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Abstract

Discrete data often exhibit variation greater or smaller than predicted by a simple

model. Negative binomial distribution and beta-binomial distribution are popular

and widely used to accommodate the extra-Poisson and extra-binomial variations

respectively in analyzing discrete data. Weibull distribution is one of the most popular

distributions in survival data analysis. Often both discrete and survival data appear

in groups and it may be of interest to compare certain characteristics of two groups

of such data. The purpose of this dissertation is to deal with Behrens-Fisher analogs

for data that follow negative binomial, beta-binomial and Weibull distributions.

We first develop six test procedures, namely, LR, LR (bc), T 2, T 2 (bc), T1 and TN ,

for testing the equality of two negative binomial means assuming unequal dispersion

parameters. A simulation study is conducted to compare the performance of the test

procedures. Two sets of data are analyzed. For small to moderate sample sizes, the

statistic T1 shows best overall performance. For large sample sizes, all six statistics

perform well and are found similar in terms of maintaining size and power.

We, then, develop eight test procedures, namely, LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs

and Cars, for testing the equality of proportions in two beta-binomial distributions

where the dispersion parameters are assumed unknown and unequal. These test

procedures are compared through simulation studies and data analysis. The LR test

is observed to maintain the nominal level reasonably well accompanied with the best

power performance. The next best is the performance of the statistic Ceq in terms of

nominal level and power.
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Last but not least, we develop four test procedures, namely, LR, Cml, Ccr and Ctg, for

testing the equality of scale parameters of two Weibull distributions where the shape

parameters are unequal and compare these statistics through simulation studies and

data analysis. For small sample sizes, the statistics LR and Cml hold nominal level

most effectively. The statistic Ccr shows highest power although its level is also higher

(liberal). For moderate and large sample sizes the overall performance of the statistic

LR is found to be superior to others.

v



Dedication

Dedicated to the Memory of My Grandmother.

vi



Acknowledgements

All praises and glorifications are to Almighty Allah for all His blessings and divine

gifts upon me and for giving me the opportunity and ability to carry out this research

work.

I wish to express my sincere indebtedness and deepest sense of gratitude to my es-

teemed supervisor, Professor S. R. Paul for his supervision, guidance, encouragement

and financial support from his NSERC grant throughout the preparation of this dis-

sertation. The stimulation that I obtained from his spirit of academic research will

guide me in my future career.

I am very grateful for having an exceptional doctoral committee and wish to thank

Dr. M. Hlynka, Dr. A. Hussein and Dr. Y. Aneja for their critical review and

constructive suggestions and comments which improved this dissertation. I would

also like to express my gratitude to my external examiner Dr. J. Koval, Department

of Epidemiology and Biostatistics, University of Western Ontario for his valuable

suggestions and constructive criticisms. In addition, I extend my sincere gratitude to

Dr. K. Y. Fung for her encouragement.

I would like to thank the Department of Mathematics and Statistics for providing me

with the financial support in the form of Graduate Assistantships, Ontario Ministry

of Training and Colleges for the Ontario Graduate Scholarship (OGS).

I must also thank my parents and younger brother and sisters for their support,

vii



patience, love and prayers that helped me reach where I am today. All words of

gratitude are unable to acknowledge their real contribution. Finally, a very special

thanks goes to my wife Shaheena Sultana for her all out support and encouragement.

S. M. Khurshid Alam

June 13, 2014

Windsor, Ontario, Canada.

viii



Contents

Author’s Declaration of Originality iii

Abstract iv

Dedication vi

Acknowledgements vii

List of Tables xiii

1 Introduction 1

2 Some Preliminaries and Review of Current Literature 8

2.1 Behrens-Fisher Problem . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2
√
n Consistent Estimators . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 C(α) Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Lindeberg Central Limit Theorem . . . . . . . . . . . . . . . . . . . . 12

2.6 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Quasi-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Extended Quasi-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . 15

ix



2.9 Bias to Order n−1 of the Maximum Likelihood Estimator . . . . . . . 16

2.9.1 A Single Parameter n−1 Bias of the Maximum Likelihood Esti-
mator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9.2 Multi-parameter n−1 Bias of the Maximum Likelihood Estimator 21

3 Testing Equality of Two Negative Binomial Means in the Presence
of Unequal Over-dispersion Parameters 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 The Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . 26

3.2.2 The Likelihood Ratio Test Based on the Bias Corrected Maxi-
mum Likelihood Estimates . . . . . . . . . . . . . . . . . . . . 27

3.2.3 The Score Test . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 C (α) Test Based on the Method of Moments Estimates of the
Nuisance Parameters . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Testing Equality of Two Beta Binomial Proportions in the Presence
of Unequal Dispersion Parameters 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Parametric Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 The Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . 60

4.2.2 C (α) (Score) Test . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 C(α) Test Based on Kleinman’s (1973) Method of Moments
Estimates of Nuisance Parameters . . . . . . . . . . . . . . . . 67

x



4.3 Semi-parametric Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 C (α) Test Based on the Quasi-Likelihood and the Method of
Moments Estimates by Breslow (1990) . . . . . . . . . . . . . 68

4.3.2 C(α) Test Based on the Quasi-Likelihood and the Method of
Moments Estimates by Srivastava and Wu (1993) . . . . . . . 73

4.3.3 C(α) Test Based on the Extended Quasi-Likelihood Estimates 77

4.3.4 The Rao-Scott (RS) and the Adjusted Rao-Scott (ARS) statistics 82

4.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Examples and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Testing Equality of Scale Parameters of Two Weibull Distributions
in the Presence of Unequal Shape Parameters 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 The Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 The Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . 108

5.2.2 The C (α) (Score) Test Based on Maximum Likelihood Estimates110

5.2.3 The C (α) Test Based on Method of Moments Estimates by
Cran (1988) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.4 The C (α) Test Based on Method of Moments Estimates by
Teimouri and Gupta (2013) . . . . . . . . . . . . . . . . . . . 114

5.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Summary and Recommendations for Future Research Topics 127

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . 130

6.2.1 Behrens-Fisher Analogs for Zero-Inflated Discrete Data . . . . 130

xi



6.2.2 Behrens-Fisher Analog for Censored Survival Data . . . . . . 131

Appendix A      133

A.1 Derivation of the Biases of Maximum Likelihood Estimates of the Pa-
rameters Under the Null Hypothesis . . . . . . . . . . . . . . . . . . . 133

A.1.1 Derivation of the Second Order Quantities (Vrt) and the Ele-
ments of the Fisher Information Matrix (Irt) . . . . . . . . . 134

A.1.2 Derivation of the Third Order Quantities (Wrtu) and the Ex-
pected Values (Jrtu) . . . . . . . . . . . . . . . . . . . . . . . . 136

A.1.3 Derivation of the Partial Derivatives of the Expected Values of

Second Order Quantities
(
K

(u)
rt

)
. . . . . . . . . . . . . . . . 138

A.1.4 The Biases of the Estimates of the Parameters . . . . . . . . . 140

A.2 Derivation of the Biases of Maximum Likelihood Estimates of the Pa-
rameters Under the Alternative Hypothesis . . . . . . . . . . . . . . . 141

A.3 Derivation of the Terms Needed for the Score Test . . . . . . . . . . . 144

Appendix B      147

B.1 Expected Values of Negative of the Mixed Partial Derivatives in Beta
Binomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography 155

Vita Auctoris 165

xii



List of Tables

3.1 Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 5, n2 = 5, α = 0.05 . . . 40

3.2 Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 10, n2 = 10, α = 0.05 . 41

3.3 Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 20, n2 = 20, α = 0.05 . 42

3.4 Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 50, n2 = 50, α = 0.05 . 43

3.5 Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and
n1 = 5, n2 = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and
n1 = 10, n2 = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and
n1 = 20, n2 = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and
n1 = 50, n2 = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 5, n2 = 5, α = 0.05 . . . 48

3.10 Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 10, n2 = 10, α = 0.05 . 49

xiii



3.11 Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 20, n2 = 20, α = 0.05 . 50

3.12 Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 50, n2 = 50, α = 0.05 . 51

3.13 Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and
n1 = 5, n2 = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.14 Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and
n1 = 10, n2 = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.15 Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and
n1 = 20, n2 = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16 Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and
n1 = 50, n2 = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.17 Number of tumors for rats in treatment groups 1 and 2 . . . . . . . . 56

3.18 Number of cycles required for smoker and non-smoker women to get
pregnant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Empirical level (%) of test statistics,LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium
Dose Groups) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Empirical level (%) of test statistics,LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium
Dose Groups) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Empirical level (%) of test statistics,LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium
Dose Groups) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Empirical level (%) of test statistics,LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium
Dose Groups) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiv



4.5 Empirical power (%) of test statistics, LR, Cml, Ckmm, Cqb, Cqs, Ceq,
Crs, Cars; based on 3, 000 replications and α = 0.05 (Control and
Medium Dose Groups) . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Empirical power (%) of test statistics, LR, Cml, Ckmm, Cqb, Cqs, Ceq,
Crs, Cars; based on 3, 000 replications and α = 0.05 (Control and
Medium Dose Groups) . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Empirical power (%) of test statistics, LR, Cml, Ckmm, Cqb, Cqs, Ceq,
Crs, Cars; based on 3, 000 replications and α = 0.05 (Control and
Medium Dose Groups) . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8 Empirical power (%) of test statistics, LR, Cml, Ckmm, Cqb, Cqs, Ceq,
Crs, Cars; based on 3, 000 replications and α = 0.05 (Control and
Medium Dose Groups) . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Data from Toxicological experiment (Paul (1982)). (i) Number of live
foetuses affected by treatment. (ii) Total number of live foetuses. . . 102

4.10 Estimates of parameters obtained by different methods for treatment
combinations of toxicological data in Table 4.9. . . . . . . . . . . . . 103

4.11 Test statistics and p-values for treatment combinations of toxicological
data in Table 4.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Empirical level and power (%) of test statistics LR, Cml, Ccr and Ctg;
based on 3000 iterations and n1 = 5, n2 = 5, α = 0.05 . . . . . . . . . 120

5.2 Empirical level and power (%) of test statistics LR, Cml, Ccr and Ctg;
based on 3000 iterations and n1 = 10, n2 = 10, α = 0.05 . . . . . . . . 121

5.3 Empirical level and power (%) of test statistics LR, Cml, Ccr and Ctg;
based on 3000 iterations and n1 = 20, n2 = 20, α = 0.05 . . . . . . . . 122

5.4 Empirical level and power (%) of test statistics LR, Cml, Ccr and Ctg;
based on 3000 iterations and n1 = 50, n2 = 50, α = 0.05 . . . . . . . . 123

5.5 Failure Times of Different Bearing Specimens . . . . . . . . . . . . . 124

5.6 Estimates of parameters obtained by different methods for compound
combinations of bearing specimens data in Table 5.5 . . . . . . . . . . 125

5.7 Test statistics along with p-values for compound combinations of bear-
ing specimens data in Table 5.5 . . . . . . . . . . . . . . . . . . . . . 126

xv



Chapter 1

Introduction

Count data arise in many biological (Anscombe (1949); Bliss and Fisher (1953); Bliss

and Owen (1958); McCaughran and Arnold (1976); Margolin et al. (1981); Ross and

Preece (1985)) and epidemiological (Manton et al. (1981)) investigations. The Poisson

distribution, which is characterized by the fact that the variance is equal to the mean

of the distribution, is a very widely used and popular model in analysing count data.

However, in practice, it often occurs that the variance of the data exceeds that which

would be normally expected. This phenomenon of over-dispersion in count data is

quite common in practice. For example, Bliss and Fisher (1953) present a set of count

data consisting of the number of European red mites on apple leaves for which the

mean and the variance are 1.2467 and 2.2737 respectively showing that the variance

exceeds the mean. In order to properly accommodate this over-dispersion in the count

data, a popular and convenient model, as an alternative to the Poisson distribution, is

the negative binomial distribution (see Engel (1984); Breslow (1984); Margolin et al.

(1989); Lawless (1987); Manton et al. (1981)). For more references on applications

of the negative binomial distribution see Clark and Perry (1989). Different authors

1



1.0 CHAPTER 1. INTRODUCTION 2

have used different parametrizations for the negative binomial distribution (see, for

example, Paul and Plackett (1978); Barnwal and Paul (1988); Paul and Banerjee

(1998); Piegorsch (1990)).

Scientists in various areas, for example, toxicology, teratology (Weil (1970); Klein-

man (1973); Williams (1975); Paul (1982)) and other similar fields (Crowder (1978);

Otake and Prentice (1984); Donovan et al. (1994); Gibson and Austin (1996)), fre-

quently encounter data in the form of proportions. Binomial model is a basic model

to deal with the data of such kind. It happens quite often that the proportion data

exhibit lesser or greater variability than predicted by the simple binomial model and

the reason for this variability depends on the form of study. Weil (1970) observes

that if the experimental units of the data are litters of animals then ‘litter effect’,

that is, the tendency of animals in the same litter to respond more similarly than

animals from different litters contribute to greater variability than predicted by sim-

ple model. This effect of litter is known as ‘heritability of a dichotomous trait’ (see

Elston (1977); Crowder (1982)) or intra-litter or intra-class correlation. Apart from

this, in some situations the intra-class correlation provides an index of disease ag-

gregation (see Ridout et al. (1999)). A number of parametric and semi-parametric

models have been used to incorporate the extra-binomial variation in analyzing data

in the form of proportions. Among the parametric models are beta-binomial model

(Skellam (1948)), the correlated binomial model (Haseman and Kupper (1979)), and

the additive and multiplicative binomial models (Altham (1978)). The correlated

and the additive binomial models are identical and give a first order approximation

of the beta-binomial model (Srivastava and Wu (1993)). The beta-binomial is a com-

monly used parametric model because it is easy to use, flexible and extends readily

to more complex models with extraneous variance as a function of covariates (Chen
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and Kodell (1989)). Many authors (Paul (1982); Pack (1986b,a)) have shown the

superiority of the beta-binomial model for analyzing proportions and model fitting.

In model fitting the superiority of the beta-binomial model over the others is that

the beta-binomial model is more sensitive for departure from the binomial model

and the likelihood under this model is the easiest to maximize. The beta-binomial

model is preferred to the others in analyzing data sets because it is easier to use.

This model has been employed in analyzing consumer purchasing behaviour (Chat-

field and Goodhart (1970)), in studies of dental caries in children (Weil (1970)) and

in toxicological data (Williams (1975)). With all these advantages, the beta-binomial

model, however, takes into account only the positive correlation or over-dispersion

between littermates. But in practice, the littermates may compete with each other

and as a result, negative correlation among the littermates may occur. To overcome

this drawback of the beta-binomial model, Prentice (1986) proposed an extension of

the beta-binomial model which allows both positive and negative correlations (or over

and under dispersions) among the binary variates corresponding to the littermates,

which is known as extended beta-binomial model. For analyzing data, the extended

beta-binomial model with over and under dispersion has been used by many authors

(Otake and Prentice (1984); Prentice (1986); Paul and Islam (1998)).

An alternative approach to accommodate the over/under dispersion is the use of

semi-parametric models and the method of moments, which are known to be robust

to misspecification of the variance structure. For binomial data with over/under

dispersion several semi-parametric models have been proposed that require the as-

sumption of only the first two moments. These include models based on the quasi-

likelihood (McCullagh (1983); Wedderburn (1974); Williams (1982)), the extended

quasi-likelihood (Nelder and Pregibon (1987)), the pseudo-likelihood (Davidian and
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Carroll (1987)), the double extended quasi-likelihood (Lee and Nelder (2001)) and

others based on optimal quadratic estimating equations (Crowder (1987); Godambe

and Thompson (1989)). For the estimation of the mean and the dispersion param-

eters, several estimators based on the method of moments have been proposed by

Breslow (1990); Kleinman (1973); Moore (1986) and Srivastava and Wu (1993).

In many biomedical applications the primary endpoint of interest is the survival

time or time to a certain event like time to death, time it takes for a patient to

respond to a therapy, time from response until disease relapse (i.e., disease returns)

etc. The importance of parametric models in the analysis of life time data is well

known (Lawless (1982); Nelson (1982); Mann et al. (1974)). The use of Weibull

distribution to describe the real phenomena has a long and rich history. The Weibull

distribution has been considered to be a successful model for many product failure

mechanisms. However, Lloyd (1967); Ku et al. (1972); Hammitt (2004) and McCool

(1998), among others, have extended the use of the Weibull distribution to other

branches of statistics, such as reliability, risks and quality control.

The traditional Behrens-Fisher problem is to test the equality of the means of two

normal populations where the population variances are assumed unknown and pos-

sibly unequal. In various biological and epidemiological investigations over-dispersed

data in the form of counts can appear in several independent samples where the vari-

ances are unequal and larger than the means. Likewise, in toxicological and other

similar fields data may arise as the proportion of a certain characteristic in several

groups where the intra-class correlations vary from group to group. Also, in life test-

ing, reliability or survival analysis we may encounter data on different component

types or cohorts, where assuming the Weibull model, with shape parameters unequal

and unknown. Special cases, in all of the above three scenarios, are data in two
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groups where one group is treated as control, while, the other as the group of interest

or treatment group. It may be of interest, in the case of two groups over-dispersed

count data situation, to test the equality of two means assuming that the variances

are unknown and unequal. Similarly, testing the equality of proportions between two

groups considering unequal over-dispersion parameters may be the objective where

the data are in the forms of proportions. In addition, for survival data, interest may

focus on testing the equality of scale parameters of two Weibull distributions assum-

ing unequal shape parameters. These, in the sense of testing the equality of two mean

or scale parameters in the presence of unequal dispersion or shape parameters, can

be considered as analogous to the traditional Behrens-Fisher problem.

The main purpose of this thesis is to construct procedures for testing (i) the equality

of two mean parameters for over-dispersed count and proportion data with unequal

dispersion parameters; (ii) equality of two scale parameters for Weibull distributed

survival data with unequal shape parameters and (iii) to study the performance,

thought simulation studies, of the test procedures. We compare the performances of

the test procedures in terms of empirical size and power.

In Chapter 2, we discuss some preliminaries and review the theory of likelihood

ratio and C (α) tests (Neyman (1959)). We also review the estimation procedures

for the generalized linear models. In addition, we review the general bias correction

results of Cox and Snell (1968) and present the Cordeiro and Klein (1994) formula

for the biases of the maximum likelihood estimators in general parametric models.

In Chapter 3, we develop procedures for testing equality of two negative bino-

mial means where the over-dispersion parameters are unequal. The test procedures,

namely, the likelihood ratio test, the likelihood ratio test based on the bias corrected
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maximum likelihood estimates of the parameters, the score test, the score test based

on the bias corrected maximum likelihood estimates of the parameters and two tests,

similar to Welch’s (1937) V statistic, constructed from the C (α) statistic based on

the method of moments estimates of the nuisance parameters.

In Chapter 4, we derive parametric and semi-parametric procedures for testing the

equality of two proportions in the presence of unequal dispersion parameters. The

likelihood ratio test, the C (α) (score) test based on the maximum likelihood estimates

of the nuisance parameters and the C (α) test based on Kleinman’s (1973) method of

moments estimates of the nuisance parameters are the parametric tests. The semi-

parametric tests are, a C (α) test based on the quasi-likelihood and the method of

moments estimates by Breslow (1990), a C (α) test based on the quasi-likelihood and

the method of moments estimates by Srivastava and Wu (1993), a C (α) test based on

the extended quasi-likelihood estimates, the Rao-Scott and the adjusted Rao-Scott

tests by following Rao and Scott (1992). A simulation study is conducted to compare

the relative performance, in terms of size and power, of the test procedures.

In Chapter 5, we deal with the Weibull distributed survival data and develop test

procedures for testing the equality of scale parameters of two Weibull distributions

where the shape parameters are assumed unequal. We develop a likelihood ratio test

and three C (α) tests. Of the C (α) tests, one is based on the maximum likelihood es-

timates of the nuisance parameters, one is based on the method of moments estimates

of the nuisance parameters by Cran (1988) and the other is based on the method of

moments estimates of the nuisance parameters by Teimouri and Gupta (2013). A

small scale simulation study is conducted to compare, on the basis of empirical size

and power, the test procedures.
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Finally, conclusions of the thesis with the summary of findings and a discussion of

some topics for future study are presented in Chapter 6.



Chapter 2

Some Preliminaries and Review of

Current Literature

2.1 Behrens-Fisher Problem

In hypothesis testing a frequently encountered problem is to test the equality of two

population means and the test statistic varies according to the nature of the popula-

tions involved. A widely used assumption regarding the distribution of populations is

normality. Different scenarios appear depending on the sample sizes and assumptions

on the variances of the populations. The Behrens-Fisher (BF) problem arises when

testing the equality of the means of two normal populations where both variances

are unknown and possibly unequal. This problem has been well known since it was

discovered by Behrens (1929). Fisher (1935) used the fiducial theory of statistical

inference to justify Behrens’ solution. A number of solutions, both parametric and

non-parametric, have been proposed for the Behrens-Fisher problem (see for example,

8
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Fisher (1935, 1941); Scheffé (1943); Welch (1947); Aspin (1948); Cochran and Cox

(1950); Qin (1991); Paul (1992); Dong (2004) and Tsui and Tang (2005)).

2.2
√
n Consistent Estimators

Definition: Consider
{
θ̂n

}
, n = 1, 2, · · · , a sequence of estimators. The sequence of

estimates θ̂n is called
√
n consistent if the quantity |θ̂n − θ|

√
n remains bounded in

probability as n→∞ (see Lehman (1999)).

Theorem: Let θ̂n be a sequence of estimates of θ, and var(θ̂n) = O
( 1

n

)
. Then this

sequence of estimates is
√
n consistent.

Proof: According to Chebyshev’s inequality, for a given ε > 0,

P
(∣∣∣θ̂n − θ∣∣∣√n ≤ ε

)
≥ 1− var(θ̂n)n

ε2
.

If θ̂n is a sequence of maximum likelihood estimates, then according to the asymptotic

properties of maximum likelihood estimates, the distribution of θ̂n is normal with

mean θ and variance
1

nI(θ)
, where I(θ) is the Fisher information matrix defined as

I(θ) = E

[
∂

∂θ
f(y|θ)

]2

, where f(y|θ) is the probability density function of Y . This

means that var(θ̂n) tends to zero and n tends to infinity, that is, var(θ̂n) is O
(
n−1
)
.

This means that MLE is
√
n consistent. The method of moments estimators are also

√
n consistent estimates (Moore (1986)).
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2.3 Likelihood Ratio Test

Let Y1, Y2, · · · , Yn be a random sample of size n from a distribution that has prob-

ability density function f(y|λ), where λ = (θ, φ)′ = (θ1, θ2, · · · , θk, φ1, φ2, · · · , φs)′ is

a k + s component vector. The likelihood function of the parameter λ for the given

data is given by L(λ|Y1, Y2, · · · , Yn) =
n∏
i=1

f(yi|λ). Our interest is to test the null hy-

pothesis H0 : θ = θ0 = (θ10, θ20, · · · , θk0)′ treating φ = (φ1, φ2, · · · , φs)′ as a nuisance

parameter. The likelihood ratio test is based on the ratio of the maximized likelihood

function under the null hypothesis to that under the alternative hypothesis and is

defined as

Λ =
L
(
Y1, Y2, · · · , Yn, θ0, φ̂

)
L
(
Y1, Y2, · · · , Yn, θ̃, φ̃

) .
Under the null hypothesis, H0, the quantity LR = −2 ln Λ = 2(l1 − l0) is distributed

as chi-squared with k degrees of freedom if the sample size n is large. Here l0 is the

maximized log-likelihood function under the null hypothesis and l1 is the maximized

log-likelihood function under the alternative hypothesis.

2.4 C(α) Test

The C(α) test is based on the partial derivatives of the log-likelihood function with

respect to the nuisance parameters and the parameters of interest evaluated at the

null hypothesis. Let l be the log-likelihood for the data. Define the partial derivatives
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of the log-likelihood which are evaluated at θ = θ0 = (θ10, θ20, · · · , θk0)′ as

ψ =
∂l

∂θ

∣∣∣
θ=θ0

=

[
∂l

∂θ1

,
∂l

∂θ2

, · · · , ∂l
∂θk

]′ ∣∣∣∣∣
θ=θ0

and

γ =
∂l

∂φ

∣∣∣
θ=θ0

=

[
∂l

∂φ1

,
∂l

∂φ2

, · · · , ∂l
∂φs

]′ ∣∣∣∣∣
θ=θ0

.

Under the null hypothesis and mild regularity conditions,

(
∂l

∂θ
,
∂l

∂φ

)
has a multi-

variate normal distribution with mean vector 0 and variance-covariance matrix I−1

(Cramer (1946)), where

I =

I11 I12

I21 I22


is the information matrix with elements

I11 = E

(
− ∂2l

∂θ∂θ′

∣∣∣
θ=θ0

)
, I12 = E

(
− ∂2l

∂θ∂φ′

∣∣∣
θ=θ0

)
, and I22 = E

(
− ∂2l

∂φ∂φ′

∣∣∣
θ=θ0

)
which are (k × k), (k × s) and (s× s) matrices respectively. The C(α) test is based

on the adjusted score S =
∂l

∂θ
− B

∂l

∂φ
, where B is the matrix of partial regres-

sion coefficients that is obtained by regressing
∂l

∂θ
on

∂l

∂φ
. Bartlett (1953a) showed

that B = I12I
−1
22 and the variance-covariance matrix of S is I11.2 = I11 − I12I

−1
22 I21.

Thus the distribution of the adjusted score, S is multivariate normal with mean vec-

tor 0 and variance covariance matrix I11.2, that is, S ∼ MN(0, I11.2). Following

Neyman (1959) the distribution of S ′I−1
11.2S is chi-squared with k degrees of free-

dom. As this statistic involves nuisance parameters φ = (φ1, φ2, · · · , φs)′, it is nec-

essary to replace them by some suitable estimates for testing the null hypothesis.

Moran (1970) suggested the use of some
√
n consistent estimators of φ that are
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obtained from the data. Let φ̃ = (φ̃1, φ̃2, · · · , φ̃s)′ be
√
n consistent estimators of

the parameters φ = (φ1, φ2, · · · , φs)′. Hence following Neyman (1959) and replacing

the nuisance parameters by some
√
n consistent estimators, the test statistic be-

comes χ2
C(α) = S̃ ′Ĩ−1

11.2S̃, which is asymptotically distributed as chi-squared with k

degrees of freedom. It is to be noted that if the nuisance parameter φ is replaced

by its maximum likelihood estimate, φ̂, then the adjusted score function reduces to

Si = ψi, i = 1, 2, · · · , k − 1. The form of the C (α) statistic becomes ψ̂′Î−1
11.2ψ̂, which

is a score test (Rao (1948)). Again, the score test is asymptotically equivalent to the

likelihood ratio test (Moran (1970); Cox and Hinkley (1974)).

2.5 Lindeberg Central Limit Theorem

The Central Limit Theorem: Let X1, X2, · · · , Xn denote the observations of a

random sample from a distribution that has mean µ and positive variance σ2. Then

the random variable Yn =
(
∑n

i=1Xi − nµ)√
nσ

=
√
n
(
X̄n − µ

)
/ σ converges in distri-

bution to a random variable which has a normal distribution with mean zero and

variance 1 (Hogg et al. (2005)).

The central limit theorem holds whenever, for every ε > 0, the truncated variables

Uj defined by

Uj = Zj − µj, if | Zj − µj | ≤ εsm

Uj = 0, if | Zj − µj |> εsm
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satisfy the condition sm → ∞ and
1

s2
m

m∑
j=1

E
(
U2
j

)
→ 1, where µj = E (Zj) , σ

2
j =

var (Zj) and s2
m =

m∑
j=1

σ2
j . This implies that every uniformly bounded sequence

of mutually independent random variables {Zj} obeys the central limit theorem,

provided that sm →∞.

Theorem: Let Uj (β, φ) , j = 1, 2, · · · , k, represent an unbiased estimating function

for βj and let Uk+1 (β, φ) represent an unbiased estimating function for φ. Then, by

the Lindeberg central limit theorem

1√
m

(
Uj
Uk+1

)
d−→ Nk+1

(
0,
∑

0

)

where
∑

0

denotes the limiting variance-covariance matrix of Uj and Uk+1. The details

of the proof of this theorem are given in Moore (1985).

2.6 Generalized Linear Models

A generalized linear model (GLM) is the generalization of ordinary linear regression

models to accommodate non-normal response variables. It consists of three compo-

nents, namely, a random component, a systematic component, and a link function

and can be described as follows

i) Suppose that the joint probability function of the response variable Y with mean

µ can be written in the form

f(y; θ) = exp
[
φ−1 {yθ − b(θ)}+ C(y, φ)

]
.
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for some known functions b(.), C(.), canonical or natural parameter θ, and constant φ

which may be known or a parameter to be estimated. This is said to be in canonical

form.

ii) The systematic component relates a set of explanatory variables with a linear

predictor in the form

η =

p∑
j=1

Xjβj.

iii) The link function is a monotone differentiable function of the mean that connects

the random and the systematic components. The model links the mean µ to the linear

predictor η by η = g(µ), where the link function g(.) is a monotone differentiable

function.

The mean and the variance of Y are E(Y ) = b′(θ) and var(Y ) = φb′′(θ) respectively

(McCullagh and Nelder (1989, p. 29)).

2.7 Quasi-Likelihood

In numerous applications, the full distributional assumptions of the GLM are not

always satisfied. To overcome the situation where the full distributional assumptions

are not met, Wedderburn (1974) proposes the quasi-(log)likelihood, henceforth re-

ferred to as the quasi-likelihood (QL) model which takes into account only the first

two moments of the random variable Y . The QL possesses properties similar to those

of the log-likelihood and can be used for inferential purposes. Suppose y1, y2, · · · , yn

is a random sample of size n with mean and variance of the ith observation µ = E(yi)

and var(yi) = φV (µ) respectively, where V is some known function called the vari-
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ance function and φ is a known constant or a parameter to be estimated. Then the

quasi-likelihood of the data is defined as

Q(y;µ) = −1

2

n∑
i=1

di(y;µ)

φ
, where di(y;µ) = 2

∫ yi

µ

(yi − t)
V (t)

dt

is the discrepancy between the observation and its mean and is called the deviance

component of ith observation. In GLM framework the parameter φ can be treated

as dispersion parameter and its moments estimate can be obtained. As the quasi-

likelihood is designed only for the estimation of the mean parameter, a maximum

quasi-likelihood estimate of the dispersion parameter (φ) cannot be found. The value

of φ is 1 for the binomial and the Poisson distributions. For the Poisson variable, the

variance function is V (m) = m where E(yi) = m and for the binomial variable, the

variance function is V (π) = nπ(1− π) where E(yi) = nπ.

2.8 Extended Quasi-Likelihood

Though the quasi-likelihood facilitates the estimation of the mean (regression) param-

eter, it is not suitable for the estimation of the dispersion parameter. To implement

the joint estimation of the mean parameter and the dispersion parameter from the

same function, Nelder and Pregibon (1987) and Godambe and Thompson (1989) ini-

tiated the extended quasi-likelihood function (EQL) by adding a normalizing factor

with the quasi-likelihood. This normalizing factor includes the dispersion parameter

and the variance function. Taking into account the normalizing factor, the EQL is
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defined as

Q+(y;µ, φ) = −1

2

n∑
i=1

[
di(y;µ)

φ
+ ln {2πφV (yi)}

]
,

where, the deviance function, di(y;µ), is defined previously, φ is the dispersion pa-

rameter and V (yi) is the variance function for the ith observation. The product of

the dispersion parameter φ and the variance function V gives the variance of datum.

For example, for negative binomial distribution which is the over-dispersed Poisson

distribution var(yi) = µ(1 + cµ) = φV (µ), where φ = 1 and V (µ) = µ(1 + cµ).

For the beta binomial distribution which is the over-dispersed binomial distribution,

var(yi) = niπ(1 − π) {1 + (ni − 1)θ} = φiV (π), where φi = 1 + (ni − 1)θ is the dis-

persion parameter for ith observation and V (π) = niπ(1 − π). For over-dispersed

binomial model the dispersion parameter θ and for over-dispersed Poisson model the

dispersion parameter c can take positive as well as negative values. The extended

quasi-likelihood, like the quasi-likelihood does not need a full distributional form,

rather it only needs the form of the first two moments. The extended quasi-likelihood

function possesses properties similar to log-likelihood function but the estimate of

the over-dispersion parameter obtained by using Q+ can be robust to the maximum

likelihood estimate.

2.9 Bias to Order n−1 of the Maximum Likelihood

Estimator

For a single independent and identically distributed random sample with one unknown

parameter, Bartlett (1953b) gave a simple expression for the bias to order O
( 1

n

)
of
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the maximum likelihood estimate (MLE). For the parameters of any distribution,

Cox and Snell (1968) derived general results for the biases to the order n−1 of the

maximum likelihood estimators. First they derived an expression for the bias of the

MLE for distributions with a single unknown parameter and afterwards they extended

the result for multi-parameter case. Cordeiro and Klein (1994) derived a modified

expression of bias of order n−1 which is easier to implement. Below we explain

the two cases, namely, (i) a single parameter n−1 bias of the maximum likelihood

estimator and (ii) multi-parameter n−1 bias of the maximum likelihood estimator and

present the Cordeiro and Klein (1994) version of formula for bias of multi-parameter

distribution.

2.9.1 A Single Parameter n−1 Bias of the Maximum Likeli-

hood Estimator

Let Yi, i = 1, 2, · · · , n be random variables with probability density function f(yi, θ),

depending on unknown parameter θ. Then the log-likelihood function for data is

l (θ) =
n∑
i=1

li(θ),

where, li(θ) = log {f(yi , θ)}. The maximum likelihood estimating equation for θ is

l′(θ̂) = 0,

where, θ̂ is the maximum likelihood estimate of θ. The first order Taylor series
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expansion of l′(θ̂) at θ̂ = θ is

l′(θ) + (θ̂ − θ)l′′(θ) = 0.

Let us write, Ui =
∂li
∂θ
, Vi =

∂2li
∂θ2

. Now, replacing −l′′(θ) by its expectation

gives the Fisher information I in the sample and writing U =
n∑
i=1

Ui, we obtain the

standard first order expressions

θ̂ − θ ≈ U

I
(2.1)

and

var
(
θ̂
)

= I−1.

To attain an improved result using the second order Taylor series expansion of l′(θ̂)

at θ we obtain (see Cox and Snell (1968)),

l′(θ) + (θ̂ − θ)l′′(θ) +
1

2
(θ̂ − θ)2l′′′(θ) = 0.

Now, from the properties of the log-likelihood function and expected values of
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random variables we have

E(l′(θ)) = 0,

E
[
(θ̂ − θ)l′′(θ)

]
= cov

[
(θ̂ − θ), l′′(θ)

]
+ E(θ̂ − θ)E(l′′(θ))

and

E
[
(θ̂ − θ)2l′′′(θ)

]
= cov

[
(θ̂ − θ)2, l′′′(θ)

]
+ E

[
(θ̂ − θ)2

]
E(l′′′(θ)).

By taking expectation on both sides of the second order Taylor series expansion

and using the results obtained above we get

E(θ̂ − θ)E(l′′(θ)) + cov
[
(θ̂ − θ), l′′(θ)

]
+

1

2
E
[
(θ̂ − θ)2

]
E(l′′′(θ))

+
1

2
cov
[
(θ̂ − θ)2, l′′′(θ)

]
= 0.

(2.2)

Now,

cov
[
(θ̂ − θ), l′′(θ)

]
≈ cov

[
U

I
, V

]
=

1

I
cov

[
n∑
i=1

Ui,
n∑
i=1

Vi

]

=
1

I

n∑
i=1

cov(Ui, Vi), as cov(Ui, Vj) = 0 for i 6= j.

Thus, cov
[
(θ̂ − θ), l′′(θ)

]
=

1

I

n∑
i=1

E (UiVi) =
J

I
,

where J =
n∑
i=1

E (UiVi) , as E (Ui) = E

(
∂li
∂θ

)
= 0.
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Similarly,

cov
[
(θ̂ − θ)2, l′′′(θ)

]
≈ cov

[
U2

I2
, W

]
=

1

I2
cov
[
U2, W

]

=
1

I2
cov

( n∑
i=1

Ui

)2

,
n∑
i=1

Wi



=
1

I2

n∑
i=1

cov
[
U2
i , Wi

]
, as cov

(
U2
i , Wj

)
= 0, for i 6= j.

Thus, cov
[
(θ̂ − θ)2, l′′′(θ)

]
=

1

I2

n∑
i=1

[
E
(
U2
iWi

)
− E

(
U2
i

)
E (Wi)

]
=
L

I2
,

where L =
n∑
i=1

[
E
(
U2
iWi

)
− E

(
U2
i

)
E (Wi)

]
, W =

n∑
i=1

Wi = l′′′(θ) and Wi =
∂3li(θ)

∂θ3
.

