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ABSTRACT 

Numerical sediment quality guidelines (SQGs) are frequently used to interpret site specific 

sediment chemistry and predict potential toxicity to benthic communities. These SQGs are useful 

for a screening line of evidence (LOE) that can be combined with other LOEs in a full weight of 

evidence (WOE) assessment of impacted sites. Three common multi-chemical hazard quotient 

methods (PEC-Qavg, PEC-Qmet and PEC-Qsum) and a novel (Hazard Score; HZD) approach were 

used in conjunction with a consensus based set of SQGs to evaluate the ability of different 

scoring metrics to predict the biological effects of sediment contamination under field 

conditions. Multivariate analyses were first used to categorize river sediments into distinct 

habitats based on a set of physicochemical parameters to include gravel, low and high flow sand 

and silt. For high flow sand and gravel, no significant dose-response relationships between 

numerically dominant species and various toxicity metric scores were observed. Significant 

dose-response relationships were observed for Chironomid abundances and toxicity scores in 

low flow sand and silt habitats. For silt habitats the HZD scoring metric provided the best 

predictor of Chironomid abundances compared to various PEC-Q methods according to 

goodness of fit tests.  For low flow sand habitats, PEC-Qsum followed by HZD, provided the best 

predictors of Chironomid abundance. Differences in apparent Chironomid toxicity between the 

two habitats suggest habitat specific differences in chemical bioavailability and indicator taxa 

sensitivity. Using an index of biological integrity (IBI) method, the HZD, PEC-Qavg and PEC-

Qmet approaches provided reasonable correlations with calculated IBI values in both silt and low 

flow sand habitats but not for gravel or high flow sands. Computation differences between the 

various multi-chemical toxicity scoring metrics and how this contributes to bias in different 

estimates of chemical mixture toxicity scores are discussed and compared. 
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INTRODUCTION 

Multiple lines of evidence (LOEs) are commonly used to assess the impact of sediment 

contamination on benthic organisms in North America and worldwide (Long et al. 2006).  

Typical LOEs include bulk sediment chemistry, toxicity tests, bioaccumulation tests and benthic 

community composition (Chapman and Anderson 2005). Within the LOE approach,  numerical 

sediment quality guidelines (SQGs) are used as screening tools to assist in interpreting sediment 

chemistry data (Long et al. 2006; Ritter et al. 2011). By using multiple LOEs, a weight of 

evidence (WOE) assessment of site contamination can be useful for a complete understanding of 

sediment contaminant impacts. Although SQGs are typically assigned according to jurisdictions, 

inter-jurisdictional SQGs exhibit wide ranges of chemical concentrations that can span two to 

three orders of magnitude in their predicted dose-response for a given chemical (MacDonald et 

al. 2000). SQGs are most commonly developed and assessed using standardized sediment 

toxicity assays (e.g. amphipod toxicity, Microtox® bioluminescence, sea urchin fertilization tests) 

which are meant to serve as surrogates for actual benthic species (Wenning et al. 2004).  Given 

that these tests are performed under controlled laboratory conditions, it is difficult to determine 

how accurately the SQGs can predict toxicity under more complex field conditions, which 

include a diversity of environmental (e.g., site specific differences in chemical bioavailability) 

and ecological attributes as well as complex chemical mixture effects (Bay and Weisberg 2010; 

Chapman 1996). Given that the purpose of SQGs is to provide a screening level assessment of in 

situ toxicity, it is imperative that attempts at field assessment of SQGs be performed on a regular 

basis and cover multiple environment types (Ritter et al. 2011; Bay et al. 2012). 
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In order to establish a proper methodology for the field assessment of a set of SQGs, both 

environment (habitat) and chemical mixture interactions need to be taken into consideration. The 

effect of chemical exposures on zoobenthic communities can be obscured by the overriding 

habitat-specificity of many aquatic invertebrates, especially in lotic systems (Wright 1995; 

Parsons and Norris 1996; Reynoldson et al. 1997; Reynoldson et al. 2001).  For example, in a 

review of SQGs, Long et al. (2006) indicated the need for increased understanding of habitat-

specific local features such as particle size, depth and velocity in addition to chemical-specific 

stressors on the benthic community.  Habitat classification is more commonly considered in 

surveys designed to assess benthic community structure such as with the reference condition 

approach (RCA).  These approaches provides a multivariate means of matching habitat attributes 

in a sample test location against a library of reference sites prior to evaluating for differences in 

benthic community composition at the test location (Wright 1995; Parsons and Norris 1996; 

Reynoldson et al. 1997). Presumably comparable approaches to habitat-matching could be 

adopted under a field SQG assessment, although the use of such a strategy seems to be 

uncommon. In such a case, dose-response relationships in the numerical presence of a habitat-

appropriate indicator species or community composition can be evaluated across a gradient of 

chemical contamination measured within a given habitat type. Applying such a methodology for 

field SQG assessment may also have the advantage of being able to examine for differences in 

the performance of SQGs between habitat types and in the identification of site specific indicator 

species. 

A second complication related to field assessment of SQGs involves the ability to define 

contamination gradients owing to chemical mixture effects arising from differences in the 

sources and environmental distribution of individual chemicals. These chemical-specific 
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differences can lead to disparate patterns in contamination where presumably ‘clean’ conditions 

for one chemical of study may be highly degraded for another. There exist several hazard 

quotient approaches currently available that combine SQGs and site specific contaminant 

measurements for multiple chemicals to compute a single toxicity score. However, all toxicity 

score computation methods incorporate sets of assumptions that can introduce anomalies that 

bias toxicity assessment towards over- or under- estimation of the actual site specific toxicity. 

