimated. Then the quasi-likelihood of the data is defined as

$$
Q(y ; \mu)=-\frac{1}{2} \sum_{i=1}^{n} \frac{d_{i}(y ; \mu)}{\phi}, \quad \text { where } \quad d_{i}(y ; \mu)=2 \int_{\mu}^{y_{i}} \frac{\left(y_{i}-t\right)}{V(t)} d t
$$

is the discrepancy between the observation and its mean and is called the deviance component of $i^{\text {th }}$ observation. In GLM framework the parameter ϕ can be treated as dispersion parameter and its moments estimate can be obtained. As the quasilikelihood is designed only for the estimation of the mean parameter, a maximum quasi-likelihood estimate of the dispersion parameter (ϕ) cannot be found. The value of ϕ is 1 for the binomial and the Poisson distributions. For the Poisson variable, the variance function is $V(m)=m$ where $E\left(y_{i}\right)=m$ and for the binomial variable, the variance function is $V(\pi)=n \pi(1-\pi)$ where $E\left(y_{i}\right)=n \pi$.

2.8 Extended Quasi-Likelihood

Though the quasi-likelihood facilitates the estimation of the mean (regression) parameter, it is not suitable for the estimation of the dispersion parameter. To implement the joint estimation of the mean parameter and the dispersion parameter from the same function, Nelder and Pregibon (1987) and Godambe and Thompson (1989) initiated the extended quasi-likelihood function (EQL) by adding a normalizing factor with the quasi-likelihood. This normalizing factor includes the dispersion parameter and the variance function. Taking into account the normalizing factor, the EQL is
defined as

$$
Q^{+}(y ; \mu, \phi)=-\frac{1}{2} \sum_{i=1}^{n}\left[\frac{d_{i}(y ; \mu)}{\phi}+\ln \left\{2 \pi \phi V\left(y_{i}\right)\right\}\right]
$$

where, the deviance function, $d_{i}(y ; \mu)$, is defined previously, ϕ is the dispersion parameter and $V\left(y_{i}\right)$ is the variance function for the $i^{t h}$ observation. The product of the dispersion parameter ϕ and the variance function V gives the variance of datum. For example, for negative binomial distribution which is the over-dispersed Poisson distribution $\operatorname{var}\left(y_{i}\right)=\mu(1+c \mu)=\phi V(\mu)$, where $\phi=1$ and $V(\mu)=\mu(1+c \mu)$. For the beta binomial distribution which is the over-dispersed binomial distribution, $\operatorname{var}\left(y_{i}\right)=n_{i} \pi(1-\pi)\left\{1+\left(n_{i}-1\right) \theta\right\}=\phi_{i} V(\pi)$, where $\phi_{i}=1+\left(n_{i}-1\right) \theta$ is the dispersion parameter for $i^{\text {th }}$ observation and $V(\pi)=n_{i} \pi(1-\pi)$. For over-dispersed binomial model the dispersion parameter θ and for over-dispersed Poisson model the dispersion parameter c can take positive as well as negative values. The extended quasi-likelihood, like the quasi-likelihood does not need a full distributional form, rather it only needs the form of the first two moments. The extended quasi-likelihood function possesses properties similar to log-likelihood function but the estimate of the over-dispersion parameter obtained by using Q^{+}can be robust to the maximum likelihood estimate.

2.9 Bias to Order n^{-1} of the Maximum Likelihood Estimator

For a single independent and identically distributed random sample with one unknown parameter, Bartlett 1953 b) gave a simple expression for the bias to order $\mathrm{O}\left(\frac{1}{n}\right)$ of
the maximum likelihood estimate (MLE). For the parameters of any distribution, Cox and Snell (1968) derived general results for the biases to the order n^{-1} of the maximum likelihood estimators. First they derived an expression for the bias of the MLE for distributions with a single unknown parameter and afterwards they extended the result for multi-parameter case. Cordeiro and Klein (1994) derived a modified expression of bias of order n^{-1} which is easier to implement. Below we explain the two cases, namely, (i) a single parameter n^{-1} bias of the maximum likelihood estimator and (ii) multi-parameter n^{-1} bias of the maximum likelihood estimator and present the Cordeiro and Klein (1994) version of formula for bias of multi-parameter distribution.

2.9.1 A Single Parameter n^{-1} Bias of the Maximum Likelihood Estimator

Let $Y_{i}, i=1,2, \cdots, n$ be random variables with probability density function $f\left(y_{i}, \theta\right)$, depending on unknown parameter θ. Then the log-likelihood function for data is

$$
l(\theta)=\sum_{i=1}^{n} l_{i}(\theta)
$$

where, $l_{i}(\theta)=\log \left\{f\left(y_{i}, \theta\right)\right\}$. The maximum likelihood estimating equation for θ is

$$
l^{\prime}(\hat{\theta})=0
$$

where, $\hat{\theta}$ is the maximum likelihood estimate of θ. The first order Taylor series
expansion of $l^{\prime}(\hat{\theta})$ at $\hat{\theta}=\theta$ is

$$
l^{\prime}(\theta)+(\hat{\theta}-\theta) l^{\prime \prime}(\theta)=0 .
$$

Let us write, $U_{i}=\frac{\partial l_{i}}{\partial \theta}, \quad V_{i}=\frac{\partial^{2} l_{i}}{\partial \theta^{2}}$. Now, replacing $-l^{\prime \prime}(\theta)$ by its expectation gives the Fisher information I in the sample and writing $U=\sum_{i=1}^{n} U_{i}$, we obtain the standard first order expressions

$$
\begin{equation*}
\hat{\theta}-\theta \approx \frac{U}{I} \tag{2.1}
\end{equation*}
$$

and

$$
\operatorname{var}(\hat{\theta})=I^{-1}
$$

To attain an improved result using the second order Taylor series expansion of $l^{\prime}(\hat{\theta})$ at θ we obtain (see Cox and Snell (1968)),

$$
l^{\prime}(\theta)+(\hat{\theta}-\theta) l^{\prime \prime}(\theta)+\frac{1}{2}(\hat{\theta}-\theta)^{2} l^{\prime \prime \prime}(\theta)=0 .
$$

Now, from the properties of the log-likelihood function and expected values of
random variables we have

$$
\begin{aligned}
& E\left(l^{\prime}(\theta)\right)=0, \\
& E\left[(\hat{\theta}-\theta) l^{\prime \prime}(\theta)\right]=\operatorname{cov}\left[(\hat{\theta}-\theta), l^{\prime \prime}(\theta)\right]+E(\hat{\theta}-\theta) E\left(l^{\prime \prime}(\theta)\right) \\
& \text { and } \\
& E\left[(\hat{\theta}-\theta)^{2} l^{\prime \prime \prime}(\theta)\right]=\operatorname{cov}\left[(\hat{\theta}-\theta)^{2}, l^{\prime \prime \prime}(\theta)\right]+E\left[(\hat{\theta}-\theta)^{2}\right] E\left(l^{\prime \prime \prime}(\theta)\right) .
\end{aligned}
$$

By taking expectation on both sides of the second order Taylor series expansion and using the results obtained above we get

$$
\begin{align*}
& E(\hat{\theta}-\theta) E\left(l^{\prime \prime}(\theta)\right)+\operatorname{cov}\left[(\hat{\theta}-\theta), l^{\prime \prime}(\theta)\right]+\frac{1}{2} E\left[(\hat{\theta}-\theta)^{2}\right] E\left(l^{\prime \prime \prime}(\theta)\right) \tag{2.2}\\
& +\frac{1}{2} \operatorname{cov}\left[(\hat{\theta}-\theta)^{2}, l^{\prime \prime \prime}(\theta)\right]=0 .
\end{align*}
$$

Now,

$$
\begin{aligned}
& \operatorname{cov}\left[(\hat{\theta}-\theta), l^{\prime \prime}(\theta)\right] \approx \operatorname{cov}\left[\frac{U}{I}, V\right]=\frac{1}{I} \operatorname{cov}\left[\sum_{i=1}^{n} U_{i}, \sum_{i=1}^{n} V_{i}\right] \\
& =\frac{1}{I} \sum_{i=1}^{n} \operatorname{cov}\left(U_{i}, V_{i}\right), \text { as } \operatorname{cov}\left(U_{i}, V_{j}\right)=0 \quad \text { for } i \neq j .
\end{aligned}
$$

Thus, $\operatorname{cov}\left[(\hat{\theta}-\theta), l^{\prime \prime}(\theta)\right]=\frac{1}{I} \sum_{i=1}^{n} E\left(U_{i} V_{i}\right)=\frac{J}{I}$,
where $J=\sum_{i=1}^{n} E\left(U_{i} V_{i}\right)$, as $E\left(U_{i}\right)=E\left(\frac{\partial l_{i}}{\partial \theta}\right)=0$.

Similarly,

$$
\begin{aligned}
& \operatorname{cov}\left[(\hat{\theta}-\theta)^{2}, l^{\prime \prime \prime}(\theta)\right] \approx \operatorname{cov}\left[\frac{U^{2}}{I^{2}}, W\right]=\frac{1}{I^{2}} \operatorname{cov}\left[U^{2}, W\right] \\
& =\frac{1}{I^{2}} \operatorname{cov}\left[\left(\sum_{i=1}^{n} U_{i}\right)^{2}, \sum_{i=1}^{n} W_{i}\right] \\
& =\frac{1}{I^{2}} \sum_{i=1}^{n} \operatorname{cov}\left[U_{i}^{2}, W_{i}\right], \text { as } \operatorname{cov}\left(U_{i}^{2}, W_{j}\right)=0, \text { for } i \neq j
\end{aligned}
$$

Thus, $\operatorname{cov}\left[(\hat{\theta}-\theta)^{2}, l^{\prime \prime \prime}(\theta)\right]=\frac{1}{I^{2}} \sum_{i=1}^{n}\left[E\left(U_{i}^{2} W_{i}\right)-E\left(U_{i}^{2}\right) E\left(W_{i}\right)\right]=\frac{L}{I^{2}}$,
where $L=\sum_{i=1}^{n}\left[E\left(U_{i}^{2} W_{i}\right)-E\left(U_{i}^{2}\right) E\left(W_{i}\right)\right], W=\sum_{i=1}^{n} W_{i}=l^{\prime \prime \prime}(\theta)$ and $W_{i}=\frac{\partial^{3} l_{i}(\theta)}{\partial \theta^{3}}$.

Since the terms I and L refer to a total over the sample, they are of order n which implies that $\operatorname{cov}\left[(\hat{\theta}-\theta)^{2}, l^{\prime \prime \prime}(\theta)\right]$ is $\mathrm{O}\left(n^{-1}\right)$. Finally, based on the results obtained above, the equation (2.2) can be written as

$$
\begin{gathered}
-I E(\hat{\theta}-\theta)+\frac{J}{I}+\frac{1}{2} \operatorname{var}(\hat{\theta}) K+\mathrm{O}\left(n^{-1}\right)=0, \text { where } K=E\left(l^{\prime \prime \prime}(\theta)\right)= \\
E\left(\sum_{i=1}^{n} W_{i}\right) . \text { Thus, the bias to order } n^{-1} \text { of the maximum likelihood estimator of } \theta \text { is }
\end{gathered}
$$

$$
b(\hat{\theta})=E(\hat{\theta}-\theta)=\frac{J}{I^{2}}+\frac{1}{2 I} \operatorname{var}(\hat{\theta}) K=\frac{J}{I^{2}}+\frac{1}{2 I^{2}} K=\frac{1}{2 I^{2}}(K+2 J)
$$

$$
\text { as } \operatorname{var}(\hat{\theta})=I^{-1}
$$

2.9.2 Multi-parameter n^{-1} Bias of the Maximum Likelihood Estimator

Let the p parameter random variable $Y_{i}, i=1,2, \cdots, n$ have probability density function $f\left(y_{i} ; \theta_{1}, \theta_{2}, \cdots, \theta_{p}\right)$ and also let $\theta^{\prime}=\left(\theta_{1}, \theta_{2}, \cdots, \theta_{p}\right)$. For $r, t, u=1,2, \cdots, p$ define

$$
\begin{aligned}
& I_{r t}=E\left(-\sum_{i=1}^{n} V_{r t}^{(i)}\right), \quad J_{r t u}=E\left(-\sum_{i=1}^{n} W_{r t u}^{(i)}\right) \quad \text { and } \\
& K_{r, t u}=E\left(-\sum_{i=1}^{n} U_{r}^{(i)} V_{t u}^{(i)}\right), \\
& \text { where } U_{r}^{(i)}=\frac{\partial l_{i}}{\partial \theta_{r}}, \quad V_{r t}^{(i)}=\frac{\partial^{2} l_{i}}{\partial \theta_{r} \partial \theta_{t}} \text { and } W_{r t u}^{(i)}=\frac{\partial^{3} l_{i}}{\partial \theta_{r} \partial \theta_{t} \partial \theta_{u}},
\end{aligned}
$$

with $l_{i}=\log \left\{f\left(y_{i} ; \theta_{1}, \theta_{2}, \cdots, \theta_{p}\right)\right\}$.

As in equation (2.1), using the first order Taylor series expansion of the maximum likelihood estimating equations for $\theta_{r}, r=1,2, \cdots, p$, that is, $\left.\frac{\partial l}{\partial \theta_{r}}\right|_{\theta=\hat{\theta}}$, we obtain

$$
\begin{equation*}
\hat{\theta}_{r}-\theta_{r}=\sum_{i=1}^{n} M^{r s} U_{s}^{(i)}, \tag{2.3}
\end{equation*}
$$

where $M^{r s}$ is the $(r, s)^{t h}$ element of the inverse of the informations matrix $I=\left(I_{r s}\right)$ of order p and the summation convention is applied to multiple suffixes referring to parameter components. Again, the estimating equations for the second order Taylor
series expansion of $\theta_{s}, s=1,2, \cdots, p$ are

$$
\begin{equation*}
\sum_{i=1}^{n}\left[U_{r}^{(i)}+\left(\hat{\theta}_{s}-\theta_{s}\right) V_{r s}^{(i)}+\frac{1}{2}\left(\hat{\theta}_{t}-\theta_{t}\right)\left(\hat{\theta}_{u}-\theta_{u}\right) W_{r t u}^{(i)}\right]=0 \tag{2.4}
\end{equation*}
$$

Now, on taking expectation of (2.4) and using (2.3) we obtain a set of simultaneous linear equations as

$$
E\left(\hat{\theta}_{s}-\theta_{s}\right) I_{r s}=\frac{1}{2} M^{t u}\left(J_{r t u}+2 K_{t, r u}\right), \quad \text { for } \quad s=1,2, \cdots, p .
$$

Finally, as a solution to the above set of equations, the biases to order n^{-1} of the maximum likelihood estimates of $\hat{\theta}_{s}, s=1,2, \cdots, p$ are

$$
\begin{equation*}
b_{s}\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \cdots, \hat{\theta}_{p}\right)=E\left(\hat{\theta}_{s}-\theta_{s}\right)=\frac{1}{2} \sum_{r=1}^{p} \sum_{s=1}^{p} \sum_{t=1}^{p} M^{r s} M^{t u}\left(J_{r t u}+2 K_{t, r u}\right) . \tag{2.5}
\end{equation*}
$$

Cordeiro and Klein (1994) suggested an alternative form of (2.5) for biases of $\hat{\theta}_{s}, s=$ $1,2, \cdots, p$ which is

$$
\begin{equation*}
b_{s}\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \cdots, \hat{\theta}_{p}\right)=\sum_{r=1}^{p} M^{r s} \sum_{t=1}^{p} \sum_{u=1}^{p}\left(K_{r t}^{(u)}-\frac{1}{2} J_{r t u}\right) M^{t u}, \tag{2.6}
\end{equation*}
$$

where $K_{r t}^{(u)}=\frac{\partial}{\partial \theta_{u}} E\left(V_{r t}\right) ; r, t, u=1,2,, \cdots, p ; s=1,2,, \cdots, p$.

Chapter 3

Testing Equality of Two Negative Binomial Means in the Presence of Unequal Over-dispersion

Parameters

3.1 Introduction

Count data arise in numerous biological Anscombe (1949); Bliss and Fisher (1953); Bliss and Owen (1958); McCaughran and Arnold (1976); Margolin et al. (1981); Ross and Preece (1985)) and epidemiological (Manton et al. (1981)) investigations. The analysis of such count data is often based upon the assumption of some form of Poisson model. However, in practice, it often occurs that the variance of the data exceeds that which would be normally expected. This phenomenon of over-dispersion in count data
is quite common in practice. For example, Bliss and Fisher (1953, p. 178) present a set of count data consisting of the number of European red mites on apple leaves for which the mean and the variance are 1.1467 and 2.2737 , respectively, showing that the variance exceeds the mean. Also, two sample over-dispersed count data occur in practice where the variances are larger than the means and the two variances are unequal. For example, Saha (2011) presents a data set (originally given by Uusipaikka (2009)) on the number of cycles required to get pregnant for two groups of women, namely, smokers and non smokers. Table 3.18 shows the number of cycles required to get pregnant for smoker and non smoker women along with sample statistics. As can be seen, in these data, the sample means as well as the sample variances are unequal and the variance in each group is greater than the mean. A problem in this setting is to test the equality of the means when the two variances are possibly unequal. This problem is analogous to the traditional Behrens-Fisher problem. A lot of work has been done on the traditional Behrens-Fisher problem when data come from two normal populations with means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2} are unknown and possibly unequal (see Best and Rayner (1987) ; and Paul (1992)). The purpose of this Chapter is to develop tests for the corresponding problem for over-dispersed count data. We develop six tests and compare these in terms of size and power.

For modelling count data with over-dispersion, a popular and convenient model is the negative binomial distribution (Manton et al. (1981); Saha (2011); Breslow (1984); Engel (1984); Margolin et al. (1989)). For more references on applications of the negative binomial distribution, see Clark and Perry (1989). Different authors have used different parametrizations for the negative binomial distribution (Paul and Plackett (1978); Barnwal and Paul (1988); Paul and Banerjee (1998); Piegorsch (1990)). Let Y be a negative binomial random variable with mean parameter μ and dispersion
parameter c. We write $Y \sim N B(\mu, c)$, which has probability mass function

$$
\begin{equation*}
f(y \mid \mu, c)=\operatorname{Pr}(Y=y \mid \mu, c)=\frac{\Gamma\left(y+c^{-1}\right)}{y!\Gamma\left(c^{-1}\right)}\left(\frac{c \mu}{1+c \mu}\right)^{y}\left(\frac{1}{1+c \mu}\right)^{c^{-1}} \tag{3.1}
\end{equation*}
$$

for $y=0,1, \ldots, \mu>0$. Now, $\operatorname{Var}(Y)=\mu(1+\mu c)$ and $c>-1 / \mu$. Since c can take a positive as well as a negative value, it is called a dispersion parameter rather than an over-dispersion parameter, and with this range of $c, f(y \mid \mu, c)$ is a valid probability function. Obviously, when $c=0$, the variance of the $N B(\mu, c)$ distribution becomes that of the Poisson (μ) distribution. Moreover, it can be shown that the limiting distribution of the $N B(\mu, c)$ distribution, as $c \rightarrow 0$, is the Poisson (μ).

Let Y_{11}, . ., $Y_{1 n_{1}}$ be a random sample from the negative binomial distribution $N B\left(\mu_{1}, c_{1}\right)$ and Y_{21}, . ., $Y_{2 n_{2}}$ be a random sample from the negative binomial distribution $N B\left(\mu_{2}, c_{2}\right)$. Our problem is to test $H_{0}: \mu_{1}=\mu_{2}$, where c_{1} and c_{2} are unspecified. To test this hypothesis we develop six test procedures, namely, a likelihood ratio test $L R$, a likelihood ratio test based on the bias corrected maximum likelihood estimates of the nuisance parameters $L R(b c)$, a score test T^{2}, a score test based on the bias corrected estimates of the nuisance parameters $T^{2}(b c)$, a $C(\alpha)$ test based on the method of moments estimates of the nuisance parameters, T_{1} with Welch's (Welch (1937)) degree of freedom correction, and a test T_{N} using the asymptotic normal distribution of T_{1}. These procedures are then compared in terms of size and power using simulations.

The test statistics are developed in Section 3.2. A simulation study is conducted in Section 3.3. A few examples illustrating and motivating the use of the procedures developed are given in Section 3.4 and a discussion follows in Section 3.5.

3.2 The Tests

As indicated in Section 3.1, we consider data $Y_{i j}, i=1,2, j=1,2, \ldots, n_{i}$, where $Y_{i j} \sim N B\left(\mu_{i}, c_{i}\right)$. Our interest is to test $H_{0}: \mu_{1}=\mu_{2}=\mu$, where c_{1} and c_{2} are unspecified against the alternative $H_{A}: \mu_{1} \neq \mu_{2}$, with c_{1} and c_{2} unspecified.

3.2.1 The Likelihood Ratio Test

The log-likelihood for the data of the two samples, based on the negative binomial model (3.1), apart from a constant, is

$$
\begin{align*}
& l=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}} \sum_{l=1}^{y_{i j}}\left[\log \left(1+c_{i}(l-1)\right)\right]+\sum_{i=1}^{2} y_{i+}\left[\log \left(\mu_{i}\right)-\log \left\{1+c_{i} \mu_{i}\right\}\right] \tag{3.2}\\
& -\sum_{i=1}^{2} \frac{n_{i}}{c_{i}} \log \left\{1+c_{i} \mu_{i}\right\} .
\end{align*}
$$

Let \hat{l}_{0} and \hat{l}_{1} be the maximized log-likelihood under the null and the alternative hypothesis, respectively. Then, the likelihood ratio statistic $L R=2\left(\hat{l}_{1}-\hat{l}_{0}\right)$ has a $\chi^{2}(1)$ distribution, asymptotically as $n \rightarrow \infty$, where $n=n_{1}+n_{2}$. Under H_{0}, the parameters μ, c_{1} and c_{2} are estimated by solving the maximum likelihood estimating equations

$$
\begin{align*}
& \sum_{i=1}^{2} \frac{n_{i}\left(\bar{y}_{i}-\mu\right)}{\mu\left(1+\mu c_{i}\right)}=0 \\
& \text { and } \tag{3.3}\\
& \frac{n_{i}}{c_{i}^{2}} \log \left(1+c_{i} \mu\right)+\frac{n_{i}\left(\bar{y}_{i}-\mu\right)}{c_{i}\left(1+c_{i} \mu\right)}-\sum_{j=1}^{n_{i}} \sum_{l=0}^{y_{i j}-1} \frac{1}{c_{i}\left(1+c_{i} l\right)}=0, \quad i=1,2
\end{align*}
$$

simultaneously or by directly maximizing (3.2) with respect to μ, c_{1} and c_{2}. Denote these estimators by $\hat{\mu}_{0}, \hat{c}_{10}$ and \hat{c}_{20}. Under H_{A}, the maximum likelihood estimate of μ_{i} is $\bar{y}_{i}, i=1,2$. The maximum likelihood estimate of c_{i}, denoted by \hat{c}_{i}, is obtained by solving the maximum likelihood estimating equation

$$
\frac{n_{i}}{c_{i}^{2}} \log \left(1+c_{i} \bar{y}_{i}\right)-\sum_{j=1}^{n_{i}} \sum_{l=0}^{y_{i j}-1} \frac{1}{c_{i}\left(1+c_{i} l\right)}=0, i=1,2 .
$$

3.2.2 The Likelihood Ratio Test Based on the Bias Corrected Maximum Likelihood Estimates

Let l_{0} be the kernel of the \log-likelihood under the null hypothesis and let $\theta=$ $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)^{\prime}=\left(\mu, c_{1}, c_{2}\right)^{\prime}$. Further, let $I_{r t}=E\left(-V_{r t}\right), J_{r t u}=E\left(W_{r t u}\right)$, and $K_{r t}^{(u)}=$ $\frac{\partial}{\partial \theta_{u}} E\left(V_{r t}\right)$, where $V_{r t}=\frac{\partial^{2} l_{0}}{\partial \theta_{r} \partial \theta_{t}}$ and $W_{r t u}=\frac{\partial^{3} l_{0}}{\partial \theta_{r} \partial \theta_{t} \partial \theta_{u}} ; r, t, u=1,2,3$. Derivation of the above terms and the asymptotic biases of the maximum likelihood estimates of μ and c_{i} under the null hypothesis are given in the Appendix A.1. The results are summarized here. Now, from Appendix A. 1 we have the following

$$
\begin{aligned}
& I_{11}=\sum_{i=1}^{2}\left[\frac{n_{i}}{\mu\left(1+c_{i} \mu\right)}\right], \quad I_{22}=\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{1} c_{1}\right)^{k+1}}{(k+1) d_{1 k}}, \quad I_{33}=\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{2} c_{2}\right)^{k+1}}{(k+1) d_{2 k}}, \\
& J_{111}=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}} \frac{2\left(1+2 c_{i} \mu\right)}{\mu^{2}\left(1+c_{i} \mu\right)^{2}}, \quad J_{112}=\frac{n_{1}}{\left(1+c_{1} \mu\right)^{2}}, \quad J_{113}=\frac{n_{2}}{\left(1+c_{2} \mu\right)^{2}}, \\
& J_{222}=\frac{2 n_{1}}{c_{1}^{2}} \kappa_{1}-\frac{n_{1} \mu\left(4+5 c_{1} \mu\right)}{c_{1}^{3}\left(1+c_{1} \mu\right)^{2}}-\frac{2 n_{1}}{c_{1}^{3}} \Delta_{1}, \\
& J_{333}=\frac{2 n_{2}}{c_{2}^{2}} \kappa_{2}-\frac{n_{2} \mu\left(4+5 c_{2} \mu\right)}{c_{2}^{3}\left(1+c_{2} \mu\right)^{2}}-\frac{2 n_{2}}{c_{2}^{3}} \Delta_{2},
\end{aligned}
$$

$$
\begin{aligned}
& K_{11}^{(1)}=\sum_{i=1}^{2}\left\{\frac{n_{i}\left(1+2 c_{i} \mu\right)}{\mu^{2}\left(1+c_{i} \mu\right)^{2}}\right\}, \quad K_{11}^{(2)}=\frac{n_{1}}{\left(1+c_{1} \mu\right)^{2}}, \quad K_{11}^{(3)}=\frac{n_{2}}{\left(1+c_{2} \mu\right)^{2}}, \\
& K_{22}^{(1)}=-\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{1} c_{1}\right)^{k} b_{1}^{2}}{\mu^{2} d_{1 k}}, \\
& K_{22}^{(2)}=\frac{n_{1}}{c_{1}^{5}} \sum_{k=1}^{\infty} \frac{k!\left(c_{1} b_{1}\right)^{k+1}}{(k+1) d_{1 k}}\left\{4-\frac{(k+1)\left(2+c_{1} \mu\right)}{1+c_{1} \mu}+c_{1}\left(\sum_{l=0}^{k} \frac{l}{1+c_{1} l}\right)\right\}, \\
& K_{33}^{(1)}=-\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{2} c_{2}\right)^{k} b_{2}^{2}}{\mu^{2} d_{2 k}}
\end{aligned}
$$

and

$$
K_{33}^{(3)}=\frac{n_{2}}{c_{2}^{5}} \sum_{k=1}^{\infty} \frac{k!\left(c_{2} b_{2}\right)^{k+1}}{(k+1) d_{2 k}}\left\{4-\frac{(k+1)\left(2+c_{2} \mu\right)}{1+c_{2} \mu}+c_{2}\left(\sum_{l=0}^{k} \frac{l}{1+c_{2} l}\right)\right\},
$$

where $\quad b_{i}=\frac{c_{i} \mu}{1+c_{i} \mu}, \quad d_{i k}=\prod_{l=0}^{k}\left(1+c_{i} l\right), \quad \kappa_{i}=\frac{1}{c_{i}^{2}} \log \left(1+c_{i} \mu\right) \quad$ and
$\Delta_{i}=\sum_{y_{i j}=0}^{\infty} \sum_{l=0}^{y_{i j}-1} \frac{c_{i}^{2} l^{2}-c_{i} l-1}{\left(1+c_{i} l\right)^{3}} \operatorname{Pr}\left(y_{i j}\right)$, for $i=1,2 ; j=1,2, \cdots, n_{i} ;$ with $\operatorname{Pr}\left(y_{i j}\right)=$ $f\left(y_{i j} \mid \mu, c_{i}\right)$ and $\Delta_{i}=0$ if $y_{i j}=0$. All other elements of $I_{r t}, J_{r t u}$ and $K_{r t}^{(u)}$ are zeros.

Now, following Cordeiro and Klein (1994), the biases of $\hat{\mu}_{0}, \hat{c}_{10}$ and \hat{c}_{20} are

$$
\begin{aligned}
& b_{\hat{\mu}_{0}}\left(\hat{\mu}_{0}, \hat{c}_{10}, \hat{c}_{20}\right)=M^{11}\left(K_{11}^{(1)}-\frac{1}{2} J_{111}\right) M^{11}=0, \\
& b_{\hat{c}_{10}}\left(\hat{\mu}_{0}, \hat{c}_{10}, \hat{c}_{20}\right)=M^{22}\left[-\frac{1}{2} J_{211} M^{11}+\left(K_{22}^{(2)}-\frac{1}{2} J_{222}\right) M^{22}\right]
\end{aligned}
$$

and

$$
b_{\hat{c}_{20}}\left(\hat{\mu}_{0}, \hat{c}_{10}, \hat{c}_{20}\right)=M^{33}\left[-\frac{1}{2} J_{311} M^{11}+\left(K_{33}^{(3)}-\frac{1}{2} J_{333}\right) M^{33}\right]
$$

respectively, where $M^{r t}$ is the $(r, t)^{t h}$ element of the inverse of the information matrix I. It is seen that the asymptotic bias of the maximum likelihood estimate of μ is zero. So, the bias corrected estimate of μ is $\hat{\mu}_{0}(b c)=\hat{\mu}_{0}$. The bias corrected estimate of c_{i} under the null hypothesis is $\hat{c}_{i 0}(b c)=\hat{c}_{i 0}-b_{\hat{c}_{i 0}}\left(\hat{\mu}_{0}, \hat{c}_{10}, \hat{c}_{20}\right), i=1,2$.

Under the alternative hypothesis, the estimate of μ_{i} is \bar{y}_{i}, which is unbiased. Yet, for ease and convenience of calculation let $\theta^{\prime}=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\left(\mu_{1}, \mu_{2}, c_{1}, c_{2}\right)$ and further, as in the case under the null hypothesis, let $I_{r t}=E\left(-V_{r t}\right), J_{r t u}=$ $E\left(W_{r t u}\right)$, and $K_{r t}^{(u)}=\frac{\partial}{\partial \theta_{u}} E\left(V_{r t}\right)$, where $V_{r t}=\frac{\partial^{2} l}{\partial \theta_{r} \partial \theta_{t}}$ and $W_{r t u}=\frac{\partial^{3} l}{\partial \theta_{r} \partial \theta_{t} \partial \theta_{u}} ; r, t, u=$ $1,2,3,4$. Detailed derivation is given in the Appendix A. 2 and from there we have the following

$$
\begin{aligned}
& I_{11}=\frac{n_{1}}{\mu_{1}\left(1+c_{1} \mu_{1}\right)}, \quad I_{22}=\frac{n_{2}}{\mu_{2}\left(1+c_{2} \mu_{2}\right)}, \\
& I_{33}=\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(c_{1} b_{1}\right)^{k+1}}{(k+1) d_{1 k}}, \quad I_{44}=\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(c_{2} b_{2}\right)^{k+1}}{(k+1) d_{2 k}}, \\
& J_{111}=\frac{2 n_{1}\left(1+2 c_{1} \mu_{1}\right)}{\mu_{1}^{2}\left(1+c_{1} \mu_{1}\right)^{2}}, \quad J_{113}=\frac{n_{1}}{\left(1+c_{1} \mu_{1}\right)^{2}}, \quad J_{222}=\frac{2 n_{2}\left(1+2 c_{2} \mu_{2}\right)}{\mu_{2}^{2}\left(1+c_{2} \mu_{2}\right)^{2}}, \\
& J_{224}=\frac{n_{2}}{\left(1+c_{2} \mu_{2}\right)^{2}}, \quad J_{333}=\frac{2 n_{1}}{c_{1}^{2}} \kappa_{1}-\frac{n_{1} \mu_{1}\left(4+5 c_{1} \mu_{1}\right)}{c_{1}^{3}\left(1+c_{1} \mu_{1}\right)^{2}}-\frac{2 n_{1}}{c_{1}^{3}} \Delta_{1}, \\
& J_{444}=\frac{2 n_{2}}{c_{2}^{2}} \kappa_{2}-\frac{n_{2} \mu_{2}\left(4+5 c_{2} \mu_{2}\right)}{c_{2}^{3}\left(1+c_{2} \mu_{2}\right)^{2}}-\frac{2 n_{2}}{c_{2}^{3}} \Delta_{2}, \\
& K_{11}^{(1)}=\frac{n_{1}\left(1+2 c_{1} \mu_{1}\right)}{\mu_{1}^{2}\left(1+c_{1} \mu_{1}\right)^{2}}, \quad K_{11}^{(3)}=\frac{n_{1}}{\left(1+c_{1} \mu_{1}\right)^{2}}, \quad K_{22}^{(2)}=\frac{n_{2}\left(1+2 c_{2} \mu_{2}\right)}{\mu_{2}^{2}\left(1+c_{2} \mu_{2}\right)^{2}}, \\
& K_{22}^{(4)}=\frac{n_{2}}{\left(1+c_{2} \mu_{2}\right)^{2}}, \quad K_{33}^{(1)}=-\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(c_{1} b_{1}\right)^{k} b_{1}^{2}}{\mu_{1}^{2} d_{1 k}},
\end{aligned}
$$

$$
\begin{aligned}
& K_{33}^{(3)}=\frac{n_{1}}{c_{1}^{5}} \sum_{k=1}^{\infty} \frac{k!\left(c_{1} b_{1}\right)^{k+1}}{(k+1) d_{1 k}}\left\{4-\frac{(k+1)\left(2+c_{1} \mu_{1}\right)}{1+c_{1} \mu_{1}}+c_{1}\left(\sum_{l=0}^{k} \frac{l}{1+c_{1} l}\right)\right\}, \\
& K_{44}^{(2)}=-\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(c_{2} b_{2}\right)^{k} b_{2}^{2}}{\mu_{2}^{2} d_{2 k}}
\end{aligned}
$$

and

$$
K_{44}^{(4)}=\frac{n_{2}}{c_{2}^{5}} \sum_{k=1}^{\infty} \frac{k!\left(c_{2} b_{2}\right)^{k+1}}{(k+1) d_{2 k}}\left\{4-\frac{(k+1)\left(2+c_{2} \mu_{2}\right)}{1+c_{2} \mu_{2}}+c_{2}\left(\sum_{l=0}^{k} \frac{l}{1+c_{2} l}\right)\right\} .
$$

As in the previous section, following Cordeiro and Klein (1994), the biases of the estimates of c_{1} and c_{2} are

$$
\begin{aligned}
& b_{\hat{c}_{1}}\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{c}_{1}, \hat{c}_{2}\right)=M^{33}\left\{-\frac{1}{2} J_{311} M^{11}+\left(K_{33}^{(3)}-\frac{1}{2} J_{333}\right) M^{33}\right\} \quad \text { and } \\
& b_{\hat{c}_{2}}\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{c}_{1}, \hat{c}_{2}\right)=M^{44}\left\{-\frac{1}{2} J_{422} M^{22}+\left(K_{44}^{(4)}-\frac{1}{2} J_{444}\right) M^{44}\right\} \quad \text { respectively. }
\end{aligned}
$$

Then, for $i=1,2$, the bias corrected estimate of c_{i} under the alternative hypothesis is $\hat{c}_{i}(b c)=\hat{c}_{i}-b_{\hat{c}_{i}}\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{c}_{1}, \hat{c}_{2}\right)$.

Let $\hat{l}_{0}(b c)$ and $\hat{l}_{1}(b c)$ be the maximized log-likelihood under the null and the alternative hypothesis, respectively, using the bias corrected estimates. Then, the likelihood ratio statistic using the bias corrected estimates is $L R(b c)=2\left\{\hat{l}_{1}(b c)-\hat{l}_{0}(b c)\right\}$, which has a $\chi^{2}(1)$ distribution, asymptotically as $n \rightarrow \infty$, where $n=n_{1}+n_{2}$.

3.2.3 The Score Test

Suppose that the alternative hypothesis is represented by $\mu_{i}=\mu+\phi_{i}$ with $\phi_{2}=0$. Then the null hypothesis $H_{0}: \mu_{1}=\mu_{2}$ reduces to $H_{0}: \phi_{i}=0$ for $i=1,2$, with μ,
c_{1} and c_{2} treated as nuisance parameters. The log-likelihood, apart from a constant, can then be written as

$$
\begin{align*}
& l=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}} \sum_{l=1}^{y_{i j}}\left[\log \left(1+c_{i}(l-1)\right)\right]+\sum_{i=1}^{2} y_{i+}\left[\log \left(\mu+\phi_{i}\right)-\log \left\{1+c_{i}\left(\mu+\phi_{i}\right)\right\}\right] \tag{3.4}\\
& -\sum_{i=1}^{2} \frac{n_{i}}{c_{i}} \log \left\{1+c_{i}\left(\mu+\phi_{i}\right)\right\}
\end{align*}
$$

Now, define $\phi=\phi_{1}$ and $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)^{\prime}=\left(\mu, c_{1}, c_{2}\right)^{\prime}$. Further, define $\psi=\psi(\theta)=$ $\left.\frac{\partial l}{\partial \phi}\right|_{\phi=0}$ and $\gamma_{j}=\gamma_{j}(\theta)=\left.\frac{\partial l}{\partial \theta_{j}}\right|_{\phi=0}, j=1,2,3$. Let $\hat{\theta}$ be some \sqrt{n} consistent estimator of θ under the null hypothesis. Define $S(\hat{\theta})=\psi(\hat{\theta})-\sum_{j=1}^{3} \beta_{j} \gamma_{j}(\hat{\theta})$, where β_{1}, β_{2} and β_{3} are partial regression coefficients of ψ on γ_{1}, γ_{2} and γ_{3}, respectively. Further, define $D=E\left[-\frac{\partial^{2} l}{\partial \phi^{2}}\right]_{\phi=0}$, a 1×3 matrix A with $j^{\text {th }}$ element $A_{j}=E\left[-\frac{\partial^{2} l}{\partial \phi \partial \theta_{j}}\right]_{\phi=0}$ and 3×3 matrix B with $(i, j)^{t h}$ element $B_{i, j}=E\left[-\frac{\partial^{2} l}{\partial \theta_{i} \partial \theta_{j}}\right]_{\phi=0}, i, j=1,2,3$. Then, the $C(\alpha)$ test statistic (Neyman (1959)) for testing $H_{0}: \mu_{1}=\mu_{2}$, where c_{1} and c_{2} are unspecified against the alternative $H_{A}: \mu_{1} \neq \mu_{2}$, with c_{1} and c_{2} are unspecified is $T^{2}=S^{2} /\left(D-A B^{-1} A^{\prime}\right)$, which has an approximate chi-square distribution with 1 degree of freedom, where in A, B and D the nuisance parameter θ is replaced by $\hat{\theta}$. Now, $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)^{\prime}=A B^{-1}$ and detailed calculation shows that $\beta_{1}=A_{1} / B_{1,1}$, $\beta_{2}=0$ and $\beta_{3}=0$. Then, $S(\hat{\theta})=\psi(\hat{\theta})-\beta_{1} \gamma_{1}(\hat{\theta})=\psi(\hat{\theta})-A_{1} \gamma_{1}(\hat{\theta}) / B_{1,1}$. If $\hat{\theta}$ is the maximum likelihood estimate of θ, which is \sqrt{n} consistent, then the $C(\alpha)$ statistic reduces to the score test (Rao (1948)) statistic $T^{2}=\psi^{2} /\left(D-A B^{-1} A^{\prime}\right)$ as $\gamma_{1}(\hat{\theta})=0$. Now, $\psi=\left.\frac{\partial l}{\partial \phi}\right|_{\phi=0}=\frac{n_{1}\left(\bar{y}_{1}-\mu\right)}{\mu\left(1+c_{1} \mu\right)}$. The derivation of the components of A, B and D are given in Appendix $A .3$ and the results are summarized below

$$
A_{1}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \mu}\right|_{\phi=0}\right]=\frac{n_{1}}{\mu\left(1+c_{1} \mu\right)}, \quad A_{2}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial c_{1}}\right|_{\phi=0}\right]=0
$$

$$
\begin{aligned}
& A_{3}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial c_{2}}\right|_{\phi=0}\right]=0, \quad D=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1}^{2}}\right|_{\phi=0}\right]=\frac{n_{1}}{\mu\left(1+c_{1} \mu\right)} \\
& B_{1,1}=E\left[-\left.\frac{\partial^{2} l}{\partial \mu^{2}}\right|_{\phi=0}\right]=\sum_{i=1}^{2}\left[\frac{n_{i}}{\mu\left(1+c_{i} \mu\right)}\right], \quad B_{1,2}=B_{2,1}=E\left[-\left.\frac{\partial^{2} l}{\partial \mu \partial c_{1}}\right|_{\phi=0}\right]=0 \\
& B_{1,3}=B_{3,1}=E\left[-\left.\frac{\partial^{2} l}{\partial \mu \partial c_{2}}\right|_{\phi=0}\right]=0, \quad B_{2,2}=E\left[-\left.\frac{\partial^{2} l}{\partial c_{1}^{2}}\right|_{\phi=0}\right]=\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{1} c_{1}\right)^{k+1}}{(k+1) d_{1 k}} \\
& B_{2,3}=B_{3,2}=E\left[-\left.\frac{\partial^{2} l}{\partial c_{1} \partial c_{2}}\right|_{\phi=0}\right]=0 \quad \text { and } \quad B_{3,3}=E\left[-\left.\frac{\partial^{2} l}{\partial c_{2}^{2}}\right|_{\phi=0}\right]=\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{2} c_{2}\right)^{k+1}}{(k+1) d_{2 k}}
\end{aligned}
$$

After detailed calculations and substitution of the nuisance parameters μ, c_{1} and c_{2} by their maximum likelihood estimates $\hat{\mu}_{0}, \hat{c}_{10}$ and \hat{c}_{20} in ψ, A, B and D we obtain

$$
T^{2}=\sum_{i=1}^{2} \frac{n_{i}\left(\bar{y}_{i}-\hat{\mu}_{0}\right)^{2}}{\hat{\mu}_{0}\left(1+\hat{\mu}_{0} \hat{c}_{i 0}\right)}
$$

which is asymptotically distributed as $\chi^{2}(1)$ as $n \rightarrow \infty$, where $n=n_{1}+n_{2}$.

The score test statistic based on the bias corrected maximum likelihood estimates of the nuisance parameters is

$$
T^{2}(b c)=\sum_{i=1}^{2} \frac{n_{i}\left(\bar{y}_{i}-\hat{\mu}_{0}\right)^{2}}{\hat{\mu}_{0}\left(1+\hat{\mu}_{0} \hat{c}_{i 0}(b c)\right)},
$$

which also has, asymptotically, a $\chi^{2}(1)$ distribution, as $n \rightarrow \infty$, where $n=n_{1}+n_{2}$.

3.2.4 $C(\alpha)$ Test Based on the Method of Moments Estimates of the Nuisance Parameters

Other \sqrt{n} consistent estimates of the parameters μ, c_{1} and c_{2} can be used. Following Barnwal (1989), the following estimates are obtained.

The first equation of (3.3) can be written as

$$
\begin{equation*}
\mu=\sum_{i=1}^{2} w_{i} \bar{y}_{i} / \sum_{i=1}^{2} w_{i} \tag{3.5}
\end{equation*}
$$

where $w_{i}=\frac{n_{i}}{\left\{\mu\left(1+c_{i} \mu\right)\right\}}$. Let s_{i}^{2} be the sample variance. Then, a method of moments estimate of $\mu\left(1+c_{i} \mu\right)$ is s_{i}^{2}. Using this in (3.5), we obtain a method of moments estimate for μ as

$$
\begin{equation*}
\widetilde{\mu}=\sum_{i=1}^{2} w_{i}^{*} \bar{y}_{i} / \sum_{i=1}^{2} w_{i}^{*}, \text { where } w_{i}^{*}=\frac{n_{i}}{s_{i}^{2}} \tag{3.6}
\end{equation*}
$$

Using this estimate of μ, the moment estimate of c_{i} is $\widetilde{c_{i}}=\frac{s_{i}^{2}-\widetilde{\mu}}{\widetilde{\mu}^{2}}$. Clearly, $\widetilde{\mu}$ satisfies $\left.\frac{\partial l}{\partial \mu}\right|_{\mu=\widetilde{\mu}, c_{1}=\widetilde{c_{1}}, c_{2}=\widetilde{c_{2}}}=0$ and thus $\gamma_{1}(\widetilde{\theta})=0$, where $\widetilde{\theta}=\left(\widetilde{\mu}, \widetilde{c_{1}}, \widetilde{c_{2}}\right)^{\prime}$. With this and after detailed calculations and substitution of the nuisance parameters μ, c_{1} and c_{2} by their method of moments estimates $\widetilde{\mu}, \widetilde{c_{1}}, \widetilde{c_{2}}$ in ψ, A, B and D the $C(\alpha)$ statistic is obtained as

$$
T_{1}^{2}=\sum_{i=1}^{2} \frac{n_{i}\left(\bar{y}_{i}-\widetilde{\mu}\right)^{2}}{\widetilde{\mu}\left(1+\widetilde{c_{i}} \widetilde{\mu}\right)}
$$

The distribution of T_{1}^{2} is also asymptotic $\chi^{2}(1)$ as $n \rightarrow \infty$.

