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Table A.

Summar

T

y of contaminant concentrations in the sediment, water and

fish of Lake Erie. Details may be found in appendices 1,2 and 4.

Arsenic

Cadmium

Chromium

Copper

Lead

Mercury

Nickel

Zinc

PCB's

Water
(ppb)

0.35
(0.1-0.6)

0.20
(N.D.-0.20)

1.60
(N.D.-14.0)

1.75
(1.0.+17.0)

1.50
(O-lS-lZ.O)

0.61 .
(N.D.=0.61)

3.50
(2.0.-4.0)

5.50
(2-0-9-0)

0.03

Sediment
(ppm)

2.28
(0.2-60.0)

2.65
(0.1-13.7)

54.22
(3.4-362.0)

39.53
(3.0-207.0)

73.0%
(4,6-299.0)

0.59
(0.01-7.5)

48.42
(9.0-121.0)

129.22
(12,0-536.0)

0.14
(0.004-0.80

Fish
(ppm)

0.05
( 0.01-0.12)

0.13
(0.19-0.78)

0.22
(0.01-0.39)

0.53
(0.18-1.56)

0.21
(0.09-0.52)

0.56
<Oool"306)

1.16
(0.12-7.53)

4.84
(4.27-6.05)

h & |
(N.D.—14-0>
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Table B: Inventory of sources of contaminants in Lake Erie (fluxrate kg/yr) .

Contaminant

Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc

PCB's

Point
Source

7.87x103
3.56x102
7.54x103
2.33x104
1.07x104
6.20x 101
1.80x10°
4,73x104

-data not available

Tributaries

5

1.

.62x10%
05x10°
.02x196

.66x106

.06x106
.23x10°
.88x106

. 43x107
.O7xlO5

- VIII -

Shore
Erosion

8.50x104
1.10x104
3,29x10°
1.33x10°
1.50x10°
1.65x102
1.60x10°
3.98x10°

Dry Wet
Fall

2.00x104
8.00x104

.1.50x10°

7.50x10°
4.00x103
8.00x104
100x106

3.10x10>

Dredge
Material

1.10x104
5.82x10°
7.49x104
6.45x104
6.30x104
6.80X102
7.94x104
2.43x10°
8x10

Discharged into

Lake Erie
7.02x104
1.76x10°
1.76x103
5.27x10°
1.76x105
1.76x10%
5.27x10°
1.05x106
8.78x102
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Such factors include pH, redox potential, and methylation. The form of the

contaminant exists is important as it strongly influences its toxicity and
mobility.

V. The impact of dredging on the Lake Erie ecosystem.

Studies have documented a change in benthic invertebrate community
structure following dredging activities in Lake Erie. These studies have
concluded that the alteration in community structure is a negative impact
whose effects have been observed to last at least 5 years. However, these
studies lack certain data which weaken their conclusions. First, while all
document a change in numbers of individuals, none document the change in
biomass of the benthos, a critical measure of productivity. Second, none
partition the effects due to burial and contaminant release making it
impossible to determine which process is responsible for the observed
alterations. Third, these studies make conclusions which are not based on
ecological concepts regarding community structure. A change in the
distribution of species abundances of the benthos over a relatively small area
is not necessarily a damning flaw. There are no guidelines for "quality of
benthos" indicating desirable species, community structure, or productivity.
There are no studies on the impact to the rest of the ecosystem resulting from
a change in the species composition of the benthos.

The sediments of Lake Erie may hold potentially toxic levels of many
contaminants, with many of the more often dredged areas, particularly harbors,
being the most contaminated. Before dredging disposal decisions can be made
the protection of the ecosystem should be ensured with carefully designed and
monitored pilot studies which will determine if there are deleterious effects

to the ecosystem including changes in productivity and the release of harmful
contaminants to the higher trophic levels.
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1)

2)

3)

4)

5)

CONCLUSIONS

The sediments of Lake Erie represent a sink for the majority of
contaminants entering the lake each year. Regardless of considera
a redistributor of in-place contaminants or an original source, on
basis of available data dredging activities play a relatively mino
controlable role as a contaminant source. However, on-land and co
disposal represents a significant means of removing the contaminan
the lake.
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It is widely recognized that bioaccumulation of contaminants occur
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all trophic levels. However, the role of dredging in the release of

contaminants is uncertain and conclusions regarding the impact of
dredging activities are tentative, but suggest that dredging plays

a

minor part in bicaccumulation of contaminants. While the contaminants

have all been shown to have potential deleterious effects on the b
Lake Erie, the weakness of the data base allows for uncertainty on
role of dredging activities in the release of potentially toxic
concentrations of contaminants.

Dredging activities have a direct impact on the immediate areas in
i.e., the dredge site and dredge material disposal site. While th
some evidence that the dredge disposal site may exhibit alteration

iota of
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volved,
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community structure even after 5 years of disuse, there is no evidence

regarding the change in quality of the benthos or whole lake ecosy
due to dredging activities.

The fact that there is limited evidence relating dredging to any s
ecosystem impairment does not mean that dredging has no impact,
there has simply been a lack of scientific studies which have been
designed to show the extent of the impact.
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IT LAKE ERIE - AN INTRODUCTION

Lake Erie is the second smallest of the Great Lakes in surface area at
25,691 km?¢ and smallest in volume at only 483 km’. These values represent
10% of the total surface area of the Great Lakes and only 2% of the total
volume. It is the shallowest of the lakes with an average depth of 19 m. The
drainage basin for Lake Erie is relatively small, 58,800 km2, but includes
areas of intense agricultural and commercial activities and is heavily
populated. Bordered by four states and the province of Ontario, several large
cities rest on the banks of Lake Erie including Toledo, Cleveland, and Buffalo
along with smaller population centers such as Erie, Ashtabula, and
Leamington. Lake Erie serves as a link between these cities and as a
thoroughfare to the upper lakes. The heavy use of Lake Erie for shipping, the
shallowness of the lake, and the heavy siltation load from its tributaries has
necessitated dredging activities surpassing that in all the other Creat Lakes.

In 1979, 66.3 million tonnes of cargo moved through the Welland Canal at
the eastern end of the lake, 40% of which was grain with an approximate value
of $2 billion (Misener, 1981). Iron ore and other bulk material comprised
most of the rest of the cargo. Between 1979 and 1985 shipping is expected to
increase by almost 35% (Misener, 1981). These figures do not take into
account the value of shipping entering Lake Erie through Lake St. Clair or
intra-lake shipping. The cargo industry of Lake Erie is responsible for the
direct employment of more than 15,000 pecple. Shipping expenses for the four
major commodities (iron ore, coal, limestone, and grain) accounted for almost
$4,340 million in 1970 (International Working Group on the Abatement and
Control of Pollution from Dredging Activities, 1975). Dredging in the Great
Lakes is a major industry employing 2,500 people with annual payroll of
approximately $26 million (International Working Group on the Abatement and
Control of Pollution from Dredging Activities, 1975).

Table 1. Annual commercial fish harvest in Lake Erie. (000's k?)
Year U.S. Harvest Canadian Harvest Total Value ($000's)
1976 4,107 11,570 15,670 5,990
1977 4,392 16,134 20,526 1,297
1978 * 18,072 * 9,884 +
1979 * 18,473 * 17,592 +
1980 » 19,490 * 14,024 +

sources: Canadian harvest - Ontario Ministry of Natural Resources, 1981
U.S. harvest - Baldwin et al., 1979
+ Canadian harvest value
*data not available
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Table 2.
DREDGING IN LAKE ERIE AND THE GREA AKES 1975-1979 (Cubic Meters Place Material)
Year U.S: Canada lotal Total Great Lakes Lake Erie
Lake Erie ‘e Erie _.ake Erie %

1975 3,496 ,04¢ 204 5,097,457 é9.
1976 3,043,328 59,00 S 102, 328 4,524,463 £8.
1977 2,544,056 259, 800 2,803,856 4,721,746 59.
1978 1,902,733 YA 2,280,465 4,664,147 48 .

1979 2:521; 396 18,1 2,549,496 4,029,038 63.
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Oredging plays a major role in maintaining the lake for the shipping
industry. The dredging activity in Lake Erie represented over half the total
volume dredged in the Great Lakes (Table 2). Historically, a vast majority
(90%) of dredging in Lake Erie has been for navigational purposes (International
Working Group on the Abatement and Control of Pollution from Dredging
Activities, 1975). During the period 1975-1979 dredging activities decreased
63% in Canadian waters and 28% in U.S. waters for a total decline of almost 1
million cubic meters place material (Guidelines and Register for Evaluation of
Great Lakes Dredging Projects, 1982). Considering the large volume of material
dredged annually and the economic importance of the lake, the impact of dredging
activities on the lake needs to be investigated thoroughly.

One of the critical factors in determining the extent of dredging in a
given area is the cost of disposal options. 'Removing dredge _materials to sites
far removed from the dreging location can add $2 to $5 per m° to the cost of
the dredging project (International Working Group on the Abatement and Control
of Pollution from Oredging Activities, 1975). In addition, the cost of
preparation or construction of disposal sites should also be considered. The
decision of where to place dredged material must, therefore, balance economic
and environmental concerns.

Dredging in the Great Lakes has come under close scrutiny in the last
decade as awareness of the'effects of this activity has increased. Dredging
activities have a number of potential negative impacts including disruption of
spawning sites, creation of turbidity, disturbance and destruction of aquatic
organisms and habitats, resuspension of contaminated materials into the water
column, dissolved oxygen depletion, release of nutrients and other material
entrapped in the sediments, and the creation of floating scum and debris. Not
all of these effects are necessarily harmful to the environment. Floating scum
resulting from dredging activites offend our aesthetic senses more than they
harm the enviromment, but the significance of some of the other effects remains
largely unknown.

Because of the potential damage to the aquatic enviromment, guidelines
have been established (Guidelines and Register for Evaluation of Great Lakes
Dredging Projects, 1982) to regulate both dredging and disposal activities.
These guidelines take into account the type of material dredged, contamination
levels in the material, and the impact of the dredged material on the proposed
dumping site. Oepending upon these factors, dumping is suggested in the open
lake, upland, in confined areas nearshore, or as beach nourishment.
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physical, chemical, and biological activities that might resuspend the
sediments (Dolan and Bierman, 1982). This work is summarized in Table 5. The
results of these calculations were then multiplied by the average

concentration of pollutant in the sediment of each basin. Values of
concentrations in the sediment were derived by averaging those values in the
literature which did not represent harbors or ports where pollutant levels are
generally much higher than typical lake sediments. Like the data for the
water borne pollutants, these are weakened by the fact that they repesent many
sources, originally collected for a variety of purposes, from many sites, by
many methods, and analyzed by many means. The same caveat regardin

a rough

estimate must again be made for these values.

4) Biota

Data for thzn estimate were originally envisioned as coming from
estimates of total phytoplankton, zooplankton, and fish biomass levels of
contaminants 3530C1d+pu with these. Analysis of the mass of pollutant leaving
the lake via fish harvest (Section III) suggests that the biota are not
necessarily a major reservoir of these contaminants. A problem with an

estimate of the biotic reservoir of heavy metals is that there are few
estimates for either the overall biomass of the components or for the
concentration of the metals in these components. Bioaccumulation 111 be
discussed in Section V. Consequent the importance of the biotic reservoir

remains unknown.




eight of active
liment (g)

1.24x1013 2.65 3.61x1014

1.61x1015
3.41x1014

lTotal basin Total lake

—\ppm) ; _mass (kg) mass (kg)

i
0

}
W
Wl
o\ N O
X
= -
OO0
\n O\

5.03x106

I
N
w
x
b
)
On

Q {
p—
(8]
>
—
o
A

6.68x106

i “hromiun » x
p -
- ‘ 1.32x108
It il
Mh Copper Western 1.79x107
Central 4 7.41x107
Easterr 2 7.84x106 9.98x107

Lead Western 73 2.64x107
Central 64 1.04x108
Eastern 1. C 2.76x10/ 1.58x108

Mercury W

D
4

1\

O n
53

:

=

astern 0.3 1.16x10 1.18x106
Nickel

1.20x108

}

W

!