For example, most studies adopting a hazard quotient approach consider deviations in site-

specific chemical residues with SQGs attributed to high biological impact (e.g. the severe effect 

concentration (SEC) or probable effect concentration (PEC)) but ignore SQGs for the same 

chemicals that are associated with more conservative estimates of toxicity (e.g. threshold effect 

concentration (TEC) or low effect concentration (LEC)). Thus, hazard quotient approaches by 

default assume a linear dose/response relationship that is based on one calibration point even 

though toxicity related to animal mortality often takes on a sigmoidal distribution which 

necessitate multiple calibration points (Ritter et al. 2011; MacDonald et al. 2000). 

Similarly, toxicity score metrics differ in their computation schemes that make the method 

more or less sensitive to the number of chemicals included and/or diversity of chemical 

signatures generated in a given survey.  For example, different toxicity score metrics consider the 

sum, average or weighted average hazard quotients for sets of priority contaminants. Toxicity 

scores generated as the sum of hazard quotients can be biased to over-predicting toxicity when 

many chemicals are included in the metric even when all of the chemicals are below the SQGs at 

a given location. Metrics generated by an average hazard quotient approach can lead to 

underestimates of toxicity when several chemicals have very low site specific concentrations.  

These low concentration chemicals can effectively dilute the toxicity score value even when one 
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or more contaminant concentrations exceed their SQGs for high biological impact. One of the 

objectives of this study was to introduce an alternative toxicity score metric, henceforth 

identified as the hazard score (HZD) metric, which assumes a sigmoidal toxicity distribution, 

adopts a multi-point calibration scheme based on existing SQGs and establishes a threshold 

effect concentration, below which chemicals included in the metric have no influence on the 

summed toxicity score. This new toxicity metric is then compared with more classic multi-

chemical hazard quotient (designated as PEC-quotient or PEC-Q) approaches to determine, 

which metric if any, provides the best prediction of field toxicity as evaluated using field 

assessment data.  

Field assessment data used for this study were generated from a combined high resolution 

(n=150 sampling stations) sediment chemistry and benthic community assessment survey 

conducted for the Detroit River. First, a habitat classification scheme was developed that used a 

multivariate approach to designate distinct sediment habitat types within the Detroit River survey 

locations using habitat variables previously described as being important to benthic community 

structure.  Following this, the benthic community database was used to identify potential benthic 

invertebrate indicators within each habitat type by choosing organisms that demonstrated high 

association, high abundance (but also high variation in abundance) across sample locations of a 

given habitat. The relative abundance of each benthic invertebrate indicator was then used as a 

surrogate measure of ‘field toxicity’ and compared with the different SQG-based toxicity score 

metrics. In addition, a multi-metric index of biological integrity (IBI) was developed for each 

unique habitat type of the Detroit River according to the methods described by Reynoldson et al. 

(1997). The habitat specific IBIs were also contrasted with each of the SQG-based toxicity 

scores to determine which, if any, showed the strongest correlations. This permitted a set of 
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independent contrasts between different chemical mixture assessment approaches (SQG-based 

toxicity scores), indicator species abundance and multi-metric community composition changes. 

 

METHODS 

Area of Interest Background 

  The Detroit River is a 54 km connecting channel divided between the State of Michigan 

(United States) and the Province of Ontario (Canada).  The sample collection protocol for the 

current study has been described previously by Drouillard et al. (2006).  Briefly, 150 sampling 

sites were identified based on a stratified random design within three reaches (upper, middle and 

lower) of the Detroit River (Fig. 1).  Surface sediments were collected using a petite Ponar grab 

sampler, whereupon multiple grabs were used to provide a standardized total volume of 2 L of 

sediment.  Water depth was measured on site.  Bottom water velocity was estimated from a 

previously developed 3-D hydrological model (Reitsma et al. 2003).  Sediment samples were 

analysed for  physical (total organic carbon (TOC), silt, sand and gravel), chemical (arsenic, 

cadmium, chromium, copper, iron, lead, mercury, nickel, zinc, hexachlorobenzene (HCB), 

dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs) and total 

polyaromatic hydrocarbons (PAHs)) and benthic community data (Table 1).  Complete 

physicochemical analytical methods are described by Drouillard et al. (2006)  and Szalinska et 

al. (2006).  A second 2 L sediment sample from each sample location was collected by similar 

methods.  Samples were coarsely sieved (600 µm) at the sampling location to remove most of the 

fine materials and the contents of the sieve bucket emptied into a plastic bag and preserved with 

Kahles solution.  At the laboratory, zoobenthos were sorted and identified to common lowest 

taxonomic ranks under a dissecting scope and stored in glass vials containing 80% ethanol. For 
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quality assurance, 10% of samples were resorted and compared with the previous assessment. 

Overall, resamples agreed with originals within 4% error.   

 

Toxicity Metric Scoring Approaches 

The Michigan Department of Environmental Quality (MDEQ) SQGs are consensus-based 

values as reviewed and recommended by Macdonald et al. (2000).  These SQGs provide values 

analogous to the threshold effects concentration (TEC) and probable effects concentration (PEC; 

Table S1).  The SQG-based toxicity score approaches considered in this study include three 

variations of previously developed multi-chemical PEC-quotient approaches and a new Hazard 

score approach described below. 