Note that by using the method of moments estimates of μ and c_{i}, the $C(\alpha)$ statistic T_{1}^{2} can be written as $T_{1}^{2}=\sum_{i=1}^{2} \frac{n_{i}\left(\bar{y}_{i}-\widetilde{\mu}\right)^{2}}{s_{i}^{2}}$, where $\widetilde{\mu}=\sum_{i=1}^{2} w_{i}^{*} \bar{y}_{i} / \sum_{i=1}^{2} w_{i}^{*}$ and $s_{i}^{2}=$ $\tilde{\mu}\left(1+\tilde{\mu} c_{i}\right)$. Now, putting $\widetilde{\mu}$ into T_{1}^{2} and simplifying we obtain

$$
T_{1}^{2}=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)^{2}}{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} .
$$

By taking square-root of both sides of T_{1}^{2} we obtain

$$
T_{1}=\frac{\bar{y}_{1}-\bar{y}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} .
$$

This is an interesting result as the form of T_{1} is exactly the same as that of the V statistic of Welch (1937). Also, following the $C(\alpha)$ theory, the asymptotic distribution of T_{1}^{2} is $\chi^{2}(1)$ and hence the asymptotic distribution of T_{1} is standard normal. This suggests, following the theory of Welch (1937), that for small sample size ($n=n_{1}+n_{2}$), the distribution of T_{1} might be better approximated by a t distribution with degrees of freedom

$$
f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{s_{1}^{4}}{n_{1}^{2}\left(n_{1}-1\right)}+\frac{s_{2}^{4}}{n_{2}^{2}\left(n_{2}-1\right)}\right)}
$$

where $\bar{y}_{i}=\frac{\sum_{j=1}^{n_{i}} y_{i j}}{n_{i}}$ and $s_{i}^{2}=\frac{\sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}}{n_{i}-1}$, although, the data are assumed to come from negative binomial distributions and not from normal distributions. Now, denote the asymptotic normal distribution of T_{1} by T_{N}. It is of interest to see for what
sample size n the behaviours of T_{1} and T_{N} are similar.

3.3 Simulation Study

In this section we conduct a simulation study to compare, in terms of size and power, the six test statistics, $L R, L R(b c), T^{2}, T^{2}(b c), T_{1}$ and T_{N}.

To compare the statistics in terms of size, we considered $n_{1}=n_{2}=5,10,20,50 ; \mu_{1}=$ $\mu_{2}=1,2,5$, all combinations of $\left(c_{1}, c_{2}\right)=(0.05,0.05),(0.05,0.10),(0.05,0.20)$, $(0.20,0.20),(0.20,0.30),(0.20,0.40),(0.40,0.50),(0.40,0.80)$, and nominal levels $\alpha=0.05, \quad 0.10$. Comparative results in terms of empirical size for $\mu_{1}=\mu_{2}=1$, $\mu_{1}=\mu_{2}=2$ and $\mu_{1}=\mu_{2}=5$ are similar. So, we present results for only $\mu_{1}=\mu_{2}=2$. For power comparison we considered same sample size and same combination of $\left(c_{1}, c_{2}\right)$ with $\left(\mu_{1}, \mu_{2}\right)=(2,2.5),(2,3),(2,4),(2,6),(2,8),(2,10)$ and $\left(\mu_{1}, \mu_{2}\right)=$ $(5,7),(5,10),(5,15),(5,20),(5,25)$. However, comparative results for both α 's are similar. Also comparative power for $\left(\mu_{1}, \mu_{2}\right)=(2,2.5),(2,3),(2,4),(2,6),(2,8)$, $(2,10)$ and those for $(5,7),(5,10),(5,15),(5,20),(5,25)$ are similar. So, we present results only for $\alpha=0.05$ and for $\left(\mu_{1}, \mu_{2}\right)=(2,2.5),(2,3),(2,4),(2,6),(2,8)$, $(2,10)$. These results for level and power are summarized in Tables 3.1 to 3.4

For small sample sizes, for example, for $n_{1}=n_{2}=5,10$, the $L R$ statistic holds level most effectively. The statistic T_{N} is liberal, which is expected. The other statistics are in general somewhat conservative. As the statistic T_{N} is liberal we omit this from comparison of power with the other statistics. For small to moderate over-dispersion parameters the statistic T_{1} in general shows the largest power. For very large overdispersion parameters this statistic is the least powerful and the statistic $T^{2}(b c)$ is
the most powerful. For example, for $\mu_{1}=2, \mu_{2}=6, c_{1}=.4$ and $c_{2}=.8$ power of T_{1} is 13% and that of $T^{2}(b c)$ is 22.1%.

For moderate sample size situations, $\left(n_{1}=n_{2}=20\right)$, the statistics T_{1} and T_{N} perform best in both level and power except, again, when the over-dispersions are large in which case the other statistics do somewhat better in terms of power. For example, for $\mu_{1}=2, \mu_{2}=4, c_{1}=.4$ and $c_{2}=.8$, power of the statistics $L R, L R(b c)$, $T^{2}, T^{2}(b c)$ are $.58, .57, .54$ and .55 respectively and those of T_{1} and T_{N} are .48 and .53 respectively.

For large sample sizes, for example, for $n_{1}=n_{2}=50$, all six statistics do well in terms of level and their power performances are also similar. So, the asymptotic distribution of T_{N} works when $n_{1}=n_{2}=50$. Power of all the statistics increase as the sample sizes increase.

The bias corrected statistics $L R(b c)$ and $T^{2}(b c)$ do not in general show improvement in terms of level and power over their uncorrected counterparts $L R$ and T^{2}. The reason could be that the biases of the estimates of c_{1} and c_{2} are in general small (see Tables 3.5-3.8.

To show results for sparse data we present level and power results for $\mu_{1}=\mu_{2}=1$ and $\alpha=.05$ in Tables $3.9-3.12$. As mentioned above, the comparative level and power performances of all the statistics are similar to those of $\mu_{1}=\mu_{2}=2$. Average bias of the estimates of c_{1} and c_{2} for 5000 simulation runs for $\mu_{1}=\mu_{2}=1$ and different combinations of c_{1} and c_{2} are also given in Tables 3.13-3.16.

In all cases, empirical significance levels and power of the tests were based on 5000 iterations. Samples were generated from the negative binomial distribution of the form given in equation (3.1) using "rnegbin" in " R ".

Samples for which maximum likelihood estimates did not converge and the estimates of c 's found to be close to zero were discarded because small values of c 's lead to large bias in the bias correction formula. Samples were discarded if c_{i} 's were less than $0.00001-1 / \max \left\{y_{i j}\right\}$, where $\max \left\{y_{i j}\right\}$ is the maximum value of $y_{i j}$ for $i=1,2 ; j=1,2, \cdots, n_{i}$. Among the 5000 simulation runs, test statistics were computed for the samples after discarding the non convergent ones and those with small c_{i} 's.

3.4 Examples

3.4.1 Example 1

Lawless (1987) presents a set of data, originally given by Gail et al. (1980), on the times to development of mammary tumours for a total of 48 female rats. Of these 48 rats, 23 were assigned to treatment group 1 (Retinoid) and the remaining 25 rats were assigned to treatment group 2 (Control). The data are presented in Table 3.17. The means for the two groups are 2.65 and 6.04 which are visibly different. The maximum likelihood estimates of the over-dispersion parameters c_{1} and c_{2} are 0.17 and 0.31 which are moderate but different. The values of the test statistics $L R, L R(b c), T^{2}, T^{2}(b c), T_{1}$ (degrees of freedom: $\mathrm{df}=35.66$) and T_{N} with p-values in parenthesis are $13.39(.0003), 13.33(.0003), 9.62(.0019), 9.57(.002),-3.82(.0005)$ and -3.82 (.0001), respectively.

All test statistics produce small p-values indicating strong difference between the means. The p-values of all the statistics are similar indicating rejection of equality at similar levels. This is in line with the simulation results given in Table 3.3 under the
columns $(.20, .30)$ and $(.20, .40)$ and row $(2,6)$ where $n_{1}=n_{2}=20$.

Note, the sample sizes for these data are $n_{1}=23$ and $n_{2}=25$. In order to see the power performance of the statistics with very similar characteristics of these data, we did a simulation experiment using 5000 repeated samples with $n_{1}=23, n_{2}=25$, $\mu_{1}=2.65, \mu_{2}=6.04, c_{1}=.17$ and $c_{2}=.31$. The power of the test statistics $L R$, $L R(b c), T^{2}, T^{2}(b c), T_{1}$ and T_{N} were $97.2,97.0,96.8,96.8,96.8,97.3$, respectively. The conclusion, again, is very similar. A further simulation experiment was conducted to see the performance of the test statistics when the means are closer to equality. Everything else remaining the same we used $\mu_{1}=2.65$ and $\mu_{2}=3$. The power of the test statistics $L R, L R(b c), T^{2}, T^{2}(b c), T_{1}$ and T_{N} were 9.4, 9.0, 8.4, 8.3, 8.8, 9.9, respectively. Here also, the performance of all the test statistics are similar, although, the statistics $L R, L R(b c), T_{1}$ and T_{N} do somewhat better than the statistics T^{2} and $T^{2}(b c)$. This finding is in line with the simulation results given in Table 3.3 under row $(2,2.5)$ and column (.20, .30).

3.4.2 Example 2

Saha (2011) presents data, originally given by Uusipaikka (2009), which are given in Table 3.18. The data refer to the number of cycles required for two groups of women, namely, the smoker and non-smoker group, to get pregnant. The means for the two groups are 4.20 and 2.97 which are visibly different. The maximum likelihood estimates of the over-dispersion parameters c_{1} and c_{2} are 0.47 and 0.38 which are moderate but different. The values of the test statistics $L R, L R(b c), T^{2}$, $T^{2}(b c), T_{1}(d f=122.66)$ and T_{N} with p-values in parenthesis are $13.92(0.0002), 13.92$ (0.0002), 15.30 (0.0001), 15.35 (0.0001), 3.14 (0.0021), 3.14 (0.0017), respectively.

As in example 1, all test statistics produce small p-values indicating strong difference between the means. Also, as in example 1, the p-values of all the statistics are similar indicating rejection of equality at similar levels. This is in line with the simulation results given in Table 3.4 under column (.40, .50).

3.5 Discussion

In this Chapter we deal with a problem analogous to the Behrens-Fisher problem for normally distributed data. For testing equality of two population means for count data, we develop six test statistics, namely, a likelihood ratio test statistic $L R$, a likelihood ratio test statistic $L R(b c)$ based on the bias corrected maximum likelihood estimates of the dispersion parameters, a score test statistic T^{2}, a score test statistic $T^{2}(b c)$ based on the bias corrected maximum likelihood estimates of the dispersion parameters, a $C(\alpha)$ test statistic T_{1} based on the method of moments estimates of the nuisance parameters and Welch's degree of freedom corrected t distribution and a statistic T_{N} using the asymptotic distribution of T_{1}.

Simulations and data analysis show no advantage of the bias corrected statistics $L R(b c)$ and $T^{2}(b c)$ over their uncorrected counterparts. For small to moderate sample sizes, in general, the statistic T_{1} shows best overall performance in terms of size and power and it is easy of calculate. This is an interesting finding in that the $C(\alpha)$ statistic based on the method of moments estimates of the dispersion parameters is the well-known Welch's V statistic which performs well in terms of level and power. For large sample sizes, for example, for $n_{1}=n_{2}=50$, all six statistics do well in terms of level and their power performances are also similar. So, the asymptotic distribution of T_{N} works when $n_{1}=n_{2}=50$ or larger.

Table 3.1: Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=5, n_{2}=5, \alpha=0.05$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Statistics	(.05, .05)	(.05, .10)	(.05, .20)	(.20,.20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(2,2)$	$L R$	5.1	4.5	5.2	4.6	5.0	5.7	5.0	5.4
	$L R(b c)$	4.0	3.2	3.8	3.8	4.4	5.4	4.7	5.3
	T^{2}	4.1	3.7	4.2	3.4	3.6	4.1	3.8	4.4
	$T^{2}(b c)$	4.2	3.8	4.4	3.7	3.8	4.7	4.6	5.4
	T_{1}	4.3	4.4	4.0	3.7	4.1	3.5	3.4	3.2
	T_{N}	8.7	9.1	8.5	8.4	8.9	8.4	7.8	8.0
$(2,2.5)$	$L R$	5.7	6.4	6.2	5.4	5.7	6.3	5.8	6.1
	$L R(b c)$	4.5	5.3	5.1	4.3	5.0	6.2	6.2	6.0
	T^{2}	5.3	5.6	5.7	4.9	4.4	4.7	4.6	5.8
	$T^{2}(b c)$	5.6	6.1	6.6	5.5	4.7	5.4	5.3	6.2
	T_{1}	6.0	5.5	4.3	5.1	4.3	4.0	3.2	3.6
	T_{N}	11.7	10.9	10.2	10.1	9.7	9.7	8.3	8.2
$(2,3)$	$L R$	7.5	7.0	9.4	7.1	5.8	6.3	6.0	6.6
	$L R(b c)$	6.4	6.3	8.6	6.3	5.1	6.5	5.8	7.0
	T^{2}	7.5	7.2	9.3	7.0	6.6	8.2	6.5	7.1
	$T^{2}(b c)$	7.8	7.4	10.0	7.2	7.2	8.7	7.5	8.8
	T_{1}	10.2	10.1	8.3	8.5	7.3	6.1	5.3	4.3
	T_{N}	19.5	17.7	16.0	16.0	14.4	13.5	12.6	10.1
$(2,4)$	$L R$	15.4	15.6	15.9	12.0	12.9	12.3	8.4	7.4
	$L R(b c)$	13.9	14.4	14.0	10.9	12.7	11.1	8.2	7.6
	T^{2}	15.0	15.8	16.2	12.4	13.6	13.5	10.0	9.6
	$T^{2}(b c)$	15.1	16.5	17.5	13.1	14.5	14.8	11.6	11.9
	T_{1}	28.0	24.0	18.1	19.0	15.8	12.5	11.2	6.3
	T_{N}	43.2	38.7	32.8	33.0	28.9	25.1	22.8	16.4
$(2,6)$	$L R$	35.1	33.5	35.7	24.0	22.8	23.6	16.0	15.3
	$L R(b c)$	31.6	30.3	32.8	21.0	19.9	22.0	14.7	15.5
	T^{2}	29.8	29.7	36.5	23.4	22.4	25.1	17.7	19.3
	$T^{2}(b c)$	29.9	30.5	37.6	24.2	23.4	27.1	19.6	22.1
	T_{1}	64.8	58.0	43.1	43.7	32.9	27.6	22.2	12.8
	T_{N}	81.1	77.6	66.8	65.6	56.6	50.9	42.8	30.7
$(2,8)$	$L R$	46.6	50.5	51.6	37.0	36.3	38.2	25.6	24.7
	$L R(b c)$	37.7	45.2	47.7	29.6	30.9	32.7	21.0	21.8
	T^{2}	30.4	40.8	49.4	30.5	33.2	37.5	23.5	26.2
	$T^{2}(b c)$	30.9	41.4	50.3	31.2	34.8	39.6	25.0	30.4
	T_{1}	87.4	79.2	63.2	61.5	50.7	39.6	33.7	19.3
	T_{N}	96.6	93.6	85.1	84.4	75.2	67.1	60.1	43.4
$(2,10)$	$L R$	64.0	60.6	61.0	53.9	48.4	45.9	33.3	32.4
	$L R(b c)$	45.3	51.0	53.5	41.8	37.8	40.4	26.1	28.8
	T^{2}	34.6	43.4	54.1	39.0	40.0	43.7	28.4	32.8
	$T^{2}(b c)$	34.6	42.9	55.9	39.0	41.0	45.7	30.6	35.8
	T_{1}	96.0	89.1	75.2	74.7	60.9	49.8	40.8	23.2
	T_{N}	99.5	98.3	93.4	92.7	85.9	78.8	70.2	52.4

Table 3.2: Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=10, n_{2}=10, \alpha=0.05$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Statistics	(.05, .05)	(.05, .10)	(.05, .20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(2,2)$	$L R$	3.6	3.5	3.5	4.2	4.0	3.9	4.0	4.3
	$L R(b c)$	2.6	2.8	3.0	3.3	3.2	3.5	3.1	3.7
	T^{2}	2.8	2.2	2.1	2.6	2.3	2.4	2.4	2.8
	$T^{2}(b c)$	2.7	2.0	2.1	2.5	2.3	2.5	2.5	3.0
	T_{1}	4.7	4.3	4.2	4.0	4.7	3.9	4.0	4.5
	T_{N}	6.5	6.3	5.9	5.8	6.7	6.0	5.7	6.7
$(2,2.5)$	$L R$	4.2	4.7	6.2	4.8	4.3	5.3	5.1	5.4
	$L R(b c)$	3.2	3.4	4.7	3.4	3.2	3.8	3.6	4.2
	T^{2}	3.5	4.2	5.4	4.0	3.2	4.1	3.8	4.2
	$T^{2}(b c)$	3.4	4.0	5.4	3.9	3.2	4.2	4.0	4.6
	T_{1}	9.6	9.2	7.2	8.3	7.0	6.6	6.3	5.0
	T_{N}	12.6	11.9	10.3	10.8	9.8	8.9	9.2	7.2
$(2,3)$	$L R$	10.5	11.9	12.2	10.1	10.6	10.1	8.8	8.3
	$L R(b c)$	6.7	8.6	8.9	6.4	7.3	7.3	5.5	6.2
	T^{2}	8.0	10.0	9.9	6.8	7.4	8.0	5.8	6.8
	$T^{2}(b c)$	7.7	9.6	9.6	6.8	7.4	8.1	6.0	7.4
	T_{1}	23.9	19.5	18.5	18.0	14.9	11.9	10.9	8.5
	T_{N}	28.7	24.7	23.8	22.4	19.3	16.6	15.1	12.5
$(2,4)$	$L R$	40.1	39.1	37.6	29.7	29.6	29.4	23.1	22.1
	$L R(b c)$	27.5	27.8	29.6	19.9	20.6	21.6	15.5	16.1
	T^{2}	23.1	24.4	26.6	15.2	17.0	19.0	12.1	15.4
	$T^{2}(b c)$	22.7	23.7	26.1	15.0	17.0	19.2	12.4	16.2
	T_{1}	61.3	57.4	47.4	46.5	38.7	35.3	28.9	19.7
	T_{N}	67.3	64.1	55.6	53.5	47.1	42.5	36.9	28.0
$(2,6)$	$L R$	90.6	87.0	83.1	78.4	74.0	69.0	59.8	54.1
	$L R(b c)$	69.4	68.9	67.0	59.6	58.0	55.4	45.3	43.0
	T^{2}	31.8	38.0	50.3	27.2	34.6	38.9	27.4	34.0
	$T^{2}(b c)$	32.4	38.7	50.7	27.5	35.0	39.5	27.8	35.0
	T_{1}	97.0	95.5	89.1	87.9	81.3	73.2	64.2	46.2
	T_{N}	98.2	97.2	93.4	91.9	87.3	80.6	73.2	58.6
$(2,8)$	$L R$	99.2	98.9	97.0	95.4	93.0	90.9	83.8	75.6
	$L R(b c)$	71.2	71.1	78.8	71.0	70.1	72.4	63.2	61.3
	T^{2}	23.7	30.1	46.7	29.3	38.2	48.8	35.2	45.3
	$T^{2}(b c)$	28.2	30.4	47.3	30.8	39.4	49.3	35.7	46.8
	T_{1}	100	99.8	98.3	97.9	95.0	90.6	84.0	64.7
	T_{N}	100	99.9	99.4	98.8	97.4	95.3	91.0	77.0
$(2,10)$	$L R$	100	99.6	99.4	98.3	98.1	97.2	93.3	87.7
	$L R(b c)$	62.0	65.4	70.0	69.3	70.3	75.5	68.0	67.5
	T^{2}	13.9	24.3	43.3	21.7	35.3	44.8	38.2	49.2
	$T^{2}(b c)$	16.7	27.2	45.4	24.3	36.8	46.1	39.6	50.5
	T_{1}	100	100	99.8	99.7	98.4	96.5	92.5	77.5
	T_{N}	100	100	99.9	99.9	99.5	98.6	96.5	87.6

Table 3.3: Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=20, n_{2}=20, \alpha=0.05$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Statistics	(.05, .05)	(.05, .10)	(.05, .20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(2,2)$	$L R$	3.8	3.9	4.6	4.7	4.8	4.9	5.1	5.1
	$L R(b c)$	3.2	3.2	4.0	4.1	4.4	4.7	4.8	4.9
	T^{2}	3.2	2.9	4.0	3.7	3.7	3.7	3.8	3.7
	$T^{2}(b c)$	3.2	2.9	3.9	3.6	3.6	3.6	3.8	3.8
	T_{1}	4.5	5.0	4.8	5.3	4.7	4.3	4.8	4.8
	T_{N}	5.3	5.9	5.3	6.0	5.9	5.3	5.4	5.6
$(2,2.5)$	$L R$	14.0	12.5	12.8	11.9	11.8	12.2	10.5	10.7
	$L R(b c)$	12.2	11.2	11.2	11.1	11.1	11.3	10.1	10.4
	T^{2}	11.3	10.6	11.7	9.4	9.8	10.7	8.4	9.5
	$T^{2}(b c)$	10.9	10.4	11.4	9.4	9.7	10.7	8.5	9.6
	T_{1}	16.8	15.0	12.8	13.3	11.2	11.0	9.4	8.1
	T_{N}	18.8	16.6	14.7	14.9	12.6	12.6	11.2	9.4
$(2,3)$	$L R$	37.7	36.8	35.1	32.0	30.3	29.3	25.1	22.8
	$L R(b c)$	33.8	33.8	32.8	30.3	29.0	27.7	24.4	22.5
	T^{2}	32.4	32.2	32.9	26.4	26.4	26.4	21.2	20.6
	$T^{2}(b c)$	32.0	32.0	32.6	26.2	26.4	26.4	21.4	20.9
	T_{1}	45.6	42.0	35.2	33.9	31.1	27.0	24.3	18.1
	T_{N}	48.7	45.1	38.1	36.7	34.4	30.0	27.0	20.9
$(2,4)$	$L R$	87.2	84.3	81.0	76.8	73.9	71.2	63.5	58.4
	$L R(b c)$	84.2	81.6	78.8	74.7	72.8	70.2	62.4	57.7
	T^{2}	81.8	80.0	77.7	69.9	69.4	67.3	55.4	54.4
	$T^{2}(b c)$	81.6	79.7	77.5	69.8	69.4	67.4	55.8	55.0
	T_{1}	92.0	88.9	83.4	80.5	74.5	68.5	61.8	48.3
	T_{N}	93.1	90.4	85.5	82.9	77.3	71.8	64.8	53.4
$(2,6)$	$L R$	100	99.9	99.9	99.7	99.2	98.7	96.2	92.6
	$L R(b c)$	98.7	99.0	99.0	99.0	98.4	97.8	95.6	92.3
	T^{2}	99.4	99.7	99.6	97.2	97.8	97.3	90.7	90.3
	$T^{2}(b c)$	99.7	99.7	99.7	97.7	97.9	97.5	91.6	90.7
	T_{1}	100	100	99.8	99.6	99.1	98.3	95.9	88.3
	T_{N}	100	100	99.8	99.7	99.3	98.6	96.9	90.5
$(2,8)$	$L R$	100	100	100	100	100	99.9	99.9	99.3
	$L R(b c)$	98.0	98.3	99.1	99.0	98.7	99.4	99.1	98.6
	T^{2}	98.9	98.9	99.8	98.2	99.0	99.0	96.6	97.7
	$T^{2}(b c)$	99.2	99.6	99.8	99.1	99.4	99.4	97.4	97.9
	T_{1}	100	100	100	100	100	99.9	99.7	98.1
	T_{N}	100	100	100	100	100	100	99.8	98.7
$(2,10)$	$L R$	100	100	100	100	100	100	100	100
	$L R(b c)$	98.3	98.0	98.7	98.9	99.1	99.0	98.8	99.0
	T^{2}	99.5	98.5	99.6	99.0	98.3	99.3	96.9	98.3
	$T^{2}(b c)$	99.8	99.4	99.9	99.5	99.2	99.6	98.0	98.8
	T_{1}	100	100	100	100	100	100	100	99.5
	T_{N}	100	100	100	100	100	100	100	99.7

Table 3.4: Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=50, n_{2}=50, \alpha=0.05$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Statistics	(.05, .05)	(.05, .10)	(.05, .20)	(.20,.20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(2,2)$	$L R$	5.3	4.5	5.4	5.3	5.3	4.5	5.4	5.7
	$L R(b c)$	4.9	4.3	5.3	5.2	5.2	4.5	5.4	5.7
	T^{2}	5.0	4.3	5.1	5.0	5.0	4.2	4.9	5.2
	$T^{2}(b c)$	5.0	4.2	5.0	5.0	4.9	4.1	4.9	5.2
	T_{1}	5.1	4.8	4.5	4.9	4.9	5.1	5.2	5.0
	T_{N}	5.4	5.0	4.7	5.2	5.2	5.2	5.5	5.1
$(2,2.5)$	$L R$	34.0	32.7	30.4	27.8	26.7	25.6	21.2	20.0
	$L R(b c)$	33.1	32.1	29.8	27.6	26.5	25.4	21.2	19.9
	T^{2}	33.3	32.1	30.2	26.9	26.0	25.2	20.3	20.1
	$T^{2}(b c)$	32.9	31.8	30.0	26.8	25.9	25.2	20.3	20.2
	T_{1}	35.1	34.0	29.0	26.5	25.8	23.1	20.1	15.5
	T_{N}	36.0	35.0	30.2	27.3	26.7	24.1	21.0	16.1
$(2,3)$	$L R$	83.3	81.6	78.2	72.7	69.4	66.7	58.7	52.2
	$L R(b c)$	82.8	81.0	77.8	72.4	69.2	66.6	58.6	52.0
	T^{2}	83.0	81.0	78.0	71.3	68.7	66.3	57.2	52.2
	$T^{2}(b c)$	82.9	80.9	78.0	71.2	68.5	66.3	57.2	52.3
	T_{1}	83.3	82.2	76.1	72.9	67.4	64.1	56.9	46.7
	T_{N}	83.9	83.0	77.2	73.4	68.3	65.2	58.1	48.1
$(2,4)$	$L R$	99.9	99.9	99.8	99.7	99.3	98.6	97.1	93.9
	$L R(b c)$	99.7	99.6	99.7	99.6	99.2	98.5	97.1	93.9
	T^{2}	99.9	99.9	99.8	99.6	99.2	98.5	97.0	94.0
	$T^{2}(b c)$	99.9	99.9	99.8	99.6	99.2	98.5	97.0	94.0
	T_{1}	100	100	99.8	99.4	99.2	98.5	96.3	90.9
	T_{N}	100	100	99.8	99.5	99.3	98.7	96.5	91.5
$(2,6)$	$L R$	100	100	100	100	100	100	100	100
	$L R(b c)$	99.9	100	100	100	100	100	100	100
	T^{2}	100	100	100	100	100	100	100	100
	$T^{2}(b c)$	100	100	100	100	100	100	100	100
	T_{1}	100	100	100	100	100	100	100	100
	T_{N}	100	100	100	100	100	100	100	100
$(2,8)$	$L R$	100	100	100	100	100	100	100	100
	$L R(b c)$	100	100	99.9	100	100	100	100	100
	T^{2}	100	100	100	100	100	100	100	100
	$T^{2}(b c)$	100	100	100	100	100	100	100	100
	T_{1}	100	100	100	100	100	100	100	100
	T_{N}	100	100	100	100	100	100	100	100
$(2,10)$	$L R$	100	100	100	100	100	100	100	100
	$L R(b c)$	100	100	100	100	100	100	100	100
	T^{2}	100	100	100	100	100	100	100	100
	$T^{2}(b c)$	100	100	100	100	100	100	100	100
	T_{1}	100	100	100	100	100	100	100	100
	T_{N}	100	100	100	100	100	100	100	100

Table 3.5: Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=5, n_{2}=5$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Par ${ }^{\dagger}$	$(.05, .05)$	(.05, .10)	(.05, .20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(2,2)$	c_{10}	-0.0177	-0.0174	-0.0202	0.0234	-0.0352	0.0688	0.0716	-0.0080
	c_{20}	0.0529	0.0526	0.1023	-0.0119	-0.0086	-0.0241	0.0084	-0.0261
	$c_{1 a}$	-0.0679	-0.0576	-0.0594	-0.0098	0.0071	0.0721	-0.0005	0.0039
	$c_{2 a}$	-0.0097	-0.0218	-0.0083	0.0045	0.0628	0.0099	-0.0081	-0.0175
$(2,2.5)$	c_{10}	-0.0179	-0.0154	-0.0225	0.0150	0.0075	0.0061	0.0099	-0.0011
	c_{20}	0.0115	0.0300	0.0629	0.0526	-0.0028	-0.0084	0.0070	0.0042
	$c_{1 a}$	-0.0481	-0.0496	-0.0549	-0.0351	-0.0064	0.0167	0.0028	-0.0033
	$c_{2 a}$	-0.0355	0.0218	-0.0415	-0.0377	-0.0188	0.0031	-0.0069	0.0055
$(2,3)$	c_{10}	-0.0072	-0.0173	-0.0175	0.0127	0.0170	0.0083	0.0485	-0.0052
	c_{20}	0.0071	0.0216	0.0589	0.0492	0.0816	0.1154	0.1585	-0.0474
	$c_{1 a}$	-0.0326	-0.0417	-0.0422	-0.0329	-0.0035	-0.0100	0.0243	-0.0318
	$c_{2 a}$	-0.0082	-0.0147	-0.0366	-0.0299	0.0086	-0.0949	-0.0924	0.0077
$(2,4)$	c_{10}	-0.0002	-0.0042	-0.0139	0.0138	0.0110	-0.0003	-0.0080	-0.0019
	c_{20}	0.0056	0.0256	0.0583	0.0482	0.1076	0.0614	-0.0013	-0.0127
	$c_{1 a}$	0.0112	-0.0098	-0.0042	0.0333	0.0302	0.0135	0.0293	-0.0058
	$c_{2 a}$	0.0014	-0.0213	-0.0317	-0.0503	-0.0077	-0.0011	0.0075	-0.0098
$(2,6)$	c_{10}	0.0183	0.0033	-0.0095	0.0304	0.0099	0.0088	-0.0441	0.0032
	c_{20}	0.0281	0.0627	0.0024	0.0735	0.0319	0.0112	-0.0125	0.0033
	$c_{1 a}$	0.0343	0.0708	0.0400	0.0712	0.0579	0.0807	0.0015	-0.0070
	$c_{2 a}$	-0.0550	-0.0615	-0.0721	-0.0681	-0.0776	-0.0836	0.0873	0.0424
$(2,8)$	c_{10}	0.0433	0.0223	-0.0089	0.0336	0.0219	0.0023	0.0091	-0.0073
	c_{20}	0.0483	0.0792	0.0227	0.0479	-0.0237	0.0076	-0.0022	-0.0091
	$c_{1 a}$	0.0328	0.0477	0.0746	-0.0291	0.0422	0.0994	-0.0877	0.0434
	$c_{2 a}$	-0.0470	-0.0565	-0.0727	-0.0642	-0.0771	-0.0845	0.0089	0.0870
$(2,10)$	c_{10}	0.0711	0.0298	-0.0079	0.0551	0.0169	-0.0002	0.0422	0.0007
	c_{20}	0.0322	0.0702	-0.0355	0.0047	0.0058	0.0319	0.0025	-0.0579
	$c_{1 a}$	0.0349	- 0.0501	0.0412	0.0092	0.0258	0.0341	0.0054	-0.0311
	$c_{2 a}$	-0.0421	-0.0522	-0.0733	-0.0641	-0.0767	-0.0890	-0.0861	0.07151

Par $^{\dagger}=$ Parameters
c_{10} is c_{1} under null hypothesis
c_{20} is c_{2} under null hypothesis
$c_{1 a}$ is c_{1} under alternative hypothesis
$c_{2 a}$ is c_{2} under alternative hypothesis

Table 3.6: Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=10, n_{2}=10$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Par ${ }^{\dagger}$	$(.05, .05)$	(.05, .10)	(.05, .20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(2,2)$	c_{10}	-0.0145	-0.0148	-0.0164	-0.0024	-0.0040	-0.0067	0.0112	0.0051
	c_{20}	-0.0113	-0.0069	0.0039	0.0002	0.0118	0.0303	0.0316	0.0093
	$c_{1 a}$	-0.0315	-0.0303	-0.0319	-0.0229	-0.0228	-0.0232	-0.0132	-0.0157
	$c_{2 a}$	-0.0546	-0.0555	-0.0563	-0.0564	-0.0575	-0.0570	-0.0579	-0.0521
$(2,2.5)$	c_{10}	-0.0118	-0.0125	-0.0148	-0.0005	-0.0024	-0.0066	0.0136	0.0059
	c_{20}	-0.0138	-0.0102	0.0000	-0.0031	0.0049	0.0194	0.0279	0.0743
	$c_{1 a}$	-0.0198	-0.0160	-0.0214	-0.0052	-0.0083	-0.0103	0.0102	0.0003
	$c_{2 a}$	-0.0458	-0.0467	-0.0489	-0.0482	-0.0509	-0.0519	-0.0532	-0.0529
$(2,3)$	c_{10}	-0.0065	-0.0086	-0.0110	0.0046	0.0003	-0.0029	0.0201	0.0082
	c_{20}	-0.0129	-0.0091	-0.0006	-0.0043	0.0048	0.0181	0.0230	0.0720
	$c_{1 a}$	0.0067	0.0024	0.0006	0.0212	0.0124	0.0111	0.0446	0.0265
	$c_{2 a}$	-0.0395	-0.0409	-0.0438	-0.0439	-0.0462	-0.0487	-0.0501	-0.0512
$(2,4)$	c_{10}	0.0070	0.0046	-0.0035	0.0197	0.0126	0.0084	0.0271	0.0157
	c_{20}	-0.0100	-0.0056	0.0074	-0.0041	0.0053	0.0204	0.0209	0.0710
	$c_{1 a}$	0.0758	0.0660	0.0464	0.097	0.0812	0.0740	0.1025	0.0835
	$c_{2 a}$	-0.0318	-0.0342	-0.0382	-0.0375	-0.0412	-0.0446	-0.0469	-0.0510
$(2,6)$	c_{10}	0.0473	0.0374	0.0193	0.0475	0.0406	0.0292	0.0500	0.0308
	c_{20}	-0.0083	-0.0011	0.0156	-0.0042	0.0077	0.0264	0.0188	0.0794
	$c_{1 a}$	0.0317	0.0094	0.0068	0.0419	0.0084	0.0612	0.0255	0.0433
	$c_{2 a}$	-0.0236	-0.0269	-0.0334	-0.0318	-0.0369	-0.0416	-0.0443	-0.0514
$(2,8)$	c_{10}	0.0903	0.0743	0.0475	0.0862	0.0690	0.0524	0.0718	0.0456
	c_{20}	-0.0109	-0.0069	0.0178	-0.0085	0.0034	0.0259	0.0197	0.0821
	$c_{1 a}$	0.0011	0.0057	-0.0318	0.0137	0.0472	0.0369	0.0758	0.0146
	$c_{2 a}$	-0.0184	-0.0224	-0.0305	-0.0282	-0.0348	-0.0409	-0.0437	-0.0526
$(2,10)$	c_{10}	0.0228	-0.0194	0.0680	0.1080	0.0886	0.0640	0.0824	0.0580
	c_{20}	-0.0128	-0.0078	0.0196	-0.0082	0.0039	0.0302	0.0124	0.0847
	$c_{1 a}$	0.0128	0.0251	0.0413	0.0021	0.0655	0.02087	0.0419	0.0944
	$c_{2 a}$	-0.0150	-0.0204	-0.0297	-0.0267	-0.0337	-0.0403	-0.0440	-0.0536

Par $^{\dagger}=$ Parameters
c_{10} is c_{1} under null hypothesis
c_{20} is c_{2} under null hypothesis
$c_{1 a}$ is c_{1} under alternative hypothesis
$c_{2 a}$ is c_{2} under alternative hypothesis

Table 3.7: Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=20, n_{2}=20$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Par ${ }^{\dagger}$	(.05, .05)	(.05, .10)	(.05, .20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(2,2)$	c_{10}	-0.0093	-0.0097	-0.0107	-0.0051	-0.0064	-0.0078	0.0004	-0.0032
	c_{20}	-0.0094	-0.0078	-0.0032	-0.0055	0.0002	0.0049	0.0076	0.0297
	$c_{1 a}$	-0.0190	-0.0185	-0.0201	-0.0187	-0.0186	-0.0198	-0.0180	-0.0183
	$c_{2 a}$	-0.0267	-0.0269	-0.0280	-0.0279	-0.0286	-0.0292	-0.0296	-0.0289
$(2,2.5)$	c_{10}	-0.0071	-0.0080	-0.0095	-0.0037	-0.0050	-0.0064	0.0013	-0.0029
	c_{20}	-0.0093	-0.0077	-0.0037	-0.0057	-0.0014	0.0036	0.0055	0.0253
	$c_{1 a}$	-0.0049	-0.0083	-0.0093	-0.0059	-0.0072	-0.0091	-0.0054	-0.0092
	$c_{2 a}$	-0.0218	-0.0226	-0.0239	-0.0240	-0.0251	-0.0263	-0.0271	-0.0280
$(2,3)$	c_{10}	-0.0051	-0.0058	-0.0076	-0.0008	-0.0024	-0.0042	0.0033	-0.0013
	c_{20}	-0.0083	-0.0068	-0.0029	-0.0057	-0.0015	0.0032	0.0046	0.0228
	$c_{1 a}$	0.0148	0.0124	0.0073	0.0148	0.0131	0.0082	0.0123	0.0066
	$c_{2 a}$	-0.0189	-0.0198	-0.0216	-0.0214	-0.0230	-0.0245	-0.0256	-0.0276
$(2,4)$	c_{10}	0.0040	0.0013	-0.0024	0.0079	0.0043	0.0014	0.0106	0.0035
	c_{20}	-0.0078	-0.0063	-0.0019	-0.0061	-0.0018	0.0029	0.0030	0.0229
	$c_{1 a}$	0.0781	0.0654	0.0561	0.0763	0.0635	0.0554	0.0646	0.0479
	$c_{2 a}$	-0.0150	-0.0163	-0.0187	-0.0183	-0.0206	-0.0225	-0.0241	-0.0271
$(2,6)$	c_{10}	0.0336	0.0291	0.0197	0.0339	0.0265	0.0200	0.0313	0.0187
	c_{20}	-0.0083	-0.0080	-0.0044	-0.0089	-0.0065	-0.0010	-0.0033	0.0163
	$c_{1 a}$	0.0042	0.0048	0.0284	0.0543	0.0218	0.0093	0.0243	0.0513
	$c_{2 a}$	-0.0106	-0.0123	-0.0158	-0.0151	-0.0181	-0.0208	-0.0225	-0.0270
$(2,8)$	c_{10}	0.0612	0.0564	0.0451	0.0598	0.0491	0.0413	0.0530	0.0350
	c_{20}	-0.0080	-0.0088	-0.0080	-0.0103	-0.0098	-0.0065	-0.0089	0.0081
	$c_{1 a}$	0.0311	0.0247	0.0328	0.0988	0.0455	0.0077	0.0062	0.0429
	$c_{2 a}$	-0.0085	-0.0100	-0.0140	-0.0136	-0.017	-0.0197	-0.0219	-0.0272
$(2,10)$	c_{10}	0.0800	0.0783	0.0676	0.0772	0.0673	0.0616	0.0705	0.0518
	c_{20}	-0.0069	-0.0084	-0.0103	-0.0109	-0.0119	-0.0111	-0.0118	0.0008
	$c_{1 a}$	0.0091	0.0118	0.0248	0.0448	0.0013	0.0054	0.0346	0.0288
	$c_{2 a}$	-0.0072	-0.0090	-0.0128	-0.0126	-0.0160	-0.0192	-0.0217	-0.0276

Par $^{\dagger}=$ Parameters
c_{10} is c_{1} under null hypothesis
c_{20} is c_{2} under null hypothesis
$c_{1 a}$ is c_{1} under alternative hypothesis
$c_{2 a}$ is c_{2} under alternative hypothesis

Table 3.8: Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=50, n_{2}=50$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Par ${ }^{\dagger}$	(.05, .05)	(.05, .10)	(.05, .20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(2,2)$	c_{10}	-0.0042	-0.0044	-0.0047	-0.0028	-0.0033	-0.0037	-0.0011	-0.0024
	c_{20}	-0.0042	-0.0036	-0.0020	-0.0027	-0.0011	0.0009	0.0016	0.0090
	$c_{1 a}$	-0.0090	-0.0088	-0.0092	-0.0094	-0.0097	-0.0098	-0.0104	-0.0106
	$c_{2 a}$	-0.0104	-0.0106	-0.0110	-0.0111	-0.0115	-0.0118	-0.0120	-0.0121
$(2,2.5)$	c_{10}	-0.0036	-0.0038	-0.0043	-0.0024	-0.0028	-0.0034	-0.0009	-0.0025
	c_{20}	-0.0038	-0.0033	-0.0018	-0.0026	-0.0012	0.0007	0.0013	0.0080
	$c_{1 a}$	-0.0031	-0.0038	-0.0044	-0.0052	-0.0061	-0.0063	-0.0077	-0.0084
	$c_{2 a}$	-0.0086	-0.0089	-0.0095	-0.0095	-0.0101	-0.0107	-0.0111	-0.0117
$(2,3)$	c_{10}	-0.0026	-0.0030	-0.0037	-0.0015	-0.0022	-0.0029	-0.0005	-0.0020
	c_{20}	-0.0036	-0.0030	-0.0016	-0.0026	-0.0011	0.0009	0.0009	0.0077
	$c_{1 a}$	0.0141	0.0122	0.0076	0.0051	0.0027	0.0013	-0.0015	-0.0038
	$c_{2 a}$	-0.0073	-0.0077	-0.0085	-0.0085	-0.0093	-0.0100	-0.0105	-0.0114
$(2,4)$	c_{10}	0.0009	-0.0001	-0.0016	0.0016	0.0001	-0.0010	0.0019	-0.0008
	c_{20}	-0.0036	-0.0032	-0.0017	-0.0031	-0.0017	0.0002	0.0001	0.0074
	$c_{1 a}$	0.0647	0.0605	0.0513	0.0351	0.0297	0.0248	0.0186	0.0107
	$c_{2 a}$	-0.0058	-0.0063	-0.0073	-0.0073	-0.0083	-0.0092	-0.0098	-0.0112
$(2,6)$	c_{10}	0.0130	0.0115	0.0080	0.0113	0.0087	0.0065	0.0099	0.0048
	c_{20}	-0.0037	-0.0040	-0.0039	-0.0044	-0.0040	-0.0029	-0.0029	0.0038
	$c_{1 a}$	-0.0055	0.0122	0.0310	0.0382	-0.0086	0.0299	0.0511	0.0133
	$c_{2 a}$	-0.0041	-0.0048	-0.0061	-0.0061	-0.0073	-0.0083	-0.0092	-0.0111
$(2,8)$	c_{10}	0.0226	0.0206	0.0175	0.0208	0.0181	0.0153	0.0195	0.0123
	c_{20}	-0.0032	-0.0037	-0.0045	-0.0046	-0.0050	-0.0049	-0.0050	-0.0004
	$c_{1 a}$	-0.0054	0.0291	0.0216	0.0428	0.0097	0.0278	0.0081	0.0317
	$c_{2 a}$	-0.0033	-0.0040	-0.0055	-0.0055	-0.0068	-0.0079	-0.0090	-0.0112
$(2,10)$	c_{10}	0.0301	0.0281	0.0248	0.0287	0.0257	0.0227	0.0271	0.0194
	c_{20}	-0.0027	-0.0034	-0.0045	-0.0046	-0.0053	-0.0057	-0.0060	-0.0033
	$c_{1 a}$	0.0088	-0.0117	0.0052	0.0314	0.0054	0.0292	0.0214	0.0084
	$c_{2 a}$	-0.0028	-0.0036	-0.0052	-0.0051	-0.0065	-0.0078	-0.0089	-0.0114

Par $^{\dagger}=$ Parameters
c_{10} is c_{1} under null hypothesis
c_{20} is c_{2} under null hypothesis
$c_{1 a}$ is c_{1} under alternative hypothesis
$c_{2 a}$ is c_{2} under alternative hypothesis

Table 3.9: Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=5, n_{2}=5, \alpha=0.05$