»

= b
=)

"

Zinc 167 .66 6.05x10/
ala ~ M 8
& l.‘a.f(a.u:

3.24x107 2.94x108
PCB Western 2 9.03x104
Central , 1.12x1053

Eastern 0.09 Z.07x104 2.33x10°




- 1

IV. CONTAMINANT BUDGET FOR LAKE ERIE
1) Introduction

Mass balance studies attempt to identify the principle points of
material storage and movement within a system. Such knowledge allows for the
calculation of such parameters as retention times and sedimentation rates.
For this report the mass balance approach is used to put dredging into
perspective with the other major sources and exports of contaminants of Lake
Erie. It is not meant to be the definitive mass balance study of the
contaminants of the lake.

For any lake, the simplest equation to describe the mass balance of

an element within the system is:
T=R+1I=C

where T is the total mass of the element in the lake, I is the loading from
all sources, R is the resident mass of the element in the water and sediment,
calculated in Section II, and C is the mass of the element leaving the lake in
its outflow. For this project, the three variables I, R, and C, have been
further subdivided so that all major processes in the pollutant cycle can be
identified. In so doing, weaknesses in the data base have come to light, a
matter which is discussed in the final section of this chapter.

2) Contaminant loading into Lake Erie

For this report the loading into Lake Erie is defined as (modified
from Jennett et al., 1980):

I=P+A+E+D+S
where P is direct point source loading, A is tributary loading, E is loading
from shoreline erosion, D is the amount of material entering the lake via dry
and wet fall, and S is the amount of heavy metals introduced from dredge
material. An important consideration in contaminant load assessment is the
large dilution capacity of the lake. Consequently, large loadings are
required before contaminants are analytically detected. Significant changes
may therefore occur before a change is noticed.

a) Point Source

Point source loading for this report has been defined to include
industrial and municipal discharges into Lake Erie. Unfortunately, current
municipal data for the heavy metals in question are either not collected in
the United States or are unavailable. Industrial loadings for the United
States are found in an IJC report (1979). Point source loading estimates for
the Canadian portion of the lake are available (Sudar, 1977) which include
both municipal and industrial loading for all heavy metals with the exception
of arsenic and mercury. The combined data from these sources can be found in
Tables 6 and 7. Nickel is the most abundant heavy metal, primarily from
industrial sources, followed by zinc and copper. Mercury and cadmium have the
lowest levels of loading from these sources. For all heavy metals in question
the importance of this loading source is minimal (Table 7) accounting for no
more than 4.5% of the total loading. It is doubtful that the inclusion of
municipal loadings from the United States would significantly affect the
results. Data for PCB loading from point sources are not available.’




b) Tributary

It has been estimated that the tributaries of Lake Erie contribute at
least 95% of the contaminants into the lake (Nriagu et al., 1979). The
importance of the Detroit River cannot be over-emphasized as the source for

.
most of the heavy metal loading into Lake Erie. The Detroit River serves as
the link from the upper Great Lakes and is consequently carrying the water
borne pollutants from Lakes Superior, Michigan and Huron as well as receiving
the industrial and municipal discharges from Detroit and the surrounding
communities. Other tributaries contribute relatively minor amounts of the
contaminants. This is not to chat they do not have localized impacts, but
by comparison they do not add lcant amount of contaminants to Lake
Erie; most contaminants enter > le via the Detroit River. The Detroit
River carries 1.43x10/ kg of zinc each year, some 89% of the total loading

for this metal. Virtually the entire mercury load, 99.8% (Table 7), also
enters via the river. The only exception is arsenic, with the river
contributing only 31% of the total load. Over 96% of the PCB's enter the lake

v - - 1+ Riv
via the Detroit River

c) Shore erosion

Data for Canadian shore erosion and its contribution of heavy metal
loading into Lake Erie is detailed in Thomas and Haras (1978). Data for the
United States shore erosion are not available. Only arsenic has shore erosion
as a significant source, yielding 47% of the total load into the lake (Table
7), though only 8.5x10%4 kg are added each year. Zzinc has the greatest mass
loaded into the lake each year, 3.98x10° kg (Table 6), but this represents
only 2.5% of its total load. Mercury has the lowest actual load, 1.65x104
kg (Table 6) and per cent load, 0.03% (Table 7), added from shore erosion.

d) Dryfall and wet fall

It is only within the last decade that the atmosphere has been
recognized as a significant source of heavy metal loadings into lakes.
Eisenreich (1982) has compiled most of the existing information on atmospheric
loading into the Great Lakes. Data for arsenic loading are from Traversy et
al. (1975) and data for zinc are from Kuntz (1978), while there remains no
details on the loading for chromium. The atmosphere is a significant source
of cadmium (39.6%), lead (37.12%), and arsenic (11.11%) loading into Lake
Erie. Zinc has the highest mass loaded (1.0x106 kg) but this does not
represent a significant source. 0Of the seven heavy metals for which data are
available, nickel is least affected by the atmosphere as a loading source.
Though atmospheric deposition is the major source of PCB to Lakes Michigan
(Murphy & Rzeszutko, 1977) and Superior (Swain, 1980; Eisenreich, et al.
1981), Lake Erie receives a far smaller proportion due to its much smaller
surface area, receiving PCB loading from the Detroit River.

e) Dredge material

The addition of contaminants into Lake Erie from dredge material was
discussed in the recent "Guidelines and Register for Evaluation of Great Lakes
Oredging Projects" (1982). Using dredge data found in that report in the
present evaluation, the conclusion is that dredging is not a significant
source of heavy metals into Lake Erie, with no metal having a percent load
greater than 6.5% (Table 7). In comparison, the 1982 'Guidelines' found that




lable 6. Inventory of sources of contami > Erie (flux rate
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many of the contaminants contributed by dredging were in excess of 10% of the
total load. The difference in estimate of importance relegated to dredging in
this report and the 1982 report is due to the inclusion of more loading
sources in the current study. When placed in the perspective of the total
loading from all sources, dredging becomes a relatively minor source
regardless of consideration as dredging as a new source of contaminants or
re-suspender of in-place contaminants. However, this is not to discount the
importance of a source responsible for 5.42 x 10° kg of heavy metals in Lake
Erie each year. While representing a small portion of the total volume of
heavy metal loading (Table 7) dredging might best be regarded as a highly
controlable point source which may result in significant localized impacts.

3) Contaminant exports from Lake Erie

a) Tributaries

The major outflows from Lake Erie are the Niagara River and the
Welland Canal. Kuntz and Chan (1982) have reported on the heavy metal
concentrations in the water leaving the lake. Annual mass values were
computed by multiplying the annual river discharge by the concentration of the
heavy metal in the water. The Welland Canal was not considered due to its
relatively small outflow in comparison with the Niagara River. The Niagara
River is the major hydraulic outflow from Lake Erie for mercury (96%), cadmium
(91%), nickel (80%), and copper (73%), and is significant for the other metals
as well (Tables 8 and 9).

b) Fish harvest

One source of contaminant export not usually considered is the loss
due to the harvest of fish from the lake. Mean values for the contaminant
concentration in the flesh of each of the commercially important species
(Appendix 4) was multiplied by the latest data for fish harvest. The results
of the analysis (Tables 8 and 9) suggest that this is not a major source of
contaminant loss from Lake Erie with most contaminants losing less than 0.1%
in this manner. Mercury and PCB's are the sole exceptions with exports of
0.17% and 0.33%, respectively. In all cases but zinc the total mass loss was
less than 30 kg.

¢) On-land or confined disposal

Heavily polluted dredge materials are normally disposed of on land or
in confined disposal sites in the water. The most recent data for this type
of disposal including estimates of the mass of heavy metal exported are
reported in the 1982 Dredging Guidelines. From these data, it can be
concluded that of the contaminants removed from the lake each year, on-land
and confined removal of spoils is a significant means of contaminant export
from the lake. This is especially true for PCB's (82.89%), lead (57,69%),
chromium (55.67%), and 2inc (50.70%). Little mercury (3.99%, 7.3x102 kg) or
cadmium (9.64%, 1.87x10% kg) is lost in this manner.

d) Volatilization :

Mercury is unique among the heavy metals investigated in that it is
relativ%ly volatile (Bertine and Goldberg, 1971). Using an estimate of
1.7x10~° g/m4/yr (Environment Canada, 1981) as the flux of mercury from
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open water, there is a loss of 4.36 x 102 kg from Lake Erie each year.
While representing 14.9% of the total export of mercury, this is a very crude
estimate whose value is dependant upon the concentration of mercury in the
water and the water temperature.

4) Heavy metal and PCB retention time calculations

The mass of contaminant retained in a lake annually is calculated by:
==f S0

where Mp is the mass of contaminantM¥etained annually, and I and C are the
masses of the contaminant loaded and exported annually, respectively. The
results of this calculation give a value which 1s presumed to represent the
amount of contaminant sedimenting each year. It is generally accepted that
sediments act as sinks for contaminants (Mathis and Cummings, 1973; Mathis and
Kevern, 1975; Enk & Mathis, 1977; and many others) and that the vast amount of
contaminant entering the water accumulate in the bottom sediments (Gardiner,
1974). The results of this analysis are presented in Table 10. These values
suggest that almost all of the mercury is retained annually in the sediments
(99.41)%. This result is due primarily to the low concentration of mercury
found in the headwaters of the Niagara River, the main discharge from the lake
and is in agreement with the conclusion of Thomas (1974) who suggests that
little of the mercury irput leaves via the Niagara River. In addition, this
value has been corrected for mercury leaving the sediments and entering the
water due to volatilization (Environment Canada, 1981) at a rate of 1.73 x
10-3 g/mz/yr. Cadmium, in comparison, has a very low retention value
(3.96%) indicating that it is in near equilibrium in the lake. Values for the
other metals fall within this range with most in the 65-85% retained range.
In comparison Nriagu et al. (1979) calculated -values of 35%, 50%, and 65% for
zinc, copper, and lead while in this report values of 87%, 65% and 80% were
obtained. Baier and Healy (1977) calculated a 70% retention level for lead in
Lake Washington. The actual values for mass of heavy metal retained are very
similar to those reported by Nriagu et al. (1979) who report mass values of
1.15x106 kg and 1.25x106 kg for copper and lead, respectively. The
retained PCB's represent 95% of the imput. This result is almost identical to
the per cent value calculated from the data of Eisenreich et al. (1980) for
Lake Superior. Nisbet and Sarofin (1972) also suggest that most of the PCB
imput to freshwater is bound to the bottom sediments.

The retention time of a contaminant in a lake is calculated by
(Bowen, 1975):
T= W1
where T is the retention time, W is the total mass of contaminant in the
lake's water (calculated in Section II), and I is the total annual input of
the contaminant into the lake. The residence time of the contaminant relation
to the lake water residence time is then

tr = T/R
(Stumm and Morgan, 1970). The value of the residence time for lake water is

2.10 years, as calculated in Section II. The results of these calculations
are presented in Table 11.
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Values obtained range from that for arsenic of 333 days (0.91 yrs) to
that for zinc of only 59 days 16 yrs). Most of the retention times range
between 113 days (0.3l yrs) and 199 days (0.55 yrs). These values do not
differ significantly from those calculated by Nriagu et al. (1979). As
suggested by these authors, the short retention time of these metals compared
to the flushing time of the lake's waters (2.10 yrs) indicates that the
biogeochemical cycling of these metals is rapid. The relative resident time
values all smaller than 1 indicate that these heavy metals are readily
incorporated into sediments and become unavailable (Stumm and Morgan, 1570).
The transfer at heavy metals into the sediments generally exceeds the transfer
out (Jennett et al., 1980). Though the retention times differ markedly, the
very low value for relative retention time of PCB is very similar to that of

Lake Superior (0.03 vs. 0.056, calculated from Eisenreich et al., 1980). The
value is influenced by the biota, mixing relationships, and exchange with the
sediments (Leckie and James, 1974). It should be remembered that calculations
of such characteristics are based on measures subject to a great range of
error, so that the values for retention time are often imprecise (Bowen,

1975). Retention times within the same order of magnitude are generally
recognized as being similar (Bowen, 1975).