Since the terms I and L refer to a total over the sample, they are of order n which

implies that cov
[
(θ̂ − θ)2, l′′′(θ)

]
is O

(
n−1
)
. Finally, based on the results obtained

above, the equation (2.2) can be written as

−IE
(
θ̂ − θ

)
+

J

I
+

1

2
var

(
θ̂
)
K + O

(
n−1
)

= 0, where K = E (l′′′(θ)) =

E

(
n∑
i=1

Wi

)
. Thus, the bias to order n−1 of the maximum likelihood estimator of θ is

b
(
θ̂
)

= E
(
θ̂ − θ

)
=

J

I2
+

1

2I
var

(
θ̂
)
K =

J

I2
+

1

2I2
K =

1

2I2
(K + 2J) ,

as var
(
θ̂
)

= I−1.
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2.9.2 Multi-parameter n−1 Bias of the Maximum Likelihood

Estimator

Let the p parameter random variable Yi, i = 1, 2, · · · , n have probability density

function f(yi; θ1, θ2, · · · , θp) and also let θ′ = (θ1, θ2, · · · , θp). For r, t, u = 1, 2, · · · , p

define

Irt = E

(
−

n∑
i=1

V
(i)
rt

)
, Jrtu = E

(
−

n∑
i=1

W
(i)
rtu

)
and

Kr,tu = E

(
−

n∑
i=1

U (i)
r V

(i)
tu

)
,

where U (i)
r =

∂li
∂θr

, V
(i)
rt =

∂2li
∂θr∂θt

and W
(i)
rtu =

∂3li
∂θr∂θt∂θu

,

with li = log {f(yi; θ1, θ2, · · · , θp)} .

As in equation (2.1), using the first order Taylor series expansion of the maximum

likelihood estimating equations for θr, r = 1, 2, · · · , p, that is,
∂l

∂θr

∣∣∣
θ=θ̂

, we obtain

θ̂r − θr =
n∑
i=1

M rsU (i)
s , (2.3)

where M rs is the (r, s)th element of the inverse of the informations matrix I = (Irs)

of order p and the summation convention is applied to multiple suffixes referring to

parameter components. Again, the estimating equations for the second order Taylor



2.9 Bias to Order n−1 of the Maximum Likelihood Estimator 22

series expansion of θs, s = 1, 2, · · · , p are

n∑
i=1

[
U (i)
r +

(
θ̂s − θs

)
V (i)
rs +

1

2

(
θ̂t − θt

)(
θ̂u − θu

)
W

(i)
rtu

]
= 0 (2.4)

Now, on taking expectation of (2.4) and using (2.3) we obtain a set of simultaneous

linear equations as

E
(
θ̂s − θs

)
Irs =

1

2
M tu (Jrtu + 2Kt,ru) , for s = 1, 2, · · · , p.

Finally, as a solution to the above set of equations, the biases to order n−1 of the

maximum likelihood estimates of θ̂s, s = 1, 2, · · · , p are

bs

(
θ̂1, θ̂2, · · · , θ̂p

)
= E

(
θ̂s − θs

)
=

1

2

p∑
r=1

p∑
s=1

p∑
t=1

M rsM tu (Jrtu + 2Kt,ru) . (2.5)

Cordeiro and Klein (1994) suggested an alternative form of (2.5) for biases of θ̂s, s =

1, 2, · · · , p which is

bs

(
θ̂1, θ̂2, · · · , θ̂p

)
=

p∑
r=1

M rs

p∑
t=1

p∑
u=1

(
K

(u)
rt −

1

2
Jrtu

)
M tu, (2.6)

where K
(u)
rt =

∂

∂θu
E (Vrt) ; r, t, u = 1, 2, , · · · , p; s = 1, 2, , · · · , p.



Chapter 3

Testing Equality of Two Negative

Binomial Means in the Presence of

Unequal Over-dispersion

Parameters

3.1 Introduction

Count data arise in numerous biological (Anscombe (1949); Bliss and Fisher (1953);

Bliss and Owen (1958); McCaughran and Arnold (1976); Margolin et al. (1981); Ross

and Preece (1985)) and epidemiological (Manton et al. (1981)) investigations. The

analysis of such count data is often based upon the assumption of some form of Poisson

model. However, in practice, it often occurs that the variance of the data exceeds that

which would be normally expected. This phenomenon of over-dispersion in count data

23
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is quite common in practice. For example, Bliss and Fisher (1953, p. 178) present a

set of count data consisting of the number of European red mites on apple leaves for

which the mean and the variance are 1.1467 and 2.2737, respectively, showing that

the variance exceeds the mean. Also, two sample over-dispersed count data occur

in practice where the variances are larger than the means and the two variances are

unequal. For example, Saha (2011) presents a data set (originally given by Uusipaikka

(2009)) on the number of cycles required to get pregnant for two groups of women,

namely, smokers and non smokers. Table 3.18 shows the number of cycles required to

get pregnant for smoker and non smoker women along with sample statistics. As can

be seen, in these data, the sample means as well as the sample variances are unequal

and the variance in each group is greater than the mean. A problem in this setting

is to test the equality of the means when the two variances are possibly unequal.

This problem is analogous to the traditional Behrens-Fisher problem. A lot of work

has been done on the traditional Behrens-Fisher problem when data come from two

normal populations with means µ1 and µ2 and variances σ2
1 and σ2

2 are unknown and

possibly unequal (see Best and Rayner (1987) ; and Paul (1992)). The purpose of this

Chapter is to develop tests for the corresponding problem for over-dispersed count

data. We develop six tests and compare these in terms of size and power.

For modelling count data with over-dispersion, a popular and convenient model is

the negative binomial distribution (Manton et al. (1981); Saha (2011); Breslow (1984);

Engel (1984); Margolin et al. (1989)). For more references on applications of the neg-

ative binomial distribution, see Clark and Perry (1989). Different authors have used

different parametrizations for the negative binomial distribution (Paul and Plackett

(1978); Barnwal and Paul (1988); Paul and Banerjee (1998); Piegorsch (1990)). Let

Y be a negative binomial random variable with mean parameter µ and dispersion
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parameter c. We write Y ∼ NB(µ, c), which has probability mass function

f(y|µ, c) = Pr(Y = y|µ, c) =
Γ(y + c−1)

y!Γ(c−1)

(
cµ

1 + cµ

)y (
1

1 + cµ

)c−1

, (3.1)

for y = 0, 1, ..., µ > 0. Now, V ar(Y ) = µ(1 + µc) and c > −1/µ. Since c can take

a positive as well as a negative value, it is called a dispersion parameter rather than

an over-dispersion parameter, and with this range of c, f(y|µ, c) is a valid probability

function. Obviously, when c = 0, the variance of the NB(µ, c) distribution becomes

that of the Poisson (µ) distribution. Moreover, it can be shown that the limiting

distribution of the NB(µ, c) distribution, as c→ 0, is the Poisson (µ).

Let Y11, . . ., Y1n1 be a random sample from the negative binomial distribution

NB (µ1, c1) and Y21, . . ., Y2n2 be a random sample from the negative binomial

distribution NB (µ2, c2). Our problem is to test H0 : µ1 = µ2, where c1 and c2 are un-

specified. To test this hypothesis we develop six test procedures, namely, a likelihood

ratio test LR, a likelihood ratio test based on the bias corrected maximum likelihood

estimates of the nuisance parameters LR (bc), a score test T 2, a score test based on

the bias corrected estimates of the nuisance parameters T 2 (bc), a C (α) test based

on the method of moments estimates of the nuisance parameters, T1 with Welch’s

(Welch (1937)) degree of freedom correction, and a test TN using the asymptotic

normal distribution of T1. These procedures are then compared in terms of size and

power using simulations.

The test statistics are developed in Section 3.2. A simulation study is conducted

in Section 3.3. A few examples illustrating and motivating the use of the procedures

developed are given in Section 3.4 and a discussion follows in Section 3.5.
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3.2 The Tests

As indicated in Section 3.1, we consider data Yij, i = 1, 2, j = 1, 2, ..., ni, where

Yij ∼ NB(µi, ci). Our interest is to test H0 : µ1 = µ2 = µ, where c1 and c2 are

unspecified against the alternative HA : µ1 6= µ2, with c1 and c2 unspecified.

3.2.1 The Likelihood Ratio Test

The log-likelihood for the data of the two samples, based on the negative binomial

model (3.1), apart from a constant, is

l =
2∑
i=1

ni∑
j=1

yij∑
l=1

[log (1 + ci (l − 1))] +
2∑
i=1

yi+ [log(µi)− log{1 + ciµi}]

−
2∑
i=1

ni
ci

log{1 + ciµi}.
(3.2)

Let l̂0 and l̂1 be the maximized log-likelihood under the null and the alternative

hypothesis, respectively. Then, the likelihood ratio statistic LR = 2
(
l̂1 − l̂0

)
has a

χ2 (1) distribution, asymptotically as n → ∞, where n = n1 + n2. Under H0, the

parameters µ, c1 and c2 are estimated by solving the maximum likelihood estimating

equations

2∑
i=1

ni(ȳi − µ)

µ(1 + µci)
= 0

and

ni
c2
i

log(1 + ciµ) +
ni(ȳi − µ)

ci(1 + ciµ)
−

ni∑
j=1

yij−1∑
l=0

1

ci(1 + cil)
= 0, i = 1, 2

(3.3)
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simultaneously or by directly maximizing (3.2) with respect to µ, c1 and c2. Denote

these estimators by µ̂0, ĉ10 and ĉ20. Under HA, the maximum likelihood estimate of

µi is ȳi, i = 1, 2. The maximum likelihood estimate of ci, denoted by ĉi, is obtained

by solving the maximum likelihood estimating equation

ni
c2
i

log(1 + ciȳi)−
ni∑
j=1

yij−1∑
l=0

1

ci(1 + cil)
= 0, i = 1, 2.

3.2.2 The Likelihood Ratio Test Based on the Bias Corrected

Maximum Likelihood Estimates

Let l0 be the kernel of the log-likelihood under the null hypothesis and let θ =

(θ1, θ2, θ3)′ = (µ, c1, c2)′. Further, let Irt = E (−Vrt) , Jrtu = E (Wrtu) , and K
(u)
rt =

∂

∂θu
E (Vrt), where Vrt =

∂2l0
∂θr∂θt

and Wrtu =
∂3l0

∂θr∂θt∂θu
; r, t, u = 1, 2, 3. Derivation

of the above terms and the asymptotic biases of the maximum likelihood estimates

of µ and ci under the null hypothesis are given in the Appendix A.1. The results are

summarized here. Now, from Appendix A.1 we have the following

I11 =
2∑
i=1

[
ni

µ(1 + ciµ)

]
, I22 =

n1

c4
1

∞∑
k=1

k!(b1c1)k+1

(k + 1)d1k

, I33 =
n2

c4
2

∞∑
k=1

k!(b2c2)k+1

(k + 1)d2k

,

J111 =
2∑
i=1

ni∑
j=1

2(1 + 2ciµ)

µ2(1 + ciµ)2
, J112 =

n1

(1 + c1µ)2
, J113 =

n2

(1 + c2µ)2
,

J222 =
2n1

c2
1

κ1 −
n1µ(4 + 5c1µ)

c3
1(1 + c1µ)2

− 2n1

c3
1

∆1,

J333 =
2n2

c2
2

κ2 −
n2µ(4 + 5c2µ)

c3
2(1 + c2µ)2

− 2n2

c3
2

∆2,
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K
(1)
11 =

2∑
i=1

{
ni(1 + 2ciµ)

µ2(1 + ciµ)2

}
, K

(2)
11 =

n1

(1 + c1µ)2
, K

(3)
11 =

n2

(1 + c2µ)2
,

K
(1)
22 = −n1

c4
1

∞∑
k=1

k! (b1c1)k b2
1

µ2d1k

,

K
(2)
22 =

n1

c5
1

∞∑
k=1

k!(c1b1)k+1

(k + 1)d1k

{
4− (k + 1)(2 + c1µ)

1 + c1µ
+ c1

(
k∑
l=0

l

1 + c1l

)}
,

K
(1)
33 = −n2

c4
2

∞∑
k=1

k! (b2c2)k b2
2

µ2d2k

and

K
(3)
33 =

n2

c5
2

∞∑
k=1

k!(c2b2)k+1

(k + 1)d2k

{
4− (k + 1)(2 + c2µ)

1 + c2µ
+ c2

(
k∑
l=0

l

1 + c2l

)}
,

where bi =
ciµ

1 + ciµ
, dik =

k∏
l=0

(1 + cil), κi =
1

c2
i

log (1 + ciµ) and

∆i =
∞∑

yij=0

yij−1∑
l=0

c2
i l

2 − cil − 1

(1 + cil)3
Pr (yij) , for i = 1, 2; j = 1, 2, · · · , ni; with Pr (yij) =

f (yij|µ, ci) and ∆i = 0 if yij = 0. All other elements of Irt, Jrtu and K
(u)
rt are zeros.

Now, following Cordeiro and Klein (1994), the biases of µ̂0, ĉ10 and ĉ20 are

bµ̂0 (µ̂0, ĉ10, ĉ20) = M11

(
K

(1)
11 −

1

2
J111

)
M11 = 0,

bĉ10 (µ̂0, ĉ10, ĉ20) = M22

[
−1

2
J211M

11 +

(
K

(2)
22 −

1

2
J222

)
M22

]
and

bĉ20 (µ̂0, ĉ10, ĉ20) = M33

[
−1

2
J311M

11 +

(
K

(3)
33 −

1

2
J333

)
M33

]
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respectively, where M rt is the (r, t)th element of the inverse of the information matrix

I. It is seen that the asymptotic bias of the maximum likelihood estimate of µ is zero.

So, the bias corrected estimate of µ is µ̂0 (bc) = µ̂0. The bias corrected estimate of ci

under the null hypothesis is ĉi0 (bc) = ĉi0 − bĉi0 (µ̂0, ĉ10, ĉ20) , i = 1, 2.

Under the alternative hypothesis, the estimate of µi is ȳi, which is unbiased. Yet,

for ease and convenience of calculation let θ′ = (θ1, θ2, θ3, θ4) = (µ1, µ2, c1, c2)

and further, as in the case under the null hypothesis, let Irt = E (−Vrt) , Jrtu =

E (Wrtu) , andK
(u)
rt =

∂

∂θu
E (Vrt), where Vrt =

∂2l

∂θr∂θt
andWrtu =

∂3l

∂θr∂θt∂θu
; r, t, u =

1, 2, 3, 4. Detailed derivation is given in the Appendix A.2 and from there we have

the following

I11 =
n1

µ1(1 + c1µ1)
, I22 =

n2

µ2(1 + c2µ2)
,

I33 =
n1

c4
1

∞∑
k=1

k!(c1b1)k+1

(k + 1)d1k

, I44 =
n2

c4
2

∞∑
k=1

k!(c2b2)k+1

(k + 1)d2k

,

J111 =
2n1(1 + 2c1µ1)

µ2
1(1 + c1µ1)2

, J113 =
n1

(1 + c1µ1)2
, J222 =

2n2(1 + 2c2µ2)

µ2
2(1 + c2µ2)2

,

J224 =
n2

(1 + c2µ2)2
, J333 =

2n1

c2
1

κ1 −
n1µ1(4 + 5c1µ1)

c3
1(1 + c1µ1)2

− 2n1

c3
1

∆1,

J444 =
2n2

c2
2

κ2 −
n2µ2(4 + 5c2µ2)

c3
2(1 + c2µ2)2

− 2n2

c3
2

∆2,

K
(1)
11 =

n1(1 + 2c1µ1)

µ2
1(1 + c1µ1)2

, K
(3)
11 =

n1

(1 + c1µ1)2
, K

(2)
22 =

n2(1 + 2c2µ2)

µ2
2(1 + c2µ2)2

,

K
(4)
22 =

n2

(1 + c2µ2)2
, K

(1)
33 = −n1

c4
1

∞∑
k=1

k!(c1b1)kb2
1

µ2
1d1k

,
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K
(3)
33 =

n1

c5
1

∞∑
k=1

k!(c1b1)k+1

(k + 1)d1k

{
4− (k + 1)(2 + c1µ1)

1 + c1µ1

+ c1

(
k∑
l=0

l

1 + c1l

)}
,

K
(2)
44 = −n2

c4
2

∞∑
k=1

k!(c2b2)kb2
2

µ2
2d2k

and

K
(4)
44 =

n2

c5
2

∞∑
k=1

k!(c2b2)k+1

(k + 1)d2k

{
4− (k + 1)(2 + c2µ2)

1 + c2µ2

+ c2

(
k∑
l=0

l

1 + c2l

)}
.

As in the previous section, following Cordeiro and Klein (1994), the biases of the

estimates of c1 and c2 are

bĉ1 (µ̂1, µ̂2, ĉ1, ĉ2) = M33

{
−1

2
J311M

11 +

(
K

(3)
33 −

1

2
J333

)
M33

}
and

bĉ2 (µ̂1, µ̂2, ĉ1, ĉ2) = M44

{
−1

2
J422M

22 +

(
K

(4)
44 −

1

2
J444

)
M44

}
respectively.

Then, for i = 1, 2, the bias corrected estimate of ci under the alternative hypothesis

is ĉi (bc) = ĉi − bĉi (µ̂1, µ̂2, ĉ1, ĉ2).

Let l̂0 (bc) and l̂1 (bc) be the maximized log-likelihood under the null and the alterna-

tive hypothesis, respectively, using the bias corrected estimates. Then, the likelihood

ratio statistic using the bias corrected estimates is LR (bc) = 2
{
l̂1 (bc)− l̂0 (bc)

}
,

which has a χ2 (1) distribution, asymptotically as n→∞, where n = n1 + n2.

3.2.3 The Score Test

Suppose that the alternative hypothesis is represented by µi = µ + φi with φ2 = 0.

Then the null hypothesis H0 : µ1 = µ2 reduces to H0 : φi = 0 for i = 1, 2, with µ,
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c1 and c2 treated as nuisance parameters. The log-likelihood, apart from a constant,

can then be written as

l =
2∑
i=1

ni∑
j=1

yij∑
l=1

[log (1 + ci (l − 1))] +
2∑
i=1

yi+[log(µ+ φi)− log{1 + ci(µ+ φi)}]

−
2∑
i=1

ni
ci

log{1 + ci(µ+ φi)}.
(3.4)

Now, define φ = φ1 and θ = (θ1, θ2, θ3)′ = (µ, c1, c2)′. Further, define ψ = ψ(θ) =

∂l

∂φ

∣∣∣
φ=0

and γj = γj(θ) =
∂l

∂θj

∣∣∣
φ=0

, j = 1, 2, 3. Let θ̂ be some
√
n consistent estimator

of θ under the null hypothesis. Define S(θ̂) = ψ(θ̂)−
3∑
j=1

βjγj(θ̂), where β1, β2 and β3

are partial regression coefficients of ψ on γ1, γ2 and γ3, respectively. Further, define

D = E

[
− ∂

2l

∂φ2

]
φ=0

, a 1 × 3 matrix A with jth element Aj = E

[
− ∂2l

∂φ∂θj

]
φ=0

and

3 × 3 matrix B with (i, j)th element Bi,j = E

[
− ∂2l

∂θi∂θj

]
φ=0

, i, j = 1, 2, 3. Then,

the C(α) test statistic (Neyman (1959)) for testing H0 : µ1 = µ2, where c1 and c2 are

unspecified against the alternative HA : µ1 6= µ2, with c1 and c2 are unspecified is

T 2 = S2 /
(
D − AB−1A′

)
, which has an approximate chi-square distribution with 1

degree of freedom, where in A, B and D the nuisance parameter θ is replaced by θ̂.

Now, β = (β1, β2, β3)′ = AB−1 and detailed calculation shows that β1 = A1 / B1,1,

β2 = 0 and β3 = 0. Then, S
(
θ̂
)

= ψ(θ̂) − β1γ1(θ̂) = ψ
(
θ̂
)
− A1γ1

(
θ̂
)
/ B1,1. If

θ̂ is the maximum likelihood estimate of θ, which is
√
n consistent, then the C (α)

statistic reduces to the score test (Rao (1948)) statistic T 2 = ψ2 /
(
D − AB−1A′

)
as

γ1(θ̂) = 0. Now, ψ =
∂l

∂φ

∣∣∣
φ=0

=
n1 (ȳ1 − µ)

µ (1 + c1µ)
. The derivation of the components of

A, B andD are given in Appendix A.3 and the results are summarized below

A1 = E

[
− ∂2l

∂φ1∂µ

∣∣∣
φ=0

]
=

n1

µ (1 + c1µ)
, A2 = E

[
− ∂2l

∂φ1∂c1

∣∣∣
φ=0

]
= 0,
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A3 = E

[
− ∂2l

∂φ1∂c2

∣∣∣
φ=0

]
= 0, D = E

[
− ∂

2l

∂φ2
1

∣∣∣
φ=0

]
=

n1

µ (1 + c1µ)
,

B1,1 = E

[
− ∂

2l

∂µ2

∣∣∣
φ=0

]
=

2∑
i=1

[
ni

µ (1 + ciµ)

]
, B1,2 = B2,1 = E

[
− ∂2l

∂µ∂c1

∣∣∣
φ=0

]
= 0,

B1,3 = B3,1 = E

[
− ∂2l

∂µ∂c2

∣∣∣
φ=0

]
= 0, B2,2 = E

[
−∂

2l

∂c2
1

∣∣∣
φ=0

]
=
n1

c4
1

∞∑
k=1

k!(b1c1)k+1

(k + 1)d1k

,

B2,3 = B3,2 = E

[
− ∂2l

∂c1∂c2

∣∣∣
φ=0

]
= 0 and B3,3 = E

[
−∂

2l

∂c2
2

∣∣∣
φ=0

]
=
n2

c4
2

∞∑
k=1

k!(b2c2)k+1

(k + 1)d2k

.

After detailed calculations and substitution of the nuisance parameters µ, c1 and

c2 by their maximum likelihood estimates µ̂0, ĉ10 and ĉ20 in ψ, A, B and D we obtain

T 2 =
2∑
i=1

ni(ȳi − µ̂0)2

µ̂0(1 + µ̂0ĉi0)
,

which is asymptotically distributed as χ2(1) as n→∞, where n = n1 + n2.

The score test statistic based on the bias corrected maximum likelihood estimates

of the nuisance parameters is

T 2(bc) =
2∑
i=1

ni(ȳi − µ̂0)2

µ̂0(1 + µ̂0ĉi0(bc))
,

which also has, asymptotically, a χ2 (1) distribution, as n→∞, where n = n1 + n2.
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3.2.4 C (α) Test Based on the Method of Moments Estimates

of the Nuisance Parameters

Other
√
n consistent estimates of the parameters µ, c1 and c2 can be used. Following

Barnwal (1989), the following estimates are obtained.

The first equation of (3.3) can be written as

µ =
2∑
i=1

wiȳi /
2∑
i=1

wi, (3.5)

where wi =
ni

{µ (1 + ciµ)}
. Let s2

i be the sample variance. Then, a method of moments

estimate of µ (1 + ciµ) is s2
i . Using this in (3.5), we obtain a method of moments

estimate for µ as

µ̃ =
2∑
i=1

w∗i ȳi /
2∑
i=1

w∗i , where w∗i =
ni
s2
i

. (3.6)

Using this estimate of µ, the moment estimate of ci is c̃i =
s2
i − µ̃
µ̃2

. Clearly, µ̃

satisfies
∂l

∂µ

∣∣∣
µ=µ̃, c1=c̃1, c2=c̃2

= 0 and thus γ1(θ̃) = 0, where θ̃ = (µ̃, c̃1, c̃2)′. With

this and after detailed calculations and substitution of the nuisance parameters µ, c1

and c2 by their method of moments estimates µ̃, c̃1, c̃2 in ψ, A, B and D the C (α)

statistic is obtained as

T 2
1 =

2∑
i=1

ni(ȳi − µ̃)2

µ̃ (1 + c̃iµ̃)
.

The distribution of T 2
1 is also asymptotic χ2(1) as n→∞.
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Note that by using the method of moments estimates of µ and ci, the C (α) statistic

T 2
1 can be written as T 2

1 =
2∑
i=1

ni(ȳi − µ̃)2

s2
i

, where µ̃ =
2∑
i=1

w∗i ȳi /
2∑
i=1

w∗i and s2
i =

µ̃(1 + µ̃ci). Now, putting µ̃ into T 2
1 and simplifying we obtain

T 2
1 =

(ȳ1 − ȳ2)2

s2
1

n1

+
s2

2

n2

.

By taking square-root of both sides of T 2
1 we obtain

T1 =
ȳ1 − ȳ2√
s2

1

n1

+
s2

2

n2

.

This is an interesting result as the form of T1 is exactly the same as that of the V

statistic of Welch (1937). Also, following the C (α) theory, the asymptotic distribution

of T 2
1 is χ2(1) and hence the asymptotic distribution of T1 is standard normal. This

suggests, following the theory of Welch (1937), that for small sample size (n = n1+n2),

the distribution of T1 might be better approximated by a t distribution with degrees

of freedom

f =

(
s2

1

n1

+
s2

2

n2

)2

(
s4

1

n2
1 (n1 − 1)

+
s4

2

n2
2 (n2 − 1)

) ,

where ȳi =

ni∑
j=1

yij

ni
and s2

i =

ni∑
j=1

(yij − ȳi)2

ni − 1
, although, the data are assumed to come

from negative binomial distributions and not from normal distributions. Now, denote

the asymptotic normal distribution of T1 by TN . It is of interest to see for what
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sample size n the behaviours of T1 and TN are similar.

3.3 Simulation Study

In this section we conduct a simulation study to compare, in terms of size and power,

the six test statistics, LR, LR(bc), T 2, T 2 (bc), T1 and TN .

To compare the statistics in terms of size, we considered n1 = n2 = 5, 10, 20, 50;µ1 =

µ2 = 1, 2, 5, all combinations of (c1, c2) = (0.05, 0.05), (0.05, 0.10), (0.05, 0.20),

(0.20, 0.20), (0.20, 0.30), (0.20, 0.40), (0.40, 0.50), (0.40, 0.80), and nominal levels

α = 0.05, 0.10. Comparative results in terms of empirical size for µ1 = µ2 = 1,

µ1 = µ2 = 2 and µ1 = µ2 = 5 are similar. So, we present results for only µ1 = µ2 = 2.

For power comparison we considered same sample size and same combination of

(c1, c2) with (µ1, µ2) = (2, 2.5), (2, 3), (2, 4), (2, 6), (2, 8), (2, 10) and (µ1, µ2) =

(5, 7), (5, 10), (5, 15), (5, 20), (5, 25). However, comparative results for both α’s are

similar. Also comparative power for (µ1, µ2) = (2, 2.5), (2, 3), (2, 4), (2, 6), (2, 8),

(2, 10) and those for (5, 7), (5, 10), (5, 15), (5, 20), (5, 25) are similar. So, we present

results only for α = 0.05 and for (µ1, µ2) = (2, 2.5), (2, 3), (2, 4), (2, 6), (2, 8),

(2, 10). These results for level and power are summarized in Tables 3.1 to 3.4.

For small sample sizes, for example, for n1 = n2 = 5, 10, the LR statistic holds level

most effectively. The statistic TN is liberal, which is expected. The other statistics

are in general somewhat conservative. As the statistic TN is liberal we omit this from

comparison of power with the other statistics. For small to moderate over-dispersion

parameters the statistic T1 in general shows the largest power. For very large over-

dispersion parameters this statistic is the least powerful and the statistic T 2(bc) is
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the most powerful. For example, for µ1 = 2, µ2 = 6, c1 = .4 and c2 = .8 power of T1

is 13% and that of T 2(bc) is 22.1%.

For moderate sample size situations, (n1 = n2 = 20), the statistics T1 and TN

perform best in both level and power except, again, when the over-dispersions are

large in which case the other statistics do somewhat better in terms of power. For

example, for µ1 = 2, µ2 = 4, c1 = .4 and c2 = .8, power of the statistics LR, LR(bc),

T 2, T 2(bc) are .58, .57, .54 and .55 respectively and those of T1 and TN are .48 and

.53 respectively.

For large sample sizes, for example, for n1 = n2 = 50, all six statistics do well

in terms of level and their power performances are also similar. So, the asymptotic

distribution of TN works when n1 = n2 = 50. Power of all the statistics increase as

the sample sizes increase.

The bias corrected statistics LR(bc) and T 2(bc) do not in general show improvement

in terms of level and power over their uncorrected counterparts LR and T 2. The

reason could be that the biases of the estimates of c1 and c2 are in general small (see

Tables 3.5 - 3.8).

To show results for sparse data we present level and power results for µ1 = µ2 = 1

and α = .05 in Tables 3.9 - 3.12. As mentioned above, the comparative level and

power performances of all the statistics are similar to those of µ1 = µ2 = 2. Average

bias of the estimates of c1 and c2 for 5000 simulation runs for µ1 = µ2 = 1 and

different combinations of c1 and c2 are also given in Tables 3.13 - 3.16.

In all cases, empirical significance levels and power of the tests were based on 5000

iterations. Samples were generated from the negative binomial distribution of the

form given in equation (3.1) using “rnegbin” in “R”.
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Samples for which maximum likelihood estimates did not converge and the esti-

mates of c’s found to be close to zero were discarded because small values of c’s

lead to large bias in the bias correction formula. Samples were discarded if ci’s were

less than 0.00001 − 1/max {yij}, where max {yij} is the maximum value of yij for

i = 1, 2; j = 1, 2, · · · , ni. Among the 5000 simulation runs, test statistics were

computed for the samples after discarding the non convergent ones and those with

small ci’s.

3.4 Examples

3.4.1 Example 1

Lawless (1987) presents a set of data, originally given by Gail et al. (1980), on the

times to development of mammary tumours for a total of 48 female rats. Of these

48 rats, 23 were assigned to treatment group 1 (Retinoid) and the remaining 25

rats were assigned to treatment group 2 (Control). The data are presented in Table

3.17. The means for the two groups are 2.65 and 6.04 which are visibly different.

The maximum likelihood estimates of the over-dispersion parameters c1 and c2 are

0.17 and 0.31 which are moderate but different. The values of the test statistics

LR, LR(bc), T 2, T 2(bc), T1 (degrees of freedom: df=35.66) and TN with p-values in

parenthesis are 13.39 (.0003), 13.33 (.0003), 9.62 (.0019), 9.57 (.002), -3.82 (.0005)

and -3.82 (.0001), respectively.

All test statistics produce small p-values indicating strong difference between the

means. The p-values of all the statistics are similar indicating rejection of equality at

similar levels. This is in line with the simulation results given in Table 3.3 under the
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columns (.20, .30) and (.20, .40) and row (2, 6) where n1 = n2 = 20.

Note, the sample sizes for these data are n1 = 23 and n2 = 25. In order to see the

power performance of the statistics with very similar characteristics of these data,

we did a simulation experiment using 5000 repeated samples with n1 = 23, n2 = 25,

µ1 = 2.65, µ2 = 6.04, c1 = .17 and c2 = .31. The power of the test statistics LR,

LR(bc), T 2, T 2(bc), T1 and TN were 97.2, 97.0, 96.8, 96.8, 96.8, 97.3, respectively. The

conclusion, again, is very similar. A further simulation experiment was conducted

to see the performance of the test statistics when the means are closer to equality.

Everything else remaining the same we used µ1 = 2.65 and µ2 = 3. The power of

the test statistics LR, LR(bc), T 2, T 2 (bc), T1 and TN were 9.4, 9.0, 8.4, 8.3, 8.8, 9.9,

respectively. Here also, the performance of all the test statistics are similar, although,

the statistics LR, LR (bc), T1 and TN do somewhat better than the statistics T 2 and

T 2 (bc). This finding is in line with the simulation results given in Table 3.3 under

row (2, 2.5) and column (.20, .30).

3.4.2 Example 2

Saha (2011) presents data, originally given by Uusipaikka (2009), which are given

in Table 3.18. The data refer to the number of cycles required for two groups of

women, namely, the smoker and non-smoker group, to get pregnant. The means

for the two groups are 4.20 and 2.97 which are visibly different. The maximum

likelihood estimates of the over-dispersion parameters c1 and c2 are 0.47 and 0.38

which are moderate but different. The values of the test statistics LR, LR(bc), T 2,

T 2(bc), T1(df = 122.66) and TN with p-values in parenthesis are 13.92 (0.0002), 13.92

(0.0002), 15.30 (0.0001), 15.35 (0.0001), 3.14 (0.0021), 3.14 (0.0017), respectively.
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As in example 1, all test statistics produce small p-values indicating strong dif-

ference between the means. Also, as in example 1, the p-values of all the statistics

are similar indicating rejection of equality at similar levels. This is in line with the

simulation results given in Table 3.4 under column (.40, .50).

3.5 Discussion

In this Chapter we deal with a problem analogous to the Behrens-Fisher problem for

normally distributed data. For testing equality of two population means for count

data, we develop six test statistics, namely, a likelihood ratio test statistic LR, a

likelihood ratio test statistic LR(bc) based on the bias corrected maximum likelihood

estimates of the dispersion parameters, a score test statistic T 2, a score test statistic

T 2(bc) based on the bias corrected maximum likelihood estimates of the dispersion

parameters, a C(α) test statistic T1 based on the method of moments estimates of

the nuisance parameters and Welch’s degree of freedom corrected t distribution and

a statistic TN using the asymptotic distribution of T1.

Simulations and data analysis show no advantage of the bias corrected statistics

LR(bc) and T 2(bc) over their uncorrected counterparts. For small to moderate sample

sizes, in general, the statistic T1 shows best overall performance in terms of size and

power and it is easy of calculate. This is an interesting finding in that the C(α)

statistic based on the method of moments estimates of the dispersion parameters is

the well-known Welch’s V statistic which performs well in terms of level and power.

For large sample sizes, for example, for n1 = n2 = 50, all six statistics do well in terms

of level and their power performances are also similar. So, the asymptotic distribution

of TN works when n1 = n2 = 50 or larger.