$\left(c_{1}, c_{2}\right)$									
$\begin{aligned} & \left(\mu_{1}, \mu_{2}\right) \\ & \hline(1,1) \end{aligned}$	Statistics	(.05, .05)	(.05, .10)	(.05,.20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
	$L R$	2.8	2.1	3.0	2.5	2.7	3.7	2.9	3.3
	$L R(b c)$	2.5	1.9	2.8	2.3	2.4	3.5	2.6	3.0
	T^{2}	2.7	2.4	3.5	3.3	3.3	3.8	3.0	3.4
	$T^{2}(b c)$	3.0	2.8	3.7	3.6	3.7	4.0	3.5	3.7
	T_{1}	3.9	3.5	3.3	3.3	3.4	3.2	2.9	2.6
	T_{N}	8.2	7.9	8.4	8.2	7.9	8.0	7.8	7.3
$(1,1.1)$	$L R$	3.0	2.4	3.3	2.9	2.7	3.9	3.3	3.6
	$L R(b c)$	2.7	2.2	3.0	2.7	2.4	3.7	3.1	3.5
	T^{2}	2.8	2.6	3.6	3.5	3.4	4.1	3.2	3.7
	$T^{2}(b c)$	3.2	3.0	3.7	3.8	3.8	4.4	3.6	3.9
	T_{1}	4.1	3.6	3.7	3.6	3.9	3.3	3.1	2.7
	T_{N}	8.5	8.1	8.5	8.3	8.9	8.4	8.2	7.5
$(1,1.2)$	$L R$	3.1	2.6	3.5	3.0	2.9	4.1	3.6	3.9
	$L R(b c)$	2.9	2.5	3.2	2.9	2.9	3.9	3.3	3.7
	T^{2}	2.9	2.8	3.9	4.0	3.6	4.2	3.5	4.0
	$T^{2}(b c)$	3.4	3.4	3.9	4.3	3.9	4.4	3.7	4.1
	T_{1}	4.4	4.5	4.0	4.2	4.0	3.7	3.6	2.8
	T_{N}	9.3	9.4	8.3	9.4	8.7	8.3	8.4	7.7
$(1,1.4)$		4.2	3.6	4.6	3.9	3.7	4.4	4.0	4.5
	$L R(b c)$	3.8	3.2	4.3	3.7	3.6	4.2	3.9	4.4
	T^{2}	4.3	3.8	4.7	4.5	4.4	4.6	3.9	4.5
	$T^{2}(b c)$	5.2	4.6	5.1	5.0	5.0	4.8	4.1	4.5
	T_{1}	6.7	5.4	5.4	5.6	4.5	4.3	4.1	3.0
	T_{N}	12.4	11.2	11.4	11.7	10.4	9.7	10.2	8.3
$(1,1.5)$	$L R$	4.4	3.8	4.6	4.2	4.2	4.9	4.6	5.0
	$L R(b c)$	4.0	3.5	4.4	3.9	4.1	4.8	4.3	4.7
	T^{2}	4.4	4.0	4.9	4.6	4.6	4.9	4.5	5.0
	$T^{2}(b c)$	5.4	4.8	5.2	5.3	5.3	5.2	4.6	5.3
	T_{1}	7.3	7.0	5.6	6.3	5.6	4.9	4.4	3.8
	T_{N}	14.0	13.4	11.6	12.6	11.8	11.7	10.8	9.8
(1, 2)	$L R$	8.3	7.9	8.5	8.1	6.9	7.2	7.0	7.3
	$L R(b c)$	8.2	7.6	8.4	7.9	6.8	7.0	7.0	7.1
	T^{2}	9.4	8.9	10.0	9.7	7.4	7.7	7.6	8.0
	$T^{2}(b c)$	10.8	10.1	11.2	11.0	8.2	8.6	8.6	9.1
	T_{1}	17.0	14.6	11.7	12.2	10.0	9.0	7.8	5.4
	T_{N}	28.2	25.4	22.6	23.4	20.8	19.1	18.4	13.8

Table 3.10: Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=10, n_{2}=10, \alpha=0.05$

$\left(c_{1}, c_{2}\right)$									
$\begin{aligned} & \left(\mu_{1}, \mu_{2}\right) \\ & \hline(1,1) \end{aligned}$	Statistics	(.05, .05)	(.05, .10)	(.05, .20)	(.20,.20)	(.20,.30)	(.20,.40)	(.40, .50)	(.40, .80)
	$L R$	4.1	4.2	4.2	4.2	4.4	4.6	3.9	4.2
	$L R(b c)$	3.4	3.6	3.5	3.3	3.6	4.2	3.5	4.0
	T^{2}	3.1	3.6	3.4	3.3	3.5	3.7	3.6	3.8
	$T^{2}(b c)$	3.1	3.4	3.3	3.2	3.5	4.2	3.9	4.1
	T_{1}	4.0	4.4	4.4	4.5	4.2	3.8	4.2	4.7
	T_{N}	6.5	6.9	6.2	6.4	6.4	6.4	6.4	6.6
$(1,1.1)$	$L R$	4.7	4.9	4.7	4.3	4.6	4.6	4.4	4.4
	$L R(b c)$	4.2	4.2	3.9	3.5	4.0	4.3	4.0	4.3
	T^{2}	3.4	3.9	3.7	3.6	4.1	3.9	3.8	4.2
	$T^{2}(b c)$	3.5	4.0	3.9	3.4	4.4	4.4	4.2	4.6
	T_{1}	4.9	4.9	4.6	4.6	4.3	4.5	4.3	4.8
	T_{N}	7.0	7.0	6.6	7.0	6.7	6.6	6.5	6.9
$(1,1.2)$	$L R$	4.8	5.1	4.8	4.6	4.7	4.8	4.7	4.7
	$L R(b c)$	4.3	4.3	3.9	4.2	4.2	4.4	4.4	4.3
	T^{2}	4.0	4.7	4.2	3.7	4.2	4.8	4.0	4.6
	$T^{2}(b c)$	4.1	4.8	4.2	3.9	4.5	5.1	4.3	5.0
	T_{1}	6.0	6.3	5.9	5.6	4.9	4.7	5.3	4.8
	T_{N}	8.5	8.7	8.6	7.9	7.6	6.9	7.8	6.9
$(1,1.4)$		5.2	5.7	6.6	5.4	5.0	5.9	5.6	5.2
	$L R(b c)$	4.5	5.0	5.6	4.8	4.5	5.3	5.1	4.8
	T^{2}	4.8	5.5	6.7	5.2	5.1	6.5	6.3	5.0
	$T^{2}(b c)$	4.8	5.6	6.8	5.3	5.2	6.7	6.6	5.4
	T_{1}	11.2	10.2	10.1	9.2	8.8	7.9	7.7	6.2
	T_{N}	14.5	14.0	13.3	12.5	12.3	11.1	10.8	9.1
$(1,1.5)$	$L R$	6.4	6.5	7.7	6.4	6.2	6.9	5.6	5.3
	$L R(b c)$	5.1	5.6	6.8	5.7	5.5	6.1	5.1	5.0
	T^{2}	6.3	6.7	7.7	6.2	6.5	7.2	6.1	5.9
	$T^{2}(b c)$	6.6	6.8	8.0	6.5	6.7	7.5	6.4	6.3
	T_{1}	14.0	13.9	11.3	11.9	10.3	9.5	8.9	6.7
	T_{N}	18.4	18.0	14.8	16.2	14.5	13.2	13.2	10.2
$(1,2)$		15.5	16.6	17.0		13.6	16.9	11.0	10.5
	$L R(b c)$	13.9	14.8	15.1	10.4	12.2	15.0	10.1	9.2
	T^{2}	15.6	16.6	17.7	11.7	13.9	17.3	12.3	11.8
	$T^{2}(b c)$	15.9	17.0	18.0	12.0	14.5	17.8	13.0	12.7
	T_{1}	37.2	33.2	29.8	29.9	25.9	23.7	19.7	15.6
	T_{N}	43.8	39.6	37.4	36.8	33.0	31.1	26.8	22.2

Table 3.11: Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=20, n_{2}=20, \alpha=0.05$

($\left.c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Statistics	(.05, .05)	(.05, .10)	(.05, .20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(1,1)$	$L R$	3.0	3.2	3.1	3.0	3.0	3.1	3.3	3.7
	$L R(b c)$	2.2	2.3	2.4	2.4	2.4	2.6	2.6	3.0
	T^{2}	2.2	2.1	2.5	2.3	2.1	2.4	2.3	2.8
	$T^{2}(b c)$	2.2	2.1	2.5	2.4	2.1	2.4	2.4	2.9
	T_{1}	5.2	5.0	5.0	4.3	4.8	4.9	4.5	4.9
	T_{N}	6.1	5.6	6.2	4.9	5.8	5.7	5.4	5.9
$(1,1.1)$	$L R$	3.0	3.2	3.4	3.3	3.0	3.4	3.4	3.9
	$L R(b c)$	2.4	2.4	2.9	2.5	2.5	2.8	2.8	3.4
	T^{2}	2.4	2.3	2.6	2.7	2.3	2.6	2.5	2.9
	$T^{2}(b c)$	2.4	2.3	2.5	2.7	2.3	2.5	2.5	2.9
	T_{1}	5.4	5.3	5.2	5.0	6.1	5.7	5.1	5.3
	T_{N}	6.2	6.2	6.3	6.1	7.0	6.8	5.8	6.2
$(1,1.2)$	$L R$	4.1	4.0	4.7	3.4	4.6	4.9	4.7	4.4
	$L R(b c)$	2.9	3.0	3.5	2.4	3.3	3.7	3.6	3.3
	T^{2}	3.7	3.6	4.2	2.7	3.8	4.3	3.7	3.5
	$T^{2}(b c)$	3.5	3.5	4.1	2.6	3.9	4.3	3.8	3.6
	T_{1}	8.7	8.1	7.0	8.2	7.1	7.7	7.0	6.9
	T_{N}	9.7	9.2	8.3	9.4	8.3	8.9	8.2	8.0
$(1,1.4)$		10.0	9.8	9.9	8.8	9.9	10.0	9.1	8.9
	$L R(b c)$	7.0	7.2	7.8	6.5	7.2	7.5	6.4	6.9
	T^{2}	7.9	8.2	8.1	6.3	7.0	7.9	6.3	6.7
	$T^{2}(b c)$	7.7	8.0	8.0	6.3	7.1	8.1	6.5	7.0
	T_{1}	18.1	17.4	16.4	17.0	15.4	14.5	13.7	10.1
	T_{N}	20.2	19.5	18.5	19.1	17.2	16.6	15.5	12.1
$(1,1.5)$	$L R$	13.2	13.6	14.5	13.3	12.9	14.6	12.7	11.4
	$L R(b c)$	9.6	10.2	11.1	9.6	9.7	10.8	9.0	8.9
	T^{2}	9.8	10.7	11.2	9.1	9.6	11.5	8.4	8.7
	$T^{2}(b c)$	9.6	10.8	11.2	9.1	9.7	11.9	8.5	9.1
	T_{1}	26.2	24.3	23.0	21.7	20.8	20.4	17.3	12.9
	T_{N}	28.7	26.5	25.6	24.0	23.4	23.1	20.0	15.3
$(1,2)$	LR	47.7	47.4	49.0	43.1	42.9	41.8	37.3	33.5
	$L R(b c)$	37.9	37.9	41.0	34.3	34.4	34.4	30.3	28.0
	T^{2}	32.5	34.3	37.8	27.2	29.8	31.8	23.2	25.3
	$T^{2}(b c)$	32.8	34.5	38.1	28.0	30.5	32.7	23.9	26.4
	T_{1}	68.3	65.4	61.2	59.8	56.5	51.2	45.8	36.3
	T_{N}	70.9	68.3	64.5	62.6	59.6	55.0	49.7	40.1

Table 3.12: Empirical level and power (\%) of test statistics $L R, L R(b c), T^{2}, T^{2}(b c)$, T_{1} and T_{N}; based on 5000 iterations and $n_{1}=50, n_{2}=50, \alpha=0.05$

		$\left(c_{1}, c_{2}\right)$							
$\left(\mu_{1}, \mu_{2}\right)$	Statistics	$(.05, .05)$	$(.05, .10)$	$(.05, .20)$	$(.20, .20)$	$(.20, .30)$	$(.20, .40)$	$(.40, .50)$	$(.40, .80)$
$(1,1)$	$L R$	3.7	3.3	4.1	4.3	4.5	4.1	5.3	4.7
	$L R(b c)$	3.4	3.0	3.7	4.1	4.3	4.0	5.1	4.6
	T^{2}	3.4	3.2	3.8	3.9	4.0	3.9	4.7	3.9
	$T^{2}(b c)$	3.4	3.2	3.7	3.9	4.0	3.9	4.7	3.9
	T_{1}	4.7	4.5	4.9	5.2	5.0	5.6	4.9	4.2
	T_{N}	5.1	4.9	5.2	5.6	5.3	5.9	5.1	4.8
$(1,1.1)$	$L R$	5.2	6.2	6.0	6.2	6.4	6.9	6.7	6.3
	$L R(b c)$	4.7	5.7	5.5	6.0	6.1	6.4	6.5	6.2
	$T^{2}(b c)$	5.0	6.1	5.9	5.6	6.1	6.4	6.1	6.1
	$T^{2}(b c$	4.9	6.0	5.9	5.6	6.1	6.4	6.1	6.2
	T_{1}	7.3	7.3	7.7	6.9	7.3	6.1	6.3	6.3
	T_{N}	7.6	7.7	8.1	7.4	7.9	6.5	6.7	6.5
$(1,1.2)$	$L R$	12.0	11.4	12.0	12.6	12.5	11.5	11.8	11.6
	$L R(b c)$	10.8	10.1	11.1	11.9	11.9	11.0	11.3	11.2
	T^{2}	11.6	11.2	11.9	11.6	12.1	1.2	11.0	11.1
	$T^{2}(b c)$	11.5	11.0	11.8	11.5	12.1	11.2	11.1	11.3
	T_{1}	14.6	15.0	13.0	13.2	12.7	11.3	10.6	9.0
	T_{N}	15.2	15.6	13.6	14.0	13.2	11.8	11.1	9.7
$(1,1.4)$	$L R$								
	$L R(b c)$	34.8	36.7	36.5	34.1	33.5	32.5	30.6	27.3
	T^{2}	33.6	34.4	34.5	32.9	32.2	31.4	30.0	26.8
	$T^{2}(b c)$	33.6	35.3	35.9	32.4	32.4	31.7	28.7	26.9
	T_{1}	41.5	39.9	37.8	32.3	32.4	31.7	28.7	2.1
	T_{N}	42.4	40.9	38.1	36.5	34.6	32.9	28.5	25.5
$(1,1.5)$	$L R$					35.5	34.0	29.8	26.4
		51.5	50.0	48.6	48.2	45.2	45.2	42.9	39.0
	$L R(b c)$	48.9	47.5	46.6	46.6	43.8	43.9	42.2	38.6
	T^{2}	50.1	48.7	47.9	46.2	44.0	44.1	40.8	38.5
	$T^{2}(b c)$	49.9	48.5	47.7	46.1	43.9	44.1	40.9	38.8
	T_{1}	57.1	56.2	52.4	50.8	47.6	46.3	40.7	35.2
	T_{N}	57.9	57.2	53.6	51.7	48.7	47.6	41.4	36.1
	$L R$	96.3	95.5	95.3	94.1	92.2	90.9	88.3	84.4
	$L R(b c)$	94.6	94.4	93.9	93.2	91.4	90.2	87.6	84.2
	T^{2}	96.0	95.4	94.9	93.1	91.5	90.5	87.1	84.2
	$T^{2}(b c)$	95.8	95.2	94.9	93.1	91.5	90.6	87.2	84.3
	T_{1}	97.6	97.2	95.7	94.4	93.0	91.1	87.9	81.4
	T_{N}	97.7	97.4	96.0	94.7	93.5	91.5	88.5	82.4

Table 3.13: Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=5, n_{2}=5$

| | | $\left(c_{1}, c_{2}\right)$ | | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mu_{1}, \mu_{2}\right)$ | Par † | $(.05, .05)$ | $(.05, .10)$ | $(.05, .20)$ | $(.20, .20)$ | $(.20, .30)$ | $(.20, .40)$ | $(.40, .50)$ | $(.40, .80)$ |
| $(1,1)$ | c_{10} | -0.0172 | -0.0193 | -0.0214 | 0.0084 | -0.0122 | -0.0141 | -0.0042 | 0.0093 |
| | c_{20} | -0.0153 | -0.0110 | 0.0003 | -0.0054 | 0.0101 | 0.0263 | 0.0134 | -0.0416 |
| | $c_{1 a}$ | 0.0345 | 0.0360 | -0.0373 | -0.0339 | -0.0346 | -0.0343 | -0.0281 | 0.0514 |
| | $c_{2 a}$ | -0.0510 | -0.0555 | -0.0628 | 0.0626 | -0.0701 | -0.0759 | 0.0822 | -0.0633 |
| $(1,1.1)$ | c_{10} | 0.0122 | -0.0154 | -0.0191 | 0.0049 | 0.0075 | -0.0145 | 0.0051 | -0.0067 |
| | c_{20} | -0.0150 | -0.0099 | 0.0008 | -0.0062 | 0.0035 | 0.0226 | 0.0307 | 0.1054 |
| | $c_{1 a}$ | -0.0154 | -0.0209 | -0.0248 | -0.0097 | -0.0103 | -0.0182 | -0.0011 | -0.0077 |
| | $c_{2 a}$ | -0.0395 | -0.0450 | -0.0549 | -0.0546 | -0.0628 | -0.0707 | -0.0769 | -0.0892 |
| | | | | | | | | | |
| $(1,1.2)$ | c_{10} | -0.0011 | -0.0073 | -0.0138 | 0.0035 | -0.0017 | -0.0079 | 0.0116 | -0.0041 |
| | c_{20} | -0.0103 | -0.0020 | 0.0127 | -0.0026 | 0.0087 | 0.0292 | 0.0300 | 0.0949 |
| | $c_{1 a}$ | 0.0347 | 0.0199 | 0.0097 | 0.0410 | 0.0353 | 0.0203 | 0.0554 | 0.0307 |
| | $c_{2 a}$ | -0.0326 | -0.0385 | -0.0510 | -0.0491 | -0.0592 | -0.0684 | -0.0767 | -0.0927 |
| | | | | | | | | | |
| | c_{10} | 0.0274 | 0.0122 | -0.0037 | 0.0190 | 0.0085 | -0.0012 | 0.0155 | -0.0057 |
| | c_{20} | -0.0047 | 0.0063 | 0.0371 | 0.0058 | 0.0260 | 0.0587 | 0.0496 | 0.0855 |
| | $c_{1 a}$ | -0.0072 | 0.0234 | 0.0192 | 0.0083 | 0.0319 | 0.0251 | 0.0111 | -0.0328 |
| | $c_{2 a}$ | -0.0264 | -0.0350 | -0.0503 | -0.0463 | -0.0585 | -0.0714 | -0.0785 | -0.1019 |
| $(1,1.5)$ | c_{10} | 0.0475 | 0.0339 | 0.0045 | 0.0307 | 0.0137 | 0.0026 | 0.0180 | -0.0021 |
| | c_{20} | -0.0104 | 0.0032 | 0.0660 | 0.0088 | 0.0435 | 0.0956 | 0.0705 | 0.0248 |
| | $c_{1 a}$ | 0.0217 | 0.0055 | 0.0224 | 0.0313 | 0.0068 | 0.0049 | 0.0337 | 0.0295 |
| | $c_{2 a}$ | -0.0208 | -0.0325 | -0.0529 | -0.0447 | -0.0621 | -0.0749 | -0.0834 | -0.1100 |
| | | | | | | | | | |
| | c_{10} | 0.0471 | 0.0417 | 0.0080 | 0.0345 | 0.0146 | 0.0007 | 0.0152 | -0.0069 |
| | c_{20} | -0.0126 | -0.0040 | 0.0357 | 0.0027 | 0.0539 | 0.0994 | 0.0699 | 0.0051 |
| | $c_{1 a}$ | 0.0058 | 0.0179 | 0.0018 | 0.0274 | 0.0318 | 0.0239 | 0.0873 | 0.0298 |
| | $c_{2 a}$ | -0.0199 | -0.0279 | -0.0572 | -0.0449 | -0.0645 | -0.0814 | -0.0876 | -0.0412 |
| 1,2$)$ | | | | | | | | | |

Par $^{\dagger}=$ Parameters
c_{10} is c_{1} under null hypothesis
c_{20} is c_{2} under null hypothesis
$c_{1 a}$ is c_{1} under alternative hypothesis
$c_{2 a}$ is c_{2} under alternative hypothesis

Table 3.14: Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=10, n_{2}=10$

		$\left(c_{1}, c_{2}\right)$							
$\left(\mu_{1}, \mu_{2}\right)$	Par^{\dagger}	$(.05, .05)$	$(.05, .10)$	$(.05, .20)$	$(.20, .20)$	$(.20, .30)$	$(.20, .40)$	$(.40, .50)$	$(.40, .80)$
$(1,1)$	c_{10}	-0.0009	-0.0035	0.0082	0.0234	-0.0614	0.0202	-0.0348	0.0624
	c_{20}	0.0597	-0.0627	-0.0742	0.1052	0.0398	-0.0095	0.1011	-0.0099
	$c_{1 a}$	-0.0489	0.0276	-0.0050	-0.0246	-0.0737	0.0426	0.0568	0.0537
	$c_{2 a}$	-0.0087	0.0211	0.0085	-0.0920	-0.0299	0.1000	0.0071	0.0084
$(1,1.1)$	c_{10}	-0.0057	0.0034	-0.0063	0.0069	0.0206	0.0177	0.0623	0.0457
	c_{20}	0.0403	0.0527	0.0916	-0.0913	0.1052	0.0479	0.0085	0.0648
	$c_{1 a}$	-0.0343	-0.0369	-0.0432	-0.0458	-0.0192	-0.0167	0.0147	0.0115
	$c_{2 a}$	-0.0041	-0.0151	-0.0322	0.0428	-0.0819	-0.0777	-0.0748	-0.0471
$(1,1.2)$	c_{10}	-0.0027	-0.0019	-0.0087	0.0263	-0.0077	0.0093	0.0596	0.0069
	c_{20}	0.0333	0.0399	0.0615	0.0554	-0.0721	0.0449	0.0568	-0.0515
	$c_{1 a}$	-0.0485	-0.0311	-0.0460	-0.0122	0.0094	-0.0166	0.0270	-0.0314
	$c_{2 a}$	-0.0393	-0.0281	0.0043	-0.0456	0.0329	-0.0492	-0.0059	0.0522
$(1,1.4)$	c_{10}	0.0073	0.0026	-0.0041	0.0189	0.0183	0.0191	0.0106	0.0073
	c_{20}	0.0044	0.0256	0.0490	0.0522	0.0669	0.1103	0.0067	-0.0248
	$c_{1 a}$	0.0036	-0.0097	-0.0144	0.0163	0.0101	0.0153	-0.0083	0.0418
	$c_{2 a}$	-0.0218	-0.0134	-0.0082	-0.0456	-0.0384	-0.0524	0.0088	0.0122
$(1,1.5)$	c_{10}	0.0023	-0.0019	-0.0006	0.0224	0.0219	0.0194	0.0515	-0.0233
	c_{20}	0.0110	0.0234	0.0436	0.0448	0.0557	0.0880	0.0333	0.0843
	$c_{1 a}$	-0.0125	-0.0057	-0.0008	0.0278	0.0261	0.0293	0.0576	-0.0087
	$c_{2 a}$	0.0091	0.0024	0.0257	-0.0427	-0.0318	-0.0422	-0.0083	0.0069
$(1,2)$	c_{10}	0.0083	0.0048	0.0013	0.0288	0.0279	-0.0038	-0.0088	0.0471
	c_{20}	0.0050	0.0186	0.0456	0.0344	0.0558	-0.0061	-0.0010	0.1846
	$c_{1 a}$	0.0492	0.0391	0.0352	0.0742	0.0627	0.0293	-0.0615	0.1071
	$c_{2 a}$	-0.0587	-0.0590	-0.0604	-0.0599	-0.0596	0.0099	0.1008	-0.0520

$\mathrm{Par}^{\dagger}=$ Parameters
c_{10} is c_{1} under null hypothesis
c_{20} is c_{2} under null hypothesis
$c_{1 a}$ is c_{1} under alternative hypothesis
$c_{2 a}$ is c_{2} under alternative hypothesis

Table 3.15: Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=20, n_{2}=20$

		$\left(c_{1}, c_{2}\right)$							
$\left(\mu_{1}, \mu_{2}\right)$	Par †	$(.05, .05)$	$(.05, .10)$	$(.05, .20)$	$(.20, .20)$	$(.20, .30)$	$(.20, .40)$	$(.40, .50)$	$(.40, .80)$
$(1,1)$	c_{10}	-0.0113	-0.0113	-0.0117	-0.0016	-0.0015	-0.0032	0.0139	0.0085
	c_{20}	-0.0082	-0.0058	0.0030	0.0016	0.0085	0.0201	0.0271	0.0660
	$c_{1 a}$	-0.0279	-0.0247	-0.0282	-0.0172	-0.0165	-0.0170	-0.0056	-0.0087
	$c_{2 a}$	-0.0492	-0.0492	-0.0476	-0.0476	-0.0462	-0.0448	-0.0424	-0.0363
$(1,1.1)$	c_{10}	-0.0088	-0.0098	-0.0109	0.0012	-0.0007	-0.0015	0.0143	0.0103
	c_{20}	-0.0111	-0.0067	0.0010	-0.0010	0.0074	0.0161	0.0243	0.0610
	$c_{1 a}$	-0.0148	-0.0181	-0.0224	-0.0103	-0.0107	-0.0094	0.0026	0.0014
	$c_{2 a}$	-0.0461	-0.0451	-0.0441	-0.0443	-0.0433	-0.0420	-0.0404	-0.0339
$(1,1.2)$	c_{10}	-0.0083	-0.0093	-0.0101	0.0011	-0.0002	-0.0025	0.0147	0.0105
	c_{20}	-0.0099	-0.0073	0.0005	-0.0028	0.0086	0.0141	0.0237	0.0547
	$c_{1 a}$	-0.0159	-0.0152	-0.0139	-0.0041	-0.0031	-0.0058	0.0117	0.0137
	$c_{2 a}$	-0.0425	-0.0424	-0.0414	-0.0418	-0.0340	-0.0399	-0.0382	-0.0336
$(1,1.4)$	c_{10}	-0.0044	-0.0054	-0.0069	0.0046	0.0038	0.0016	0.0171	0.0139
	c_{20}	-0.0111	-0.0070	0.0000	-0.0034	0.0039	0.0134	0.0198	0.0503
	$c_{1 a}$	0.0059	0.0069	0.0035	0.0216	0.0222	0.0214	0.0411	0.0396
	$c_{2 a}$	-0.0374	-0.0374	-0.0371	-0.0372	-0.0367	-0.0362	-0.0353	-0.0322
$(1,1.5)$	c_{10}	-0.0029	-0.0040	-0.0047	0.0076	0.0056	0.0045	0.0211	0.0132
	c_{20}	-0.0093	-0.0068	0.0010	-0.0030	0.0067	0.0133	0.0169	0.0490
	$c_{1 a}$	0.0161	0.0164	0.0151	0.0394	0.0331	0.0336	0.0626	0.0421
	$c_{2 a}$	-0.0354	-0.0353	-0.0353	-0.0351	-0.0350	-0.0345	-0.0341	-0.0311
$(1,2)$	c_{10}	0.0116	0.0087	0.0059	0.0216	0.0197	0.0143	0.0344	0.0239
	c_{20}	-0.0089	-0.0058	0.0007	-0.0029	0.0049	0.0117	0.0138	0.0440
	$c_{1 a}$	0.0019	0.0038	-0.0009	0.0053	0.0318	0.0077	0.0246	0.0344
	$c_{2 a}$	-0.0278	-0.0283	-0.0289	-0.0289	-0.0294	-0.0299	-0.0300	-0.0292

$\mathrm{Par}^{\dagger}=$ Parameters
c_{10} is c_{1} under null hypothesis
c_{20} is c_{2} under null hypothesis
$c_{1 a}$ is c_{1} under alternative hypothesis
$c_{2 a}$ is c_{2} under alternative hypothesis

Table 3.16: Estimated bias of the estimates of dispersion parameters, c_{1} and c_{2}, under null and alternative hypotheses; based on 5000 iterations and $n_{1}=50, n_{2}=50$

$\left(c_{1}, c_{2}\right)$									
$\left(\mu_{1}, \mu_{2}\right)$	Par^{\dagger}	(.05, .05)	(.05, .10)	(.05, .20)	(.20, .20)	(.20, .30)	(.20, .40)	(.40, .50)	(.40, .80)
$(1,1)$	c_{10}	-0.0064	-0.0068	-0.0070	-0.0030	-0.0036	-0.0040	0.0013	-0.0003
	c_{20}	-0.0065	-0.0054	-0.0023	-0.0032	-0.0001	0.0030	0.0055	0.0179
	$c_{1 a}$	-0.0149	-0.0154	-0.0143	-0.0123	-0.0125	-0.0129	-0.0112	-0.0115
	$c_{2 a}$	-0.0195	-0.0193	-0.0187	-0.0188	-0.0182	-0.0178	-0.0172	-0.0148
(1, 1.1)	c_{10}	-0.0061	-0.0062	-0.0069	-0.0028	-0.0034	-0.0038	0.00149	-0.0003
	c_{20}	-0.0063	-0.0052	-0.0025	-0.0031	-0.0003	0.0028	0.0050	0.0168
	$c_{1 a}$	-0.0127	-0.0120	-0.0123	-0.0098	-0.0089	-0.0095	-0.0078	-0.0091
	$c_{2 a}$	-0.0178	-0.0177	-0.0174	-0.0174	-0.0170	-0.0166	-0.0161	-0.0143
(1, 1.2)	c_{10}	-0.0054	-0.0057	-0.0064	-0.0024	-0.0031	-0.0036	0.0017	-0.0001
	c_{20}	-0.0062	-0.0051	-0.0025	-0.0032	-0.0005	0.0027	0.0051	0.0159
	$c_{1 a}$	-0.0059	-0.0075	-0.0074	-0.0036	-0.0039	-0.0048	-0.0024	-0.0043
	$c_{2 a}$	-0.0165	-0.0165	-0.0163	-0.0162	-0.0160	-0.0157	-0.0153	-0.0139
(1, 1.4)	c_{10}	-0.0039	-0.0045	-0.0050	-0.0010	-0.0017	-0.0025	0.0028	0.0003
	c_{20}	-0.0059	-0.0048	-0.0023	-0.0031	-0.0003	0.0026	0.0043	0.0153
	$c_{1 a}$	0.0115	0.0115	0.0091	0.0141	0.0138	0.0088	0.0114	0.0080
	$c_{2 a}$	-0.0145	-0.0144	-0.0144	-0.0144	-0.0144	-0.0143	-0.0141	-0.0132
(1, 1.5)	c_{10}	0.0030	-0.0037	-0.0045	-0.0004	-0.0010	0.0017	0.0037	0.0016
	c_{20}	-0.0058	-0.0047	-0.0020	-0.0030	-0.0003	0.0027	0.0041	0.0146
	$c_{1 a}$	0.0232	0.0209	0.0202	0.0253	0.0225	0.0204	0.0240	0.0172
	$c_{2 a}$	-0.0136	-0.0115	-0.0137	-0.0077	-0.0138	-0.0138	-0.0137	-0.0130
$(1,2)$	c_{10}	0.0036	0.0028	0.0010	0.0075	0.0056	0.0037	0.0101	0.0065
	c_{20}	-0.0052	-0.0043	-0.0018	-0.0034	-0.0009	0.0020	0.0026	0.0132
	$c_{1 a}$	0.0221	0.0052	0.0141	0.0091	0.0078	0.0438	0.0243	0.0066
	$c_{2 a}$	-0.0107	-0.0109	-0.0113	-0.0112	-0.0116	-0.0119	-0.0120	-0.0121

$\mathrm{Par}^{\dagger}=$ Parameters
c_{10} is c_{1} under null hypothesis
c_{20} is c_{2} under null hypothesis
$c_{1 a}$ is c_{1} under alternative hypothesis
$c_{2 a}$ is c_{2} under alternative hypothesis

Table 3.17: Number of tumors for rats in treatment groups 1 and 2

No. of Tumors	Groups	
	Treatment Group	Control Group
0	2	0
1	7	4
2	4	2
3	2	3
4	2	2
5	4	1
6	2	2
7	0	2
8	0	0
9	0	3
10	0	1
11	0	3
12	0	1
13	0	1
\bar{y}	2.652	6.04
s^{2}	3.618	14.918

Table 3.18: Number of cycles required for smoker and non-smoker women to get pregnant

No. of Cycles	Smoker	Non-smoker
1	29	198
2	16	107
3	17	55
4	4	38
5	3	18
6	8	22
7	4	7
8	5	9
9	1	5
10	1	3
11	1	6
12	3	6
>12	7	12
\bar{y}	4.2020	2.9650
s^{2}	13.8567	8.1245

Chapter 4

Testing Equality of Two Beta Binomial Proportions in the Presence of Unequal Dispersion

Parameters

4.1 Introduction

Scientists in various areas, for example, toxicology (Weil (1970); Kleinman (1973); Williams (1975); Paul (1982)) and other similar fields (Crowder (1978); Otake and Prentice (1984); Donovan et al. (1994); Gibson and Austin (1996)), frequently encounter data in the form of proportions. Binomial model is a basic model to deal with the data of such kind. It happens quite often that the proportion data exhibit greater variability than predicted by the simple binomial model and the reason for this variability depends on the form of study. Weil (1970) observes that if the experimental units of the data are litters of animals then 'litter effect', that is, the
tendency of animals in the same litter to respond more similarly than animals from different litters contribute to greater variability than predicted by the simple model. This effect of litter is known as intra-litter or intra-correlation coefficient. The assumption of some specific parametric model is frequently used to deal with correlated binomial data. Beta binomial model is a widely used model to accommodate the over-dispersion in proportion data (Williams (1975); Crowder (1978)). An extension to beta binomial model to include over-dispersion as well as under-dispersion was presented by Prentice (1986). In situations where the data are in the form of proportions with possible over-dispersion, we may be interested in testing the equality of proportions of a certain characteristic in two groups. Data of this form can be described as follows.

Suppose that there are 2 treatment groups, $i^{\text {th }}$ group having m_{i} litters, $i=1,2$. Then, the data are of the form

Groups	Proportions
1	$y_{11} / n_{11}, y_{12} / n_{12}, \cdots, y_{1 j} / n_{1 j}, \cdots, y_{1 m_{1}} / n_{1 m_{1}}$
2	$y_{21} / n_{21}, y_{22} / n_{22}, \cdots, y_{2 j} / n_{2 j}, \cdots, y_{2 m_{2}} / n_{2 m_{2}}$

Here the size of the $j^{\text {th }}$ litter in the $i^{\text {th }}$ group is $n_{i j}$ of which $y_{i j}$ respond to the $i^{\text {th }}$ treatment. Now, given a parameter $p, y_{i j} \mid p_{i} \sim \operatorname{binomial}\left(n_{i j}, p_{i}\right)$ and p_{i} is a beta random variable having probability function

$$
f\left(p_{i}\right)=\frac{1}{B\left(\alpha_{i}, \beta_{i}\right)} p_{i}^{\alpha_{i}-1}\left(1-p_{i}\right)^{\beta_{i}-1} .
$$

Then, unconditionally, $y_{i j}$ has a beta-binomial distribution with probability function

$$
\begin{equation*}
\operatorname{Pr}\left(y_{i j}\right)=\binom{n_{i j}}{y_{i j}} \frac{B\left(y_{i j}+\alpha_{i}, n_{i j}+\beta_{i}-y_{i j}\right)}{B\left(\alpha_{i}, \beta_{i}\right)} . \tag{4.1}
\end{equation*}
$$

The mean and variance of $y_{i j}$ are $n_{i j}\left(\frac{\alpha_{i}}{\alpha_{i}+\beta_{i}}\right)$ and $\frac{n_{i j} \alpha_{i} \beta_{i}\left(\alpha_{i}+\beta_{i}+n_{i j}\right)}{\left(\alpha_{i}+\beta_{i}\right)^{2}\left(\alpha_{i}+\beta_{i}+1\right)}$ respectively. Now, define $\pi_{i}=\frac{\alpha_{i}}{\alpha_{i}+\beta_{i}}, \omega_{i}=\frac{1}{\alpha_{i}+\beta_{i}}$ and $\theta_{i}=\frac{\omega_{i}}{1+\omega_{i}}$. Then the mean and variance of $y_{i j}$ can be expressed as $n_{i j} \pi_{i}$ and $n_{i j} \pi_{i}\left(1-\pi_{i}\right)\left[1+\left(n_{i j}-1\right) \theta_{i}\right]$.

Taking the above reparameterization into account, the probability function can be written as

$$
\begin{equation*}
\operatorname{Pr}\left(y_{i j} \mid \pi_{i}, \theta_{i}\right)=\binom{n_{i j}}{y_{i j}} \frac{\prod_{r=0}^{y_{i j}-1}\left[\pi_{i}\left(1-\theta_{i}\right)+r \theta_{i}\right] \prod_{r=0}^{n_{i j}-y_{i j}-1}\left[\left(1-\pi_{i}\right)\left(1-\theta_{i}\right)+r \theta_{i}\right]}{\prod_{r=0}^{n_{i j}-1}\left[\left(1-\theta_{i}\right)+r \theta_{i}\right]} . \tag{4.2}
\end{equation*}
$$

We denote the probability function of the beta-binomial distribution in equation (4.2) as $B B\left(\pi_{i}, \theta_{i}\right)$. Our purpose is to test $H_{0}: \pi_{1}=\pi_{2}$ with θ_{1} and θ_{2} being unspecified.

Several parametric and semi-parametric procedures are available for testing homogeneity of proportions in presence of over-dispersion. Paul and Islam (1995) developed tests for testing the equality of several proportions when the over-dispersion parameters are equal. We extend this idea to testing equality of two beta-binomial proportions for possibly unequal over-dispersion parameters and develop parametric as well as semi-parametric tests. The parametric tests that we develop are a likelihood ratio test, a $C(\alpha)$ test based on the maximum likelihood estimates of nuisance parameters, a $C(\alpha)$ test based on the Kleinman's (1973) method of moments estimates of the nuisance parameters. Further, we develop a $C(\alpha)$ test based on the quasi-likelihood and the method of moments estimates of the nuisance parameters by Breslow (1990), a $C(\alpha)$ test based on the quasi-likelihood and the method of moments estimates of the nuisance parameters by Srivastava and Wu (1993), a $C(\alpha)$ test based on extended quasi-likelihood estimates of the nuisance parameters. We
also develop two more statistics, namely, the Rao-Scott and the adjusted Rao-Scott statistics by following Rao and Scott (1992). All eight statistics are compared, in terms of empirical size and power, using a simulation study.

4.2 Parametric Tests

4.2.1 The Likelihood Ratio Test

Let $y_{i 1}, y_{i 2}, \cdots, y_{i m_{i}}$ be a sample of size m_{i} from group $i(i=1,2)$. Then, $y_{i j} \sim$ $B B\left(\pi_{i}, \theta_{i}\right)$ and the log-likelihood, apart from a constant, can be written as

$$
\begin{align*}
& l_{i}=\sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1} \log \left\{\left(1-\theta_{i}\right) \pi_{i}+r \theta_{i}\right\}+\sum_{r=0}^{n_{i j}-y_{i j}-1} \log \left\{\left(1-\theta_{i}\right)\left(1-\pi_{i}\right)+r \theta_{i}\right\}\right. \tag{4.3}\\
& \left.-\sum_{r=0}^{n_{i j}-1} \log \left\{\left(1-\theta_{i}\right)+r \theta_{i}\right\}\right] .
\end{align*}
$$

Under H_{A}, the estimates of the parameters π_{i} and $\theta_{i}(i=1,2)$ can be obtained by directly maximizing the above log-likelihood or by solving the pair of equations

$$
\sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1} \frac{\left(1-\theta_{i}\right)}{\left(1-\theta_{i}\right) \pi_{i}+r \theta_{i}}-\sum_{r=0}^{n_{i j}-y_{i j}-1} \frac{\left(1-\theta_{i}\right)}{\left(1-\theta_{i}\right)\left(1-\pi_{i}\right)+r \theta_{i}}\right]=0
$$

and

$$
\sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1} \frac{r-\pi_{i}}{\left(1-\theta_{i}\right) \pi_{i}+r \theta_{i}}+\sum_{r=0}^{n_{i j}-y_{i j}-1} \frac{r+\pi_{i}-1}{\left(1-\theta_{i}\right)\left(1-\pi_{i}\right)+r \theta_{i}}-\sum_{r=0}^{n_{i j}-1} \frac{r-1}{\left(1-\theta_{i}\right)+r \theta_{i}}\right]=0
$$

simultaneously.

Under the null hypothesis the log-likelihood function of the parameters π, θ_{1} and θ_{2}, apart from a constant, can be written as

$$
\begin{aligned}
& l_{0}=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1} \log \left\{\left(1-\theta_{i}\right) \pi+r \theta_{i}\right\}+\sum_{r=0}^{n_{i j}-y_{i j}-1} \log \left\{\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right\}\right. \\
& \left.-\sum_{r=0}^{n_{i j}-1} \log \left\{\left(1-\theta_{i}\right)+r \theta_{i}\right\}\right] .
\end{aligned}
$$

Then the maximum likelihood estimates of the parameters π, θ_{1}, and θ_{2} can be obtained directly by maximizing the above log-likelihood or by solving the following estimating equations

$$
\begin{aligned}
& \sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1} \frac{\left(1-\theta_{i}\right)}{\left(1-\theta_{i}\right) \pi+r \theta_{i}}-\sum_{r=0}^{n_{i j}-y_{i j}-1} \frac{\left(1-\theta_{i}\right)}{\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}}\right]=0 \\
& \sum_{j=1}^{m_{1}}\left[\sum_{r=0}^{y_{1 j}-1}\left\{\frac{r-\pi}{\left(1-\theta_{1}\right) \pi+r \theta_{1}}\right\}+\sum_{r=0}^{n_{1 j}-y_{1 j}-1}\left\{\frac{r+\pi-1}{\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}}\right\}\right. \\
& -\sum_{r=0}^{n_{1 j}-1}\left\{\frac{r-1}{\left(1-\theta_{1}\right)+r \theta_{1}}\right\}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j=1}^{m_{2}}\left[\sum_{r=0}^{y_{2 j}-1}\left\{\frac{r-\pi}{\left(1-\theta_{2}\right) \pi+r \theta_{2}}\right\}+\sum_{r=0}^{n_{2 j}-y_{2 j}-1}\left\{\frac{r+\pi-1}{\left(1-\theta_{2}\right)(1-\pi)+r \theta_{2}}\right\}\right. \\
& -\sum_{r=0}^{n_{2 j}-1}\left\{\frac{r-1}{\left(1-\theta_{2}\right)+r \theta_{2}}\right\}=0
\end{aligned}
$$

simultaneously.

Let \hat{l}_{1} be the maximized log-likelihood under the alternative hypothesis and \hat{l}_{0} be the maximized log-likelihood under the null hypothesis. Then, the likelihood ratio statistic for testing $H_{0}: \pi_{1}=\pi_{2}$ against $H_{A}: \pi_{1} \neq \pi_{2}$ with θ_{1} and θ_{2} unspecified, is $L R=$ $2\left(\hat{l}_{1}-\hat{l}_{0}\right)$, which is distributed asymptotically (as $m \rightarrow \infty$, where $m=m_{1}+m_{2}$) as a chi-squared with 1 degree of freedom.

4.2.2 $C(\alpha)$ (Score) Test

Suppose the alternative hypothesis is represented by $\pi_{i}=\pi+\phi_{i}$ with $\phi_{2}=0$. Then the null hypothesis $H_{0}: \pi_{1}=\pi_{2}$ reduces to $H_{0}: \phi_{1}=0$ with π, θ_{1} and θ_{2} treated as nuisance parameters. In order to derive the $C(\alpha)$ statistic to test the equality of several odds ratios, Tarone (1985) used this technique. Barnwal and Paul (1988) used this technique to derive $C(\alpha)$ statistic for testing the equality of several Poisson means in the presence of negative binomial over-dispersion. Paul and Islam (1995) applied this procedure for testing the equality of several proportions in the presence of common over/under dispersion. With this reparameterizaton, the log-likelihood function under the alternative hypothesis, apart from a constant, can be written as

$$
\begin{align*}
& l=\sum_{\substack{i=1 \\
n_{i j}-1}}^{2} \sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1} \log \left\{\left(1-\theta_{i}\right)\left(\pi+\phi_{i}\right)+r \theta_{i}\right\}+\sum_{r=0}^{n_{i j}-y_{i j}-1} \log \left\{\left(1-\theta_{i}\right)\left(1-\pi-\phi_{i}\right)+r \theta_{i}\right\}\right. \tag{4.4}\\
& -\sum_{r=0} \log \left\{\left(1-\theta_{i}\right)+r \theta_{i}\right\} .
\end{align*}
$$

Now, define $\phi=\phi_{1}, \delta=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)^{\prime}=\left(\pi, \theta_{1}, \theta_{2}\right)^{\prime}, \psi_{1}=\left.\frac{\partial l}{\partial \phi_{1}}\right|_{\phi=0}, \gamma_{1}=\left.\frac{\partial l}{\partial \delta_{1}}\right|_{\phi=0}, \gamma_{2}=$ $\left.\frac{\partial l}{\partial \delta_{2}}\right|_{\phi=0}$ and
$\gamma_{3}=\left.\frac{\partial l}{\partial \delta_{3}}\right|_{\phi=0}$.
Let $\hat{\delta}$ be a \sqrt{m} (m is the number of litters in a group) consistent estimator of δ. Then the $C(\alpha)$ statistic is based on the adjusted score

$$
S=\psi_{1}-\beta_{1} \gamma_{1}-\beta_{2} \gamma_{2}-\beta_{3} \gamma_{3},
$$

where β_{1}, β_{2} and β_{3} are partial regression coefficient of ψ_{1} on γ_{1}, ψ_{1} on γ_{2}, and ψ_{1} on γ_{3}, respectively.