5) Weaknesses in the data base

As suggested in the last chapter, the calculations can be no better
than the data upon which they are based. In this instance there are a number
of variables which have not been discussed or which have been poorly
considered due to the paucity of data. One example of this is the lack of
information on inputs via non-point source loading. Also absent are data on
loading due to shoreline erosion on the United States portion of Lake Erie's
shores. Considering the importance of loadings estimated from Canadian shores,
the lack of data in this area may be critical., There is also a lack of data
on point source loading, primarily from municipalities. This may not merit as
much attention as estimates suggest that municipal loadings are not an
important relative to the other loading sources.
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V. THE FATE OF CONTAMINAN ; [ [E

1). Introduction

The ultimate fate o ontaminants in Lake Erie, or any lake, is the
result of integrated processes inv ing physical chemlcaL, and biological
mechanisms. Within each of these broad vatesorles of mechanisms, there are a
number of processes which ( sidered. These are detqlled in Table
12 (modified from Jennett, et al., .r%u). The physical and chemical factors
have been studied ~i h reased intensity in the last decade so that, for
cance, the aquatic stry of many metals is fairly well understood.
Table 13 lists the p §

k F i which metals may occur in the aquatic
iromment. The form in eavy metals occurs strongly influences

its toxicity and mobility ( and Howard, 1977). Because of the
increasing concern for the possible impe of contaminants on ecosystems it is
desirable to understand the interaction of dred
involving contaminant cyclinc
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Table 12. Mechanisms regulating the fate of contaminants in Lake Erie.

Physical Factors
Temperature
Hydrodynamics and mixing

Chemical Factors
Acid-base (pH)
Complexation
Oxidation-reduction (redox, Epn)
Sorption-desorption
Precipitation-dissolution

Biological Factors
Methylation
Degradation
Bioturbation
Accumulation

Table 13. Forms of heavy metals present in the sediment-water system (Gambrell

et al., 1976)

Soluble free cations

Soluble organic or inorganic complexes
Easily exchangable cations
Precipitates of metal hydroxides
Precipitates with ferric oxyhydroxides
Insoluble organic complexes

Insoluble sulfides

Residue metals
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Jbificid worms reduced pH in the upper 1-2

d oW 2- n sediments (Davis, 1974). As previously
i Jes in conjunction with other factors s as redox and

stuLL in changes in heavy metal availability. Oxygen
;rme is ﬂlnlmai ouring periods of low oxygen concentration, such as
tification, and apt;vity of tubificids is minimal. With an increase in
2N vonc:ﬂt*at¢on activity resumes. The mass transport of oxygen into the
nts by bioturbation can be of considerable importance where Lﬂrge

of bioturbating organisms exist. At 50,000 tubificids/mZ the
ne of the ,Ldlmav* s at least 15 cm into the sediment
r, 1963). Iﬂ:reaAf' ‘ in the sediment have also been
d where benthic organisms ar ctive (Edwards, 1958; Hargrave,
with the oxidized zone c ).3 to 1.6 mm (Davis, 1974).
bacterial activity, h -hy
. Both tubificid worms and molluscs have been shown to release the
rethylmercury formed by microbes in the sediment as they burrow through the
sed ent (Jerneldv, 1970). loturbation in productive areas will result in
P;gher methylmercury concen ions in the overlying water (Petr, 1977) as
both inorganic mercury and methylmercury have high affinities for organic
substances (Jerneldv,

—1) (
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Bioturbation is a 'significant event in the Great Lakes (Robbins and
Edgington, 1975). Robbins (1980) suggests that the benthos can play an
important role in the cycling of lica, a nutrient critical to limiting the
development of diatoms. In Lal bifex tubifex have been 'x“nd to feed
over a range of 0-10 cm in dime 'olgr most feeding occurs between 5-8
cm (Fisher et al., 1980), 1ixing occuri ﬁu,grom 6-9 cm as a Layer of
sediment above the zone r downward. The process causes a
significant amount of sec er the downward velocity of the
sediment-water interface feeding is great £
upward velocity due juently, tubif
capable of riml the western |
central basii rn basin (Fisher

-T1E
-tToy U
r

he top 10 cm

In addi 1 to mix 2-6% of
layer of rn bas h week at 199C (McCall et al.,
1979) . files of such heavy metals as mercury, chromium,

lead, and zinc, to a depth of 20 cm in some instances (Kovacik and Walters,
1973) is taken as ; ing activity is an important phenomenon
in Lake Erie. n below 5 cm where unionid clams are
absent suggesting by per sediment mixing (McCall et al.,
1979). However, it is e tC parate the reworking effects of the
different benthic components from physical factors such as waves and currents.
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l, chemical, and biological factors which
‘1;Aab‘ai-v of contaminants, the next relevant
- capable of accumulating these

play a role in
question is whe

pollutants. The effe at the contaminants may have is discussed in
Section VI. Bioaccum on data for species found in Lake Erie mqy be found
in Appendix III. ajorit f studies, while dealing with taxa found
in Lake Erie, were not ca e Erie.




One significant poi m f the literature concer semantics,
in particular the use of the S Diloaccumulation and biomagnification.
While often used to describe the same ver*“, they are actually separable
processes. Bioaccumulation is the extent to which an organism collects a
compound from its surrounding environment by all processes, while
biomagnification indicates that a compound is concentrated thr Lhe
consumption of lower by higher food chain organisms with a nef crease in
tissue concentration (Isensee et §g15 1973). The two processes will be
discussed in the Follow1mﬂ ' 1S concentration factor (BCF) is the
concentration of a chemical in an o m, or in *he tissue of an organism,
divided by the concentration in tha water (Kenega and Goring '
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i) Bioaccumulation

A critical point
been perfomed solely to
organisms. Such data
to accumulate contami
What is required for the

s, have
inan the
rmine tﬁe abili ) f organisms
ert¢0’, or biomagnification.
is the concent ion in the

water, sediment, and the organism tio Without knowing these
parameters in the environment the concentration in the organism limited
value. Concentration values for contaminants in fish are ﬁrase ted i
Appendix 4. Information was not available to allow the cal ];“ 1 of BCF's

of these fish.

Both the mass balance d nysico-chemical data suggest that
heavy metals and PCB's are listri ] throughout Lake Erie but are
instead associated with su cles vith the sediments. Bacteria

and algal cells represent living suspended particles that |
demonstrated to be e*‘ﬂﬁiin bio: nt oy PR T
to bind heavy metals is w~11
(1977) demonstrated that the :
unit surface area, much more [VE 3 rE Mercury vere the
sediment particles. Thev found that the sediment contained a relatively small

na

number of very high affinity binding es whereas bacteria contained many
more binding sites. Ps sp een shown to accumulate 10 times the
amount of cadmium as sedimen ad b (Titus and Pfister,

1982)., Remacle (1980) onst ad that attachec times as

erficient as free fI a in mu he points
out that cadmium remc ender te has been

shown (Titus and Pfister, 25 G “al , . \ iuthrie,
1977) that the accumulation of cadmiun ffected by the phys "—i‘Gm’Cal
condition of the water in th 3 sediment particles a

lowered redox values
cadmium to form insolub

Tornabene and Edwards (1972 strated that the accumulation of
lead by bacteria was actually o tion rather th somtion,
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Despite the importance of the zooplankton component in aquatic food
webs there is a paucity of information on contaminant accumulation in these
organisms. Only Daphnia magna has received attention specifically in terms of
biocaccumulation (Biesinger et al., 1982; Poldoski, 1979), and this only for
mercury. Accumulation of mercury was found to be highly dependent on the form
of mercury in the water with methylmercuric chloride accumulated 20 times more
than mercuric chloride. However, about half the mercury was lost within four
days of exposure. Denny and Welsh (1979) looking at the zooplankton fraction
of their field samples found lead to be significantly accumulated but give no
indication of the mode of accumulation. Mathis and Kevern (1975) in their
zooplankton samples found cadmium to be accumulated but also included gut
contents of the zooplankton in their analyses. It is clear that further work
is needed on biaccumulation in the zooplankton, especially in previously
ignored groups as the copepods.

Tubificid oligochaetes are an important part of the Lake Erie benthic
community. Mathis and Cummings (1973) found that tubificids were accumulating
metals at levels very similar to those in the sediments, a finding supported
by Mathis et al. (1979). Chironomid larvae, who share a similar niche, were
found to accumulate copper, lead, and zinc in levels greater than found in the
sediments, while chromium was accumulated less so (Namminga and Wilhm, 1977).
It was suggested that zinc accumulation is by surface adsorption and that low
values for zinc in this study may be the result of frequent molting and the
consequent elimination of adsorbed metals. In both these studies, and those
of the zooplankton, the animals were not given an opportunity to clear their
guts before analysis. The gut contents of these animals undoubtedly make up a
high proportion of their total weight and apparent biocaccumulation may
represent nothing more than ingested sediment..

Fish, though intensively monitored for contaminant levels, have not
been studied to yield bioaccumulation data. Data on the concentration of the
contaminant in the water where the fish have been caught is usually absent so
that the means of accumulation of the contaminants cannot be determined.
Mathis and Cummings (1973) found that fish were accumulating heavy metals in
their muscles at levels above that found in the water but less than those in
sediments. Omnivorous and carnivorous species accumulated lead and cadmium at
similar levels, but omnivorous fish had significantly higher concentrations of
copper, nickel, chromium and zinc. Murphy et al. (1978) found a similar
difference between omnivorous buegill and carnivorous largemouth bass with the
bluegill having higher concentrations of heavy metal than adult bass.
Juvenile, omnivorous, largemouth bass similarly had higher concentrations than
did adults. Mathis and Kevern (1975) found that mercury was accumulated in
fish but were unable to determine the relative importance of the source, water
or food. Essentially all mercury accumulation is as monomethylmercury (Kamps
et al., 1972) although inorganic mercury can be absorbed through the gills,
intestine or skin (Jerneldv and Lann, 1971). While mercury concentrations in
fish were correlated with length no such correlation was present with cadmium
or lead (Mathis and Kevern, 1975). Accumulation of mercury is also highly
dependent upon temperature (Cember et al., 1978). Similar results have been
obtained for cadmium (Lovett et al., 1972) and zinc (Mount, 1964). Arsenic
(Sorensen, 1976), cadmium (Mount and Stephan, 1969), and zinc (Mount, 1964)
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Fragilaria crotenensis, both members of the Bacillariophyta, for toxicity of
cadmium (Conway and Williams, 1979). Differences may even extend to the genus
level with different species within a genus having different sensitivities
(Wong et al., 1979). Again, there may also be differences within species and
between habitats. Zooplankton toxicity tests frequently feature Daphnia magna
as suggested by the EPA. However, this organism is not representative of its
genus (Winner and Farrell, 1976) for sensitivity to contaminants, and
certainly not representative of the freshwater crustacean zooplankton in
general (Wilson, 1980; Marshall, 1979; Marshall and Mellinger, 1978).

Wilson (1980) has summarized the problems of toxicity tests as:

1) Little research is done on naturally occurring species with
extrapolation between species difficult or impossible (Borgmann et
al., 1980); G

2) lack of information on temperature effects exists; e.g. the effects

of zinc on bluegill with a 10°C temperature shift noted oy Cairns

and Scheier (1957) versus the results of Rehwoldt et al. (1972);

3) The preponderance of static bioassays;

4) The extreme overcrowding in test chambers represents unnatural
conditions for organisms ranging from bacteria to zooplankton; and

5) The lack of replication, and has been previously described, both

within and between laboratories.

Hendrix et al. (1982) have suggested that current toxicity tests
attempt only to determine the effects of toxicants on particular organisms but
fail to evaluate the ecological effects that may 1) arise due to multispecies
and species-environment interactions, or 2) propogate through natural systems
with conseguences far removed from the test organism. Such consequences
include altered grazing and predation rates, elimination of key species, food
chain magnification, and inhibition of microbial processes. Rather than use
single-species assays, they propose that more realistic and ecologically
meaningful results might be expected from a testing protocol that builds upon
bioassay data with experiments in multispecies microcosms. Increasing
complexity of microcosms could be the appropriate scheme, 1,8,

1) Relatively small, static microcosm;
2) Flow=-through microcosm; and
3) Detailed but selective studies in more complex microcosms.