3.5 Discussion 40

Table 3.1: Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 5, n2 = 5, α = 0.05

(c1, c2)
(µ1, µ2) Statistics (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(2, 2) LR 5.1 4.5 5.2 4.6 5.0 5.7 5.0 5.4

LR(bc) 4.0 3.2 3.8 3.8 4.4 5.4 4.7 5.3
T 2 4.1 3.7 4.2 3.4 3.6 4.1 3.8 4.4
T 2(bc) 4.2 3.8 4.4 3.7 3.8 4.7 4.6 5.4
T1 4.3 4.4 4.0 3.7 4.1 3.5 3.4 3.2
TN 8.7 9.1 8.5 8.4 8.9 8.4 7.8 8.0

(2, 2.5) LR 5.7 6.4 6.2 5.4 5.7 6.3 5.8 6.1
LR(bc) 4.5 5.3 5.1 4.3 5.0 6.2 6.2 6.0
T 2 5.3 5.6 5.7 4.9 4.4 4.7 4.6 5.8
T 2(bc) 5.6 6.1 6.6 5.5 4.7 5.4 5.3 6.2
T1 6.0 5.5 4.3 5.1 4.3 4.0 3.2 3.6
TN 11.7 10.9 10.2 10.1 9.7 9.7 8.3 8.2

(2, 3) LR 7.5 7.0 9.4 7.1 5.8 6.3 6.0 6.6
LR(bc) 6.4 6.3 8.6 6.3 5.1 6.5 5.8 7.0
T 2 7.5 7.2 9.3 7.0 6.6 8.2 6.5 7.1
T 2(bc) 7.8 7.4 10.0 7.2 7.2 8.7 7.5 8.8
T1 10.2 10.1 8.3 8.5 7.3 6.1 5.3 4.3
TN 19.5 17.7 16.0 16.0 14.4 13.5 12.6 10.1

(2, 4) LR 15.4 15.6 15.9 12.0 12.9 12.3 8.4 7.4
LR(bc) 13.9 14.4 14.0 10.9 12.7 11.1 8.2 7.6
T 2 15.0 15.8 16.2 12.4 13.6 13.5 10.0 9.6
T 2(bc) 15.1 16.5 17.5 13.1 14.5 14.8 11.6 11.9
T1 28.0 24.0 18.1 19.0 15.8 12.5 11.2 6.3
TN 43.2 38.7 32.8 33.0 28.9 25.1 22.8 16.4

(2, 6) LR 35.1 33.5 35.7 24.0 22.8 23.6 16.0 15.3
LR(bc) 31.6 30.3 32.8 21.0 19.9 22.0 14.7 15.5
T 2 29.8 29.7 36.5 23.4 22.4 25.1 17.7 19.3
T 2(bc) 29.9 30.5 37.6 24.2 23.4 27.1 19.6 22.1
T1 64.8 58.0 43.1 43.7 32.9 27.6 22.2 12.8
TN 81.1 77.6 66.8 65.6 56.6 50.9 42.8 30.7

(2, 8) LR 46.6 50.5 51.6 37.0 36.3 38.2 25.6 24.7
LR(bc) 37.7 45.2 47.7 29.6 30.9 32.7 21.0 21.8
T 2 30.4 40.8 49.4 30.5 33.2 37.5 23.5 26.2
T 2(bc) 30.9 41.4 50.3 31.2 34.8 39.6 25.0 30.4
T1 87.4 79.2 63.2 61.5 50.7 39.6 33.7 19.3
TN 96.6 93.6 85.1 84.4 75.2 67.1 60.1 43.4

(2, 10) LR 64.0 60.6 61.0 53.9 48.4 45.9 33.3 32.4
LR(bc) 45.3 51.0 53.5 41.8 37.8 40.4 26.1 28.8
T 2 34.6 43.4 54.1 39.0 40.0 43.7 28.4 32.8
T 2(bc) 34.6 42.9 55.9 39.0 41.0 45.7 30.6 35.8
T1 96.0 89.1 75.2 74.7 60.9 49.8 40.8 23.2
TN 99.5 98.3 93.4 92.7 85.9 78.8 70.2 52.4
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Table 3.2: Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 10, n2 = 10, α = 0.05

(c1, c2)
(µ1, µ2) Statistics (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(2, 2) LR 3.6 3.5 3.5 4.2 4.0 3.9 4.0 4.3

LR(bc) 2.6 2.8 3.0 3.3 3.2 3.5 3.1 3.7
T 2 2.8 2.2 2.1 2.6 2.3 2.4 2.4 2.8
T 2(bc) 2.7 2.0 2.1 2.5 2.3 2.5 2.5 3.0
T1 4.7 4.3 4.2 4.0 4.7 3.9 4.0 4.5
TN 6.5 6.3 5.9 5.8 6.7 6.0 5.7 6.7

(2, 2.5) LR 4.2 4.7 6.2 4.8 4.3 5.3 5.1 5.4
LR(bc) 3.2 3.4 4.7 3.4 3.2 3.8 3.6 4.2
T 2 3.5 4.2 5.4 4.0 3.2 4.1 3.8 4.2
T 2(bc) 3.4 4.0 5.4 3.9 3.2 4.2 4.0 4.6
T1 9.6 9.2 7.2 8.3 7.0 6.6 6.3 5.0
TN 12.6 11.9 10.3 10.8 9.8 8.9 9.2 7.2

(2, 3) LR 10.5 11.9 12.2 10.1 10.6 10.1 8.8 8.3
LR(bc) 6.7 8.6 8.9 6.4 7.3 7.3 5.5 6.2
T 2 8.0 10.0 9.9 6.8 7.4 8.0 5.8 6.8
T 2(bc) 7.7 9.6 9.6 6.8 7.4 8.1 6.0 7.4
T1 23.9 19.5 18.5 18.0 14.9 11.9 10.9 8.5
TN 28.7 24.7 23.8 22.4 19.3 16.6 15.1 12.5

(2, 4) LR 40.1 39.1 37.6 29.7 29.6 29.4 23.1 22.1
LR(bc) 27.5 27.8 29.6 19.9 20.6 21.6 15.5 16.1
T 2 23.1 24.4 26.6 15.2 17.0 19.0 12.1 15.4
T 2(bc) 22.7 23.7 26.1 15.0 17.0 19.2 12.4 16.2
T1 61.3 57.4 47.4 46.5 38.7 35.3 28.9 19.7
TN 67.3 64.1 55.6 53.5 47.1 42.5 36.9 28.0

(2, 6) LR 90.6 87.0 83.1 78.4 74.0 69.0 59.8 54.1
LR(bc) 69.4 68.9 67.0 59.6 58.0 55.4 45.3 43.0
T 2 31.8 38.0 50.3 27.2 34.6 38.9 27.4 34.0
T 2(bc) 32.4 38.7 50.7 27.5 35.0 39.5 27.8 35.0
T1 97.0 95.5 89.1 87.9 81.3 73.2 64.2 46.2
TN 98.2 97.2 93.4 91.9 87.3 80.6 73.2 58.6

(2, 8) LR 99.2 98.9 97.0 95.4 93.0 90.9 83.8 75.6
LR(bc) 71.2 71.1 78.8 71.0 70.1 72.4 63.2 61.3
T 2 23.7 30.1 46.7 29.3 38.2 48.8 35.2 45.3
T 2(bc) 28.2 30.4 47.3 30.8 39.4 49.3 35.7 46.8
T1 100 99.8 98.3 97.9 95.0 90.6 84.0 64.7
TN 100 99.9 99.4 98.8 97.4 95.3 91.0 77.0

(2, 10) LR 100 99.6 99.4 98.3 98.1 97.2 93.3 87.7
LR(bc) 62.0 65.4 70.0 69.3 70.3 75.5 68.0 67.5
T 2 13.9 24.3 43.3 21.7 35.3 44.8 38.2 49.2
T 2(bc) 16.7 27.2 45.4 24.3 36.8 46.1 39.6 50.5
T1 100 100 99.8 99.7 98.4 96.5 92.5 77.5
TN 100 100 99.9 99.9 99.5 98.6 96.5 87.6
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Table 3.3: Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 20, n2 = 20, α = 0.05

(c1, c2)
(µ1, µ2) Statistics (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(2, 2) LR 3.8 3.9 4.6 4.7 4.8 4.9 5.1 5.1

LR(bc) 3.2 3.2 4.0 4.1 4.4 4.7 4.8 4.9
T 2 3.2 2.9 4.0 3.7 3.7 3.7 3.8 3.7
T 2(bc) 3.2 2.9 3.9 3.6 3.6 3.6 3.8 3.8
T1 4.5 5.0 4.8 5.3 4.7 4.3 4.8 4.8
TN 5.3 5.9 5.3 6.0 5.9 5.3 5.4 5.6

(2, 2.5) LR 14.0 12.5 12.8 11.9 11.8 12.2 10.5 10.7
LR(bc) 12.2 11.2 11.2 11.1 11.1 11.3 10.1 10.4
T 2 11.3 10.6 11.7 9.4 9.8 10.7 8.4 9.5
T 2(bc) 10.9 10.4 11.4 9.4 9.7 10.7 8.5 9.6
T1 16.8 15.0 12.8 13.3 11.2 11.0 9.4 8.1
TN 18.8 16.6 14.7 14.9 12.6 12.6 11.2 9.4

(2, 3) LR 37.7 36.8 35.1 32.0 30.3 29.3 25.1 22.8
LR(bc) 33.8 33.8 32.8 30.3 29.0 27.7 24.4 22.5
T 2 32.4 32.2 32.9 26.4 26.4 26.4 21.2 20.6
T 2(bc) 32.0 32.0 32.6 26.2 26.4 26.4 21.4 20.9
T1 45.6 42.0 35.2 33.9 31.1 27.0 24.3 18.1
TN 48.7 45.1 38.1 36.7 34.4 30.0 27.0 20.9

(2, 4) LR 87.2 84.3 81.0 76.8 73.9 71.2 63.5 58.4
LR(bc) 84.2 81.6 78.8 74.7 72.8 70.2 62.4 57.7
T 2 81.8 80.0 77.7 69.9 69.4 67.3 55.4 54.4
T 2(bc) 81.6 79.7 77.5 69.8 69.4 67.4 55.8 55.0
T1 92.0 88.9 83.4 80.5 74.5 68.5 61.8 48.3
TN 93.1 90.4 85.5 82.9 77.3 71.8 64.8 53.4

(2, 6) LR 100 99.9 99.9 99.7 99.2 98.7 96.2 92.6
LR(bc) 98.7 99.0 99.0 99.0 98.4 97.8 95.6 92.3
T 2 99.4 99.7 99.6 97.2 97.8 97.3 90.7 90.3
T 2(bc) 99.7 99.7 99.7 97.7 97.9 97.5 91.6 90.7
T1 100 100 99.8 99.6 99.1 98.3 95.9 88.3
TN 100 100 99.8 99.7 99.3 98.6 96.9 90.5

(2, 8) LR 100 100 100 100 100 99.9 99.9 99.3
LR(bc) 98.0 98.3 99.1 99.0 98.7 99.4 99.1 98.6
T 2 98.9 98.9 99.8 98.2 99.0 99.0 96.6 97.7
T 2(bc) 99.2 99.6 99.8 99.1 99.4 99.4 97.4 97.9
T1 100 100 100 100 100 99.9 99.7 98.1
TN 100 100 100 100 100 100 99.8 98.7

(2, 10) LR 100 100 100 100 100 100 100 100
LR(bc) 98.3 98.0 98.7 98.9 99.1 99.0 98.8 99.0
T 2 99.5 98.5 99.6 99.0 98.3 99.3 96.9 98.3
T 2(bc) 99.8 99.4 99.9 99.5 99.2 99.6 98.0 98.8
T1 100 100 100 100 100 100 100 99.5
TN 100 100 100 100 100 100 100 99.7
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Table 3.4: Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 50, n2 = 50, α = 0.05

(c1, c2)
(µ1, µ2) Statistics (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(2, 2) LR 5.3 4.5 5.4 5.3 5.3 4.5 5.4 5.7

LR(bc) 4.9 4.3 5.3 5.2 5.2 4.5 5.4 5.7
T 2 5.0 4.3 5.1 5.0 5.0 4.2 4.9 5.2
T 2(bc) 5.0 4.2 5.0 5.0 4.9 4.1 4.9 5.2
T1 5.1 4.8 4.5 4.9 4.9 5.1 5.2 5.0
TN 5.4 5.0 4.7 5.2 5.2 5.2 5.5 5.1

(2, 2.5) LR 34.0 32.7 30.4 27.8 26.7 25.6 21.2 20.0
LR(bc) 33.1 32.1 29.8 27.6 26.5 25.4 21.2 19.9
T 2 33.3 32.1 30.2 26.9 26.0 25.2 20.3 20.1
T 2(bc) 32.9 31.8 30.0 26.8 25.9 25.2 20.3 20.2
T1 35.1 34.0 29.0 26.5 25.8 23.1 20.1 15.5
TN 36.0 35.0 30.2 27.3 26.7 24.1 21.0 16.1

(2, 3) LR 83.3 81.6 78.2 72.7 69.4 66.7 58.7 52.2
LR(bc) 82.8 81.0 77.8 72.4 69.2 66.6 58.6 52.0
T 2 83.0 81.0 78.0 71.3 68.7 66.3 57.2 52.2
T 2(bc) 82.9 80.9 78.0 71.2 68.5 66.3 57.2 52.3
T1 83.3 82.2 76.1 72.9 67.4 64.1 56.9 46.7
TN 83.9 83.0 77.2 73.4 68.3 65.2 58.1 48.1

(2, 4) LR 99.9 99.9 99.8 99.7 99.3 98.6 97.1 93.9
LR(bc) 99.7 99.6 99.7 99.6 99.2 98.5 97.1 93.9
T 2 99.9 99.9 99.8 99.6 99.2 98.5 97.0 94.0
T 2(bc) 99.9 99.9 99.8 99.6 99.2 98.5 97.0 94.0
T1 100 100 99.8 99.4 99.2 98.5 96.3 90.9
TN 100 100 99.8 99.5 99.3 98.7 96.5 91.5

(2, 6) LR 100 100 100 100 100 100 100 100
LR(bc) 99.9 100 100 100 100 100 100 100
T 2 100 100 100 100 100 100 100 100
T 2(bc) 100 100 100 100 100 100 100 100
T1 100 100 100 100 100 100 100 100
TN 100 100 100 100 100 100 100 100

(2, 8) LR 100 100 100 100 100 100 100 100
LR(bc) 100 100 99.9 100 100 100 100 100
T 2 100 100 100 100 100 100 100 100
T 2(bc) 100 100 100 100 100 100 100 100
T1 100 100 100 100 100 100 100 100
TN 100 100 100 100 100 100 100 100

(2, 10) LR 100 100 100 100 100 100 100 100
LR(bc) 100 100 100 100 100 100 100 100
T 2 100 100 100 100 100 100 100 100
T 2(bc) 100 100 100 100 100 100 100 100
T1 100 100 100 100 100 100 100 100
TN 100 100 100 100 100 100 100 100
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Table 3.5: Estimated bias of the estimates of dispersion parameters, c1 and c2, under
null and alternative hypotheses; based on 5000 iterations and n1 = 5, n2 = 5

(c1, c2)
(µ1, µ2) Par† (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(2, 2) c10 -0.0177 -0.0174 -0.0202 0.0234 -0.0352 0.0688 0.0716 -0.0080

c20 0.0529 0.0526 0.1023 -0.0119 -0.0086 -0.0241 0.0084 -0.0261
c1a -0.0679 -0.0576 -0.0594 -0.0098 0.0071 0.0721 -0.0005 0.0039
c2a -0.0097 -0.0218 -0.0083 0.0045 0.0628 0.0099 -0.0081 -0.0175

(2, 2.5) c10 -0.0179 -0.0154 -0.0225 0.0150 0.0075 0.0061 0.0099 -0.0011
c20 0.0115 0.0300 0.0629 0.0526 -0.0028 -0.0084 0.0070 0.0042
c1a -0.0481 -0.0496 -0.0549 -0.0351 -0.0064 0.0167 0.0028 -0.0033
c2a -0.0355 0.0218 -0.0415 -0.0377 -0.0188 0.0031 -0.0069 0.0055

(2, 3) c10 -0.0072 -0.0173 -0.0175 0.0127 0.0170 0.0083 0.0485 -0.0052
c20 0.0071 0.0216 0.0589 0.0492 0.0816 0.1154 0.1585 -0.0474
c1a -0.0326 -0.0417 -0.0422 -0.0329 -0.0035 -0.0100 0.0243 -0.0318
c2a -0.0082 -0.0147 -0.0366 -0.0299 0.0086 -0.0949 -0.0924 0.0077

(2, 4) c10 -0.0002 -0.0042 -0.0139 0.0138 0.0110 -0.0003 -0.0080 -0.0019
c20 0.0056 0.0256 0.0583 0.0482 0.1076 0.0614 -0.0013 -0.0127
c1a 0.0112 -0.0098 -0.0042 0.0333 0.0302 0.0135 0.0293 -0.0058
c2a 0.0014 -0.0213 -0.0317 -0.0503 -0.0077 -0.0011 0.0075 -0.0098

(2, 6) c10 0.0183 0.0033 -0.0095 0.0304 0.0099 0.0088 -0.0441 0.0032
c20 0.0281 0.0627 0.0024 0.0735 0.0319 0.0112 -0.0125 0.0033
c1a 0.0343 0.0708 0.0400 0.0712 0.0579 0.0807 0.0015 -0.0070
c2a -0.0550 -0.0615 -0.0721 -0.0681 -0.0776 -0.0836 0.0873 0.0424

(2, 8) c10 0.0433 0.0223 -0.0089 0.0336 0.0219 0.0023 0.0091 -0.0073
c20 0.0483 0.0792 0.0227 0.0479 -0.0237 0.0076 -0.0022 -0.0091
c1a 0.0328 0.0477 0.0746 -0.0291 0.0422 0.0994 -0.0877 0.0434
c2a -0.0470 -0.0565 -0.0727 -0.0642 -0.0771 -0.0845 0.0089 0.0870

(2, 10) c10 0.0711 0.0298 -0.0079 0.0551 0.0169 -0.0002 0.0422 0.0007
c20 0.0322 0.0702 -0.0355 0.0047 0.0058 0.0319 0.0025 -0.0579
c1a 0.0349 - 0.0501 0.0412 0.0092 0.0258 0.0341 0.0054 -0.0311
c2a -0.0421 -0.0522 -0.0733 -0.0641 -0.0767 -0.0890 -0.0861 0.07151

Par† = Parameters
c10 is c1 under null hypothesis
c20 is c2 under null hypothesis
c1a is c1 under alternative hypothesis
c2a is c2 under alternative hypothesis
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Table 3.6: Estimated bias of the estimates of dispersion parameters, c1 and c2, under
null and alternative hypotheses; based on 5000 iterations and n1 = 10, n2 = 10

(c1, c2)
(µ1, µ2) Par† (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(2, 2) c10 -0.0145 -0.0148 -0.0164 -0.0024 -0.0040 -0.0067 0.0112 0.0051

c20 -0.0113 -0.0069 0.0039 0.0002 0.0118 0.0303 0.0316 0.0093
c1a -0.0315 -0.0303 -0.0319 -0.0229 -0.0228 -0.0232 -0.0132 -0.0157
c2a -0.0546 -0.0555 -0.0563 -0.0564 -0.0575 -0.0570 -0.0579 -0.0521

(2, 2.5) c10 -0.0118 -0.0125 -0.0148 -0.0005 -0.0024 -0.0066 0.0136 0.0059
c20 -0.0138 -0.0102 0.0000 -0.0031 0.0049 0.0194 0.0279 0.0743
c1a -0.0198 -0.0160 -0.0214 -0.0052 -0.0083 -0.0103 0.0102 0.0003
c2a -0.0458 -0.0467 -0.0489 -0.0482 -0.0509 -0.0519 -0.0532 -0.0529

(2, 3) c10 -0.0065 -0.0086 -0.0110 0.0046 0.0003 -0.0029 0.0201 0.0082
c20 -0.0129 -0.0091 -0.0006 -0.0043 0.0048 0.0181 0.0230 0.0720
c1a 0.0067 0.0024 0.0006 0.0212 0.0124 0.0111 0.0446 0.0265
c2a -0.0395 -0.0409 -0.0438 -0.0439 -0.0462 -0.0487 -0.0501 -0.0512

(2, 4) c10 0.0070 0.0046 -0.0035 0.0197 0.0126 0.0084 0.0271 0.0157
c20 -0.0100 -0.0056 0.0074 -0.0041 0.0053 0.0204 0.0209 0.0710
c1a 0.0758 0.0660 0.0464 0.097 0.0812 0.0740 0.1025 0.0835
c2a -0.0318 -0.0342 -0.0382 -0.0375 -0.0412 -0.0446 -0.0469 -0.0510

(2, 6) c10 0.0473 0.0374 0.0193 0.0475 0.0406 0.0292 0.0500 0.0308
c20 -0.0083 -0.0011 0.0156 -0.0042 0.0077 0.0264 0.0188 0.0794
c1a 0.0317 0.0094 0.0068 0.0419 0.0084 0.0612 0.0255 0.0433
c2a -0.0236 -0.0269 -0.0334 -0.0318 -0.0369 -0.0416 -0.0443 -0.0514

(2, 8) c10 0.0903 0.0743 0.0475 0.0862 0.0690 0.0524 0.0718 0.0456
c20 -0.0109 -0.0069 0.0178 -0.0085 0.0034 0.0259 0.0197 0.0821
c1a 0.0011 0.0057 -0.0318 0.0137 0.0472 0.0369 0.0758 0.0146
c2a -0.0184 -0.0224 -0.0305 -0.0282 -0.0348 -0.0409 -0.0437 -0.0526

(2, 10) c10 0.0228 -0.0194 0.0680 0.1080 0.0886 0.0640 0.0824 0.0580
c20 -0.0128 -0.0078 0.0196 -0.0082 0.0039 0.0302 0.0124 0.0847
c1a 0.0128 0.0251 0.0413 0.0021 0.0655 0.02087 0.0419 0.0944
c2a -0.0150 -0.0204 -0.0297 -0.0267 -0.0337 -0.0403 -0.0440 -0.0536

Par† = Parameters
c10 is c1 under null hypothesis
c20 is c2 under null hypothesis
c1a is c1 under alternative hypothesis
c2a is c2 under alternative hypothesis
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Table 3.7: Estimated bias of the estimates of dispersion parameters, c1 and c2, under
null and alternative hypotheses; based on 5000 iterations and n1 = 20, n2 = 20

(c1, c2)
(µ1, µ2) Par† (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(2, 2) c10 -0.0093 -0.0097 -0.0107 -0.0051 -0.0064 -0.0078 0.0004 -0.0032

c20 -0.0094 -0.0078 -0.0032 -0.0055 0.0002 0.0049 0.0076 0.0297
c1a -0.0190 -0.0185 -0.0201 -0.0187 -0.0186 -0.0198 -0.0180 -0.0183
c2a -0.0267 -0.0269 -0.0280 -0.0279 -0.0286 -0.0292 -0.0296 -0.0289

(2, 2.5) c10 -0.0071 -0.0080 -0.0095 -0.0037 -0.0050 -0.0064 0.0013 -0.0029
c20 -0.0093 -0.0077 -0.0037 -0.0057 -0.0014 0.0036 0.0055 0.0253
c1a -0.0049 -0.0083 -0.0093 -0.0059 -0.0072 -0.0091 -0.0054 -0.0092
c2a -0.0218 -0.0226 -0.0239 -0.0240 -0.0251 -0.0263 -0.0271 -0.0280

(2, 3) c10 -0.0051 -0.0058 -0.0076 -0.0008 -0.0024 -0.0042 0.0033 -0.0013
c20 -0.0083 -0.0068 -0.0029 -0.0057 -0.0015 0.0032 0.0046 0.0228
c1a 0.0148 0.0124 0.0073 0.0148 0.0131 0.0082 0.0123 0.0066
c2a -0.0189 -0.0198 -0.0216 -0.0214 -0.0230 -0.0245 -0.0256 -0.0276

(2, 4) c10 0.0040 0.0013 -0.0024 0.0079 0.0043 0.0014 0.0106 0.0035
c20 -0.0078 -0.0063 -0.0019 -0.0061 -0.0018 0.0029 0.0030 0.0229
c1a 0.0781 0.0654 0.0561 0.0763 0.0635 0.0554 0.0646 0.0479
c2a -0.0150 -0.0163 -0.0187 -0.0183 -0.0206 -0.0225 -0.0241 -0.0271

(2, 6) c10 0.0336 0.0291 0.0197 0.0339 0.0265 0.0200 0.0313 0.0187
c20 -0.0083 -0.0080 -0.0044 -0.0089 -0.0065 -0.0010 -0.0033 0.0163
c1a 0.0042 0.0048 0.0284 0.0543 0.0218 0.0093 0.0243 0.0513
c2a -0.0106 -0.0123 -0.0158 -0.0151 -0.0181 -0.0208 -0.0225 -0.0270

(2, 8) c10 0.0612 0.0564 0.0451 0.0598 0.0491 0.0413 0.0530 0.0350
c20 -0.0080 -0.0088 -0.0080 -0.0103 -0.0098 -0.0065 -0.0089 0.0081
c1a 0.0311 0.0247 0.0328 0.0988 0.0455 0.0077 0.0062 0.0429
c2a -0.0085 -0.0100 -0.0140 -0.0136 -0.017 -0.0197 -0.0219 -0.0272

(2, 10) c10 0.0800 0.0783 0.0676 0.0772 0.0673 0.0616 0.0705 0.0518
c20 -0.0069 -0.0084 -0.0103 -0.0109 -0.0119 -0.0111 -0.0118 0.0008
c1a 0.0091 0.0118 0.0248 0.0448 0.0013 0.0054 0.0346 0.0288
c2a -0.0072 -0.0090 -0.0128 -0.0126 -0.0160 -0.0192 -0.0217 -0.0276

Par† = Parameters
c10 is c1 under null hypothesis
c20 is c2 under null hypothesis
c1a is c1 under alternative hypothesis
c2a is c2 under alternative hypothesis
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Table 3.8: Estimated bias of the estimates of dispersion parameters, c1 and c2, under
null and alternative hypotheses; based on 5000 iterations and n1 = 50, n2 = 50

(c1, c2)
(µ1, µ2) Par† (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(2, 2) c10 -0.0042 -0.0044 -0.0047 -0.0028 -0.0033 -0.0037 -0.0011 -0.0024

c20 -0.0042 -0.0036 -0.0020 -0.0027 -0.0011 0.0009 0.0016 0.0090
c1a -0.0090 -0.0088 -0.0092 -0.0094 -0.0097 -0.0098 -0.0104 -0.0106
c2a -0.0104 -0.0106 -0.0110 -0.0111 -0.0115 -0.0118 -0.0120 -0.0121

(2, 2.5) c10 -0.0036 -0.0038 -0.0043 -0.0024 -0.0028 -0.0034 -0.0009 -0.0025
c20 -0.0038 -0.0033 -0.0018 -0.0026 -0.0012 0.0007 0.0013 0.0080
c1a -0.0031 -0.0038 -0.0044 -0.0052 -0.0061 -0.0063 -0.0077 -0.0084
c2a -0.0086 -0.0089 -0.0095 -0.0095 -0.0101 -0.0107 -0.0111 -0.0117

(2, 3) c10 -0.0026 -0.0030 -0.0037 -0.0015 -0.0022 -0.0029 -0.0005 -0.0020
c20 -0.0036 -0.0030 -0.0016 -0.0026 -0.0011 0.0009 0.0009 0.0077
c1a 0.0141 0.0122 0.0076 0.0051 0.0027 0.0013 -0.0015 -0.0038
c2a -0.0073 -0.0077 -0.0085 -0.0085 -0.0093 -0.0100 -0.0105 -0.0114

(2, 4) c10 0.0009 -0.0001 -0.0016 0.0016 0.0001 -0.0010 0.0019 -0.0008
c20 -0.0036 -0.0032 -0.0017 -0.0031 -0.0017 0.0002 0.0001 0.0074
c1a 0.0647 0.0605 0.0513 0.0351 0.0297 0.0248 0.0186 0.0107
c2a -0.0058 -0.0063 -0.0073 -0.0073 -0.0083 -0.0092 -0.0098 -0.0112

(2, 6) c10 0.0130 0.0115 0.0080 0.0113 0.0087 0.0065 0.0099 0.0048
c20 -0.0037 -0.0040 -0.0039 -0.0044 -0.0040 -0.0029 -0.0029 0.0038
c1a -0.0055 0.0122 0.0310 0.0382 -0.0086 0.0299 0.0511 0.0133
c2a -0.0041 -0.0048 -0.0061 -0.0061 -0.0073 -0.0083 -0.0092 -0.0111

(2, 8) c10 0.0226 0.0206 0.0175 0.0208 0.0181 0.0153 0.0195 0.0123
c20 -0.0032 -0.0037 -0.0045 -0.0046 -0.0050 -0.0049 -0.0050 -0.0004
c1a -0.0054 0.0291 0.0216 0.0428 0.0097 0.0278 0.0081 0.0317
c2a -0.0033 -0.0040 -0.0055 -0.0055 -0.0068 -0.0079 -0.0090 -0.0112

(2, 10) c10 0.0301 0.0281 0.0248 0.0287 0.0257 0.0227 0.0271 0.0194
c20 -0.0027 -0.0034 -0.0045 -0.0046 -0.0053 -0.0057 -0.0060 -0.0033
c1a 0.0088 -0.0117 0.0052 0.0314 0.0054 0.0292 0.0214 0.0084
c2a -0.0028 -0.0036 -0.0052 -0.0051 -0.0065 -0.0078 -0.0089 -0.0114

Par† = Parameters
c10 is c1 under null hypothesis
c20 is c2 under null hypothesis
c1a is c1 under alternative hypothesis
c2a is c2 under alternative hypothesis



3.5 Discussion 48

Table 3.9: Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 5, n2 = 5, α = 0.05

(c1, c2)
(µ1, µ2) Statistics (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(1, 1) LR 2.8 2.1 3.0 2.5 2.7 3.7 2.9 3.3

LR(bc) 2.5 1.9 2.8 2.3 2.4 3.5 2.6 3.0
T 2 2.7 2.4 3.5 3.3 3.3 3.8 3.0 3.4
T 2(bc) 3.0 2.8 3.7 3.6 3.7 4.0 3.5 3.7
T1 3.9 3.5 3.3 3.3 3.4 3.2 2.9 2.6
TN 8.2 7.9 8.4 8.2 7.9 8.0 7.8 7.3

(1, 1.1) LR 3.0 2.4 3.3 2.9 2.7 3.9 3.3 3.6
LR(bc) 2.7 2.2 3.0 2.7 2.4 3.7 3.1 3.5
T 2 2.8 2.6 3.6 3.5 3.4 4.1 3.2 3.7
T 2(bc) 3.2 3.0 3.7 3.8 3.8 4.4 3.6 3.9
T1 4.1 3.6 3.7 3.6 3.9 3.3 3.1 2.7
TN 8.5 8.1 8.5 8.3 8.9 8.4 8.2 7.5

(1, 1.2) LR 3.1 2.6 3.5 3.0 2.9 4.1 3.6 3.9
LR(bc) 2.9 2.5 3.2 2.9 2.9 3.9 3.3 3.7
T 2 2.9 2.8 3.9 4.0 3.6 4.2 3.5 4.0
T 2(bc) 3.4 3.4 3.9 4.3 3.9 4.4 3.7 4.1
T1 4.4 4.5 4.0 4.2 4.0 3.7 3.6 2.8
TN 9.3 9.4 8.3 9.4 8.7 8.3 8.4 7.7

(1, 1.4) LR 4.2 3.6 4.6 3.9 3.7 4.4 4.0 4.5
LR(bc) 3.8 3.2 4.3 3.7 3.6 4.2 3.9 4.4
T 2 4.3 3.8 4.7 4.5 4.4 4.6 3.9 4.5
T 2(bc) 5.2 4.6 5.1 5.0 5.0 4.8 4.1 4.5
T1 6.7 5.4 5.4 5.6 4.5 4.3 4.1 3.0
TN 12.4 11.2 11.4 11.7 10.4 9.7 10.2 8.3

(1, 1.5) LR 4.4 3.8 4.6 4.2 4.2 4.9 4.6 5.0
LR(bc) 4.0 3.5 4.4 3.9 4.1 4.8 4.3 4.7
T 2 4.4 4.0 4.9 4.6 4.6 4.9 4.5 5.0
T 2(bc) 5.4 4.8 5.2 5.3 5.3 5.2 4.6 5.3
T1 7.3 7.0 5.6 6.3 5.6 4.9 4.4 3.8
TN 14.0 13.4 11.6 12.6 11.8 11.7 10.8 9.8

(1, 2) LR 8.3 7.9 8.5 8.1 6.9 7.2 7.0 7.3
LR(bc) 8.2 7.6 8.4 7.9 6.8 7.0 7.0 7.1
T 2 9.4 8.9 10.0 9.7 7.4 7.7 7.6 8.0
T 2(bc) 10.8 10.1 11.2 11.0 8.2 8.6 8.6 9.1
T1 17.0 14.6 11.7 12.2 10.0 9.0 7.8 5.4
TN 28.2 25.4 22.6 23.4 20.8 19.1 18.4 13.8
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Table 3.10: Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 10, n2 = 10, α = 0.05

(c1, c2)
(µ1, µ2) Statistics (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(1, 1) LR 4.1 4.2 4.2 4.2 4.4 4.6 3.9 4.2

LR(bc) 3.4 3.6 3.5 3.3 3.6 4.2 3.5 4.0
T 2 3.1 3.6 3.4 3.3 3.5 3.7 3.6 3.8
T 2(bc) 3.1 3.4 3.3 3.2 3.5 4.2 3.9 4.1
T1 4.0 4.4 4.4 4.5 4.2 3.8 4.2 4.7
TN 6.5 6.9 6.2 6.4 6.4 6.4 6.4 6.6

(1, 1.1) LR 4.7 4.9 4.7 4.3 4.6 4.6 4.4 4.4
LR(bc) 4.2 4.2 3.9 3.5 4.0 4.3 4.0 4.3
T 2 3.4 3.9 3.7 3.6 4.1 3.9 3.8 4.2
T 2(bc) 3.5 4.0 3.9 3.4 4.4 4.4 4.2 4.6
T1 4.9 4.9 4.6 4.6 4.3 4.5 4.3 4.8
TN 7.0 7.0 6.6 7.0 6.7 6.6 6.5 6.9

(1, 1.2) LR 4.8 5.1 4.8 4.6 4.7 4.8 4.7 4.7
LR(bc) 4.3 4.3 3.9 4.2 4.2 4.4 4.4 4.3
T 2 4.0 4.7 4.2 3.7 4.2 4.8 4.0 4.6
T 2(bc) 4.1 4.8 4.2 3.9 4.5 5.1 4.3 5.0
T1 6.0 6.3 5.9 5.6 4.9 4.7 5.3 4.8
TN 8.5 8.7 8.6 7.9 7.6 6.9 7.8 6.9

(1, 1.4) LR 5.2 5.7 6.6 5.4 5.0 5.9 5.6 5.2
LR(bc) 4.5 5.0 5.6 4.8 4.5 5.3 5.1 4.8
T 2 4.8 5.5 6.7 5.2 5.1 6.5 6.3 5.0
T 2(bc) 4.8 5.6 6.8 5.3 5.2 6.7 6.6 5.4
T1 11.2 10.2 10.1 9.2 8.8 7.9 7.7 6.2
TN 14.5 14.0 13.3 12.5 12.3 11.1 10.8 9.1

(1, 1.5) LR 6.4 6.5 7.7 6.4 6.2 6.9 5.6 5.3
LR(bc) 5.1 5.6 6.8 5.7 5.5 6.1 5.1 5.0
T 2 6.3 6.7 7.7 6.2 6.5 7.2 6.1 5.9
T 2(bc) 6.6 6.8 8.0 6.5 6.7 7.5 6.4 6.3
T1 14.0 13.9 11.3 11.9 10.3 9.5 8.9 6.7
TN 18.4 18.0 14.8 16.2 14.5 13.2 13.2 10.2

(1, 2) LR 15.5 16.6 17.0 11.5 13.6 16.9 11.0 10.5
LR(bc) 13.9 14.8 15.1 10.4 12.2 15.0 10.1 9.2
T 2 15.6 16.6 17.7 11.7 13.9 17.3 12.3 11.8
T 2(bc) 15.9 17.0 18.0 12.0 14.5 17.8 13.0 12.7
T1 37.2 33.2 29.8 29.9 25.9 23.7 19.7 15.6
TN 43.8 39.6 37.4 36.8 33.0 31.1 26.8 22.2
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Table 3.11: Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 20, n2 = 20, α = 0.05

(c1, c2)
(µ1, µ2) Statistics (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(1, 1) LR 3.0 3.2 3.1 3.0 3.0 3.1 3.3 3.7

LR(bc) 2.2 2.3 2.4 2.4 2.4 2.6 2.6 3.0
T 2 2.2 2.1 2.5 2.3 2.1 2.4 2.3 2.8
T 2(bc) 2.2 2.1 2.5 2.4 2.1 2.4 2.4 2.9
T1 5.2 5.0 5.0 4.3 4.8 4.9 4.5 4.9
TN 6.1 5.6 6.2 4.9 5.8 5.7 5.4 5.9

(1, 1.1) LR 3.0 3.2 3.4 3.3 3.0 3.4 3.4 3.9
LR(bc) 2.4 2.4 2.9 2.5 2.5 2.8 2.8 3.4
T 2 2.4 2.3 2.6 2.7 2.3 2.6 2.5 2.9
T 2(bc) 2.4 2.3 2.5 2.7 2.3 2.5 2.5 2.9
T1 5.4 5.3 5.2 5.0 6.1 5.7 5.1 5.3
TN 6.2 6.2 6.3 6.1 7.0 6.8 5.8 6.2

(1, 1.2) LR 4.1 4.0 4.7 3.4 4.6 4.9 4.7 4.4
LR(bc) 2.9 3.0 3.5 2.4 3.3 3.7 3.6 3.3
T 2 3.7 3.6 4.2 2.7 3.8 4.3 3.7 3.5
T 2(bc) 3.5 3.5 4.1 2.6 3.9 4.3 3.8 3.6
T1 8.7 8.1 7.0 8.2 7.1 7.7 7.0 6.9
TN 9.7 9.2 8.3 9.4 8.3 8.9 8.2 8.0

(1, 1.4) LR 10.0 9.8 9.9 8.8 9.9 10.0 9.1 8.9
LR(bc) 7.0 7.2 7.8 6.5 7.2 7.5 6.4 6.9
T 2 7.9 8.2 8.1 6.3 7.0 7.9 6.3 6.7
T 2(bc) 7.7 8.0 8.0 6.3 7.1 8.1 6.5 7.0
T1 18.1 17.4 16.4 17.0 15.4 14.5 13.7 10.1
TN 20.2 19.5 18.5 19.1 17.2 16.6 15.5 12.1

(1, 1.5) LR 13.2 13.6 14.5 13.3 12.9 14.6 12.7 11.4
LR(bc) 9.6 10.2 11.1 9.6 9.7 10.8 9.0 8.9
T 2 9.8 10.7 11.2 9.1 9.6 11.5 8.4 8.7
T 2(bc) 9.6 10.8 11.2 9.1 9.7 11.9 8.5 9.1
T1 26.2 24.3 23.0 21.7 20.8 20.4 17.3 12.9
TN 28.7 26.5 25.6 24.0 23.4 23.1 20.0 15.3