The structure of dispersion matrix of $\left(\phi, \pi, \theta_{1}, \theta_{2}\right)$ is

$$
V=\left(\begin{array}{ll}
D & A \\
A^{\prime} & B
\end{array}\right)
$$

and the regression coefficients $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=A B^{-1}($ Neyman $(1959))$, where D is $1 \times 1, A$ is 1×3 and B is 3×3 with elements

$$
\begin{aligned}
& D_{11}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1}^{2}}\right|_{\phi=0}\right], \\
& A_{11}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \pi}\right|_{\phi=0}\right], A_{12}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \theta_{1}}\right|_{\phi=0}\right], A_{13}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \theta_{2}}\right|_{\phi=0}\right], \\
& B_{11}=E\left[-\left.\frac{\partial^{2} l}{\partial \pi^{2}}\right|_{\phi=0}\right], B_{12}=B_{21}=E\left[-\left.\frac{\partial^{2} l}{\partial \pi \partial \theta_{1}}\right|_{\phi=0}\right], B_{13}=B_{31}=E\left[-\left.\frac{\partial^{2} l}{\partial \pi \partial \theta_{2}}\right|_{\phi=0}\right], \\
& B_{22}=E\left[-\left.\frac{\partial^{2} l}{\partial \theta_{1}^{2}}\right|_{\phi=0}\right], B_{23}=B_{32}=E\left[-\left.\frac{\partial^{2} l}{\partial \theta_{1} \partial \theta_{2}}\right|_{\phi=0}\right] \text { and } \\
& B_{33}=E\left[-\left.\frac{\partial^{2} l}{\partial \theta_{2}^{2}}\right|_{\phi=0}\right] .
\end{aligned}
$$

Substituting \sqrt{m} consistent estimate of δ, that is, $\hat{\delta}$ in S, D, A and B, the $C(\alpha)$ statistic can be obtained as $S^{\prime}\left(D-A B^{-1} A^{\prime}\right)^{-1} S$, which is approximately distributed as a chi-squared with 1 degree of freedom (Neyman (1959); Neyman and Scott (1966); Moran (1970)). If the maximum likelihood estimate of δ is used then $S=\psi_{1}$, and the $C(\alpha)$ statistic reduces to score statistic (RaO (1948)). Using the log-likelihood (4.4) we obtain

$$
\begin{aligned}
& \psi_{1}=\sum_{j=1}^{m_{1}}\left[\sum_{r=0}^{y_{1 j}-1}\left\{\frac{\left(1-\theta_{1}\right)}{\left(1-\theta_{1}\right) \pi+r \theta_{1}}\right\}-\sum_{r=0}^{n_{1 j}-y_{1 j}-1}\left\{\frac{\left(1-\theta_{1}\right)}{\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}}\right\}\right] \\
& \gamma_{1}=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)}{\left(1-\theta_{i}\right) \pi+r \theta_{i}}\right\}-\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)}{\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}}\right\}\right] \\
& \gamma_{2}=\sum_{j=1}^{m_{1}}\left[\sum_{r=0}^{y_{1 j}-1}\left\{\frac{(r-\pi)}{\left(1-\theta_{1}\right) \pi+r \theta_{1}}\right\}+\sum_{r=0}^{n_{1 j}-y_{1 j}-1}\left\{\frac{(r+\pi-1)}{\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}}\right\}\right. \\
& -\sum_{r=0}^{n_{1 j}-1}\left\{\frac{(r-1)}{\left(1-\theta_{1}\right)+r \theta_{1}}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \gamma_{3}=\sum_{j=1}^{m_{2}}\left[\sum_{r=0}^{y_{2 j}-1}\left\{\frac{(r-\pi)}{\left(1-\theta_{2}\right) \pi+r \theta_{2}}\right\}+\sum_{r=0}^{n_{2 j}-y_{2 j}-1}\left\{\frac{(r+\pi-1)}{\left(1-\theta_{2}\right)(1-\pi)+r \theta_{2}}\right\}\right. \\
& -\sum_{r=0}^{n_{2 j}-1}\left\{\frac{(r-1)}{\left(1-\theta_{2}\right)+r \theta_{2}}\right\} .
\end{aligned}
$$

The derivation of the expected values of negative of the mixed partial derivatives is given in the Appendix ?? and the results are given below

$$
\begin{aligned}
& D_{11}=\left(1-\theta_{1}\right)^{2} \sum_{j=1}^{m_{1}}\left[\left\{\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \geq r\right)}{\left\{\left(1-\theta_{1}\right) \pi+(r-1) \theta_{1}\right\}^{2}}\right\}\right. \\
& +\left\{\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \leq n_{1 j}-r\right)}{\left.\left\{\left(1-\theta_{1}\right)(1-\pi)+(r-1) \theta_{1}\right\}^{2}\right\}}\right], \\
& A_{11}=\left(1-\theta_{1}\right)^{2} \sum_{j=1}^{m_{1}}\left[\left\{\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \geq r\right)}{\left\{\left(1-\theta_{1}\right) \pi+(r-1) \theta_{1}\right\}^{2}}\right\}\right. \\
& \left.+\left\{\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \leq n_{1 j}-r\right)}{\left\{\left(1-\theta_{1}\right)(1-\pi)+(r-1) \theta_{1}\right\}^{2}}\right\}\right]
\end{aligned}
$$

$$
A_{12}=\left(1-\theta_{1}\right) \sum_{j=1}^{m_{1}}\left[\sum_{r=1}^{n_{1 j}} \frac{(r-\pi-1) \operatorname{Pr}\left(y_{1 j} \geq r\right)}{\left\{\left(1-\theta_{1}\right) \pi+(r-1) \theta_{1}\right\}^{2}}-\sum_{r=1}^{n_{1 j}} \frac{(r+\pi-2) \operatorname{Pr}\left(y_{1 j} \leq n_{1 j}-r\right)}{\left\{\left(1-\theta_{1}\right)(1-\pi)+(r-1) \theta_{1}\right\}^{2}}\right]
$$

$$
+\sum_{j=1}^{m_{1}}\left[\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \geq r\right)}{\left\{\left(1-\theta_{1}\right) \pi+(r-1) \theta_{1}\right\}}-\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \leq n_{1 j}-r\right)}{\left\{\left(1-\theta_{1}\right)(1-\pi)+(r-1) \theta_{1}\right\}}\right]=A_{21}
$$

$$
A_{13}=0=A_{31},
$$

$$
B_{11}=\left(1-\theta_{1}\right)^{2} \sum_{j=1}^{m_{1}}\left[\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \geq r\right)}{\left\{\left(1-\theta_{1}\right) \pi+(r-1) \theta_{1}\right\}^{2}}+\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \leq n_{1 j}-r\right)}{\left\{\left(1-\theta_{1}\right)(1-\pi)+(r-1) \theta_{1}\right\}^{2}}\right]
$$

$$
+\left(1-\theta_{2}\right)^{2} \sum_{j=1}^{m_{2}}\left[\sum_{r=1}^{n_{2 j}} \frac{\operatorname{Pr}\left(y_{2 j} \geq r\right)}{\left\{\left(1-\theta_{2}\right) \pi+(r-1) \theta_{2}\right\}^{2}}+\sum_{r=1}^{n_{2 j}} \frac{\operatorname{Pr}\left(y_{2 j} \leq n_{2 j}-r\right)}{\left\{\left(1-\theta_{2}\right)(1-\pi)+(r-1) \theta_{2}\right\}^{2}}\right]
$$

$$
B_{12}=\left(1-\theta_{1}\right) \sum_{j=1}^{m_{1}}\left[\sum_{r=1}^{n_{1 j}} \frac{(r-\pi-1) \operatorname{Pr}\left(y_{1 j} \geq r\right)}{\left\{\left(1-\theta_{1}\right) \pi+(r-1) \theta_{1}\right\}^{2}}-\sum_{r=1}^{n_{1 j}} \frac{(r+\pi-2) \operatorname{Pr}\left(y_{1 j} \leq n_{1 j}-r\right)}{\left\{\left(1-\theta_{1}\right)(1-\pi)+(r-1) \theta_{1}\right\}^{2}}\right]
$$

$$
+\sum_{j=1}^{m_{1}}\left[\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \geq r\right)}{\left\{\left(1-\theta_{1}\right) \pi+(r-1) \theta_{1}\right\}}-\sum_{r=1}^{n_{1 j}} \frac{\operatorname{Pr}\left(y_{1 j} \leq n_{1 j}-r\right)}{\left\{\left(1-\theta_{1}\right)(1-\pi)+(r-1) \theta_{1}\right\}}\right]=B_{21},
$$

$$
\begin{aligned}
& B_{13}=\left(1-\theta_{2}\right) \sum_{j=1}^{m_{2}}\left[\sum_{r=1}^{n_{2 j}} \frac{(r-\pi-1) \operatorname{Pr}\left(y_{2 j} \geq r\right)}{\left\{\left(1-\theta_{2}\right) \pi+(r-1) \theta_{2}\right\}^{2}}-\sum_{r=1}^{n_{2 j}} \frac{(r+\pi-2) \operatorname{Pr}\left(y_{2 j} \leq n_{2 j}-r\right)}{\left\{\left(1-\theta_{2}\right)(1-\pi)+(r-1) \theta_{2}\right\}^{2}}\right] \\
& +\sum_{j=1}^{m_{2}}\left[\sum_{r=1}^{n_{2 j}} \frac{\operatorname{Pr}\left(y_{2 j} \geq r\right)}{\left\{\left(1-\theta_{2}\right) \pi+(r-1) \theta_{2}\right\}}-\sum_{r=1}^{n_{2 j}} \frac{\operatorname{Pr}\left(y_{2 j} \leq n_{2 j}-r\right)}{\left\{\left(1-\theta_{2}\right)(1-\pi)+(r-1) \theta_{2}\right\}}\right]=B_{31}, \\
& B_{22}=\sum_{j=1}^{m_{1}}\left[\sum_{r=1}^{n_{1 j}} \frac{(r-\pi-1)^{2} \operatorname{Pr}\left(y_{1 j} \geq r\right)}{\left\{\left(1-\theta_{1}\right) \pi+(r-1) \theta_{1}\right\}^{2}}+\sum_{r=1}^{n_{1 j}} \frac{(r+\pi-2)^{2} \operatorname{Pr}\left(y_{1 j} \leq n_{1 j}-r\right)}{\left\{\left(1-\theta_{1}\right)(1-\pi)+(r-1) \theta_{1}\right\}^{2}}\right. \\
& \left.-\sum_{r=1}^{n_{1 j}} \frac{(r-2)^{2}}{\left\{\left(1-\theta_{1}\right)+(r-1) \theta_{1}\right\}^{2}}\right], \\
& B_{23}=0=B_{32}
\end{aligned}
$$

and

$$
\begin{aligned}
& B_{33}=\sum_{j=1}^{m_{2}}\left[\sum_{r=1}^{n_{2 j}} \frac{(r-\pi-1)^{2} \operatorname{Pr}\left(y_{2 j} \geq r\right)}{\left\{\left(1-\theta_{2}\right) \pi+(r-1) \theta_{2}\right\}^{2}}+\sum_{r=1}^{n_{2 j}} \frac{(r+\pi-2)^{2} \operatorname{Pr}\left(y_{2 j} \leq n_{2 j}-r\right)}{\left\{\left(1-\theta_{2}\right)(1-\pi)+(r-1) \theta_{2}\right\}^{2}}\right. \\
& \left.-\sum_{r=1}^{n_{2 j}} \frac{(r-2)^{2}}{\left\{\left(1-\theta_{2}\right)+(r-1) \theta_{2}\right\}^{2}}\right] .
\end{aligned}
$$

Denoting the maximum likelihood estimate of δ as $\hat{\delta}_{m l}$ and using this estimate, the $C(\alpha)$ statistic which, in this case is the score statistic (RaO (1948)), is obtained as $C_{m l}=\psi_{1}^{2} /\left(D_{11}-A B^{-1} A^{\prime}\right)$. Under the null hypothesis $C_{m l}$ is distributed asymptotically (as $m \rightarrow \infty$, where $m=m_{1}+m_{2}$) as a chi-squared with 1 degree of freedom.

4.2.3 $C(\alpha)$ Test Based on Kleinman's (1973) Method of Moments Estimates of Nuisance Parameters

The method of moments estimators of a two parameter model can be obtained by equating the sample mean and the sample variance to their expected values. In a beta binomial model Kleinman (1973) uses weighted average and weighted variance of sample proportions to equate to their respective expected values to find method of moments estimates of the parameters π and θ in case of a single sample.

Our objective here is to find method of moments estimates of the parameters π, θ_{1} and θ_{2} from two independent samples assuming equality of the proportions. Now, define $z_{i j}=\frac{y_{i j}}{n_{i j}}, w_{i j}=\frac{n_{i j}}{\pi(1-\pi)\left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}} ; i=1,2 ; j=1,2, \cdots, m_{i}$. Note, $w_{i j}$ is the inverse of the variance of $z_{i j}$, under the null hypothesis. Then, the pooled weighted average of sample proportions is given by $\hat{\pi}=\frac{\sum_{i=1}^{2} \sum_{j=1}^{m_{i}} w_{i j} z_{i j}}{\sum_{i=1}^{2} \sum_{j=1}^{m_{i}} w_{i j}}$.
It can be seen that under $H_{0} E(\hat{\pi})=\pi$. Further, define $S_{1}=\sum_{j=1}^{m_{1}} w_{1 j}\left(z_{1 j}-\pi\right)^{2}$ and $S_{2}=\sum_{j=1}^{m_{2}} w_{2 j}\left(z_{2 j}-\pi\right)^{2}$. Again, under H_{0}, it can be seen that $E\left(S_{1}\right)=$ $\sum_{j=1}^{m_{1}} \frac{w_{1 j} \pi(1-\pi)}{n_{1 j}}+\sum_{j=1}^{m_{1}} \frac{w_{1 j} \pi(1-\pi)\left(n_{1 j}-1\right) \theta_{1}}{n_{1 j}}$ and $E\left(S_{2}\right)=\sum_{j=1}^{m_{2}} \frac{w_{2 j} \pi(1-\pi)}{n_{2 j}}+$ $\sum_{j=1}^{m_{2}} \frac{w_{2 j} \pi(1-\pi)\left(n_{2 j}-1\right) \theta_{2}}{n_{2 j}}$. Thus, following Kleinman 1973), the method of moments estimates of $\delta=\left(\pi, \theta_{1}, \theta_{2}\right)$ are obtained by solving the equations

$$
\hat{\pi}=E(\hat{\pi}), \quad S_{1}=E\left(S_{1}\right) \quad \text { and } \quad S_{2}=E\left(S_{2}\right)
$$

simultaneously for π, θ_{1} and θ_{2}. These equations, can then be expressed as the following estimating equations

$$
\begin{gather*}
\sum_{i=1}^{2} \sum_{j=1}^{m_{i}} w_{i j}\left(z_{i j}-\pi\right)=0 \tag{4.5}\\
\sum_{j=1}^{m_{1}} w_{1 j}\left(z_{1 j}-\pi\right)^{2}-\sum_{j=1}^{m_{1}} \frac{w_{1 j} \pi(1-\pi)}{n_{1 j}}-\sum_{j=1}^{m_{1}} \frac{w_{1 j} \pi(1-\pi)\left(n_{1 j}-1\right) \theta_{1}}{n_{1 j}}=0 \tag{4.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m_{2}} w_{2 j}\left(z_{2 j}-\pi\right)^{2}-\sum_{j=1}^{m_{2}} \frac{w_{2 j} \pi(1-\pi)}{n_{2 j}}-\sum_{j=1}^{m_{2}} \frac{w_{2 j} \pi(1-\pi)\left(n_{2 j}-1\right) \theta_{2}}{n_{2 j}}=0 \tag{4.7}
\end{equation*}
$$

Denote the estimates of π, θ_{1} and θ_{2} obtained by solving the three equations (4.5), (4.6) and 4.7) by $\tilde{\delta}_{k m m}$. Substituting these estimates in S, A, B and D, the $C(\alpha)$ statistic based on Kleinman's method of moments estimates is obtained as $C_{k m m}=S^{2} /\left(D_{11}-A B^{-1} A^{\prime}\right)$, which follows, asymptotically, as $m \rightarrow \infty$, a chisquared distribution with 1 degree of freedom, where $m=m_{1}+m_{2}$.

4.3 Semi-parametric Tests

4.3.1 $C(\alpha)$ Test Based on the Quasi-Likelihood and the Method of Moments Estimates by Breslow (1990)

The quasi-likelihood (QL) of Wedderburn (1974) is based on the knowledge of the first two moments of the random variable. For an observation $z_{i j}=\frac{y_{i j}}{n_{i j}}$ with
$E\left(Z_{i j}\right)=\pi_{i}$ and $\operatorname{var}\left(Z_{i j}\right)=\frac{\pi_{i}\left(1-\pi_{i}\right)}{n_{i j}}\left\{1+\left(n_{i j}-1\right) \theta_{i}\right\} ; i=1,2 ; \quad j=1,2, \cdots, m_{i}$, $0 \leq \pi_{i} \leq 1$ and $\cap_{j}\left(\frac{-1}{n_{i j}-1}\right)<\theta_{i}<1$, the QL can be obtained as $Q_{i j}\left(z_{i j}\right)=$ $\int_{z_{i j}}^{\pi_{i}} \frac{n_{i j}\left(z_{i j}-t\right)}{t(1-t)\left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}} d t$. Here, $\cap_{j}\left(\frac{-1}{n_{i j}-1}\right)=\frac{-1}{\max \left\{n_{i j}\right\}-1}$.

Now, as we have two independent samples, the quasi-likelihood, Q, for the data can be obtained as

$$
\begin{align*}
& Q\left(z_{i j} ; \pi_{i}, \theta_{i}\right)=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac { 1 } { \{ 1 + (n _ { i j } - 1) \theta _ { i } \} } \left\{y_{i j} \log \left(\frac{\pi_{i}}{z_{i j}}\right)\right.\right. \\
& \left.\left.+\left(n_{i j}-y_{i j}\right) \log \left(\frac{1-\pi_{i}}{1-z_{i j}}\right)\right\}\right] . \tag{4.8}
\end{align*}
$$

Considering the same reparameterization as in section 4.2.2, under $H_{A}: \pi_{i}=\pi+\phi_{i}$, with $\phi_{2}=0$ the quasi-likelihood function (4.8) takes the form

$$
\begin{align*}
& Q\left(z_{i j} ; \pi, \phi_{i}, \theta_{i}\right)=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac { 1 } { \{ 1 + (n _ { i j } - 1) \theta _ { i } \} } \left\{y_{i j} \log \left(\frac{\pi+\phi_{i}}{z_{i j}}\right)\right.\right. \\
& \left.\left.+\left(n_{i j}-y_{i j}\right) \log \left(\frac{1-\pi-\phi_{i}}{1-z_{i j}}\right)\right\}\right] . \tag{4.9}
\end{align*}
$$

Then, the quasi-likelihood score function for π, under H_{0}, is

$$
\begin{equation*}
g_{1}=\left.\frac{\partial Q}{\partial \pi}\right|_{\phi=0}=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac{1}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{\frac{\left(z_{i j}-\pi\right) n_{i j}}{\pi(1-\pi)}\right\}\right] \tag{4.10}
\end{equation*}
$$

which is an unbiased estimating function. As the quasi-likelihood is designed only for the estimation of the mean parameter, no such estimating functions for θ_{1} and θ_{2} can be obtained from Q. However, given π, the unbiased estimating functions to estimate θ_{1} and θ_{2} can be obtained by using the moment method (Breslow (1990); Moore and

Tsiatis (1991)). These estimating functions for θ_{1} and θ_{2} are obtained by equating the Pearson chi-squared statistics with their expected values and are given by

$$
\begin{equation*}
g_{2}=\sum_{j=1}^{m_{1}}\left[\frac{1}{1+\left(n_{1 j}-1\right) \theta_{1}}\left\{\frac{\left(z_{1 j}-\pi-\phi_{1}\right)^{2} n_{1 j}}{\left(\pi-\phi_{1}\right)\left(1-\pi-\phi_{1}\right)}\right\}\right]-\left(n_{1}-m_{1}\right) \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}=\sum_{j=1}^{m_{2}}\left[\frac{1}{1+\left(n_{2 j}-1\right) \theta_{2}}\left\{\frac{\left(z_{2 j}-\pi-\phi_{2}\right)^{2} n_{2 j}}{\left(\pi-\phi_{2}\right)\left(1-\pi-\phi_{2}\right)}\right\}\right]-\left(n_{2}-m_{2}\right), \tag{4.12}
\end{equation*}
$$

where $n_{i}=\sum_{j=1}^{m_{i}} n_{i j} ; \quad i=1,2$. Then, the method of moment estimates of π, θ_{1} and θ_{2}, under the null hypothesis, based on the quasi-likelihood, are obtained by solving the following equations

$$
\begin{gather*}
\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac{1}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{\frac{\left(z_{i j}-\pi\right) n_{i j}}{\pi(1-\pi)}\right\}\right]=0, \tag{4.13}\\
\sum_{j=1}^{m_{1}}\left[\frac{1}{1+\left(n_{1 j}-1\right) \theta_{1}}\left\{\frac{\left(z_{1 j}-\pi\right)^{2} n_{1 j}}{\pi(1-\pi)}\right\}\right]-\left(n_{1}-m_{1}\right)=0 \tag{4.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m_{2}}\left[\frac{1}{1+\left(n_{2 j}-1\right) \theta_{2}}\left\{\frac{\left(z_{2 j}-\pi\right)^{2} n_{2 j}}{\pi(1-\pi)}\right\}\right]-\left(n_{2}-m_{2}\right)=0 \tag{4.15}
\end{equation*}
$$

simultaneously.

Now, define ϕ and δ as before and the following

$$
\psi_{1 q b}=\left.\frac{\partial Q}{\partial \phi_{1}}\right|_{\phi=0}, \quad \gamma_{1 q b}=\left.\frac{\partial Q}{\partial \pi}\right|_{\phi=0}, \quad \gamma_{2 q b}=\left.g_{2}\right|_{\phi=0} \text { and } \gamma_{3 q b}=\left.g_{3}\right|_{\phi=0} .
$$

By the Lindeberg central-limit theorem (Moore (1985)), asymptotically, as $m_{i} \rightarrow$ ∞, we have $\psi_{1 q b}(\delta) \sim N\left(0, \Delta_{11 q b}-\Delta_{12 q b} \Delta_{22 q b}^{-1} \Delta_{21 q b}\right)$.

The dimensions of matrices $\Delta_{11 q b}, \Delta_{12 q b}, \Delta_{21 q b}$, and $\Delta_{22 q b}$ are $1 \times 1,1 \times 3,3 \times 1$, and 3×3 respectively with elements

$$
\begin{aligned}
& \Delta_{11 q b}=E\left(-\left.\frac{\partial^{2} Q}{\partial \phi_{1}^{2}}\right|_{\phi=0}\right), \\
& \Delta_{12 q b 1}=E\left(-\left.\frac{\partial^{2} Q}{\partial \phi_{1} \partial \pi}\right|_{\phi=0}\right), \Delta_{12 q b 2}=E\left(-\left.\frac{\partial^{2} Q}{\partial \phi_{1} \partial \theta_{1}}\right|_{\phi=0}\right), \Delta_{12 q b 3}=E\left(-\left.\frac{\partial^{2} Q}{\partial \phi_{1} \partial \theta_{2}}\right|_{\phi=0}\right), \\
& \Delta_{21 q b 1}=E\left(-\left.\frac{\partial^{2} Q}{\partial \pi \partial \phi_{1}}\right|_{\phi=0}\right), \Delta_{21 q b 2}=E\left(-\left.\frac{\partial g_{2}}{\partial \phi_{1}}\right|_{\phi=0}\right), \Delta_{21 q b 3}=E\left(-\left.\frac{\partial g_{3}}{\partial \phi_{1}}\right|_{\phi=0}\right), \\
& \Delta_{22 q b 11}=E\left(-\left.\frac{\partial^{2} Q}{\partial \pi^{2}}\right|_{\phi=0}\right), \Delta_{22 q b 12}=E\left(-\left.\frac{\partial^{2} Q}{\partial \pi \partial \theta_{1}}\right|_{\phi=0}\right), \Delta_{22 q b 13}=E\left(-\left.\frac{\partial^{2} Q}{\partial \pi \partial \theta_{2}}\right|_{\phi=0}\right) \\
& \Delta_{22 q b 21}=E\left(-\left.\frac{\partial g_{2}}{\partial \pi}\right|_{\phi=0}\right), \Delta_{22 q b 22}=E\left(-\left.\frac{\partial g_{2}}{\partial \theta_{1}}\right|_{\phi=0}\right), \Delta_{22 q b 23}=E\left(-\left.\frac{\partial g_{2}}{\partial \theta_{2}}\right|_{\phi=0}\right), \\
& \Delta_{22 q b 31}=E\left(-\left.\frac{\partial g_{3}}{\partial \pi}\right|_{\phi=0}\right), \Delta_{22 q b 32}=E\left(-\left.\frac{\partial g_{3}}{\partial \theta_{1}}\right|_{\phi=0}\right) \text { and }
\end{aligned}
$$

$$
\Delta_{22 q b 33}=E\left(-\left.\frac{\partial g_{3}}{\partial \theta_{2}}\right|_{\phi=0}\right)
$$

On taking the expectation of the negative of the second derivatives and after simplifications, the above quantities are obtained as

$$
\begin{aligned}
& \Delta_{11 q b}=\sum_{j=1}^{m_{1}}\left[\frac{n_{1 j}}{\pi(1-\pi)\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}}\right]=d_{1 q b}, \\
& \Delta_{12 q b 1}=\sum_{j=1}^{m_{1}}\left[\frac{n_{1 j}}{\pi(1-\pi)\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}}\right]=d_{1 q b},
\end{aligned}
$$

$$
\Delta_{12 q b 2}=0, \quad \Delta_{12 q b 3}=0
$$

$$
\Delta_{21 q b 1}=\sum_{j=1}^{m_{1}}\left[\frac{n_{1 j}}{\pi(1-\pi)\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}}\right]=d_{1 q b}
$$

$$
\Delta_{21 q b 2}=\sum_{j=1}^{m_{1}}\left[\frac{1-2 \pi}{\pi(1-\pi)}\right]=c_{q b} m_{1}, \quad \Delta_{21 q b 3}=0
$$

$$
\Delta_{22 q b 11}=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac{n_{i j}}{\pi(1-\pi)\left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}}\right]=\sum_{i=1}^{2} d_{i q b}=d_{q b}
$$

$$
\Delta_{22 q b 12}=0, \quad \Delta_{22 q b 13}=0
$$

$$
\Delta_{22 q b 21}=\sum_{j=1}^{m_{1}}\left[\frac{1-2 \pi}{\pi(1-\pi)}\right]=c_{q b} m_{1}, \quad \Delta_{22 q b 22}=\sum_{j=1}^{m_{1}}\left[\frac{\left(n_{1 j}-1\right)}{1+\left(n_{1 j}-1\right) \theta_{1}}\right]=s_{1 q b},
$$

$$
\Delta_{22 q b 23}=0, \quad \Delta_{22 q b 31}=\sum_{j=1}^{m_{2}}\left[\frac{1-2 \pi}{\pi(1-\pi)}\right]=c_{q b} m_{2}
$$

$$
\Delta_{22 q b 32}=0 \text { and } \Delta_{22 q b 33}=\sum_{j=1}^{m_{2}}\left[\frac{\left(n_{2 j}-1\right)}{1+\left(n_{2 j}-1\right) \theta_{2}}\right]=s_{2 q b} .
$$

Then, the matrices $\Delta_{11 q b}, \Delta_{12 q b}, \Delta_{21 q b}$, and $\Delta_{22 q b}$ are

$$
\begin{gathered}
\Delta_{11 q b}=d_{1 q b}, \quad \Delta_{12 q b}=\left(\begin{array}{lll}
d_{1 q b} & 0 & 0
\end{array}\right), \\
\Delta_{22 q b}=\left(\begin{array}{ccc}
d_{q b} & 0 & 0 \\
c_{q b} m_{1} & s_{1 q b} & 0 \\
c_{q b} m_{2} & 0 & s_{2 q b}
\end{array}\right) \text { and } \Delta_{21 q b}=\left(\begin{array}{c}
d_{1 q b} \\
c_{q b} m_{1} \\
0
\end{array}\right)
\end{gathered}
$$

respectively.

Using the estimates of π, θ_{1} and θ_{2} obtained from simultaneously solving the equations (4.13), 4.14) and 4.15, the $C(\alpha)$ statistic, based on the quasi-likelihood and Breslow's $(1990(a))$ method of moments estimates of the parameters π, θ_{1} and θ_{2}, is $C_{q b}=\psi_{1 q b}^{2} /\left(\Delta_{11 q b}-\Delta_{12 q b} \Delta_{22 q b}^{-1} \Delta_{21 q b}\right)$, which is distributed asymptotically, as $m \rightarrow \infty$, a chi-squared distribution with 1 degree of freedom, where $m=m_{1}+m_{2}$.

4.3.2 $C(\alpha)$ Test Based on the Quasi-Likelihood and the Method of Moments Estimates by Srivastava and Wu

 (1993)We follow the same procedure as in the preceding section except that for estimating the dispersion parameters θ_{1} and θ_{2}, we use estimating functions proposed by Srivastava and Wu (1993). Here, like in the preceding section, the quasi-likelihood score, under the null hypothesis, which is the unbiased estimating function, to estimate the
parameter π is

$$
g_{1}=\left.\frac{\partial Q}{\partial \pi}\right|_{\phi=0}=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac{1}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{\frac{\left(z_{i j}-\pi\right) n_{i j}}{\pi(1-\pi)}\right\}\right] .
$$

Given π, the estimating functions based on the method of moments estimates for θ_{1} and θ_{2} proposed by Srivastava and $\mathrm{Wu}(1993)$ are

$$
\begin{equation*}
g_{2}=\sum_{j=1}^{m_{1}}\left[\frac{n_{1 j}^{2}\left(z_{1 j}-\pi-\phi_{1}\right)^{2}}{\left(\pi+\phi_{1}\right)\left(1-\pi-\phi_{1}\right)}-n_{1 j}\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}\right] \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}=\sum_{j=1}^{m_{2}}\left[\frac{n_{2 j}^{2}\left(z_{2 j}-\pi-\phi_{2}\right)^{2}}{\left(\pi+\phi_{2}\right)\left(1-\pi-\phi_{2}\right)}-n_{2 j}\left\{1+\left(n_{2 j}-1\right) \theta_{2}\right\}\right] . \tag{4.17}
\end{equation*}
$$

Under the null hypothesis, the \sqrt{m} consistent estimates of π, θ_{1} and θ_{2} are obtained by solving the following equations

$$
\begin{align*}
& \sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac{1}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{\frac{\left(z_{i j}-\pi\right) n_{i j}}{\pi(1-\pi)}\right\}\right]=0 \tag{4.18}\\
& \sum_{j=1}^{m_{1}}\left[\frac{n_{1 j}^{2}\left(z_{1 j}-\pi\right)^{2}}{\pi(1-\pi)}-n_{1 j}\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}\right]=0 \tag{4.19}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m_{2}}\left[\frac{n_{2 j}^{2}\left(z_{2 j}-\pi\right)^{2}}{\pi(1-\pi)}-n_{2 j}\left\{1+\left(n_{2 j}-1\right) \theta_{2}\right\}\right]=0 \tag{4.20}
\end{equation*}
$$

simultaneously.

As in the previous section we denote the matrices involving the second derivatives (mixed) by $\Delta_{11 q s}, \Delta_{12 q s}, \Delta_{21 q s}$ and $\Delta_{22 q s}$. Then, following similar steps as in the preceding section, the elements of the matrices are obtained as

$$
\begin{aligned}
& \Delta_{11 q s}=E\left(-\left.\frac{\partial^{2} Q}{\partial \phi_{1}^{2}}\right|_{\phi=0}\right), \Delta_{12 q s 1}=E\left(-\left.\frac{\partial^{2} Q}{\partial \phi_{1} \partial \pi}\right|_{\phi=0}\right), \Delta_{12 q s 2}=E\left(-\left.\frac{\partial^{2} Q}{\partial \phi_{1} \partial \theta_{1}}\right|_{\phi=0}\right), \\
& \Delta_{12 q s 3}=E\left(-\left.\frac{\partial^{2} Q}{\partial \phi_{1} \partial \theta_{2}}\right|_{\phi=0}\right), \Delta_{21 q s 1}=E\left(-\left.\frac{\partial^{2} Q}{\partial \pi \partial \phi_{1}}\right|_{\phi=0}\right), \Delta_{21 q s 2}=E\left(-\left.\frac{\partial g_{2}}{\partial \phi_{1}}\right|_{\phi=0}\right), \\
& \Delta_{21 q s 3}=E\left(-\left.\frac{\partial g_{3}}{\partial \phi_{1}}\right|_{\phi=0}\right), \Delta_{22 q s 11}=E\left(-\left.\frac{\partial^{2} Q}{\partial \pi^{2}}\right|_{\phi=0}\right), \Delta_{22 q s 12}=E\left(-\left.\frac{\partial^{2} Q}{\partial \pi \partial \theta_{1}}\right|_{\phi=0}\right), \\
& \Delta_{22 q s 13}=E\left(-\left.\frac{\partial^{2} Q}{\partial \pi \partial \theta_{2}}\right|_{\phi=0}\right), \Delta_{22 q s 21}=E\left(-\left.\frac{\partial g_{2}}{\partial \pi}\right|_{\phi=0}\right), \Delta_{22 q s 22}=E\left(-\left.\frac{\partial g_{2}}{\partial \theta_{1}}\right|_{\phi=0}\right), \\
& \Delta_{22 q s 23}=E\left(-\left.\frac{\partial g_{2}}{\partial \theta_{2}}\right|_{\phi=0}\right), \Delta_{22 q s 31}=E\left(-\left.\frac{\partial g_{3}}{\partial \pi}\right|_{\phi=0}\right), \Delta_{22 q s 32}=E\left(-\left.\frac{\partial g_{3}}{\partial \theta_{1}}\right|_{\phi=0}\right) \\
& \text { and } \Delta_{22 q s 33}=E\left(-\left.\frac{\partial g_{3}}{\partial \theta_{2}}\right|_{\phi=0}\right) .
\end{aligned}
$$

After detained derivation we obtain

$$
\Delta_{11 q s}=\sum_{j=1}^{m_{1}}\left[\frac{n_{1 j}}{\pi(1-\pi)\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}}\right]=d_{1 q s}
$$

$$
\begin{aligned}
& \Delta_{12 q s 1}=\sum_{j=1}^{m_{1}}\left[\frac{n_{1 j}}{\pi(1-\pi)\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}}\right]=d_{1 q s}, \quad \Delta_{12 q s 2}=0, \quad \Delta_{12 q s 3}=0, \\
& \Delta_{21 q s 1}=\sum_{j=1}^{m_{1}}\left[\frac{n_{1 j}}{\pi(1-\pi)\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}}\right]=d_{1 q s},
\end{aligned}
$$

$$
\Delta_{21 q s 2}=\frac{(1-2 \pi)}{\pi(1-\pi)} \sum_{j=1}^{m_{1}} n_{1 j}\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}=c_{q s} s_{1 q s}, \quad \Delta_{21 q s 3}=0
$$

$$
\Delta_{22 q s 11}=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac{n_{i j}}{\pi(1-\pi)\left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}}\right]=\sum_{i=1}^{2} d_{i}=d_{q s}, \quad \Delta_{22 q s 12}=0,
$$

$$
\Delta_{22 q s 13}=0, \quad \Delta_{22 q s 21}=\frac{(1-2 \pi)}{\pi(1-\pi)} \sum_{j=1}^{m_{1}} n_{1 j}\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}=c_{q s} s_{1 q s},
$$

$$
\Delta_{22 q s 22}=\sum_{j=1}^{m_{1}} n_{1 j}\left(n_{1 j}-1\right)=e_{1 q s}, \quad \Delta_{22 q s 23}=0
$$

$$
\Delta_{22 q s 31}=\frac{(1-2 \pi)}{\pi(1-\pi)} \sum_{j=1}^{m_{2}} n_{2 j}\left\{1+\left(n_{2 j}-1\right) \theta_{2}\right\}=c_{q s} s_{2 q s}, \quad \Delta_{22 q s 32}=0
$$

and
$\Delta_{22 q s 33}=\sum_{j=1}^{m_{2}} n_{2 j}\left(n_{2 j}-1\right)=e_{2 q s}$.

Now, the matrices $\Delta_{11 q s}, \Delta_{12 q s}, \Delta_{21 q s}$, and $\Delta_{22 q s}$ are

$$
\Delta_{11 q s}=d_{1 q s}, \quad \Delta_{12 q s}=\left(\begin{array}{lll}
d_{1 q s} & 0 & 0
\end{array}\right),
$$

$$
\Delta_{22 q s}=\left(\begin{array}{ccc}
d_{q s} & 0 & 0 \\
c_{q s} s_{1 q s} & e_{1 q s} & 0 \\
c_{q s} s_{2 q s} & 0 & e_{2 q s}
\end{array}\right) \text { and } \Delta_{21 q s}=\left(\begin{array}{c}
d_{1 q s} \\
c_{q s} s_{1 q s} \\
0
\end{array}\right) \text { respectively. }
$$

Using the estimates of π, θ_{1} and θ_{2} obtained from simultaneously solving the equations (4.18), 4.19) and 4.20, the $C(\alpha)$ statistic, based on the quasi-likelihood and the method of moments estimates by Srivastava and Wu (1993), is $C_{q s}=$ $\psi_{1 q s}^{2} /\left(\Delta_{11 q s}-\Delta_{12 q s} \Delta_{22 q s}^{-1} \Delta_{21 q s}\right)$, which is distributed, asymptotically, as χ^{2} with 1 degree of freedom.

4.3.3 $\quad C(\alpha)$ Test Based on the Extended Quasi-Likelihood Estimates

The quasi-likelihood function does not possess a property similar to the log-likelihood function with respect to the derivative of the dispersion parameter. Thus, the quasilikelihood function facilitates the estimation of only the mean parameter and it is not suitable to estimate the dispersion parameter(s). In order to estimate the mean parameter as well as the dispersion parameter from the same function, Nelder and Pregibon (1987) and Godambe and Thompson (1989) propose the extended quasilikelihood function (EQL). This function is implemented by adding a normalizing factor to the quasi-likelihood function.

The extended quasi-likelihood for an observation $z_{i j}=\frac{y_{i j}}{n_{i j}}$ with mean and variance specified in the previous section can be obtained from

$$
\begin{align*}
& Q^{+}\left(z_{i j} ; \pi_{i}, \theta_{i}\right)=-\frac{1}{2} \log (2 k)-\frac{1}{2} \log \left[\frac{z_{i j}\left(1-z_{i j}\right)\left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}}{n_{i j}}\right] \tag{4.21}\\
& +\int_{z_{i j}}^{\pi_{i}} \frac{n_{i j}\left(z_{i j}-t\right)}{t(1-t)\left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}} d t .
\end{align*}
$$

For two independent random samples $z_{i j}, i=1,2 ; j=1,2, \cdots, m_{i}$, where $y_{i j} \sim$ $B B\left(\pi_{i}, \theta_{i}\right)$, the extended quasi-likelihood, apart from a constant, can be written as

$$
\begin{align*}
& Q^{+}=C-\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\log \left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}\right. \\
& \left.-\frac{2}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{y_{i j} \log \left(\frac{\pi_{i}}{z_{i j}}\right)+\left(n_{i j}-y_{i j}\right) \log \left(\frac{1-\pi_{i}}{1-z_{i j}}\right)\right\}\right] . \tag{4.22}
\end{align*}
$$

Under the null hypothesis, $H_{0}: \pi_{1}=\pi_{2}=\pi$, the extended quasi-likelihood (4.22) takes the form

$$
\begin{align*}
& Q^{+}=C-\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\log \left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}\right. \tag{4.23}\\
& \left.-\frac{2}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{y_{i j} \log \left(\frac{\pi}{z_{i j}}\right)+\left(n_{i j}-y_{i j}\right) \log \left(\frac{1-\pi}{1-z_{i j}}\right)\right\}\right] .
\end{align*}
$$

The estimates of the parameters π, θ_{1} and θ_{2}, under the null hypothesis, can be obtained by directly maximizing the extended quasi-likelihood function 4.23) or by solving the following estimating equations

$$
\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\frac{1}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{\frac{y_{i j}}{\pi}-\frac{n_{i j}-y_{i j}}{1-\pi}\right\}\right]=0
$$

$$
\begin{aligned}
& \sum_{j=1}^{m_{1}}\left[\frac { n _ { 1 j } - 1 } { \{ 1 + (n _ { 1 j } - 1) \theta _ { 1 } \} ^ { 2 } } \left\{y_{1 j} \log \left(\frac{z_{1 j}}{\pi}\right)+\left(n_{1 j}-y_{1 j}\right) \log \left(\frac{1-z_{1 j}}{1-\pi}\right)\right.\right. \\
& \left.-\frac{1+\left(n_{1 j}-1\right) \theta_{1}}{2}\right]=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j=1}^{m_{2}}\left[\frac { n _ { 2 j } - 1 } { \{ 1 + (n _ { 2 j } - 1) \theta _ { 2 } \} ^ { 2 } } \left\{y_{2 j} \log \left(\frac{z_{2 j}}{\pi}\right)+\left(n_{2 j}-y_{2 j}\right) \log \left(\frac{1-z_{2 j}}{1-\pi}\right)\right.\right. \\
& \left.-\frac{1+\left(n_{2 j}-1\right) \theta_{2}}{2}\right]=0
\end{aligned}
$$

simultaneously.

Now, following the reparameterization as in section 4.2.2, the extended quasilikelihood in terms of $\pi, \phi_{1}, \phi_{2}, \theta_{1}$ and θ_{2}, under the alternative hypothesis, can be written as

$$
\begin{align*}
Q^{+} & =C-\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\log \left\{1+\left(n_{i j}-1\right) \theta_{i}\right\}\right. \\
& \left.-\frac{2}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{y_{i j} \log \left(\frac{\pi+\phi_{i}}{z_{i j}}\right)+\left(n_{i j}-y_{i j}\right) \log \left(\frac{1-\pi-\phi_{i}}{1-z_{i j}}\right)\right\}\right] . \tag{4.24}
\end{align*}
$$

Then, the $C(\alpha)$ statistic is based on the adjusted score $S_{e q}=\psi_{1 e q}-\beta_{1 e q} \gamma_{1 e q}-$ $\beta_{2 e q} \gamma_{2 e q}-\beta_{3 e q} \gamma_{3 e q}$, where $\psi_{1 e q}=\left.\frac{\partial Q^{+}}{\partial \phi_{1}}\right|_{\phi=0}$ and $\beta_{1 e q}, \beta_{2 e q}$ and $\beta_{3 e q}$ are the partial regression coefficient of $\psi_{1 e q}$ on $\gamma_{1 e q}, \psi_{1 e q}$ on $\gamma_{2 e q}$, and $\psi_{1 e q}$ on $\gamma_{3 e q}$ respectively. It can be seen that, for the extended quasi-likelihood, $\gamma_{1 e q}=0, \gamma_{2 e q}=0$, and $\gamma_{3 e q}=0$. Thus $S_{e q}=\psi_{1 e q}$.

The structure of the dispersion matrix $\psi_{1 e q}$ is

$$
V_{e q}=\left(\begin{array}{cc}
D_{e q} & A_{e q} \\
A_{e q}^{\prime} & B_{e q}
\end{array}\right)
$$

where $D_{e q}$ is $1 \times 1, A_{e q}$ is 1×3 and $B_{e q}$ is 3×3 with the following elements

$$
\begin{aligned}
& D_{11 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \Phi_{1}^{2}}\right|_{\Phi=0}\right], \\
& A_{11 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \Phi_{1} \partial \pi}\right|_{\Phi=0}\right], A_{12 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \Phi_{1} \partial \theta_{1}}\right|_{\Phi=0}\right], A_{13 e q}=E\left[-\left.\frac{\partial^{2} Q}{\partial \Phi_{1} \partial \theta_{2}}\right|_{\Phi=0}\right], \\
& B_{11 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \pi^{2}}\right|_{\Phi=0}\right], B_{12 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \pi \partial \theta_{1}}\right|_{\Phi=0}\right], B_{13 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \pi \partial \theta_{2}}\right|_{\Phi=0}\right], \\
& B_{22 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \theta_{1}^{2}}\right|_{\Phi=0}\right], B_{23 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \theta_{1} \partial \theta_{2}}\right|_{\Phi=0}\right] \text { and } \\
& B_{33 e q}=E\left[-\left.\frac{\partial^{2} Q^{+}}{\partial \theta_{2}^{2}}\right|_{\Phi=0}\right] .
\end{aligned}
$$

After taking expectation of the negative of mixed partial derivatives and on simplification, the above quantities are obtained as follows

$$
\begin{aligned}
& \psi_{1 e q}=\sum_{j=1}^{m_{1}}\left[\frac{1}{1+\left(n_{1 j}-1\right) \theta_{1}}\left\{\frac{y_{1 j}}{\pi}-\frac{n_{1 j}-y_{1 j}}{1-\pi}\right\}\right], \\
& D_{11 e q}=\sum_{j=1}^{m_{1}}\left[\frac{1}{1+\left(n_{1 j}-1\right) \theta_{1}}\left\{\frac{n_{1 j}}{\pi(1-\pi)}\right\}\right],
\end{aligned}
$$

$$
\begin{aligned}
& A_{11 e q}=\sum_{j=1}^{m_{1}}\left[\frac{1}{1+\left(n_{1 j}-1\right) \theta_{1}}\left\{\frac{n_{1 j}}{\pi(1-\pi)}\right\}\right], A_{12 e q}=0, A_{13 e q}=0, \\
& B_{11 e q}=\sum_{i=1}^{2} \sum_{j=1}^{m_{1}}\left[\frac{1}{1+\left(n_{i j}-1\right) \theta_{i}}\left\{\frac{n_{i j}}{\pi(1-\pi)}\right\}\right], B_{12 e q}=0, B_{13 e q}=0, \\
& B_{22 e q}=\frac{1}{2} \sum_{j=1}^{m_{1}}\left[-\frac{\left(n_{1 j}-1\right)^{2}}{\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}^{2}}\right. \\
& -\frac{4\left(n_{1 j}-1\right)^{2}}{\left\{1+\left(n_{1 j}-1\right) \theta_{1}\right\}^{3}}\left\{E\left(y_{1 j} \log \left(\frac{\pi}{z_{1 j}}\right)\right)+n_{1 j} E\left(\log \left(\frac{1-\pi}{1-z_{1 j}}\right)\right)\right. \\
& \left.\left.-E\left(y_{1 j} \log \left(\frac{1-\pi}{1-z_{1 j}}\right)\right)\right\}\right], \\
& B_{23 e q}=0 \text { and } \\
& B_{33 e q}=\frac{1}{2} \sum_{j=1}^{m_{2}}\left[-\frac{\left(n_{2 j}-1\right)^{2}}{\left\{1+\left(n_{2 j}-1\right) \theta_{2}\right\}^{2}}\right. \\
& -\frac{4\left(n_{2 j}-1\right)^{2}}{\left\{1+\left(n_{2 j}-1\right) \theta_{2}\right\}^{3}}\left\{E\left(y_{2 j} \log \left(\frac{\pi}{z_{2 j}}\right)\right)+n_{2 j} E\left(\log \left(\frac{1-\pi}{1-z_{2 j}}\right)\right)\right. \\
& \left.\left.-E\left(y_{2 j} \log \left(\frac{1-\pi}{1-z_{2 j}}\right)\right)\right\}\right] .
\end{aligned}
$$

If we denote the estimate of δ based on the extended quasi-likelihood function by $\tilde{\delta}_{e q}$ and substitute these estimates in $\psi_{1 e q}, D_{11 e q}, A_{e q}$ and $B_{e q}$, then the $C(\alpha)$ test based on the extended quasi-likelihood is $C_{e q}=\psi_{1 e q}^{2} /\left(D_{11 e q}-A_{e q} B_{e q}^{-1} A_{e q}^{\prime}\right)$, which is distributed as chi-squared, asymptotically as $m \rightarrow \infty$, where $m=m_{1}+m_{2}$, with 1 degree of freedom.