2) Evaluation of the elutriate test

For dredging projects, the most important tests have been those which
determine the release and availability of contaminants from sediments. To
this end, three types of tests have been designed. The bulk chemical sediment
analysis of the EPA and elutriate test of the U.S. Corps of Engineers have
been discussed in detail by Lee and Plumb (1974) and Prater and Anderson
(1977a, b) as well as by numerous other authars. Biologically, the bulk
chemical sediment test may not be directly related to the impact of the
sediment on the aquatic environment because a substantial fraction of the
constituents that it measures are in forms that are unavailable to the
ecosystem (Prater and Anderson, 1977a, b). The utility of the elutriate test
for the evaluation of possible ecological effects due to dredge material
disposal on benthic fauna is suspect as well (Hoke and Prater, 1980). The
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differences associa in test conditions, species, and method
of bioassay (Wong et al., 1S kel is known to inhibit 1 growth
(Hutchinson and Stokes ‘9’% _“‘gi., 1979) at concentrationg as low as
1.7 umol Ni/l when wafﬂr *qm‘=frv favors the presence of free N12+, its

most toxic species (Spencer and Greene, 198l1). The free metal ions are most
toxic species of Loonﬂr (Cu?* - Anderson and Morel 1978; Petersen, 1982),

cadmium (Cd2+ - Sunda et al., 1978, and zinc (7N2+ - Peter;el 1982). In

the presence of NiZ+* u)d‘Dmf Jpcveasw in abundance while filamentous greens
and blue-greens algae increase in abundance and diversity (Spencer and Greene,
1981). Bl,vugreen algae are more tolerant perhaps due to the production of
extracellular organics which can detoxify nickel, a process previously
identified as used by Aphanizomenon flos-aquae ‘L complex copper (McKnight and
Morel, 1979). Mangi et al. (1978) cultured algae from natural collections to
study the effects of Cr(é+) While inhibition occurred at 10 ppm, some cells
were apparently healthy after 2 weeks of exposure. The uptake of chromium was
found to vary with the chromium concentration and it was suggested that
adsorption was responsible for the uptake, even on dead cells, proving to be a
means of detoxifying the cultures. The effects of zinc have been studied on
the green alga Chlorella vulgaris (Rachlin and Farran, 1974; Coleman et al,
1971), Scenedesmus QUOﬁTJCdUau (Petersen, 1982), and Pedlastrum tetras
(Coleman et al., 1971) as well as the ~ur1enaLhyte Euglena virdis (Coleman et
al., 19717, "While C Coleman et al. (1971) showed that the dry weight of algae
increased at concentration:s Lo 4.2 ppm during a 3 week test, Rachlin and
Farran (1974) found that jed growth by 50% after only 4 days. In
nature the problem of zi complicated by possible additive or
synergistic effects with ants such as copper (Petersen, 1982;
Anderson and Weber, 1 - Ramsay, 1965; Brown and DaJtom, 19703
Lloyd, 1961). Synergisti be discussed more fully in the
following part of the rep

nct

A natural ph S lage was subjected to various heavy
metals, singly and in mixture, followed by either sediment or bog water (a
natural chelator) to determine the effects on photosynthesis (Hongve et al.,
1980). In this instance mercu ity was the greatest followed by copper,
cadmium, lead and zinc

o a result ar to Gichter (1976) who reversed the
ranking of lead and zinc. The addition of sediment caused the greatest
reduction in the toxicity of merct the metal most readily sorbed, and the

least reduction in cadmium and the metals least readily sorbed.
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it may have a synergistic relationship with fish predation on larger
zooplankton (Hall et al., 1976 rtram and Hart (1979) found that cadmium
did not affect time to maturity or quency of broods in Daphnia pulex but
did affect the percent of adults ﬁv;!uttwg young, the number of broods per
adult, the number of young per brood, total reproduction per female, the rate
of population growth, and the generation time. Cadmium in solution or
adsorbed onto Chlorell H.Hd ‘the e effect. Kettle et al. (1980) found that
Daphnia pulex ir
while another caldocera
consumption, again ill ng the difficulty of the 'representative’
species. Daphnia pulex had increased longevity and fecundity in the
laboratory portion of this study but did not show a response under field
conditions. Simocephalus serrulatus was much more sensitive with no
reproduction and limited life span both in the lab and field. Winner and
Farrell (1976) concluded that larger species of Daphnia (magna and pulex) are
significantly less sensitive to cadmium stress than smaller species (parvula
and ambigua) though the four species did not differ in their susceptibility to
chronic stress. As another caveat, Canton and Adema (1978) found no
difference between three species of Daphnia in their toxicity tests but did
find that the results of experiments run in two different laboratories were
more divergent than the results of multiple replicates in one laboratory.

n consumption in the presence of cadmium
_pr lus serrulatus, decreased oxygen

Temperature may play an important role in determining the toxicity of
cadmium and lead to Daphnia and the copepods Cyclops bicuspidatus thomasi and
Diaptomus sicilis (Wilson, 1980). Copepods have the additional complication
of having differential sensitivity between sexes. Though Wilson (1980) found
copepods to be more sensitive to heavy metals than Daphnia, other studies have
shown the opposite to be the case, at least for cadmium (M rshall, 1979;
Marshall and Melinger, 1978) and rhromlum (Baudouin and Scoppa, 1974), an
element copepods do not seem to absorb (Baudouin et al., 1972). Another
factor to be considered in field studies is the time of the year as Borgmann
et al. (1980) found that copepods showed a cycle of sensitlvity being most
sensitive in late fall and winter and least sensitive in early summer, to
cadmium, copper, mercury, and lead. It was also found that extrapolation of
lab data to the field may be difficult due to the number of factors effecting
toxicity in nature.

PCB's are relatively toxic to Daphnia pulex with concentrations as
low as 0.02 ppm toxic to juveniles (Morgan, 1972). It was shown that PCB
adsorbed to algae caused mortality to D. pulex in only 4 days indicating that
PCB's may be passed along the food chain, O0il and water soluble fractions of
such hydrocarbons as #2 fuel oil and coal tar creosote greatly depress growth
and reproduction in D. pulex as well (Geiger, 1979; Geiger et al., 1980;
Geiger and Buikema, 1981). Changes in filtering rate may be a sensitive
indicator of sublethal stress by these contaminants (Geiger and Buikema,
1981). Wong et al. (1981) examined the effects of small oil particles (of
phytoplankton size) on D. pulex. They found that the toxic effect increased
with concentration, and that weathered oil, which had lost most of its
volatile and toxic components, was less toxic than fresh oil.
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In a study ; ] -Oplankton assemblage, it was found
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a synergistic e t whe n with a
higher concentration of lead led to a antagonistic effect. Such cross mixing
is seldom done so that importa ractions may be overlooked. While the
ipproacn of using natural assemblages for this type of testing, and toxicity
ts in aqe g: is attractive, Wong and Beaver (1980) have pointed out that
UCN studles requires extra caution due to algal
as competition for nutrients and the production of

Anderson and W ’5) provi a thorough analysis of how metals
interact and the differ: S Detween additive and synergistic effects among
heavy metals. They conclude from their study on guppies (Poecilia reticulata)

that the toxicity of mixture: netals can be predicted from the lethal
response curve for each constituent Mis is apparently the case for copepods
as well (Borgmann, 1980) It was found in this instance that for a natural
assemblage of cyclopoid and calanoi copepods collected from the Burlington
Canal, that most of the icity ccounted for by the individual toxicites
of the metals, as when present = y. The accuracy of this determination
decreases as the number of metals sted together increases due to the
accumulation of small synergistic effects. rowever, metals are probably most |
often found in combinations of ater than five. A combination of the 10 |
heavy metals for which there ar guidelines established by IJC were toxic when
together at their suggested maxima (Wong et al., 1978) to algae.
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A recent study that has particular bearing on these types of studies
is that of Foster (1982a; b) who has found that algae of the same species
collected at sites with varying heavy metal concentrations had corresponding

sensitivities to these metals. Not only were the algae found to be more
tolerant in contaminated areas but the tolerance was found to be genetically
based. The implication is that laboratory studies using algae from culture

collections may not reflect ever

resulted in algal populations of greater contaminant tolerance. While the use
of natural assemblages may yield results of mixed value, algal clones derived
from the aquatic habitat in question would seem desirable.
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habitat requiring a careful sampling scheme for accurate population

estimates. This was also noted by Sweeney (1978) in Lake Erie. It was
concluded that dredging caused:
1) Significant siltation in adjacent areas near the dredge site due to

prop wash by the dredge and the inefficiency of the dredge to remove
all suspended particles;

2) Removal of the benthic organisms by the dredge; and

3) Alternation of current patterns and sediment distribution.

Regarding the effects at the disposal site they concluded:

1) The population covered by disposed material recovered after 7 days;

2) There was a decline up to 50 m from the disposal site of the benthos
due to siltation. This will vary with the specific dredge operation
depending upon site depth, currents, and the type of dredge material;
and

3) Most individuals of the benthic community were not grossly impaired.

Again, the effect of pollutants that may have been released by the dredge
operation were not monitored in this study so there is no way to determine if
this was a possible cause of any of the observed effects.

In a study of a Lake Erie disposal site out of use for 5 years it was
found that the disposal site remained more polluted than the control sites and
still exhibited "lower quality" than the control sites (Sweeney et al.,

1975). It was found that heavy metals, with the exception of cadmium, and oil
and grease, were in higher concentration at the disposal site. This would
seem to be good evidence for the ability of the sediments to retain
contaminants out of the water column. The benthic community remained
disturbed with a greater evenness in species diversity occurring at the
control sites, though the species composition at both sites were indicative of
a sediment containing a high degree of organic matter. There was, however, no
actual difference in the calculated species diversity index. It was concluded
that a prohibition should be placed on open lake disposal for dredge material
from polluted sources, specifically the Cuyahoga River and Cleveland harbor.

A more comprehensive survey conducted at the Ashtabula River disposal
site (Flint, 1979) similarly found that the control sites were more diverse
and their population densities more evenly distributed among the species
(i.e., no dominant species). It was concluded that the benthic community at
the disposal site had substantially changed after deposition representing a
less stable community structure exhibiting larger population fluctuations than
at the control sites. The disposal site changes were related to substantial
increases in individuals of the oligochaete genus Limnodrilus (especially
L. udekeminus and L. hoffmeisteri) and a decrease in individuals in species of
the genus Aulodrilus. It was also found that river and harbor dredge material
mediated different responses at the disposal site, perhaps due to differences
in the sediment texture. With both types of dredge material there was an
increase in the number of oligochaetes, particularly those species considered
most opportunistic (such as Peloscolex multisetosus multisetosus). The
predominance of oligochaetes at disposal sites has also been reported by
Kinney (1972) in Lake Ontario.
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safety of the ecosys , v with
pilot studies which w > ere ar
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Appendix 1

a. Summary figure of contaminants in the Lake Erie system in parts

per billion (ppb).

b. Concentrations of contaminants in the water of Lake Erie

in parts per billion (ppb).
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Metal

Arsenic

Cadmium

Copper

Basin

Whole lake

Whole lake

Western

Whole lake

Western

Western

Western

Western

whole lake

1973-7

1967

Mean

Concentration (ppb)
(ppb)
2% <0.1-0.6
0.3-0.6

€0.1-0.2

1.76 0-10.0

1.18 0-10.0

0.59 0-10.0
€0.1-0.2
£1-2

15

Reference

Traversy et al., 1975
PLUARG, 1978 in
Konasewich et al., 1978
Mich. DNR in

Konasewich et al., 1978
PLUARG, 1978 in

Konasewich et al., 1978

Thomann et al., 1974
Thomann et al., 1974

Thomann et al., 1974
Mich. DNR, 1978 in
Konasewich et al., 1978
weiler & Chawla, 1968
Konasewich et al., 1978

Chawla & Chau, 1969

Remarks

Toledo ir
Huron

Por

Monroe ir

+ Clin
L Lildll

+
11

1t alke

aAKe
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Appendix 1. Continued

Metal Basin Year Mean Range Re ference Remarks
Concentration (ppb)
(ppb)
Copper Whole lake 1976-7 1.0-2.5 PLUARG, 1978 in

Konasewich et al., 1978
Western 1967 17 Chawla & Chau, 1969
Western 1973-7 3-45- Mich. DNR, 1978 in Monroe intake

Konasewich et al., 1978

Central 1967 15 Chawla & Chau, 1969
Eastern 1967 14 Chawla & Chau, 1969
Eastern 1973 11-17 MOE, 1973 in Port Colborne,

Konasewich et al., 1978 Algoma-Inco effluent
Eastern 1973 4-20 MOE, 1973 in Nickel Beach
Konasewich et al., 1978
Eastern 1973 6-17 MOE, 1973 in Welland Canal
Konasewich et al., 1978
Lead Whole lake 1967 2.8 1-12 Weiler & Chawla, 1968

Whole laxe 1967 4 Chawla & Chau, 1969




Appendix 1.