(1, 2) LR 47.7 47.4 49.0 43.1 42.9 41.8 37.3 33.5
LR(bc) 37.9 37.9 41.0 34.3 34.4 34.4 30.3 28.0
T 2 32.5 34.3 37.8 27.2 29.8 31.8 23.2 25.3
T 2(bc) 32.8 34.5 38.1 28.0 30.5 32.7 23.9 26.4
T1 68.3 65.4 61.2 59.8 56.5 51.2 45.8 36.3
TN 70.9 68.3 64.5 62.6 59.6 55.0 49.7 40.1
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Table 3.12: Empirical level and power (%) of test statistics LR, LR(bc), T 2, T 2(bc),
T1 and TN ; based on 5000 iterations and n1 = 50, n2 = 50, α = 0.05

(c1, c2)
(µ1, µ2) Statistics (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(1, 1) LR 3.7 3.3 4.1 4.3 4.5 4.1 5.3 4.7

LR(bc) 3.4 3.0 3.7 4.1 4.3 4.0 5.1 4.6
T 2 3.4 3.2 3.8 3.9 4.0 3.9 4.7 3.9
T 2(bc) 3.4 3.2 3.7 3.9 4.0 3.9 4.7 3.9
T1 4.7 4.5 4.9 5.2 5.0 5.6 4.9 4.2
TN 5.1 4.9 5.2 5.6 5.3 5.9 5.1 4.8

(1, 1.1) LR 5.2 6.2 6.0 6.2 6.4 6.9 6.7 6.3
LR(bc) 4.7 5.7 5.5 6.0 6.1 6.4 6.5 6.2
T 2 5.0 6.1 5.9 5.6 6.1 6.4 6.1 6.1
T 2(bc) 4.9 6.0 5.9 5.6 6.1 6.4 6.1 6.2
T1 7.3 7.3 7.7 6.9 7.3 6.1 6.3 6.3
TN 7.6 7.7 8.1 7.4 7.9 6.5 6.7 6.5

(1, 1.2) LR 12.0 11.4 12.0 12.6 12.5 11.5 11.8 11.6
LR(bc) 10.8 10.1 11.1 11.9 11.9 11.0 11.3 11.2
T 2 11.6 11.2 11.9 11.6 12.1 11.2 11.0 11.1
T 2(bc) 11.5 11.0 11.8 11.5 12.1 11.2 11.1 11.3
T1 14.6 15.0 13.0 13.2 12.7 11.3 10.6 9.0
TN 15.2 15.6 13.6 14.0 13.2 11.8 11.1 9.7

(1, 1.4) LR 34.8 36.6 36.5 34.1 33.5 32.5 30.6 27.3
LR(bc) 32.7 34.4 34.6 32.9 32.2 31.4 30.0 26.8
T 2 33.6 35.5 35.9 32.4 32.4 31.7 28.7 26.9
T 2(bc) 33.6 35.3 35.8 32.3 32.4 31.7 28.7 27.1
T1 41.5 39.9 37.2 36.5 34.6 32.9 28.5 25.5
TN 42.4 40.9 38.1 37.6 35.5 34.0 29.8 26.4

(1, 1.5) LR 51.5 50.0 48.6 48.2 45.2 45.2 42.9 39.0
LR(bc) 48.9 47.5 46.6 46.6 43.8 43.9 42.2 38.6
T 2 50.1 48.7 47.9 46.2 44.0 44.1 40.8 38.5
T 2(bc) 49.9 48.5 47.7 46.1 43.9 44.1 40.9 38.8
T1 57.1 56.2 52.4 50.8 47.6 46.3 40.7 35.2
TN 57.9 57.2 53.6 51.7 48.7 47.6 41.4 36.1

(1, 2) LR 96.3 95.5 95.3 94.1 92.2 90.9 88.3 84.4
LR(bc) 94.6 94.4 93.9 93.2 91.4 90.2 87.6 84.2
T 2 96.0 95.4 94.9 93.1 91.5 90.5 87.1 84.2
T 2(bc) 95.8 95.2 94.9 93.1 91.5 90.6 87.2 84.3
T1 97.6 97.2 95.7 94.4 93.0 91.1 87.9 81.4
TN 97.7 97.4 96.0 94.7 93.5 91.5 88.5 82.4
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Table 3.13: Estimated bias of the estimates of dispersion parameters, c1 and c2,
under null and alternative hypotheses; based on 5000 iterations and n1 = 5, n2 = 5

(c1, c2)
(µ1, µ2) Par† (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(1, 1) c10 -0.0172 -0.0193 -0.0214 0.0084 -0.0122 -0.0141 -0.0042 0.0093

c20 -0.0153 -0.0110 0.0003 -0.0054 0.0101 0.0263 0.0134 -0.0416
c1a 0.0345 0.0360 -0.0373 -0.0339 -0.0346 -0.0343 -0.0281 0.0514
c2a -0.0510 -0.0555 -0.0628 0.0626 -0.0701 -0.0759 0.0822 -0.0633

(1, 1.1) c10 0.0122 -0.0154 -0.0191 0.0049 0.0075 -0.0145 0.0051 -0.0067
c20 -0.0150 -0.0099 0.0008 -0.0062 0.0035 0.0226 0.0307 0.1054
c1a -0.0154 -0.0209 -0.0248 -0.0097 -0.0103 -0.0182 -0.0011 -0.0077
c2a -0.0395 -0.0450 -0.0549 -0.0546 -0.0628 -0.0707 -0.0769 -0.0892

(1, 1.2) c10 -0.0011 -0.0073 -0.0138 0.0035 -0.0017 -0.0079 0.0116 -0.0041
c20 -0.0103 -0.0020 0.0127 -0.0026 0.0087 0.0292 0.0300 0.0949
c1a 0.0347 0.0199 0.0097 0.0410 0.0353 0.0203 0.0554 0.0307
c2a -0.0326 -0.0385 -0.0510 -0.0491 -0.0592 -0.0684 -0.0767 -0.0927

(1, 1.4) c10 0.0274 0.0122 -0.0037 0.0190 0.0085 -0.0012 0.0155 -0.0057
c20 -0.0047 0.0063 0.0371 0.0058 0.0260 0.0587 0.0496 0.0855
c1a -0.0072 0.0234 0.0192 0.0083 0.0319 0.0251 0.0111 -0.0328
c2a -0.0264 -0.0350 -0.0503 -0.0463 -0.0585 -0.0714 -0.0785 -0.1019

(1, 1.5) c10 0.0475 0.0339 0.0045 0.0307 0.0137 0.0026 0.0180 -0.0021
c20 -0.0104 0.0032 0.0660 0.0088 0.0435 0.0956 0.0705 0.0248
c1a 0.0217 0.0055 0.0224 0.0313 0.0068 0.0049 0.0337 0.0295
c2a -0.0208 -0.0325 -0.0529 -0.0447 -0.0621 -0.0749 -0.0834 -0.1100

(1, 2) c10 0.0471 0.0417 0.0080 0.0345 0.0146 0.0007 0.0152 -0.0069
c20 -0.0126 -0.0040 0.0357 0.0027 0.0539 0.0994 0.0699 0.0051
c1a 0.0058 0.0179 0.0018 0.0274 0.0318 0.0239 0.0873 0.0298
c2a -0.0199 -0.0279 -0.0572 -0.0449 -0.0645 -0.0814 -0.0876 -0.0412

Par† = Parameters
c10 is c1 under null hypothesis
c20 is c2 under null hypothesis
c1a is c1 under alternative hypothesis
c2a is c2 under alternative hypothesis
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Table 3.14: Estimated bias of the estimates of dispersion parameters, c1 and c2, under
null and alternative hypotheses; based on 5000 iterations and n1 = 10, n2 = 10

(c1, c2)
(µ1, µ2) Par† (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(1, 1) c10 -0.0009 -0.0035 0.0082 0.0234 -0.0614 0.0202 -0.0348 0.0624

c20 0.0597 -0.0627 -0.0742 0.1052 0.0398 -0.0095 0.1011 -0.0099
c1a -0.0489 0.0276 -0.0050 -0.0246 -0.0737 0.0426 0.0568 0.0537
c2a -0.0087 0.0211 0.0085 -0.0920 -0.0299 0.1000 0.0071 0.0084

(1, 1.1) c10 -0.0057 0.0034 -0.0063 0.0069 0.0206 0.0177 0.0623 0.0457
c20 0.0403 0.0527 0.0916 -0.0913 0.1052 0.0479 0.0085 0.0648
c1a -0.0343 -0.0369 -0.0432 -0.0458 -0.0192 -0.0167 0.0147 0.0115
c2a -0.0041 -0.0151 -0.0322 0.0428 -0.0819 -0.0777 -0.0748 -0.0471

(1, 1.2) c10 -0.0027 -0.0019 -0.0087 0.0263 -0.0077 0.0093 0.0596 0.0069
c20 0.0333 0.0399 0.0615 0.0554 -0.0721 0.0449 0.0568 -0.0515
c1a -0.0485 -0.0311 -0.0460 -0.0122 0.0094 -0.0166 0.0270 -0.0314
c2a -0.0393 -0.0281 0.0043 -0.0456 0.0329 -0.0492 -0.0059 0.0522

(1, 1.4) c10 0.0073 0.0026 -0.0041 0.0189 0.0183 0.0191 0.0106 0.0073
c20 0.0044 0.0256 0.0490 0.0522 0.0669 0.1103 0.0067 -0.0248
c1a 0.0036 -0.0097 -0.0144 0.0163 0.0101 0.0153 -0.0083 0.0418
c2a -0.0218 -0.0134 -0.0082 -0.0456 -0.0384 -0.0524 0.0088 0.0122

(1, 1.5) c10 0.0023 -0.0019 -0.0006 0.0224 0.0219 0.0194 0.0515 -0.0233
c20 0.0110 0.0234 0.0436 0.0448 0.0557 0.0880 0.0333 0.0843
c1a -0.0125 -0.0057 -0.0008 0.0278 0.0261 0.0293 0.0576 -0.0087
c2a 0.0091 0.0024 0.0257 -0.0427 -0.0318 -0.0422 -0.0083 0.0069

(1, 2) c10 0.0083 0.0048 0.0013 0.0288 0.0279 -0.0038 -0.0088 0.0471
c20 0.0050 0.0186 0.0456 0.0344 0.0558 -0.0061 -0.0010 0.1846
c1a 0.0492 0.0391 0.0352 0.0742 0.0627 0.0293 -0.0615 0.1071
c2a -0.0587 -0.0590 -0.0604 -0.0599 -0.0596 0.0099 0.1008 -0.0520

Par† = Parameters
c10 is c1 under null hypothesis
c20 is c2 under null hypothesis
c1a is c1 under alternative hypothesis
c2a is c2 under alternative hypothesis
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Table 3.15: Estimated bias of the estimates of dispersion parameters, c1 and c2, under
null and alternative hypotheses; based on 5000 iterations and n1 = 20, n2 = 20

(c1, c2)
(µ1, µ2) Par† (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(1, 1) c10 -0.0113 -0.0113 -0.0117 -0.0016 -0.0015 -0.0032 0.0139 0.0085

c20 -0.0082 -0.0058 0.0030 0.0016 0.0085 0.0201 0.0271 0.0660
c1a -0.0279 -0.0247 -0.0282 -0.0172 -0.0165 -0.0170 -0.0056 -0.0087
c2a -0.0492 -0.0492 -0.0476 -0.0476 -0.0462 -0.0448 -0.0424 -0.0363

(1, 1.1) c10 -0.0088 -0.0098 -0.0109 0.0012 -0.0007 -0.0015 0.0143 0.0103
c20 -0.0111 -0.0067 0.0010 -0.0010 0.0074 0.0161 0.0243 0.0610
c1a -0.0148 -0.0181 -0.0224 -0.0103 -0.0107 -0.0094 0.0026 0.0014
c2a -0.0461 -0.0451 -0.0441 -0.0443 -0.0433 -0.0420 -0.0404 -0.0339

(1, 1.2) c10 -0.0083 -0.0093 -0.0101 0.0011 -0.0002 -0.0025 0.0147 0.0105
c20 -0.0099 -0.0073 0.0005 -0.0028 0.0086 0.0141 0.0237 0.0547
c1a -0.0159 -0.0152 -0.0139 -0.0041 -0.0031 -0.0058 0.0117 0.0137
c2a -0.0425 -0.0424 -0.0414 -0.0418 -0.0340 -0.0399 -0.0382 -0.0336

(1, 1.4) c10 -0.0044 -0.0054 -0.0069 0.0046 0.0038 0.0016 0.0171 0.0139
c20 -0.0111 -0.0070 0.0000 -0.0034 0.0039 0.0134 0.0198 0.0503
c1a 0.0059 0.0069 0.0035 0.0216 0.0222 0.0214 0.0411 0.0396
c2a -0.0374 -0.0374 -0.0371 -0.0372 -0.0367 -0.0362 -0.0353 -0.0322

(1, 1.5) c10 -0.0029 -0.0040 -0.0047 0.0076 0.0056 0.0045 0.0211 0.0132
c20 -0.0093 -0.0068 0.0010 -0.0030 0.0067 0.0133 0.0169 0.0490
c1a 0.0161 0.0164 0.0151 0.0394 0.0331 0.0336 0.0626 0.0421
c2a -0.0354 -0.0353 -0.0353 -0.0351 -0.0350 -0.0345 -0.0341 -0.0311

(1, 2) c10 0.0116 0.0087 0.0059 0.0216 0.0197 0.0143 0.0344 0.0239
c20 -0.0089 -0.0058 0.0007 -0.0029 0.0049 0.0117 0.0138 0.0440
c1a 0.0019 0.0038 -0.0009 0.0053 0.0318 0.0077 0.0246 0.0344
c2a -0.0278 -0.0283 -0.0289 -0.0289 -0.0294 -0.0299 -0.0300 -0.0292

Par† = Parameters
c10 is c1 under null hypothesis
c20 is c2 under null hypothesis
c1a is c1 under alternative hypothesis
c2a is c2 under alternative hypothesis
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Table 3.16: Estimated bias of the estimates of dispersion parameters, c1 and c2, under
null and alternative hypotheses; based on 5000 iterations and n1 = 50, n2 = 50

(c1, c2)
(µ1, µ2) Par† (.05, .05) (.05, .10) (.05, .20) (.20, .20) (.20, .30) (.20, .40) (.40, .50) (.40, .80)
(1, 1) c10 -0.0064 -0.0068 -0.0070 -0.0030 -0.0036 -0.0040 0.0013 -0.0003

c20 -0.0065 -0.0054 -0.0023 -0.0032 -0.0001 0.0030 0.0055 0.0179
c1a -0.0149 -0.0154 -0.0143 -0.0123 -0.0125 -0.0129 -0.0112 -0.0115
c2a -0.0195 -0.0193 -0.0187 -0.0188 -0.0182 -0.0178 -0.0172 -0.0148

(1, 1.1) c10 -0.0061 -0.0062 -0.0069 -0.0028 -0.0034 -0.0038 0.00149 -0.0003
c20 -0.0063 -0.0052 -0.0025 -0.0031 -0.0003 0.0028 0.0050 0.0168
c1a -0.0127 -0.0120 -0.0123 -0.0098 -0.0089 -0.0095 -0.0078 -0.0091
c2a -0.0178 -0.0177 -0.0174 -0.0174 -0.0170 -0.0166 -0.0161 -0.0143

(1, 1.2) c10 -0.0054 -0.0057 -0.0064 -0.0024 -0.0031 -0.0036 0.0017 -0.0001
c20 -0.0062 -0.0051 -0.0025 -0.0032 -0.0005 0.0027 0.0051 0.0159
c1a -0.0059 -0.0075 -0.0074 -0.0036 -0.0039 -0.0048 -0.0024 -0.0043
c2a -0.0165 -0.0165 -0.0163 -0.0162 -0.0160 -0.0157 -0.0153 -0.0139

(1, 1.4) c10 -0.0039 -0.0045 -0.0050 -0.0010 -0.0017 -0.0025 0.0028 0.0003
c20 -0.0059 -0.0048 -0.0023 -0.0031 -0.0003 0.0026 0.0043 0.0153
c1a 0.0115 0.0115 0.0091 0.0141 0.0138 0.0088 0.0114 0.0080
c2a -0.0145 -0.0144 -0.0144 -0.0144 -0.0144 -0.0143 -0.0141 -0.0132

(1, 1.5) c10 0.0030 -0.0037 -0.0045 -0.0004 -0.0010 0.0017 0.0037 0.0016
c20 -0.0058 -0.0047 -0.0020 -0.0030 -0.0003 0.0027 0.0041 0.0146
c1a 0.0232 0.0209 0.0202 0.0253 0.0225 0.0204 0.0240 0.0172
c2a -0.0136 -0.0115 -0.0137 -0.0077 -0.0138 -0.0138 -0.0137 -0.0130

(1, 2) c10 0.0036 0.0028 0.0010 0.0075 0.0056 0.0037 0.0101 0.0065
c20 -0.0052 -0.0043 -0.0018 -0.0034 -0.0009 0.0020 0.0026 0.0132
c1a 0.0221 0.0052 0.0141 0.0091 0.0078 0.0438 0.0243 0.0066
c2a -0.0107 -0.0109 -0.0113 -0.0112 -0.0116 -0.0119 -0.0120 -0.0121

Par† = Parameters
c10 is c1 under null hypothesis
c20 is c2 under null hypothesis
c1a is c1 under alternative hypothesis
c2a is c2 under alternative hypothesis
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Table 3.17: Number of tumors for rats in treatment groups 1 and 2

No. of Tumors Groups
Treatment Group Control Group

0 2 0
1 7 4
2 4 2
3 2 3
4 2 2
5 4 1
6 2 2
7 0 2
8 0 0
9 0 3
10 0 1
11 0 3
12 0 1
13 0 1
ȳ 2.652 6.04
s2 3.618 14.918

Table 3.18: Number of cycles required for smoker and non-smoker women to get
pregnant

No. of Cycles Smoker Non-smoker
1 29 198
2 16 107
3 17 55
4 4 38
5 3 18
6 8 22
7 4 7
8 5 9
9 1 5
10 1 3
11 1 6
12 3 6
> 12 7 12
ȳ 4.2020 2.9650
s2 13.8567 8.1245



Chapter 4

Testing Equality of Two Beta

Binomial Proportions in the

Presence of Unequal Dispersion

Parameters

4.1 Introduction

Scientists in various areas, for example, toxicology (Weil (1970); Kleinman (1973);

Williams (1975); Paul (1982)) and other similar fields (Crowder (1978); Otake and

Prentice (1984); Donovan et al. (1994); Gibson and Austin (1996)), frequently en-

counter data in the form of proportions. Binomial model is a basic model to deal

with the data of such kind. It happens quite often that the proportion data exhibit

greater variability than predicted by the simple binomial model and the reason for

this variability depends on the form of study. Weil (1970) observes that if the ex-

perimental units of the data are litters of animals then ‘litter effect’, that is, the
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tendency of animals in the same litter to respond more similarly than animals from

different litters contribute to greater variability than predicted by the simple model.

This effect of litter is known as intra-litter or intra-correlation coefficient. The as-

sumption of some specific parametric model is frequently used to deal with correlated

binomial data. Beta binomial model is a widely used model to accommodate the

over-dispersion in proportion data (Williams (1975); Crowder (1978)). An extension

to beta binomial model to include over-dispersion as well as under-dispersion was

presented by Prentice (1986). In situations where the data are in the form of pro-

portions with possible over-dispersion, we may be interested in testing the equality

of proportions of a certain characteristic in two groups. Data of this form can be

described as follows.

Suppose that there are 2 treatment groups, ith group having mi litters, i = 1, 2. Then,

the data are of the form

Groups Proportions
1 y11/n11, y12/n12, · · · , y1j/n1j, · · · , y1m1/n1m1

2 y21/n21, y22/n22, · · · , y2j/n2j, · · · , y2m2/n2m2

.

Here the size of the jth litter in the ith group is nij of which yij respond to the

ith treatment. Now, given a parameter p, yij|pi ∼ binomial(nij, pi) and pi is a beta

random variable having probability function

f(pi) =
1

B(αi, βi)
pαi−1
i (1− pi)βi−1.

Then, unconditionally, yij has a beta-binomial distribution with probability function

Pr(yij) =

(
nij
yij

)
B(yij + αi, nij + βi − yij)

B(αi, βi)
. (4.1)
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The mean and variance of yij are nij

(
αi

αi + βi

)
and

nijαiβi(αi + βi + nij)

(αi + βi)2(αi + βi + 1)
respec-

tively. Now, define πi =
αi

αi + βi
, ωi =

1

αi + βi
and θi =

ωi
1 + ωi

. Then the mean and

variance of yij can be expressed as nijπi and nijπi(1− πi) [1 + (nij − 1)θi].

Taking the above reparameterization into account, the probability function can be

written as

Pr (yij|πi, θi) =

(
nij
yij

)yij−1∏
r=0

[πi(1− θi) + rθi]
nij−yij−1∏

r=0

[(1− πi)(1− θi) + rθi]

nij−1∏
r=0

[(1− θi) + rθi]

. (4.2)

We denote the probability function of the beta-binomial distribution in equation

(4.2) as BB(πi, θi). Our purpose is to test H0 : π1 = π2 with θ1 and θ2 being unspec-

ified.

Several parametric and semi-parametric procedures are available for testing homo-

geneity of proportions in presence of over-dispersion. Paul and Islam (1995) devel-

oped tests for testing the equality of several proportions when the over-dispersion

parameters are equal. We extend this idea to testing equality of two beta-binomial

proportions for possibly unequal over-dispersion parameters and develop parametric

as well as semi-parametric tests. The parametric tests that we develop are a likeli-

hood ratio test, a C (α) test based on the maximum likelihood estimates of nuisance

parameters, a C (α) test based on the Kleinman’s (1973) method of moments esti-

mates of the nuisance parameters. Further, we develop a C (α) test based on the

quasi-likelihood and the method of moments estimates of the nuisance parameters by

Breslow (1990), a C (α) test based on the quasi-likelihood and the method of mo-

ments estimates of the nuisance parameters by Srivastava and Wu (1993), a C (α)

test based on extended quasi-likelihood estimates of the nuisance parameters. We
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also develop two more statistics, namely, the Rao-Scott and the adjusted Rao-Scott

statistics by following Rao and Scott (1992). All eight statistics are compared, in

terms of empirical size and power, using a simulation study.

4.2 Parametric Tests

4.2.1 The Likelihood Ratio Test

Let yi1, yi2, · · · , yimi
be a sample of size mi from group i (i = 1, 2). Then, yij ∼

BB(πi, θi) and the log-likelihood, apart from a constant, can be written as

li =

mi∑
j=1

[
yij−1∑
r=0

log {(1− θi)πi + rθi}+

nij−yij−1∑
r=0

log {(1− θi)(1− πi) + rθi}

−
nij−1∑
r=0

log {(1− θi) + rθi}

]
.

(4.3)

Under HA, the estimates of the parameters πi and θi (i = 1, 2) can be obtained by

directly maximizing the above log-likelihood or by solving the pair of equations

mi∑
j=1

[
yij−1∑
r=0

(1− θi)
(1− θi)πi + rθi

−
nij−yij−1∑

r=0

(1− θi)
(1− θi)(1− πi) + rθi

]
= 0

and

mi∑
j=1

[
yij−1∑
r=0

r − πi
(1− θi)πi + rθi

+

nij−yij−1∑
r=0

r + πi − 1

(1− θi)(1− πi) + rθi
−

nij−1∑
r=0

r − 1

(1− θi) + rθi

]
= 0

simultaneously.
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Under the null hypothesis the log-likelihood function of the parameters π, θ1 and

θ2, apart from a constant, can be written as

l0 =
2∑
i=1

mi∑
j=1

[
yij−1∑
r=0

log {(1− θi)π + rθi}+

nij−yij−1∑
r=0

log {(1− θi)(1− π) + rθi}

−
nij−1∑
r=0

log {(1− θi) + rθi}

]
.

Then the maximum likelihood estimates of the parameters π, θ1, and θ2 can be

obtained directly by maximizing the above log-likelihood or by solving the following

estimating equations

2∑
i=1

mi∑
j=1

[
yij−1∑
r=0

(1− θi)
(1− θi)π + rθi

−
nij−yij−1∑

r=0

(1− θi)
(1− θi)(1− π) + rθi

]
= 0,

m1∑
j=1

[
y1j−1∑
r=0

{
r − π

(1− θ1)π + rθ1

}
+

n1j−y1j−1∑
r=0

{
r + π − 1

(1− θ1)(1− π) + rθ1

}

−
n1j−1∑
r=0

{
r − 1

(1− θ1) + rθ1

}
= 0

and

m2∑
j=1

[
y2j−1∑
r=0

{
r − π

(1− θ2)π + rθ2

}
+

n2j−y2j−1∑
r=0

{
r + π − 1

(1− θ2)(1− π) + rθ2

}

−
n2j−1∑
r=0

{
r − 1

(1− θ2) + rθ2

}
= 0

simultaneously.
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Let l̂1 be the maximized log-likelihood under the alternative hypothesis and l̂0 be the

maximized log-likelihood under the null hypothesis. Then, the likelihood ratio statis-

tic for testing H0 : π1 = π2 against HA : π1 6= π2 with θ1 and θ2 unspecified, is LR =

2(l̂1 − l̂0), which is distributed asymptotically (as m→∞,where m = m1 +m2) as

a chi-squared with 1 degree of freedom.

4.2.2 C (α) (Score) Test

Suppose the alternative hypothesis is represented by πi = π + φi with φ2 = 0. Then

the null hypothesis H0 : π1 = π2 reduces to H0 : φ1 = 0 with π, θ1 and θ2 treated

as nuisance parameters. In order to derive the C(α) statistic to test the equality

of several odds ratios, Tarone (1985) used this technique. Barnwal and Paul (1988)

used this technique to derive C(α) statistic for testing the equality of several Poisson

means in the presence of negative binomial over-dispersion. Paul and Islam (1995)

applied this procedure for testing the equality of several proportions in the presence

of common over/under dispersion. With this reparameterizaton, the log-likelihood

function under the alternative hypothesis, apart from a constant, can be written as

l =
2∑
i=1

mi∑
j=1

[
yij−1∑
r=0

log {(1− θi)(π + φi) + rθi}+

nij−yij−1∑
r=0

log {(1− θi)(1− π − φi) + rθi}

−
nij−1∑
r=0

log {(1− θi) + rθi} .

(4.4)

Now, define φ = φ1, δ = (δ1, δ2, δ3)′ = (π, θ1, θ2)′ , ψ1 =
∂l

∂φ1

∣∣∣
φ=0

, γ1 =
∂l

∂δ1

∣∣∣
φ=0

, γ2 =

∂l

∂δ2

∣∣∣
φ=0

and
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γ3 =
∂l

∂δ3

∣∣∣
φ=0

.

Let δ̂ be a
√
m (m is the number of litters in a group ) consistent estimator of δ.

Then the C(α) statistic is based on the adjusted score

S = ψ1 − β1γ1 − β2γ2 − β3γ3,

where β1, β2 and β3 are partial regression coefficient of ψ1 on γ1, ψ1 on γ2, and ψ1 on

γ3, respectively.

The structure of dispersion matrix of (φ, π, θ1, θ2) is

V =

D A

A′ B


and the regression coefficients β = (β1, β2, β3) = AB−1 (Neyman (1959)), where D is

1× 1, A is 1× 3 and B is 3× 3 with elements

D11 = E

[
− ∂

2l

∂φ2
1

∣∣∣
φ=0

]
,

A11 = E

[
− ∂2l

∂φ1∂π

∣∣∣
φ=0

]
, A12 = E

[
− ∂2l

∂φ1∂θ1

∣∣∣
φ=0

]
, A13 = E

[
− ∂2l

∂φ1∂θ2

∣∣∣
φ=0

]
,

B11 = E

[
− ∂

2l

∂π2

∣∣∣
φ=0

]
, B12 = B21 = E

[
− ∂2l

∂π∂θ1

∣∣∣
φ=0

]
, B13 = B31 = E

[
− ∂2l

∂π∂θ2

∣∣∣
φ=0

]
,

B22 = E

[
− ∂

2l

∂θ2
1

∣∣∣
φ=0

]
, B23 = B32 = E

[
− ∂2l

∂θ1∂θ2

∣∣∣
φ=0

]
and

B33 = E

[
− ∂

2l

∂θ2
2

∣∣∣
φ=0

]
.
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Substituting
√
m consistent estimate of δ, that is, δ̂ in S, D, A and B, the C(α)

statistic can be obtained as S ′(D−AB−1A′)−1S, which is approximately distributed

as a chi-squared with 1 degree of freedom (Neyman (1959); Neyman and Scott (1966);

Moran (1970)). If the maximum likelihood estimate of δ is used then S = ψ1, and the

C (α) statistic reduces to score statistic (Rao (1948)). Using the log-likelihood (4.4)

we obtain

ψ1 =

m1∑
j=1

[
y1j−1∑
r=0

{
(1− θ1)

(1− θ1) π + rθ1

}
−

n1j−y1j−1∑
r=0

{
(1− θ1)

(1− θ1) (1− π) + rθ1

}]
,

γ1 =
2∑
i=1

mi∑
j=1

[
yij−1∑
r=0

{
(1− θi)

(1− θi)π + rθi

}
−

nij−yij−1∑
r=0

{
(1− θi)

(1− θi) (1− π) + rθi

}]
,

γ2 =

m1∑
j=1

[
y1j−1∑
r=0

{
(r − π)

(1− θ1) π + rθ1

}
+

n1j−y1j−1∑
r=0

{
(r + π − 1)

(1− θ1) (1− π) + rθ1

}

−
n1j−1∑
r=0

{
(r − 1)

(1− θ1) + rθ1

}
and

γ3 =

m2∑
j=1

[
y2j−1∑
r=0

{
(r − π)

(1− θ2) π + rθ2

}
+

n2j−y2j−1∑
r=0

{
(r + π − 1)

(1− θ2) (1− π) + rθ2

}

−
n2j−1∑
r=0

{
(r − 1)

(1− θ2) + rθ2

}
.

The derivation of the expected values of negative of the mixed partial derivatives

is given in the Appendix ?? and the results are given below



4.2 Parametric Tests 65

D11 = (1− θ1)2
m1∑
j=1

[{
n1j∑
r=1

Pr (y1j ≥ r)

{(1− θ1) π + (r − 1) θ1}2

}

+

{
n1j∑
r=1

Pr (y1j ≤ n1j − r)
{(1− θ1) (1− π) + (r − 1) θ1}2

}]
,

A11 = (1− θ1)2
m1∑
j=1

[{
n1j∑
r=1

Pr (y1j ≥ r)

{(1− θ1) π + (r − 1) θ1}2

}

+

{
n1j∑
r=1

Pr (y1j ≤ n1j − r)
{(1− θ1) (1− π) + (r − 1) θ1}2

}]
,

A12 = (1− θ1)

m1∑
j=1

[
n1j∑
r=1

(r − π − 1)Pr (y1j ≥ r)

{(1− θ1) π + (r − 1) θ1}2 −
n1j∑
r=1

(r + π − 2)Pr (y1j ≤ n1j − r)
{(1− θ1) (1− π) + (r − 1) θ1}2

]

+

m1∑
j=1

[
n1j∑
r=1

Pr (y1j ≥ r)

{(1− θ1) π + (r − 1) θ1}
−

n1j∑
r=1

Pr (y1j ≤ n1j − r)
{(1− θ1) (1− π) + (r − 1) θ1}

]
= A21,

A13 = 0 = A31,

B11 = (1− θ1)2
m1∑
j=1

[
n1j∑
r=1

Pr (y1j ≥ r)

{(1− θ1)π + (r − 1) θ1}2 +

n1j∑
r=1

Pr (y1j ≤ n1j − r)
{(1− θ1) (1− π) + (r − 1) θ1}2

]

+ (1− θ2)2
m2∑
j=1

[
n2j∑
r=1

Pr (y2j ≥ r)

{(1− θ2) π + (r − 1) θ2}2 +

n2j∑
r=1

Pr (y2j ≤ n2j − r)
{(1− θ2) (1− π) + (r − 1) θ2}2

]
,

B12 = (1− θ1)

m1∑
j=1

[
n1j∑
r=1

(r − π − 1)Pr (y1j ≥ r)

{(1− θ1) π + (r − 1) θ1}2 −
n1j∑
r=1

(r + π − 2)Pr (y1j ≤ n1j − r)
{(1− θ1) (1− π) + (r − 1) θ1}2

]

+

m1∑
j=1

[
n1j∑
r=1

Pr (y1j ≥ r)

{(1− θ1) π + (r − 1) θ1}
−

n1j∑
r=1

Pr (y1j ≤ n1j − r)
{(1− θ1) (1− π) + (r − 1) θ1}

]
= B21,
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B13 = (1− θ2)

m2∑
j=1

[
n2j∑
r=1

(r − π − 1)Pr (y2j ≥ r)

{(1− θ2) π + (r − 1) θ2}2 −
n2j∑
r=1

(r + π − 2)Pr (y2j ≤ n2j − r)
{(1− θ2) (1− π) + (r − 1) θ2}2

]

+

m2∑
j=1

[
n2j∑
r=1

Pr (y2j ≥ r)

{(1− θ2) π + (r − 1) θ2}
−

n2j∑
r=1

Pr (y2j ≤ n2j − r)
{(1− θ2) (1− π) + (r − 1) θ2}

]
= B31,

B22 =

m1∑
j=1

[
n1j∑
r=1

(r − π − 1)2Pr(y1j ≥ r)

{(1− θ1)π + (r − 1)θ1}2 +

n1j∑
r=1

(r + π − 2)2Pr(y1j ≤ n1j − r)
{(1− θ1)(1− π) + (r − 1)θ1}2

−
n1j∑
r=1

(r − 2)2

{(1− θ1) + (r − 1)θ1}2

]
,

B23 = 0 = B32

and

B33 =

m2∑
j=1

[
n2j∑
r=1

(r − π − 1)2Pr(y2j ≥ r)

{(1− θ2)π + (r − 1)θ2}2 +

n2j∑
r=1

(r + π − 2)2Pr(y2j ≤ n2j − r)
{(1− θ2)(1− π) + (r − 1)θ2}2

−
n2j∑
r=1

(r − 2)2

{(1− θ2) + (r − 1)θ2}2

]
.

Denoting the maximum likelihood estimate of δ as δ̂ml and using this estimate, the

C (α) statistic which, in this case is the score statistic (Rao (1948)), is obtained as

Cml = ψ2
1/
(
D11 − AB−1A′

)
. Under the null hypothesis Cml is distributed asymptot-

ically (as m→∞,where m = m1 +m2) as a chi-squared with 1 degree of freedom.
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4.2.3 C(α) Test Based on Kleinman’s (1973) Method of Mo-

ments Estimates of Nuisance Parameters

The method of moments estimators of a two parameter model can be obtained by

equating the sample mean and the sample variance to their expected values. In a

beta binomial model Kleinman (1973) uses weighted average and weighted variance

of sample proportions to equate to their respective expected values to find method of

moments estimates of the parameters π and θ in case of a single sample.

Our objective here is to find method of moments estimates of the parameters π, θ1

and θ2 from two independent samples assuming equality of the proportions. Now,

define zij =
yij
nij

, wij =
nij

π (1− π) {1 + (nij − 1) θi}
; i = 1, 2; j = 1, 2, · · · ,mi.

Note, wij is the inverse of the variance of zij, under the null hypothesis. Then,

the pooled weighted average of sample proportions is given by π̂ =

2∑
i=1

mi∑
j=1

wijzij

2∑
i=1

mi∑
j=1

wij

.