 

PEC-Quotient Approaches   

For each chemical where an SQG is available and sediment concentration is reported, the PEC-

Qx is calculated as: 

      (1) 

where cx is the measured chemical concentration (µg/g dry weight) in a sediment sample and 

PECx is the probable effect concentration (µg/g dry weight) for the chemical of study based on 

the SQG. The multi-chemical PEC-quotient metrics all use chemical and sediment specific PEC-

Qx values as specified in Eq. 1 but differ in their computation method. Three previously 

published multi-chemical PEC-quotient (PEC-Q) approaches were adopted and include the 

average (PEC-Qavg), a weighted average PEC-Q with metals as a single group (PEC-Qmet) and 

the sum (PEC-Qsum).  
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The PEC-Qavg provides the mean PEC-Q value across all chemicals measured (n is the total 

number of chemicals where PEC-Q values were derived) in a given sediment sample as reviewed 

by Long et al. (2006).  The PEC-Qavg is calculated according to: 

∑
     (2) 

The PEC-Qmet is a derivation of the PEC-Q metric considered by Ingersoll et al. (2001) and 

modified herein.  In their approach, Ingersoll et al. (2001) weighted a PEC-Qavg generated for all 

metals in the sample with PEC-Qx values for total PAHs and sum PCBs.  The current derivation 

includes HCB and DDE using the same assumption and the consideration that both HCB and 

DDE have available SQG criteria and were ubiquitous within the Detroit River.  In the present 

study, PEC-Qmet is calculated according to: 

∑
  (3) 

Where nmet is the number of metals identified in the sample, PEC-Qx(metals) is the PEC-Qx 

generated for each metal analyzed in the sample, PEC-QHCB, PEC-QDDE, PEC-QPCBs and PEC-

QPAHs are the PEC-Qx determined for HCB, DDE, total PCBs and total PAHs, respectively. 

Commonly, PEC-Qmet generates a toxicity score which is greater than the PEC-Qavg although 

exceptions can occur depending on the relative magnitude of PEC-Qx for individual metals in the 

sample. 

 The PEC-Qsum is the sum of PEC-Qx across chemicals of study and is defined by: 

∑      (4) 

PEC-Qsum always produces a toxicity score greater than PEC-Qavg and PEC-Qmet and is the most 

sensitive index with respect to the number of chemicals used to generate the toxicity score. 
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By convention, PEC-Q toxicity scores exceeding a value of 1 are considered toxic, or having 

the potential to be toxic. In order to standardize this score with the field toxicity determined in 

sediment samples it was assumed that a PEC-Q value of 1 is equivalent to 50% toxicity.  In other 

words, this assumes that the PEC-SQG establishes a probable effect level corresponding to 

toxicity similar to an LC50 value for an indicator species present within the sample. One other 

modification was that each of the PEC-Q toxicity scores was capped at a value of 100% toxicity 

(i.e., PEC-Q values greater than 2 were set to a value of 2 and 100% toxicity, respectively).  This 

yields a toxicity score for each PEC-Q method that ranges from 0 to 100% toxicity. Overall, it 

was expected that PEC-Qavg would produce the lowest estimate of toxicity, PEC-Qmet an 

intermediate toxicity estimate and PEC-Qsum would yield the highest toxicity estimate for 

individual sampling sites.  

 

Hazard Score (HZD) Approach  

In this alternative toxicity score metric, both the TEC and PEC SQG values are used to 

generate chemical specific sigmoidal dose-response toxicity curves according to a 2 point 

calibration.  The dose response curve is then used to calculate a toxicity value for each chemical 

present in the sample based on measured chemical concentrations in sample.  The Hazard Score 

(HZD) is the sum of %toxicity values generated across chemicals similar to the PEQ-Qsum 

method with modification to establish a 0% toxicity value where sediment concentrations are 

less than TEC and at the upper range to cap toxicity values at 100% when sum %toxicity exceeds 

100. 
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Here the TEC is assigned a 5% toxicity level and the PEC was initially set to 50% toxicity. 

This is the equivalent of establishing SQG TEC and PEC as chemical specific LC5 and LC50 

values, respectively.   A sigmoidal dose/response toxicity curve is generated according to: 

%
∙

     (5) 

where Effect(%) is the anticipated toxicity (ranging from 0 to 100%), A is a constant that 

determines the curvature of the dose-response curve, k is the chemical-specific toxicity 

coefficient and C is the measured sediment chemical concentration.  The values of A and k are 

iteratively solved for each chemical such that the 5% and 50% toxicity predictions conform to 

TEC and PEC concentration values (see Supplementary Information Table S1). Fitted curves to 

Eq. 5 for each chemical are included in Supplementary Information, Figure S1.  

 The HZD is the sum of each chemical Effect(%) for a specific sampling station.  Two 

modifications were made to the computational algorithm of HZD.  For any given chemical, when 

the measured sediment concentrations was less than the TEC, its Effect(%) value was set to zero. 

This modification was performed because Eq 5 generates a non-zero intercept and has a 

predicted toxicity (above 0 and less than 5%) when the sediment concentration for the 

contaminant has a zero concentration. By setting all concentrations <TEC to a 0 Effect(%), the 

cumulative effect of multiple chemicals with very low or zero concentration values are removed 

from the score.  The second modification was similar to that performed for PEC-Q approaches, 

i.e. the maximum HZD value was capped at 100%, thus when sum Effect(%) >100, the HZD was 

set to 100.  Based on these modifications, HZD toxicity scores can range from 0 to 100% for a 

given sampling location.  
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Habitat and Benthic Invertebrate Indicator Species Identification  

 The suite of physicochemical environmental variables measured at each site are included in 

Table 1.  A principal component analysis (PCA) was performed on sediment variables deemed as 

habitat attributes using log-transformed data and applying a correlation matrix. The PCA 

identified depth (m), velocity (m/s), TOC (%), gravel (%), sand (%) and silt (%) as significant 

parameters (i.e. each having loadings >0.7 on the first 2 PCA axes) contributing to the ordination 

of samples.  PC1 exhibited strong loadings for habitat attributes associated with depth, water 

velocity and gravel with TOC, sand and silt being strongly loaded on PC2 (See Supplementary 