Metal

Lead

Mercury

Nickel

Continued

Basin

Eastern

Whole lake

Whole lake

Whole lake
Whole lake
Western
Whole lake
Western
Western
Central

Year

1973

1970-1

1974

1976-7

1973-7

1967

1967

1973-7

1967

Mean

Concentration

(ppb)

17+.11

.05

Range

(ppb)

0-0.4

€ 0.5

<0.1-0.8

{5-14

Reference

MOE, 1973 in Konasewich
et al., 1978

Chau & Saitoh, 1973
CCIW, 1974 (NAQUADAT)
in Sherbin, 1979
PLUARG, 1978 in
Konasewich et al., 1978
I1JC, 1978

Mich. DNR in
Konasewich et al., 1978
Chawla & Chau, 1969
Chawla & Chau, 1969
Mich. DNR, 1978 in
Konasewich et al., 1978

Chawla & Chau, 1969

Remarks

Welland Canal

Monroe intake

Monroe intake




Appendix 1.

Metal

Nickel

Zinc

Continued

Basin

Eastern

Eastern

Eastern

Eastern

Whole lake

Whole lake

Central

Eastern

Year

-
O
o

1973

1967

1976-7

1967

1967

1967

Mean Range
Concentration (ppb)
(ppb)
y
140-320
4-840
5-10
8
2-9
11-24
8
7

Reference

Chawla & Chau, 1969

MOE, 1973 in

Konasewich et al. 1978
MOE, 1973 in
Konasewich et al., 1978

MOE, 1973 in

Konasewich et al., 1978
Chawla & Chau, 1969
PLUARG, 1978 in
Konasewich et al., 1978
Chawla & Chau, 1969
Mich. DNR in

Konasewich et al., 1978

Chawla & Chau, 1969

Chawla & Chau, 1969

Remarks

Nickel

AN

Welland Canal

Monroe




Appendix 2

Concentrations of contaminants
in the sediments of Lake Erie

in parts per million (ppm).

ntration of PCB's in ppb




Metal

Arsenic

Basin

Whole lake
Whole lake

Western

Western
Western
Western
Central
Central

Central

Year

1974

Mea
ncent
e g
2,20
5 i
Pt
2.0

1.2

6.54+3.0

3.0-4.0

3.2-12.0

0.2-7.0

7.0-25

Burge, 1974 unpublishe

in Konasewich et al., 19

Walters et al., 1974

Traversy et al., 1975
MOE, 1981

Thomas & Mudroch.

LU

Walters et a'., 1974

Burge, 1974 i

Konasewich et al., 1978

7

Remarks

Ashtabula Harbor




Appendix 2. Continued
|

Metal Basin

Arsenic Central

Central

Central

Central

"”’d.5t erf
Eastern
Cadmium Whole 1lake
Western
Western

Western

Year

7 A
T ]

19

1975

1970

1971

1973

Mean
Concentration

(ppm)

0.440.6

5.643.5

Range
(ppm)

7.0-15

2.0-5.5

11-16

6-16

2.0-4.0
0.1-10.8

2.2=13.7

Reference Remarks

Burge & Elly, 1974 Conneaut Harbor

in Konasewich et al., 1978
Traversy et al., 1975

EPA, 1975 in Ashtabula Harbor
Konasewich et al., 1978
EPA, 1975 in Fairport Harbor
Konasewich et al., 1978
Thomas & Mudroch, 1979
Walters et al., 1974
Thomas & Mudroch, 1979
MOE, 1981

Thomas & Mudroch, 1979
Mich. DNR in

north region

Konasewich et al., 1978



Appendix 2.

Metal

Cadmium

Chromium

Continued

Basin

Western

Western

Central

Central

Central

Central

Central

Eastern

Whole lake

1973

1974

1975

1975

1971

1971

M can

Concentratioi
(ppm)

1.0
2.340.8

51434

{DDI )
\BPmy

1.0-2.5

1.1-3.

N

6-238

Burge, 1974 in
Konasewich et al., 19°
EPA, 1975 in
Konasewich et al., 1978
EPA, 1975 in
Konasewich et

Thomas & Mudroch, 1979

Thomas & Mudroch, 1979

f

Remarks

Fairport




Metal Basin Year Mean
Concentration
(ppm)

{ 1 [ 1o 1
Chromium Nhole 1ake

Range Reference Remarks
(ppm)

38 Thomas & Mudroch, 197S

Walters et al., 1974

Mich. DNR in nearshore north region |

Konasewich et al., 1978

Mich. DNR in iearshore south region

1f Ashtabula Harbor

rge, 1974 in Conneaut Harbor




Appendix 2.

Metal

Chromium

Copper

Continued

Basin

Eastern
Eas

Whole lake
Western
Western
Western

Western

Year

1974

1970

1971

1972

1973

Mean

Concentration

(ppm)

44~-102

50-183

26-162

~

,-

1981
Thomas & Mudroch, 1979

Walters et al., 1974

Mich. DNR in near:

Konasewich ¢
Mich. DNR ir

Konasewich et al., 1978
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Metal

Copper

Continued

Basin

western

Western

Central

Central

Central

Central

Mean

Concentration

(ppm)

51 + 30

Range
(ppm)

<3

10-97

18-207

15-54

16-30

50.4-44 .8

26-48

26-46

Reference

Burge, 1974 in

Konasewich et al., 1978

MOE, 1981

Thomas & Mudroch, 1979
Walters et al., 1974
Burge & Elly, 1974 in
Konasewich et al., 1978
Burge, 1974 in
Konasewich et al., 1978
MOE in Konasewich et al.
1978

MOE in Konasewich et al.
1978

EPA in Konasewich et

2

1978

EPA in Konasewich

12
Im
[—-—

1978

Remarks

Port Clinton

Conneaut Harbor

Ashtabula Harbor

Port Stanley

Port Burwell

Ashtabula Harbor

Fairport Harbor
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Metal

Copper

Mercury

Continued

Basin

Eastern
Eastern

Eastern

Eastern

vy “+ar
Casielin

Whole lake
Whole lake
Whole lake
Western
Western
Western
Westerr

Western

Year

1973

1971
1971
1971
1967

1968

Mean
Concentration

(ppm)

34 + 13

12

0.582 + 0.555

0.578 + 0.554
0.609 + 0.703
0.72
0.89

<0.05 (dry wt)

Range
(ppm)

5-57

245-351

35.8-44.5

0.008-2.929

0.008-2.929

0.013-7.488

0.8-2.1(wet wt)

Re ference

Thomas & Mudroch, 1979
Walters et al., 1974

MOE, 1973 in

Konasewich et al., 1978

MOE, 1973 in

Konasewich et al.,

=

MOE, 1973 in

S ST R 1078
Konasewich et al., 197€

Thomas & Jaquet, 1976
Thomas & Mudroch, 1979
Thomas, 1974

Skoch & Turk, 1972
Skoch & Turk, 1972
MOE, 1981

Kinkead & Hamdy, 1978

Fed. Water Qual.

in Konasewich et al., 1978

Remarks

island ares

island ares

Admin., 1970




Mercury

Year

16271

Mean
Concentration
(ppm)

1.217 + 0.79

N

1.622 + 0.694

0.44

Range Reference
(ppm)

1.0-4.2 Walters et al., 1972
4.8 Kovacik & Walters, 1973

0.065-2.929 Thomas & Jaquet, 1976

0.484-2.929 Thomas & Mudroch, 1979

Walters et al., 1974
Burge, 1974 in

Konasewich et al., 1978

Remarks

Port Clinton

tabula Harbor
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Metal

Mercury

Lead

Continued

Basin

Central

Central

Central

castern

Eastern

Eastern

Whole lake

Whole lake

Whole lake

Whole lake

Western

Year

1975

1975

\O
~J
o

1971

1972

1971

1971

1971

1972-3

1970

Mean

Concentration

(ppm)

<0.1

<0.]

87 + 50

48 + 30

Range
(ppm)

{0.4-0.6

0.045-0.977

0.045-0.812

4.6-120

30-173

Reference
Burge, 1974 in Fairport
Konasewich et al., 1978
EPA, 1975 in Fairy
Konasewich et al., 1978
EPA, 1975 in Ashtab
Konasewich et al., 1978
Thomas & Jaquet, 1976
Thomas & Mudroch, 1979
Walters et al., 1974
PLUARG, 1977 in
Konasewich et al., 1978
PLUARG, 1977 in non-depos

PLUARG. 1977 ir ff
Konasewich et al

Hutchinson & Fitchko, 1974

MOE, 1981

Remarks

itional zone



Appendix 2. Continued

Metal Basin

Western

Western

Central

Year

1971

1973

1973

1974

Mean

Concentration

(ppm)

145 + 52

6l1.6 + 14.7

1.2 + 5

Range
(ppm)

69-299

111
L1V

43-194

10-20

Reference

PLUARG, 1977 in

Konasewich et

|
1

Mich. DNR in

Konasewich et al.

Mich. DNR in

Konasewich et al.

-

Remarks

1978

nearshore north region
1978

nearshore south region
1978

MOE in Konasewich et al., 1978

e LA
Kor L &
10 Konasew

1978
MOE, 19

PLUARG, 1977 in

Konasewich et al.,

Burge, 1974 in

Konasewich et al.,

Port Clinton Harboz

Leamington

1978
Ashtabula Harbor

1978




Appendix 2.

Metal

Lead

Continued

Basin

Central

Central

Central

Central

Central

Central

Eastern

Eastern

Year

1974

1974

1974

1974

1975

1975

1971

1973

Concentration

81

Mean

(ppm)

>5

Range
(ppm)

10-50
20-50
34.1.82.6
18.8-29.9
12-36
13-57
18-128

305-398

Reference

Burge, 1974 in
Konasewich et al., 1978
Burge, 1974 in
Konasewich et al., 1978
MOE in

Konasewich et al., 1978

MOE in Konasewich et al.

1978

EPA, 1975 in
Konasewich et al., 1978
EPA, 1975 in

Konasewich et al., 1978
PLUARG, 1977 in
Konasewich et al., 1978
MOE, 1973 in

Konasewich et al., 1978

Remarks

Conneaut Harbor

Port Burwel

Ashtabula Harbor

Fairport Harbor

Port Colborne



Appendix 2.

Metal

Lead

Nickel

Continued

Basin

Eastern

Eastern

Whole lake

Western

Western

Western

Central

Central

Central

Year

1973

1973

1971

1971

k972

Mean
Concentration

(ppm)

45 + 21

[0,
U

S4.4 11

Range
(ppm)

18.9-57.7

59.4-73.4

24-80

110-130

Reference

MOE, 1973 in
Konasewich et

MOE, 1973 in

Konasewich et

al., 1978

1., 4978

Thomas & Mudroch, 1979

Thomas & Mudroch, 1979

Walters et al.