It can be seen that under H0 E (π̂) = π. Further, define S1 =

m1∑
j=1

w1j (z1j − π)2

and S2 =

m2∑
j=1

w2j (z2j − π)2. Again, under H0, it can be seen that E (S1) =

m1∑
j=1

w1jπ (1− π)

n1j

+

m1∑
j=1

w1jπ (1− π) (n1j − 1) θ1

n1j

and E (S2) =

m2∑
j=1

w2jπ (1− π)

n2j

+

m2∑
j=1

w2jπ (1− π) (n2j − 1) θ2

n2j

. Thus, following Kleinman (1973), the method of mo-

ments estimates of δ = (π, θ1, θ2) are obtained by solving the equations

π̂ = E (π̂) , S1 = E (S1) and S2 = E (S2)
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simultaneously for π, θ1 and θ2. These equations, can then be expressed as the

following estimating equations

2∑
i=1

mi∑
j=1

wij (zij − π) = 0, (4.5)

m1∑
j=1

w1j (z1j − π)2 −
m1∑
j=1

w1jπ (1− π)

n1j

−
m1∑
j=1

w1jπ (1− π) (n1j − 1) θ1

n1j

= 0 (4.6)

and

m2∑
j=1

w2j (z2j − π)2 −
m2∑
j=1

w2jπ (1− π)

n2j

−
m2∑
j=1

w2jπ (1− π) (n2j − 1) θ2

n2j

= 0. (4.7)

Denote the estimates of π, θ1 and θ2 obtained by solving the three equations (4.5),

(4.6) and (4.7) by δ̃kmm. Substituting these estimates in S, A, B and D, the

C (α) statistic based on Kleinman’s method of moments estimates is obtained as

Ckmm = S2 /
(
D11 − AB−1A′

)
, which follows, asymptotically, as m → ∞, a chi-

squared distribution with 1 degree of freedom, where m = m1 +m2.

4.3 Semi-parametric Tests

4.3.1 C (α) Test Based on the Quasi-Likelihood and the

Method of Moments Estimates by Breslow (1990)

The quasi-likelihood (QL) of Wedderburn (1974) is based on the knowledge of the

first two moments of the random variable. For an observation zij =
yij
nij

with
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E (Zij) = πi and var (Zij) =
πi(1− πi)

nij
{1 + (nij − 1) θi}; i = 1, 2; j = 1, 2, · · · ,mi,

0 ≤ πi ≤ 1 and ∩j
(
−1

nij − 1

)
< θi < 1, the QL can be obtained as Qij (zij) =∫ πi

zij

nij (zij − t)
t (1− t) {1 + (nij − 1) θi}

dt. Here, ∩j
(
−1

nij − 1

)
=

−1

max {nij} − 1
.

Now, as we have two independent samples, the quasi-likelihood, Q, for the data

can be obtained as

Q (zij; πi, θi) =
2∑
i=1

mi∑
j=1

[
1

{1 + (nij − 1) θi}

{
yij log

(
πi
zij

)
+ (nij − yij) log

(
1− πi
1− zij

)}]
.

(4.8)

Considering the same reparameterization as in section 4.2.2, under HA : πi = π + φi,

with φ2 = 0 the quasi-likelihood function (4.8) takes the form

Q (zij; π, φi, θi) =
2∑
i=1

mi∑
j=1

[
1

{1 + (nij − 1) θi}

{
yij log

(
π + φi
zij

)
+ (nij − yij) log

(
1− π − φi

1− zij

)}]
.

(4.9)

Then, the quasi-likelihood score function for π, under H0, is

g1 =
∂Q

∂π

∣∣∣
φ=0

=
2∑
i=1

mi∑
j=1

[
1

1 + (nij − 1) θi

{
(zij − π)nij
π (1− π)

}]
, (4.10)

which is an unbiased estimating function. As the quasi-likelihood is designed only for

the estimation of the mean parameter, no such estimating functions for θ1 and θ2 can

be obtained from Q. However, given π, the unbiased estimating functions to estimate

θ1 and θ2 can be obtained by using the moment method (Breslow (1990); Moore and
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Tsiatis (1991)). These estimating functions for θ1 and θ2 are obtained by equating

the Pearson chi-squared statistics with their expected values and are given by

g2 =

m1∑
j=1

[
1

1 + (n1j − 1) θ1

{
(z1j − π − φ1)2 n1j

(π − φ1) (1− π − φ1)

}]
− (n1 −m1) (4.11)

and

g3 =

m2∑
j=1

[
1

1 + (n2j − 1) θ2

{
(z2j − π − φ2)2 n2j

(π − φ2) (1− π − φ2)

}]
− (n2 −m2) , (4.12)

where ni =

mi∑
j=1

nij; i = 1, 2. Then, the method of moment estimates of π, θ1 and θ2,

under the null hypothesis, based on the quasi-likelihood, are obtained by solving the

following equations

2∑
i=1

mi∑
j=1

[
1

1 + (nij − 1) θi

{
(zij − π)nij
π (1− π)

}]
= 0, (4.13)

m1∑
j=1

[
1

1 + (n1j − 1) θ1

{
(z1j − π)2 n1j

π (1− π)

}]
− (n1 −m1) = 0 (4.14)

and

m2∑
j=1

[
1

1 + (n2j − 1) θ2

{
(z2j − π)2 n2j

π (1− π)

}]
− (n2 −m2) = 0 (4.15)

simultaneously.
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Now, define φ and δ as before and the following

ψ1qb =
∂Q

∂φ1

∣∣∣
φ=0

, γ1qb =
∂Q

∂π

∣∣∣
φ=0

, γ2qb = g2

∣∣∣
φ=0

and γ3qb = g3

∣∣∣
φ=0

.

By the Lindeberg central-limit theorem (Moore (1985)), asymptotically, as mi →

∞, we have ψ1qb (δ) ∼ N
(
0, ∆11qb −∆12qb∆

−1
22qb∆21qb

)
.

The dimensions of matrices ∆11qb, ∆12qb, ∆21qb, and ∆22qb are 1 × 1, 1 × 3, 3 × 1,

and 3× 3 respectively with elements

∆11qb = E

−∂2Q

∂φ2
1

∣∣∣∣∣
φ=0

 ,

∆12qb1 = E

− ∂2Q

∂φ1∂π

∣∣∣∣∣
φ=0

 , ∆12qb2 = E

− ∂2Q

∂φ1∂θ1

∣∣∣∣∣
φ=0

 , ∆12qb3 = E

− ∂2Q

∂φ1∂θ2

∣∣∣∣∣
φ=0

 ,

∆21qb1 = E

− ∂2Q

∂π∂φ1

∣∣∣∣∣
φ=0

 , ∆21qb2 = E

− ∂g2

∂φ1

∣∣∣∣∣
φ=0

 , ∆21qb3 = E

− ∂g3

∂φ1

∣∣∣∣∣
φ=0

 ,

∆22qb11 = E

−∂2Q

∂π2

∣∣∣∣∣
φ=0

 , ∆22qb12 = E

− ∂2Q

∂π∂θ1

∣∣∣∣∣
φ=0

 , ∆22qb13 = E

− ∂2Q

∂π∂θ2

∣∣∣∣∣
φ=0

 ,

∆22qb21 = E

−∂g2

∂π

∣∣∣∣∣
φ=0

 , ∆22qb22 = E

−∂g2

∂θ1

∣∣∣∣∣
φ=0

 , ∆22qb23 = E

−∂g2

∂θ2

∣∣∣∣∣
φ=0

 ,

∆22qb31 = E

−∂g3

∂π

∣∣∣∣∣
φ=0

 , ∆22qb32 = E

−∂g3

∂θ1

∣∣∣∣∣
φ=0

 and
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∆22qb33 = E

−∂g3

∂θ2

∣∣∣∣∣
φ=0

 .

On taking the expectation of the negative of the second derivatives and after simpli-

fications, the above quantities are obtained as

∆11qb =

m1∑
j=1

[
n1j

π (1− π) {1 + (n1j − 1) θ1}

]
= d1qb,

∆12qb1 =

m1∑
j=1

[
n1j

π (1− π) {1 + (n1j − 1) θ1}

]
= d1qb,

∆12qb2 = 0, ∆12qb3 = 0,

∆21qb1 =

m1∑
j=1

[
n1j

π (1− π) {1 + (n1j − 1) θ1}

]
= d1qb,

∆21qb2 =

m1∑
j=1

[
1− 2π

π (1− π)

]
= cqbm1, ∆21qb3 = 0,

∆22qb11 =
2∑
i=1

mi∑
j=1

[
nij

π (1− π) {1 + (nij − 1) θi}

]
=

2∑
i=1

diqb = dqb,

∆22qb12 = 0, ∆22qb13 = 0,

∆22qb21 =

m1∑
j=1

[
1− 2π

π (1− π)

]
= cqbm1, ∆22qb22 =

m1∑
j=1

[
(n1j − 1)

1 + (n1j − 1) θ1

]
= s1qb,

∆22qb23 = 0, ∆22qb31 =

m2∑
j=1

[
1− 2π

π (1− π)

]
= cqbm2,
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∆22qb32 = 0 and ∆22qb33 =

m2∑
j=1

[
(n2j − 1)

1 + (n2j − 1) θ2

]
= s2qb.

Then, the matrices ∆11qb, ∆12qb, ∆21qb, and ∆22qb are

∆11qb = d1qb, ∆12qb = (d1qb 0 0) ,

∆22qb =


dqb 0 0

cqbm1 s1qb 0

cqbm2 0 s2qb

 and ∆21qb =


d1qb

cqbm1

0


respectively.

Using the estimates of π, θ1 and θ2 obtained from simultaneously solving the equa-

tions (4.13), (4.14) and (4.15), the C (α) statistic, based on the quasi-likelihood

and Breslow’s (1990(a)) method of moments estimates of the parameters π, θ1 and

θ2, is Cqb = ψ2
1qb/

(
∆11qb −∆12qb∆

−1
22qb∆21qb

)
, which is distributed asymptotically, as

m→∞, a chi-squared distribution with 1 degree of freedom, where m = m1 +m2.

4.3.2 C(α) Test Based on the Quasi-Likelihood and the

Method of Moments Estimates by Srivastava and Wu

(1993)

We follow the same procedure as in the preceding section except that for estimating

the dispersion parameters θ1 and θ2, we use estimating functions proposed by Srivas-

tava and Wu (1993). Here, like in the preceding section, the quasi-likelihood score,

under the null hypothesis, which is the unbiased estimating function, to estimate the
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parameter π is

g1 =
∂Q

∂π

∣∣∣
φ=0

=
2∑
i=1

mi∑
j=1

[
1

1 + (nij − 1) θi

{
(zij − π)nij
π (1− π)

}]
.

Given π, the estimating functions based on the method of moments estimates for

θ1 and θ2 proposed by Srivastava and Wu (1993) are

g2 =

m1∑
j=1

[
n2

1j (z1j − π − φ1)2

(π + φ1) (1− π − φ1)
− n1j {1 + (n1j − 1) θ1}

]
(4.16)

and

g3 =

m2∑
j=1

[
n2

2j (z2j − π − φ2)2

(π + φ2) (1− π − φ2)
− n2j {1 + (n2j − 1) θ2}

]
. (4.17)

Under the null hypothesis, the
√
m consistent estimates of π, θ1 and θ2 are obtained

by solving the following equations

2∑
i=1

mi∑
j=1

[
1

1 + (nij − 1) θi

{
(zij − π)nij
π (1− π)

}]
= 0, (4.18)

m1∑
j=1

[
n2

1j (z1j − π)2

π (1− π)
− n1j {1 + (n1j − 1) θ1}

]
= 0 (4.19)

and

m2∑
j=1

[
n2

2j (z2j − π)2

π (1− π)
− n2j {1 + (n2j − 1) θ2}

]
= 0 (4.20)
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simultaneously.

As in the previous section we denote the matrices involving the second derivatives

(mixed) by ∆11qs, ∆12qs, ∆21qs and ∆22qs. Then, following similar steps as in the

preceding section, the elements of the matrices are obtained as

∆11qs = E

−∂2Q

∂φ2
1

∣∣∣∣∣
φ=0

 , ∆12qs1 = E

− ∂2Q

∂φ1∂π

∣∣∣∣∣
φ=0

 , ∆12qs2 = E

− ∂2Q

∂φ1∂θ1

∣∣∣∣∣
φ=0

 ,

∆12qs3 = E

− ∂2Q

∂φ1∂θ2

∣∣∣∣∣
φ=0

 , ∆21qs1 = E

− ∂2Q

∂π∂φ1

∣∣∣∣∣
φ=0

 , ∆21qs2 = E

− ∂g2

∂φ1

∣∣∣∣∣
φ=0

 ,

∆21qs3 = E

− ∂g3

∂φ1

∣∣∣∣∣
φ=0

 , ∆22qs11 = E

−∂2Q

∂π2

∣∣∣∣∣
φ=0

 , ∆22qs12 = E

− ∂2Q

∂π∂θ1

∣∣∣∣∣
φ=0

 ,

∆22qs13 = E

− ∂2Q

∂π∂θ2

∣∣∣∣∣
φ=0

 , ∆22qs21 = E

−∂g2

∂π

∣∣∣∣∣
φ=0

 , ∆22qs22 = E

−∂g2

∂θ1

∣∣∣∣∣
φ=0

 ,

∆22qs23 = E

−∂g2

∂θ2

∣∣∣∣∣
φ=0

 , ∆22qs31 = E

−∂g3

∂π

∣∣∣∣∣
φ=0

 , ∆22qs32 = E

−∂g3

∂θ1

∣∣∣∣∣
φ=0



and ∆22qs33 = E

−∂g3

∂θ2

∣∣∣∣∣
φ=0

 .

After detained derivation we obtain

∆11qs =

m1∑
j=1

[
n1j

π (1− π) {1 + (n1j − 1) θ1}

]
= d1qs,
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∆12qs1 =

m1∑
j=1

[
n1j

π (1− π) {1 + (n1j − 1) θ1}

]
= d1qs, ∆12qs2 = 0, ∆12qs3 = 0,

∆21qs1 =

m1∑
j=1

[
n1j

π (1− π) {1 + (n1j − 1) θ1}

]
= d1qs,

∆21qs2 =
(1− 2π)

π (1− π)

m1∑
j=1

n1j {1 + (n1j − 1) θ1} = cqss1qs, ∆21qs3 = 0,

∆22qs11 =
2∑
i=1

mi∑
j=1

[
nij

π (1− π) {1 + (nij − 1) θi}

]
=

2∑
i=1

di = dqs, ∆22qs12 = 0,

∆22qs13 = 0, ∆22qs21 =
(1− 2π)

π (1− π)

m1∑
j=1

n1j {1 + (n1j − 1) θ1} = cqss1qs,

∆22qs22 =

m1∑
j=1

n1j (n1j − 1) = e1qs, ∆22qs23 = 0,

∆22qs31 =
(1− 2π)

π (1− π)

m2∑
j=1

n2j {1 + (n2j − 1) θ2} = cqss2qs, ∆22qs32 = 0

and

∆22qs33 =

m2∑
j=1

n2j (n2j − 1) = e2qs.

Now, the matrices ∆11qs, ∆12qs, ∆21qs, and ∆22qs are

∆11qs = d1qs, ∆12qs = (d1qs 0 0) ,
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∆22qs =


dqs 0 0

cqss1qs e1qs 0

cqss2qs 0 e2qs

 and ∆21qs =


d1qs

cqss1qs

0

 respectively.

Using the estimates of π, θ1 and θ2 obtained from simultaneously solving the equa-

tions (4.18), (4.19) and (4.20), the C (α) statistic, based on the quasi-likelihood

and the method of moments estimates by Srivastava and Wu (1993), is Cqs =

ψ2
1qs/

(
∆11qs −∆12qs∆

−1
22qs∆21qs

)
, which is distributed, asymptotically, as χ2 with 1

degree of freedom.

4.3.3 C(α) Test Based on the Extended Quasi-Likelihood Es-

timates

The quasi-likelihood function does not possess a property similar to the log-likelihood

function with respect to the derivative of the dispersion parameter. Thus, the quasi-

likelihood function facilitates the estimation of only the mean parameter and it is

not suitable to estimate the dispersion parameter(s). In order to estimate the mean

parameter as well as the dispersion parameter from the same function, Nelder and

Pregibon (1987) and Godambe and Thompson (1989) propose the extended quasi-

likelihood function (EQL). This function is implemented by adding a normalizing

factor to the quasi-likelihood function.

The extended quasi-likelihood for an observation zij =
yij
nij

with mean and variance

specified in the previous section can be obtained from
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Q+ (zij; πi, θi) = −1

2
log (2k)− 1

2
log

[
zij (1− zij) {1 + (nij − 1) θi}

nij

]
+

∫ πi

zij

nij (zij − t)
t (1− t) {1 + (nij − 1) θi}

dt.
(4.21)

For two independent random samples zij, i = 1, 2; j = 1, 2, · · · , mi, where yij ∼

BB (πi, θi), the extended quasi-likelihood, apart from a constant, can be written as

Q+ = C − 1

2

2∑
i=1

mi∑
j=1

[
log {1 + (nij − 1)θi}

− 2

1 + (nij − 1)θi

{
yij log

(
πi
zij

)
+ (nij − yij) log

(
1− πi
1− zij

)}]
.

(4.22)

Under the null hypothesis, H0 : π1 = π2 = π, the extended quasi-likelihood (4.22)

takes the form

Q+ = C − 1

2

2∑
i=1

mi∑
j=1

[
log {1 + (nij − 1)θi}

− 2

1 + (nij − 1)θi

{
yij log

(
π

zij

)
+ (nij − yij) log

(
1− π
1− zij

)}]
.

(4.23)

The estimates of the parameters π, θ1 and θ2, under the null hypothesis, can be

obtained by directly maximizing the extended quasi-likelihood function (4.23) or by

solving the following estimating equations

2∑
i=1

mi∑
j=1

[
1

1 + (nij − 1)θi

{
yij
π
− nij − yij

1− π

}]
= 0,
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m1∑
j=1

[
n1j − 1

{1 + (n1j − 1)θ1}2

{
y1j log

(z1j

π

)
+ (n1j − y1j) log

(
1− z1j

1− π

)
−1 + (n1j − 1)θ1

2

]
= 0

and

m2∑
j=1

[
n2j − 1

{1 + (n2j − 1)θ2}2

{
y2j log

(z2j

π

)
+ (n2j − y2j) log

(
1− z2j

1− π

)
−1 + (n2j − 1)θ2

2

]
= 0

simultaneously.

Now, following the reparameterization as in section 4.2.2, the extended quasi-

likelihood in terms of π, φ1, φ2, θ1 and θ2, under the alternative hypothesis, can

be written as

Q+ = C − 1

2

2∑
i=1

mi∑
j=1

[
log {1 + (nij − 1)θi}

− 2

1 + (nij − 1)θi

{
yij log

(
π + φi
zij

)
+ (nij − yij) log

(
1− π − φi

1− zij

)}]
.

(4.24)

Then, the C (α) statistic is based on the adjusted score Seq = ψ1eq − β1eqγ1eq −

β2eqγ2eq − β3eqγ3eq, where ψ1eq =
∂Q+

∂φ1

∣∣∣
φ=0

and β1eq, β2eq and β3eq are the partial

regression coefficient of ψ1eq on γ1eq, ψ1eq on γ2eq, and ψ1eq on γ3eq respectively. It

can be seen that, for the extended quasi-likelihood, γ1eq = 0, γ2eq = 0, and γ3eq = 0.

Thus Seq = ψ1eq.
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The structure of the dispersion matrix ψ1eq is

Veq =

Deq Aeq

A′eq Beq

 ,

where Deq is 1× 1, Aeq is 1× 3 and Beq is 3× 3 with the following elements

D11eq = E

[
−∂

2Q+

∂Φ2
1

∣∣∣
Φ=0

]
,

A11eq = E

[
− ∂2Q+

∂Φ1∂π

∣∣∣
Φ=0

]
, A12eq = E

[
− ∂2Q+

∂Φ1∂θ1

∣∣∣
Φ=0

]
, A13eq = E

[
− ∂2Q

∂Φ1∂θ2

∣∣∣
Φ=0

]
,

B11eq = E

[
−∂

2Q+

∂π2

∣∣∣
Φ=0

]
, B12eq = E

[
− ∂

2Q+

∂π∂θ1

∣∣∣
Φ=0

]
, B13eq = E

[
− ∂

2Q+

∂π∂θ2

∣∣∣
Φ=0

]
,

B22eq = E

[
−∂

2Q+

∂θ2
1

∣∣∣
Φ=0

]
, B23eq = E

[
− ∂2Q+

∂θ1∂θ2

∣∣∣
Φ=0

]
and

B33eq = E

[
−∂

2Q+

∂θ2
2

∣∣∣
Φ=0

]
.

After taking expectation of the negative of mixed partial derivatives and on sim-

plification, the above quantities are obtained as follows

ψ1eq =

m1∑
j=1

[
1

1 + (n1j − 1)θ1

{
y1j

π
− n1j − y1j

1− π

}]
,

D11eq =

m1∑
j=1

[
1

1 + (n1j − 1)θ1

{
n1j

π(1− π)

}]
,
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A11eq =

m1∑
j=1

[
1

1 + (n1j − 1)θ1

{
n1j

π(1− π)

}]
, A12eq = 0, A13eq = 0,

B11eq =
2∑
i=1

m1∑
j=1

[
1

1 + (nij − 1)θi

{
nij

π(1− π)

}]
, B12eq = 0, B13eq = 0,

B22eq =
1

2

m1∑
j=1

[
− (n1j − 1)2

{1 + (n1j − 1)θ1}2

− 4 (n1j − 1)2

{1 + (n1j − 1)θ1}3

{
E

(
y1j log

(
π

z1j

))
+ n1jE

(
log

(
1− π

1− z1j

))
−E

(
y1j log

(
1− π

1− z1j

))}]
,

B23eq = 0 and

B33eq =
1

2

m2∑
j=1

[
− (n2j − 1)2

{1 + (n2j − 1)θ2}2

− 4 (n2j − 1)2

{1 + (n2j − 1)θ2}3

{
E

(
y2j log

(
π

z2j

))
+ n2jE

(
log

(
1− π

1− z2j

))
−E

(
y2j log

(
1− π

1− z2j

))}]
.

If we denote the estimate of δ based on the extended quasi-likelihood function by

δ̃eq and substitute these estimates in ψ1eq, D11eq, Aeq and Beq, then the C(α) test

based on the extended quasi-likelihood is Ceq = ψ2
1eq /

(
D11eq − AeqB−1

eq A
′
eq

)
, which is

distributed as chi-squared, asymptotically as m → ∞, where m = m1 + m2, with 1

degree of freedom.
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4.3.4 The Rao-Scott (RS) and the Adjusted Rao-Scott

(ARS) statistics

Rao and Scott (1992) proposed a simple method which is based on the concepts of

design effect and effective sample size for comparing independent groups of clustered

binary data. They applied this method to a variety of biometrical problems including

testing homogeneity of binomial proportions. Following Rao and Scott (1992) define

yi =

mi∑
j=1

yij, ni =

mi∑
j=1

nij, p̂i =
yi
ni
, p̂ =

2∑
i=1

yi

2∑
i=1

ni

,

vi = mi(mi − 1)−1n−2
i

mi∑
j=1

(yij − nij p̂i)2, di =
nivi

{p̂i(1− p̂i)}
,

ỹi =
yi
di
, ñi =

ni
di
, and p̃ =

2∑
i=1

ỹi

2∑
i=1

ñi

, i = 1, 2.

In sampling design literature the term di is called the design effect or the variance

inflation factor where as the term ñi is called the effective sample size (Kish (1965)).

The RS statistic for testing the equality of two proportions is

Crs =
2∑
i=1

(ỹi − ñip̃)2

{ñip̃(1− p̃)}
.

It is evident that rather than assuming any specific model for the intracluster corre-

lations, the RS statistic uses the binomial model for the overall response yi in the ith
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cluster. An adjustment for the variance inflation due to clustering or the design effect

is also taken into consideration in this statistic. For this reason, the RS statistic is

considered to be based on semi-parametric model. The RS statistic is asymptotically

distributed as χ2 with one degree of freedom under the null hypothesis. If the popu-

lation variance inflation factors Di’s are equal, that is, Di = D for i = 1, 2, which is

a special case, Rao and Scott (1992) recommend using ỹi =
yi
d

and ñi =
ni
d

, where d

is a pooled estimate of D and is defined as

d =

[
2∑
i=1

(1− fi)
p̂i(1− p̂i)
p̂(1− p̂)

di

]
,

with fi =
ni
n

and n =
2∑
i=1

ni. Taking this modification into account, the RS statistic

takes the form Cars =
χ2

d
, where

χ2 =
2∑
i=1

(yi − nip̂)2

{nip̂(1− p̂)}
.

We call this modified RS statistic as adjusted Rao-Scott statistic (ARS) which, under

the null hypothesis, is distributed asymptotically as a χ2 with 1 degree of freedom.

4.4 Simulation Study

In this section we report on a simulation study to compare the test statistics LR,

Cml, Ckmm, Cqb, Cqs, Ceq, Crs and Cars in terms of empirical size and power. The

litter sizes within each group were required to generate data for the simulation study.

The litter sizes and the number of litters were chosen as those of the control group
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(m1 = 27) and medium dose group (m2 = 21) of Paul (1982). Thus, the litter sizes of

group 1 were 12, 7, 6, 6, 7, 8, 10, 7, 8, 6, 11, 7, 8, 9, 2, 7, 9, 7, 11, 10, 4, 8, 10, 12, 8, 7, 8

and those of group 2 were 4, 4, 9, 8, 9, 7, 8, 9, 6, 4, 6, 7, 3, 13, 6, 8, 11, 7, 6, 10, 6. Data

were generated using “R” through the function “rbetabinom” with arguments size =

the litter sizes (nij), prob = πi, and rho = θi, within group i, where j = 1, 2, · · · , ni,

and i = 1, 2. For simultaneously solving the equations to obtain the estimates of

parameters we used the “R” built-in function “nleqslv”. For each simulation run,

3000 valid iterations were considered after discarding the non-convergent samples

and those that produced out-of-range estimates of the parameters. The dispersion

parameter, θ, of a beta-binomial distribution can take negative value as well. So,

we considered the negative estimates of θ1 and θ2. Since ∩j
(
−1

nij − 1

)
< θi < 1,

an estimate of θi was considered out-of-range if θ̂i <
−1

max {nij} − 1
+ 0.00001, where

max {nij} is the largest value of {nij} ; i = 1, 2; j = 1, 2, · · · ,mi. Convergence

of estimating equations depend on the initial values provided for the parameters.

If the same initial values were provided for all iterations then a large number of

samples became non-convergent. To keep the number of convergent samples to its

maximum we used method of moments estimates of parameters as initial values for

each iteration. Also in order to avoid the undefined estimates we discarded samples if

yij = 0 or yij = nij for all i = 1, 2; j = 1, 2, · · · ,mi. We observed that the number of

discarded samples depend on the arguments, π and θ, of the function “rbetabinom”

and this number was more for small values of π and close to the boundary values of

θ (close to 0 or 1).

As we considered unequal dispersion parameters θ1 and θ2 in developing the test

procedures, for computing the empirical levels and powers of the test statistics, we

took four sets of combinations of (θ1, θ2) into account. The combinations were (θ1, θ2)
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= (0.02, 0.02), (0.02, 0.05), (0.02, 0.10), (0.02, 0.20), (0.02, 0.30), (0.02, 0.40); (θ1, θ2)

= (0.05, 0.05), (0.05, 0.10), (0.05, 0.20), (0.05, 0.30), (0.05, 0.40), (0.05, 0.50); (θ1, θ2)

= (0.10, 0.20), (0.10, 0.15), (0.10, 0.20), (0.10, 0.30), (0.10, 0.40), (0.10, 0.50) and

(θ1, θ2) = (0.20, 0.20),(0.20, 0.30), (0.20, 0.40), (0.20, 0.50), (0.20, 0.60), (0.20, 0.70).

In order to compute empirical levels we considered π1 = π2 = 0.05, 0.10, 0.20, 0.30

for all of the above four combinations of (θ1, θ2) and the results corresponding to 5%

nominal level are presented in Tables 4.1 to 4.4 . We observe the following features

of the test statistics in maintaining the nominal levels.

a) For small values of π1 = π2(0.05), the C(α) statistic based on the Kleinman’s

method of moment estimates of nuisance parameters, δ, show conservative behaviour

in maintaining nominal level for all combinations of (θ1, θ2), from no difference be-

tween then to moderately large difference. For example, in Table 4.1 the level of Ckmm

is 2.7% for (θ1, θ2) = (0.02, 0.02) and it raises to 4.1% for (θ1, θ2) = (0.02, 0.20).

Tables 4.2, 4.3, and 4.4 also display the similar results for this test procedure.

b) The trends of the statistics Crs and Cars are also similar to that of Ckmm in

maintaining nominal levels. For example, the empirical level of Crs is 3.5% for

(θ1, θ2) = (0.20, 0.20) and 4.1% for (θ1, θ2) = (0.20, 0.40) as seen in Table 4.4.

c) For moderate values of π, that is, for π1 = π2 = 0.10 and the first two combi-

nations of (θ1, θ2), the statistic Ckmm behaves conservatively in maintaining nomi-

nal levels from no to moderate differences of the dispersion parameters. For exam-

ple, in Table 4.2, we see that 3.6% is the empirical level of this test procedure for

(θ1, θ2) = (0.05, 0.05) and 4.1% for (θ1, θ2) = (0.05, 0.20).

d) For the same values of the dispersion parameters θ1 and θ2, that is, when θ1 and

θ2 are equal in all four combinations, all of the test procedures are conservative with

respect to empirical levels if values of π1 = π2 are small (π1 = π2 = 0.05).
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e) All test procedures maintain the nominal level reasonably well for all combinations

of the dispersion parameters θ1 and θ2 apart from the above cases. The statistics

Cqb, Cqs and Ceq maintain nominal level better than the other statistics. For exam-

ple, in Table 4.3 for π1 = π2 = 0.30 and (θ1, θ2) = (0.10, 0.10), the empirical levels of

the statistics Cqb, Cqs and Ceq are 5.0%, 5.1% and 5.3% respectively which are close

to the nominal level.

For all of the statistics we computed empirical powers corresponding to the 5% nom-

inal significance level for combinations of (θ1, θ2) mentioned earlier. In computing

powers the values of (π1, π2) taken into consideration for all combinations of (θ1, θ2)

were (π1, π2) = (0.05, 0.10), (0.05, 0.15), (0.05, 0.20), (0.05, 0.25), (0.05, 0.30),

(0.05, 0.35), (0.05, 0.40), (0.05, 0.45), (0.05, 0.50) and (0.05, 0.60) and the results

are presented in Tables 4.5 to 4.8. The test statistics were of two categories, namely,

parametric and semi-parametric. The parametric procedures were LR, Cml and Ckmm

and the semi-parametric procedures were Cqb, Cqs, Ceq, Crs and Cars. In what follows

we present how the test procedures behave with respect to the empirical powers.

a) For specific values of (π1, π2), the powers of all of the test procedures increase

with the increase in the difference between the dispersion parameters, θ1 and θ2.

For example, in Table 4.5, the power of the likelihood ratio statistic, LR, is 7.6%

for (θ1, θ2) = (0.02, 0.02) and it raises to 58.9% for (θ1, θ2) = (0.02, 0.40) when

(π1, π2) = (0.05, 0.10).

b) The powers of all of the test procedures increase with the increase in the difference

between π1 and π2. We see in Table 4.6 that for (θ1, θ2) = (0.05, 0.20) the power of

Cml is 22.4% when (π1, π2) = (0.05, 0.10) and the increase of π2 to 0.30 leads to the

empirical power increase to 81.3%.

c) Of the parametric test procedures, the likelihood ratio statistic maintains the high-
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est power in all combinations of (θ1, θ2) and for all values of (π1, π2) which is followed

by Ckmm and Cml except in some situations where Cml is as good as Ckmm. In Ta-

ble 4.7, the powers of LR, Cml and Ckmm are 7.8%, 7.4% and 7.4% respectively for

(θ1, θ2) = (0.10, 0.10) and (π1, π2) = (0.05, 0.10) and the powers of these statistics

are 75.1%, 73.4% and 74.3% for (π1, π2) = (0.05, 0.35).

d) Among the test statistics based on the semi-parametric models, the Rao-Scott

statistic exhibit the highest powers in all of the parameter combinations considered.

Apart from the RS and ARS statistics, the test statistic based on the extended

quasi-likelihood estimates of the nuisance parameters performs best in terms of power

performance followed by Cqs and Cqb for all combinations of dispersion parameters,

(θ1, θ2) and all values of (π1, π2). It can be seen in Table 4.8 under column of

(0.20, 0.40) indicating values of (θ1, θ2) corresponding to (π1, π2) = (0.05, 0.10) that

the powers of Ceq, CqsandCqb are 22.8%, 21.7%and19.3% respectively and the powers

of Crs and Cars are 26.3% and 25.6% respectively.

4.5 Examples and Discussion

We considered data from a toxicological experiment reported in Paul (1982). The

data represent the number of live foetuses, nij, and the number of affected live foe-

tuses by treatments, yij, for each of four doses of treatments, namely, control (C), low

(L), medium (M) and high (H) dose groups. We present the data in Table 4.9 and

perform an analysis for all possible pairs of treatment groups. The estimates of the

parameters obtained by different methods that were required for calculating the test

statistics are reported in Table 4.10 and the values of the test statistics along with

the corresponding p-values are presented in Table 4.11. As in the simulation study
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we considered the litter sizes of those of control and medium dose groups, we focus on

the values of test statistics for this particular treatment combination which is given

in column 3 of Table 4.11. Though all of the test procedures reject the hypothesis

of equality of proportions there are some remarkable features in the values of the

test statistics. Among the three parametric test procedures the LR gives the largest

value and consequently the smallest p-value which indicates that the likelihood ratio

test procedure rejects the hypothesis most strongly. The LR statistic is followed by

the C (α) statistic, Ckmm and the score statistic Cml. Of the semi-parametric test

procedures, the value of Rao-Scott statistic, Crs, is the largest which indicates that

this statistic is the most powerful. Other than the Crs and Cars within the cate-

gory of semi-parametric tests, the Ceq statistic has the largest value which is followed

by Cqs and Cqb which indicates the superiority of the C (α) based on the extended

quasi-likelihood estimates of nuisance parameters over the C (α) statistics based on

the quasi-likelihood and method of moments estimates.