4.3.4 The Rao-Scott (RS) and the Adjusted Rao-Scott (ARS) statistics

Rao and Scott (1992) proposed a simple method which is based on the concepts of design effect and effective sample size for comparing independent groups of clustered binary data. They applied this method to a variety of biometrical problems including testing homogeneity of binomial proportions. Following Rao and Scott (1992) define

$$
\begin{gathered}
y_{i}=\sum_{j=1}^{m_{i}} y_{i j}, \quad n_{i}=\sum_{j=1}^{m_{i}} n_{i j}, \quad \hat{p}_{i}=\frac{y_{i}}{n_{i}}, \quad \hat{p}=\frac{\sum_{i=1}^{2} y_{i}}{\sum_{i=1}^{2} n_{i}}, \\
v_{i}=m_{i}\left(m_{i}-1\right)^{-1} n_{i}^{-2} \sum_{j=1}^{m_{i}}\left(y_{i j}-n_{i j} \hat{p}_{i}\right)^{2}, \quad d_{i}=\frac{n_{i} v_{i}}{\left\{\hat{p}_{i}\left(1-\hat{p}_{i}\right)\right\}}, \\
\tilde{y}_{i}=\frac{y_{i}}{d_{i}}, \quad \tilde{n}_{i}=\frac{n_{i}}{d_{i}}, \quad \text { and } \quad \tilde{p}=\frac{\sum_{i=1}^{2} \tilde{y}_{i}}{\sum_{i=1}^{2} \tilde{n}_{i}}, \quad i=1,2 .
\end{gathered}
$$

In sampling design literature the term d_{i} is called the design effect or the variance inflation factor where as the term \tilde{n}_{i} is called the effective sample size (Kish (1965)). The RS statistic for testing the equality of two proportions is

$$
C_{r s}=\sum_{i=1}^{2} \frac{\left(\tilde{y}_{i}-\tilde{n}_{i} \tilde{p}\right)^{2}}{\left\{\tilde{n}_{i} \tilde{p}(1-\tilde{p})\right\}} .
$$

It is evident that rather than assuming any specific model for the intracluster correlations, the RS statistic uses the binomial model for the overall response y_{i} in the $i^{\text {th }}$
cluster. An adjustment for the variance inflation due to clustering or the design effect is also taken into consideration in this statistic. For this reason, the RS statistic is considered to be based on semi-parametric model. The RS statistic is asymptotically distributed as χ^{2} with one degree of freedom under the null hypothesis. If the population variance inflation factors D_{i} 's are equal, that is, $D_{i}=D$ for $i=1,2$, which is a special case, Rao and Scott 1992 recommend using $\tilde{y}_{i}=\frac{y_{i}}{d}$ and $\tilde{n}_{i}=\frac{n_{i}}{d}$, where d is a pooled estimate of D and is defined as

$$
d=\left[\sum_{i=1}^{2}\left(1-f_{i}\right) \frac{\hat{p}_{i}\left(1-\hat{p}_{i}\right)}{\hat{p}(1-\hat{p})} d_{i}\right],
$$

with $f_{i}=\frac{n_{i}}{n}$ and $n=\sum_{i=1}^{2} n_{i}$. Taking this modification into account, the RS statistic takes the form $C_{a r s}=\frac{\chi^{2}}{d}$, where

$$
\chi^{2}=\sum_{i=1}^{2} \frac{\left(y_{i}-n_{i} \hat{p}\right)^{2}}{\left\{n_{i} \hat{p}(1-\hat{p})\right\}}
$$

We call this modified RS statistic as adjusted Rao-Scott statistic (ARS) which, under the null hypothesis, is distributed asymptotically as a χ^{2} with 1 degree of freedom.

4.4 Simulation Study

In this section we report on a simulation study to compare the test statistics $L R$, $C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$ and $C_{a r s}$ in terms of empirical size and power. The litter sizes within each group were required to generate data for the simulation study. The litter sizes and the number of litters were chosen as those of the control group
$\left(m_{1}=27\right)$ and medium dose group $\left(m_{2}=21\right)$ of Paul (1982). Thus, the litter sizes of group 1 were $12,7,6,6,7,8,10,7,8,6,11,7,8,9,2,7,9,7,11,10,4,8,10,12,8,7,8$ and those of group 2 were $4,4,9,8,9,7,8,9,6,4,6,7,3,13,6,8,11,7,6,10,6$. Data were generated using " R " through the function "rbetabinom" with arguments size $=$ the litter sizes $\left(n_{i j}\right), \quad \operatorname{prob}=\pi_{i}$, and $r h o=\theta_{i}$, within group i, where $j=1,2, \cdots, n_{i}$, and $i=1,2$. For simultaneously solving the equations to obtain the estimates of parameters we used the " R " built-in function "nleqslv". For each simulation run, 3000 valid iterations were considered after discarding the non-convergent samples and those that produced out-of-range estimates of the parameters. The dispersion parameter, θ, of a beta-binomial distribution can take negative value as well. So, we considered the negative estimates of θ_{1} and θ_{2}. Since $\cap_{j}\left(\frac{-1}{n_{i j}-1}\right)<\theta_{i}<1$, an estimate of θ_{i} was considered out-of-range if $\hat{\theta}_{i}<\frac{-1}{\max \left\{n_{i j}\right\}-1}+0.00001$, where $\max \left\{n_{i j}\right\}$ is the largest value of $\left\{n_{i j}\right\} ; i=1,2 ; j=1,2, \cdots, m_{i}$. Convergence of estimating equations depend on the initial values provided for the parameters. If the same initial values were provided for all iterations then a large number of samples became non-convergent. To keep the number of convergent samples to its maximum we used method of moments estimates of parameters as initial values for each iteration. Also in order to avoid the undefined estimates we discarded samples if $y_{i j}=0$ or $y_{i j}=n_{i j}$ for all $i=1,2 ; j=1,2, \cdots, m_{i}$. We observed that the number of discarded samples depend on the arguments, π and θ, of the function "rbetabinom" and this number was more for small values of π and close to the boundary values of θ (close to 0 or 1).

As we considered unequal dispersion parameters θ_{1} and θ_{2} in developing the test procedures, for computing the empirical levels and powers of the test statistics, we took four sets of combinations of $\left(\theta_{1}, \theta_{2}\right)$ into account. The combinations were $\left(\theta_{1}, \theta_{2}\right)$
$=(0.02,0.02),(0.02,0.05),(0.02,0.10),(0.02,0.20),(0.02,0.30),(0.02,0.40) ;\left(\theta_{1}, \theta_{2}\right)$
$=(0.05,0.05),(0.05,0.10),(0.05,0.20),(0.05,0.30),(0.05,0.40),(0.05,0.50) ;\left(\theta_{1}, \theta_{2}\right)$
$=(0.10,0.20),(0.10,0.15),(0.10,0.20),(0.10,0.30),(0.10,0.40),(0.10,0.50)$ and $\left(\theta_{1}, \theta_{2}\right)=(0.20,0.20),(0.20,0.30),(0.20,0.40),(0.20,0.50),(0.20,0.60),(0.20,0.70)$.

In order to compute empirical levels we considered $\pi_{1}=\pi_{2}=0.05,0.10,0.20,0.30$ for all of the above four combinations of $\left(\theta_{1}, \theta_{2}\right)$ and the results corresponding to 5% nominal level are presented in Tables 4.1 to 4.4 . We observe the following features of the test statistics in maintaining the nominal levels.
a) For small values of $\pi_{1}=\pi_{2}(0.05)$, the $C(\alpha)$ statistic based on the Kleinman's method of moment estimates of nuisance parameters, δ, show conservative behaviour in maintaining nominal level for all combinations of $\left(\theta_{1}, \theta_{2}\right)$, from no difference between then to moderately large difference. For example, in Table 4.1 the level of $C_{k m m}$ is 2.7% for $\left(\theta_{1}, \theta_{2}\right)=(0.02,0.02)$ and it raises to 4.1% for $\left(\theta_{1}, \theta_{2}\right)=(0.02,0.20)$. Tables 4.2, 4.3, and 4.4 also display the similar results for this test procedure.
b) The trends of the statistics $C_{r s}$ and $C_{a r s}$ are also similar to that of $C_{k m m}$ in maintaining nominal levels. For example, the empirical level of $C_{r s}$ is 3.5% for $\left(\theta_{1}, \theta_{2}\right)=(0.20,0.20)$ and 4.1% for $\left(\theta_{1}, \theta_{2}\right)=(0.20,0.40)$ as seen in Table 4.4.
c) For moderate values of π, that is, for $\pi_{1}=\pi_{2}=0.10$ and the first two combinations of $\left(\theta_{1}, \theta_{2}\right)$, the statistic $C_{k m m}$ behaves conservatively in maintaining nominal levels from no to moderate differences of the dispersion parameters. For example, in Table 4.2, we see that 3.6% is the empirical level of this test procedure for $\left(\theta_{1}, \theta_{2}\right)=(0.05,0.05)$ and 4.1% for $\left(\theta_{1}, \theta_{2}\right)=(0.05,0.20)$.
d) For the same values of the dispersion parameters θ_{1} and θ_{2}, that is, when θ_{1} and θ_{2} are equal in all four combinations, all of the test procedures are conservative with respect to empirical levels if values of $\pi_{1}=\pi_{2}$ are small $\left(\pi_{1}=\pi_{2}=0.05\right)$.
$e)$ All test procedures maintain the nominal level reasonably well for all combinations of the dispersion parameters θ_{1} and θ_{2} apart from the above cases. The statistics $C_{q b}, C_{q s}$ and $C_{e q}$ maintain nominal level better than the other statistics. For example, in Table 4.3 for $\pi_{1}=\pi_{2}=0.30$ and $\left(\theta_{1}, \theta 2\right)=(0.10,0.10)$, the empirical levels of the statistics $C_{q b}, C_{q s}$ and $C_{e q}$ are $5.0 \%, 5.1 \%$ and 5.3% respectively which are close to the nominal level.

For all of the statistics we computed empirical powers corresponding to the 5% nominal significance level for combinations of $\left(\theta_{1}, \theta_{2}\right)$ mentioned earlier. In computing powers the values of $\left(\pi_{1}, \pi_{2}\right)$ taken into consideration for all combinations of $\left(\theta_{1}, \theta_{2}\right)$ were $\left(\pi_{1}, \pi_{2}\right)=(0.05,0.10),(0.05,0.15),(0.05,0.20),(0.05,0.25),(0.05,0.30)$, $(0.05,0.35),(0.05,0.40),(0.05,0.45),(0.05,0.50)$ and $(0.05,0.60)$ and the results are presented in Tables 4.5 to 4.8. The test statistics were of two categories, namely, parametric and semi-parametric. The parametric procedures were $L R, C_{m l}$ and $C_{k m m}$ and the semi-parametric procedures were $C_{q b}, C_{q s}, C_{e q}, C_{r s}$ and $C_{a r s}$. In what follows we present how the test procedures behave with respect to the empirical powers.
a) For specific values of $\left(\pi_{1}, \pi_{2}\right)$, the powers of all of the test procedures increase with the increase in the difference between the dispersion parameters, θ_{1} and θ_{2}. For example, in Table 4.5, the power of the likelihood ratio statistic, $L R$, is 7.6% for $\left(\theta_{1}, \theta_{2}\right)=(0.02,0.02)$ and it raises to 58.9% for $\left(\theta_{1}, \theta_{2}\right)=(0.02,0.40)$ when $\left(\pi_{1}, \pi_{2}\right)=(0.05,0.10)$.
b) The powers of all of the test procedures increase with the increase in the difference between π_{1} and π_{2}. We see in Table 4.6 that for $\left(\theta_{1}, \theta_{2}\right)=(0.05,0.20)$ the power of $C_{m l}$ is 22.4% when $\left(\pi_{1}, \pi_{2}\right)=(0.05,0.10)$ and the increase of π_{2} to 0.30 leads to the empirical power increase to 81.3%.
c) Of the parametric test procedures, the likelihood ratio statistic maintains the high-
est power in all combinations of $\left(\theta_{1}, \theta_{2}\right)$ and for all values of $\left(\pi_{1}, \pi_{2}\right)$ which is followed by $C_{k m m}$ and $C_{m l}$ except in some situations where $C_{m l}$ is as good as $C_{k m m}$. In Table 4.7, the powers of $L R, C_{m l}$ and $C_{k m m}$ are $7.8 \%, 7.4 \%$ and 7.4% respectively for $\left(\theta_{1}, \theta_{2}\right)=(0.10,0.10)$ and $\left(\pi_{1}, \pi_{2}\right)=(0.05,0.10)$ and the powers of these statistics are $75.1 \%, 73.4 \%$ and 74.3% for $\left(\pi_{1}, \pi_{2}\right)=(0.05,0.35)$.
d) Among the test statistics based on the semi-parametric models, the Rao-Scott statistic exhibit the highest powers in all of the parameter combinations considered. Apart from the $R S$ and $A R S$ statistics, the test statistic based on the extended quasi-likelihood estimates of the nuisance parameters performs best in terms of power performance followed by $C_{q s}$ and $C_{q b}$ for all combinations of dispersion parameters, $\left(\theta_{1}, \theta_{2}\right)$ and all values of $\left(\pi_{1}, \pi_{2}\right)$. It can be seen in Table 4.8 under column of $(0.20,0.40)$ indicating values of $\left(\theta_{1}, \theta_{2}\right)$ corresponding to $\left(\pi_{1}, \pi_{2}\right)=(0.05,0.10)$ that the powers of $C_{e q}, C_{q s}$ and $C_{q b}$ are $22.8 \%, 21.7 \%$ and 19.3% respectively and the powers of $C_{r s}$ and $C_{\text {ars }}$ are 26.3% and 25.6% respectively.

4.5 Examples and Discussion

We considered data from a toxicological experiment reported in Paul (1982). The data represent the number of live foetuses, $n_{i j}$, and the number of affected live foetuses by treatments, $y_{i j}$, for each of four doses of treatments, namely, control (C), low (L), medium (M) and high (H) dose groups. We present the data in Table 4.9 and perform an analysis for all possible pairs of treatment groups. The estimates of the parameters obtained by different methods that were required for calculating the test statistics are reported in Table 4.10 and the values of the test statistics along with the corresponding p-values are presented in Table 4.11. As in the simulation study
we considered the litter sizes of those of control and medium dose groups, we focus on the values of test statistics for this particular treatment combination which is given in column 3 of Table 4.11. Though all of the test procedures reject the hypothesis of equality of proportions there are some remarkable features in the values of the test statistics. Among the three parametric test procedures the $L R$ gives the largest value and consequently the smallest p -value which indicates that the likelihood ratio test procedure rejects the hypothesis most strongly. The $L R$ statistic is followed by the $C(\alpha)$ statistic, $C_{k m m}$ and the score statistic $C_{m l}$. Of the semi-parametric test procedures, the value of Rao-Scott statistic, $C_{r s}$, is the largest which indicates that this statistic is the most powerful. Other than the $C_{r s}$ and $C_{\text {ars }}$ within the category of semi-parametric tests, the $C_{e q}$ statistic has the largest value which is followed by $C_{q s}$ and $C_{q b}$ which indicates the superiority of the $C(\alpha)$ based on the extended quasi-likelihood estimates of nuisance parameters over the $C(\alpha)$ statistics based on the quasi-likelihood and method of moments estimates.

While the $C_{r s}$ and $C_{\text {ars }}$ statistics are liberal in maintaining nominal levels for $\pi=0.30$ and all combinations of the dispersion parameters θ_{1} and θ_{2}, they show some conservative behaviour for small values of π. For moderate values of π these test procedures behave conservatively for small to moderate differences between the dispersion parameters but exhibit liberal behaviour for large differences. In addition, not only the performances with respect to powers are better but these statistics have additional features such as computational ease and simplicity. The likelihood ratio statistic is the only one that requires the estimates of parameters both under the null and the alternative hypotheses. This statistic shows some upward trend in maintaining nominal level for large values of π and large differences in the dispersion parameters. For small to moderate differences in the dispersion parameters and small to moderate values of π it shows some slightly conservative behaviour. But overall this statistic main-
tains nominal level very well. Among the parametric test procedures, the likelihood ratio statistic demonstrates highest power for all parameter combinations. The score statistic, $C_{m l}$, and the $C(\alpha)$ statistic $C_{k m m}$, require the estimates of the parameters only under the null hypothesis. The latter shows higher power than the former in all instances. Both are conservative for small differences in $\left(\theta_{1}, \theta_{2}\right)$ and small values of π. In other combinations these statistics are liberal. The $C(\alpha)$ statistic based on the extended quasi-likelihood, $C_{e q}$, performs best in terms of powers among $C_{q b}, C_{q s}$ and $C_{e q}$ and for this statistic the empirical level is closer to the nominal level. These three statistics are also conservative for some combinations of the dispersion parameters, particularly when the differences in θ_{1} and θ_{2} are small accompanied by the small values of π. In other instances they are somewhat liberal, although, overall, they maintain the nominal level reasonably well.

Table 4.1: Empirical level (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups)

Test Statistic	$\begin{gathered} \pi_{1}=\pi_{2} \\ 0.05 \\ \hline \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.02, .02)	(.02, .05)	(.02, .10)	(.02, .20)	(.02, . 30)	(.02, .40)
$L R$		3.5	3.7	4.2	4.8	5.3	5.8
$C_{m l}$		3.5	4.3	5.1	5.7	6.2	6.6
$C_{k m m}$		2.7	2.9	3.5	4.1	4.7	5.2
$C_{q b}$		3.7	4.1	5.2	5.6	5.9	6.4
$C_{q s}$		3.8	4.2	5.4	5.6	5.9	6.5
$C_{e q}$		4.0	4.3	4.8	5.2	5.5	5.9
$C_{\text {rs }}$		3.3	3.6	3.9	4.2	4.5	4.6
$C_{\text {ars }}$		3.4	3.6	4.1	4.4	4.7	4.8
0.10							
$L R$		4.1	4.3	4.7	5.0	5.3	5.5
$C_{m l}$		4.4	4.6	5.0	5.4	5.6	5.7
$C_{k m m}$		3.8	3.9	4.3	4.6	5.0	5.2
$C_{q b}$		4.3	4.6	5.0	5.3	5.4	5.5
$C_{q s}$		3.9	4.3	5.1	5.3	5.5	5.6
$C_{e q}$		3.9	4.4	4.6	5.2	5.3	5.6
$C_{r s}$		3.8	4.5	4.7	4.9	5.0	5.4
$C_{\text {ars }}$		4.0	4.4	4.7	5.1	5.1	5.5
0.20							
LR		4.4	4.5	4.8	4.8	5.1	5.3
$C_{m l}$		5.1	5.2	5.2	5.4	5.5	5.1
$C_{k m m}$		4.2	4.3	4.7	4.7	5.1	5.2
$C_{q b}$		4.5	4.6	5.0	5.1	5.2	5.6
$C_{q s}$		4.7	4.9	5.3	5.5	5.7	5.9
$C_{e q}$		4.8	5.0	5.2	5.3	5.5	5.6
$C_{r s}$		4.3	4.5	4.9	5.2	5.5	5.7
$C_{\text {ars }}$		4.4	4.6	5.1	5.3	5.7	6.3
0.30							
LR		5.2	5.3	5.6	5.6	5.8	5.8
$C_{m l}$		4.9	5.3	5.4	5.6	5.9	6.2
$C_{k m m}$		5.2	5.4	5.7	5.7	6.2	6.6
$C_{q b}$		4.7	4.9	5.4	5.5	5.8	6.3
${ }_{C q s}$		5.0	5.1	5.4	5.6	6.1	6.5
$C_{e q}$		5.0	5.1	5.4	5.5	5.5	5.5
$C_{r s}$		5.5	5.6	5.9	6.0	6.3	6.7
$C_{\text {ars }}$		5.5	5.7	6.1	6.3	6.7	6.9

Table 4.2: Empirical level (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups)

Test Statistic	$\begin{gathered} \pi_{1}=\pi_{2} \\ 0.05 \\ \hline \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.05, .05)	(.05, .10)	(.05, .20)	(.05, .30)	(.05, .40)	(.05, .50)
$L R$		3.3	3.5	4.0	4.6	5.2	5.6
$C_{m l}$		3.3	4.2	4.9	5.5	6.0	6.4
$C_{k m m}$		2.5	2.7	3.3	3.9	4.5	5.0
$C_{q b}$		3.5	3.9	5.0	5.4	5.7	6.2
$C_{q s}$		3.7	4.1	5.1	5.4	5.7	6.2
$C_{\text {eq }}$		3.8	4.1	4.6	5.0	5.3	5.7
$C_{r s}$		3.1	3.4	3.7	4.0	4.3	4.4
$C_{\text {ars }}$		3.2	3.4	3.9	4.2	4.5	4.6
0.10							
$L R$		3.9	4.2	4.5	4.8	5.1	5.3
$C_{m l}$		4.2	4.4	4.8	5.2	5.4	5.5
$C_{k m m}$		3.6	3.7	4.1	4.4	4.8	5.0
$C_{q b}$		4.1	4.4	4.8	5.1	5.3	5.3
$C_{q s}$		3.7	4.2	4.8	5.1	5.2	5.4
$C_{\text {eq }}$		3.7	4.2	4.4	5.0	5.1	5.4
$C_{r s}$		3.6	4.3	4.5	4.7	4.8	5.2
$C_{\text {ars }}$		3.8	4.2	4.5	4.9	4.9	5.3
0.20							
$L R$		4.2	4.3	4.6	4.6	4.9	5.2
$C_{m l}$		4.9	5.0	5.0	5.2	5.3	4.9
$C_{k m m}$		4.0	4.1	4.5	4.5	4.9	5.0
$C_{q b}$		4.3	4.4	4.8	4.9	5.0	5.4
$C_{q s}$		4.5	4.8	5.1	5.3	5.5	5.7
$C_{\text {eq }}$		4.6	4.8	5.0	5.1	5.3	5.4
$C_{r s}$		4.1	4.3	4.7	5.0	5.3	5.5
$C_{\text {ars }}$		4.2	4.4	4.9	5.1	5.5	6.1
0.30							
LR		5.0	5.1	5.4	5.4	5.6	5.6
$C_{m l}$		4.7	5.1	5.2	5.4	5.7	6.0
$C_{k m m}$		5.0	5.2	5.5	5.5	6.0	6.4
$C_{q b}$		4.5	4.7	5.2	5.3	5.6	6.1
$C_{q s}$		4.8	4.8	5.4	5.4	6.0	6.3
$C_{\text {eq }}$		4.8	4.9	5.2	5.3	5.3	5.3
$C_{r s}$		5.3	5.4	5.7	5.8	6.1	6.5
$C_{\text {ars }}$		5.3	5.5	5.9	6.1	6.5	6.7

Table 4.3: Empirical level (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups)

Test Statistic	$\begin{gathered} \pi_{1}=\pi_{2} \\ 0.05 \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.10, .10)	(.10, .15)	(.10, .20)	(.10, .30)	(.10, .40)	(.10, .50)
LR		3.8	4.0	4.5	5.1	5.6	6.1
$C_{m l}$		3.8	4.6	5.4	6.0	6.5	6.9
$C_{k m m}$		3.0	3.2	3.8	4.4	5.0	5.5
$C_{q b}$		4.0	4.4	5.5	5.9	6.2	6.7
$C_{q s}$		4.1	4.5	5.5	6.0	6.2	6.7
$C_{e q}$		4.3	4.6	5.1	5.5	5.8	6.1
$C_{r s}$		3.6	3.9	4.2	4.5	4.8	4.9
$C_{\text {ars }}$		3.7	3.9	4.4	4.5	5.0	5.1
0.10							
$L R$		4.4	4.6	5.0	5.3	5.6	5.8
$C_{m l}$		4.7	4.9	5.3	5.7	5.9	6.0
$C_{k m m}$		4.1	4.2	4.7	4.9	5.3	5.5
$C_{q b}$		4.7	4.9	5.3	5.6	5.7	5.8
$C_{q s}$		4.2	4.6	5.3	5.6	5.7	5.9
$C_{e q}$		4.2	4.7	4.9	5.5	5.6	5.9
$C_{r s}$		4.1	4.8	5.0	5.2	5.3	5.7
$C_{\text {ars }}$		4.3	4.7	5.0	5.4	5.4	5.8
0.20							
$L R$		4.7	4.8	5.1	5.1	5.4	5.6
$C_{m l}$		5.4	5.5	5.5	5.7	5.8	5.4
$C_{k m m}$		4.5	4.5	5.0	5.0	5.4	5.5
$C_{q b}$		4.8	4.9	5.3	5.4	5.5	5.9
$C_{q s}$		5.0	5.1	5.6	5.8	6.0	6.2
$C_{e q}$		5.1	5.3	5.5	5.6	5.8	5.9
$C_{r s}$		4.6	4.8	5.2	5.5	5.8	6.0
$C_{\text {ars }}$		4.7	4.9	5.4	5.6	6.0	6.6
0.30							
$L R$		5.5	5.6	5.9	5.9	6.1	6.1
$C_{m l}$		5.2	5.6	5.7	5.9	6.2	6.5
$C_{k m m}$		5.5	5.7	6.0	6.0	6.5	6.9
$C_{q b}$		5.0	5.2	5.7	5.8	6.1	6.6
$C_{q s}$		5.1	5.4	5.7	5.9	6.3	6.7
$C_{e q}$		5.3	5.4	5.7	5.8	5.8	5.8
$C_{r s}$		5.8	5.9	6.2	6.3	6.6	7.0
$C_{\text {ars }}$		5.8	6.0	6.4	6.6	7.0	7.2

Table 4.4: Empirical level (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3, 000 replications and $\alpha=0.05$ (Control and Medium Dose Groups)

Test Statistic	$\begin{gathered} \pi_{1}=\pi_{2} \\ 0.05 \\ \hline \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.20, .20)	(.20, .30)	(.20, .40)	(.20, .50)	(.20, .60)	(.20, .70)
$L R$		3.7	3.9	4.4	5.0	5.5	6.0
$C_{m l}$		3.7	4.5	5.3	5.9	6.4	6.8
$C_{k m m}$		2.9	3.1	3.7	4.3	4.9	5.4
$C_{q b}$		3.9	4.3	5.4	5.8	6.1	6.6
$C_{q s}$		4.1	4.3	5.6	5.9	6.0	6.7
$C_{\text {eq }}$		4.2	4.5	5.0	5.4	5.7	6.1
$C_{r s}$		3.5	3.8	4.1	4.4	4.7	4.8
$C_{\text {ars }}$		3.6	3.8	4.3	4.6	4.9	5.0
0.10							
$L R$		4.3	4.5	4.9	5.2	5.5	5.7
$C_{m l}$		4.6	4.8	5.2	5.6	5.8	5.9
$C_{k m m}$		4.0	4.1	4.5	4.8	5.2	5.4
$C_{q b}$		4.5	4.8	5.2	5.5	5.6	5.7
$C_{q s}$		4.1	4.5	5.3	5.6	5.7	5.7
$C_{\text {eq }}$		4.1	4.6	4.8	5.4	5.5	5.8
$C_{r s}$		4.0	4.7	4.9	5.1	5.2	5.6
$C_{\text {ars }}$		4.2	4.6	4.9	5.3	5.3	5.7
0.20							
$L R$		4.6	4.7	5.0	5.0	5.3	5.5
$C_{m l}$		5.3	5.4	5.4	5.6	5.7	5.3
$C_{k m m}$		4.4	4.5	4.9	4.9	5.3	5.4
$C_{q b}$		4.7	4.8	5.2	5.3	5.4	5.8
$C_{q s}$		4.9	5.0	5.5	5.8	6.1	6.2
$C_{\text {eq }}$		5.0	5.2	5.4	5.5	5.7	5.8
$C_{r s}$		4.5	4.7	5.1	5.4	5.7	5.9
$C_{\text {ars }}$		4.6	4.8	5.3	5.5	5.9	6.5
0.30							
$L R$		5.4	5.5	5.8	5.8	6.0	6.0
$C_{m l}$		5.1	5.5	5.6	5.8	6.1	6.4
$C_{k m m}$		5.4	5.6	5.9	5.9	6.4	6.8
$C_{q b}$		4.9	5.1	5.6	5.7	6.0	6.5
$C_{q s}$		5.2	5.3	5.7	6.0	6.3	6.7
$C_{\text {eq }}$		5.2	5.3	5.6	5.7	5.7	5.7
$C_{r s}$		5.7	5.8	6.1	6.2	6.5	6.9
$C_{\text {ars }}$		5.7	5.9	6.3	6.5	6.9	7.1

Table 4.5: Empirical power (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups)

Test Statistic	$\begin{gathered} \left(\pi_{1}, \pi_{2}\right) \\ (0.05,0.10) \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.02, .02)	(.02, .05)	(.02, .10)	(.02, .20)	(.02, .30)	(.02, . 40)
$L R$		7.6	12.5	22.9	41.1	52.1	58.9
$C_{m l}$		7.2	11.1	21.5	38.0	49.7	55.6
$C_{k m m}$		7.2	11.9	22.4	39.4	51.0	56.9
$C_{q b}$		6.2	9.8	17.6	30.1	42.4	49.7
$C_{q s}$		6.8	10.5	19.0	33.2	45.4	52.3
$C_{e q}$		6.9	10.7	21.0	35.3	46.8	52.9
$C_{r s}$		8.6	13.3	24.6	43.2	54.4	62.1
$C_{\text {ars }}$		8.3	12.9	23.9	42.4	53.6	61.3
(0.05, 0.15)							
$L R$		18.1	27.0	39.1	52.1	69.0	85.4
$C_{m l}$		16.0	22.3	35.6	47.9	64.9	79.6
$C_{k m m}$		16.9	24.0	37.8	50.0	67.1	83.9
$C_{q b}$		11.9	17.2	28.7	42.6	55.7	71.2
$C_{q s}$		13.7	18.8	32.2	43.7	59.0	74.1
$C_{e q}$		14.3	20.1	33.1	45.9	61.2	75.5
$C_{r s}$		20.1	30.1	45.0	55.7	73.6	91.2
$C_{\text {ars }}$		19.8	28.7	43.2	53.2	72.4	87.9
(0.05, 0.20)							
$L R$		33.4	43.2	53.9	73.1	82.7	96.7
$C_{m l}$		31.1	39.0	50.1	69.4	79.0	92.3
$C_{k m m}$		32.7	41.8	52.0	72.0	80.9	94.6
$C_{q b}$		24.4	31.9	43.5	58.9	67.4	81.8
$C_{q s}$		27.1	34.0	46.3	64.3	72.9	84.8
$C_{e q}$		28.3	36.5	48.1	66.2	74.9	86.3
$C_{r s}$		36.9	46.2	57.1	76.1	84.7	99.4
Cars		35.1	44.8	55.4	74.2	83.4	98.0
(0.05, 0.25)							
$L R$		51.2	58.9	72.2	86.7	95.2	100
$C_{m l}$		47.9	54.4	64.7	81.1	90.8	97.7
$C_{k m m}$		49.3	57.0	68.9	83.4	92.5	98.5
$C_{q b}$		38.3	45.7	56.1	72.0	81.4	90.4
$C_{q s}$		41.8	49.6	58.3	74.7	84.9	92.9
$C_{e q}$		44.7	51.2	60.2	76.7	87.0	95.7
$C_{r s}$		56.4	63.5	77.8	89.7	98.3	100
$C_{a r s}$		53.6	61.2	75.3	88.0	97.1	100
(0.05, 0.30)							
$L R$		65.6	72.4	84.5	96.7	100	100
$C_{m l}$		62.3	69.8	80.4	95.1	100	100
$C_{k m m}$		64.2	71.1	82.6	95.8	100	100
$C_{q b}$		54.7	62.7	74.1	89.9	96.4	100
$C_{q s}$		58.1	65.8	77.3	91.9	98.4	100
$C_{e q}$		60.1	66.5	78.0	94.2	99.7	100
$C_{r s}$		68.9	76.1	89.1	99.4	100	100
Cars		67.1	74.3	87.3	97.8	100	100

Table 4.5: (continued)

Test Statistic	$\begin{gathered} \left(\pi_{1}, \pi_{2}\right) \\ (0.05,0.35) \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.02, .02)	(.02, .05)	(.02, .10)	(.02, .20)	(.02, . 30)	(.02, .40)
$L R$		74.9	83.1	95.4	100	100	100
$C_{m l}$		73.2	80.2	92.8	100	100	100
$C_{k m m}$		74.1	81.9	93.7	100	100	100
$C_{q b}$		66.2	74.7	87.2	100	100	100
$C_{q s}$		69.7	77.2	89.7	100	100	100
$C_{e q}$		71.4	78.3	91.0	100	100	100
$C_{r s}$		77.8	87.1	97.6	100	100	100
Cars		76.3	85.2	96.3	100	100	100
(0.05, 0.40)							
$L R$		82.3	95.2	100	100	100	100
$C_{m l}$		78.3	91.2	100	100	100	100
$C_{k m m}$		80.1	93.3	100	100	100	100
$C_{q b}$		73.4	86.3	98.7	100	100	100
$C_{q s}$		75.5	88.7	100	100	100	100
$C_{e q}$		76.7	89.3	100	100	100	100
$C_{r s}$		85.2	98.3	100	100	100	100
Cars		84.1	96.9	100	100	100	100
$(0.05,0.45)$							
$L R$		91.2	100	100	100	100	100
$C_{m l}$		88.0	100	100	100	100	100
$C_{k m m}$		89.3	100	100	100	100	100
$C_{q b}$		83.4	97.8	100	100	100	100
$C_{q s}$		85.9	99.7	100	100	100	100
$C_{e q}$		86.8	99.9	100	100	100	100
$C_{r s}$		94.1	100	100	100	100	100
$C_{\text {ars }}$		92.7	100	100	100	100	100
(0.05, 0.50)							
$L R$		100	100	100	100	100	100
$C_{m l}$		100	100	100	100	100	100
$C_{k m m}$		100	100	100	100	100	100
$C_{q b}$		97.3	100	100	100	100	100
$C_{q s}$		99.9	100	100	100	100	100
$C_{e q}$		100	100	100	100	100	100
$C_{r s}$		100	100	100	100	100	100
Cars		100	100	100	100	100	100
(0.05, 0.60)							
$L R$		100	100	100	100	100	100
$C_{m l}$		100	100	100	100	100	100
$C_{k m m}$		100	100	100	100	100	100
$C_{q b}$		100	100	100	100	100	100
$C_{q s}$		100	100	100	100	100	100
$C_{e q}$		100	100	100	100	100	100
$C_{r s}$		100	100	100	100	100	100
$C_{\text {ars }}$		100	100	100	100	100	100

Table 4.6: Empirical power (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups)

Test Statistic	$\begin{gathered} \left(\pi_{1}, \pi_{2}\right) \\ (0.05,0.10) \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.05, .05)	(.05, .10)	(.05, .20)	(.05, . 30)	(.05, .40)	$(.05, .50)$
$L R$		8.0	13.3	23.9	42.6	53.4	60.3
$C_{m l}$		7.6	11.9	22.4	39.5	50.9	57.0
$C_{k m m}$		7.6	12.7	23.6	40.9	52.2	58.3
$C_{q b}$		6.6	10.6	18.7	31.7	43.6	51.1
$C_{q s}$		7.2	11.3	20.9	36.3	47.1	54.0
$C_{e q}$		7.3	11.5	22.2	36.8	48.0	54.3
$C_{r s}$		9.0	14.1	25.5	44.7	55.6	63.5
$C_{\text {ars }}$		8.7	13.7	25.0	43.9	54.8	62.8
(0.05, 0.15)							
$L R$		18.5	27.8	40.2	53.5	70.2	86.8
$C_{m l}$		16.4	23.1	36.6	49.4	66.3	81.0
$C_{k m m}$		17.3	24.8	38.9	51.5	68.1	85.3
$C_{q b}$		12.3	18.0	29.8	43.9	56.9	72.6
$C_{q s}$		13.9	20.1	33.7	46.4	61.1	75.8
$C_{e q}$		14.7	20.9	34.3	47.4	62.6	76.9
$C_{r s}$		20.5	31.0	46.2	57.2	74.8	92.6
$C_{\text {ars }}$		20.2	29.5	44.5	54.7	73.6	89.5
(0.05, 0.20)							
$L R$		33.8	44.0	55.0	74.6	83.9	98.3
$C_{m l}$		31.5	39.8	51.2	70.9	80.3	93.7
$C_{k m m}$		33.1	42.6	53.0	73.5	82.1	96.0
$C_{q b}$		24.8	32.7	44.7	60.3	68.7	83.2
$C_{q s}$		27.6	35.7	48.0	65.9	75.1	85.9
$C_{e q}$		28.7	37.3	49.1	67.7	76.1	87.7
$C_{r s}$		37.3	47.1	58.0	77.6	85.9	100
Cars		35.5	45.6	56.5	75.7	84.7	99.6
(0.05, 0.25)							
$L R$		51.6	59.7	73.1	88.2	96.4	100
$C_{m l}$		48.3	55.2	65.8	82.6	92.1	99.3
$C_{k m m}$		49.7	57.8	70.0	84.9	93.7	99.9
$C_{q b}$		38.7	46.5	57.3	73.6	82.6	91.8
$C_{q s}$		42.3	50.2	60.1	76.5	85.9	95.7
$C_{e q}$		45.1	52.0	61.3	78.2	88.2	97.3
$C_{r s}$		56.8	64.3	79.0	91.2	99.7	100
$C_{a r s}$		54.0	62.1	76.5	89.5	98.3	100
(0.05, 0.30)							
$L R$		66.0	73.2	85.6	98.2	100	100
$C_{m l}$		62.7	70.6	81.3	96.7	100	100
$C_{k m m}$		64.6	72.0	83.5	97.3	100	100
$C_{q b}$		55.1	63.5	75.2	91.4	97.8	100
$C_{q s}$		58.6	66.2	78.1	93.7	100	100
$C_{e q}$		60.5	67.3	79.2	95.7	100	100
$C_{r s}$		69.3	76.9	91.0	100	100	100
Cars		67.5	75.1	88.4	99.3	100	100

Table 4.6: (continued)

Test Statistic	$\begin{gathered} \left(\pi_{1}, \pi_{2}\right) \\ (0.05,0.35) \\ \hline \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.05, .05)	(.05, .10)	(.05, .20)	(.05, . 30)	$(.05, .40)$	$(.05, .50)$
$L R$		75.3	83.9	96.5	100	100	100
$C_{m l}$		73.6	81.0	93.7	100	100	100
$C_{k m m}$		74.5	82.7	94.9	100	100	100
$C_{q b}$		66.6	75.5	88.1	100	100	100
$C_{q s}$		70.3	77.9	90.8	100	100	100
$C_{e q}$		71.8	79.1	92.3	100	100	100
$C_{r s}$		78.2	87.9	98.9	100	100	100
Cars		76.7	86.1	97.5	100	100	100
(0.05, 0.40)							
$L R$		82.7	96.0	100	100	100	100
$C_{m l}$		78.7	92.2	100	100	100	100
$C_{k m m}$		80.5	94.1	100	100	100	100
$C_{q b}$		73.8	87.1	100	100	100	100
$C_{q s}$		76.8	89.4	100	100	100	100
$C_{e q}$		77.1	90.1	100	100	100	100
$C_{r s}$		85.6	99.2	100	100	100	100
Cars		84.5	97.9	100	100	100	100
(0.05, 0.45$)$							
$L R$		91.6	100	100	100	100	100
$C_{m l}$		88.4	100	100	100	100	100
$C_{k m m}$		89.7	100	100	100	100	100
$C_{q b}$		83.8	98.9	100	100	100	100
$C_{q s}$		86.1	100	100	100	100	100
$C_{e q}$		87.2	100	100	100	100	100
$C_{r s}$		94.5	100	100	100	100	100
$C_{\text {ars }}$		93.1	100	100	100	100	100
(0.05, 0.50)							
$L R$		100	100	100	100	100	100
$C_{m l}$		100	100	100	100	100	100
$C_{k m m}$		100	100	100	100	100	100
$C_{q b}$		98.1	100	100	100	100	100
$C_{q s}$		100	100	100	100	100	100
$C_{e q}$		100	100	100	100	100	100
$C_{r s}$		100	100	100	100	100	100
Cars		100	100	100	100	100	100
(0.05, 0.60)							
$L R$		100	100	100	100	100	100
$C_{m l}$		100	100	100	100	100	100
$C_{k m m}$		100	100	100	100	100	100
$C_{q b}$		100	100	100	100	100	100
$C_{q s}$		100	100	100	100	100	100
$C_{e q}$		100	100	100	100	100	100
$C_{r s}$		100	100	100	100	100	100
$C_{\text {ars }}$		100	100	100	100	100	100

Table 4.7: Empirical power (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups)

Test Statistic	$\begin{gathered} \left(\pi_{1}, \pi_{2}\right) \\ (0.05,0.10) \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.10, .10)	(.10, .15)	(.10, .20)	(.10, .30)	(.10, .40)	(.10, .50)
$L R$		7.8	13.0	23.5	42.3	53.2	60.1
$C_{m l}$		7.4	11.6	22.1	39.2	50.9	56.8
$C_{k m m}$		7.4	12.4	23.0	40.6	52.1	58.1
$C_{q b}$		6.4	10.3	18.2	31.3	43.5	51.0
$C_{q s}$		7.0	11.1	20.8	35.7	47.5	53.9
$C_{e q}$		7.1	11.2	21.6	36.5	48.0	54.2
$C_{r s}$		8.8	13.8	25.2	44.4	55.5	63.5
$C_{\text {ars }}$		8.5	13.4	24.5	43.6	54.7	62.8
(0.05, 0.15)							
LR		18.3	27.5	39.7	53.3	70.2	86.6
$C_{m l}$		16.2	22.8	36.2	49.1	66.1	80.8
$C_{k m m}$		17.1	24.5	38.4	51.2	68.2	85.4
$C_{q b}$		12.1	17.7	29.3	43.8	56.9	72.5
$C_{q s}$		13.9	20.0	32.5	46.0	60.1	75.7
$C_{e q}$		14.5	20.6	33.7	47.1	62.4	76.8
$C_{r s}$		20.3	30.6	45.6	56.9	74.7	92.4
$C_{\text {ars }}$		20.0	29.2	43.2	54.4	73.5	89.3
(0.05, 0.20)							
$L R$		33.6	43.7	54.5	74.3	83.9	98.0
$C_{m l}$		31.3	39.5	50.7	70.6	80.2	93.6
$C_{k m m}$		32.9	42.3	52.6	73.2	82.1	95.9
$C_{q b}$		24.6	32.4	44.1	60.1	68.5	83.1
$C_{q s}$		27.4	35.2	47.2	65.9	75.3	85.8
$C_{e q}$		28.5	37.0	48.1	67.4	76.1	87.7
$C_{r s}$		37.1	46.7	57.7	77.3	85.8	100
$C_{\text {ars }}$		35.3	45.3	56.0	75.4	84.6	99.5
(0.05, 0.25)							
LR		51.4	59.4	72.8	87.9	96.4	100
$C_{m l}$		48.1	54.9	65.3	82.3	92.0	99.0
$C_{k m m}$		49.5	57.5	69.5	84.6	93.6	99.8
$C_{q b}$		38.5	46.2	56.7	73.2	82.6	91.8
$C_{q s}$		42.8	50.4	59.1	76.2	86.6	96.1
$C_{e q}$		44.9	51.7	60.8	77.9	88.1	97.1
$C_{r s}$		56.6	64.0	78.4	90.9	99.5	100
$C_{\text {ars }}$		53.8	61.7	75.9	89.2	98.3	100
(0.05, 0.30)							
$L R$		65.8	72.9	85.1	97.9	100	100
$C_{m l}$		62.5	70.3	81.0	96.3	100	100
$C_{k m m}$		64.4	71.6	83.2	97.0	100	100
$C_{q b}$		54.9	63.2	74.7	91.1	97.8	100
$C_{q s}$		58.8	66.5	77.9	93.8	100	100
$C_{e q}$		60.3	67.0	78.6	95.4	100	100
$C_{r s}$		69.1	76.6	89.7	100	100	100
$C_{\text {ars }}$		67.3	74.8	87.9	99.3	100	100