Konasewich e

et

$x 1974

Mich. DNR
{Anaceowi rh at al 197
Konasewlich et al., 1978
DN
ynasewich et al 78
‘(}‘I .\‘?\

al., 1978

Thomas & Mudroch, 1979

Walters et al

1974

Burge, 1974 in

Konasewich et

al., 1978

Remarks

Nickel Beach

Welland Canal

nearshore north region

nearshore south

Port Clinton

Ashtabula Harbor

roafl an
region




Appendix 2. Continued

Metal Basin Year Mean Range Reference Remarks
Concentration (ppm)
(ppm)
Nickel Central 1974 110-270 Burge & Elly, 1974 Conneaut Harbor

in Konasewich et al., 1978
Central 1975 19-38 EPA, 1975 in Ashtabula Harbor
. Konasewich et al., 1978
Central 1975 16-40 EPA, 1975 in Fairport Harbor

Konasewich et al., 1978

Eastern 1971 45 + 17 16-68 Thomas & Mudroch, 1979
Eastern 1972 32 Walters et al., 1974

Eastern 1973 4800-5630 MOE, 1973 in Port Colborne - Algoma
Konasewich et al., 1978 Inco effluent |

Eastern 1973 . 115-796 MOE, 1973 in Nickel Beach
Konasewich et al., 1978

Eastern 1973 97.2-257 MOE, 1973 in Welland Canal
Konasewich et al., 1978

Zinc Whole lake 1971 166 + 99 16-536 Thomas & Mudroch, 1979
Whole lake 1974 12-252.5 Hutchinson & Fitchko, 1974

Western 1970 224 + 16 54-530 MOE, 1981




App ont inued

Metal Basin

Western

Year Mean o Range Reference Remarks

Concentration (ppm)
(ppm)

> 8 Nal
273 ) v INI

Konasewich et al., 1978

1973 69 + 13 Mich. DNR ir

Konasewich

< PR ¥
1974 0 Burge, 1974
) XN {
AW L
7 - 4
y, { I 8
{1 | {
7 100-14( ourg 7/4
ew
| B U /

nearshore north region

n nearshore south region

et al., 1978

in Port Clinton Harbor

98 Conneaut Harbor

in Fairport Harbor
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Metal

Zinc

PCB's

Continued

Basin

Central

Central

Eastern
Eastern

Whole lak=

Whole laka

Whole lake

Whole lake

Western

Central

Eastern

Year

1975

1975

1971

1972

1971

1971

1971

1978

1971

1971

1973

Mean

Concentration

(ppm)

178 + 98
12

95 + 114

64 + 105

115 + 114

252 + 156

% 56

86 + 85

Range
(ppm)

106-156
80-161
33-332
4-800
8-800
4-660
74-252
4-660

12-330

12-320

Reference Remarks

EPA, 1975 in Ashtabula Harbor
Konasewich et al., 1978
EPR, 1975 in Fairport Harbor
Konasewich et al., 1978
Thomas & Mudroch, 1979
Walters et al., 1974
Frank et al., 1977;
Thomas & Mudroch, 1979
Frank et al., 1977 non-depositional zone
Frank et al., 1977 depositional zone
PLUARG, 1978 in Kaiser, 1978

Frank et al., 1977;

Thomas & Mudroch, 1979

Frank et al., 1977,

Thomas & Mudroch, 1979

Frank et al., 1977;

Thomas & Mudroch, 1979
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Appendix 3a.

Organism

Micrococcus luteus

Azobacter sp.

bacterial
community

Pseudomonas
fluorescens

natural bacterial
population

natural bacterial
populat ion

BCF whole cell
[] in cells
[{] in contrels
{] in media

BCF

[] in cells
{] in control
[] in media

BCF ranges
[] in cells
[]1 in media

BCF
{] in cells

{] in water (initial)

BCF

[] in cells
[] in water
[] in cells
(Cu added)
[] in cells
(Hg added)

BCF

{] in cells
[] in water
[lin cells

(Cu added)

{1 in cells
(Hg added)
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.01
.01
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OO0

B bt et
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Remarks

bacteria from Fort Collins Park

(whole 11s) (dry wt.)

} Yor 2 days

1NCuD
bacteria from Fort
whole cel
incubate

bacte

Ourthe (Liege, Belgium)

ranges due to ranges in initial

bacteria dilution
(val for free bacteria)
BCF f

Ottawa River water
72 hr. exposure

58% loss of Hg from system over

72 hr

Savannah River
14 day exposure
(wet wt.)

Cu added 2.0 parts/106Cu added

Hg added 0.04 parts/106 Hg added

incr. [] of Cu, Cr & Hg

L. Houston (ash basin effluent) Guthrie

wet wt. 14 day exposure

Cu added-2 parts/10% Cu added -

incr. [] of Cr, Cu, & Zn

Collins Park

a collected from River

adhering bacteria = 6100

Ramamoo1

Guthrie

Reference

Tornabene
Edwards,

Remacle

1977

1977

Hg added-0.04parts/106 Hg added -

incr.[] of all metals

et

&
1972

thy

1977

-}

|




] in cells 1000-3000 resistant 50 ppb of Cd

-{] in water 1 (dry wt. basis) 4 day exposure
pH 6-7; 23 & 269C
at pH 7 & 49C BCF = 500 (est. from graph)
at pH 8.5 & 239C BCF = 250 (est. from graph)
Michigan field data Copeland & Ayers,

1972

in Konasewich

et al., 1978

Conway &
Williams, 1979




Appendix 3a. continue

Organism

Phy toplankton
(+ Rotifers)

Asterionella formosa

Asterionella

formosa

Chlamydomonas sp.

Scenedesmus

obliquus

Chlorella

pyrenoidosa

Scenedesmus

bliguus

BCF
[] in plants
] in water

BOCF
o

initial uptake
max. [} in cells
BCF live cells
BCF cold-killed

BCF Hg—killed

ambient |}

BCF
BCF

BCF
BCF
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Cd Cr Cu
),300-24,400
g c‘.‘;«"mn‘

z
/mm’
548(
2700
105
16,700-32,000
700 )
266pp

Pb Hg Ni
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not sig 6540
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).025ppb O 041ppt

N 31 Parameters)

n B 0,300 3. Bug/

11 day uM—cui‘tuw} 3 hr
44 day old-culture) laboratory
eXPOSurE

11 day old-culture) 3 hr
44 day ola—culture}
£XPOoSure

laboratory experiment

11 day old cultures 3 hrs
exposure, varying pH

BCF max. occur at pH 7 or 8

BCF min. occur at pH 5 or 6

laboratory
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L} in plants

of
in plants

BCF
{1 in plants
[] in water
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[] in water
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control pond - Illinois River Mathis et al.,
values except water estimated 1979

from graph
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from graph
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Ayers, 1972
in Konasewich

et al., 1978

s & Kevern,




Appendix 3a. continued

Organism Metals Remarks (Physical Parameters) Reference
As Cd Cr Cu Pb Hg Ni Zn
5 = 4 3 English lakes - field data  Denny & Welsh
Zooplankt F 1.0x104-6.3x10 ng y ,
e g in animals 2.0-19.0 (ranges of values) 1979
[ Jin water 0.2-.50ppb
Daphnia magna BCF 1.7x104-2.0x104 laboratory experiment-21 day Biesinger
[ Jin animals 8.59-23.28 exposure; inorganic mercuric et:al.,
{ Jin control 1.26 chloride 1982
{ Jin water 0.36-2.7ppb
ia magn: 3.95x105-7.0x10° laboratory experiment-21 day Biesinger
Daphnla magna in animals 16.42-183.75 exposure; organic methyl mecuric et al.,
[Jin control 0.92 chloride 1982
[ Jin water 0.04-0.26ppb
Physa sp. BCF 3529 7000 - control power plant pond Mathis et al.,
[ Jin animals 6.0 ; 21.7 (Illinois R.) 1979
[ )in water 0.0017 0.0031 [] in animals estimated from graph
Physa sp. BCF 4521 12333 experimental power plant pond Mathis et al.,
{Jin animals 6.33 33.3 (Illineois R.) 1979
[ Jin water 0.0014 0.0027 [ )in animals estimated from graph
Muscul ium BCF 1764 10870 control power plant pond Mathis et al.,
transversum - [ lin animals 3.0 33.7 (I1linois R.) 1979
[ Jin water 0.0017 0.0031 [lin animals estimated from graph
Muscul ium BCF 6928 10962 experimental power plant pond Mathis et al.,
transversum { lin animals 9.7 29.6 (I1linois R.) 1979
[ Jin water 0.0014 0.0027 [ lin animals estimated from graph
Fusconia flava BCF 1150 366 1700 1850 1050 2129 I1linois River Mathis &
[ Jin animals 0.69 % 4 1.7 3.7 2.1 66 mean of 17 samples Cummings, 1973
{ Jin water 0.6 ppb 0.021 0.001 0.002 0.002 0.031




\mblema plicat BCF
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[Jin water

Jadrula quadrula BCF
[lin animals
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Mathis &
Cummings, 1973
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for 0.05 gm

Jrown, /

[ J-i a1 1)/
ne

Mathis
ummings, 1973

estiamted from graph




Appendix 3a. continued

Organism

Amblema perplicata  BCF

[ Jin whole body
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Jin water
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Appendi

Organism

Yellow perch

Morone

CNTysSops

BCF

{Jin fish

[ Jin water

[ lin sediments

BCF
[] in fish

BCF
[lin fish
[ Jin water

[ Jin sediment

2000

44.4
0.04

0.9ppb
1.85

40
0.024
0.éppb

382
0.01

=~ 1400

0.378
0.017
31.9

225

0.45

Hg Ni

0.124

N.D

0.095

5185

0.15
40
.08
). 00

{emarks POy 1 A rame

Wintergreen Lake; field data
(mean levels)
filleted samples

L. Michigan - field data
edible portions only

Il1linois River - field data
mean values

muscle LSsue

ference

Mathis & Kevern,
1975

Copeland &

Ayers, 1972 in
Konasewich,

et al., 1979

Mathis &
Cummings, 1973




Fragilaria crotonensis

lorella pyrenoidosa

10

hlorella pyrenoidosa

Chlorella pyrenoidosa

pyrenoidosa

BCF live cells

BCF dead

BCF live
BCF dead
BCF frustu
pop. dens
[] in wa
BCF

[ Jin cells
[ Jin water

BCF
[ Jin cells
[ Jin water
BCF
[Jin cells
[ lin water

BCF
[]in cells
[lin water

BCf

[ lin dead cells

[ Jin water

BCF frustules

ISOMER

'

g il
> & >
£,8,5,2 4 .5

hexachlorobiphenyl

tetrachloro

hexachloro

octachloro

tetrachloro

~ ORGANICS

3 ppb

3200
32
10ppb

7000
70
10ppb

1600
16

10ppb

5200
52
10ppb

6200
62
10ppb

laboratory experiment
ime - live cells 19 hi
- dead cells ]} 19 hrs & 43
frustules !avc_rqgcd

laboratory experiment
time - live cells 19 hrs
dead cells ) |

frustules averaged

laboratory experment 1 hr.
exposure

laboratory experiment - 1 hr
exposure

laboratory experiment - 1 hr
exposure

laboratory experiment - 1 hr.
exposure

laboratory experiment

uptake by dead cells> uptake by live

& 43 hrs.

%)



ISOMER

BCF hexachloro
[ Jin dead cells
[ Jin water

in plankton
Jin water

I
|
BCF Aroclor 1254
P
i

lin animals

WIS

15600
156
10ppb

996.4

laboratory experiment
than live cells

L. Ontario field data

{ lin plankton (64ymmesh)
Ho0 (<64ym) from

ry experiment - 4

laborat

EXPOoSuUre

Urey et al.,
uptake by dead cells 2 times greater

sanders & Chandler,




Appendix 3b. continued

ORGANTSM ORGANICS REMARKS REFERENCES
P(B's
ISOMER
Physa sp. BCF lindane & AROCLOR 452 model ecosystem Sanborn, 1974 in Thomas
5460 1975
BCF 2,57 5795
trichlorobiphenyl
BCF 2,5,2",5 -tetra— 39,439
chlorobiphenyl
BCF 2.4,5.2 .5 ~ 59,629
pentachlorobiphenyl
Chaoborus punctipennis BCF AROCLOR 1254 23076.9 laboratory experiment - 4 day Sanders & Chandler, 1972
[ lin animals 30 exposure; organisms collected
[ Jin water 1.3ppb in field (Missouri)
Orconectes nais BOF ARCCLOR 1254 166.7 laboratory experiment - 4 day Sanders & Chandler, 1972
[ lin animals 0.2 exposure; organisms collected in field
[ lin water 1.2ppb (Missouri); max. observed BCF=5200
on day 21 (no plateau observed)
Cammarus BOF AROCLOR 1254 24375 laboratory experiment Sanders & Chandler, 1972
pseudol imnaeus [1 in animals 39 ppm 4 day exposure
[1in waler 1.6 ppb animals collected in Missouri

from graph BCF max.
=2 28500 between day 7 & 14
(plateau)



Appendix 3b. continued

T ORGANISM A ORGANICS REMARKS REFERENCES
PCB's
ISOMER
Alewife, smelt, BCF AROCLOR 1254 53483.8 L. Ontario - field data taile et al., 1975 in
slimy sculpin [Jin fish equivalent 3.24 [lin water (< 64m) Thomann, 1979.
[ Jin water 0.0554ppb [ lin fish (wet wt.)
Lake Trout BCF P(CB's 3.41x106 L. Michigan field data cited in Metcalf, 1977
[ Jin fish 28.0
[lin water 8.2x10-6