While the Crs and Cars statistics are liberal in maintaining nominal levels for π = 0.30

and all combinations of the dispersion parameters θ1 and θ2, they show some conser-

vative behaviour for small values of π. For moderate values of π these test procedures

behave conservatively for small to moderate differences between the dispersion pa-

rameters but exhibit liberal behaviour for large differences. In addition, not only the

performances with respect to powers are better but these statistics have additional

features such as computational ease and simplicity. The likelihood ratio statistic is

the only one that requires the estimates of parameters both under the null and the al-

ternative hypotheses. This statistic shows some upward trend in maintaining nominal

level for large values of π and large differences in the dispersion parameters. For small

to moderate differences in the dispersion parameters and small to moderate values

of π it shows some slightly conservative behaviour. But overall this statistic main-
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tains nominal level very well. Among the parametric test procedures, the likelihood

ratio statistic demonstrates highest power for all parameter combinations. The score

statistic, Cml, and the C (α) statistic Ckmm, require the estimates of the parameters

only under the null hypothesis. The latter shows higher power than the former in all

instances. Both are conservative for small differences in (θ1, θ2) and small values of

π. In other combinations these statistics are liberal. The C (α) statistic based on the

extended quasi-likelihood, Ceq, performs best in terms of powers among Cqb, Cqs and

Ceq and for this statistic the empirical level is closer to the nominal level. These three

statistics are also conservative for some combinations of the dispersion parameters,

particularly when the differences in θ1 and θ2 are small accompanied by the small

values of π. In other instances they are somewhat liberal, although, overall, they

maintain the nominal level reasonably well.
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Table 4.1: Empirical level (%) of test statistics,LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium Dose Groups)

Test Statistic π1 = π2
(θ1, θ2)

0.05 (.02, .02) (.02, .05) (.02, .10) (.02, .20) (.02, .30) (.02, .40)
LR 3.5 3.7 4.2 4.8 5.3 5.8
Cml 3.5 4.3 5.1 5.7 6.2 6.6
Ckmm 2.7 2.9 3.5 4.1 4.7 5.2
Cqb 3.7 4.1 5.2 5.6 5.9 6.4
Cqs 3.8 4.2 5.4 5.6 5.9 6.5
Ceq 4.0 4.3 4.8 5.2 5.5 5.9
Crs 3.3 3.6 3.9 4.2 4.5 4.6
Cars 3.4 3.6 4.1 4.4 4.7 4.8

0.10
LR 4.1 4.3 4.7 5.0 5.3 5.5
Cml 4.4 4.6 5.0 5.4 5.6 5.7
Ckmm 3.8 3.9 4.3 4.6 5.0 5.2
Cqb 4.3 4.6 5.0 5.3 5.4 5.5
Cqs 3.9 4.3 5.1 5.3 5.5 5.6
Ceq 3.9 4.4 4.6 5.2 5.3 5.6
Crs 3.8 4.5 4.7 4.9 5.0 5.4
Cars 4.0 4.4 4.7 5.1 5.1 5.5

0.20
LR 4.4 4.5 4.8 4.8 5.1 5.3
Cml 5.1 5.2 5.2 5.4 5.5 5.1
Ckmm 4.2 4.3 4.7 4.7 5.1 5.2
Cqb 4.5 4.6 5.0 5.1 5.2 5.6
Cqs 4.7 4.9 5.3 5.5 5.7 5.9
Ceq 4.8 5.0 5.2 5.3 5.5 5.6
Crs 4.3 4.5 4.9 5.2 5.5 5.7
Cars 4.4 4.6 5.1 5.3 5.7 6.3

0.30
LR 5.2 5.3 5.6 5.6 5.8 5.8
Cml 4.9 5.3 5.4 5.6 5.9 6.2
Ckmm 5.2 5.4 5.7 5.7 6.2 6.6
Cqb 4.7 4.9 5.4 5.5 5.8 6.3
Cqs 5.0 5.1 5.4 5.6 6.1 6.5
Ceq 5.0 5.1 5.4 5.5 5.5 5.5
Crs 5.5 5.6 5.9 6.0 6.3 6.7
Cars 5.5 5.7 6.1 6.3 6.7 6.9
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Table 4.2: Empirical level (%) of test statistics,LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium Dose Groups)

Test Statistic π1 = π2
(θ1, θ2)

0.05 (.05, .05) (.05, .10) (.05, .20) (.05, .30) (.05, .40) (.05, .50)
LR 3.3 3.5 4.0 4.6 5.2 5.6
Cml 3.3 4.2 4.9 5.5 6.0 6.4
Ckmm 2.5 2.7 3.3 3.9 4.5 5.0
Cqb 3.5 3.9 5.0 5.4 5.7 6.2
Cqs 3.7 4.1 5.1 5.4 5.7 6.2
Ceq 3.8 4.1 4.6 5.0 5.3 5.7
Crs 3.1 3.4 3.7 4.0 4.3 4.4
Cars 3.2 3.4 3.9 4.2 4.5 4.6

0.10
LR 3.9 4.2 4.5 4.8 5.1 5.3
Cml 4.2 4.4 4.8 5.2 5.4 5.5
Ckmm 3.6 3.7 4.1 4.4 4.8 5.0
Cqb 4.1 4.4 4.8 5.1 5.3 5.3
Cqs 3.7 4.2 4.8 5.1 5.2 5.4
Ceq 3.7 4.2 4.4 5.0 5.1 5.4
Crs 3.6 4.3 4.5 4.7 4.8 5.2
Cars 3.8 4.2 4.5 4.9 4.9 5.3

0.20
LR 4.2 4.3 4.6 4.6 4.9 5.2
Cml 4.9 5.0 5.0 5.2 5.3 4.9
Ckmm 4.0 4.1 4.5 4.5 4.9 5.0
Cqb 4.3 4.4 4.8 4.9 5.0 5.4
Cqs 4.5 4.8 5.1 5.3 5.5 5.7
Ceq 4.6 4.8 5.0 5.1 5.3 5.4
Crs 4.1 4.3 4.7 5.0 5.3 5.5
Cars 4.2 4.4 4.9 5.1 5.5 6.1

0.30
LR 5.0 5.1 5.4 5.4 5.6 5.6
Cml 4.7 5.1 5.2 5.4 5.7 6.0
Ckmm 5.0 5.2 5.5 5.5 6.0 6.4
Cqb 4.5 4.7 5.2 5.3 5.6 6.1
Cqs 4.8 4.8 5.4 5.4 6.0 6.3
Ceq 4.8 4.9 5.2 5.3 5.3 5.3
Crs 5.3 5.4 5.7 5.8 6.1 6.5
Cars 5.3 5.5 5.9 6.1 6.5 6.7
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Table 4.3: Empirical level (%) of test statistics,LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium Dose Groups)

Test Statistic π1 = π2
(θ1, θ2)

0.05 (.10, .10) (.10, .15) (.10, .20) (.10, .30) (.10, .40) (.10, .50)
LR 3.8 4.0 4.5 5.1 5.6 6.1
Cml 3.8 4.6 5.4 6.0 6.5 6.9
Ckmm 3.0 3.2 3.8 4.4 5.0 5.5
Cqb 4.0 4.4 5.5 5.9 6.2 6.7
Cqs 4.1 4.5 5.5 6.0 6.2 6.7
Ceq 4.3 4.6 5.1 5.5 5.8 6.1
Crs 3.6 3.9 4.2 4.5 4.8 4.9
Cars 3.7 3.9 4.4 4.5 5.0 5.1

0.10
LR 4.4 4.6 5.0 5.3 5.6 5.8
Cml 4.7 4.9 5.3 5.7 5.9 6.0
Ckmm 4.1 4.2 4.7 4.9 5.3 5.5
Cqb 4.7 4.9 5.3 5.6 5.7 5.8
Cqs 4.2 4.6 5.3 5.6 5.7 5.9
Ceq 4.2 4.7 4.9 5.5 5.6 5.9
Crs 4.1 4.8 5.0 5.2 5.3 5.7
Cars 4.3 4.7 5.0 5.4 5.4 5.8

0.20
LR 4.7 4.8 5.1 5.1 5.4 5.6
Cml 5.4 5.5 5.5 5.7 5.8 5.4
Ckmm 4.5 4.5 5.0 5.0 5.4 5.5
Cqb 4.8 4.9 5.3 5.4 5.5 5.9
Cqs 5.0 5.1 5.6 5.8 6.0 6.2
Ceq 5.1 5.3 5.5 5.6 5.8 5.9
Crs 4.6 4.8 5.2 5.5 5.8 6.0
Cars 4.7 4.9 5.4 5.6 6.0 6.6

0.30
LR 5.5 5.6 5.9 5.9 6.1 6.1
Cml 5.2 5.6 5.7 5.9 6.2 6.5
Ckmm 5.5 5.7 6.0 6.0 6.5 6.9
Cqb 5.0 5.2 5.7 5.8 6.1 6.6
Cqs 5.1 5.4 5.7 5.9 6.3 6.7
Ceq 5.3 5.4 5.7 5.8 5.8 5.8
Crs 5.8 5.9 6.2 6.3 6.6 7.0
Cars 5.8 6.0 6.4 6.6 7.0 7.2
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Table 4.4: Empirical level (%) of test statistics,LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium Dose Groups)

Test Statistic π1 = π2
(θ1, θ2)

0.05 (.20, .20) (.20, .30) (.20, .40) (.20, .50) (.20, .60) (.20, .70)
LR 3.7 3.9 4.4 5.0 5.5 6.0
Cml 3.7 4.5 5.3 5.9 6.4 6.8
Ckmm 2.9 3.1 3.7 4.3 4.9 5.4
Cqb 3.9 4.3 5.4 5.8 6.1 6.6
Cqs 4.1 4.3 5.6 5.9 6.0 6.7
Ceq 4.2 4.5 5.0 5.4 5.7 6.1
Crs 3.5 3.8 4.1 4.4 4.7 4.8
Cars 3.6 3.8 4.3 4.6 4.9 5.0

0.10
LR 4.3 4.5 4.9 5.2 5.5 5.7
Cml 4.6 4.8 5.2 5.6 5.8 5.9
Ckmm 4.0 4.1 4.5 4.8 5.2 5.4
Cqb 4.5 4.8 5.2 5.5 5.6 5.7
Cqs 4.1 4.5 5.3 5.6 5.7 5.7
Ceq 4.1 4.6 4.8 5.4 5.5 5.8
Crs 4.0 4.7 4.9 5.1 5.2 5.6
Cars 4.2 4.6 4.9 5.3 5.3 5.7

0.20
LR 4.6 4.7 5.0 5.0 5.3 5.5
Cml 5.3 5.4 5.4 5.6 5.7 5.3
Ckmm 4.4 4.5 4.9 4.9 5.3 5.4
Cqb 4.7 4.8 5.2 5.3 5.4 5.8
Cqs 4.9 5.0 5.5 5.8 6.1 6.2
Ceq 5.0 5.2 5.4 5.5 5.7 5.8
Crs 4.5 4.7 5.1 5.4 5.7 5.9
Cars 4.6 4.8 5.3 5.5 5.9 6.5

0.30
LR 5.4 5.5 5.8 5.8 6.0 6.0
Cml 5.1 5.5 5.6 5.8 6.1 6.4
Ckmm 5.4 5.6 5.9 5.9 6.4 6.8
Cqb 4.9 5.1 5.6 5.7 6.0 6.5
Cqs 5.2 5.3 5.7 6.0 6.3 6.7
Ceq 5.2 5.3 5.6 5.7 5.7 5.7
Crs 5.7 5.8 6.1 6.2 6.5 6.9
Cars 5.7 5.9 6.3 6.5 6.9 7.1
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Table 4.5: Empirical power (%) of test statistics, LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium Dose Groups)

Test Statistic (π1, π2)
(θ1, θ2)

(0.05, 0.10) (.02, .02) (.02, .05) (.02, .10) (.02, .20) (.02, .30) (.02, .40)

LR 7.6 12.5 22.9 41.1 52.1 58.9

Cml 7.2 11.1 21.5 38.0 49.7 55.6

Ckmm 7.2 11.9 22.4 39.4 51.0 56.9

Cqb 6.2 9.8 17.6 30.1 42.4 49.7

Cqs 6.8 10.5 19.0 33.2 45.4 52.3

Ceq 6.9 10.7 21.0 35.3 46.8 52.9

Crs 8.6 13.3 24.6 43.2 54.4 62.1

Cars 8.3 12.9 23.9 42.4 53.6 61.3

(0.05, 0.15)

LR 18.1 27.0 39.1 52.1 69.0 85.4

Cml 16.0 22.3 35.6 47.9 64.9 79.6

Ckmm 16.9 24.0 37.8 50.0 67.1 83.9

Cqb 11.9 17.2 28.7 42.6 55.7 71.2

Cqs 13.7 18.8 32.2 43.7 59.0 74.1

Ceq 14.3 20.1 33.1 45.9 61.2 75.5

Crs 20.1 30.1 45.0 55.7 73.6 91.2

Cars 19.8 28.7 43.2 53.2 72.4 87.9

(0.05, 0.20)

LR 33.4 43.2 53.9 73.1 82.7 96.7

Cml 31.1 39.0 50.1 69.4 79.0 92.3

Ckmm 32.7 41.8 52.0 72.0 80.9 94.6

Cqb 24.4 31.9 43.5 58.9 67.4 81.8

Cqs 27.1 34.0 46.3 64.3 72.9 84.8

Ceq 28.3 36.5 48.1 66.2 74.9 86.3

Crs 36.9 46.2 57.1 76.1 84.7 99.4

Cars 35.1 44.8 55.4 74.2 83.4 98.0

(0.05, 0.25)

LR 51.2 58.9 72.2 86.7 95.2 100

Cml 47.9 54.4 64.7 81.1 90.8 97.7

Ckmm 49.3 57.0 68.9 83.4 92.5 98.5

Cqb 38.3 45.7 56.1 72.0 81.4 90.4

Cqs 41.8 49.6 58.3 74.7 84.9 92.9

Ceq 44.7 51.2 60.2 76.7 87.0 95.7

Crs 56.4 63.5 77.8 89.7 98.3 100

Cars 53.6 61.2 75.3 88.0 97.1 100

(0.05, 0.30)

LR 65.6 72.4 84.5 96.7 100 100

Cml 62.3 69.8 80.4 95.1 100 100

Ckmm 64.2 71.1 82.6 95.8 100 100

Cqb 54.7 62.7 74.1 89.9 96.4 100

Cqs 58.1 65.8 77.3 91.9 98.4 100

Ceq 60.1 66.5 78.0 94.2 99.7 100

Crs 68.9 76.1 89.1 99.4 100 100

Cars 67.1 74.3 87.3 97.8 100 100
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Table 4.5: (continued)

Test Statistic (π1, π2)
(θ1, θ2)

(0.05, 0.35) (.02, .02) (.02, .05) (.02, .10) (.02, .20) (.02, .30) (.02, .40)

LR 74.9 83.1 95.4 100 100 100

Cml 73.2 80.2 92.8 100 100 100

Ckmm 74.1 81.9 93.7 100 100 100

Cqb 66.2 74.7 87.2 100 100 100

Cqs 69.7 77.2 89.7 100 100 100

Ceq 71.4 78.3 91.0 100 100 100

Crs 77.8 87.1 97.6 100 100 100

Cars 76.3 85.2 96.3 100 100 100

(0.05, 0.40)

LR 82.3 95.2 100 100 100 100

Cml 78.3 91.2 100 100 100 100

Ckmm 80.1 93.3 100 100 100 100

Cqb 73.4 86.3 98.7 100 100 100

Cqs 75.5 88.7 100 100 100 100

Ceq 76.7 89.3 100 100 100 100

Crs 85.2 98.3 100 100 100 100

Cars 84.1 96.9 100 100 100 100

(0.05, 0.45)

LR 91.2 100 100 100 100 100

Cml 88.0 100 100 100 100 100

Ckmm 89.3 100 100 100 100 100

Cqb 83.4 97.8 100 100 100 100

Cqs 85.9 99.7 100 100 100 100

Ceq 86.8 99.9 100 100 100 100

Crs 94.1 100 100 100 100 100

Cars 92.7 100 100 100 100 100

(0.05, 0.50)

LR 100 100 100 100 100 100

Cml 100 100 100 100 100 100

Ckmm 100 100 100 100 100 100

Cqb 97.3 100 100 100 100 100

Cqs 99.9 100 100 100 100 100

Ceq 100 100 100 100 100 100

Crs 100 100 100 100 100 100

Cars 100 100 100 100 100 100

(0.05, 0.60)

LR 100 100 100 100 100 100

Cml 100 100 100 100 100 100

Ckmm 100 100 100 100 100 100

Cqb 100 100 100 100 100 100

Cqs 100 100 100 100 100 100

Ceq 100 100 100 100 100 100

Crs 100 100 100 100 100 100

Cars 100 100 100 100 100 100
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Table 4.6: Empirical power (%) of test statistics, LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium Dose Groups)

Test Statistic (π1, π2)
(θ1, θ2)

(0.05, 0.10) (.05, .05) (.05, .10) (.05, .20) (.05, .30) (.05, .40) (.05, .50)

LR 8.0 13.3 23.9 42.6 53.4 60.3

Cml 7.6 11.9 22.4 39.5 50.9 57.0

Ckmm 7.6 12.7 23.6 40.9 52.2 58.3

Cqb 6.6 10.6 18.7 31.7 43.6 51.1

Cqs 7.2 11.3 20.9 36.3 47.1 54.0

Ceq 7.3 11.5 22.2 36.8 48.0 54.3

Crs 9.0 14.1 25.5 44.7 55.6 63.5

Cars 8.7 13.7 25.0 43.9 54.8 62.8

(0.05, 0.15)

LR 18.5 27.8 40.2 53.5 70.2 86.8

Cml 16.4 23.1 36.6 49.4 66.3 81.0

Ckmm 17.3 24.8 38.9 51.5 68.1 85.3

Cqb 12.3 18.0 29.8 43.9 56.9 72.6

Cqs 13.9 20.1 33.7 46.4 61.1 75.8

Ceq 14.7 20.9 34.3 47.4 62.6 76.9

Crs 20.5 31.0 46.2 57.2 74.8 92.6

Cars 20.2 29.5 44.5 54.7 73.6 89.5

(0.05, 0.20)

LR 33.8 44.0 55.0 74.6 83.9 98.3

Cml 31.5 39.8 51.2 70.9 80.3 93.7

Ckmm 33.1 42.6 53.0 73.5 82.1 96.0

Cqb 24.8 32.7 44.7 60.3 68.7 83.2

Cqs 27.6 35.7 48.0 65.9 75.1 85.9

Ceq 28.7 37.3 49.1 67.7 76.1 87.7

Crs 37.3 47.1 58.0 77.6 85.9 100

Cars 35.5 45.6 56.5 75.7 84.7 99.6

(0.05, 0.25)

LR 51.6 59.7 73.1 88.2 96.4 100

Cml 48.3 55.2 65.8 82.6 92.1 99.3

Ckmm 49.7 57.8 70.0 84.9 93.7 99.9

Cqb 38.7 46.5 57.3 73.6 82.6 91.8

Cqs 42.3 50.2 60.1 76.5 85.9 95.7

Ceq 45.1 52.0 61.3 78.2 88.2 97.3

Crs 56.8 64.3 79.0 91.2 99.7 100

Cars 54.0 62.1 76.5 89.5 98.3 100

(0.05, 0.30)

LR 66.0 73.2 85.6 98.2 100 100

Cml 62.7 70.6 81.3 96.7 100 100

Ckmm 64.6 72.0 83.5 97.3 100 100

Cqb 55.1 63.5 75.2 91.4 97.8 100

Cqs 58.6 66.2 78.1 93.7 100 100

Ceq 60.5 67.3 79.2 95.7 100 100

Crs 69.3 76.9 91.0 100 100 100

Cars 67.5 75.1 88.4 99.3 100 100
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Table 4.6: (continued)

Test Statistic (π1, π2)
(θ1, θ2)

(0.05, 0.35) (.05, .05) (.05, .10) (.05, .20) (.05, .30) (.05, .40) (.05, .50)

LR 75.3 83.9 96.5 100 100 100

Cml 73.6 81.0 93.7 100 100 100

Ckmm 74.5 82.7 94.9 100 100 100

Cqb 66.6 75.5 88.1 100 100 100

Cqs 70.3 77.9 90.8 100 100 100

Ceq 71.8 79.1 92.3 100 100 100

Crs 78.2 87.9 98.9 100 100 100

Cars 76.7 86.1 97.5 100 100 100

(0.05, 0.40)

LR 82.7 96.0 100 100 100 100

Cml 78.7 92.2 100 100 100 100

Ckmm 80.5 94.1 100 100 100 100

Cqb 73.8 87.1 100 100 100 100

Cqs 76.8 89.4 100 100 100 100

Ceq 77.1 90.1 100 100 100 100

Crs 85.6 99.2 100 100 100 100

Cars 84.5 97.9 100 100 100 100

(0.05, 0.45)

LR 91.6 100 100 100 100 100

Cml 88.4 100 100 100 100 100

Ckmm 89.7 100 100 100 100 100

Cqb 83.8 98.9 100 100 100 100

Cqs 86.1 100 100 100 100 100

Ceq 87.2 100 100 100 100 100

Crs 94.5 100 100 100 100 100

Cars 93.1 100 100 100 100 100

(0.05, 0.50)

LR 100 100 100 100 100 100

Cml 100 100 100 100 100 100

Ckmm 100 100 100 100 100 100

Cqb 98.1 100 100 100 100 100

Cqs 100 100 100 100 100 100

Ceq 100 100 100 100 100 100

Crs 100 100 100 100 100 100

Cars 100 100 100 100 100 100

(0.05, 0.60)

LR 100 100 100 100 100 100

Cml 100 100 100 100 100 100

Ckmm 100 100 100 100 100 100

Cqb 100 100 100 100 100 100

Cqs 100 100 100 100 100 100

Ceq 100 100 100 100 100 100

Crs 100 100 100 100 100 100

Cars 100 100 100 100 100 100
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Table 4.7: Empirical power (%) of test statistics, LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium Dose Groups)

Test Statistic (π1, π2)
(θ1, θ2)

(0.05, 0.10) (.10, .10) (.10, .15) (.10, .20) (.10, .30) (.10, .40) (.10, .50)

LR 7.8 13.0 23.5 42.3 53.2 60.1

Cml 7.4 11.6 22.1 39.2 50.9 56.8

Ckmm 7.4 12.4 23.0 40.6 52.1 58.1

Cqb 6.4 10.3 18.2 31.3 43.5 51.0

Cqs 7.0 11.1 20.8 35.7 47.5 53.9

Ceq 7.1 11.2 21.6 36.5 48.0 54.2

Crs 8.8 13.8 25.2 44.4 55.5 63.5

Cars 8.5 13.4 24.5 43.6 54.7 62.8

(0.05, 0.15)

LR 18.3 27.5 39.7 53.3 70.2 86.6

Cml 16.2 22.8 36.2 49.1 66.1 80.8

Ckmm 17.1 24.5 38.4 51.2 68.2 85.4

Cqb 12.1 17.7 29.3 43.8 56.9 72.5

Cqs 13.9 20.0 32.5 46.0 60.1 75.7

Ceq 14.5 20.6 33.7 47.1 62.4 76.8

Crs 20.3 30.6 45.6 56.9 74.7 92.4

Cars 20.0 29.2 43.2 54.4 73.5 89.3

(0.05, 0.20)

LR 33.6 43.7 54.5 74.3 83.9 98.0

Cml 31.3 39.5 50.7 70.6 80.2 93.6

Ckmm 32.9 42.3 52.6 73.2 82.1 95.9

Cqb 24.6 32.4 44.1 60.1 68.5 83.1

Cqs 27.4 35.2 47.2 65.9 75.3 85.8

Ceq 28.5 37.0 48.1 67.4 76.1 87.7

Crs 37.1 46.7 57.7 77.3 85.8 100

Cars 35.3 45.3 56.0 75.4 84.6 99.5

(0.05, 0.25)

LR 51.4 59.4 72.8 87.9 96.4 100

Cml 48.1 54.9 65.3 82.3 92.0 99.0

Ckmm 49.5 57.5 69.5 84.6 93.6 99.8

Cqb 38.5 46.2 56.7 73.2 82.6 91.8

Cqs 42.8 50.4 59.1 76.2 86.6 96.1

Ceq 44.9 51.7 60.8 77.9 88.1 97.1

Crs 56.6 64.0 78.4 90.9 99.5 100

Cars 53.8 61.7 75.9 89.2 98.3 100

(0.05, 0.30)

LR 65.8 72.9 85.1 97.9 100 100

Cml 62.5 70.3 81.0 96.3 100 100

Ckmm 64.4 71.6 83.2 97.0 100 100

Cqb 54.9 63.2 74.7 91.1 97.8 100

Cqs 58.8 66.5 77.9 93.8 100 100

Ceq 60.3 67.0 78.6 95.4 100 100

Crs 69.1 76.6 89.7 100 100 100

Cars 67.3 74.8 87.9 99.3 100 100
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Table 4.7: (continued)

Test Statistic (π1, π2)
(θ1, θ2)

(0.05, 0.35) (.10, .10) (.10, .15) (.10, .20) (.10, .30) (.10, .40) (.10, .50)

LR 75.1 83.6 95.0 100 100 100

Cml 73.4 80.7 93.4 100 100 100

Ckmm 74.3 82.4 94.4 100 100 100

Cqb 66.4 75.2 87.8 100 100 100

Cqs 70.4 77.7 90.5 100 100 100

Ceq 71.6 78.8 91.7 100 100 100

Crs 78.0 87.6 98.5 100 100 100

Cars 76.5 85.7 97.0 100 100 100

(0.05, 0.40)

LR 82.5 95.7 100 100 100 100

Cml 78.5 91.7 100 100 100 100

Ckmm 80.3 93.8 100 100 100 100

Cqb 73.6 86.8 100 100 100 100

Cqs 75.8 89.1 100 100 100 100

Ceq 76.9 89.8 100 100 100 100

Crs 85.4 98.8 100 100 100 100

Cars 84.3 97.4 100 100 100 100

(0.05, 0.45)

LR 91.3 100 100 100 100 100

Cml 88.2 100 100 100 100 100

Ckmm 89.5 100 100 100 100 100

Cqb 83.6 98.5 100 100 100 100

Cqs 86.8 100 100 100 100 100

Ceq 87.0 100 100 100 100 100

Crs 94.3 100 100 100 100 100

Cars 92.9 100 100 100 100 100

(0.05, 0.50)

LR 100 100 100 100 100 100

Cml 100 100 100 100 100 100

Ckmm 100 100 100 100 100 100

Cqb 100 100 100 100 100 100

Cqs 100 100 100 100 100 100

Ceq 100 100 100 100 100 100

Crs 100 100 100 100 100 100

Cars 100 100 100 100 100 100

(0.05, 0.60)

LR 100 100 100 100 100 100

Cml 100 100 100 100 100 100

Ckmm 100 100 100 100 100 100

Cqb 100 100 100 100 100 100

Cqs 100 100 100 100 100 100

Ceq 100 100 100 100 100 100

Crs 100 100 100 100 100 100

Cars 100 100 100 100 100 100
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Table 4.8: Empirical power (%) of test statistics, LR, Cml, Ckmm, Cqb, Cqs, Ceq, Crs,
Cars; based on 3, 000 replications and α = 0.05 (Control and Medium Dose Groups)

Test Statistic (π1, π2)
(θ1, θ2)

(0.05, 0.10) (.20, .20) (.20, .30) (.20, .40) (.20, .50) (.20, .60) (.20, .70)

LR 8.3 13.7 24.6 43.2 54.0 61.0

Cml 7.9 12.3 23.2 40.1 51.7 57.7

Ckmm 7.8 13.1 24.1 41.5 53.0 58.9

Cqb 7.0 11.0 19.3 32.2 44.3 51.6

Cqs 7.4 11.8 21.7 36.6 47.8 54.9

Ceq 7.6 12.0 22.8 37.5 48.7 55.1

Crs 9.3 14.5 26.3 45.3 56.3 64.1

Cars 9.0 14.1 25.6 44.6 55.5 63.4

(0.05, 0.15)

LR 18.8 28.2 40.8 54.2 70.9 87.6

Cml 17.7 23.5 37.3 50.0 66.8 81.5

Ckmm 17.7 25.2 39.5 52.3 69.1 86.0

Cqb 12.6 18.4 30.5 44.7 57.6 73.4

Cqs 14.3 20.5 33.6 47.1 61.8 76.7

Ceq 15.0 21.3 34.8 48.0 63.1 77.4

Crs 20.8 31.4 46.6 57.8 75.4 93.4

Cars 20.4 29.9 44.9 55.3 74.4 90.0

(0.05, 0.20)

LR 34.1 44.4 55.6 75.2 84.6 98.9

Cml 31.8 40.2 51.8 71.5 80.9 94.2

Ckmm 33.4 43.0 53.7 74.1 82.8 96.8

Cqb 25.1 33.1 45.2 61.0 69.3 83.9

Cqs 27.8 36.1 48.2 66.4 75.7 87.5

Ceq 29.0 37.7 49.8 68.3 76.8 88.4

Crs 37.6 47.4 58.3 78.3 86.6 100

Cars 35.8 46.0 57.1 76.1 85.3 99.9

(0.05, 0.25)

LR 51.9 60.1 73.8 88.8 97.1 100

Cml 48.6 55.6 65.9 83.2 92.7 99.9

Ckmm 50.0 58.2 70.6 85.5 94.4 100

Cqb 39.1 46.9 57.8 74.1 83.3 92.6

Cqs 42.8 50.6 60.2 77.4 86.6 96.8

Ceq 45.5 52.4 61.9 78.8 88.8 97.9

Crs 57.1 64.7 79.5 91.8 100 100

Cars 54.3 62.4 77.1 90.1 99.3 100

(0.05, 0.30)

LR 66.3 73.6 86.2 98.9 100 100

Cml 63.0 71.0 82.1 97.2 100 100

Ckmm 64.9 72.3 84.3 97.9 100 100

Cqb 55.5 63.9 75.9 92.0 98.5 100

Cqs 58.7 66.9 78.6 94.8 100 100

Ceq 60.8 67.7 79.7 96.3 100 100

Crs 69.6 77.3 90.8 100 100 100

Cars 67.8 75.5 89.0 99.9 100 100
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Table 4.8: (continued)

Test Statistic (π1, π2)
(θ1, θ2)

(0.05, 0.35) (.20, .20) (.20, .30) (.20, .40) (.20, .50) (.20, .60) (.20, .70)

LR 75.6 84.3 97.1 100 100 100

Cml 73.9 81.4 94.5 100 100 100

Ckmm 74.9 83.1 95.4 100 100 100

Cqb 66.9 75.9 88.9 100 100 100

Cqs 70.6 78.7 91.4 100 100 100

Ceq 72.1 79.5 92.8 100 100 100

Crs 78.5 88.3 99.3 100 100 100

Cars 77.0 86.4 98.0 100 100 100

(0.05, 0.40)

LR 83.1 96.4 100 100 100 100

Cml 79.0 92.4 100 100 100 100

Ckmm 80.8 94.5 100 100 100 100

Cqb 74.1 87.6 100 100 100 100

Cqs 76.7 89.8 100 100 100 100

Ceq 77.4 90.5 100 100 100 100

Crs 85.9 99.7 100 100 100 100

Cars 84.8 98.2 100 100 100 100

(0.05, 0.45)

LR 91.8 100 100 100 100 100

Cml 88.7 100 100 100 100 100

Ckmm 90.0 100 100 100 100 100

Cqb 84.1 99.1 100 100 100 100

Cqs 86.7 100 100 100 100 100

Ceq 87.5 100 100 100 100 100

Crs 94.8 100 100 100 100 100

Cars 93.4 100 100 100 100 100

(0.05, 0.50)

LR 100 100 100 100 100 100

Cml 100 100 100 100 100 100

Ckmm 100 100 100 100 100 100

Cqb 98.1 100 100 100 100 100

Cqs 100 100 100 100 100 100

Ceq 100 100 100 100 100 100

Crs 100 100 100 100 100 100

Cars 100 100 100 100 100 100

(0.05, 0.60)

LR 100 100 100 100 100 100

Cml 100 100 100 100 100 100

Ckmm 100 100 100 100 100 100

Cqb 100 100 100 100 100 100

Cqs 100 100 100 100 100 100

Ceq 100 100 100 100 100 100

Crs 100 100 100 100 100 100

Cars 100 100 100 100 100 100
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Table 4.10: Estimates of parameters obtained by different methods for treatment
combinations of toxicological data in Table 4.9.

Treatment Combinations

CL CM CH LM LH MH

π̂0 0.1418 0.2354 0.1956 0.2377 0.1820 0.3165

θ̂10 0.2048 0.3164 0.2637 0.2344 0.1488 0.3079

θ̂20 0.1122 0.3081 0.0993 0.3077 0.098 0.1723

π̂1a 0.1442 0.1442 0.1442 0.1272 0.1272 0.3505
π̂2a 0.1272 0.3505 0.2387 0.3505 0.2387 0.2387

θ̂1a 0.2069 0.2069 0.2069 0.1054 0.1054 0.3155

θ̂2a 0.1054 0.3155 0.1132 0.3155 0.1132 0.1132

π̂kmm 0.1367 0.1858 0.1741 0.1704 0.1611 0.2824

θ̂1kmm 0.2497 0.1684 0.1792 0.0602 0.0644 0.4369

θ̂2kmm 0.0862 0.8390 0.3247 0.9587 0.3842 0.1369

π̂qbmm 0.1364 0.1856 0.1739 0.1698 0.1602 0.2835

θ̂1qbmm 0.2679 0.1822 0.1937 0.0728 0.0775 0.4683

θ̂2qbmm 0.1001 0.8957 0.3656 1.0264 0.4330 0.1614

π̂qsmm 0.1369 0.1931 0.1751 0.1896 0.1701 0.2889

θ̂1qsmm 0.1637 0.1177 0.1231 0.0651 0.0746 0.2360

θ̂2qsmm 0.1162 0.5016 0.1726 0.5187 0.1836 0.1009

π̂eql 0.1362 0.2051 0.1814 0.1959 0.1728 0.2873

θ̂1eql 0.1987 0.2334 0.2139 0.1413 0.1247 0.4437

θ̂2eql 0.1153 0.5602 0.1866 0.5813 0.1947 0.1948
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Table 4.11: Test statistics and p-values for treatment combinations of toxicological
data in Table 4.9.

Treatment Combinations

CL CM CH LM LH MH

LR
0.1461 7.0252 2.0858 8.2770 2.9201 1.8422

(0.7023) (0.0080) (0.1487) (0.0040) (0.0875) (0.1747)

Cml
0.0079 6.4643 2.4972 7.6209 2.9242 0.5198

(0.9290) (0.0110) (0.1141) (0.0058) (0.0873) (0.4709)

Ckmm
0.0902 6.7148 2.3268 8.7917 3.2022 1.4289

(0.7639) (0.0096) (0.1272) (0.0030) (0.0735) (0.2319)

Cqb
0.1022 4.8936 1.7639 5.5332 2.3777 1.2462

(0.7492) (0.0270) (0.1841) (0.0187) (0.1231) (0.2643)

Cqs
0.1064 5.7404 2.3006 7.7773 2.8571 1.8122

(0.7443) (0.0166) (0.1293) (0.0053) (0.0910) (0.1782)

Ceq
0.1074 5.7884 1.9502 6.7972 2.7264 1.1893

(0.7432) (0.0161) (0.1626) (0.0091) (0.0987) (0.2755)

Crs
0.0055 8.9301 1.9382 7.9644 1.8599 2.0157

(0.9409) (0.0028) (0.1639) (0.0048) (0.1726) (0.1557)

Cars
0.0055 8.4698 1.8153 8.2026 1.8305 2.0620

(0.9408) (0.0036) (0.1779) (0.0042) (0.1761) (0.1510)



Chapter 5

Testing Equality of Scale

Parameters of Two Weibull

Distributions in the Presence of

Unequal Shape Parameters

5.1 Introduction

Weibull distribution has long history in describing real phenomena since its initiation

by the Swedish physicist Waloddi Weibull and is one of the most popular parametric

distributions in survival analysis. This distribution has been considered as an appro-

priate model in reliability studies and life-testing experiments and thus has versatile

use in the fields such as engineering, manufacturing, aeronautics and bio-medical sci-

ences among others. Of all the parametric models this distribution has the unique

105
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feature that in addition to being proportional it is simultaneously an accelerated

failure-time model (AFT) (Carroll (2003). Many authors illustrate the use and ap-

plications of Weibull models in numerous areas of Statistics. For example, Lloyd

(1967); Ku et al. (1972); McCool (1998) and Hammitt (2004) focus on the applica-

tions of this distribution in the fields such as reliability, risks and quality control.

Cohen (1965); Sirvanci and Yang (1984) discuss the maximum likelihood estimation

procedure of the parameters under complete and various censoring samples, Harter

and Moore (1965) deal with the joint maximum-likelihood estimation from complete

and censored samples, Cohen et al. (1984), and Cran (1988) consider the moments

estimation of Weibull parameters. In a recent article, Teimouri and Gupta (2013)

propose a consistent and closed form estimator for shape parameter which is inde-

pendent of the scale parameter.

Very often lifetime or survival time data that are collected in the form of two inde-

pendent samples are assumed to have come from two Weibull distributions. In such

situation it may be of interest to test the equality of scale parameters of two Weibull

distributions which eventually is equivalent to testing the equality of reliability at a

certain time. Lawless (1982) shows that the ratio of the pth quantile of two Weibull

distributions is the same as the ratio of their scale parameters when the shape param-

eters are equal and proposes a test statistic based on this property for testing equality

of two Weibull scale parameters when the shape parameters are equal. Thoman and

Bain (1969); Schafer and Sheffield (1976) present statistics for testing the equality of

scale parameters of two Weibull distributions when the shape parameters are equal.

These statistics are based on the maximum likelihood estimates of the parameters.

Thoman and Bain (1969) mention that testing equality of two scale parameters where

the shape parameters are assumed to be equal is equivalent to testing the equality

of two Weibull means. But this is not the case when the shape parameters are not
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assumed to be equal. McCool (1979, 1982) proposes a test procedure which is based

on the ratio of the maximum likelihood estimators of the shape parameters. In an

unpublished thesis, Thiagarajah (1992) (Department of Mathematics and Statistics,

University of Windsor), derives a C(α) statistic and compares it with the statistics

proposed by Lawless (1982) and McCool (1979, 1980).

The assumption that the shape parameters are equal is not always satisfied in prac-

tice while testing the equality of two Weibull scale parameters. Also we observe that

the available test procedures are based on the maximum likelihood estimates of the

parameters. Apart from the maximum likelihood estimates of the parameters several

methods of moments estimators are proposed by different authors. Our objective, in

this Chapter, is to develop test procedures to test the equality of scale parameters

of two Weibull distributions where the shape parameters are assumed unequal and

unknown and compare the performance of these test procedures. We compare the

performance, through simulation studies, in terms of empirical size and power of the

test procedures. The test procedures are developed in section 5.2, simulation studies

are presented in section 5.3 and illustrative examples and discussion have been given

in section 5.4.

Let the random variable Y follow a two parameter Weibull distribution with shape

parameter β and scale parameter α. Then the probability density function of Y can

be written as

f(y) =
β

α

( y
α

)(β−1)

exp

[
−
( y
α

)β]
; y ≥ 0; β, α > 0. (5.1)

We denote this distribution as Y ∼ Weibull(β, α). The shape parameter β pos-

sesses the role to determine how the curve of the Weibull density looks.
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5.2 The Tests

Let y11, y12, · · · , y1n1 be a random sample to size n1 from a two parameter Weibull

distribution with shape parameter β1 and scale parameter α1 and y21, y22, · · · , y2n2

be another independent random sample of size n2 from the same distribution having

shape parameter β2 and scale parameter α2. Our objective is to test the null hy-

pothesis H0: α1 = α2, where β1 and β2 are unknown and unequal. We develop the

following test procedures to test this hypothesis (i) a likelihood ratio test, (ii) a C (α)

test based on the maximum likelihood estimates of the nuisance parameters, (iii) a

C (α) test based on the method of moments estimates of the nuisance parameters by

Cran (1988) and (iv) a C (α) test based on the method of moments estimates of the

nuisance parameters by Teimouri and Gupta (2013).