Table 4.7: (continued)

Test Statistic	$\begin{gathered} \left(\pi_{1}, \pi_{2}\right) \\ (0.05,0.35) \\ \hline \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.10, .10)	(.10, .15)	(.10, .20)	(.10, . 30)	(.10, .40)	(.10, .50)
$L R$		75.1	83.6	95.0	100	100	100
$C_{m l}$		73.4	80.7	93.4	100	100	100
$C_{k m m}$		74.3	82.4	94.4	100	100	100
$C_{q b}$		66.4	75.2	87.8	100	100	100
$C_{q s}$		70.4	77.7	90.5	100	100	100
$C_{e q}$		71.6	78.8	91.7	100	100	100
$C_{r s}$		78.0	87.6	98.5	100	100	100
Cars		76.5	85.7	97.0	100	100	100
(0.05, 0.40)							
$L R$		82.5	95.7	100	100	100	100
$C_{m l}$		78.5	91.7	100	100	100	100
$C_{k m m}$		80.3	93.8	100	100	100	100
$C_{q b}$		73.6	86.8	100	100	100	100
$C_{q s}$		75.8	89.1	100	100	100	100
$C_{e q}$		76.9	89.8	100	100	100	100
$C_{r s}$		85.4	98.8	100	100	100	100
Cars		84.3	97.4	100	100	100	100
(0.05, 0.45$)$							
$L R$		91.3	100	100	100	100	100
$C_{m l}$		88.2	100	100	100	100	100
$C_{k m m}$		89.5	100	100	100	100	100
$C_{q b}$		83.6	98.5	100	100	100	100
$C_{q s}$		86.8	100	100	100	100	100
$C_{e q}$		87.0	100	100	100	100	100
$C_{r s}$		94.3	100	100	100	100	100
$C_{\text {ars }}$		92.9	100	100	100	100	100
(0.05, 0.50)							
$L R$		100	100	100	100	100	100
$C_{m l}$		100	100	100	100	100	100
$C_{k m m}$		100	100	100	100	100	100
$C_{q b}$		100	100	100	100	100	100
$C_{q s}$		100	100	100	100	100	100
$C_{e q}$		100	100	100	100	100	100
$C_{r s}$		100	100	100	100	100	100
Cars		100	100	100	100	100	100
(0.05, 0.60)							
$L R$		100	100	100	100	100	100
$C_{m l}$		100	100	100	100	100	100
$C_{k m m}$		100	100	100	100	100	100
$C_{q b}$		100	100	100	100	100	100
$C_{q s}$		100	100	100	100	100	100
$C_{e q}$		100	100	100	100	100	100
$C_{r s}$		100	100	100	100	100	100
$C_{\text {ars }}$		100	100	100	100	100	100

Table 4.8: Empirical power (\%) of test statistics, $L R, C_{m l}, C_{k m m}, C_{q b}, C_{q s}, C_{e q}, C_{r s}$, $C_{\text {ars }}$; based on 3,000 replications and $\alpha=0.05$ (Control and Medium Dose Groups)

Test Statistic	$\begin{gathered} \left(\pi_{1}, \pi_{2}\right) \\ (0.05,0.10) \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.20, .20)	(.20, .30)	(.20, .40)	(.20, .50)	(.20, .60)	(.20, .70)
$L R$		8.3	13.7	24.6	43.2	54.0	61.0
$C_{m l}$		7.9	12.3	23.2	40.1	51.7	57.7
$C_{k m m}$		7.8	13.1	24.1	41.5	53.0	58.9
$C_{q b}$		7.0	11.0	19.3	32.2	44.3	51.6
$C_{q s}$		7.4	11.8	21.7	36.6	47.8	54.9
$C_{e q}$		7.6	12.0	22.8	37.5	48.7	55.1
$C_{r s}$		9.3	14.5	26.3	45.3	56.3	64.1
$C_{\text {ars }}$		9.0	14.1	25.6	44.6	55.5	63.4
(0.05, 0.15)							
$L R$		18.8	28.2	40.8	54.2	70.9	87.6
$C_{m l}$		17.7	23.5	37.3	50.0	66.8	81.5
$C_{k m m}$		17.7	25.2	39.5	52.3	69.1	86.0
$C_{q b}$		12.6	18.4	30.5	44.7	57.6	73.4
$C_{q s}$		14.3	20.5	33.6	47.1	61.8	76.7
$C_{e q}$		15.0	21.3	34.8	48.0	63.1	77.4
$C_{r s}$		20.8	31.4	46.6	57.8	75.4	93.4
Cars		20.4	29.9	44.9	55.3	74.4	90.0
(0.05, 0.20)							
$L R$		34.1	44.4	55.6	75.2	84.6	98.9
$C_{m l}$		31.8	40.2	51.8	71.5	80.9	94.2
$C_{k m m}$		33.4	43.0	53.7	74.1	82.8	96.8
$C_{q b}$		25.1	33.1	45.2	61.0	69.3	83.9
$C_{q s}$		27.8	36.1	48.2	66.4	75.7	87.5
$C_{e q}$		29.0	37.7	49.8	68.3	76.8	88.4
$C_{r s}$		37.6	47.4	58.3	78.3	86.6	100
Cars		35.8	46.0	57.1	76.1	85.3	99.9
(0.05, 0.25)							
$L R$		51.9	60.1	73.8	88.8	97.1	100
$C_{m l}$		48.6	55.6	65.9	83.2	92.7	99.9
$C_{k m m}$		50.0	58.2	70.6	85.5	94.4	100
$C_{q b}$		39.1	46.9	57.8	74.1	83.3	92.6
$C_{q s}$		42.8	50.6	60.2	77.4	86.6	96.8
$C_{e q}$		45.5	52.4	61.9	78.8	88.8	97.9
$C_{r s}$		57.1	64.7	79.5	91.8	100	100
$C_{\text {ars }}$		54.3	62.4	77.1	90.1	99.3	100
(0.05, 0.30)							
$L R$		66.3	73.6	86.2	98.9	100	100
$C_{m l}$		63.0	71.0	82.1	97.2	100	100
$C_{k m m}$		64.9	72.3	84.3	97.9	100	100
$C_{q b}$		55.5	63.9	75.9	92.0	98.5	100
$C_{q s}$		58.7	66.9	78.6	94.8	100	100
$C_{e q}$		60.8	67.7	79.7	96.3	100	100
$C_{r s}$		69.6	77.3	90.8	100	100	100
Cars		67.8	75.5	89.0	99.9	100	100

Table 4.8: (continued)

Test Statistic	$\begin{gathered} \left(\pi_{1}, \pi_{2}\right) \\ (0.05,0.35) \\ \hline \end{gathered}$	$\left(\theta_{1}, \theta_{2}\right)$					
		(.20, .20)	(.20, .30)	(.20, .40)	(.20, .50)	(.20, .60)	(.20, .70)
$L R$		75.6	84.3	97.1	100	100	100
$C_{m l}$		73.9	81.4	94.5	100	100	100
$C_{k m m}$		74.9	83.1	95.4	100	100	100
$C_{q b}$		66.9	75.9	88.9	100	100	100
$C_{q s}$		70.6	78.7	91.4	100	100	100
$C_{e q}$		72.1	79.5	92.8	100	100	100
$C_{r s}$		78.5	88.3	99.3	100	100	100
Cars		77.0	86.4	98.0	100	100	100
(0.05, 0.40)							
$L R$		83.1	96.4	100	100	100	100
$C_{m l}$		79.0	92.4	100	100	100	100
$C_{k m m}$		80.8	94.5	100	100	100	100
$C_{q b}$		74.1	87.6	100	100	100	100
$C_{q s}$		76.7	89.8	100	100	100	100
$C_{e q}$		77.4	90.5	100	100	100	100
$C_{r s}$		85.9	99.7	100	100	100	100
Cars		84.8	98.2	100	100	100	100
(0.05, 0.45$)$							
$L R$		91.8	100	100	100	100	100
$C_{m l}$		88.7	100	100	100	100	100
$C_{k m m}$		90.0	100	100	100	100	100
$C_{q b}$		84.1	99.1	100	100	100	100
$C_{q s}$		86.7	100	100	100	100	100
$C_{e q}$		87.5	100	100	100	100	100
$C_{r s}$		94.8	100	100	100	100	100
$C_{\text {ars }}$		93.4	100	100	100	100	100
(0.05, 0.50)							
$L R$		100	100	100	100	100	100
$C_{m l}$		100	100	100	100	100	100
$C_{k m m}$		100	100	100	100	100	100
$C_{q b}$		98.1	100	100	100	100	100
$C_{q s}$		100	100	100	100	100	100
$C_{e q}$		100	100	100	100	100	100
$C_{r s}$		100	100	100	100	100	100
Cars		100	100	100	100	100	100
(0.05, 0.60)							
$L R$		100	100	100	100	100	100
$C_{m l}$		100	100	100	100	100	100
$C_{k m m}$		100	100	100	100	100	100
$C_{q b}$		100	100	100	100	100	100
$C_{q s}$		100	100	100	100	100	100
$C_{e q}$		100	100	100	100	100	100
$C_{r s}$		100	100	100	100	100	100
$C_{\text {ars }}$		100	100	100	100	100	100

Table 4.9: Data from Toxicological experiment (Paul 1982). (i) Number of live foetuses affected by treatment. (ii)
Total number of live foetuses.

Table 4.10: Estimates of parameters obtained by different methods for treatment combinations of toxicological data in Table 4.9.

	Treatment Combinations					
	CL	CM	CH	LM	LH	MH
$\hat{\pi}_{0}$	0.1418	0.2354	0.1956	0.2377	0.1820	0.3165
$\hat{\theta}_{10}$	0.2048	0.3164	0.2637	0.2344	0.1488	0.3079
$\hat{\theta}_{20}$	0.1122	0.3081	0.0993	0.3077	0.098	0.1723
$\hat{\pi}_{1 a}$	0.1442	0.1442	0.1442	0.1272	0.1272	0.3505
$\hat{\pi}_{2 a}$	0.1272	0.3505	0.2387	0.3505	0.2387	0.2387
$\hat{\theta}_{1 a}$	0.2069	0.2069	0.2069	0.1054	0.1054	0.3155
$\hat{\theta}_{2 a}$	0.1054	0.3155	0.1132	0.3155	0.1132	0.1132
$\hat{\pi}_{k m m}$	0.1367	0.1858	0.1741	0.1704	0.1611	0.2824
$\hat{\theta}_{1 k m m}$	0.2497	0.1684	0.1792	0.0602	0.0644	0.4369
$\hat{\theta}_{2 k m m}$	0.0862	0.8390	0.3247	0.9587	0.3842	0.1369
$\hat{\pi}_{q b m m}$	0.1364	0.1856	0.1739	0.1698	0.1602	0.2835
$\hat{\theta}_{1 q b m m}$	0.2679	0.1822	0.1937	0.0728	0.0775	0.4683
$\hat{\theta}_{2 q b m m}$	0.1001	0.8957	0.3656	1.0264	0.4330	0.1614
$\hat{\pi}_{\text {qsmm }}$	0.1369	0.1931	0.1751	0.1896	0.1701	0.2889
$\hat{\theta}_{1 q s m m}$	0.1637	0.1177	0.1231	0.0651	0.0746	0.2360
$\hat{\theta}_{2 q s m m}$	0.1162	0.5016	0.1726	0.5187	0.1836	0.1009
$\hat{\pi}_{\text {eql }}$	0.1362	0.2051	0.1814	0.1959	0.1728	0.2873
$\hat{\theta}_{1 \text { leql }}$	0.1987	0.2334	0.2139	0.1413	0.1247	0.4437
$\hat{\theta}_{2 \text { eql }}$	0.1153	0.5602	0.1866	0.5813	0.1947	0.1948

Table 4.11: Test statistics and p-values for treatment combinations of toxicological data in Table 4.9 .

	Treatment Combinations						
	CL	CM	CH	LM	LH	MH	
$L R$	0.1461	7.0252	2.0858	8.2770	2.9201	1.8422	
	(0.7023)	(0.0080)	(0.1487)	(0.0040)	(0.0875)	(0.1747)	
$C_{m l}$	0.0079	6.4643	2.4972	7.6209	2.9242	0.5198	
	(0.9290)	(0.0110)	(0.1141)	(0.0058)	(0.0873)	(0.4709)	
$C_{k m m}$	0.0902	6.7148	2.3268	8.7917	3.2022	1.4289	
	(0.7639)	(0.0096)	(0.1272)	(0.0030)	(0.0735)	(0.2319)	
$C_{q b}$	0.1022	4.8936	1.7639	5.5332	2.3777	1.2462	
	(0.7492)	(0.0270)	(0.1841)	(0.0187)	(0.1231)	(0.2643)	
$C_{q s}$	0.1064	5.7404	2.3006	7.7773	2.8571	1.8122	
	(0.7443)	(0.0166)	(0.1293)	(0.0053)	(0.0910)	(0.1782)	
$C_{\text {eq }}$	0.1074	5.7884	1.9502	6.7972	2.7264	1.1893	
	(0.7432)	(0.0161)	(0.1626)	(0.0091)	(0.0987)	(0.2755)	
$C_{r s}$	0.0055	8.9301	1.9382	7.9644	1.8599	2.0157	
	(0.9409)	(0.0028)	(0.1639)	(0.0048)	(0.1726)	(0.1557)	
	0.0055	8.4698	1.8153	8.2026	1.8305	2.0620	
$C_{a r s}$	(0.9408)	(0.0036)	(0.1779)	(0.0042)	(0.1761)	(0.1510)	

Chapter 5

Testing Equality of Scale Parameters of Two Weibull
 Distributions in the Presence of Unequal Shape Parameters

5.1 Introduction

Weibull distribution has long history in describing real phenomena since its initiation by the Swedish physicist Waloddi Weibull and is one of the most popular parametric distributions in survival analysis. This distribution has been considered as an appropriate model in reliability studies and life-testing experiments and thus has versatile use in the fields such as engineering, manufacturing, aeronautics and bio-medical sciences among others. Of all the parametric models this distribution has the unique
feature that in addition to being proportional it is simultaneously an accelerated failure-time model (AFT) (Carroll (2003). Many authors illustrate the use and applications of Weibull models in numerous areas of Statistics. For example, Lloyd (1967); Ku et al. (1972); McCool (1998) and Hammitt (2004) focus on the applications of this distribution in the fields such as reliability, risks and quality control. Cohen (1965); Sirvanci and Yang (1984) discuss the maximum likelihood estimation procedure of the parameters under complete and various censoring samples, Harter and Moore (1965) deal with the joint maximum-likelihood estimation from complete and censored samples, Cohen et al. (1984), and Cran (1988) consider the moments estimation of Weibull parameters. In a recent article, Teimouri and Gupta (2013) propose a consistent and closed form estimator for shape parameter which is independent of the scale parameter.

Very often lifetime or survival time data that are collected in the form of two independent samples are assumed to have come from two Weibull distributions. In such situation it may be of interest to test the equality of scale parameters of two Weibull distributions which eventually is equivalent to testing the equality of reliability at a certain time. Lawless (1982) shows that the ratio of the $p^{t h}$ quantile of two Weibull distributions is the same as the ratio of their scale parameters when the shape parameters are equal and proposes a test statistic based on this property for testing equality of two Weibull scale parameters when the shape parameters are equal. Thoman and Bain (1969); Schafer and Sheffield (1976) present statistics for testing the equality of scale parameters of two Weibull distributions when the shape parameters are equal. These statistics are based on the maximum likelihood estimates of the parameters. Thoman and Bain (1969) mention that testing equality of two scale parameters where the shape parameters are assumed to be equal is equivalent to testing the equality of two Weibull means. But this is not the case when the shape parameters are not
assumed to be equal. McCool 1979,1982) proposes a test procedure which is based on the ratio of the maximum likelihood estimators of the shape parameters. In an unpublished thesis, Thiagarajah (1992) (Department of Mathematics and Statistics, University of Windsor), derives a $C(\alpha)$ statistic and compares it with the statistics proposed by Lawless (1982) and McCool (1979, 1980).

The assumption that the shape parameters are equal is not always satisfied in practice while testing the equality of two Weibull scale parameters. Also we observe that the available test procedures are based on the maximum likelihood estimates of the parameters. Apart from the maximum likelihood estimates of the parameters several methods of moments estimators are proposed by different authors. Our objective, in this Chapter, is to develop test procedures to test the equality of scale parameters of two Weibull distributions where the shape parameters are assumed unequal and unknown and compare the performance of these test procedures. We compare the performance, through simulation studies, in terms of empirical size and power of the test procedures. The test procedures are developed in section 5.2, simulation studies are presented in section 5.3 and illustrative examples and discussion have been given in section 5.4 .

Let the random variable Y follow a two parameter Weibull distribution with shape parameter β and scale parameter α. Then the probability density function of Y can be written as

$$
\begin{equation*}
f(y)=\frac{\beta}{\alpha}\left(\frac{y}{\alpha}\right)^{(\beta-1)} \exp \left[-\left(\frac{y}{\alpha}\right)^{\beta}\right] ; y \geq 0 ; \beta, \alpha>0 . \tag{5.1}
\end{equation*}
$$

We denote this distribution as $Y \sim \operatorname{Weibull}(\beta, \alpha)$. The shape parameter β possesses the role to determine how the curve of the Weibull density looks.

5.2 The Tests

Let $y_{11}, y_{12}, \cdots, y_{1 n_{1}}$ be a random sample to size n_{1} from a two parameter Weibull distribution with shape parameter β_{1} and scale parameter α_{1} and $y_{21}, y_{22}, \cdots, y_{2 n_{2}}$ be another independent random sample of size n_{2} from the same distribution having shape parameter β_{2} and scale parameter α_{2}. Our objective is to test the null hypothesis $H_{0}: \alpha_{1}=\alpha_{2}$, where β_{1} and β_{2} are unknown and unequal. We develop the following test procedures to test this hypothesis (i) a likelihood ratio test, $(i i)$ a $C(\alpha)$ test based on the maximum likelihood estimates of the nuisance parameters, (iii) a $C(\alpha)$ test based on the method of moments estimates of the nuisance parameters by Cran (1988) and (iv) a $C(\alpha)$ test based on the method of moments estimates of the nuisance parameters by Teimouri and Gupta (2013).

5.2.1 The Likelihood Ratio Test

The log-likelihood function for the data from two samples can be written as

$$
l_{1}=\sum_{i=1}^{2}\left[n_{i} \log \left(\frac{\beta_{i}}{\alpha_{i}}\right)+\left(\beta_{i}-1\right)\left\{\sum_{j=1}^{n_{i}} \log \left(y_{i j}\right)-n_{i} \log \left(\alpha_{i}\right)\right\}-\frac{\sum_{j=1}^{n_{i}} y_{i j}^{\beta_{i}}}{\alpha_{i}^{\beta_{i}}}\right] .
$$

The unrestricted maximum likelihood estimates of the parameters α_{i} and $\beta_{i} ; i=1,2$ can be obtained by solving the following equations

$$
-\frac{n_{i} \beta_{i}}{\alpha_{i}}+\frac{\beta_{i}}{\alpha_{i}^{\beta_{i}+1}} \sum_{j=1}^{n_{i}} y_{i j}^{\beta_{i}}=0
$$

and

$$
\frac{n_{i}}{\beta_{i}}+\sum_{j=1}^{n_{i}} \log \left(y_{i j}\right)-n_{i} \log \left(\alpha_{i}\right)+\frac{\log \left(\alpha_{i}\right)}{\alpha_{i}^{\beta i}} \sum_{j=1}^{n_{i}} y_{i j}^{\beta_{i}}-\frac{1}{\alpha_{i}^{\beta_{i}}} \sum_{j=1}^{n_{i}} y_{i j}^{\beta_{i}} \log \left(y_{i j}\right) ; i=1,2,
$$

simultaneously.

Under the null hypothesis $\alpha_{1}=\alpha_{2}=\alpha$ the log-likelihood function is

$$
l_{0}=\sum_{i=1}^{2}\left[n_{i} \log \left(\frac{\beta_{i}}{\alpha}\right)+\left(\beta_{i}-1\right)\left\{\sum_{j=1}^{n_{i}} \log \left(y_{i j}\right)-n_{i} \log (\alpha)\right\}-\frac{\sum_{j=1}^{n_{i}} y_{i j}^{\beta_{i}}}{\alpha^{\beta_{i}}}\right] .
$$

The maximum likelihood estimates of the parameters α, β_{1} and β_{2} are obtained from the solution of the following equations

$$
\begin{aligned}
& \sum_{i=1}^{2}\left[-\frac{n_{i} \beta_{i}}{\alpha}+\frac{\beta_{i}}{\alpha^{\beta_{i}+1}} \sum_{j=1}^{n_{i}} y_{i j}^{\beta_{i}}\right]=0 \\
& \frac{n_{1}}{\beta_{1}}+\sum_{j=1}^{n_{1}} \log \left(y_{1 j}\right)-n_{1} \log (\alpha)+\frac{\log (\alpha)}{\alpha^{\beta_{1}}} \sum_{j=1}^{n_{1}} y_{1 j}^{\beta_{1}}-\frac{1}{\alpha^{\beta_{1}}} \sum_{j=1}^{n_{1}} y_{1 j}^{\beta_{1}} \log \left(y_{1 j}\right)=0
\end{aligned}
$$

and

$$
\frac{n_{2}}{\beta_{2}}+\sum_{j=1}^{n_{2}} \log \left(y_{2 j}\right)-n_{2} \log (\alpha)+\frac{\log (\alpha)}{\alpha^{\beta_{2}}} \sum_{j=1}^{n_{2}} y_{2 j}^{\beta_{2}}-\frac{1}{\alpha^{\beta_{2}}} \sum_{j=1}^{n_{2}} y_{2 j}^{\beta_{2}} \log \left(y_{2 j}\right)=0
$$

simultaneously.

Now, let \hat{l}_{1} be the maximized log-likelihood under the alternative hypothesis and \hat{l}_{0}
be the maximized log-likelihood under the null hypothesis. Then the likelihood ratio test statistic is $L R=2\left(\hat{l}_{1}-\hat{l}_{0}\right)$; which, asymptotically as $n \rightarrow \infty$, where $n=n_{1}+n_{2}$, follows a χ^{2} distribution with 1 degree of freedom.

5.2.2 The $C(\alpha)$ (Score) Test Based on Maximum Likelihood Estimates

Suppose the alternative hypothesis is represented by $\alpha_{i}=\alpha+\phi_{i}, i=1,2$, with $\phi_{2}=0$. Then the null hypothesis, $H_{0}: \alpha_{1}=\alpha_{2}$, can be written as $H_{0}: \phi_{i}=0, i=1,2$, where α, β_{1}, and β_{2} are treated as nuisance parameters. The log-likelihood can then be written as

$$
\begin{align*}
l= & \sum_{i=1}^{2}\left[n_{i} \log \left(\frac{\beta_{i}}{\alpha+\phi_{i}}\right)+\left(\beta_{i}-1\right)\left\{\sum_{j=1}^{n_{i}} \log \left(y_{i j}\right)-n_{i} \log \left(\alpha+\phi_{i}\right)\right\}\right. \\
& \left.-\frac{\sum_{j=1}^{n_{i}} y_{i j}^{\beta_{i}}}{\left(\alpha+\phi_{i}\right)^{\beta_{i}}}\right] . \tag{5.2}
\end{align*}
$$

Now, define $\phi=\phi_{1}, \quad \delta=\left(\alpha, \beta_{1}, \beta_{2}\right)^{\prime}, \quad \psi_{1}=\left.\frac{\partial l}{\partial \phi_{1}}\right|_{\phi=0}, \quad \gamma_{1}=\left.\frac{\partial l}{\partial \delta_{1}}\right|_{\phi=0}, \quad \gamma_{2}=\left.\frac{\partial l}{\partial \delta_{2}}\right|_{\phi=0}$ and $\gamma_{3}=\left.\frac{\partial l}{\partial \delta_{3}}\right|_{\phi=0}$. Let that $\hat{\delta}$ be a \sqrt{n} (n is the size of the sample in a group) consistent estimator of δ. Then, the $C(\alpha)$ statistic is based on the adjusted score $S_{1}=\psi_{1}-\beta_{1} \gamma_{1}-\beta_{2} \gamma_{2}-\beta_{3} \gamma_{3}$, where β_{1}, β_{2} and β_{3} are partial regression coefficient of ψ_{1} on γ_{1}, ψ_{1} on γ_{2}, and ψ_{1} on γ_{3}, respectively.

The structure of dispersion matrix of $\left(\phi, \alpha, \beta_{1}, \beta_{2}\right)$ is

$$
V=\left(\begin{array}{ll}
D & A \\
A^{\prime} & B
\end{array}\right)
$$

and the regression coefficients $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=A B^{-1}$ Neyman (1959)), where D is $1 \times 1, A$ is 1×3 and B is 3×3 with elements

$$
\begin{aligned}
& D_{11}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1}^{2}}\right|_{\phi=0}\right] \\
& A_{11}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \alpha}\right|_{\phi=0}\right], A_{12}=E\left[-\left.\frac{\partial^{2} l}{\partial \Phi_{1} \partial \beta_{1}}\right|_{\phi=0}\right], A_{13}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \beta_{2}}\right|_{\phi=0}\right], \\
& B_{11}=E\left[-\left.\frac{\partial^{2} l}{\partial \alpha^{2}}\right|_{\phi=0}\right], B_{12}=E\left[-\left.\frac{\partial^{2} l}{\partial \alpha \partial \beta_{1}}\right|_{\phi=0}\right], B_{13}=E\left[-\left.\frac{\partial^{2} l}{\partial \alpha \partial \beta_{2}}\right|_{\phi=0}\right] \\
& B_{22}=E\left[-\left.\frac{\partial^{2} l}{\partial \beta_{1}^{2}}\right|_{\Phi=0}\right], B_{23}=E\left[-\left.\frac{\partial^{2} l}{\partial \beta_{1} \partial \beta_{2}}\right|_{\phi=0}\right] \text { and } B_{33}=E\left[-\left.\frac{\partial^{2} l}{\partial \beta_{2}^{2}}\right|_{\phi=0}\right]
\end{aligned}
$$

Substituting \sqrt{n} consistent estimate of δ, that is, $\hat{\delta}$ in S_{1}, D, A, and B, the $C(\alpha)$ statistic can be obtained as $S_{1}^{\prime}\left(D-A B^{-1} A^{\prime}\right)^{-1} S_{1}$, which is approximately distributed as the chi-squared with 1 degree of freedom Neyman (1959); Neyman and Scott (1966); Moran (1970)). Using the above log-likelihood, that is, equation (5.2) and after simplification we obtain the above elements as follows

$$
\begin{aligned}
& \psi_{1}=-\frac{n_{1} \beta_{1}}{\alpha}+\frac{\beta_{1}}{\alpha^{\beta_{1}+1}} \sum_{j=1}^{n_{1}} y_{1 j}^{\beta_{1}} \\
& \gamma_{1}=\sum_{i=1}^{2}\left[-\frac{n_{i} \beta_{i}}{\alpha}+\frac{\beta_{i}}{\alpha^{\beta_{i}+1}} \sum_{j=1}^{n_{i}} y_{i j}^{\beta_{i}}\right],
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{2}=\frac{n_{1}}{\beta_{1}}+\sum_{j=1}^{n_{1 j}} \log \left(y_{1 j}\right)-n_{1} \log (\alpha)+\frac{\log (\alpha)}{\alpha^{\beta_{1}}} \sum_{j=1}^{n_{1}} y_{1 j}^{\beta_{1}}-\frac{1}{\alpha^{\beta_{1}}} \sum_{j=1}^{n_{1}} y_{1 j}^{\beta_{1}} \log \left(y_{1 j}\right), \\
& \gamma_{3}=\frac{n_{2}}{\beta_{2}}+\sum_{j=1}^{n_{2 j}} \log \left(y_{2 j}\right)-n_{2} \log (\alpha)+\frac{\log (\alpha)}{\alpha^{\beta_{2}}} \sum_{j=1}^{n_{2}} y_{2 j}^{\beta_{2}}-\frac{1}{\alpha^{\beta_{2}}} \sum_{j=1}^{n_{2}} y_{2 j}^{\beta_{2}} \log \left(y_{2 j}\right),
\end{aligned}
$$

$$
D_{11}=-\frac{n_{1} \beta_{1}}{\alpha^{2}}+\frac{n_{1} \beta_{1}\left(\beta_{1}+1\right) E\left(y_{1 j}^{\beta_{1}}\right)}{\alpha^{\beta_{1}+2}}
$$

$$
A_{11}=-\frac{n_{1} \beta_{1}}{\alpha^{2}}+\frac{n_{1} \beta_{1}\left(\beta_{1}+1\right) E\left(y_{1 j}^{\beta_{1}}\right)}{\alpha^{\beta_{1}+2}}
$$

$$
A_{12}=\frac{n_{1}}{\alpha}-\frac{n_{1}\left\{1-\beta_{1} \log (\alpha)\right\} E\left(y_{1 j}^{\beta_{1}}\right)}{\alpha^{\beta_{1}+1}}-\frac{n_{1} \beta_{1} E\left\{y_{1 j}^{\beta_{1}} \log \left(y_{1 j}\right)\right\}}{\alpha^{\beta_{1}+1}}, \quad A_{13}=0
$$

$$
B_{11}=\sum_{j=1}^{n_{i}}\left[-\frac{n_{i} \beta_{i}}{\alpha^{2}}+\frac{n_{i} \beta_{i}\left(\beta_{i}+1\right) E\left(y_{i j}^{\beta_{i}}\right)}{\alpha^{\beta_{i}+2}}\right]
$$

$$
B_{12}=\frac{n_{1}}{\alpha}-\frac{n_{1}\left\{1-\beta_{1} \log (\alpha)\right\} E\left(y_{1 j}^{\beta_{1}}\right)}{\alpha^{\beta_{1}+1}}-\frac{n_{1} \beta_{1} E\left\{y_{1 j}^{\beta_{1}} \log \left(y_{1 j}\right)\right\}}{\alpha^{\beta_{1}+1}}
$$

$$
B_{13}=\frac{n_{2}}{\alpha}-\frac{n_{2}\left\{1-\beta_{2} \log (\alpha)\right\} E\left(y_{2 j}^{\beta_{2}}\right)}{\alpha^{\beta_{2}+1}}-\frac{n_{2} \beta_{2} E\left\{y_{2 j}^{\beta_{2}} \log \left(y_{2 j}\right)\right\}}{\alpha^{\beta_{2}+1}}
$$

$$
B_{22}=\frac{n_{1}}{\beta_{1}^{2}}+\frac{n_{1}\{\log (\alpha)\}^{2} E\left(y_{1 j}^{\beta_{1}}\right)+n_{1} E\left\{y_{1 j}^{\beta_{1}}\left(\log \left(y_{1 j}\right)\right)^{2}\right\}}{\alpha^{\beta_{1}}}, \quad B_{23}=0 \text { and }
$$

$$
B_{33}=\frac{n_{2}}{\beta_{2}^{2}}+\frac{n_{2}\{\log (\alpha)\}^{2} E\left(y_{2 j}^{\beta_{2}}\right)+n_{2} E\left\{y_{2 j}^{\beta_{2}}\left(\log \left(y_{2 j}\right)\right)^{2}\right\}}{\alpha^{\beta_{2}}} .
$$

If the maximum likelihood estimate of δ is used then $S_{1}=\psi_{1}$, and the $C(\alpha)$ statistic reduces to score statistic (RaO (1948)). Denoting the maximum likelihood estimate of δ as $\hat{\delta}_{m l}$ and using this estimate, the $C(\alpha)$ statistic which, in this case is the score statistic Rao 1948)), is obtained as $C_{m l}=\psi_{1}^{2} /\left(D_{11}-A B^{-1} A^{\prime}\right)$. Under the null hypothesis $C_{m l}$ is distributed, asymptotically as $n \rightarrow \infty$, as chi-squared with 1 degree of freedom.

5.2.3 The $C(\alpha)$ Test Based on Method of Moments Estimates by Cran (1988)

Cran (1988) proposes moments estimates of the parameters for three-parameter Weibull distribution and apply this procedure for two-parameter model considering the location parameter as zero. The estimate of the shape parameter β is independent of the scale parameter α and the estimates of the parameters for a single sample are $\tilde{\beta}_{c}=\frac{\ln (2)}{\ln \left(\bar{m}_{1}\right)-\ln \left(\bar{m}_{2}\right)}$ and $\tilde{\alpha}_{c}=\frac{\bar{m}_{1}}{\Gamma\left(1+\frac{1}{\tilde{\beta}_{c}}\right)}$, where $\bar{m}_{k}=\sum_{r=0}^{n-1}\left(1-\frac{r}{n}\right)^{k}\left\{y_{(r+1)}-y_{(r)}\right\}$, with $y_{(0)}=0$ and $y_{(r)}$ is the $r^{t h}$ ordered observation. As we have two independent samples, we estimate the parameters β_{i} and $\alpha_{i}, i=1,2$ using this method and then obtain the estimates of variances $\operatorname{Var}\left(y_{i}\right)=\alpha_{i}^{2}\left[\Gamma\left(1+\frac{2}{\beta_{i}}\right)-\left\{\Gamma\left(1+\frac{1}{\beta_{i}}\right)\right\}^{2}\right]$ by substituting the estimates. An estimate of $\tilde{\alpha}_{c}$, under null hypothesis of equality of the scale parameters, is then obtained by $\tilde{\alpha}_{c}=\frac{\sum_{i=1}^{2} w_{i} \tilde{\alpha}_{i}}{\sum_{i=1}^{2} w_{i}}$, where $w_{i}=\frac{n_{i}}{\operatorname{Var}\left(y_{i}\right)}, i=1,2$. Then the $C(\alpha)$ statistic based on the method of moments estimates of nuisance parameters by Cran (1988) is obtained as $C_{c r}=S_{1}^{2} /\left(D_{11}-A B^{-1} A^{\prime}\right)$, where in S_{1}, A, B and D, the α, β_{1} and β_{2}
are replaced by $\tilde{\alpha}_{c}, \tilde{\beta}_{1 c}$ and $\tilde{\beta}_{2 c}$. Under the null hypothesis $C_{c r}$ follows, asymptotically as $n \rightarrow \infty$, where, $n=n_{1}+n_{2}$, a chi-squared distribution with 1 degree of freedom.

5.2.4 The $C(\alpha)$ Test Based on Method of Moments Estimates by Teimouri and Gupta (2013)

In a recent article, Teimouri and Gupta (2013) propose a method of moments estimate of the shape parameter of a three-parameter Weibull distribution and without loss of generality apply this method to a two-parameter Weibull distribution for estimating the shape parameter. The special feature of this estimate is that it is independent of the scale parameter α and depends only on the coefficient of variation statistic. For a random sample $y_{1}, y_{2}, \cdots, y_{n}$, of size n from a two-parameter Weibull distribution with scale parameter α and shape parameter β, the Teimouri and Gupta (2013) method of moments estimate of β is $\tilde{\beta}=\frac{-\ln 2}{\ln \left[1-\frac{r}{\sqrt{3}} C V \sqrt{\frac{n+1}{n-1}}\right]}$, where r denotes the sample correlation between y_{i} and their ranks and $C V$ is the sample coefficient of variation. Our objective here is to estimate α, β_{1} and β_{2} from two independent samples of Weibull distributions. Following Teimouri and Gupta (2013) we obtain the estimates of β_{1} and β_{2} which are independent of α and then obtain the estimate of α_{i} by equating $E\left(Y_{i}\right)$ to $\bar{y}_{i}, i=1,2$ and then take a weighted average of $\alpha_{i} \mathrm{~s}$, as in the previous section, in order to obtain the common estimate of α under the null hypothesis. We denote the estimate of δ so obtained by $\tilde{\delta}_{t g}$. Then the $C(\alpha)$ statistic based on the method of moments estimates of nuisance parameters by Teimouri and Gupta (2013) is obtained as $C_{t g}=S_{1}^{2} /\left(D_{11}-A B^{-1} A^{\prime}\right)$. The distribution of $C_{t g}$ is also asymptotically $\chi^{2}(1)$ when $n \rightarrow \infty$, where $n=n_{1}+n_{2}$.

5.3 Simulation Studies

We conduct a simulation study to compare the performance of the test procedures, namely, $L R, C_{m l}, C_{c r}$ and $C_{t g}$ that were developed in section 5.2. The performance of the test procedures are compared on the basis of empirical level and power. To compare the statistics in terms of empirical level we consider sample sizes $n_{1}=$ $n_{2}=5,10,20,50$, values of scale parameters $\alpha_{1}=\alpha_{2}=5,8,10,12$ and the combinations of the values of shape parameters $\left(\beta_{1}, \beta_{2}\right)=(3,3),(3,3.5),(3,4)$, $(3,4.5),(3,5),(3,5.5),(3,6)$ and nominal levels $\alpha=0.05,0.10$. In the cases of $\alpha_{1}=\alpha_{2}=5, \alpha_{1}=\alpha_{2}=8, \alpha_{1}=\alpha_{2}=10$ and $\alpha_{1}=\alpha_{2}=12$ the comparative results in terms of empirical size are similar. So, we present results of empirical sizes for only $\alpha_{1}=\alpha_{2}=10$. In order to compare powers we consider same sample size and same combination of $\left(\beta_{1}, \beta_{2}\right)$ with the combinations of the scale parameters $\left(\alpha_{1}, \alpha_{2}\right)$ $=(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),\left(\alpha_{1}, \alpha_{2}\right)=(8,9),(8,10),(8,11)$, $(8,12),(8,13),(8,15),\left(\alpha_{1}, \alpha_{2}\right)=(10,11),(10,12),(10,13),(10,14),(10,15)$, $(10,17)$ and $\left(\alpha_{1}, \alpha_{2}\right)=(12,13),(12,14),(12,15),(12,16),(12,17),(12,18)$. The comparative results in power comparisons are also similar for all combinations of the scale parameters. So, as representative results, we present results for nominal level $\alpha=0.05$ and for $\left(\alpha_{1}, \alpha_{2}\right)=(10,11),(10,12),(10,13),(10,14),(10,15),(10,17)$. Results for level and power are summarized in Tables 5.1 to 5.4 and we observe the following features of the test statistics in maintaining empirical level and power a) In case of small sample sizes, that is, for $n_{1}=n_{2}=5,10$ the statistics $C_{c r}$ and $C_{t g}$ show liberal behaviour in maintaining nominal level for all combinations of β_{1} and β_{2}. The statistics $C_{m l}$ and $L R$ hold level effectively for no difference to small difference of the shape parameters but for moderate to large differences of β_{1} and β_{2} these statistics show somewhat liberal behaviour. For example, in Table 5.1, the empirical
level of $C_{c r}$ is 6.2% for $\left(\beta_{1}, \beta_{2}\right)=(3,3)$ and that of $C_{t g}$ is 6.8% for $\left(\beta_{1}, \beta_{2}\right)=(3,6)$ and in Table 5.2, the empirical level of $C_{m l}$ is 4.7% for $\left(\beta_{1}, \beta_{2}\right)=(3,4)$. The statistic $C_{c r}$ appears with the largest power for small sample sizes and for all combinations of $\left(\beta_{1}, \beta_{2}\right)$, followed by $C_{t g}, L R$ and $C_{m l}$. The power exhibits an increasing trend with the increase in the departure between $\left(\beta_{1}, \beta_{2}\right)$ within the same combination of $\left(\alpha_{1}, \alpha_{2}\right)$. For instance, for $\left(\alpha_{1}, \alpha_{2}\right)=(10,13),\left(\beta_{1}, \beta_{2}\right)=(3,4)$, the power of $C_{c r}$ is 30.5% and that of $C_{m l}$ is 25.5%.
b) The empirical levels of all of the four statistics are close to the nominal level for the small departures between the shape parameters, though, these statistics demonstrate somewhat liberal behaviour for large departures between β_{1} and β_{2} in the moderate sample sizes situations, that is, when $n_{1}=n_{2}=20$. For example, it can be seen from column 4 of Table 5.3 that the empirical levels of $L R, C_{m l}, C_{c r}$ and $C_{t g}$ are $4.6 \%, 4.8 \%, 4.8 \%$ and 4.9% respectively. The test procedures based on the maximum likelihood estimates of the parameters, that is, $L R$ and $C_{m l}$ demonstrate larger power, with power of $L R$ being the largest, than the statistics based on method of moments estimates, that is, $C_{c r}$ and $C_{t g}$, with power of $C_{t g}$ being the smallest, for all values of $\left(\alpha_{1}, \alpha_{2}\right)$ and all combinations of $\left(\beta_{1}, \beta_{2}\right)$. For example, for $\left(\alpha_{1}, \alpha_{2}\right)=(10,14)$ and $\left(\beta_{1}, \beta_{2}\right)=(3,5)$, the powers of $L R, C_{m l}, C_{c r}$ and $C_{t g}$ are $80.9 \%, 77.3 \%, 74.1 \%$ and 70.6%.
c) For large sample sizes, that is, for $n_{1}=n_{2}=50$, the empirical levels of all statistics exhibit more closeness to nominal level than other sample size situations, though, for large differences in the shape parameters these statistics are a bit liberal. Again, like the moderate sample size situations, the statistics based on the maximum likelihood estimates of parameters appear with higher power than test procedures based on the method of moments estimates.

For each combination of sample sizes $\left(n_{1}, n_{2}\right)$ and the specified values of scale $\left(\alpha_{1}, \alpha_{2}\right)$ and shape $\left(\beta_{1}, \beta_{2}\right)$ parameters, samples were generated from the Weibull distribution as per equation (5.1) using the built in function "rweibull" in R. Also the simultaneous solution of the equations were obtained through the function "nleqslv" in R. The empirical significance levels and powers of the test procedures were obtained from 3000 valid simulation runs after discarding the non-convergent samples and samples that produced out-of-range estimates of the parameters. Cohen and Whitten (1982) mention that the usual asymptotic properties of maximum likelihood do not hold unless $\beta>2$. So, we discarded samples for which the value of maximum likelihood estimate of either β_{1} or β_{2} were obtained to be less than 2.5. We observed that though convergence in finding estimates of parameters was obtained, the values of the test statistics were unusual when the estimates of parameters were very high. In order to avoid this problem, we discarded samples for which the estimates of parameters were found to be more than three times the specified values of the parameters.

5.4 Examples

Lawless (1982) presents a set of data (originally given by McCool (1979)) that represents the times to fatigue failure in units of millions of cycles of 10 high-speed turbine engine bearings made out of five different compounds. The data are given in Table 5.5. We conduct a pairwise comparison of the five different compound types. The maximum likelihood estimates of parameters, under both alternative and null hypotheses, and the methods of moments estimates are presented in Table 5.6 and the values of the test statistics along with the corresponding p -values are given in Table
5.7. In all combinations of pairs of compound types, the value of $C_{c r}$ is the largest with the smallest p-value which is followed by $C_{t g}, L R$ and $C_{m l}$ in decreasing order. In particular, if we focus on the results of the comparison of compound types I and V then we see that the values of the test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$ with the p-values within the parentheses are 3.4073 (0.0649), 2.6298 (0.1049), 5.1513 (0.0232) and 4.5956 (0.0321) respectively. This is in agreement with the simulation results presented in Table 5.2 where we see that for $n_{1}=n_{2}=10$ the statistic $C_{c r}$ demonstrates the largest power which is followed by $C_{t g}, L R$ and $C_{m l}$.

5.5 Discussion

In this chapter we dealt with survival data that follow Weibull distribution and we developed four test procedures to test the equality of scale parameters of two Weibull distributions where the shape parameters are assumed unknown and unequal. The test procedures we developed are, a likelihood ratio statistic $L R$, a $C(\alpha)$ (score) statistic based on maximum likelihood estimates of the nuisance parameters $C_{m l}$, a $C(\alpha)$ statistic based on method of moments estimates of the nuisance parameters by Cran (1988) $C_{c r}$ and a $C(\alpha)$ statistic based on method of moments estimates of the nuisance parameters by Teimouri and Gupta (2013) $C_{t g}$. A comparative study, through Monte-Carlo simulation, was conducted to observe the performance of the test procedures. Empirical significance level and power were considered as the tools for measuring performance. In general, for small sample sizes the statistics $C_{c r}$ and $C_{t g}$ were found liberal where as the statistics $C_{m l}$ and $L R$ were found to hold nominal level effectively. The statistic $C_{c r}$ exhibits largest power followed by $C_{t g}, L R$ and $C_{m l}$. All four statistics hold reasonably well empirical level in case of moderate and
large sample sizes situations. In large sample situations the likelihood ratio statistic appears with the largest power in all parameter combinations followed by $C_{m l}, C_{c r}$ and $C_{t g}$.