Appendix 4

Concentration of Contaminants
found in the fish of lake Erie

in parts per million (ppm)
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Fish Basin Year Level Range Remarks References
ARSENIC
Barbote Eastern 1975 0.03 wet wt. Traversy et al., 1975
Carp Central 1975 0.12 wet wt. Traversy et al., 1975
Channel catfish Western 1973 0.02 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.03 whiting Power Plant Konasewich et al., 1978
Central 1975 0.09 wet wt. Traversy et al., 1975
Central 1976 0.03 Brezina & Arnold, 1977 in
Konasewich et al., 1978
Snelt Central 1975 0.04 " wet wt. Traversy et al., 1975
Central 1976 0.13 - 0.16 wWheatley Dock Ont. M.N.R. (unpubl.) in
Konasewich et al., 1978
Eastern 1975 0.12 wet wt. Traversy et al., 1975
Walleye Western 1973 0.02 off Swan Creek Mich. D.N.R. (unpubl.) in
Konasewich et al., 1978
white bass Eastern 1975 0.08 wet wt. Traversy et al., 1975
White sucker Central 1976 0.01 Brezina & Arnold, 1977 in
Konasewich et al., 1978
Yellow perch Western 1973 <0.01 off Swan Creek Mich. D.N.R. (unpubl.) in
0.10 Whiting Power Plant Konasewich et al., 1978
Western 1975 0.09 wet wt. Traversy et al., 1975
Yellow perch Central 1975 0.03 - 0.10 wet wt. Traversy et al., 1975
Central 1976 0.01 Brezina & Arnold, 1977 in
Konasewich et al., 1978
Eastern 1975 5 | wet wt Traversy et al., 1975




Fish Basin Year Level Range Remarks References
CADMILM
Brown bullhead & Central 1976 0.11 Presque Ile Peninsula Brezina & Arnold, 1977 in
channel catfish . Konasewich et al., 1978
Channel catfish Western 1973 0.78 off Swan Creek Mich. D.N.R. (unpubl.) in
0.02 Whiting Power Plant Konasewich et al., 1978
Smelt Central 1976 <. 0.) Wheatley Dock Ont. H.N.R. (unpubl.) in
Konasewich et al., 1978
Walleye Western 1973 0.10 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.14 Whiting Power Plant Konasewich et al., 1978
white crappie Central 1976 0.07 Brezina & Arnold, 1977 in
Konasewich et al., 1978
vhite sucker Central 1976 0.05 Brezina & Arnold, 1977 in
Konasewich et al., 1978
ilow perch Western 1973 0.02 off Swan Creek Mich. D.N.R. (unpubl.) in
0.02 Whiting Power Plant Konasewich et al., 1978
Central 1976 0.0l Brezina & Arnold, 1977 in

Konasewich et al., 1978




Fesi —r R il ] R el e B ey e - R — o
Fish Basin Year Level Range Remarks Re ferences
CHROMIUM
Channel catfish Western 1973 0.18 _ off Swan Creek Mich. D.N.R. (unpubl) in
.39 Whiting Power Plant Konasewich et al; 1978
Central 1976 0.13 Brezina & Arnold, 1977 in
Konasewich et al., 1978
Coho salmon whole lake 1978 0.30 + 0.07 Great Lakes Water Qualilty,
1979, App. B
Walleye Western 1973 0.20 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.12 , Whiting Power Plant Konasewich et al., 1978
Yellow perch western 1973 0.18 of f Swan Creek Mich D.N.R. (unpubl.) in
0.29 Whiting Power Plant Konasewich et al., 1978




Fish

COPPER

Channel catfish
Channel catfish
& brown bullhead

Coho salmon

Rainbow smelt

Walleye
wWhite crappie
white sucker

Yellow perch

Basin Year Level Range Remarks References
Western 1973 0.61 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.40 Whiting Power Plant Konasewich et al., 1978
Central 1976 0.51 Presque Ile Peninsula Brezina & Arnold, 1977 in
‘ Konasewich et al., 1978
Whole lake 1978 " 1.56 + 2.05 wet wt. whole fish Great Lakes Water Quality,
1979, App. B
whole lake 1978 0.36 + 0.17 wet wt. whole fish Great Lakes Water Quality,
(5 fish in composite) 1979, App. B
Central 1976 0.68 - 0.80 wWheatley Dock Ont. M.N.R. 1976 (unpubl.) in
Konasewich et al., 1978
Western 1973 0.44 off Swan Creek Mich. D.N.R. (unpubl.) in
0.32 Whiting Power Plant Konasewich et al., 1978
Central 1976 0.24 Presque Ile Peninsula Brezina & Arnold, 1977 in
Konasewich et al., 1978
Central 1976 0.82 Outer Harbour, Erie, Pa. Brezina & Arnold, 1977 in.
Konasewich et al., 1978
whole lake 1978 0.70 + 0.53 wet wt. whole fish Great Lakes Water Quality,
1979, App. B
Western 1973 0.30 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.41 Whiting Power Plant Konasewich et al., 1978
Central 1976 0.18 Outer Harbour, Erie, Pa. Brezina & Arnold, 1977 in

Konasewich et al., 1978




Fish Basin Year Level Range Remarks References
LEAD
Channel catfish Western 1973 0.34 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.25 Whiting Power Plant Konasewich et al., 1978
Central 1976 0.38 Presque Ile Peninsula Brezina & Arnold, 1977 in
Konaswich et al., 1978
Northern pike Eastern 1978 0.10 <0.10 - 0.10 Long Pt. Bay whittle, 1980 (unpubl.) in
Great Lakes Science Advisory
Bd., 1980
Smelt Western 1978 0.13 + 0.01 <0.10 - 0.21 whittle, 1980 (unpubl.) in
Great Lakes Science Advisory
B8d., 1980
Central 1976 0.40 Wheatley Dock Ont. M.N.R. (unpubl.) in
Konosewich et al., 1978.
Central 1978 0.12 + 0.01 <0.10 - 0.16 Erieau whittle, 1980 (unpubl.) in
0.13 + 0.01 <0.10 - 0.19 Wheatley Great Lakes Science Advisory
8d., 1980
Eastern 1978 0.11 + 0.01 <0.10 - 0.12 Long Pt. Bay whittle, 1980 (unpubl.) in
Great Lakes Science Advsiory
Bd., 1980
Walleye Western 1973 0.52 off Swan Creek Mich. D.N.R. (unpubl.) in
0.30 Whiting Power Plant Konasewich et al., 1978
Western 1978 0.13 + 0.03 ¢0.10 - 0.16 whittle, 1980 (unpubl.) in
Great Lakes Science Advsiory
8d., 1980
Central 1978 0.18 + 0.01 <0.10 - 0.18 Erieau wWhittle, 1980 (unpubl.) in
Great Lakes Science Advisory
Bd., 1980
Mhite sucker Central 1970 0.09 Outer Harbour, Erie, Pa.

Brezina & Arnold, 1977 in
Konasewich et al., 1978




Fish Basin Year Level Range Remarks References
LEAD
Yellow perch Western 1973 0.30 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.20 Whiting Power Plant Konasewich et al., 1978
Yellow perch Western 1978 0.15 + 0.01 <0.10 - 0.28 Whittle, 1980 (unpubl.) in
Great Lakes Science Advisory
Bd., 1980
Central 1976 0.14 Outer Harbor, Erie, Pa. Brezina & Arnold, 1977 in
Konasewich et al; 1978
Central 1978 0.20 + 0.02 <0.10 - 0.40 Erieau Whittle, 1980 (unpubl.) in
0.16 + 0.01 <0.10 - 0.28 Wheatley Great Lakes Science Advisory
Bd., 1980
Eastern 1978 0.16 + 0.01 <0.10 - 0.38 Long Pt. Bay Whittle, 1980 (unpubl.) in

Great Lakes Science Advlgary
Bd., 1980




Fish Basin Year Level Range Remarks References
MERCURY
Alewife Whole lake 1976 0.08 0.07 - 0.10 Sherbin, 1979
Brown bullhead whole lake 1967-1968 0.19 + 0.03 0.12 - 0.26 fillet Thommes et al., 1972 in
Konasewich et al., 1978
Channel catfish Central 1976 0.08 Brezina & Arnold, 1977 in
& brown bullhead Konasewich et al., 1978
Carp Whole lake 1967-1968 0.22 + 0.08 0.07 - 0.30 fillet Thommes et al., 1972 in
) Konasewich et al., 1978
whole lake 1976 0.23 0.13 - 0.42 Sherbin, 1979
Western 1970 0.28 Bono fillet Fed. Water Quality Admin.,
0.08 Sandusky fillet 1970 in Konasewich et al.,
1978
Western 1970 0.23 edible tissue (25 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Central 1970 0.35 edible tissue (17 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Eastern 1970 0.36 edible tissue (14 fish Willford, 1971 in Konasewich
in composite et al., 1978
Channel catfish Western 1970 0.32 Sandusky; fillet Fed. Water Quality Admin.,
1.8 Bono; fillet 1970 in Konasewich et al.,
19 Monroe; fillet 1978
Western 1970 0.36 edible tissue (25 fish Willford, 1971 in Konasewich
in composite) 1 et al., 1978
| Western 1973 0.49 of f Swan Creek Mich. D.N.R. (unpubl.) in
| 0.41 Whiting Power Plant Konasewich et al., 1978
Central 1970 0.42 edible portion (20 fish Willford, 1971 in Konasewi
in composite) et al., 978




MERCURY

Coho salmon

Gizzard shad

Basin Year Level Range Remarks References
Whole lake 1969 0.36 whole fish Fed. Water Quality Admin.,
1970 in Konasewich et al.,
1978
Whole lake 1976 0.20 0.11 - 0.35 Sherbin, 1979
Whole lake 1978 ~0.15 + 0.06 ea. sample - 5 fish Great Lakes Water Quality,
(whole fish) 1979, App. B
Western 1970 0.24 Sandusky; fillet Fed. Water Quality, Admin.,
0.96 Bono; fillet 1970 in Konasewich et al.,
0.96 Monroe; fillet 1978
Western 1970 0.69 edible tissue (20 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Central 1970 0.58 edible tissue (10 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Eastern 1970 0.51 edible tissue (13 fish Willford, 1971 in Konasewich
in composite) et al., 1978
whole lake 1967-1968 0.35 + 0.04 0.19 - 0.40 (fillet) Thommes et al., 1972 in
Konasewich et al., 1978
Western 1970 0.67 edible portion (25 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Central 1970 0.62 edible portion (20 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Eastern 1970 0.30 edible portion (25 fish Willford, 1971 in Konasewich
in composite) et al., 1978
whole lake 1967-1968 0.14 + 0.04 0.05 - 0.25 fillet Thommes et al., 1972 in
Konasewich et al., 1978
Western 1970 0.24 Sandusky fillet Fed. Water Quality Admin.,

1970 in Konasewich et al.,
1978




Fish Basin Year Level Range Remarks References
MERCURY
Gizzard shad Western 1970 0.22 edible portion (25 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Central 1970 0.21 edible portion (15 fish Willford, 1971 in Konasewich
in composite) et'al.; 1978
Eastern 1970 0.26 edible portion (18 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Goldfish Whole lake 1967-1968 0.13 + 0.06 0.01 - 0.20 Thommes et al., 1972 in
Konasewich et al., 1978
Rainbow smelt whole lake 1978 0.05 + 0.02 ea. sample = 5 fish Great lLakes Water Quality,
(whole fish) 1979, App. B
Central 1976 0.03 - 0.15 Wheatley Dock Ont M.N.R. (unpubl.) in
' Konasewich et al., 1978
Eastern 1970 0.30 whole fish (10 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Sheepshead Western 1970 0.24 Sandusky; fillet Fed. Water Quality Admin.,
1970 in Konasewich et al.,
1978
Smallmouth bass Central 1970 0.55 edible tissue (14 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Steelhead Western 1970 €0.15 Monroe; fillet Fed. Water Quality Admin., in
Konasewich et al., 1978
Walleye Whole lake 1967-1968 0.84 fillet Thommes et al., 1972 in
Konasewich et al., 1978
Western 1970 3.6 Monroe; fillet Fed. Water Quality Admin.,
2.6 Sandusky; fillet 1970 in Konasewich et al.,
3:57 Raison Pt.; fillet 1978