5.2.1 The Likelihood Ratio Test

The log-likelihood function for the data from two samples can be written as

l1 =
2∑
i=1

ni log

(
βi
αi

)
+ (βi − 1)

{
ni∑
j=1

log (yij)− ni log (αi)

}
−

ni∑
j=1

yβiij

αβii

 .

The unrestricted maximum likelihood estimates of the parameters αi and βi; i = 1, 2

can be obtained by solving the following equations
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−niβi
αi

+
βi

αβi+1
i

ni∑
j=1

yβiij = 0

and

ni
βi

+

ni∑
j=1

log (yij)− ni log (αi) +
log(αi)

αβii

ni∑
j=1

yβiij −
1

αβii

ni∑
j=1

yβiij log (yij) ; i = 1, 2,

simultaneously.

Under the null hypothesis α1 = α2 = α the log-likelihood function is

l0 =
2∑
i=1

ni log

(
βi
α

)
+ (βi − 1)

{
ni∑
j=1

log (yij)− ni log (α)

}
−

ni∑
j=1

yβiij

αβi

 .

The maximum likelihood estimates of the parameters α, β1 and β2 are obtained

from the solution of the following equations

2∑
i=1

[
−niβi

α
+

βi
αβi+1

ni∑
j=1

yβiij

]
= 0,

n1

β1

+

n1∑
j=1

log (y1j)− n1 log (α) +
log (α)

αβ1

n1∑
j=1

yβ11j −
1

αβ1

n1∑
j=1

yβ11j log (y1j) = 0

and

n2

β2

+

n2∑
j=1

log (y2j)− n2 log (α) +
log (α)

αβ2

n2∑
j=1

yβ22j −
1

αβ2

n2∑
j=1

yβ22j log (y2j) = 0

simultaneously.

Now, let l̂1 be the maximized log-likelihood under the alternative hypothesis and l̂0
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be the maximized log-likelihood under the null hypothesis. Then the likelihood ratio

test statistic is LR = 2
(
l̂1 − l̂0

)
; which, asymptotically as n→∞, wheren = n1 +n2,

follows a χ2 distribution with 1 degree of freedom.

5.2.2 The C (α) (Score) Test Based on Maximum Likelihood

Estimates

Suppose the alternative hypothesis is represented by αi = α+φi, i = 1, 2, with φ2 = 0.

Then the null hypothesis, H0 : α1 = α2, can be written as H0 : φi = 0, i = 1, 2, where

α, β1, and β2 are treated as nuisance parameters. The log-likelihood can then be

written as

l =
2∑
i=1

[
ni log

(
βi

α + φi

)
+ (βi − 1)

{
ni∑
j=1

log (yij)− ni log (α + φi)

}

−

ni∑
j=1

yβiij

(α + φi)
βi

]
.

(5.2)

Now, define φ = φ1, δ = (α, β1, β2)′ , ψ1 =
∂l

∂φ1

∣∣∣
φ=0

, γ1 =
∂l

∂δ1

∣∣∣
φ=0

, γ2 =
∂l

∂δ2

∣∣∣
φ=0

and γ3 =
∂l

∂δ3

∣∣∣
φ=0

. Let that δ̂ be a
√
n (n is the size of the sample in a group)

consistent estimator of δ. Then, the C(α) statistic is based on the adjusted score

S1 = ψ1− β1γ1− β2γ2− β3γ3, where β1, β2 and β3 are partial regression coefficient of

ψ1 on γ1, ψ1 on γ2, and ψ1 on γ3, respectively.

The structure of dispersion matrix of (φ, α, β1, β2) is
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V =

D A

A′ B


and the regression coefficients β = (β1, β2, β3) = AB−1 (Neyman (1959)), where D is

1× 1, A is 1× 3 and B is 3× 3 with elements

D11 = E

[
− ∂

2l

∂φ2
1

∣∣∣
φ=0

]
,

A11 = E

[
− ∂2l

∂φ1∂α

∣∣∣
φ=0

]
, A12 = E

[
− ∂2l

∂Φ1∂β1

∣∣∣
φ=0

]
, A13 = E

[
− ∂2l

∂φ1∂β2

∣∣∣
φ=0

]
,

B11 = E

[
− ∂

2l

∂α2

∣∣∣
φ=0

]
, B12 = E

[
− ∂2l

∂α∂β1

∣∣∣
φ=0

]
, B13 = E

[
− ∂2l

∂α∂β2

∣∣∣
φ=0

]
,

B22 = E

[
− ∂

2l

∂β2
1

∣∣∣
Φ=0

]
, B23 = E

[
− ∂2l

∂β1∂β2

∣∣∣
φ=0

]
and B33 = E

[
− ∂

2l

∂β2
2

∣∣∣
φ=0

]
.

Substituting
√
n consistent estimate of δ, that is, δ̂ in S1, D,A, and B, the C(α)

statistic can be obtained as S ′1(D−AB−1A′)−1S1, which is approximately distributed

as the chi-squared with 1 degree of freedom (Neyman (1959); Neyman and Scott

(1966); Moran (1970)). Using the above log-likelihood, that is, equation (5.2) and

after simplification we obtain the above elements as follows

ψ1 = −n1β1

α
+

β1

αβ1+1

n1∑
j=1

yβ11j ,

γ1 =
2∑
i=1

[
−niβi

α
+

βi
αβi+1

ni∑
j=1

yβiij

]
,
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γ2 =
n1

β1

+

n1j∑
j=1

log (y1j)− n1 log (α) +
log (α)

αβ1

n1∑
j=1

yβ11j −
1

αβ1

n1∑
j=1

yβ11j log (y1j) ,

γ3 =
n2

β2

+

n2j∑
j=1

log (y2j)− n2 log (α) +
log (α)

αβ2

n2∑
j=1

yβ22j −
1

αβ2

n2∑
j=1

yβ22j log (y2j) ,

D11 = −n1β1

α2
+
n1β1 (β1 + 1)E

(
yβ11j

)
αβ1+2

,

A11 = −n1β1

α2
+
n1β1 (β1 + 1)E

(
yβ11j

)
αβ1+2

,

A12 =
n1

α
−
n1 {1− β1 log (α)}E

(
yβ11j

)
αβ1+1

−
n1β1E

{
yβ11j log (y1j)

}
αβ1+1

, A13 = 0,

B11 =

ni∑
j=1

−niβi
α2

+
niβi (βi + 1)E

(
yβiij

)
αβi+2

 ,

B12 =
n1

α
−
n1 {1− β1 log (α)}E

(
yβ11j

)
αβ1+1

−
n1β1E

{
yβ11j log (y1j)

}
αβ1+1

,

B13 =
n2

α
−
n2 {1− β2 log (α)}E

(
yβ22j

)
αβ2+1

−
n2β2E

{
yβ22j log (y2j)

}
αβ2+1

,

B22 =
n1

β2
1

+
n1 {log (α)}2E

(
yβ11j

)
+ n1E

{
yβ11j (log (y1j))

2
}

αβ1
, B23 = 0 and

B33 =
n2

β2
2

+
n2 {log (α)}2E

(
yβ22j

)
+ n2E

{
yβ22j (log (y2j))

2
}

αβ2
.
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If the maximum likelihood estimate of δ is used then S1 = ψ1, and the C(α) statistic

reduces to score statistic (Rao (1948)). Denoting the maximum likelihood estimate

of δ as δ̂ml and using this estimate, the C(α) statistic which, in this case is the score

statistic (Rao (1948)), is obtained as Cml = ψ2
1 /
(
D11 − AB−1A′

)
. Under the null

hypothesis Cml is distributed, asymptotically as n→∞, as chi-squared with 1 degree

of freedom.

5.2.3 The C (α) Test Based on Method of Moments Estimates

by Cran (1988)

Cran (1988) proposes moments estimates of the parameters for three-parameter

Weibull distribution and apply this procedure for two-parameter model consid-

ering the location parameter as zero. The estimate of the shape parameter β

is independent of the scale parameter α and the estimates of the parameters

for a single sample are β̃c =
ln (2)

ln (m̄1)− ln (m̄2)
and α̃c =

m̄1

Γ
(

1 + 1
β̃c

) , where

m̄k =
n−1∑
r=0

(
1− r

n

)k {
y(r+1) − y(r)

}
, with y(0) = 0 and y(r) is the rth ordered ob-

servation. As we have two independent samples, we estimate the parameters βi

and αi, i = 1, 2 using this method and then obtain the estimates of variances

V ar (yi) = α2
i

[
Γ

(
1 +

2

βi

)
−
{

Γ

(
1 +

1

βi

)}2
]

by substituting the estimates. An

estimate of α̃c, under null hypothesis of equality of the scale parameters, is then ob-

tained by α̃c =

2∑
i=1

wiα̃i

2∑
i=1

wi

, where wi =
ni

V ar (yi)
, i = 1, 2. Then the C (α) statistic

based on the method of moments estimates of nuisance parameters by Cran (1988) is

obtained as Ccr = S2
1 /
(
D11 − AB−1A′

)
, where in S1, A, B and D, the α, β1 and β2
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are replaced by α̃c, β̃1c and β̃2c. Under the null hypothesis Ccr follows, asymptotically

as n→∞, where, n = n1 + n2, a chi-squared distribution with 1 degree of freedom.

5.2.4 The C (α) Test Based on Method of Moments Estimates

by Teimouri and Gupta (2013)

In a recent article, Teimouri and Gupta (2013) propose a method of moments estimate

of the shape parameter of a three-parameter Weibull distribution and without loss of

generality apply this method to a two-parameter Weibull distribution for estimating

the shape parameter. The special feature of this estimate is that it is independent of

the scale parameter α and depends only on the coefficient of variation statistic. For

a random sample y1, y2, · · · , yn, of size n from a two-parameter Weibull distribution

with scale parameter α and shape parameter β, the Teimouri and Gupta (2013)

method of moments estimate of β is β̃ =
−ln2

ln

[
1− r√

3
CV

√
n+ 1

n− 1

] , where r denotes

the sample correlation between yi and their ranks and CV is the sample coefficient

of variation. Our objective here is to estimate α, β1 and β2 from two independent

samples of Weibull distributions. Following Teimouri and Gupta (2013) we obtain

the estimates of β1 and β2 which are independent of α and then obtain the estimate

of αi by equating E (Yi) to ȳi, i = 1, 2 and then take a weighted average of αis, as

in the previous section, in order to obtain the common estimate of α under the null

hypothesis. We denote the estimate of δ so obtained by δ̃tg. Then the C (α) statistic

based on the method of moments estimates of nuisance parameters by Teimouri and

Gupta (2013) is obtained as Ctg = S2
1 /
(
D11 − AB−1A′

)
. The distribution of Ctg is

also asymptotically χ2 (1) when n→∞, where n = n1 + n2.
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5.3 Simulation Studies

We conduct a simulation study to compare the performance of the test procedures,

namely, LR, Cml, Ccr and Ctg that were developed in section 5.2. The performance

of the test procedures are compared on the basis of empirical level and power. To

compare the statistics in terms of empirical level we consider sample sizes n1 =

n2 = 5, 10, 20, 50, values of scale parameters α1 = α2 = 5, 8, 10, 12 and the

combinations of the values of shape parameters (β1, β2) = (3, 3), (3, 3.5), (3, 4),

(3, 4.5), (3, 5), (3, 5.5), (3, 6) and nominal levels α = 0.05, 0.10. In the cases of

α1 = α2 = 5, α1 = α2 = 8, α1 = α2 = 10 and α1 = α2 = 12 the comparative results

in terms of empirical size are similar. So, we present results of empirical sizes for

only α1 = α2 = 10. In order to compare powers we consider same sample size and

same combination of (β1, β2) with the combinations of the scale parameters (α1, α2)

= (5, 6), (5, 7), (5, 8), (5, 9), (5, 10), (5, 12), (α1, α2) = (8, 9), (8, 10), (8, 11),

(8, 12), (8, 13), (8, 15), (α1, α2) = (10, 11), (10, 12), (10, 13), (10, 14), (10, 15),

(10, 17) and (α1, α2) = (12, 13), (12, 14), (12, 15), (12, 16), (12, 17), (12, 18). The

comparative results in power comparisons are also similar for all combinations of the

scale parameters. So, as representative results, we present results for nominal level

α = 0.05 and for (α1, α2) = (10, 11), (10, 12), (10, 13), (10, 14), (10, 15), (10, 17).

Results for level and power are summarized in Tables 5.1 to 5.4 and we observe the

following features of the test statistics in maintaining empirical level and power

a) In case of small sample sizes, that is, for n1 = n2 = 5, 10 the statistics Ccr and Ctg

show liberal behaviour in maintaining nominal level for all combinations of β1 and β2.

The statistics Cml and LR hold level effectively for no difference to small difference

of the shape parameters but for moderate to large differences of β1 and β2 these

statistics show somewhat liberal behaviour. For example, in Table 5.1, the empirical
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level of Ccr is 6.2% for (β1, β2) = (3, 3) and that of Ctg is 6.8% for (β1, β2) = (3, 6)

and in Table 5.2, the empirical level of Cml is 4.7% for (β1, β2) = (3, 4). The statistic

Ccr appears with the largest power for small sample sizes and for all combinations

of (β1, β2), followed by Ctg, LR and Cml. The power exhibits an increasing trend

with the increase in the departure between (β1, β2) within the same combination of

(α1, α2). For instance, for (α1, α2) = (10, 13) , (β1, β2) = (3, 4), the power of Ccr is

30.5% and that of Cml is 25.5%.

b) The empirical levels of all of the four statistics are close to the nominal level for the

small departures between the shape parameters, though, these statistics demonstrate

somewhat liberal behaviour for large departures between β1 and β2 in the moderate

sample sizes situations, that is, when n1 = n2 = 20. For example, it can be seen

from column 4 of Table 5.3 that the empirical levels of LR, Cml, Ccr and Ctg are

4.6%, 4.8%, 4.8% and 4.9% respectively. The test procedures based on the maximum

likelihood estimates of the parameters, that is, LR and Cml demonstrate larger power,

with power of LR being the largest, than the statistics based on method of moments

estimates, that is, Ccr and Ctg, with power of Ctg being the smallest, for all values of

(α1, α2) and all combinations of (β1, β2). For example, for (α1, α2) = (10, 14) and

(β1, β2) = (3, 5), the powers of LR, Cml, Ccr and Ctg are 80.9%, 77.3%, 74.1% and

70.6%.

c) For large sample sizes, that is, for n1 = n2 = 50, the empirical levels of all statistics

exhibit more closeness to nominal level than other sample size situations, though, for

large differences in the shape parameters these statistics are a bit liberal. Again, like

the moderate sample size situations, the statistics based on the maximum likelihood

estimates of parameters appear with higher power than test procedures based on the

method of moments estimates.
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For each combination of sample sizes (n1, n2) and the specified values of scale

(α1, α2) and shape (β1, β2) parameters, samples were generated from the Weibull

distribution as per equation (5.1) using the built in function “rweibull” in R. Also the

simultaneous solution of the equations were obtained through the function “nleqslv”

in R. The empirical significance levels and powers of the test procedures were ob-

tained from 3000 valid simulation runs after discarding the non-convergent samples

and samples that produced out-of-range estimates of the parameters. Cohen and

Whitten (1982) mention that the usual asymptotic properties of maximum likelihood

do not hold unless β > 2. So, we discarded samples for which the value of maximum

likelihood estimate of either β1 or β2 were obtained to be less than 2.5. We observed

that though convergence in finding estimates of parameters was obtained, the val-

ues of the test statistics were unusual when the estimates of parameters were very

high. In order to avoid this problem, we discarded samples for which the estimates

of parameters were found to be more than three times the specified values of the

parameters.

5.4 Examples

Lawless (1982) presents a set of data (originally given by McCool (1979)) that repre-

sents the times to fatigue failure in units of millions of cycles of 10 high-speed turbine

engine bearings made out of five different compounds. The data are given in Table

5.5. We conduct a pairwise comparison of the five different compound types. The

maximum likelihood estimates of parameters, under both alternative and null hy-

potheses, and the methods of moments estimates are presented in Table 5.6 and the

values of the test statistics along with the corresponding p-values are given in Table
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5.7. In all combinations of pairs of compound types, the value of Ccr is the largest

with the smallest p-value which is followed by Ctg, LR and Cml in decreasing order.

In particular, if we focus on the results of the comparison of compound types I and

V then we see that the values of the test statistics LR, Cml, Ccr and Ctg with the

p-values within the parentheses are 3.4073 (0.0649), 2.6298 (0.1049), 5.1513 (0.0232)

and 4.5956 (0.0321) respectively. This is in agreement with the simulation results pre-

sented in Table 5.2 where we see that for n1 = n2 = 10 the statistic Ccr demonstrates

the largest power which is followed by Ctg, LR and Cml.

5.5 Discussion

In this chapter we dealt with survival data that follow Weibull distribution and we

developed four test procedures to test the equality of scale parameters of two Weibull

distributions where the shape parameters are assumed unknown and unequal. The

test procedures we developed are, a likelihood ratio statistic LR, a C (α) (score)

statistic based on maximum likelihood estimates of the nuisance parameters Cml, a

C (α) statistic based on method of moments estimates of the nuisance parameters

by Cran (1988) Ccr and a C (α) statistic based on method of moments estimates of

the nuisance parameters by Teimouri and Gupta (2013) Ctg. A comparative study,

through Monte-Carlo simulation, was conducted to observe the performance of the

test procedures. Empirical significance level and power were considered as the tools

for measuring performance. In general, for small sample sizes the statistics Ccr and

Ctg were found liberal where as the statistics Cml and LR were found to hold nominal

level effectively. The statistic Ccr exhibits largest power followed by Ctg, LR and

Cml. All four statistics hold reasonably well empirical level in case of moderate and
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large sample sizes situations. In large sample situations the likelihood ratio statistic

appears with the largest power in all parameter combinations followed by Cml, Ccr

and Ctg.
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Table 5.1: Empirical level and power (%) of test statistics LR, Cml, Ccr and Ctg;
based on 3000 iterations and n1 = 5, n2 = 5, α = 0.05

(β1, β2)
(α1, α2) Statistics (3, 3) (3, 3.5) (3, 4) (3, 4.5) (3, 5) (3, 5.5) (3, 6)
(10, 10) LR 4.8 5.3 5.6 6.0 6.2 6.0 6.1

Cml 4.4 4.8 5.1 5.6 5.8 5.7 5.8
Ccr 6.2 6.5 6.8 7.2 7.3 7.1 7.5
Ctg 5.5 5.9 6.3 6.7 6.7 6.4 6.8

(10, 11) LR 6.4 7.0 7.4 7.9 8.6 9.1 9.8
Cml 6.0 6.5 6.9 7.4 8.0 8.5 9.2
Ccr 7.6 8.4 8.8 9.5 10.1 10.6 11.0
Ctg 6.9 7.6 8.0 8.6 9.3 9.8 10.3

(10, 12) LR 10.8 11.8 12.5 13.4 14.5 15.6 16.3
Cml 10.2 11.0 11.7 12.6 13.5 14.5 15.7
Ccr 12.4 13.8 14.5 15.6 16.6 17.6 18.4
Ctg 11.5 12.7 13.4 14.4 15.4 16.4 17.4

(10, 13) LR 16.4 17.7 18.9 20.1 21.6 23.1 24.1
Cml 15.5 16.7 17.7 18.9 20.2 21.5 23.0
Ccr 18.6 20.4 22.5 23.0 24.4 25.7 26.9
Ctg 17.4 18.9 20.1 21.4 22.8 24.3 25.7

(10, 14) LR 23.9 25.6 27.3 28.9 30.8 32.7 34.1
Cml 22.7 24.2 25.6 27.1 28.9 30.5 32.6
Ccr 26.9 29.1 31.8 32.6 34.4 36.2 37.6
Ctg 25.3 27.1 29.0 30.6 32.4 34.3 36.0

(10, 15) LR 34.6 36.9 39.2 41.5 44.0 46.8 48.6
Cml 33.0 34.9 36.7 38.9 41.4 43.7 46.5
Ccr 38.7 41.5 44.7 46.5 49.2 51.7 53.8
Ctg 36.6 38.9 41.4 43.8 46.4 49.1 51.3

(10, 17) LR 53.6 57.0 60.4 63.1 66.0 69.2 71.3
Cml 51.4 53.9 56.3 59.0 61.9 64.6 67.7
Ccr 59.1 63.5 67.3 69.5 72.5 75.4 77.8
Ctg 56.3 60.1 63.7 66.6 69.5 72.6 75.1
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Table 5.2: Empirical level and power (%) of test statistics LR, Cml, Ccr and Ctg;
based on 3000 iterations and n1 = 10, n2 = 10, α = 0.05

(β1, β2)
(α1, α2) Statistics (3, 3) (3, 3.5) (3, 4) (3, 4.5) (3, 5) (3, 5.5) (3, 6)
(10, 10) LR 4.6 5.0 5.4 5.7 5.8 6.1 6.4

Cml 4.1 4.4 4.7 5.1 5.5 5.5 6.0
Ccr 5.9 6.2 6.4 6.5 6.6 7.0 7.4
Ctg 5.4 5.7 6.0 6.2 6.2 6.5 6.9

(10, 11) LR 11.9 13.5 14.8 15.7 16.5 17.3 18.4
Cml 11.2 12.6 13.8 14.7 15.6 16.4 17.4
Ccr 13.9 15.9 16.2 17.8 18.8 19.6 20.4
Ctg 12.8 14.6 15.8 16.8 17.1 18.5 19.3

(10, 12) LR 17.6 19.9 21.8 23.9 26.2 28.3 30.3
Cml 16.6 18.6 20.4 22.4 24.6 26.6 29.0
Ccr 19.8 22.7 24.6 27.0 29.2 31.2 33.3
Ctg 18.6 21.2 23.0 25.2 27.5 29.5 31.7

(10, 13) LR 24.2 27.0 29.4 31.9 34.5 37.0 39.3
Cml 22.9 25.5 27.7 29.9 32.6 34.9 37.6
Ccr 27.0 30.5 33.8 35.7 38.3 40.6 42.9
Ctg 25.5 28.5 31.0 33.4 36.3 38.7 41.5

(10, 14 LR 33.0 36.1 39.1 41.9 44.9 47.9 50.8
Cml 31.4 34.2 37.0 39.4 42.6 45.1 48.6
Ccr 36.6 40.4 44.4 46.5 49.6 52.4 55.0
Ctg 34.7 37.9 41.1 43.8 47.2 49.9 53.2

(10, 15) LR 46.1 49.7 53.4 57.0 61.0 64.6 67.9
Cml 44.1 47.3 50.6 53.8 57.9 60.8 65.3
Ccr 50.7 55.4 59.9 63.0 67.5 70.5 74.0
Ctg 48.4 52.2 56.1 59.7 64.2 67.4 71.2

(10, 17) LR 84.3 89.4 98.0 99.9 100 100 100
Cml 82.6 86.4 94.1 99.8 100 100 100
Ccr 91.2 97.1 100 100 100 100 100
Ctg 87.9 91.9 99.9 100 100 100 100
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Table 5.3: Empirical level and power (%) of test statistics LR, Cml, Ccr and Ctg;
based on 3000 iterations and n1 = 20, n2 = 20, α = 0.05

(β1, β2)
(α1, α2) Statistics (3, 3) (3, 3.5) (3, 4) (3, 4.5) (3, 5) (3, 5.5) (3, 6)
(10, 10) LR 4.5 4.6 4.6 4.8 5.1 5.2 5.4

Cml 4.6 4.8 4.8 5.2 5.4 5.4 5.7
Ccr 4.8 4.8 5.1 5.4 5.7 5.8 5.9
Ctg 4.8 4.9 5.1 5.5 5.7 5.9 6.1

(10, 11) LR 21.7 25.6 27.3 30.3 32.8 33.1 33.8
Cml 20.1 23.6 26.4 29.0 30.4 31.0 32.1
Ccr 18.7 21.6 24.7 27.2 28.6 29.1 30.6
Ctg 17.6 20.1 22.8 25.1 27.3 27.5 29.1

(10, 12) LR 32.4 37.7 41.7 45.1 49.1 52.0 55.6
Cml 30.7 35.6 39.4 42.5 46.7 49.2 53.2
Ccr 28.9 33.6 37.5 40.7 44.5 47.2 50.7
Ctg 27.1 31.5 35.3 38.5 42.2 44.8 48.5

(10, 13) LR 46.2 50.9 56.6 60.5 63.5 66.8 71.0
Cml 43.6 47.9 52.5 56.9 60.9 63.7 68.2
Ccr 41.4 45.6 50.2 54.7 57.8 60.9 65.2
Ctg 39.0 43.4 47.2 51.6 54.7 57.7 62.3

(10, 14) LR 62.7 70.4 76.8 77.9 80.9 84.4 88.6
Cml 59.7 65.8 72.3 74.1 77.3 81.2 86.2
Ccr 56.3 62.5 69.2 71.1 74.1 78.0 82.9
Ctg 53.4 60.0 65.9 67.5 70.6 74.2 79.6

(10, 15) LR 75.8 81.6 87.4 92.1 97.9 100 100
Cml 72.7 77.3 83.0 87.7 93.4 97.7 100
Ccr 69.3 74.1 79.5 84.1 89.1 94.1 98.5
Ctg 66.1 70.8 76.0 80.2 85.0 89.5 95.2

(10, 17) LR 100 100 100 100 100 100 100
Cml 100 100 100 100 100 100 100
Ccr 100 100 100 100 100 100 100
Ctg 100 100 100 100 100 100 100
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Table 5.4: Empirical level and power (%) of test statistics LR, Cml, Ccr and Ctg;
based on 3000 iterations and n1 = 50, n2 = 50, α = 0.05

(β1, β2)
(α1, α2) Statistics (3, 3) (3, 3.5) (3, 4) (3, 4.5) (3, 5) (3, 5.5) (3, 6)
(10, 10) LR 4.8 4.9 5.3 5.5 5.5 5.7 6.1

Cml 5.0 5.2 5.4 5.5 5.7 5.8 6.1
Ccr 5.1 5.2 5.4 5.7 5.7 5.8 6.3
Ctg 5.1 5.3 5.6 5.8 6.0 6.2 6.4

(10, 11) LR 38.0 44.5 48.5 52.4 57.3 59.9 62.9
Cml 34.2 41.4 46.4 50.4 54.0 57.1 60.0
Ccr 32.0 38.1 43.6 47.5 51.1 54.0 57.7
Ctg 29.9 35.7 40.6 44.3 48.4 51.3 55.0

(10, 12) LR 59.4 66.6 72.1 76.9 81.1 84.3 89.4
Cml 56.9 63.8 69.0 72.9 77.5 80.4 85.9
Ccr 53.8 60.7 66.2 69.9 74.1 77.5 82.6
Ctg 50.6 57.3 63.2 66.9 70.6 73.9 79.5

(10, 13) LR 81.4 87.9 93.9 97.6 99.4 99.8 100
Cml 77.7 83.1 88.5 93.1 96.3 97.8 99.9
Ccr 74.2 79.7 85.4 90.0 92.7 94.7 98.0
Ctg 70.5 76.6 81.3 85.7 88.8 90.8 94.4

(10, 14) LR 96.7 100 100 100 100 100 100
Cml 93.3 99.8 100 100 100 100 100
Ccr 88.6 95.6 99.8 100 100 100 100
Ctg 84.6 92.3 97.1 98.9 100 100 100

(10, 15) LR 100 100 100 100 100 100 100
Cml 100 100 100 100 100 100 100
Ccr 99.9 100 100 100 100 100 100
Ctg 98.2 100 100 100 100 100 100

(10, 17) LR 100 100 100 100 100 100 100
Cml 100 100 100 100 100 100 100
Ccr 100 100 100 100 100 100 100
Ctg 100 100 100 100 100 100 100
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Table 5.5: Failure Times of Different Bearing Specimens

Type of Compound
I II III IV V

3.03 3.19 3.46 5.88 6.43
5.53 4.26 5.22 6.74 9.97
5.60 4.47 5.69 6.90 10.39
9.30 4.53 6.54 6.98 13.55
9.92 4.67 9.16 7.21 14.45
12.51 4.69 9.40 8.14 14.72
12.95 5.78 10.19 8.59 16.81
15.21 6.79 10.71 9.80 18.39
16.04 9.37 12.58 12.28 20.84
16.84 12.75 13.41 25.46 21.51
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Table 5.6: Estimates of parameters obtained by different methods for compound
combinations of bearing specimens data in Table 5.5

Compound Type Combinations

(I, II) (I, III) (I, IV ) (I, V ) (II, III) (II, IV ) (II, V ) (III, IV ) (III, V ) (IV, V )

α̂0 9.0056 10.4848 11.7213 14.7887 8.5093 7.1645 9.5075 8.6567 13.8549 15.0676

β̂10 1.8385 2.2491 2.5351 2.4628 2.3276 2.3718 2.1549 2.3160 2.2909 1.9228

β̂20 2.2376 3.2077 1.9758 3.1844 2.6780 1.5713 1.4804 1.3236 2.8340 3.2844

α̂1a 12.0607 12.0607 12.0607 12.0607 6.8596 6.8596 6.8596 9.6847 9.6847 7.5107
α̂2a 6.8596 9.6847 7.5107 16.3507 9.6847 7.5107 16.3507 7.5107 16.3507 16.3507

β̂1a 2.5881 2.5881 2.5881 2.5881 2.3202 2.3202 2.3202 3.1324 3.1324 4.0912

β̂2a 2.3202 3.1324 4.0912 3.6518 3.1324 4.0912 3.6518 4.0912 3.6518 3.6518

α̂cr 8.2096 10.4267 11.6395 14.1747 8.0635 7.6565 9.3231 10.0022 11.7626 14.1524

β̂1cr 2.4941 2.4941 2.4941 2.4941 2.6956 2.6956 2.6956 3.0152 3.0152 2.5244

β̂2cr 2.6956 3.0152 2.5244 3.5348 3.0152 2.5244 3.5348 2.5244 3.5348 3.5348

α̂tg 7.9949 9.3692 11.7085 12.7716 7.7511 8.2172 9.0596 9.7884 10.6421 14.1160

β̂1tg 2.0733 2.0733 2.0733 2.0733 2.2457 2.2457 2.2457 2.5192 2.5192 2.0992

β̂2tg 2.2457 2.5192 2.0992 2.9636 2.5192 2.0992 2.9636 2.0992 2.9636 2.9636
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Table 5.7: Test statistics along with p-values for compound combinations of bearing
specimens data in Table 5.5

Compound Type Combinations

(I, II) (I, III) (I, IV ) (I, V ) (II, III) (II, IV ) (II, V ) (III, IV ) (III, V ) (IV, V )

LR
7.0443 1.6233 0.5067 3.4073 3.4310 7.4859 18.8333 1.0934 10.1554 2.9559

(0.0080) (0.2026) (0.4766) (0.0649) (0.0640) (0.0062) (0.0000) (0.2957) (0.0014) (0.0856)

Cml
5.4028 1.4351 0.1191 2.6298 2.7254 3.6041 8.5357 0.8114 5.8944 2.6429

(0.0201) (0.2309) (0.7300) (0.1049) (0.0988) (0.0576) (0.0035) (0.3677) (0.0152) (0.1040)

Ccr
18.7256 2.0846 1.0047 5.1513 4.7590 29.3146 171.7005 2.9979 30.3739 4.0519
(0.0000) (0.1488) (0.3162) (0.0232) (0.0291) (0.0000) (0.0000) (0.0834) (0.0000) (0.0441)

Ctg
11.6447 1.9165 0.9138 4.5956 3.7401 9.0158 90.3166 1.1887 29.2231 3.0675
(0.0006) (0.1662) (0.3391) (0.0321) (0.0531) (0.0027) (0.0000) (0.2756) (0.0000) (0.0799)



Chapter 6

Summary and Recommendations

for Future Research Topics

6.1 Summary

Often count data with extra Poisson variation, binary data having extra-binomial

variation and Weibull distributed survival data may appear as two or more groups.

In the scenario of two groups data, one group may be the control group and the other

one the treatment group. It may be of interest to compare some characteristic of

the two groups of data. For over-dispersed count data, considering negative binomial

model, the objective may be to test the equality of means of two groups assuming

that the over-dispersion parameters are unequal. When data in the form of proportion

fit the beta-binomial model it may be of interest to test the equality of proportions

in two groups with unequal dispersion parameters. In case of Weibull distributed

survival data, testing the equality of scale parameters of two groups where the shape

127
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parameters are unequal may be the objective.

In Chapter 3, we developed six test procedures, namely, LR, LR (bc) , T 2, T 2 (bc) , T1

and TN , for testing the equality of two negative binomial means in the presence of

unequal dispersion parameters. We also studied, through simulation studies, the per-

formance of the test procedures for small, moderate and large sample size situations.

Performance of the test procedures were compared on the basis of empirical size and

power. We did not find reason to recommend the bias corrected statistics, LR (bc) and

T 2 (bc), over their uncorrected counterparts because these had not shown improve-

ment in power and closeness to nominal level. In addition, bias corrected statistics

are more computational intensive. For small to moderate sample sizes the statistic

T1 is recommended as this statistic shows best performance in maintaining size and

power for most combinations of (µ1, µ2) and (c1, c2). Apart from this, T1 is easy to

understand and compute. In large sample size situations all six statistics maintain

nominal level reasonably well and the power performance are found similar. There-

fore, for large samples, no substantial advantage has been found to use one over others

except that TN is the easiest to implement.

In Chapter 4, we derived parametric as well as semi-parametric statistics for testing

the equality of two proportions in the presence of unequal dispersion parameters. We

then, through simulation studies, compared these statistics in terms of size and power.

The parametric statistics are LR, Cml, and Ckmm. Of these three Cml and Ckmm are

C (α) statistics. The semi-parametric statistics are Cqb, Cqs, Ceq, Car and Cars among

which the first three are C (α) statistics. Among the parametric tests LR, in general,

maintains nominal level very well and its power performance is the best. This statistic

needs estimates of the parameters both under the null and the alternative hypotheses.

Both of the statistics, Cml and Ckmm, need the estimates of the parameters only
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under the null hypothesis and are similar in maintaining nominal level. These are

conservative for small differences in dispersion parameters, (θ1, θ2), and small values

of proportions, (π1, π2), but liberal otherwise. In regards to power, the statistic Ckmm

performs better than Cml in all parameter combinations. However, Ckmm is based on

the method of moments estimate and is computationally less intensive than Cml which

is based on the maximum likelihood estimate. We, thus, recommend Ckmm among

the parametric statistics. With small differences in the dispersion parameters, θ1 and

θ2, and for small values of π1 = π2, the semi-parametric C (α) statistics Cqb, Cqs

and Ceq behave conservatively. Overall, the statistic based on the extended quasi-

likelihood estimates of the nuisance parameters, Ceq, maintains nominal level well

and the power performance is the best for this statistic. In addition, this statistic is

easy to implement because the estimates of the mean and dispersion parameters are

obtained from a single function. On the other hand, in addition to the quasi-likelihood

function the use of method of moments is required for finding mean and dispersion

parameters while computing the statistics Cqb and Cqs. Therefore, the statistic Ceq

can be recommended for use among the semi-parametric procedures.

In Chapter 5, we constructed a likelihood ratio test LR, and three C (α) tests Cml,

Ccr and Ctg, for testing the equality of scale parameters of two Weibull distributions

where the shape parameters are unequal. For small sample sizes the statistics LR

and Cml hold effective nominal level while Ccr and Ctg are liberal. The statistic Ccr

performs best in maintaining power. For moderate and large sample sizes, LR ex-

hibits the highest powers for all instances though all four statistics hold nominal level

effectively. We, thus, taking into account the ease of computation and implementa-

tion, recommend the use of Ccr for small sample sizes. For moderate and large sample

sizes the statistic LR is recommended.



6.2 Recommendations for Future Research 130

6.2 Recommendations for Future Research

6.2.1 Behrens-Fisher Analogs for Zero-Inflated Discrete Data

Often unbounded count data exhibit an excess of zeroes compared to what is expected

from negative binomial model and the bounded count data appear with number of

zeroes more than expected from beta-binomial model. To accommodate this inflated

number of zeroes, it is assumed that the distribution is a mixture of the original

distribution and a degenerate distribution at zero. If the original distribution is

negative binomial then the model that accounts the extra zeroes is called the zero-

inflated negative binomial model. Similarly, the model that incorporates excess zeroes

in bounded counts is called zero-inflated beta-binomial model.