Information, Table S2).  Individual sample scores on PC1 and PC2 were used to further 

characterize sample sites with preliminary user-identified ellipses constructed around sites that 

appeared to exhibit similar habitat groupings (Fig. 2A). Habitat classifications assigned from the 

results of the initial PCA (Fig. 2A) were verified by discriminant function analysis (DFA) which 

statistically tests whether each site has been appropriately categorized based on the habitat 

attribute variables (Fig. 2B; Supplementary Information, Table S3).  All sites grouped into a 

given habitat cluster, and whose assignment was verified by DFA, were then categorized as the 

same habitat type.  Some sites that had intermediate characteristics across habitats and could not 

be assigned by DFA were excluded from further analysis.  This habitat classification scheme 

assumes that the habitat attributes identified in the ordination scheme are appropriate habitat 

descriptors for benthic invertebrate indicators and that different sampling sites of the same 

habitat type all have the same potential to support indicator species survival and benthic 

invertebrate communities except as modified by degree of chemical contamination. 

  For the overall benthic species composition, a second PCA was used to reduce the total 

amount of species groups and to determine strongly covarying species assemblages (See 
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Supplementary Information, Table S4). Individual species representing ≤0.5% of total 

abundances were not included in the PCA as these individuals generally do not significantly 

increase the total variance explained in the dataset (Reynoldson et al. 1995).  Zoobenthos 

abundances were log (x+1) transformed prior to PCA analysis.  Indicator species for each habitat 

type were evaluated and chosen on the basis of the above benthic species composition PCA. The 

numerically dominant species showing strong loadings on each PCA axis were selected for 

further consideration as prospective indicators.  For each of these species, box and whisker charts 

were prepared to identify which habitat the species was most associated with and where large 

ranges in abundance values were apparent (See Supplementary Information Fig. S2).  Habitat 

specific indicator species was then chosen for each habitat type on the basis of the above box and 

whisker charts. 

All multivariate analyses performed to classify sediments and benthos was completed using 

SYSTAT version 8.0 for Windows. 

 

Field Toxicity Estimates 

The field toxicity determined for a given sampling station was used to assess toxicity 

predictions generated by the various PEC-Q metrics or the HZD metric.  Field toxicity values for 

each sediment site were generated based on the relative abundance of a benthic indicator species 

(or taxa) present in the sample contrasted against the mean upper abundance of the same species 

present in other samples of the same habitat designation.   

Field toxicity scores were generated for each indicator species and each site within a given 

habitat type. The number of the indicator species present in a standard 2 L sediment sample at a 

given site (Ax) was divided by the average of the five highest abundance values (Ahigh) 
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determined for that species across all sites within the same habitat. The relative abundance 

metric was then converted into a toxicity score according to:  

% 1 ∗ 100%    (6)  

A toxicity of 100% was assigned when the indicator species was not present in the sample. 

Comparisons between SQG-generated toxicity scores and field toxicity scores were performed 

using goodness to fit tests of predicted toxicity (y-axis) against field toxicity (x-axis).  Goodness 

of fit test results were contrasted between different toxicity score metrics by evaluating the 

coefficient of determination of the regression, determining whether the slope differed from a 

value of unity and the intercept differed from a value of one.  Goodness of fit tests forcing the 

intercept to zero were also performed and evaluated against different toxicity metrics by 

comparing both the R2 value and proximity of the slope to a value of unity. 

Index of Biological Integrity (IBI) Assessment Method 

The multimetric approach scoring methodology was adapted from Reynoldson et al. (1997) 

without consideration of ‘reference-condition’ sites which were not available in the current 

study. Metrics considered included: (1) total abundance of organisms counted; (2) number of 

families identified; (3) %EPT (Ephemeroptera, Trichoptera, and Plecoptera); (4) %Chironomids; 

(5) number of EPT taxa; (6) % dominance; (7) Shannon-Wiener Index; and (8) Evenness. Each 

of the above metrics were assessed based on the 25th and 75th percentiles of scores generated 

across all samples for a given habitat type and the calculated values are shown in Table S5. Site 

specific scoring for each metric was based on the following: score values <25th percentile within 

a habitat given as 1; values between 25th and 75th percentile were given a score of 3; values >75th 

percentile given a score of 5. All metrics had a positive relationship between the metric value 
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and the scoring value (i.e., a score of 5 was given to the highest metric values) other than for the 

%dominance which was negatively related to scoring value (i.e., a score of 5 was given to the 

lowest metric values). Overall, the eight metrics used resulted in a minimum value of eight and a 

maximum score value of 40. These IBI values were used analogously to the Actual(%) toxicity 

assessments as in the preceding section ‘Field Toxicity Estimates’. 

 

RESULTS AND DISCUSSION 

Habitat 

Principal components analysis was applied to the habitat variables: depth (m), velocity (m/s), 

TOC (%), gravel (%), sand (%) and silt (%) to account for inter-correlations between variables 

and reduce the dimensionality of the dataset.  The first two components of the PCA were found 

to cumulatively explain 78.5% of the variation in the data (Table S2).  Depth, velocity and gravel 

were strongly associated with the PC1 axis, and TOC, sand and silt were associated with the PC2 

axis. No variables showed strong associations with PCA axes 3, 4 and 5 and given that these 

axes contributed limited amounts to the variation in the data, they were ignored in habitat 

characterization.  After examining the clustering of sites across the first two PCA axes, four main 

habitat types were identified consisting of silt (Silt), low velocity sand (LSand), high velocity 

sand (HSand) and gravel (Grav) (Fig. 2A).  Initially, stations were clustered into the habitat types 

by manually drawing ellipses around similarly ordinated stations as defined by their scores on 

the PC1 and PC2 axes. DFA was subsequently used to test the assignment of habitat type for 

each station into the four major habitat types. Initial DFA indicated 85% of sites were correctly 

classified within the user-identified habitats.  After reclassification of improperly classified sites, 

a second DFA indicated 95% of sites were correctly identified (Table S3).  All sites identified by 
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habitat via DFA were used for further analysis (Fig. 2B).  Among the 136 stations included in the 

analysis, 124 stations could be assigned to a habitat type with a 95% confidence.  The remaining 

stations, of unknown or mixed habitat association, were censored from further analysis. Each of 

the Silt, LSand, HSand and Grav habitats had 33, 45, 28 and 18 total sites, respectively.  