Table 5.1: Empirical level and power (\%) of test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$; based on 3000 iterations and $n_{1}=5, n_{2}=5, \alpha=0.05$

$\left(\beta_{1}, \beta_{2}\right)$								
$\left(\alpha_{1}, \alpha_{2}\right)$	Statistics	$(3,3)$	$(3,3.5)$	$(3,4)$	$(3,4.5)$	$(3,5)$	$(3,5.5)$	$(3,6)$
$(10,10)$	$L R$	4.8	5.3	5.6	6.0	6.2	6.0	6.1
	$C_{m l}$	4.4	4.8	5.1	5.6	5.8	5.7	5.8
	$C_{c r}$	6.2	6.5	6.8	7.2	7.3	7.1	7.5
	$C_{t g}$	5.5	5.9	6.3	6.7	6.7	6.4	6.8
$(10,11)$	$L R$	6.4	7.0	7.4	7.9	8.6	9.1	9.8
	$C_{m l}$	6.0	6.5	6.9	7.4	8.0	8.5	9.2
	$C_{c r}$	7.6	8.4	8.8	9.5	10.1	10.6	11.0
	$C_{\text {tg }}$	6.9	7.6	8.0	8.6	9.3	9.8	10.3
$(10,12)$	$L R$	10.8	11.8	12.5	13.4	14.5	15.6	16.3
	$C_{m l}$	10.2	11.0	11.7	12.6	13.5	14.5	15.7
	$C_{c r}$	12.4	13.8	14.5	15.6	16.6	17.6	18.4
	$C_{t g}$	11.5	12.7	13.4	14.4	15.4	16.4	17.4
$(10,13)$	$L R$	16.4	17.7	18.9	20.1	21.6	23.1	24.1
	$C_{m l}$	15.5	16.7	17.7	18.9	20.2	21.5	23.0
	$C_{c r}$	18.6	20.4	22.5	23.0	24.4	25.7	26.9
	$C_{t g}$	17.4	18.9	20.1	21.4	22.8	24.3	25.7
$(10,14)$	$L R$	23.9	25.6	27.3	28.9	30.8	32.7	34.1
	$C_{m l}$	22.7	24.2	25.6	27.1	28.9	30.5	32.6
	$C_{c r}$	26.9	29.1	31.8	32.6	34.4	36.2	37.6
	$C_{t g}$	25.3	27.1	29.0	30.6	32.4	34.3	36.0
$(10,15)$	$L R$	34.6	36.9	39.2	41.5	44.0	46.8	48.6
	$C_{m l}$	33.0	34.9	36.7	38.9	41.4	43.7	46.5
	$C_{c r}$	38.7	41.5	44.7	46.5	49.2	51.7	53.8
	$C_{t g}$	36.6	38.9	41.4	43.8	46.4	49.1	51.3
$(10,17)$	$L R$	53.6	57.0	60.4	63.1	66.0	69.2	71.3
	$C_{m l}$	51.4	53.9	56.3	59.0	61.9	64.6	67.7
	$C_{c r}$	59.1	63.5	67.3	69.5	72.5	75.4	77.8
	$C_{t g}$	56.3	60.1	63.7	66.6	69.5	72.6	75.1

Table 5.2: Empirical level and power (\%) of test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$; based on 3000 iterations and $n_{1}=10, n_{2}=10, \alpha=0.05$

		$\left(\beta_{1}, \beta_{2}\right)$						
$\left(\alpha_{1}, \alpha_{2}\right)$	Statistics	$(3,3)$	$(3,3.5)$	$(3,4)$	$(3,4.5)$	$(3,5)$	$(3,5.5)$	$(3,6)$
$(10,10)$	$L R$	4.6	5.0	5.4	5.7	5.8	6.1	6.4
	$C_{m l}$	4.1	4.4	4.7	5.1	5.5	5.5	6.0
	$C_{c r}$	5.9	6.2	6.4	6.5	6.6	7.0	7.4
	$C_{t g}$	5.4	5.7	6.0	6.2	6.2	6.5	6.9
$(10,11)$	$L R$	11.9	13.5	14.8	15.7	16.5	17.3	18.4
	$C_{m l}$	11.2	12.6	13.8	14.7	15.6	16.4	17.4
	$C_{c r}$	13.9	15.9	16.2	17.8	18.8	19.6	20.4
	$C_{t g}$	12.8	14.6	15.8	16.8	17.1	18.5	19.3
$(10,12)$	$L R$	17.6	19.9	21.8	23.9	26.2	28.3	30.3
	$C_{m l}$	16.6	18.6	20.4	22.4	24.6	26.6	29.0
	$C_{c r}$	19.8	22.7	24.6	27.0	29.2	31.2	33.3
	$C_{t g}$	18.6	21.2	23.0	25.2	27.5	29.5	31.7
$(10,13)$	$L R$	24.2	27.0	29.4	31.9	34.5	37.0	39.3
	$C_{m l}$	22.9	25.5	27.7	29.9	32.6	34.9	37.6
	$C_{c r}$	27.0	30.5	33.8	35.7	38.3	40.6	42.9
	$C_{t g}$	25.5	28.5	31.0	33.4	36.3	38.7	41.5
$(10,14$	$L R$	33.0	36.1	39.1	41.9	44.9	47.9	50.8
	$C_{m l}$	31.4	34.2	37.0	39.4	42.6	45.1	48.6
	$C_{c r}$	36.6	40.4	44.4	46.5	49.6	52.4	55.0
	$C_{t g}$	34.7	37.9	41.1	43.8	47.2	49.9	53.2
$(10,17)$	$L R$	84.3	89.4	98.0	99.9	100	100	100
	$C_{m l}$	82.6	86.4	94.1	99.8	100	100	100
	$C_{c r}$	91.2	97.1	100	100	100	100	100
	$C_{t g}$	87.9	91.9	99.9	100	100	100	100
	$C_{m l}$	46.1	49.7	53.4	57.0	61.0	64.6	67.9
		50.7	47.3	50.6	53.8	57.9	60.8	65.3
	$C_{t g}$	48.4	52.2	56.1	59.7	64.2	67.4	71.2

Table 5.3: Empirical level and power (\%) of test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$; based on 3000 iterations and $n_{1}=20, n_{2}=20, \alpha=0.05$

		$\left(\beta_{1}, \beta_{2}\right)$						
$\left(\alpha_{1}, \alpha_{2}\right)$	Statistics	$(3,3)$	$(3,3.5)$	$(3,4)$	$(3,4.5)$	$(3,5)$	$(3,5.5)$	$(3,6)$
$(10,10)$	$L R$	4.5	4.6	4.6	4.8	5.1	5.2	5.4
	$C_{m l}$	4.6	4.8	4.8	5.2	5.4	5.4	5.7
	$C_{c r}$	4.8	4.8	5.1	5.4	5.7	5.8	5.9
	$C_{t g}$	4.8	4.9	5.1	5.5	5.7	5.9	6.1
$(10,11)$	$L R$	21.7	25.6	27.3	30.3	32.8	33.1	33.8
	$C_{m l}$	20.1	23.6	26.4	29.0	30.4	31.0	32.1
	$C_{c r}$	18.7	21.6	24.7	27.2	28.6	29.1	30.6
	$C_{t g}$	17.6	20.1	22.8	25.1	27.3	27.5	29.1
$(10,12)$	$L R$	32.4	37.7	41.7	45.1	49.1	52.0	55.6
	$C_{m l}$	30.7	35.6	39.4	42.5	46.7	49.2	53.2
	$C_{c r}$	28.9	33.6	37.5	40.7	44.5	47.2	50.7
	$C_{t g}$	27.1	31.5	35.3	38.5	42.2	44.8	48.5
$(10,13)$	$L R$	46.2	50.9	56.6	60.5	63.5	66.8	71.0
	$C_{m l}$	43.6	47.9	52.5	56.9	60.9	63.7	68.2
	$C_{c r}$	41.4	45.6	50.2	54.7	57.8	60.9	65.2
	$C_{t g}$	39.0	43.4	47.2	51.6	54.7	57.7	62.3
$(10,14)$	$L R$	62.7	70.4	76.8	77.9	80.9	84.4	88.6
	$C_{m l}$	59.7	65.8	72.3	74.1	77.3	81.2	86.2
	$C_{c r}$	56.3	62.5	69.2	71.1	74.1	78.0	82.9
	$C_{t g}$	53.4	60.0	65.9	67.5	70.6	74.2	79.6
$(10,17)$	$L R$							
	$C_{m l}$	100	100	100	100	100	100	100
	$C_{c r}$	100	100	100	100	100	100	100
	$C_{t g}$	100	100	100	100	100	100	100
	$C_{m l}$	75.8	81.6	87.4	92.1	97.9	100	100
	72.7	77.3	83.0	87.7	93.4	97.7	100	
	69.3	74.1	79.5	84.1	89.1	94.1	98.5	
	66.1	70.8	76.0	80.2	85.0	89.5	95.2	
	$C_{c r}$							

Table 5.4: Empirical level and power (\%) of test statistics $L R, C_{m l}, C_{c r}$ and $C_{t g}$; based on 3000 iterations and $n_{1}=50, n_{2}=50, \alpha=0.05$

		$\left(\beta_{1}, \beta_{2}\right)$						
$\left(\alpha_{1}, \alpha_{2}\right)$	Statistics	$(3,3)$	$(3,3.5)$	$(3,4)$	$(3,4.5)$	$(3,5)$	$(3,5.5)$	$(3,6)$
$(10,10)$	$L R$	4.8	4.9	5.3	5.5	5.5	5.7	6.1
	$C_{m l}$	5.0	5.2	5.4	5.5	5.7	5.8	6.1
	$C_{c r}$	5.1	5.2	5.4	5.7	5.7	5.8	6.3
	$C_{t g}$	5.1	5.3	5.6	5.8	6.0	6.2	6.4
$(10,11)$	$L R$	38.0	44.5	48.5	52.4	57.3	59.9	62.9
	$C_{m l}$	34.2	41.4	46.4	50.4	54.0	57.1	60.0
	$C_{c r}$	32.0	38.1	43.6	47.5	51.1	54.0	57.7
	$C_{t g}$	29.9	35.7	40.6	44.3	48.4	51.3	55.0
$(10,12)$	$L R$	59.4	66.6	72.1	76.9	81.1	84.3	89.4
	$C_{m l}$	56.9	63.8	69.0	72.9	77.5	80.4	85.9
	$C_{c r}$	53.8	60.7	66.2	69.9	74.1	77.5	82.6
	$C_{t g}$	50.6	57.3	63.2	66.9	70.6	73.9	79.5
$(10,13)$	$L R$	81.4	87.9	93.9	97.6	99.4	99.8	100
	$C_{m l}$	77.7	83.1	88.5	93.1	96.3	97.8	99.9
	$C_{c r}$	74.2	79.7	85.4	90.0	92.7	94.7	98.0
	$C_{t g}$	70.5	76.6	81.3	85.7	88.8	90.8	94.4
$(10,14)$	$L R$	96.7	100	100	100	100	100	100
	$C_{m l}$	93.3	99.8	100	100	100	100	100
	$C_{c r}$	88.6	95.6	99.8	100	100	100	100
	$C_{t g}$	84.6	92.3	97.1	98.9	100	100	100
$(10,17)$	$L R$	100						
	$C_{m l}$	100	100	100	100	100	100	100
	$C_{c r}$	100	100	100	100	100	100	100
	$C_{t g}$	100	100	100	100	100	100	100
	$C_{m l}$	100	100	100	100	100	100	100
		100	100	100	100	100	100	100
	$C_{c r}$	99.9	100	100	100	100	100	100
	98.2	100	100	100	100	100	100	

Table 5.5: Failure Times of Different Bearing Specimens

Type of Compound				
I	$I I$	$I I I$	$I V$	V
3.03	3.19	3.46	5.88	6.43
5.53	4.26	5.22	6.74	9.97
5.60	4.47	5.69	6.90	10.39
9.30	4.53	6.54	6.98	13.55
9.92	4.67	9.16	7.21	14.45
12.51	4.69	9.40	8.14	14.72
12.95	5.78	10.19	8.59	16.81
15.21	6.79	10.71	9.80	18.39
16.04	9.37	12.58	12.28	20.84
16.84	12.75	13.41	25.46	21.51

Table 5.6: Estimates of parameters obtained by different methods for compound combinations of bearing specimens data in Table 5.5

	Compound Type Combinations									
	$(I, I I)$	$(I, I I I)$	$(I, I V)$	(I, V)	$(I I, I I I)$	$(I I, I V)$	$(I I, V)$	$(I I I, I V)$	$(I I I, V)$	$(I V, V)$
$\hat{\alpha}_{0}$	9.0056	10.4848	11.7213	14.7887	8.5093	7.1645	9.5075	8.6567	13.8549	15.0676
$\hat{\beta}_{10}$	1.8385	2.2491	2.5351	2.4628	2.3276	2.3718	2.1549	2.3160	2.2909	1.9228
$\hat{\beta}_{20}$	2.2376	3.2077	1.9758	3.1844	2.6780	1.5713	1.4804	1.3236	2.8340	3.2844
$\hat{\alpha}_{1 a}$	12.0607	12.0607	12.0607	12.0607	6.8596	6.8596	6.8596	9.6847	9.6847	7.5107
$\hat{\alpha}_{2 a}$	6.8596	9.6847	7.5107	16.3507	9.6847	7.5107	16.3507	7.5107	16.3507	16.3507
$\hat{\beta}_{1 a}$	2.5881	2.5881	2.5881	2.5881	2.3202	2.3202	2.3202	3.1324	3.1324	4.0912
$\hat{\beta}_{2 a}$	2.3202	3.1324	4.0912	3.6518	3.1324	4.0912	3.6518	4.0912	3.6518	3.6518
$\hat{\alpha}_{c r}$	8.2096	10.4267	11.6395	14.1747	8.0635	7.6565	9.3231	10.0022	11.7626	14.1524
$\hat{\beta}_{1 c r}$	2.4941	2.4941	2.4941	2.4941	2.6956	2.6956	2.6956	3.0152	3.0152	2.5244
$\hat{\beta}_{2 c r}$	2.6956	3.0152	2.5244	3.5348	3.0152	2.5244	3.5348	2.5244	3.5348	3.5348
$\hat{\alpha}_{t g}$	7.9949	9.3692	11.7085	12.7716	7.7511	8.2172	9.0596	9.7884	10.6421	14.1160
$\hat{\beta}_{1 t g}$	2.0733	2.0733	2.0733	2.0733	2.2457	2.2457	2.2457	2.5192	2.5192	2.0992
$\hat{\beta}_{2 t g}$	2.2457	2.5192	2.0992	2.9636	2.5192	2.0992	2.9636	2.0992	2.9636	2.9636

Table 5.7: Test statistics along with p-values for compound combinations of bearing specimens data in Table 5.5

	Compound Type Combinations										
	$(I, I I)$	$(I, I I I)$	$(I, I V)$	(I, V)	$(I I, I I I)$	$(I I, I V)$	$(I I, V)$	$(I I I, I V)$	$(I I I, V)$	$(I V, V)$	
	7.0443	1.6233	0.5067	3.4073	3.4310	7.4859	18.8333	1.0934	10.1554	2.9559	
	(0.0080)	(0.2026)	(0.4766)	(0.0649)	(0.0640)	(0.0062)	(0.0000)	(0.2957)	(0.0014)	(0.0856)	
$C_{m l}$	$(0.4028$	1.4351	0.1191	2.6298	2.7254	3.6041	8.5357	0.8114	5.8944	2.6429	
		(0.2309)	(0.7300)	(0.1049)	(0.0988)	(0.0576)	(0.0035)	(0.3677)	(0.0152)	(0.1040)	
$C_{c r}$	18.7256	2.0846	1.0047	5.1513	4.7590	29.3146	171.7005	2.9979	30.3739	4.0519	
	(0.0000)	(0.1488)	(0.3162)	(0.0232)	(0.0291)	(0.0000)	(0.0000)	(0.0834)	(0.0000)	(0.0441)	
$C_{t g}$	11.6447	1.9165	0.9138	4.5956	3.7401	9.0158	90.3166	1.1887	29.2231	3.0675	
	(0.0006)	(0.1662)	(0.3391)	(0.0321)	(0.0531)	(0.0027)	(0.0000)	(0.2756)	(0.0000)	(0.0799)	

Chapter 6

Summary and Recommendations for Future Research Topics

6.1 Summary

Often count data with extra Poisson variation, binary data having extra-binomial variation and Weibull distributed survival data may appear as two or more groups. In the scenario of two groups data, one group may be the control group and the other one the treatment group. It may be of interest to compare some characteristic of the two groups of data. For over-dispersed count data, considering negative binomial model, the objective may be to test the equality of means of two groups assuming that the over-dispersion parameters are unequal. When data in the form of proportion fit the beta-binomial model it may be of interest to test the equality of proportions in two groups with unequal dispersion parameters. In case of Weibull distributed survival data, testing the equality of scale parameters of two groups where the shape
parameters are unequal may be the objective.

In Chapter 3, we developed six test procedures, namely, $L R, L R(b c), T^{2}, T^{2}(b c), T_{1}$ and T_{N}, for testing the equality of two negative binomial means in the presence of unequal dispersion parameters. We also studied, through simulation studies, the performance of the test procedures for small, moderate and large sample size situations. Performance of the test procedures were compared on the basis of empirical size and power. We did not find reason to recommend the bias corrected statistics, $L R(b c)$ and $T^{2}(b c)$, over their uncorrected counterparts because these had not shown improvement in power and closeness to nominal level. In addition, bias corrected statistics are more computational intensive. For small to moderate sample sizes the statistic T_{1} is recommended as this statistic shows best performance in maintaining size and power for most combinations of $\left(\mu_{1}, \mu_{2}\right)$ and $\left(c_{1}, c_{2}\right)$. Apart from this, T_{1} is easy to understand and compute. In large sample size situations all six statistics maintain nominal level reasonably well and the power performance are found similar. Therefore, for large samples, no substantial advantage has been found to use one over others except that T_{N} is the easiest to implement.

In Chapter 4, we derived parametric as well as semi-parametric statistics for testing the equality of two proportions in the presence of unequal dispersion parameters. We then, through simulation studies, compared these statistics in terms of size and power. The parametric statistics are $L R, C_{m l}$, and $C_{k m m}$. Of these three $C_{m l}$ and $C_{k m m}$ are $C(\alpha)$ statistics. The semi-parametric statistics are $C_{q b}, C_{q s}, C_{e q}, C_{a r}$ and $C_{a r s}$ among which the first three are $C(\alpha)$ statistics. Among the parametric tests $L R$, in general, maintains nominal level very well and its power performance is the best. This statistic needs estimates of the parameters both under the null and the alternative hypotheses. Both of the statistics, $C_{m l}$ and $C_{k m m}$, need the estimates of the parameters only
under the null hypothesis and are similar in maintaining nominal level. These are conservative for small differences in dispersion parameters, $\left(\theta_{1}, \theta_{2}\right)$, and small values of proportions, $\left(\pi_{1}, \pi_{2}\right)$, but liberal otherwise. In regards to power, the statistic $C_{k m m}$ performs better than $C_{m l}$ in all parameter combinations. However, $C_{k m m}$ is based on the method of moments estimate and is computationally less intensive than $C_{m l}$ which is based on the maximum likelihood estimate. We, thus, recommend $C_{k m m}$ among the parametric statistics. With small differences in the dispersion parameters, θ_{1} and θ_{2}, and for small values of $\pi_{1}=\pi_{2}$, the semi-parametric $C(\alpha)$ statistics $C_{q b}, C_{q s}$ and $C_{e q}$ behave conservatively. Overall, the statistic based on the extended quasilikelihood estimates of the nuisance parameters, $C_{e q}$, maintains nominal level well and the power performance is the best for this statistic. In addition, this statistic is easy to implement because the estimates of the mean and dispersion parameters are obtained from a single function. On the other hand, in addition to the quasi-likelihood function the use of method of moments is required for finding mean and dispersion parameters while computing the statistics $C_{q b}$ and $C_{q s}$. Therefore, the statistic $C_{e q}$ can be recommended for use among the semi-parametric procedures.

In Chapter 5, we constructed a likelihood ratio test $L R$, and three $C(\alpha)$ tests $C_{m l}$, $C_{c r}$ and $C_{t g}$, for testing the equality of scale parameters of two Weibull distributions where the shape parameters are unequal. For small sample sizes the statistics $L R$ and $C_{m l}$ hold effective nominal level while $C_{c r}$ and $C_{t g}$ are liberal. The statistic $C_{c r}$ performs best in maintaining power. For moderate and large sample sizes, $L R$ exhibits the highest powers for all instances though all four statistics hold nominal level effectively. We, thus, taking into account the ease of computation and implementation, recommend the use of $C_{c r}$ for small sample sizes. For moderate and large sample sizes the statistic $L R$ is recommended.

6.2 Recommendations for Future Research

6.2.1 Behrens-Fisher Analogs for Zero-Inflated Discrete Data

Often unbounded count data exhibit an excess of zeroes compared to what is expected from negative binomial model and the bounded count data appear with number of zeroes more than expected from beta-binomial model. To accommodate this inflated number of zeroes, it is assumed that the distribution is a mixture of the original distribution and a degenerate distribution at zero. If the original distribution is negative binomial then the model that accounts the extra zeroes is called the zeroinflated negative binomial model. Similarly, the model that incorporates excess zeroes in bounded counts is called zero-inflated beta-binomial model.

The probability function of a zero-inflated negative random variable Y can be written as

$$
\begin{aligned}
& f(y \mid \mu, c, \eta)=\operatorname{Pr}(Y=y \mid \mu, c, \eta) \\
& = \begin{cases}\eta+(1-\eta)\left(\frac{1}{1+c \mu}\right)^{c^{-1}} & \text { if } y=0 \\
(1-\eta) \frac{\Gamma\left(y+c^{-1}\right)}{y!\Gamma\left(c^{-1}\right)}\left(\frac{c \mu}{1+c \mu}\right)^{y}\left(\frac{1}{1+c \mu}\right)^{c^{-1}} & \text { if } y=1,2, \cdots,\end{cases}
\end{aligned}
$$

where $0 \leq \eta \leq 1$.

The mean and variance of Y are $E(Y)=(1-\eta) \mu$ and $\operatorname{var}(Y)=(1-\eta) \mu[1+\mu(\eta+c)]$ respectively. For two groups of negative binomial data with excess number of zeroes, one possible area of further research is to derive test procedures for testing equality of means where the dispersion parameters are assumed unknown and unequal considering that η 's from both groups are equal. Another possible area of further research
is to develop tests for testing the simultaneous equality of μ_{1}, μ_{2} and η_{1}, η_{2} where c_{1} and c_{2} are unequal.

The probability function of a zero-inflated beta-binomial random variable Y with index n can be expressed as

$$
\begin{aligned}
& f(y \mid n, \pi, \theta, \eta)=\operatorname{Pr}(Y=y \mid n, \pi, \theta, \eta) \\
& = \begin{cases}\eta+(1-\eta) B B(\pi, \theta) & \text { if } y=0 \\
(1-\eta) B B(\pi, \theta) & \text { if } y=1,2, \cdots, n\end{cases}
\end{aligned}
$$

where $0 \leq \eta \leq 1$ and $B B(\pi, \theta)$ is the probability function of a beta-binomial variate given in equation 4.2. The mean and variance of beta-binomial variate, Y are $E(Y)=$ $(1-\eta) n \pi$ and $\operatorname{var}(Y)=(1-\eta) n \pi[\eta n \pi+(1-\pi)\{1+(n-1) \theta\}]$ respectively. A consideration can be taken into account as a further research topic that involves in developing test procedures to test the equality of proportions $\left(\pi_{1}, \pi_{2}\right)$ for two groups of beta-binomial data having excess number of zeroes with common η and unequal θ_{1}, θ_{2}. Likewise, developing test methods for simultaneously testing the equality of proportions $\left(\pi_{1}, \pi_{2}\right)$ and equality of zero inflation parameters $\left(\eta_{1}, \eta_{2}\right)$ in the presence of unequal dispersion parameters $\left(\theta_{1}, \theta_{2}\right)$ can be considered as a further research topic.

6.2.2 Behrens-Fisher Analog for Censored Survival Data

In Chapter 55, we developed test procedures for testing the equality of scale parameters for two Weibull distributions where the shape parameters are unequal in the complete sample scenario. In fact, in most instances, censoring is evident in survival data. We, therefore, suggest to develop test statistics, as a further research topic, for testing the
equality of scale parameters of two Weibull distributions in the presence of unequal shape parameters in different censoring scenarios.

Appendix A

A. 1 Derivation of the Biases of Maximum Likelihood Estimates of the Parameters Under the Null Hypothesis

For the negative binomial model (3.1), under the null hypothesis $H_{0}: \mu_{1}=\mu_{2}=\mu$, the kernel of the log-likelihood is

$$
\begin{align*}
& l_{0}=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}}\left[\sum_{l=0}^{y_{i j}-1} \log \left(\frac{1+c_{i} l}{c_{i}}\right)+y_{i j} \log c_{i}+y_{i j} \log \mu-y_{i j} \log \left(1+c_{i} \mu\right)\right. \tag{A.1}\\
& \left.-c_{i}^{-1} \log \left(1+c_{i} \mu\right)\right]
\end{align*}
$$

A.1.1 Derivation of the Second Order Quantities $\left(V_{r t}\right)$ and the Elements of the Fisher Information Matrix $\left(I_{r t}\right)$

Using the above log-likelihood, we obtain

$$
\begin{gathered}
V_{11}=\frac{\partial^{2} l_{0}}{\partial \mu^{2}}=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}}\left[\frac{-y_{i j}-2 y_{i j} c_{i} \mu+c_{i} \mu^{2}}{\mu^{2}\left(1+c_{i} \mu\right)^{2}}\right], \\
V_{12}=V_{21}=\frac{\partial^{2} l_{0}}{\partial \mu \partial c_{1}}=\sum_{j=1}^{n_{1}}\left[\frac{-y_{1 j}+\mu}{\left(1+c_{1} \mu\right)^{2}}\right], \quad V_{13}=V_{31}=\frac{\partial^{2} l_{0}}{\partial \mu \partial c_{2}}=\sum_{j=1}^{n_{2}}\left[\frac{-y_{2 j}+\mu}{\left(1+c_{2} \mu\right)^{2}}\right], \\
V_{22}=\frac{\partial^{2} l_{0}}{\partial c_{1}^{2}}=-\frac{2 n_{1}}{c_{1}^{3}} \log \left(1+c_{1} \mu\right)+\frac{n_{1} \mu}{c_{1}^{2}\left(1+c_{1} \mu\right)}-\frac{n_{1}\left(\bar{y}_{1}-\mu\right)\left(1+2 c_{1} \mu\right)}{c_{1}^{2}\left(1+c_{1} \mu\right)^{2}} \\
+\sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1}\left\{\frac{1+2 c_{1} l}{c_{1}^{2}\left(1+c_{1} l\right)^{2}}\right\}, \quad V_{23}=V_{32}=\frac{\partial^{2} l_{0}}{\partial c_{1} \partial c_{2}}=0
\end{gathered}
$$

and

$$
\begin{aligned}
& V_{33}=\frac{\partial^{2} l_{0}}{\partial c_{2}^{2}}=-\frac{2 n_{2}}{c_{2}^{3}} \log \left(1+c_{2} \mu\right)+\frac{n_{2} \mu}{c_{2}^{2}\left(1+c_{2} \mu\right)}-\frac{n_{2}\left(\bar{y}_{2}-\mu\right)\left(1+2 c_{2} \mu\right)}{c_{2}^{2}\left(1+c_{2} \mu\right)^{2}} \\
& +\sum_{j=1}^{n_{2}} \sum_{l=0}^{y_{2 j}-1}\left\{\frac{1+2 c_{2} l}{c_{2}^{2}\left(1+c_{2} l\right)^{2}}\right\} .
\end{aligned}
$$

Now, under the null hypothesis, using $E\left(y_{i j}\right)=\mu$, for $i=1,2 ; j=1,2, \cdots, n_{i}$, we have

$$
\begin{aligned}
& I_{11}=E\left(-V_{11}\right)=\sum_{i=1}^{2}\left[\frac{n_{i}}{\mu\left(1+c_{i} \mu\right)}\right], \\
& I_{12}=I_{21}=E\left(-V_{12}\right)=0, \quad I_{13}=I_{31}=E\left(-V_{13}\right)=0, \\
& I_{22}=E\left(-V_{22}\right)=\frac{2 n_{1}}{c_{1}^{3}} \log \left(1+c_{1} \mu\right)-\frac{n_{1} \mu}{c_{1}^{2}\left(1+c_{1} \mu\right)} \\
& -\frac{2}{c_{1}^{2}} E\left\{\sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1} \frac{1}{\left(1+c_{1} l\right)}\right\}+\frac{1}{c_{1}^{4}} E\left\{\sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1} \frac{c_{1}^{2}}{\left(1+c_{1} l\right)^{2}}\right\}, \\
& I_{23}=I_{32}=E\left(-V_{23}\right)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& I_{33}=E\left(-V_{33}\right)=\frac{2 n_{2}}{c_{2}^{3}} \log \left(1+c_{2} \mu\right)-\frac{n_{2} \mu}{c_{2}^{2}\left(1+c_{2} \mu\right)} \\
& -\frac{2}{c_{2}^{2}} E\left\{\sum_{j=1}^{n_{2}} \sum_{l=0}^{y_{2 j}-1} \frac{1}{\left(1+c_{2} l\right)}\right\}+\frac{1}{c_{2}^{4}} E\left\{\sum_{j=1}^{n_{2}} \sum_{l=0}^{y_{2 j}-1} \frac{c_{2}^{2}}{\left(1+c_{2} l\right)^{2}}\right\} .
\end{aligned}
$$

Since $E\left(\frac{\partial l}{\partial c_{i}}\right)=0 ;$ we have $E\left\{\sum_{j=1}^{n_{i}} \sum_{l=0}^{y_{i j}-1} \frac{1}{\left(1+c_{i} l\right)}\right\}=\frac{n_{i}}{c_{i}} \log \left(1+c_{i} \mu\right)$.

Further, following Fisher (1941), we have $E\left\{\sum_{j=1}^{n_{i}} \sum_{l=0}^{y_{i j}-1} \frac{c_{i}^{2}}{\left(1+c_{i} l\right)^{2}}\right\}=n_{i} \sum_{k=0}^{\infty} \frac{k!\left(c_{i} b_{i}\right)^{k+1}}{(k+1) d_{i k}}$
where $\quad b_{i}=\frac{c_{i} \mu}{1+c_{i} \mu} \quad$ and $\quad d_{i k}=\prod_{l=0}^{k}\left(1+c_{i} l\right), \quad i=1,2$.

We, thus obtain

$$
I_{22}=\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{1} c_{1}\right)^{k+1}}{(k+1) d_{1 k}} \quad \text { and } \quad I_{33}=\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{2} c_{2}\right)^{k+1}}{(k+1) d_{2 k}} .
$$

A.1.2 Derivation of the Third Order Quantities ($W_{r t u}$) and the Expected Values $\left(J_{r t u}\right)$

The third order derivatives are $W_{r t u}=\frac{\partial^{3} l_{0}}{\partial \theta_{r} \partial \theta_{t} \partial \theta_{u}} ; r, t, u=1,2,3$ which we obtain as follows

$$
\begin{aligned}
& W_{111}=\frac{\partial^{3} l_{0}}{\partial \mu^{3}}=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}}\left[\frac{2 y_{i j}}{\mu^{3}}-\frac{2 y_{i j} c_{i}^{3}}{\left(1+c_{i} \mu\right)^{3}}-\frac{2 c_{i}^{2}}{\left(1+c_{i} \mu\right)^{3}}\right], \\
& W_{112}=W_{121}=W_{211}=\frac{\partial^{3} l_{0}}{\partial \mu^{2} \partial c_{1}}=\sum_{j=1}^{n_{1}}\left[\frac{1-c_{1} \mu+2 y_{1 j} c_{1}}{\left(1+c_{1} \mu\right)^{3}}\right], \\
& W_{113}=W_{131}=W_{311}=\frac{\partial^{3} l_{0}}{\partial \mu^{2} \partial c_{2}}=\sum_{j=1}^{n_{2}}\left[\frac{1-c_{2} \mu+2 y_{2 j} c_{2}}{\left(1+c_{2} \mu\right)^{3}}\right], \\
& W_{122}=W_{212}=W_{221}=\frac{\partial^{3} l_{0}}{\partial \mu \partial c_{1}^{2}}=\sum_{j=1}^{n_{1}}\left[\frac{2 \mu\left(y_{1 j}-\mu\right)}{\left(1+c_{1} \mu\right)^{3}}\right], \\
& W_{133}=W_{313}=W_{331}=\frac{\partial^{3} l_{0}}{\partial \mu \partial c_{2}^{2}}=\sum_{j=1}^{n_{2}}\left[\frac{2 \mu\left(y_{2 j}-\mu\right)}{\left(1+c_{2} \mu\right)^{3}}\right],
\end{aligned}
$$

$$
\begin{aligned}
& W_{222}=\frac{\partial^{3} l_{0}}{\partial c_{1}^{3}}=\frac{6 n_{1}}{c_{1}^{4}} \log \left(1+c_{1} \mu\right)-\frac{n_{1} \mu\left(4+5 c_{1} \mu\right)}{c_{1}^{3}\left(1+c_{1} \mu\right)^{2}}+\frac{2 n_{1}\left(\bar{y}_{1}-\mu\right)\left(1+3 c_{1} \mu+3 c_{1}^{2} \mu^{2}\right)}{c_{1}^{3}\left(1+c_{1} \mu\right)^{3}} \\
& -\frac{4}{c_{1}^{3}} \sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1} \frac{1}{\left(1+c_{1} l\right)}-\frac{2}{c_{1}^{3}} \sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1} \frac{c_{1}^{2} l^{2}-c_{1} l-1}{\left(1+c_{1} l\right)^{3}},
\end{aligned}
$$

$$
W_{233}=W_{323}=W_{332}=\frac{\partial^{3} l_{0}}{\partial c_{1} \partial c_{2}^{2}}=0, \quad W_{322}=W_{232}=W_{223}=\frac{\partial^{3} l_{0}}{\partial c_{2} \partial c_{1}^{2}}=0
$$

$$
W_{333}=\frac{\partial^{3} l_{o}}{\partial c_{2}^{3}}=\frac{6 n_{2}}{c_{2}^{4}} \log \left(1+c_{2} \mu\right)-\frac{n_{2} \mu\left(4+5 c_{2} \mu\right)}{c_{2}^{3}\left(1+c_{2} \mu\right)^{2}}+\frac{2 n_{2}\left(\bar{y}_{2}-\mu\right)\left(1+3 c_{2} \mu+3 c_{2}^{2} \mu^{2}\right)}{c_{2}^{3}\left(1+c_{2} \mu\right)^{3}}
$$

$$
-\frac{4}{c_{2}^{3}} \sum_{j=1}^{n_{2}} \sum_{l=0}^{y_{2 j}-1} \frac{1}{\left(1+c_{2} l\right)}-\frac{2}{c_{2}^{3}} \sum_{j=1}^{n_{2}} \sum_{l=0}^{y_{2 j}-1} \frac{c_{2}^{2} l^{2}-c_{2} l-1}{\left(1+c_{2} l\right)^{3}} \text { and }
$$

$$
W_{123}=W_{132}=W_{213}=W_{231}=W_{312}=W_{321}=\frac{\partial^{3} l}{\partial \mu \partial c_{1} \partial c_{2}}=0
$$

Now, the expected values of the above third order quantities are $J_{r t u}=$ $E\left(W_{r t u}\right) ; r, t, u=1,2,3$, which we obtain as follows

$$
\begin{aligned}
& J_{111}=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}} \frac{2\left(1+2 c_{i} \mu\right)}{\mu^{2}\left(1+c_{i} \mu\right)^{2}}, \quad J_{112}=\frac{n_{1}}{\left(1+c_{1} \mu\right)^{2}}, \quad J_{113}=\frac{n_{2}}{\left(1+c_{2} \mu\right)^{2}}, \quad J_{122}=0, \\
& J_{123}=0, \quad J_{133}=0,
\end{aligned}
$$

$$
\begin{aligned}
& J_{222}=\frac{6 n_{1}}{c_{1}^{4}} \log \left(1+c_{1} \mu\right)-\frac{n_{1} \mu\left(4+5 c_{1} \mu\right)}{c_{1}^{3}\left(1+c_{1} \mu\right)^{2}}-\frac{4}{c_{1}^{3}} E\left\{\sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1} \frac{1}{1+c_{1} l}\right\} \\
& -\frac{2}{c_{1}^{3}} E\left\{\sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1} \frac{c_{1}^{2} l^{2}-c_{1} l-1}{\left(1+c_{1} l\right)^{3}}\right\}, \\
& J_{222}=\frac{2 n_{1}}{c_{1}^{2}} \kappa_{1}-\frac{n_{1} \mu\left(4+5 c_{1} \mu\right)}{c_{1}^{3}\left(1+c_{1} \mu\right)^{2}}-\frac{2 n_{1}}{c_{1}^{3}} \Delta_{1}, \quad J_{223}=0, \quad J_{233}=0
\end{aligned}
$$

and

$$
J_{333}=\frac{2 n_{2}}{c_{2}^{2}} \kappa_{2}-\frac{n_{2} \mu\left(4+5 c_{2} \mu\right)}{c_{2}^{3}\left(1+c_{2} \mu\right)^{2}}-\frac{2 n_{2}}{c_{2}^{3}} \Delta_{2}
$$

where $\kappa_{i}=\frac{1}{c_{i}^{2}} \log \left(1+c_{i} \mu\right)$, and $\Delta_{i}=\sum_{y_{i j}=0}^{\infty} \sum_{l=0}^{y_{i j}-1} \frac{c_{i}^{2} l^{2}-c_{i} l-1}{\left(1+c_{i} l\right)^{3}} \operatorname{Pr}\left(y_{i j}\right) ; i=1,2 ; j=$ $1,2, \cdots, n_{i}$.

A.1.3 Derivation of the Partial Derivatives of the Expected Values of Second Order Quantities $\left(K_{r t}^{(u)}\right)$

In addition to the expectations of second order and third order quantities, Cordeiro and Klein (1994) formula of biases of the maximum likelihood estimates requires partial derivatives of the expected values of second order quantities, that is, $K_{r t}^{(u)}=$ $\frac{\partial}{\partial \theta_{u}} E\left(V_{r t}\right), r, t, u=1,2,3$. These partial derivatives are obtained as follows

$$
\begin{aligned}
& K_{11}^{(1)}=\frac{\partial}{\partial \mu} E\left(V_{11}\right)=\sum_{i=1}^{2}\left\{\frac{n_{i}\left(1+2 c_{i} \mu\right)}{\mu^{2}\left(1+c_{i} \mu\right)^{2}}\right\}, \\
& K_{11}^{(2)}=\frac{\partial}{\partial c_{1}} E\left(V_{11}\right)=\frac{n_{1}}{\left(1+c_{1} \mu\right)^{2}}, \quad K_{11}^{(3)}=\frac{\partial}{\partial c_{2}} E\left(V_{11}\right)=\frac{n_{2}}{\left(1+c_{2} \mu\right)^{2}} \\
& K_{12}^{(1)}=K_{21}^{(1)}=\frac{\partial}{\partial \mu} E\left(V_{12}\right)=0, \quad K_{12}^{(2)}=K_{21}^{(2)}=\frac{\partial}{\partial c_{1}} E\left(V_{12}\right)=0, \\
& K_{12}^{(3)}=K_{21}^{(3)}=\frac{\partial}{\partial c_{2}} E\left(V_{12}\right)=0, \quad K_{13}^{(1)}=K_{31}^{(1)}=\frac{\partial}{\partial \mu} E\left(V_{13}\right)=0, \\
& K_{13}^{(2)}=K_{31}^{(2)}=\frac{\partial}{\partial c_{1}} E\left(V_{13}\right)=0, \quad K_{13}^{(3)}=K_{31}^{(3)}=\frac{\partial}{\partial c_{2}} E\left(V_{13}\right)=0, \\
& K_{22}^{(1)}=\frac{\partial}{\partial \mu} E\left(V_{22}\right)=-\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{1} c_{1}\right)^{k} b_{1}^{2}}{\mu^{2} d_{1 k}}, \\
& K_{22}^{(2)}=\frac{\partial}{\partial c_{1}} E\left(V_{22}\right)=\frac{n_{1}}{c_{1}^{5}} \sum_{k=1}^{\infty} \frac{k!\left(c_{1} b_{1}\right)^{k+1}}{(k+1) d_{1 k}}\left\{4-\frac{(k+1)\left(2+c_{1} \mu\right)}{1+c_{1} \mu}+c_{1}\left(\sum_{l=0}^{k} \frac{l}{1+c_{1} l}\right)\right\}, \\
& K_{22}^{(3)}=\frac{\partial}{\partial c_{2}} E\left(V_{22}\right)=0, \quad K_{23}^{(1)}=K_{32}^{(1)}=\frac{\partial}{\partial \mu} E\left(V_{23}\right)=0, \\
& K_{23}^{(2)}=K_{32}^{(2)}=\frac{\partial}{\partial c_{1}} E\left(V_{23}\right)=0, \quad K_{23}^{(3)}=K_{32}^{(3)}=\frac{\partial}{\partial c_{2}} E\left(V_{23}\right)=0, \\
& K_{33}^{(1)}=\frac{\partial}{\partial \mu} E\left(V_{33}\right)=-\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{2} c_{2}\right)^{k} b_{2}^{2}}{\mu^{2} d_{2 k}}, \quad K_{33}^{(2)}=\frac{\partial}{\partial c_{1}} E\left(V_{33}\right)=0
\end{aligned}
$$

and

$$
K_{33}^{(3)}=\frac{\partial}{\partial c_{2}} E\left(V_{33}\right)=\frac{n_{2}}{c_{2}^{5}} \sum_{k=1}^{\infty} \frac{k!\left(c_{2} b_{2}\right)^{k+1}}{(k+1) d_{2 k}}\left\{4-\frac{(k+1)\left(2+c_{2} \mu\right)}{1+c_{2} \mu}+c_{2}\left(\sum_{l=0}^{k} \frac{l}{1+c_{2} l}\right)\right\} .
$$

A.1.4 The Biases of the Estimates of the Parameters

Now, following Cordeiro and Klein (1994), the biases of the maximum likelihood estimates of μ, c_{1}, and c_{2} are

$$
\begin{aligned}
& b_{\hat{\mu}}\left(\hat{\mu}, \hat{c}_{1}, \hat{c}_{2}\right)=\sum_{r=1}^{3} M^{1 r} \sum_{t=1}^{3} \sum_{u=1}^{3}\left(K_{r t}^{(u)}-\frac{1}{2} J_{r t u}\right) M^{t u}, \\
& b_{\hat{c}_{1}}\left(\hat{\mu}, \hat{c}_{1}, \hat{c}_{2}\right)=\sum_{r=1}^{3} M^{2 r} \sum_{t=1}^{3} \sum_{u=1}^{3}\left(K_{r t}^{(u)}-\frac{1}{2} J_{r t u}\right) M^{t u}
\end{aligned}
$$

and

$$
b_{\hat{c}_{2}}\left(\hat{\mu}, \hat{c}_{1}, \hat{c}_{2}\right)=\sum_{r=1}^{3} M^{3 r} \sum_{t=1}^{3} \sum_{u=1}^{3}\left(K_{r t}^{(u)}-\frac{1}{2} J_{r t u}\right) M^{t u}, \text { respectively. }
$$

The above biases, after simplifications, take the forms

$$
\begin{aligned}
& b_{\hat{\mu}}\left(\hat{\mu}, \hat{c}_{1}, \hat{c}_{2}\right)=M^{11}\left(K_{11}^{(1)}-\frac{1}{2} J_{111}\right) M^{11}=0, \\
& b_{\hat{c}_{1}}\left(\hat{\mu}, \hat{c}_{1}, \hat{c}_{2}\right)=M^{22}\left[-\frac{1}{2} J_{211} M^{11}+\left(K_{22}^{(2)}-\frac{1}{2} J_{222}\right) M^{22}\right]
\end{aligned}
$$

and

$$
b_{\hat{c}_{2}}\left(\hat{\mu}, \hat{c}_{1}, \hat{c}_{2}\right)=M^{33}\left[-\frac{1}{2} J_{311} M^{11}+\left(K_{33}^{(3)}-\frac{1}{2} J_{333}\right) M^{33}\right]
$$

respectively, where $M^{r t}$ is the $(r, t)^{t h}$ element of the inverse of the information matrix I.