The probability function of a zero-inflated negative random variable Y can be

written as

f (y|µ, c, η) = Pr (Y = y|µ, c, η)

=


η + (1− η)

(
1

1 + cµ

)c−1

if y = 0;

(1− η)
Γ (y + c−1)

y!Γ (c−1)

(
cµ

1 + cµ

)y (
1

1 + cµ

)c−1

if y = 1, 2, · · · ,

where 0 ≤ η ≤ 1.

The mean and variance of Y are E (Y ) = (1− η)µ and var (Y ) = (1− η)µ [1 + µ (η + c)]

respectively. For two groups of negative binomial data with excess number of zeroes,

one possible area of further research is to derive test procedures for testing equality

of means where the dispersion parameters are assumed unknown and unequal consid-

ering that η’s from both groups are equal. Another possible area of further research
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is to develop tests for testing the simultaneous equality of µ1, µ2 and η1, η2 where c1

and c2 are unequal.

The probability function of a zero-inflated beta-binomial random variable Y with

index n can be expressed as

f (y|n, π, θ, η) = Pr (Y = y|n, π, θ, η)

=


η + (1− η)BB (π, θ) if y = 0;

(1− η)BB (π, θ) if y = 1, 2, · · · , n,

where 0 ≤ η ≤ 1 and BB (π, θ) is the probability function of a beta-binomial variate

given in equation 4.2. The mean and variance of beta-binomial variate, Y are E (Y ) =

(1− η)nπ and var (Y ) = (1− η)nπ [ηnπ + (1− π) {1 + (n− 1) θ}] respectively. A

consideration can be taken into account as a further research topic that involves in

developing test procedures to test the equality of proportions (π1, π2) for two groups

of beta-binomial data having excess number of zeroes with common η and unequal

θ1, θ2. Likewise, developing test methods for simultaneously testing the equality of

proportions (π1, π2) and equality of zero inflation parameters (η1, η2) in the presence

of unequal dispersion parameters (θ1, θ2) can be considered as a further research

topic.

6.2.2 Behrens-Fisher Analog for Censored Survival Data

In Chapter 5, we developed test procedures for testing the equality of scale parameters

for two Weibull distributions where the shape parameters are unequal in the complete

sample scenario. In fact, in most instances, censoring is evident in survival data. We,

therefore, suggest to develop test statistics, as a further research topic, for testing the
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equality of scale parameters of two Weibull distributions in the presence of unequal

shape parameters in different censoring scenarios.



Appendix A

A.1 Derivation of the Biases of Maximum Likeli-

hood Estimates of the Parameters Under the

Null Hypothesis

For the negative binomial model (3.1), under the null hypothesis H0: µ1 = µ2 = µ,

the kernel of the log-likelihood is

l0 =
2∑
i=1

ni∑
j=1

[
yij−1∑
l=0

log

(
1 + cil

ci

)
+ yij log ci + yij log µ− yij log (1 + ciµ)

−c−1
i log (1 + ciµ)

] (A.1)
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A.1.1 Derivation of the Second Order Quantities (Vrt) and

the Elements of the Fisher Information Matrix (Irt)

Using the above log-likelihood, we obtain

V11 =
∂2l0

∂µ2 =
2∑
i=1

ni∑
j=1

[
−yij − 2yijciµ+ ciµ

2

µ2(1 + ciµ)2

]
,

V12 = V21 =
∂2l0
∂µ∂c1

=

n1∑
j=1

[
−y1j + µ

(1 + c1µ)2

]
, V13 = V31 =

∂2l0
∂µ∂c2

=

n2∑
j=1

[
−y2j + µ

(1 + c2µ)2

]
,

V22 =
∂2l0
∂c2

1

= −2n1

c3
1

log(1 + c1µ) +
n1µ

c2
1(1 + c1µ)

− n1 (ȳ1 − µ) (1 + 2c1µ)

c2
1 (1 + c1µ)2

+

n1∑
j=1

y1j−1∑
l=0

{
1 + 2c1l

c2
1 (1 + c1l)

2

}
, V23 = V32 =

∂2l0
∂c1∂c2

= 0

and

V33 =
∂2l0
∂c2

2

= −2n2

c3
2

log(1 + c2µ) +
n2µ

c2
2(1 + c2µ)

− n2 (ȳ2 − µ) (1 + 2c2µ)

c2
2 (1 + c2µ)2

+

n2∑
j=1

y2j−1∑
l=0

{
1 + 2c2l

c2
2 (1 + c2l)

2

}
.
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Now, under the null hypothesis, using E (yij) = µ, for i = 1, 2; j = 1, 2, · · · , ni, we

have

I11 = E (−V11) =
2∑
i=1

[
ni

µ(1 + ciµ)

]
,

I12 = I21 = E (−V12) = 0, I13 = I31 = E (−V13) = 0,

I22 = E (−V22) =
2n1

c3
1

log(1 + c1µ)− n1µ

c2
1(1 + c1µ)

− 2

c2
1

E

{
n1∑
j=1

y1j−1∑
l=0

1

(1 + c1l)

}
+

1

c4
1

E

{
n1∑
j=1

y1j−1∑
l=0

c2
1

(1 + c1l)2

}
,

I23 = I32 = E (−V23) = 0,

and

I33 = E (−V33) =
2n2

c3
2

log(1 + c2µ)− n2µ

c2
2(1 + c2µ)

− 2

c2
2

E

{
n2∑
j=1

y2j−1∑
l=0

1

(1 + c2l)

}
+

1

c4
2

E

{
n2∑
j=1

y2j−1∑
l=0

c2
2

(1 + c2l)2

}
.

Since E

(
∂l

∂ci

)
= 0; we have E

{
ni∑
j=1

yij−1∑
l=0

1

(1 + cil)

}
=
ni
ci

log(1 + ciµ).

Further, following Fisher (1941), we have E

{
ni∑
j=1

yij−1∑
l=0

c2
i

(1 + cil)2

}
= ni

∞∑
k=0

k!(cibi)
k+1

(k + 1)dik

where bi =
ciµ

1 + ciµ
and dik =

k∏
l=0

(1 + cil), i = 1, 2.
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We, thus obtain

I22 =
n1

c4
1

∞∑
k=1

k!(b1c1)k+1

(k + 1)d1k

and I33 =
n2

c4
2

∞∑
k=1

k!(b2c2)k+1

(k + 1)d2k

.

A.1.2 Derivation of the Third Order Quantities (Wrtu) and

the Expected Values (Jrtu)

The third order derivatives are Wrtu =
∂3l0

∂θr∂θt∂θu
; r, t, u = 1, 2, 3 which we obtain

as follows

W111 =
∂3l0
∂µ3

=
2∑
i=1

ni∑
j=1

[
2yij
µ3
− 2yijc

3
i

(1 + ciµ)3
− 2c2

i

(1 + ciµ)3

]
,

W112 = W121 = W211 =
∂3l0

∂µ2∂c1

=

n1∑
j=1

[
1− c1µ+ 2y1jc1

(1 + c1µ)3

]
,

W113 = W131 = W311 =
∂3l0

∂µ2∂c2

=

n2∑
j=1

[
1− c2µ+ 2y2jc2

(1 + c2µ)3

]
,

W122 = W212 = W221 =
∂3l0
∂µ∂c2

1

=

n1∑
j=1

[
2µ(y1j − µ)

(1 + c1µ)3

]
,

W133 = W313 = W331 =
∂3l0
∂µ∂c2

2

=

n2∑
j=1

[
2µ(y2j − µ)

(1 + c2µ)3

]
,
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W222 =
∂3l0
∂c3

1

=
6n1

c4
1

log(1 + c1µ)− n1µ(4 + 5c1µ)

c3
1(1 + c1µ)2

+
2n1(ȳ1 − µ)(1 + 3c1µ+ 3c2

1µ
2)

c3
1(1 + c1µ)3

− 4

c3
1

n1∑
j=1

y1j−1∑
l=0

1

(1 + c1l)
− 2

c3
1

n1∑
j=1

y1j−1∑
l=0

c2
1l

2 − c1l − 1

(1 + c1l)3
,

W233 = W323 = W332 =
∂3l0
∂c1∂c2

2

= 0, W322 = W232 = W223 =
∂3l0
∂c2∂c2

1

= 0,

W333 =
∂3lo
∂c3

2

=
6n2

c4
2

log(1 + c2µ)− n2µ(4 + 5c2µ)

c3
2(1 + c2µ)2

+
2n2(ȳ2 − µ)(1 + 3c2µ+ 3c2

2µ
2)

c3
2(1 + c2µ)3

− 4

c3
2

n2∑
j=1

y2j−1∑
l=0

1

(1 + c2l)
− 2

c3
2

n2∑
j=1

y2j−1∑
l=0

c2
2l

2 − c2l − 1

(1 + c2l)3
and

W123 = W132 = W213 = W231 = W312 = W321 =
∂3l

∂µ∂c1∂c2

= 0

Now, the expected values of the above third order quantities are Jrtu =

E (Wrtu) ; r, t, u = 1, 2, 3, which we obtain as follows

J111 =
2∑
i=1

ni∑
j=1

2(1 + 2ciµ)

µ2(1 + ciµ)2
, J112 =

n1

(1 + c1µ)2
, J113 =

n2

(1 + c2µ)2
, J122 = 0,

J123 = 0, J133 = 0,
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J222 =
6n1

c4
1

log(1 + c1µ)− n1µ(4 + 5c1µ)

c3
1(1 + c1µ)2

− 4

c3
1

E

{
n1∑
j=1

y1j−1∑
l=0

1

1 + c1l

}

− 2

c3
1

E

{
n1∑
j=1

y1j−1∑
l=0

c2
1l

2 − c1l − 1

(1 + c1l)3

}
,

J222 =
2n1

c2
1

κ1 −
n1µ(4 + 5c1µ)

c3
1(1 + c1µ)2

− 2n1

c3
1

∆1, J223 = 0, J233 = 0

and

J333 =
2n2

c2
2

κ2 −
n2µ(4 + 5c2µ)

c3
2(1 + c2µ)2

− 2n2

c3
2

∆2,

where κi =
1

c2
i

log (1 + ciµ) , and ∆i =
∞∑

yij=0

yij−1∑
l=0

c2
i l

2 − cil − 1

(1 + cil)3
Pr(yij); i = 1, 2; j =

1, 2, · · · , ni.

A.1.3 Derivation of the Partial Derivatives of the Expected

Values of Second Order Quantities
(
K

(u)
rt

)
In addition to the expectations of second order and third order quantities, Cordeiro

and Klein (1994) formula of biases of the maximum likelihood estimates requires

partial derivatives of the expected values of second order quantities, that is, K
(u)
rt =

∂

∂θu
E (Vrt) , r, t, u = 1, 2, 3. These partial derivatives are obtained as follows
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K
(1)
11 =

∂

∂µ
E (V11) =

2∑
i=1

{
ni(1 + 2ciµ)

µ2(1 + ciµ)2

}
,

K
(2)
11 =

∂

∂c1

E (V11) =
n1

(1 + c1µ)2
, K

(3)
11 =

∂

∂c2

E (V11) =
n2

(1 + c2µ)2

K
(1)
12 = K

(1)
21 =

∂

∂µ
E (V12) = 0, K

(2)
12 = K

(2)
21 =

∂

∂c1

E (V12) = 0,

K
(3)
12 = K

(3)
21 =

∂

∂c2

E (V12) = 0, K
(1)
13 = K

(1)
31 =

∂

∂µ
E (V13) = 0,

K
(2)
13 = K

(2)
31 =

∂

∂c1

E (V13) = 0, K
(3)
13 = K

(3)
31 =

∂

∂c2

E (V13) = 0,

K
(1)
22 =

∂

∂µ
E (V22) = −n1

c4
1

∞∑
k=1

k! (b1c1)k b2
1

µ2d1k

,

K
(2)
22 =

∂

∂c1

E (V22) =
n1

c5
1

∞∑
k=1

k!(c1b1)k+1

(k + 1)d1k

{
4− (k + 1)(2 + c1µ)

1 + c1µ
+ c1

(
k∑
l=0

l

1 + c1l

)}
,

K
(3)
22 =

∂

∂c2

E (V22) = 0, K
(1)
23 = K

(1)
32 =

∂

∂µ
E (V23) = 0,

K
(2)
23 = K

(2)
32 =

∂

∂c1

E (V23) = 0, K
(3)
23 = K

(3)
32 =

∂

∂c2

E (V23) = 0,

K
(1)
33 =

∂

∂µ
E (V33) = −n2

c4
2

∞∑
k=1

k! (b2c2)k b2
2

µ2d2k

, K
(2)
33 =

∂

∂c1

E (V33) = 0
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and

K
(3)
33 =

∂

∂c2

E (V33) =
n2

c5
2

∞∑
k=1

k!(c2b2)k+1

(k + 1)d2k

{
4− (k + 1)(2 + c2µ)

1 + c2µ
+ c2

(
k∑
l=0

l

1 + c2l

)}
.

A.1.4 The Biases of the Estimates of the Parameters

Now, following Cordeiro and Klein (1994), the biases of the maximum likelihood

estimates of µ, c1, and c2 are

bµ̂ (µ̂, ĉ1, ĉ2) =
3∑
r=1

M1r

3∑
t=1

3∑
u=1

(
K

(u)
rt −

1

2
Jrtu

)
M tu,

bĉ1 (µ̂, ĉ1, ĉ2) =
3∑
r=1

M2r

3∑
t=1

3∑
u=1

(
K

(u)
rt −

1

2
Jrtu

)
M tu

and

bĉ2 (µ̂, ĉ1, ĉ2) =
3∑
r=1

M3r

3∑
t=1

3∑
u=1

(
K

(u)
rt −

1

2
Jrtu

)
M tu, respectively.

The above biases, after simplifications, take the forms

bµ̂ (µ̂, ĉ1, ĉ2) = M11

(
K

(1)
11 −

1

2
J111

)
M11 = 0,

bĉ1 (µ̂, ĉ1, ĉ2) = M22

[
−1

2
J211M

11 +

(
K

(2)
22 −

1

2
J222

)
M22

]
and

bĉ2 (µ̂, ĉ1, ĉ2) = M33

[
−1

2
J311M

11 +

(
K

(3)
33 −

1

2
J333

)
M33

]

respectively, where M rt is the (r, t)th element of the inverse of the information

matrix I.
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A.2 Derivation of the Biases of Maximum Likeli-

hood Estimates of the Parameters Under the

Alternative Hypothesis

Under the alternative hypothesis we have four parameters to estimate, namely,

µ1, µ2, c1 and c2, that is, under the alternative hypothesis θ′ = (θ1, θ2, θ3, θ4) =

(µ1, µ2, c1, c2). The estimates of µ1 and µ2 are ȳ1 and ȳ2 respectively, that is, under

the alternative hypothesis the MLEs of µ1 and µ2 are unbiased. The second order

and third order derivatives are Vrt =
∂2l

∂θr∂θt
and Wrtu =

∂3l

∂θr∂θt∂θu
, r, t, u =

1, 2, 3, 4, and the partial derivatives of expected values of the second order terms

are K
(u)
rt =

∂

∂θu
E (Vrt). The (r, t)th element of the Fisher information matrix is

Irt = E (−Vrt) and the expected value of the (r, t, u)th term of the third order

derivatives is Jrtu = E (Wrtu). Following similar steps as in the previous section we

obtain

V11 =

n1∑
j=1

{
−y1j − 2y1jc1µ1 + c1µ

2
1

µ2
1(1 + c1µ1)2

}
, V13 = V31 =

n1∑
j=1

[
−(y1j − µ1)

(1 + c1µ1)2

]
,

V22 =

n2∑
j=1

{
−y2j − 2y2jc2µ2 + c2µ

2
2

µ2
2(1 + c2µ2)2

}
, V24 = V42 =

n2∑
j=1

[
−(y2j − µ2)

(1 + c2µ2)2

]
,

V33 = −2n1

c3
1

log(1 + c1µ1) +
n1µ1

c2
1(1 + c1µ1)

− n1 (ȳ1 − µ1) (1 + 2c1µ1)

c2
1(1 + c1µ1)2

+

n1∑
j=1

y1j−1∑
l=0

{
1 + 2c1l

c2
1(1 + c1l)2

}
,
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V44 = −2n2

c3
2

log(1 + c2µ2) +
n2µ2

c2
2(1 + c2µ2)

− n2 ((ȳ2 − µ2) (1 + 2c2µ2)

c2
2(1 + c2µ2)2

+

n2∑
j=1

y2j−1∑
l=0

{
1 + 2c2l

c2
2(1 + c2l)2

}
,

I11 =
n1

µ1(1 + c1µ1)
, I22 =

n2

µ2(1 + c2µ2)
,

I33 =
n1

c4
1

∞∑
k=1

k!(c1b1)k+1

(k + 1)d1k

, I44 =
n2

c4
2

∞∑
k=1

k!(c2b2)k+1

(k + 1)d2k

,

J111 =
2n1(1 + 2c1µ1)

µ2
1(1 + c1µ1)2

, J113 =
n1

(1 + c1µ1)2
,

J222 =
2n2(1 + 2c2µ2)

µ2
2(1 + c2µ2)2

, J224 =
n2

(1 + c2µ2)2
,

J333 =
2n1

c2
1

κ1 −
n1µ1(4 + 5c1µ1)

c3
1(1 + c1µ1)2

− 2n1

c3
1

∆1,

J444 =
2n2

c2
2

κ2 −
n2µ2(4 + 5c2µ2)

c3
2(1 + c2µ2)2

− 2n2

c3
2

∆2,

K
(1)
11 =

n1(1 + 2c1µ1)

µ2
1(1 + c1µ1)2

, K
(3)
11 =

n1

(1 + c1µ1)2
, K

(2)
22 =

n2(1 + 2c2µ2)

µ2
2(1 + c2µ2)2

,

K
(4)
22 =

n2

(1 + c2µ2)2
, K

(1)
33 = −n1

c4
1

∞∑
k=1

k!(c1b1)kb2
1

µ2
1d1k

,

K
(3)
33 =

n1

c5
1

∞∑
k=1

k!(c1b1)k+1

(k + 1)d1k

{
4− (k + 1)(2 + c1µ1)

1 + c1µ1

+ c1

(
k∑
l=0

l

1 + c1l

)}
,
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K
(2)
44 = −n2

c4
2

∞∑
k=1

k!(c2b2)kb2
2

µ2
2d2k

and

K
(4)
44 =

n2

c5
2

∞∑
k=1

k!(c2b2)k+1

(k + 1)d2k

{
4− (k + 1)(2 + c2µ2)

1 + c2µ2

+ c2

(
k∑
l=0

l

1 + c2l

)}
.

As in the previous section, following Cordeiro and Klein (1994), the biases of the

estimates of c1 and c2 are

bĉ1 (µ̂1, µ̂2, ĉ1, ĉ2) =
4∑
r=1

M3r

4∑
t=1

4∑
u=1

(
K

(u)
rt −

1

2
Jrtu

)
M tu

= M33

4∑
t=1

4∑
u=1

(
K

(u)
3t −

1

2
J3tu

)
M tu

and

bĉ2 (µ̂1, µ̂2, ĉ1, ĉ2) =
4∑
r=1

M4r

4∑
t=1

4∑
u=1

(
K

(u)
rt −

1

2
Jrtu

)
M tu

= M44

4∑
t=1

4∑
u=1

(
K

(u)
4t −

1

2
J4tu

)
M tu

respectively, which, after simplification, take the forms

bĉ1 (µ̂1, µ̂2, ĉ1, ĉ2) = M33

{
−1

2
J311M

11 +

(
K

(3)
33 −

1

2
J333

)
M33

}
and

bĉ2 (µ̂1, µ̂2, ĉ1, ĉ2) = M44

{
−1

2
J422M

22 +

(
K

(4)
44 −

1

2
J444

)
M44

}

respectively.
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A.3 Derivation of the Terms Needed for the Score

Test

After the reparameterization µi = µ + φi, i = 1, 2 the log-likelihood, apart from a

constant, can be written as

l =
2∑
i=1

ni∑
j=1

[
yij−1∑
l=0

log

(
1 + cil

ci

)
+ yij log (ci) + yij log (µ+ φi)

−yij log {1 + ci (µ+ φi)} −
1

ci
log {1 + ci (µ+ φi)}

]
.

We then obtain

∂l

∂φ1

∣∣∣
φ=0

=
n1 (ȳ1 − µ)

µ (1 + c1µ)
,

∂l

∂µ

∣∣∣
φ=0

=
2∑
i=1

ni (ȳi − µ)

µ (1 + ciµ)
,

∂l

∂ci

∣∣∣
φ=0

=
ni (ȳi − µ)

ci (1 + ciµ)
+
ni
c2
i

log (1 + ciµ)−
ni∑
j=1

yij−1∑
l=0

1

ci (1 + cil)
, i = 1, 2,

∂2l

∂φ2
1

∣∣∣
φ=0

=

n1∑
j=1

[
−y1j

µ2
+

y1jc
2
1

(1 + c1µ)2 +
c1

(1 + c1µ)2

]
,

∂2l

∂φ1∂µ

∣∣∣
φ=0

=

n1∑
j=1

[
−y1j

µ2
+

y1jc
2
1

(1 + c1µ)2 +
c1

(1 + c1µ)2

]
,

∂2l

∂φ1∂c1

∣∣∣
φ=0

=

n1∑
j=1

[
−y1j + µ

(1 + c1µ)2

]
,

∂2l

∂φ1∂c2

∣∣∣
φ=0

= 0,
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∂2l

∂µ2

∣∣∣
φ=0

=
2∑
i=1

ni∑
j=1

[
− yij
µ2

+
yijc

2
i

(1 + ciµ)2 +
ci

(1 + ciµ)2

]
,

∂2l

∂µ∂c1

∣∣∣
φ=0

=

n1∑
j=1

[
−y1j + µ

(1 + c1µ)2

]
,

∂2l

∂µ∂c2

∣∣∣
φ=0

=

n2∑
j=1

[
−y2j + µ

(1 + c2µ)2

]
,

∂2l

∂c2
1

∣∣∣
φ=0

= −2n1

c3
1

log(1 + c1µ) +
n1µ

c2
1(1 + c1µ)

− n1 (ȳ1 − µ) (1 + 2c1µ)

c2
1 (1 + c1µ)2

+

n1∑
j=1

y1j−1∑
l=0

{
1 + 2c1l

c2
1 (1 + c1l)

2

}
,

∂2l

∂c1∂c2

∣∣∣
φ=0

= 0

∂2l

∂c2
2

∣∣∣
φ=0

= −2n2

c3
2

log(1 + c2µ) +
n2µ

c2
2(1 + c2µ)

− n2 (ȳ2 − µ) (1 + 2c2µ)

c2
2 (1 + c2µ)2

+

n2∑
j=1

y2j−1∑
l=0

{
1 + 2c2l

c2
2 (1 + c2l)

2

}
.

The expected values of the negative of mixed partial derivatives are obtained as

follows

A1 = E

[
− ∂2l

∂φ1∂µ

∣∣∣
φ=0

]
=

n1

µ (1 + c1µ)
, A2 = E

[
− ∂2l

∂φ1∂c1

∣∣∣
φ=0

]
= 0,

A3 = E

[
− ∂2l

∂φ1∂c2

∣∣∣
φ=0

]
= 0, D = E

[
− ∂

2l

∂φ2
1

∣∣∣
φ=0

]
=

n1

µ (1 + c1µ)
,
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B1,1 = E

[
− ∂

2l

∂µ2

∣∣∣
φ=0

]
=

2∑
i=1

[
ni

µ (1 + ciµ)

]
, B1,2 = B2,1 = E

[
− ∂2l

∂µ∂c1

∣∣∣
φ=0

]
= 0,

B1,3 = B3,1 = E

[
− ∂2l

∂µ∂c2

∣∣∣
φ=0

]
= 0, B2,2 = E

[
−∂

2l

∂c2
1

∣∣∣
φ=0

]
=
n1

c4
1

∞∑
k=1

k!(b1c1)k+1

(k + 1)d1k

,

B2,3 = B3,2 = E

[
− ∂2l

∂c1∂c2

∣∣∣
φ=0

]
= 0 and B3,3 = E

[
−∂

2l

∂c2
2

∣∣∣
φ=0

]
=
n2

c4
2

∞∑
k=1

k!(b2c2)k+1

(k + 1)d2k

.



Appendix B

B.1 Expected Values of Negative of the Mixed

Partial Derivatives in Beta Binomial Model

The kernel of the log-likelihood, after the reparameterization πi = π+φi, i = 1, 2, of

a beta binomial model, is

l =
2∑
i=1

mi∑
j=1

[
yij−1∑
r=0

log {(1− θi)(π + φi) + rθi}+

nij−yij−1∑
r=0

log {(1− θi)(1− π − φi) + rθi}

−
nij−1∑
r=0

log {(1− θi) + rθi}

]
.
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We then obtain

∂l

∂φ1

∣∣∣
φ=0

=

m1∑
j=1

{[
y1j−1∑
r=0

(1− θ1)

(1− θ1) π + rθ1

}
−

n1j−y1j−1∑
r=0

{
(1− θ1)

(1− θ1) (1− π) + rθ1

}]
,

∂l

∂π

∣∣∣
φ=0

=
2∑
i=1

mi∑
j=1

[
yij−1∑
r=0

{
(1− θi)

(1− θi)π + rθi

}
−

nij−yij−1∑
r=0

{
(1− θi)

(1− θi) (1− π) + rθi

}]
,

∂l

∂θi

∣∣∣
φ=0

=

mi∑
j=1

[
yij−1∑
r=0

{
(r − π)

(1− θi) π + rθi

}
+

nij−yij−1∑
r=0

{
(r + π − 1)

(1− θi) (1− π) + rθi

}

−
nij−1∑
r=0

{
(r − 1)

(1− θi) + rθi

}]
, i = 1, 2,

∂2l

∂φ2
1

∣∣∣
φ=0

=

m1∑
j=1

[
y1j−1∑
r=0

{
− (1− θ1)2

[(1− θ1) π + rθ1]2

}
−

n1j−y1j−1∑
r=0

{
(1− θ1)2

[(1− θ1) (1− π) + rθ1]2

}]
,

∂2l

∂φ1∂π

∣∣∣
φ=0

=

m1∑
j=1

[
y1j−1∑
r=0

{
− (1− θ1)2

[(1− θ1) π + rθ1]2

}
−

n1j−y1j−1∑
r=0

(1− θ1)2

[(1− θ1) (1− π) + rθ1]2

]
,

∂2l

∂φ1∂θ1

∣∣∣
φ=0

=

m1∑
j=1

[
y1j−1∑
r=0

{
− r

[(1− θ1) π + rθ1]2

}
+

n1j−y1j−1∑
r=0

{
r

[(1− θ1) (1− π) + rθ1]2

}]
,

∂2l

∂φ1∂θ2

∣∣∣
φ=0

= 0,
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∂2l

∂π2

∣∣∣
φ=0

=
2∑
i=1

mi∑
j=1

[
yij−1∑
r=0

{
− (1− θi)2

[(1− θi) π + rθi]
2

}
−

nij−yij−1∑
r=0

{
(1− θi)2

[(1− θi) (1− π) + rθi]
2

}]
,

∂2l

∂π∂θ1

∣∣∣
φ=0

=

m1∑
j=1

[
y1j−1∑
r=0

{
− r

[(1− θ1) π + rθ1]2

}
+

n1j−y1j−1∑
r=0

{
r

[(1− θ1) (1− π) + rθ1]2

}]
,

∂2l

∂π∂θ2

∣∣∣
φ=0

= 0,

∂2l

∂θ2
1

∣∣∣
φ=0

=

m1∑
j=1

[
y1j−1∑
r=0

{
− (r − π)2

[(1− θ1) π + rθ1]2

}
−

n1j−y1j−1∑
r=0

{
(r + π − 1)2

[(1− θ1) (1− π) + rθ1]2

}

+

n1j−1∑
r=0

{
(r − 1)2

[(1− θ1) + rθ1]2

}]
,

∂2l

∂θ1∂θ2

∣∣∣
φ=0

= 0 and

∂2l

∂θ2
2

∣∣∣
φ=0

=

m2∑
j=1

[
y2j−1∑
r=0

{
− (r − π)2

[(1− θ2) π + rθ2]2

}
−

n2j−y2j−1∑
r=0

{
(r + π − 1)2

[(1− θ2) (1− π) + rθ2]2

}

+

n2j−1∑
r=0

{
(r − 1)2

[(1− θ2) + rθ2]2

}]
.

In order to obtain the expected values of the negative of the mixed partial deriva-

tive, we need to evaluate the terms

E

[
yij−1∑
r=0

{
(1− θi)2

[(1− θi) π + rθi]
2

}]
, E

[
nij−yij−1∑

r=0

{
(1− θi)2

[(1− θi) (1− π) + rθi]
2

}]
,
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E

[
yij−1∑
r=0

{
r

[(1− θi) π + rθi]
2

}]
, E

[
nij−yij−1∑

r=0

{
r

[(1− θi) (1− π) + rθi]
2

}]
,

E

[
yij−1∑
r=0

{
(r − π)2

[(1− θi)π + rθi]
2

}]
, E

[
nij−yij−1∑

r=0

{
(r + π − 1)2

[(1− θi) (1− π) + rθi]
2

}]
and

E

[
nij−1∑
r=0

{
(r − 1)2

[(1− θi) + rθi]
2

}]
.

Again,

E

[
yij−1∑
r=0

{
r

[(1− θi) π + rθi]
2

}]
= E

[
yij−1∑
r=0

{
(1− θi) (r − π)

[(1− θi) π + rθi]
2 +

1

[(1− θi)π + rθi]

}]

and

E

[
nij−yij−1∑

r=0

{
r

[(1− θi) (1− π) + rθi]
2

}]

= E

[
nij−yij−1∑

r=0

{
(1− θi) (r + π − 1)

[(1− θi) (1− π) + rθi]
2 +

1

[(1− θi) (1− π) + rθi]

}]
.
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Now,

E

[
yij−1∑
r=0

{
1

[(1− θi) π + rθi]
2

}]
=

nij∑
yij=0

[
yij−1∑
r=0

{
1

[(1− θi) π + rθi]
2

}]
Pr (yij)

= 0 +

Pr (yij = 1)

[(1− θi) π + 0θi]
2 +

Pr (yij = 2)

[(1− θi) π + 0θi]
2 +

Pr (yij = 2)

[(1− θi) π + 1θi]
2 +

Pr (yij = 3)

[(1− θi) π + 0θi]
2 +

Pr (yij = 3)

[(1− θi) π + 1θi]
2 +

Pr (yij = 3)

[(1− θi)π + 2θi]
2

Pr (yij = 4)

[(1− θi) π + 0θi]
2 +

Pr (yij = 4)

[(1− θi) π + 1θi]
2 +

Pr (yij = 4)

[(1− θi)π + 2θi]
2 +

Pr (yij = 4)

[(1− θi) π + 3θi]
2 +

...

+
Pr (yij = nij)

[(1− θi) π + 0θi]
2 +

Pr (yij = nij)

[(1− θi) π + 1θi]
2 + · · ·+ Pr (yij = nij)

[(1− θi) π + (nij − 1) θi]
2

=
Pr (yij ≥ 1)

[(1− θi)π + (1− 1) θi]
2 +

Pr (yij ≥ 2)

[(1− θi) π + (2− 1) θi]
2 + · · ·+ Pr (yij ≥ nij)

[(1− θi)π + (nij − 1) θi]
2 .

E

[
yij−1∑
r=0

{
1

[(1− θi) π + rθi]
2

}]
=

nij∑
r=1

Pr (yij ≥ r)

[(1− θi) π + (r − 1) θi]
2 .
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E

nij−yij−1∑
r=0

{
1

[(1− θi) (1− π) + rθi]
2

} =

nij∑
yij=0

nij−yij−1∑
r=0

{
1

[(1− θi) (1− π) + rθi]
2

}Pr (yij)

=
Pr (yij = 0)

[(1− θi) (1− π) + 0θi]
2 +

Pr (yij = 0)

[(1− θi) (1− π) + 1θi]
2 + · · ·+ Pr (yij = 0)

[(1− θi) (1− π) + (nij − 1) θi]
2 +

Pr (yij = 1)

[(1− θi) (1− π) + 0θi]
2 +

Pr (yij = 1)

[(1− θi) (1− π) + 1θi]
2 + · · ·+ Pr (yij = 1)

[(1− θi) (1− π) + (nij − 2) θi]
2 +

Pr (yij = 2)

[(1− θi) (1− π) + 0θi]
2 +

Pr (yij = 2)

[(1− θi) (1− π) + 1θi]
2 + · · ·+ Pr (yij = 2)

[(1− θi) (1− π) + (nij − 3) θi]
2 +

...

+
Pr (yij = nij − 2)

[(1− θi) (1− π) + 0θi]
2 +

Pr (yij = nij − 2)

[(1− θi) (1− π) + 1θi]
2 +

Pr (yij = nij − 1)

[(1− θi) (1− π) + 0θi]
2 + 0

=
Pr (yij ≤ nij − 1)

[(1− θi)π + (1− 1) θi]
2 +

Pr (yij ≤ nij − 2)

[(1− θi)π + (2− 1) θi]
2 + · · ·+ Pr (yij ≤ 0)

[(1− θi)π + (nij − 1) θi]
2 .

E

nij−yij−1∑
r=0

{
1

[(1− θi) (1− π) + rθi]
2

} =

nij∑
r=1

Pr (yij ≤ nij − r)
[(1− θi) (1− π) + (r − 1) θi]

2 .
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E

[
yij−1∑
r=0

{
(r − π)

[(1− θi) π + rθi]
2

}]
=

nij∑
yij=0

[
yij−1∑
r=0

{
(r − π)

[(1− θi) π + rθi]
2

}]
Pr (yij)

= 0 +

(0− π)Pr (yij = 1)

[(1− θi) π + 0θi]
2 +

(0− π)Pr (yij = 2)

[(1− θi) π + 0θi]
2 +

(1− π)Pr (yij = 2)

[(1− θi) π + 1θi]
2 +

(0− π)Pr (yij = 3)

[(1− θi) π + 0θi]
2 +

(1− π)Pr (yij = 3)

[(1− θi) π + 1θi]
2 +

(2− π)Pr (yij = 3)

[(1− θi) π + 2θi]
2

(0− π)Pr (yij = 4)

[(1− θi) π + 0θi]
2 +

(1− π)Pr (yij = 4)

[(1− θi) π + 1θi]
2 +

(2− π)Pr (yij = 4)

[(1− θi) π + 2θi]
2 +

(3− π)Pr (yij = 4)

[(1− θi)π + 3θi]
2 +

...

+
(0− π)Pr (yij = nij)

[(1− θi) π + 0θi]
2 +

(1− π)Pr (yij = nij)

[(1− θi)π + 1θi]
2 + · · ·+ (nij − 1− π)Pr (yij = nij)

[(1− θi) π + (nij − 1) θi]
2

=
(0− π)Pr (yij ≥ 1)

[(1− θi)π + (1− 1) θi]
2 +

(1− π)Pr (yij ≥ 2)

[(1− θi) π + (2− 1) θi]
2 + · · ·+ (nij − 1− π)Pr (yij ≥ nij)

[(1− θi)π + (nij − 1) θi]
2 .

E

[
yij−1∑
r=0

{
(r − π)

[(1− θi) π + rθi]
2

}]
=

nij∑
r=1

(r − π − 1)Pr (yij ≥ r)

[(1− θi) π + (r − 1) θi]
2 .
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Similarly

E

[
nij−yij−1∑

r=0

{
(r + π − 1)

[(1− θi) (1− π) + rθi]
2

}]
=

nij∑
r=1

(r + π − 2)Pr (yij ≤ nij − r)
[(1− θi) (1− π) + (r − 1) θi]

2 ,

E

[
yij−1∑
r=0

{
(r − π)2

[(1− θi) π + rθi]
2

}]
=

nij∑
r=1

(r − π − 1)2 Pr (yij ≥ r)

[(1− θi)π + (r − 1) θi]
2 ,

E

[
nij−yij−1∑

r=0

{
(r + π − 1)2

[(1− θi) (1− π) + rθi]
2

}]
=

nij∑
r=1

(r + π − 2)2 Pr (yij ≤ nij − r)
[(1− θi) (1− π) + (r − 1) θi]

2

and

E

[
nij−1∑
r=0

{
(r − 1)2

[(1− θi) + rθi]
2

}]
=

nij∑
r=1

(r − 2)2

[(1− θi) + (r − 1) θi]
2 .
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