Generally, habitats were distributed as expected, with the gravel/high flow sand areas found 

within the upper reach and silt/low flow sand areas generally within the lower reach or near 

depositional zones of islands (Fig. 1).   

An important step in the determination of benthic community impairment is the identification 

of groups of habitats with similar characteristics (Long et al. 2006). Of the 15 measured 

environmental variables, only six were needed to delineate the four distinct habitats: depth, 

velocity, TOC and grain sizes (gravel, sand and silt) (Table 1).  Previous studies have indicated 

the importance of each of these parameters in controlling benthic community composition 

(Reynoldson et al. 1995; Reynoldson et al. 1997; Rae 1985). Apart from the presently measured 

parameters, previous researchers have found latitude/longitude, total phosphorus, total nitrogen, 

water pH and alkalinity to be useful predictors for habitat types (Reynoldson et al. 1995; 

Reynoldson et al. 1997).  The latter were not included in the present analysis. 

 

Benthic Community  

The results of PCA for zoobenthos communities indicated the presence of three distinct 

groups:  Group 1 includes Amphipoda, Hydrozoa, Turbellaria and Gastropoda; Group 2 includes 

Chironomidae and Hexagenia; and Group 3 includes Oligochaeta (Table S4).  Group 3 species 

(Oligochaeta)  were completely dominant in areas of the Detroit River with high organic 

contaminant contamination (Farara and Burt 1993).  Previously, Oligochaetes were especially 
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dominant (> 90%) in the highly-polluted Trenton Channel within the Detroit River (Besser et al. 

1996).  

For each of the three identified groups, the most numerically dominant species were 

Amphipoda (Group 1), Chironomidae (Group 2) and Oligochaeta (Group 3).  Box and whisker 

plots of group abundances for each habitat (Grav, HSand, LSand and Silt) are shown in 

Supplementary Information (Figure S2).  Both the Chironomidae and Oligochaeta abundances 

were highest in the LSand and Silt habitats and lowest in the Grav and HSand habitats.  In 

contrast, the Amphipoda were highest in the Grav and HSand environments and lowest in the 

LSand and Silt habitats.  Given absolute abundances and patterns in the data, the following 

indicator species were identified for each habitat type: Oligochaetes for all four habitat types 

given their general abundance in each environment; Chironomidae for LSand and Silt; and 

Amphipoda for Grav and HSand. 

 

Goodness of Fit Tests 

Given the above defined indicator groups (Amphipoda, Chironomidae and Oligochaeta) the 

species specific field toxicities (Toxicity %) were plotted against the various scoring approaches 

for each habitat type with results shown in Table 2.  There was no relationship between the field 

toxicity and SQG-generated estimate of toxicity for the Amphipods for the Grav (R2 = 0.00 to 

0.01) or HSand (R2 = 0.00 for all) habitats for any of the four scoring metrics (see 

Supplementary Information Fig. S3 for a presentation of field toxicity vs HZD score for these 

groups). The Oligochaeta were generally abundant across sites for all habitats (Fig. S2). 

Interestingly, the Oligochaeta showed negative correlations between field and SQG-metric 

generated toxicity scores for three of the four habitats evaluated including Silt (PEC-Qavg and 
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PEC-Qmet), LSand (PEC-Qavg and PEC-Qmet) and HSand (all metrics) (Table 2). The IBI values 

showed no correlations with SQG scores for the HSand (Fig. S4 and Table 3) and Grav (Fig. S5 

and Table 3) habitats. Thus assessment of biological impact (either by indicator species 

abundance or computed IBI metrics) in Grav and HSand as they relate to presence of sediment 

associated priority pollutants in the Detroit River remains inconclusive. 

The Chironomidae were abundant in Silt and LSand environments.  For this indicator, toxicity 

was correlated to all toxicity scoring methods as examined in more detail below. The goodness 

of fit tests comparing field toxicity generated from Chironomidae abundance and various hazard 

metric toxicity predictions are shown for Silt (Fig. 3) and LSand (Fig. 4) habitats with regression 

statistics included in Table 2. In addition, the analogous tests for IBI values are shown for Silt 

(Fig. 5) and LSand (Fig. 6) with regression statistics shown in Table 3.  

For the Silt habitat, the HZD metric generated a higher coefficient of determination (R2 = 0.29; 

p = 0.001) compared to PEC-Q methods (R2 = 0.03 to 0.18; p = 0.015 to 0.308).  In addition, the 

slope of the regression line (m = 0.51) more closely fit the 1:1 expectation indicating that it is 

had lower bias compared to the three PEC-Q methods. For the PEC-Q approaches, the PEC-Qavg 

was generally too conservative. Several sites generated low toxicity predictions but also 

contained very low abundance or a complete absence of the benthic indicator. The PEC-Qsum was 

overly sensitive with several sites predicted to have 100% toxicity while field abundance of 

chironomids were relatively high. For the IBI values, the PEC-Qavg and PEC-Qmet resulted in 

significant negative correlations of R2 = 0.316 (p = 0.000) and R2 = 0.323 (p = 0.000), 

respectively, with the HZD metric of R2 = 0.101 significant at the p < 0.1 level (p = 0.071). 