A. 2 Derivation of the Biases of Maximum Likelihood Estimates of the Parameters Under the Alternative Hypothesis

Under the alternative hypothesis we have four parameters to estimate, namely, μ_{1}, μ_{2}, c_{1} and c_{2}, that is, under the alternative hypothesis $\theta^{\prime}=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=$ $\left(\mu_{1}, \mu_{2}, c_{1}, c_{2}\right)$. The estimates of μ_{1} and μ_{2} are \bar{y}_{1} and \bar{y}_{2} respectively, that is, under the alternative hypothesis the MLEs of μ_{1} and μ_{2} are unbiased. The second order and third order derivatives are $V_{r t}=\frac{\partial^{2} l}{\partial \theta_{r} \partial \theta_{t}}$ and $W_{r t u}=\frac{\partial^{3} l}{\partial \theta_{r} \partial \theta_{t} \partial \theta_{u}}, r, t, u=$ $1,2,3,4$, and the partial derivatives of expected values of the second order terms are $K_{r t}^{(u)}=\frac{\partial}{\partial \theta_{u}} E\left(V_{r t}\right)$. The $(r, t)^{t h}$ element of the Fisher information matrix is $I_{r t}=E\left(-V_{r t}\right)$ and the expected value of the $(r, t, u)^{t h}$ term of the third order derivatives is $J_{r t u}=E\left(W_{r t u}\right)$. Following similar steps as in the previous section we obtain

$$
\begin{aligned}
& V_{11}=\sum_{j=1}^{n_{1}}\left\{\frac{-y_{1 j}-2 y_{1 j} c_{1} \mu_{1}+c_{1} \mu_{1}^{2}}{\mu_{1}^{2}\left(1+c_{1} \mu_{1}\right)^{2}}\right\}, \quad V_{13}=V_{31}=\sum_{j=1}^{n_{1}}\left[\frac{-\left(y_{1 j}-\mu_{1}\right)}{\left(1+c_{1} \mu_{1}\right)^{2}}\right], \\
& V_{22}=\sum_{j=1}^{n_{2}}\left\{\frac{-y_{2 j}-2 y_{2 j} c_{2} \mu_{2}+c_{2} \mu_{2}^{2}}{\mu_{2}^{2}\left(1+c_{2} \mu_{2}\right)^{2}}\right\}, \quad V_{24}=V_{42}=\sum_{j=1}^{n_{2}}\left[\frac{-\left(y_{2 j}-\mu_{2}\right)}{\left(1+c_{2} \mu_{2}\right)^{2}}\right], \\
& V_{33}=-\frac{2 n_{1}}{c_{1}^{3}} \log \left(1+c_{1} \mu_{1}\right)+\frac{n_{1} \mu_{1}}{c_{1}^{2}\left(1+c_{1} \mu_{1}\right)}-\frac{n_{1}\left(\bar{y}_{1}-\mu_{1}\right)\left(1+2 c_{1} \mu_{1}\right)}{c_{1}^{2}\left(1+c_{1} \mu_{1}\right)^{2}} \\
& +\sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1}\left\{\frac{1+2 c_{1} l}{c_{1}^{2}\left(1+c_{1} l\right)^{2}}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& V_{44}=-\frac{2 n_{2}}{c_{2}^{3}} \log \left(1+c_{2} \mu_{2}\right)+\frac{n_{2} \mu_{2}}{c_{2}^{2}\left(1+c_{2} \mu_{2}\right)}-\frac{n_{2}\left(\left(\bar{y}_{2}-\mu_{2}\right)\left(1+2 c_{2} \mu_{2}\right)\right.}{c_{2}^{2}\left(1+c_{2} \mu_{2}\right)^{2}} \\
& +\sum_{j=1}^{n_{2}} \sum_{l=0}^{y_{2 j}-1}\left\{\frac{1+2 c_{2} l}{c_{2}^{2}\left(1+c_{2} l\right)^{2}}\right\}, \\
& I_{11}=\frac{n_{1}}{\mu_{1}\left(1+c_{1} \mu_{1}\right)}, \quad I_{22}=\frac{n_{2}}{\mu_{2}\left(1+c_{2} \mu_{2}\right)}, \\
& I_{33}=\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(c_{1} b_{1}\right)^{k+1}}{(k+1) d_{1 k}}, \quad I_{44}=\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(c_{2} b_{2}\right)^{k+1}}{(k+1) d_{2 k}}, \\
& J_{111}=\frac{2 n_{1}\left(1+2 c_{1} \mu_{1}\right)}{\mu_{1}^{2}\left(1+c_{1} \mu_{1}\right)^{2}}, \quad J_{113}=\frac{n_{1}}{\left(1+c_{1} \mu_{1}\right)^{2}}, \\
& J_{222}=\frac{2 n_{2}\left(1+2 c_{2} \mu_{2}\right)}{\mu_{2}^{2}\left(1+c_{2} \mu_{2}\right)^{2}}, \quad J_{224}=\frac{n_{2}}{\left(1+c_{2} \mu_{2}\right)^{2}}, \\
& J_{333}=\frac{2 n_{1}}{c_{1}^{2}} \kappa_{1}-\frac{n_{1} \mu_{1}\left(4+5 c_{1} \mu_{1}\right)}{c_{1}^{3}\left(1+c_{1} \mu_{1}\right)^{2}}-\frac{2 n_{1}}{c_{1}^{3}} \Delta_{1}, \\
& J_{444}=\frac{2 n_{2}}{c_{2}^{2}} \kappa_{2}-\frac{n_{2} \mu_{2}\left(4+5 c_{2} \mu_{2}\right)}{c_{2}^{3}\left(1+c_{2} \mu_{2}\right)^{2}}-\frac{2 n_{2}}{c_{2}^{3}} \Delta_{2}, \\
& K_{11}^{(1)}=\frac{n_{1}\left(1+2 c_{1} \mu_{1}\right)}{\mu_{1}^{2}\left(1+c_{1} \mu_{1}\right)^{2}}, \quad K_{11}^{(3)}=\frac{n_{1}}{\left(1+c_{1} \mu_{1}\right)^{2}}, \quad K_{22}^{(2)}=\frac{n_{2}\left(1+2 c_{2} \mu_{2}\right)}{\mu_{2}^{2}\left(1+c_{2} \mu_{2}\right)^{2}}, \\
& K_{22}^{(4)}=\frac{n_{2}}{\left(1+c_{2} \mu_{2}\right)^{2}}, \quad K_{33}^{(1)}=-\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(c_{1} b_{1}\right)^{k} b_{1}^{2}}{\mu_{1}^{2} d_{1 k}}, \\
& K_{33}^{(3)}=\frac{n_{1}}{c_{1}^{5}} \sum_{k=1}^{\infty} \frac{k!\left(c_{1} b_{1}\right)^{k+1}}{(k+1) d_{1 k}}\left\{4-\frac{(k+1)\left(2+c_{1} \mu_{1}\right)}{1+c_{1} \mu_{1}}+c_{1}\left(\sum_{l=0}^{k} \frac{l}{1+c_{1} l}\right)\right\},
\end{aligned}
$$

$$
K_{44}^{(2)}=-\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(c_{2} b_{2}\right)^{k} b_{2}^{2}}{\mu_{2}^{2} d_{2 k}}
$$

and

$$
K_{44}^{(4)}=\frac{n_{2}}{c_{2}^{5}} \sum_{k=1}^{\infty} \frac{k!\left(c_{2} b_{2}\right)^{k+1}}{(k+1) d_{2 k}}\left\{4-\frac{(k+1)\left(2+c_{2} \mu_{2}\right)}{1+c_{2} \mu_{2}}+c_{2}\left(\sum_{l=0}^{k} \frac{l}{1+c_{2} l}\right)\right\} .
$$

As in the previous section, following Cordeiro and Klein (1994), the biases of the estimates of c_{1} and c_{2} are

$$
\begin{aligned}
& b_{\hat{c}_{1}}\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{c}_{1}, \hat{c}_{2}\right)=\sum_{r=1}^{4} M^{3 r} \sum_{t=1}^{4} \sum_{u=1}^{4}\left(K_{r t}^{(u)}-\frac{1}{2} J_{r t u}\right) M^{t u} \\
& =M^{33} \sum_{t=1}^{4} \sum_{u=1}^{4}\left(K_{3 t}^{(u)}-\frac{1}{2} J_{3 t u}\right) M^{t u}
\end{aligned}
$$

and
$b_{\hat{c}_{2}}\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{c}_{1}, \hat{c}_{2}\right)=\sum_{r=1}^{4} M^{4 r} \sum_{t=1}^{4} \sum_{u=1}^{4}\left(K_{r t}^{(u)}-\frac{1}{2} J_{r t u}\right) M^{t u}$
$=M^{44} \sum_{t=1}^{4} \sum_{u=1}^{4}\left(K_{4 t}^{(u)}-\frac{1}{2} J_{4 t u}\right) M^{t u}$
respectively, which, after simplification, take the forms

$$
\begin{aligned}
& b_{\hat{c}_{1}}\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{c}_{1}, \hat{c}_{2}\right)=M^{33}\left\{-\frac{1}{2} J_{311} M^{11}+\left(K_{33}^{(3)}-\frac{1}{2} J_{333}\right) M^{33}\right\} \quad \text { and } \\
& b_{\hat{c}_{2}}\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{c}_{1}, \hat{c}_{2}\right)=M^{44}\left\{-\frac{1}{2} J_{422} M^{22}+\left(K_{44}^{(4)}-\frac{1}{2} J_{444}\right) M^{44}\right\}
\end{aligned}
$$

respectively.

A. 3 Derivation of the Terms Needed for the Score Test

After the reparameterization $\mu_{i}=\mu+\phi_{i}, i=1,2$ the log-likelihood, apart from a constant, can be written as

$$
\begin{aligned}
& l=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}}\left[\sum_{l=0}^{y_{i j}-1} \log \left(\frac{1+c_{i} l}{c_{i}}\right)+y_{i j} \log \left(c_{i}\right)+y_{i j} \log \left(\mu+\phi_{i}\right)\right. \\
& \left.-y_{i j} \log \left\{1+c_{i}\left(\mu+\phi_{i}\right)\right\}-\frac{1}{c_{i}} \log \left\{1+c_{i}\left(\mu+\phi_{i}\right)\right\}\right] .
\end{aligned}
$$

We then obtain

$$
\begin{aligned}
& \left.\frac{\partial l}{\partial \phi_{1}}\right|_{\phi=0}=\frac{n_{1}\left(\bar{y}_{1}-\mu\right)}{\mu\left(1+c_{1} \mu\right)},\left.\quad \frac{\partial l}{\partial \mu}\right|_{\phi=0}=\sum_{i=1}^{2} \frac{n_{i}\left(\bar{y}_{i}-\mu\right)}{\mu\left(1+c_{i} \mu\right)} \\
& \left.\frac{\partial l}{\partial c_{i}}\right|_{\phi=0}=\frac{n_{i}\left(\bar{y}_{i}-\mu\right)}{c_{i}\left(1+c_{i} \mu\right)}+\frac{n_{i}}{c_{i}^{2}} \log \left(1+c_{i} \mu\right)-\sum_{j=1}^{n_{i}} \sum_{l=0}^{y_{i j}-1} \frac{1}{c_{i}\left(1+c_{i} l\right)}, i=1,2, \\
& \left.\frac{\partial^{2} l}{\partial \phi_{1}^{2}}\right|_{\phi=0}=\sum_{j=1}^{n_{1}}\left[-\frac{y_{1 j}}{\mu^{2}}+\frac{y_{1 j} c_{1}^{2}}{\left(1+c_{1} \mu\right)^{2}}+\frac{c_{1}}{\left(1+c_{1} \mu\right)^{2}}\right] \\
& \left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \mu}\right|_{\phi=0}=\sum_{j=1}^{n_{1}}\left[-\frac{y_{1 j}}{\mu^{2}}+\frac{y_{1 j} c_{1}^{2}}{\left(1+c_{1} \mu\right)^{2}}+\frac{c_{1}}{\left(1+c_{1} \mu\right)^{2}}\right] \\
& \left.\frac{\partial^{2} l}{\partial \phi_{1} \partial c_{1}}\right|_{\phi=0}=\sum_{j=1}^{n_{1}}\left[\frac{-y_{1 j}+\mu}{\left(1+c_{1} \mu\right)^{2}}\right],\left.\quad \frac{\partial^{2} l}{\partial \phi_{1} \partial c_{2}}\right|_{\phi=0}=0,
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\partial^{2} l}{\partial \mu^{2}}\right|_{\phi=0}=\sum_{i=1}^{2} \sum_{j=1}^{n_{i}}\left[-\frac{y_{i j}}{\mu^{2}}+\frac{y_{i j} c_{i}^{2}}{\left(1+c_{i} \mu\right)^{2}}+\frac{c_{i}}{\left(1+c_{i} \mu\right)^{2}}\right], \\
& \left.\frac{\partial^{2} l}{\partial \mu \partial c_{1}}\right|_{\phi=0}=\sum_{j=1}^{n_{1}}\left[\frac{-y_{1 j}+\mu}{\left(1+c_{1} \mu\right)^{2}}\right],\left.\quad \frac{\partial^{2} l}{\partial \mu \partial c_{2}}\right|_{\phi=0}=\sum_{j=1}^{n_{2}}\left[\frac{-y_{2 j}+\mu}{\left(1+c_{2} \mu\right)^{2}}\right], \\
& \left.\frac{\partial^{2} l}{\partial c_{1}^{2}}\right|_{\phi=0}=-\frac{2 n_{1}}{c_{1}^{3}} \log \left(1+c_{1} \mu\right)+\frac{n_{1} \mu}{c_{1}^{2}\left(1+c_{1} \mu\right)}-\frac{n_{1}\left(\bar{y}_{1}-\mu\right)\left(1+2 c_{1} \mu\right)}{c_{1}^{2}\left(1+c_{1} \mu\right)^{2}} \\
& +\sum_{j=1}^{n_{1}} \sum_{l=0}^{y_{1 j}-1}\left\{\frac{1+2 c_{1} l}{c_{1}^{2}\left(1+c_{1} l\right)^{2}}\right\}, \\
& \left.\frac{\partial^{2} l}{\partial c_{1} \partial c_{2}}\right|_{\phi=0}=0 \\
& \left.\frac{\partial^{2} l}{\partial c_{2}^{2}}\right|_{\phi=0}=-\frac{2 n_{2}}{c_{2}^{3}} \log \left(1+c_{2} \mu\right)+\frac{n_{2} \mu}{c_{2}^{2}\left(1+c_{2} \mu\right)}-\frac{n_{2}\left(\bar{y}_{2}-\mu\right)\left(1+2 c_{2} \mu\right)}{c_{2}^{2}\left(1+c_{2} \mu\right)^{2}} \\
& +\sum_{j=1}^{n_{2}} \sum_{l=0}^{y_{2 j}-1}\left\{\frac{1+2 c_{2} l}{c_{2}^{2}\left(1+c_{2} l\right)^{2}}\right\} .
\end{aligned}
$$

The expected values of the negative of mixed partial derivatives are obtained as follows

$$
\begin{aligned}
& A_{1}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \mu}\right|_{\phi=0}\right]=\frac{n_{1}}{\mu\left(1+c_{1} \mu\right)}, \quad A_{2}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial c_{1}}\right|_{\phi=0}\right]=0, \\
& A_{3}=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial c_{2}}\right|_{\phi=0}\right]=0, \quad D=E\left[-\left.\frac{\partial^{2} l}{\partial \phi_{1}^{2}}\right|_{\phi=0}\right]=\frac{n_{1}}{\mu\left(1+c_{1} \mu\right)}
\end{aligned}
$$

$$
\begin{aligned}
& B_{1,1}=E\left[-\left.\frac{\partial^{2} l}{\partial \mu^{2}}\right|_{\phi=0}\right]=\sum_{i=1}^{2}\left[\frac{n_{i}}{\mu\left(1+c_{i} \mu\right)}\right], \quad B_{1,2}=B_{2,1}=E\left[-\left.\frac{\partial^{2} l}{\partial \mu \partial c_{1}}\right|_{\phi=0}\right]=0 \\
& B_{1,3}=B_{3,1}=E\left[-\left.\frac{\partial^{2} l}{\partial \mu \partial c_{2}}\right|_{\phi=0}\right]=0, \quad B_{2,2}=E\left[-\left.\frac{\partial^{2} l}{\partial c_{1}^{2}}\right|_{\phi=0}\right]=\frac{n_{1}}{c_{1}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{1} c_{1}\right)^{k+1}}{(k+1) d_{1 k}} \\
& B_{2,3}=B_{3,2}=E\left[-\left.\frac{\partial^{2} l}{\partial c_{1} \partial c_{2}}\right|_{\phi=0}\right]=0 \quad \text { and } \quad B_{3,3}=E\left[-\left.\frac{\partial^{2} l}{\partial c_{2}^{2}}\right|_{\phi=0}\right]=\frac{n_{2}}{c_{2}^{4}} \sum_{k=1}^{\infty} \frac{k!\left(b_{2} c_{2}\right)^{k+1}}{(k+1) d_{2 k}}
\end{aligned}
$$

Appendix B

B. 1 Expected Values of Negative of the Mixed Partial Derivatives in Beta Binomial Model

The kernel of the log-likelihood, after the reparameterization $\pi_{i}=\pi+\phi_{i}, i=1,2$, of a beta binomial model, is

$$
\begin{aligned}
& l=\sum_{\substack{i=1 \\
n_{i j}-1}}^{2} \sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1} \log \left\{\left(1-\theta_{i}\right)\left(\pi+\phi_{i}\right)+r \theta_{i}\right\}+\sum_{r=0}^{n_{i j}-y_{i j}-1} \log \left\{\left(1-\theta_{i}\right)\left(1-\pi-\phi_{i}\right)+r \theta_{i}\right\}\right. \\
& \left.-\sum_{r=0} \log \left\{\left(1-\theta_{i}\right)+r \theta_{i}\right\}\right] .
\end{aligned}
$$

B. 1 Expected Values of Negative of the Mixed Partial Derivatives in Beta Binomial Model

We then obtain

$$
\begin{aligned}
& \left.\frac{\partial l}{\partial \phi_{1}}\right|_{\phi=0}=\sum_{j=1}^{m_{1}}\left\{\left[\sum_{r=0}^{y_{1 j}-1} \frac{\left(1-\theta_{1}\right)}{\left(1-\theta_{1}\right) \pi+r \theta_{1}}\right\}-\sum_{r=0}^{n_{1 j}-y_{1 j}-1}\left\{\frac{\left(1-\theta_{1}\right)}{\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}}\right\}\right] \\
& \left.\frac{\partial l}{\partial \pi}\right|_{\phi=0}=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)}{\left(1-\theta_{i}\right) \pi+r \theta_{i}}\right\}-\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)}{\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}}\right\}\right] \\
& \left.\frac{\partial l}{\partial \theta_{i}}\right|_{\phi=0}=\sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{(r-\pi)}{\left(1-\theta_{i}\right) \pi+r \theta_{i}}\right\}+\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{(r+\pi-1)}{\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}}\right\}\right. \\
& \left.-\sum_{r=0}^{n_{i j}-1}\left\{\frac{(r-1)}{\left(1-\theta_{i}\right)+r \theta_{i}}\right\}\right], i=1,2, \\
& \left.\frac{\partial^{2} l}{\partial \phi_{1}^{2}}\right|_{\phi=0}=\sum_{j=1}^{m_{1}}\left[\sum_{r=0}^{y_{1 j}-1}\left\{-\frac{\left(1-\theta_{1}\right)^{2}}{\left[\left(1-\theta_{1}\right) \pi+r \theta_{1}\right]^{2}}\right\}-\sum_{r=0}^{n_{1 j}-y_{1 j}-1}\left\{\frac{\left(1-\theta_{1}\right)^{2}}{\left[\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}\right]^{2}}\right\}\right]
\end{aligned}
$$

$$
\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \pi}\right|_{\phi=0}=\sum_{j=1}^{m_{1}}\left[\sum_{r=0}^{y_{1 j}-1}\left\{-\frac{\left(1-\theta_{1}\right)^{2}}{\left[\left(1-\theta_{1}\right) \pi+r \theta_{1}\right]^{2}}\right\}-\sum_{r=0}^{n_{1 j}-y_{1 j}-1} \frac{\left(1-\theta_{1}\right)^{2}}{\left[\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}\right]^{2}}\right]
$$

$$
\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \theta_{1}}\right|_{\phi=0}=\sum_{j=1}^{m_{1}}\left[\sum_{r=0}^{y_{1 j}-1}\left\{-\frac{r}{\left[\left(1-\theta_{1}\right) \pi+r \theta_{1}\right]^{2}}\right\}+\sum_{r=0}^{n_{1 j}-y_{1 j}-1}\left\{\frac{r}{\left[\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}\right]^{2}}\right\}\right]
$$

$$
\left.\frac{\partial^{2} l}{\partial \phi_{1} \partial \theta_{2}}\right|_{\phi=0}=0
$$

$$
\begin{aligned}
& \left.\frac{\partial^{2} l}{\partial \pi^{2}}\right|_{\phi=0}=\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left[\sum_{r=0}^{y_{i j}-1}\left\{-\frac{\left(1-\theta_{i}\right)^{2}}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}-\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)^{2}}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right] \\
& \left.\frac{\partial^{2} l}{\partial \pi \partial \theta_{1}}\right|_{\phi=0}=\sum_{j=1}^{m_{1}}\left[\sum_{r=0}^{y_{1 j}-1}\left\{-\frac{r}{\left[\left(1-\theta_{1}\right) \pi+r \theta_{1}\right]^{2}}\right\}+\sum_{r=0}^{n_{1 j}-y_{1 j}-1}\left\{\frac{r}{\left[\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}\right]^{2}}\right\}\right] \\
& \left.\frac{\partial^{2} l}{\partial \pi \partial \theta_{2}}\right|_{\phi=0}=0
\end{aligned}
$$

$$
\left.\frac{\partial^{2} l}{\partial \theta_{1}^{2}}\right|_{\phi=0}=\sum_{j=1}^{m_{1}}\left[\sum_{r=0}^{y_{1 j}-1}\left\{-\frac{(r-\pi)^{2}}{\left[\left(1-\theta_{1}\right) \pi+r \theta_{1}\right]^{2}}\right\}-\sum_{r=0}^{n_{1 j}-y_{1 j}-1}\left\{\frac{(r+\pi-1)^{2}}{\left[\left(1-\theta_{1}\right)(1-\pi)+r \theta_{1}\right]^{2}}\right\}\right.
$$

$$
\left.+\sum_{r=0}^{n_{1 j}-1}\left\{\frac{(r-1)^{2}}{\left[\left(1-\theta_{1}\right)+r \theta_{1}\right]^{2}}\right\}\right]
$$

$$
\left.\frac{\partial^{2} l}{\partial \theta_{1} \partial \theta_{2}}\right|_{\phi=0}=0 \quad \text { and }
$$

$$
\left.\frac{\partial^{2} l}{\partial \theta_{2}^{2}}\right|_{\phi=0}=\sum_{j=1}^{m_{2}}\left[\sum_{r=0}^{y_{2 j}-1}\left\{-\frac{(r-\pi)^{2}}{\left[\left(1-\theta_{2}\right) \pi+r \theta_{2}\right]^{2}}\right\}-\sum_{r=0}^{n_{2 j}-y_{2 j}-1}\left\{\frac{(r+\pi-1)^{2}}{\left[\left(1-\theta_{2}\right)(1-\pi)+r \theta_{2}\right]^{2}}\right\}\right.
$$

$$
\left.+\sum_{r=0}^{n_{2 j}-1}\left\{\frac{(r-1)^{2}}{\left[\left(1-\theta_{2}\right)+r \theta_{2}\right]^{2}}\right\}\right]
$$

In order to obtain the expected values of the negative of the mixed partial derivative, we need to evaluate the terms

$$
E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)^{2}}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right], \quad E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)^{2}}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right]
$$

B. 1 Expected Values of Negative of the Mixed Partial Derivatives in Beta Binomial Model

$$
E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{r}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right], \quad E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{r}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right],
$$

$$
E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{(r-\pi)^{2}}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right], \quad E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{(r+\pi-1)^{2}}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right] \quad \text { and }
$$

$$
E\left[\sum_{r=0}^{n_{i j}-1}\left\{\frac{(r-1)^{2}}{\left[\left(1-\theta_{i}\right)+r \theta_{i}\right]^{2}}\right\}\right] .
$$

Again,

$$
E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{r}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right]=E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)(r-\pi)}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}+\frac{1}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]}\right\}\right]
$$

and
$E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{r}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right]$
$=E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{\left(1-\theta_{i}\right)(r+\pi-1)}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}+\frac{1}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]}\right\}\right]$.

Now,
$E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{1}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{y_{i j}=0}^{n_{i j}}\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{1}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right] \operatorname{Pr}\left(y_{i j}\right)$
$=0+$
$\frac{\operatorname{Pr}\left(y_{i j}=1\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+$
$\frac{\operatorname{Pr}\left(y_{i j}=2\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=2\right)}{\left[\left(1-\theta_{i}\right) \pi+1 \theta_{i}\right]^{2}}+$
$\frac{\operatorname{Pr}\left(y_{i j}=3\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=3\right)}{\left[\left(1-\theta_{i}\right) \pi+1 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=3\right)}{\left[\left(1-\theta_{i}\right) \pi+2 \theta_{i}\right]^{2}}$
$\frac{\operatorname{Pr}\left(y_{i j}=4\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=4\right)}{\left[\left(1-\theta_{i}\right) \pi+1 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=4\right)}{\left[\left(1-\theta_{i}\right) \pi+2 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=4\right)}{\left[\left(1-\theta_{i}\right) \pi+3 \theta_{i}\right]^{2}}+$
\vdots
$+\frac{\operatorname{Pr}\left(y_{i j}=n_{i j}\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=n_{i j}\right)}{\left[\left(1-\theta_{i}\right) \pi+1 \theta_{i}\right]^{2}}+\cdots+\frac{\operatorname{Pr}\left(y_{i j}=n_{i j}\right)}{\left[\left(1-\theta_{i}\right) \pi+\left(n_{i j}-1\right) \theta_{i}\right]^{2}}$
$=\frac{\operatorname{Pr}\left(y_{i j} \geq 1\right)}{\left[\left(1-\theta_{i}\right) \pi+(1-1) \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j} \geq 2\right)}{\left[\left(1-\theta_{i}\right) \pi+(2-1) \theta_{i}\right]^{2}}+\cdots+\frac{\operatorname{Pr}\left(y_{i j} \geq n_{i j}\right)}{\left[\left(1-\theta_{i}\right) \pi+\left(n_{i j}-1\right) \theta_{i}\right]^{2}}$.
$E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{1}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{r=1}^{n_{i j}} \frac{\operatorname{Pr}\left(y_{i j} \geq r\right)}{\left[\left(1-\theta_{i}\right) \pi+(r-1) \theta_{i}\right]^{2}}$.

$$
\begin{aligned}
& E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{1}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{y_{i j}=0}^{n_{i j}}\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{1}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right] \operatorname{Pr}\left(y_{i j}\right) \\
& =\frac{\operatorname{Pr}\left(y_{i j}=0\right)}{\left[\left(1-\theta_{i j}\right)(1-\pi)+0 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=0\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+1 \theta_{i}\right]^{2}}+\cdots+\frac{\operatorname{Pr}\left(y_{i j}=1\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+\left(n_{i j}-1\right) \theta_{i}\right]^{2}}+ \\
& \frac{\operatorname{Pr}\left(y_{i j}=0\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+0 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=1\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+1 \theta_{i}\right]^{2}}+\cdots+\frac{\operatorname{Pr}\left(y_{i j}=2\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+\left(n_{i j}-2\right) \theta_{i}\right]^{2}}+ \\
& \frac{\operatorname{Pr}\left(y_{i j}=2\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+0 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}]_{i j}}{\left[\left(1-\theta_{i}\right)(1-\pi)+1 \theta_{i}\right]^{2}}+\cdots+\frac{\operatorname{Pr}}{\left[\left(1-\theta_{i}\right)(1-\pi)+\left(n_{i j}-3\right) \theta_{i}\right]^{2}}+ \\
& \vdots \\
& +\frac{\operatorname{Pr}\left(y_{i j}=n_{i j}-2\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+0 \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j}=n_{i j}-2\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+1 \theta_{i}\right]^{2}}+ \\
& \frac{\operatorname{Pr}\left(y_{i j}=n_{i j}-1\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+0 \theta_{i}\right]^{2}}+0 \\
& =\frac{\operatorname{Pr}\left(y_{i j} \leq n_{i j}-1\right)}{\left[\left(1-\theta_{i}\right) \pi+(1-1) \theta_{i}\right]^{2}}+\frac{\operatorname{Pr}\left(y_{i j} \leq n_{i j}-2\right)}{\left[\left(1-\theta_{i}\right) \pi+(2-1) \theta_{i}\right]^{2}}+\cdots+\frac{\operatorname{Pr}\left(y_{i j} \leq 0\right)}{\left[\left(1-\theta_{i}\right) \pi+\left(n_{i j}-1\right) \theta_{i}\right]^{2}} . \\
& E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{1}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{r=1}^{n_{i j}} \frac{\operatorname{Pr}\left(y_{i j} \leq n_{i j}-r\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+(r-1) \theta_{i}\right]^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{(r-\pi)}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{y_{i j}=0}^{n_{i j}}\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{(r-\pi)}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right] \operatorname{Pr}\left(y_{i j}\right) \\
& =0+ \\
& \frac{(0-\pi) \operatorname{Pr}\left(y_{i j}=1\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+ \\
& \frac{(0-\pi) \operatorname{Pr}\left(y_{i j}=2\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+\frac{(1-\pi) \operatorname{Pr}\left(y_{i j}=2\right)}{\left[\left(1-\theta_{i}\right) \pi+1 \theta_{i}\right]^{2}}+ \\
& \frac{(0-\pi) \operatorname{Pr}\left(y_{i j}=3\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+\frac{(1-\pi) \operatorname{Pr}\left(y_{i j}=3\right)}{\left[\left(1-\theta_{i}\right) \pi+1 \theta_{i}\right]^{2}}+\frac{(2-\pi) \operatorname{Pr}\left(y_{i j}=3\right)}{\left[\left(1-\theta_{i}\right) \pi+2 \theta_{i}\right]^{2}} \\
& \frac{(0-\pi) \operatorname{Pr}\left(y_{i j}=4\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+\frac{(1-\pi) \operatorname{Pr}\left(y_{i j}=4\right)}{\left[\left(1-\theta_{i}\right) \pi+1 \theta_{i}\right]^{2}}+\frac{(2-\pi) \operatorname{Pr}\left(y_{i j}=4\right)}{\left[\left(1-\theta_{i}\right) \pi+2 \theta_{i}\right]^{2}}+\frac{(3-\pi) \operatorname{Pr}\left(y_{i j}=4\right)}{\left[\left(1-\theta_{i}\right) \pi+3 \theta_{i}\right]^{2}}+ \\
& \vdots \\
& +\frac{(0-\pi) \operatorname{Pr}\left(y_{i j}=n_{i j}\right)}{\left[\left(1-\theta_{i}\right) \pi+0 \theta_{i}\right]^{2}}+\frac{(1-\pi) \operatorname{Pr}\left(y_{i j}=n_{i j}\right)}{\left[\left(1-\theta_{i}\right) \pi+1 \theta_{i}\right]^{2}}+\cdots+\frac{\left(n_{i j}-1-\pi\right) \operatorname{Pr}\left(y_{i j}=n_{i j}\right)}{\left[\left(1-\theta_{i}\right) \pi+\left(n_{i j}-1\right) \theta_{i}\right]^{2}} \\
& =\frac{(0-\pi) \operatorname{Pr}\left(y_{i j} \geq 1\right)}{\left[\left(1-\theta_{i}\right) \pi+(1-1) \theta_{i}\right]^{2}}+\frac{(1-\pi) \operatorname{Pr}\left(y_{i j} \geq 2\right)}{\left[\left(1-\theta_{i}\right) \pi+(2-1) \theta_{i}\right]^{2}}+\cdots+\frac{\left(n_{i j}-1-\pi\right) \operatorname{Pr}\left(y_{i j} \geq n_{i j}\right)}{\left[\left(1-\theta_{i}\right) \pi+\left(n_{i j}-1\right) \theta_{i}\right]^{2}} . \\
& E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{(r-\pi)}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{r=1}^{n_{i j}} \frac{(r-\pi-1) \operatorname{Pr}\left(y_{i j} \geq r\right)}{\left[\left(1-\theta_{i}\right) \pi+(r-1) \theta_{i}\right]^{2}} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{(r+\pi-1)}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{r=1}^{n_{i j}} \frac{(r+\pi-2) \operatorname{Pr}\left(y_{i j} \leq n_{i j}-r\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+(r-1) \theta_{i}\right]^{2}}, \\
& E\left[\sum_{r=0}^{y_{i j}-1}\left\{\frac{(r-\pi)^{2}}{\left[\left(1-\theta_{i}\right) \pi+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{r=1}^{n_{i j}} \frac{(r-\pi-1)^{2} \operatorname{Pr}\left(y_{i j} \geq r\right)}{\left[\left(1-\theta_{i}\right) \pi+(r-1) \theta_{i}\right]^{2}}, \\
& E\left[\sum_{r=0}^{n_{i j}-y_{i j}-1}\left\{\frac{(r+\pi-1)^{2}}{\left[\left(1-\theta_{i}\right)(1-\pi)+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{r=1}^{n_{i j}} \frac{(r+\pi-2)^{2} \operatorname{Pr}\left(y_{i j} \leq n_{i j}-r\right)}{\left[\left(1-\theta_{i}\right)(1-\pi)+(r-1) \theta_{i}\right]^{2}}
\end{aligned}
$$

and

$$
E\left[\sum_{r=0}^{n_{i j}-1}\left\{\frac{(r-1)^{2}}{\left[\left(1-\theta_{i}\right)+r \theta_{i}\right]^{2}}\right\}\right]=\sum_{r=1}^{n_{i j}} \frac{(r-2)^{2}}{\left[\left(1-\theta_{i}\right)+(r-1) \theta_{i}\right]^{2}} .
$$

Bibliography

Altham, P. M. E. (1978). Two generalizations of the binomial distribution. Applied Statistics, 27:162-167.

Anscombe, F. J. (1949). The statistical analysis of insect counts based on the negative binomial distribution. Biometrics, 5:165-173.

Aspin, A. A. (1948). An examination and further development of a formula arising in the problem of comparing two mean values. Biometrika, 35:88-96.

Barnwal, R. K. (1989). Analysis of one-way layout of count data. Unpublished Ph.D. thesis.

Barnwal, R. K. and Paul, S. R. (1988). Analysis of one-way layout of count data with negative binomial variation. Biometrika, 75:215-222.

Bartlett, M. S. (1953a). Approximate confidence intervals. Biometrika, 40:12-19.

Bartlett, M. S. (1953b). Approximate confidence intervals.ii. more than one unknown parameter. Biometrika, 40:306-317.

Behrens, W. V. (1929). Ein beitrag zur fehlerberechung beiwenigen beobachtungen. Landwirtsch, Jahrbcher, 68:807-837.

Best, D. J. and Rayner, J. C. W. (1987). Welch's approximate solution for the Behrens-Fisher problem. Technometrics, 29:205-210.

Bliss, C. I. and Fisher, R. A. (1953). Fitting the negative binomial distribution to biological data. Biometrics, 9:176-200.

Bliss, C. I. and Owen, A. R. G. (1958). Negative binomial distribution with a common k. Biometrika, 45:37-58.

Breslow, N. E. (1984). Extra-Poisson variation in log-linear models. Applied Statistics, 33:38-44.

Breslow, N. E. (1990). Tests of hypotheses in over-dispersed Poisson regression and other quasi-likelihood models. Journal of the American Statistical Association, 85:565-571.

Carroll, K. J. (2003). On the use and utility of the Weibull model in the analysis of survival data. Controlled Clinical Trials, 24:682-701.

Chatfield, C. and Goodhart, G. J. (1970). The beta-binomial model for consumer purchasing behaviour. Applied Statistics, 19:240-250.

Chen, J. J. and Kodell, R. L. (1989). Quantitative risk assessment for teratological effects. Journal of the American Statistical Association, 85:565-571.

Clark, S. and Perry, J. (1989). Estimation of the negative binomial parameter κ by maximum quasi-likelihood. Biometrics, 45:309-316.

Cochran, W. G. and Cox, G. M. (1950). Experiment designs. John Wiley \& Sons, Inc., New York.

Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and censored samples. Technometrics, 5:579-588.

Cohen, A. C. and Whitten, B. (1982). Modified maximum likelihood and modified moment estimators for the three-parameter Weibull distribution. Communications in Statistics-Theory and Methods, 11:2631-2656.

Cohen, A. C., Whitten, B. J., and Ding, Y. (1984). Modified moment estimation for the three-parameter Weibull distribution. Journal of Quality Technology, 16:159167.

Cordeiro, G. M. and Klein, R. (1994). Bias correction in ARMA models. Statistics and Probability Letters, 19:169-176.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.

Cox, D. R. and Snell, E. J. (1968). A general definition of residuals (with discussion). Journal of the Royal Statistical Society. Series B (Methodological), 30:248-275.

Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press, USA.

Cran, G. W. (1988). Moment estimators for the 3-parameter Weibull distribution. IEEE Transactions on Reliability, 37:360-363.

Crowder, M. J. (1978). Beta-binomial ANOVA for proportions. Journal of the Royal Statistical Society, Series C (Applied Statistics), 27:34-37.

Crowder, M. J. (1982). On weighted least squares and some variants. Technical Report in Statistics 13, Surrey University.

Crowder, M. J. (1987). On linear and quadratic estimating functions. Biometrika, 74:591-597.

Davidian, M. and Carroll, R. J. (1987). Variance function estimation. Journal of the American Statistical Association, 82:1079-1091.

Dong, L. B. (2004). The Behrens-Fisher problem: an empirical likelihood approach. Econometrics Working Paper EWP 0404, University of Victoria.

Donovan, A. M., Ridout, M. S., and James, D. J. (1994). Assessment of somaclonal variation in apple ii. rooting ability and shoot proliferation. Journal of Horticultural Science, 69:115-122.

Elston, R. C. (1977). Response to query, consultants corner. Biometrics, 33:232-233.

Engel, J. (1984). Models for response data showing extra-Poisson variation. Statistica Neerlandica, 38:159-167.

Fisher, R. A. (1935). The fiducial argument in statistical inference. Annals of Eugenics, 6:391-398.

Fisher, R. A. (1941). The negative binomial distribution. Annals of Eugenics, 11:182187.

Gail, M. H., Santner, T. J., and Brown, C. C. (1980). An analysis of comparative carcinogenesis experiments based on multiple times to tumor. Biometrics, 36:255266.

Gibson, G. J. and Austin, E. J. (1996). Fitting and testing spatio-temporal stochastic models with applications in plant pathology. Plant Pathology, 45:172-184.

Godambe, V. P. and Thompson, M. E. (1989). An extension of quasi-likelihood estimation. Journal of Statistical Planning and Inference, 22:137-152.

Hammitt, J. K. (2004). Effects of disease type and latency on the value of mortality risk. The Journal of Risk and Uncertainty, 28:73-95.

Harter, H. L. and Moore, A. H. (1965). Maximum likelihood estimation of the parameters of the gamma and Weibull populations from censored samples. Technometrics, 7:639-643.

Haseman, J. K. and Kupper, L. L. (1979). Analysis of dichotomous response data from certain toxicological experiments. Biometrics, 35:281-293.

Hogg, R. V., McKean, J. W., and Craig, A. T. (2005). Introduction to Mathematical Statistics. Prentice Hall, New Jersey, Sixth edition.

Kish, L. (1965). Survey Sampling. John Wiley \& Sons Inc, New York.

Kleinman, J. C. (1973). Proportions with extraneous variance: single and independent samples. Journal of the American Statistical Association, 8:46-54.

Ku, P. M., Anderson, E. L., and Carper, H. J. (1972). Some considerations in rolling fatigue evaluation. American Society of Lubrication Engineers Transactions, 15:113-129.

Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data. John Wiley \& Sons Inc, New York.

Lawless, J. F. (1987). Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics, 15:209-225.

Lee, Y. and Nelder, J. A. (2001). Hierarchical generalized linear models: A synthesis of generalized linear models, random effect models and structured dispersions. Biometrika, 88:987-1006.

Lehman, E. L. (1999). Elements of Large Sample Theory. Springer, USA.

Lloyd, N. S. (1967). Weibull probability paper. Industrial Quality Control, 23:452453.

Mann, N. R., Schafer, R. E., and Singpurwalla, N. D. (1974). Methods for Statistical Analysis of Reliability and Lifetime Data. John Wiley \& Sons Inc, New York.

Manton, K. G., Woodbury, M. A., and Stallard, E. (1981). A variance components approach to categorical data models with heterogeneous cell populations: analysis of spatial gradients in lung cancer mortality rates in North Carolina counties. Biometrics, 37:259-269.

Margolin, B., Kaplan, N., and Zeiger, E. (1981). Statistical analysis of the ames salmonella/microsome test. Proceedings of the National Academy of Sciences, U.S.A., 76:3779-3783.

Margolin, B. H., Kim, B. S., and Risko, K. J. (1989). The ames salmonella/microsome mutagenicityassay: Issues of inference and validation. Journal of the American Statistical Association, 84:651-661.

McCaughran, D. A. and Arnold, D. W. (1976). Statistical models for members of implantation sites and embryonic deaths in mice. Toxicology and Applied Pharmacology, 38:325-333.

McCool, J. I. (1979). Analysis of single classification experiments based on censored
samples from the two-parameter Weibull distribution. Journal of Statistical Planning and Inference, 3:39-68.

McCool, J. I. (1980). Confidence limits for Weibull regression with censored data. IEEE Transactions on Reliability, R29:145-150.

McCool, J. I. (1982). Analysis of sets of two-parameter weibull data arising in rolling contact endurance testing. volume ASTM, STP 771, pages 293-319, Baltimore, MD. American Society for Testing and Materials.

McCool, J. I. (1998). Inference on the Weibull location parameter. Journal of Quality Technology, 30:119-126.

McCullagh, P. (1983). Quasi-likelihood functions. Annals of Statistics, 11:59-69.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, London.

Moore, D. F. (1985). Methods of moments estimators for over-dispersed counts and proportions. Ph.D. thesis, University of Washington, Seattle.

Moore, D. F. (1986). Asymptotic properties of moments estimators for over-dispersed counts and proportions. Biometrika, 73:583-588.

Moore, D. F. and Tsiatis, A. (1991). Robust estimation of the variance in moment methods for extra-binomial and extra-Poisson variation. Biometrics, 47:383-401.

Moran, P. A. P. (1970). On asymptotically optimal tests of composite hypotheses. Biometrika, 57:45-75.

Nelder, J. A. and Pregibon, D. (1987). An extended quasi-likelihood function. Biometrika, 74:221-232.

Nelson, W. (1982). Applied Life Data Analysis. John Wiley \& Sons Inc, New York.

Neyman, J. (1959). Optimal asymptotic tests for composite hypotheses. In Probability and Statistics. John Wiley \& Sons Inc, New York.

Neyman, J. and Scott, E. L. (1966). On the use of $C(\alpha)$ optimal tests of composite hypotheses. Bulletin of the International Statistical Institute, 41:477-497.

Otake, M. and Prentice, R. L. (1984). The analysis of chromosomally aberrant cells based on beta-binomial distribution. Radiation Research, 98:456-470.

Pack, S. E. (1986a). The analysis of proportion from toxicological experiments. Ph.D. thesis, University of Kent, Canterbury.

Pack, S. E. (1986b). Hypothesis testing for proportions with over-dispersion. Biometrics, 42:967-972.

Paul, S. R. (1982). Analysis of proportions of affected foetuses in teratological experiments. Biometrics, 38:361-370.

Paul, S. R. (1992). Comment on Best and Rayner(1987). Technometrics, Letters to the editor, 34:249-250.

Paul, S. R. and Banerjee, T. (1998). Analysis of two-way layout of count data involving multiple counts in each cell. Journal of the American Statistical Association, 93:1419-1429.

Paul, S. R. and Islam, A. S. (1995). Analysis of proportions in the presence of over-/under-dispersion. Biometrics, 51:1400-1410.

Paul, S. R. and Islam, A. S. (1998). Joint estimation of the mean and dispersion parameters in the analysis of proportions: a comparison of efficiency and bias. The Canadian Journal of Statistics, 26:83-94.

Paul, S. R. and Plackett, R. L. (1978). Inference sensitivity for Poisson mixtures. Biometrika, 65:591-602.

Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics, 46:863-867.

Prentice, R. L. (1986). Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors. Journal of the American Statistical Association, 81:321-327.

Qin, J. (1991). Likelihood and empirical likelihood ratio confidence intervals in two sample semi-parametric models. Technical Report Series Stat-91-6, University of Waterloo.

Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters with application to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44:50-57.

Rao, J. N. K. and Scott, A. J. (1992). A simple method for the analysis of clustered binary data. Biometrics, 48:577-585.

Ridout, M. S., Demetrio, C. G. B., and Firth, D. (1999). Estimating intraclass correlation for binary data. Biometrics, 55:137-148.

Ross, G. J. S. and Preece, D. A. (1985). The negative binomial distribution. The Statistician, 34:323-336.

Saha, K. K. (2011). Interval estimation of the over-dispersion parameter in the analysis of one-way layout of count data. Statistics in Medicine, 30:39-51.

Schafer, R. E. and Sheffield, T. S. (1976). On procedures for comparing two Weibull populations. Technometrics, 18:231-235.

Scheffé, H. (1943). On solutions of the Behrens-Fisher problem based on the tdistribution. Annals of Mathematical Statistics, 14:35-44.

Sirvanci, M. and Yang, G. (1984). Estimation of the Weibull parameters under type I censoring. Journal of the American Statistical Association, 79:183-187.

Skellam, J. G. (1948). A probability distribution derived from the binomial distribution by regarding the probability of success as a variable between the sets of trials. Journal of the Royal Statistical Society, Series B (Methodological), 10:257-261.

Srivastava, M. S. and Wu, Y. (1993). Local efficiency of moment estimators in betabinomial model. Communications in Statistics: Theory and Methods, 22:2471-2490.

Tarone, R. E. (1985). On heterogeneity tests based on efficient scores. Biometrika, 72:91-95.

Teimouri, M. and Gupta, A. K. (2013). On the three-parameter Weibull distribution shape parameter estimation. Journal of Data Science, 11:403-414.

Thiagarajah, K. (1992). Inference procedures in some lifetime models. Ph.D. thesis, University of Windsor, Canada.

Thoman, D. R. and Bain, L. J. (1969). Two sample tests in the Weibull distribution. Technometrics, 11:805-815.

Tsui, K.-W. and Tang, S. (2005). Distributional property of the generalized p-value for the Behrens-Fisher problem with applications to multiple testing. Technical Report Report No. 1111, University of Wisconsin, Madison.

Uusipaikka, E. (2009). Confidence intervals in generalized regression models. Chapman \& Hall/CRC: USA.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models and the Gauss-Newton method. Biometrika, 61:439-447.

Weil, C. S. (1970). Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenesis or carcinogenesis. Food and Cosmetics Toxicology, 8:177-182.

Welch, B. L. (1937). The significance of the difference between two means when the population variances are unequal. Biometrika, 29:350-362.

Welch, B. L. (1947). The generalization of "Student's" problem when several different population variances are involved. Biometrika, 34:28-35.

Williams, D. A. (1975). The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics, 31:949-952.

Williams, D. A. (1982). Extra-binomial variation in logistic linear models. Applied Statistics, 31:144-148.

Vita Auctoris

The author was born in Faridpur, Bangladesh in 1969. He obtained his B.Sc. (Honours) and M.Sc. in Statistics from Jahangirnagar University, Bangladesh in 1991 and 1992 respectively. In 1996 he joined as a Lecturer in the Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh and worked there before coming to the University of Windsor in 2005 for pursuing his Master's Degree. The author obtained his M.Sc. in Statistics from University of Windsor, Canada in 2007. He is currently a candidate for the Doctor of Philosophy in Statistics at the University of Windsor and will graduate in 2014.