Unlike the Chironomidae abundance, there is no expected 1:1 relationship between the SQG 

scores and IBI values, thus the proximity of the slope to a value of 1 provides no guidance to 
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evaluating goodness of fit tests. Overall, both the Chironomidae abundance (field toxicity) and 

IBI approaches showed reasonable correlations with the HZD, PEC-Qavg and PEC-Qmet SQG 

scoring metrics.  Thus, within the Silt habitat type, SQG-based toxicity scores are successful at 

predicting biological impact using either an indicator species or multimetric community 

composition (IBI) approach.  The HZD was the strongest predictor of Chironomidae abundance, 

while PEC-Qmet explained the greatest variation in IBI scores. 

For LSand, the HZD metric explained a similar amount of the variation of the field toxicity 

data (R2 = 0.27; p = 0.000) as the PEC-Q methods (R2 = 0.25 to 0.27; p = 0.000 to 0.001). Again 

PEC-Qavg and PEC-Qmet were found to be overly conservative and predicted low toxicity despite 

numerous sites with 100% field toxicity. The HZD approach yielded a goodness of fit slope of 

0.65 and most closely approximated the 1:1 correlation between predicted and field toxicity 

values. However this metric also tended to under predict toxicity at many sites.  The PEC-Qsum 

yielded a goodness of fit test slope of 0.39, lower than HZD but this was largely due to higher 

toxicity prediction at a few of the low contamination sites.  For the IBI values, the HZD, PEC-

Qavg and PEC-Qmet all resulted in significant correlations of R2 = 0.391 (p = 0.000), R2 = 0.407 (p 

= 0.000) and R2 = 0.407 (p = 0.000), respectively, while PEC-Qsum had the lowest R2 value of 

0.130. As with the Silt habitat, the LSand Chironomidae toxicity and IBI approaches showed 

reasonable correlations with the HZD, PEC-Qavg and PEC-Qmet (as well as PEC-Qsum) SQG 

scoring metrics.  In this case, HZD provided the strongest predictive capability for Chironomidae 

abundance (followed closely by PEC-Qsum) while HZD, PEC-Qavg and PEC-Qmet scoring 

methods explained similar amounts of variation in IBI score values. 

The differences in the ability of the various hazard metrics to estimate abundance of 

Chironomidae between habitats may be suggestive of differences in chemical bioavailability.  
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Hence, Chironomidae are apparently more sensitive with respect to their abundance in LSand 

habitats as compared to Silt habitats for the same degree of sediment contamination.  This is 

consistent with higher organic carbon content in Silt contributing to a higher degree of chemical 

sequestering and lower overall contaminant bioavailability. However, these differences may also 

be a product of an oversimplification of the habitat classification method.  While the selection of 

variables included in the habitat model were demonstrated to be relevant habitat predictors 

within the literature, benthic invertebrates within the study system may track habitats at a finer 

scale then what classification would model would suggest and errors in true habitat classification 

would contribute to additional variation in the goodness of fit test.  This could be one reason for 

the failure to find any associations between priority contaminant concentrations and indicator 

abundances in the Grav and HSand habitats.  

Differences between toxicity score predictions across the hazard metrics as contrasted in this 

study are due to the differences in their computation. Averaging hazard quotients across 

chemicals (PEC-Qavg) results in conservative toxicity estimates, particularly when several 

chemicals are found in sediments at low concentrations relative to their PEC-Q values. Thus, 

averaging causes ‘dilution’ of the overall score and consistently produces the lowest toxicity 

prediction. For the Chironomidae indicator in Silt and LSand, the PEC-Qavg was the poorest 

predictor of indicator abundance. Alternatively, PEC-Qsum can result in overly sensitive 

predictions of toxicity when several chemicals are present at low concentrations. In this case, the 

likelihood of exceeding an effect criterion, even when no field toxicity occurs, increases as the 

number of chemicals added to the metric increases. PEC-Qsum overestimated Chironomidae 

toxicity in Silt habitats but provided the second best prediction of indicator abundances in the 

LSand habitat where indicator sensitivity to contamination was apparently higher. Both the PEC-
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Qavg and PEC-Qsum could be improved by adopting the TEC-censoring algorithm used within the 

HZD methodology. Censoring chemicals that are present in sediments at concentrations less than 

the TEC value would increase the overall score for PEC-Qavg and decrease that of PEC-Qsum.  

However, the dilution artifact introduced by PEC-Qavg can still present problems especially under 

the extreme case where only a single contaminant is present at high enough concentrations to 

elicit strong toxicological response. The PEC-Qmet provides an intermediate toxicity prediction 

given that metals are treated as a single contaminant while variations in organic chemical scores 

are given more weight in the algorithm.  The PEC-Qmet is expected to be more appropriate when 

organic contaminants contribute to a larger proportion of sediment toxicity. It was the second 

best predictor of chironomid abundances in the Silt habitat and 3rd best predictor in LSand 

habitats whereas this metric was the strongest predictor of IBI in Silt but poorest predictor in 

LSand. PEC-Qmet could also benefit from adopting the TEC censoring method.  

For the HZD method, its use a sigmoidal toxicity curve contributes to further differences in 

toxicity predictions compared to each of PEC-QX approaches. Figure S6 contrasts % toxicity 

predicted for a single contaminant (PCBs) over a theoretical range of sediment concentrations 

using HZD (Equation 6 and the TEC censoring algorithm) and PEC-QPCB. As demonstrated by 

the figure, HZD generates a lower toxicity estimate compared to PEC-QPCB when sediment 

concentrations of PCBs are between the TEC and PEC value and a higher estimate of toxicity for 

sediment concentrations exceeding PEC up to the 93% toxicity estimate where both toxicity 

curves intersect and eventually become maximized at 100% toxicity. When applied on a multi-

chemical basis, HZD will therefore tend to produce lower toxicity estimates when several 

chemicals are less than PEC and higher toxicity estimates when multiple chemicals exceed their 

respective PEC. The HZD score provided the best overall predictor of chironomid abundances 



 

Revised March 12, 2016 

 23

for the Silt and second best predictor for LSand, while for the IBI it was the poorest predictor for 

Silt and 4rd best predictor for LSand. Relative to PEC-Qx approaches, the HZD suffers from its 

greater complexity in its computation. 

Finally, each hazard metric approach can be potentially improved by calibration. In the present 

study, the PEC concentration was arbitrarily set to a 50% toxicity value.  However, the value of 

toxicity associated with the PEC concentration can be set to other toxicity values and potentially 

optimized to establish a best fit to a calibration data set.  Preliminary trials were performed using 

the HZD score by adjustment of PEC toxicity equivalents in the range of 25 to 75%. However, 

these adjustments were not found to make substantial improvements in goodness to fit test 

outcomes for chironomid abundances in this system. Furthermore, given the differences in 

sensitivity of chironomids to sediment contamination between habitats it is clear than no single 

optimized value is likely to work across all environments nor would this be applicable to other 

types of benthic indicator species.  

Table 4 presents estimates of SQG-based toxicity score values for each of the computed 

metrics that correspond with the 50% field toxicity estimate for Chironomidae abundance in Silt 

and Sand habitats of the Detroit River based on goodness of fit tests. Thus, for Silt type habitats, 

stations having a computed HZD score greater than 54.1% might be considered potentially toxic 

with respect to chironomid abundances, whereas in LSand environments, a lower HZD score of 

32.3% or greater might be considered potentially toxic. Table 4 also presents SQG-based toxicity 

metric scores that correspond to the median IBI scores achieved in these two habitat types.  In 

this case, a HZD score of 65.2% and 50.6% will generate a median IBI scored for each 

respective habitat type.  Such information could prove useful for setting site and habitat specific 

criteria or remediation goals using a multi-chemical metric approach.  Thus, in Silt, HZD scores 
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exceeding 50% are more likely to be considered toxic both from an indicator abundance 

perspective as well as have a higher likelihood of achieving lower IBI scores. In LSand habitats 

HAZ scores exceeding 30% may be useful for designating the potential for biological impacts. 

Table 4 also summarizes the score values for 50% Chironomid toxicity and scores that achieve 

the median IBI in Silt and LSand for PEC-Qavg, PEC-Qmet and PEC-Qsum metrics.  In the case of 

PEC-Qavg the degraded condition values for indicator abundance and IBI range from 11.9 – 14.4 

% for Silt and 7.7 - 11.6% for LSand.  Converting these values back to standard hazard quotient 

scales (achieved by dividing the %toxicity value by 50) yields PEQ-Qavg on an absolute scale in 

the range of 0.24-0.29 and 0.15-0.23.  Notably, these protective values are much lower than the 

value of 1 commonly used in hazard quotient assessment methods.  

 

Conclusion 

SQGs such as those implemented by MDEQ are useful for providing toxicity benchmarks on 

which to evaluate sediment contamination and potential of sediments to contribute to degraded 

benthos. However, these guidelines cannot be used appropriately without considering the 

interactive effects of mixtures of chemicals present in the field and different habitats present 

within the system. Various multi-contaminant toxicity score approaches have been developed. 

However, different scoring methods generate different estimates of sediment toxicity and each 

computational approach contains within it assumptions that can contribute to biases in the 

prediction. This study demonstrated the applicability of some common multi-chemical 

multivariate scoring approaches for predicting benthic invertebrate abundance and indices of 

biological integrity (IBI) under field conditions.  It further describes a new method (HZD) that 

adopts a multi-point calibration through incorporation of information provided by PEC and TEC 
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benchmark values. The HZD score and individual PEC-Q approaches were capable of predicting 

Chironomidae abundances and IBI score values in two types of Detroit River habitats with 

varying degrees of success.  The HZD approach provided the best estimate of chironomid 

abundance in silt habitat, while PEC-Qsum produced the best estimate of chironomid abundance 

in low flow sand habitats followed closely by the HZD score as the second best metric. As for 

the multivariate approaches, the multimetric IBI approach showed correlations in the Silt and 

LSand habitats for each of the SQG scoring metrics. However, none of the metrics were able to 

predict abundances of other organism groups and habitat types indicating some limitations of the 

toxicity interpretation of SQGs across habitat types and species. This implies that habitat and 

taxonomic specific SQGs are likely warranted. Overall, the universality of SQGs is generally 

limited by: (1) the types of organisms present in the local environment and their tolerance to 

contaminant and habitat quality; (2) differences in contaminant availability based on site physical 

and chemical characteristics; and (3) unknown toxicological interactions of multiple 

contaminants at a site. Overall, the SQG LOE screening can be useful as part of a full WOE 

assessment of sites to identify impacts of contamination on the sediment benthos.  The method is 

made more powerful when habitat characteristics are considered within the SQG LOE 

assessment process and this has the added advantage of adopting consistency in approach with 

other LOEs that exclusively consider biological community composition alterations relative to 

habitat matched reference locations. 
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Figure 1: Sampling location habitats identified after discriminant function analysis (DFA) along 
the Detroit River.  
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Figure 2: (A) Results of principle component analysis (PCA) with user-identified habitat ellipses 
used for initial habitat characterization prior to discriminant function analysis (DFA_ (numbers 
indicate sampling locations).  Black circles denoted as undefined habitats; (B) Results of PCA 
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with habitat variables identified using DFA.  Ellipses represent 99% confidence intervals around 
a given habitat type.  
 

 

 

 

Figure 3: Chironomid toxicity versus SQG scores from four approaches (HZD, PEC-Qavg, PEC-
Qmet and PEC-Qsum) for Silt habitat.   Dashed line indicates a 1:1 correlation between actual 
measured and predicted toxicities. 
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Figure 4: Chironomid toxicity versus SQG scores from four approaches (HZD, PEC-Qavg, PEC-
Qmet and PEC-Qsum) for LSand habitat.   Dashed line indicates a 1:1 correlation between actual 
measured and predicted toxicities. 
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Figure 5: IBI values versus SQG scores from four approaches (HZD, PEC-Qavg, PEC-Qmet and 
PEC-Qsum) for Silt habitat. 
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Figure 6: IBI values versus SQG scores from four approaches (HZD, PEC-Qavg, PEC-Qmet and 
PEC-Qsum) for LSand habitat. 
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Figure S1:  Dose-response curves created using the LEL and SEL concentrations from Table S1 
for the Hazard Scoring approach.  
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Figure S2: Abundances of dominant species (Oligochaete, Amphipods and Chironomids) for 
each of four habitats (Grav, HSand, LSand and Silt). 

 

 

 

 

 

 

 

Figure S3: Amphipoda toxicity versus HZD scores for two habitats with low Chironomid 
abundances (HSand and Grav). Dotted line indicates a 1:1 correlation between actual measured 
and predicted toxicities. 
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Figure S4: IBI values versus SQG scores form four approaches (HZD, PEC-Qavg, PEC-Qmet and 
PEC-Qsum) for the HSand habitat. 
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Figure S5: IBI values versus SQG scores form four approaches (HZD, PEC-Qavg, PEC-Qmet and 
PEC-Qsum) for the Grav habitat. 

 

 

 

 

 

 

 

Figure S6: Example toxicity curves for sum PCBs versus sediment concentration. The Hazard 
Score (HZD) is 0% until the concentration reaches 5% toxicity at the TEC and conforms to a 
sigmoidal toxicity curve. The PEC-Qx toxicity is linear from 0 to 100% and capped at 100% 
toxicity.  
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Table S1: SQG method chemical concentrations and fitted sigmoidal curve parameters.  

  

 

 

Table S2: Results of PCA for various habitat parameters after initial analysis. 

Component Loadings 

Parameter 
PC1 

(50.1%) 
PC2 

(28.4%) 
Depth (m) -0.884 0.002 
Velocity (m/s) -0.900 -0.071 
TOC (%) 0.092 0.779 
Gravel (%) -0.905 0.137 
Sand (%) 0.528 -0.761 
Silt (%) 0.557 0.703 

Bold values indicate strongly loaded values (p > 0.7).  

 

 

Table S3: Results of DFA for categorization of habitats. 

Classification Matrix (Cases in row categories classified into columns) 

parameter As Cd Cr Cu Fe Pb Hg Ni Zn HCB DDE
Total 
PCBs

Total 
PAHs

TEC 9.79 0.99 43 32 2 36 0.18 23 121 2.00E-02 3.16E-03 0.06 1.61
PEC 33 5 111 149 4 128 1.06 49 459 2.40E-01 3.13E-02 0.68 23

fitted k 0.13 0.74 0.04 0.03 1.47 0.03 3.35 0.11 0.01 13.38 105 4.75 0.14
fitted A 66 40 126 42 361 60 35 251 55 25 26 25 24

Ec 1.5 2.5 0.8 2.3 0.3 1.7 2.8 0.4 1.8 3.9 3.6 3.8 4.1

MDEQ

Chemical
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 GRAV HSAND LSAND SILT UNDF %correct 

GRAV 17 1 0 0 0 94 

HSAND 0 27 0 0 1 96 

LSAND 0 0 43 0 2 96 

SILT 0 0 1 31 1 94 

UNDF 0 1 0 0 16 94 

Total 17 29 44 31 20 95 
 

 

 

 

 

 

 

Table S4: Summary of species representing ≥ 0.5% of total organism abundance and results of 
final PCA analysis.  

  PC1 

(41%) 

PC2 

(17%) 

PC3 

(15%) 

Oligochaeta -0.058 0.030 -0.935

Nematoda*  

Chironomidae  0.027 -0.806 -0.259

Ceratopogonidae*  

Hexagenia -0.099 -0.737 0.273

Caenis*  

Hydropsychidae*  

Other Trichoptera*  

Amphipoda 0.905 0.027 0.042

Dreissena*  
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Hydrozoa 0.823 0.004 0.029

Hirudinea*  

Turbellaria 0.771 0.054 0.044

Gastropoda 0.889 -0.134 -0.131

 

*denotes species not strongly correlated after initial PCA analysis and excluded from further 
analysis.  Bolded PCA scores indicate strongly loaded variables on that particular component 
axis (<  -0.7 and > 0.7) 

 

 

 

 

 

 

 

 

 

 

 

Table S5: Values for IBI metrics used for scoring. (EPT = Ephemeroptera, Trichoptera, and 
Plecoptera. 

Metric Score Values 
Abundance 5 >143 

31-143 
<31  

3 
1 

No. families 5 >6 
3-6 
<3 

 
3 
1 

% EPT 5 >2.5 
0.01-2.5 

<0.01 
 

3 
1 
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% Chironomids 5 >37 
0.1-37 
<0.1 

 
3 
1 

No. EPT taxa 5 1 
0  1 

% dominance 5 >51 
51-82 
<82 

 
3 
1 

Shannon Wiener 
Index 

5 >0.61 
0.29-0.61 

<0.29 
3 
1 

Evenness 5 >0.74 
0.42-0.74 

<0.42 
 

3 
1 
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