Remarks

References

Walleye

White Bass

Western

Western
Western

Western

Western
Western
Western

Central

Eastern

Whole lake

whole lake
Whole lake
whole lake

Western

Western

1970

1971
1972

1973

1974
1975
1976

1970

1970

1967-1968

1972
1975
1977

1970

edible tissue (25 fish
in composite)

fish tissue
fish tissue

of f Swan Creek
Whiting Power Plant

fish tissue
fish tissue
fish tissue

edible tissue (25 fish
in composite)

edible tissue (25 fish
in composite

fillet

Bono; fillet
Sandusky; fillet
Raison Pt.; fillet

edible tissue (25 fish
in composite)

Willford, 1971 in Konasewich
et al., 1978

Kinkead & Hamdy, 1978

Kinkead & Hamdy, 1978

Mich. D.N.R. (unpubl.) in
Konaswich et al., 1978

Kinkead & Hamdy, 1978
Kinkead & Hamdy, 1978
Kinkead & Hamdy, 1978

Willford, 1971 in Konasewich
et al., 1978

Willford, 1971 in Konasewich
et al., 1978A

Thommes et al., 1972 in
Konasewich et al., 1978

Sherbin, 1979

Sherbin, 1979

Sherbin, 1979

Fed. Water Quality Admin.,
1970 in Konasewich et al.,
1978

Willford, 1971 in Konasewich
et al., 1978




Fish Basin Year Level Range Remarks References
MERCURY
White bass Western 1971 319 0.49 - 2.12 fish tissue Kinkead & Hamdy, 1978
Western 1972 0.53 0.08 - 1.96 fish tissue Kinkead & Hamdy, 1978
Western 1975 0.77 8.12 - 1.57 fish tissue Kinkead & Hamdy, 1978
Western 1976 0.31 0.26 - 0.37 fish tissue Kinkead & Hamdy, 1978
Western 1973 0.21 0.06 - 1.06 fish tissue Kinkead & Hamdy, 1978
Central 1970 0.72 edible tissue (25 fish Willford, 1971 in
~ in composite) Konasewich et al., 1978
Eastern 1970 0.43 edible tissue (25 fish Willford, 1971 in Konasewich
in composite) et al., 1978
White crappie Central 1976 0.12 Presque Ile Peninsula Brezina & Arnold, 1977 in
Konasewich et al., 1978
White sucker Western 1970 0.55 edible tissue (24 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Central 1970 0.56 edible tissue (8 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Central 1976 0.09 Outer Harbor, Erie, Pa. Brezina & Arnold, 1977 in
Konasewich et al., 1978
Eastern 1970 0.35 edible tissue (25 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Yellow perch Whole lake 1967-1968 0.42 + 0.05 0.29 - 0.6l fillet Thommes et al., 1972 in
Konasewich et al., 1978
whole lake 1978 0.09 + 0.05 ea. sample = 5 fish Great Lakes Water Quality,

(whole fish)

1979, App. B




MERCURY

Yellow perch

Basin Year Level Remarks References
Western 1970 0.44 Bono; fillet Fed. Water Quality Admin.,
0.32 Sandusky; fillet 1970 in Konasewich et al.,
7 Monroe; fillet 1978
Western 1970 0.61 edible tissue (25 fish Willford, 1971 in Konasewich
in composite) et al., 1978
Western 1973 0.55 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.57 Whiting Power Plant Konasewich et al., 1978
Central 1969 0.25 Wheatley Dock Fed. Water Quality Admin.,
(whole fish) 1970 in Konasewich et al.,
1978
Central 1970 0.49 edible tissue (25 fish Willford, 1971 in Konasewich
in composite et al., 1978
Central 1976 0.28 Outer Harbour, Erie, Pa. Brezina & Arnold, 1977 in
Konasewich et al., 1978
Eastern 1970 0.29 edible tissues (25 fish Willford, 1971 in Konasewich

in composite)

et al., 1978




Fish Basin Year Level Range Remarks References
NICKEL
Channel catfish Western 1973 0.12 of f Swan Creek Mich. D.N.R. (unpubl.) in
0.23 wWhiting Power Plant Konasewich et al., 1978
Channel catfish Central 1976 0.41 Presque Ile Peninsula Brezina & Arnold, 1977 in
& brown bullhead Konasewich et al., 1978
Walleye Western 1973 0.13 off Swan Creek Mich. D.N.R. (unpubl.) in
0.20 whiting Power Plant Konasewich et al., 1978
wWhite Crappie Central 1976 0.68 Presque Ile Peninsula Brezina & Arnold, 1977 in
Konasewich et al., 1978
white sucker Central 1976 1.9 Outer Harbour, Erie, Pa. Brezina & Arnold, 1977 in
Konasewich et al., 197
Yellow perch Western 1973 0.20 of f Swan CreekR Mich. D.N.R. (unpub.) in
0.20 whiting Power Plant Konasewich et al., 1978
Central 1976 1.95 Outer Harbor, Erie, Pa.

Brezina & Arnold, 1977 in
Konasewich et al., 197



71
LiNL

Channel catfish

Rainbow smelt

Walleye

White sucker

Yellow perch

Basin Year Level Range Remarks References
Western 1973 6.05 off Swan Creek Mich. D.N.R. (unpubl.) in
5335 Whiting Power Plant Konasewich et al., 1978
Central 1976 5.50 Brezina & Arnold, 1977 in
Konasewich et al., 1978
Central 1976 20 - 24 Ont. M.N.R. (unpubl.) in
Konasewich et al., 1978
Western 1973 4.34 of f Swan Creek Mich. D.N.R. (unpubl.) in
4.36 Whiting Power Plant Konasewich et al., 1978
Central 1976 4.34 Brezina & Arnold, 1977 in
Konasewich et al., 1978
Western 1973 4.59 of f Swan Creek Mich. D.N.R. (unpubl.) in
4.27 Whiting Power Plant Konasewich et al., 1978
Central 1976 4.8 Brezina & Arnold, 1977 in

Konasewich et al., 1978




Fish Basin Year Level Range Remarks References
P(B's
Alewife Western 1975 0.5 0.4 - 0.5 _headless and eviscerated Frank et al., 1978
(21 fish in composite)
Central 1975 0.4 0.3 - 0.4 headless and eviscerated Frank et al., 1978
(22 fish in composite)
Eastern 1971 3.0 J 5 SO PAF headless and eviscerated Frank et al., 1978
Bass Eastern 1978 0.57 0.37 - 0.86 muscle; Port Dover Rees, et al., 1979
Black crappie Eastern 1968 <0.1 <0.1 - 0.1 headless and eviscerated Frank et al., 1978
Eastern 1976 N.D. muscle Crawford & Brunato, 1978
Bluegill Central 1978 0.06 0.02 - 0.23 muscle; Rondeau Bay Rees, et al., 1979
Eastern 1968 0.1 headless and eviscerated Frank et al., 1978
Eastém 1976 0.003 N.D. - 0.02 muscle Crawford & Brunato, 1978
Brown bullhead Eastern 1968 (0.1 headless and eviscerated Frank et al., 1978
Eastern 1976 N.D. muscle Crawford & Brunato, 1978
Burbot Central 1971 0.30 MOE, 1976 (unpubl.) in
0.45 Konasewich et al., 1978
Eastern 1976 N.D muscle Crawford & Brunato, 1978
Carp Western 1974 s i Monroe <5 lbs. Mich. D.N.R. (unpubl.) in
3.9 + 1.6 7?5 1bs. Konasewich et al., 1978
Western 1975 0.13 + 0.11 <5 1bs. Mich. D.N.R. (unpubl.) in
0.24 75 1bs. Konasewich et al., 1978
Western 1977 0.21 whole body Herdendorf et al., 1978 in
0.32 Konasewich et al., 1978

A8 ]



’

hannel catfish

Chinook salmon

Coho salmon

Basin Year Level Range Remarks References
Eastern 1970-1971 2.0 0.3 - 5.3 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Eastern 1976 0.003 N.D. - 0.01 muscle Crawford & Brunato, 1978
Western 1968 0.2 €0.1 - 0.2 headless and eviscerated Frank et al., 1978
Western 1971 5.0 4.2 - 5.7 headless and eviscerated frank et al., 1978
Western 1971 5.0 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Western 1974 2.97 length 217" Mich. D.N.R. (unpubl.) in
3.0 length 17 - 20" Konasewich et al., 1978
Western 1975 0.16 + 0.13 length »17" Mich. D.N.R. (unpubl.) in
0.30 length 17 - 20" Konasewich et al., 1978
Western 1977 3.59 dressed fish Herdendorf et al., 1976 in
3.14 carcass Konasewich et al., 1978
Central 1976 0.93 fillet analysed Penn. D.N.R., 1977 in
Konasewich et al., 1978
Eastern 1970-1971 4.4 1.4 - 7.8 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Central 1977 0.135 muscle Crawford & Brunato, 1978
Whole lake 1978 0.91 + 0.66 wet wt. whole fish Great Lakes Water Quality,
1979, App. B
Western 1975 1.4 0.6 - 2.7 headless and eviscerated Frank et al., 1978
Central 1968 0.3 0.2 - 0.4 headless and eviscerated Frank et al., 1978
Central 1970 4.0 1.0 - 14.0 headless and eviscerated Frank et al., 1978




Fish Basin Year Level Range Remarks References
PCB's
Coho salmon Central 1971 1.7 1.5 - 2.0 headless and eviscerated Frank et al., 1978
Central 1975 0.7 0.4 - 2.0 headless and eviscerated Frank et al., 1978
Central 1977 0.52 0.23 - 0.98 muscle Crawford & Brunato, 1978
¥ 0.785 - 1.55
Central 1977 0.53 0.17 - 1.21 muscle; Port Stanley Crawford & Brunato, 1978
Eastern 1976 0.3 0.1 - 0.5 headless and eviscerated Frank et al., 1978
Eastern 1978 1.89 ‘muscle Reese, et al., 1979
Inner Long Pt. Bay
Drum Western 1968 <0.1 headless and eviscerated frank et al., 1978
Western 1971 1.4 0.7 - 3.5 headless and eviscerated Frank et al., 1978
(9 fish in composite)
Western 1975 0.6 0.2 - 1.8 headless and eviscerated Frank et al., 1978
(23 fish in composite)
Central 1971 3.7 2.2 - 4.7 headless and eviscerated Frank et al., 1978
Central 1975 0.7 0.4 - 1.4 headless and eviscerated Frank et al., 1978
Eastern 1971 1.3 0.6 - 1.8 headless and eviscerated Frank et al., 1978
Eastern 1975 0.4 0.2 - 0.6 headless and eviscerated Frank et al., 1978
Emerald shiner Western 1975 0.6 0.5 - 0.7 headless and eviscerated Frank et al., 1978
(60 fish in composite)
Central 1975 0.4 0.3 - 0.6 headless and eviscerated Frank et al., 1978
: (12 fish in composite)
Eastern 1975 0.4 0.3 - 0.6 headless and eviscerated Frank et al., 1978

(12 fish in composite)




PCB's

Emerald shiner

izzard shad

jemouth bass

Pumpkinseed

Rainbow smelt

Basin Year Level Range Remarks References
Eastern 1976 0.69 N.D. - 2.5 muscle Crawford & Brunato, 1978
Western 1968 0.3 <0.1 - 0.6 headless and eviscerated Frank et al., 1978
Western 1971 2.6 2.1 - 3.5 headless and eviscerated Frank et al., 1978

(6 fish in composite)
Western 1975 0.7 0.6 - 0.9 headless and eviscerated Frank et al., 1978

(27 fish in composite)
Central 1971 3.4 2.4 - 4.7 headless and eviscerated Frank et al., 1978

(9 fish in composite)
Central 1975 0.5 0.4 - 0.6 headless and eviscerated Frank et al., 1978

(7 fish in composite)
Central 1977 0.64 0.36 - 0.93 muscle Crawford & Brunato, 1978
Central 1978 0.12 0.01 - 0.45 muscle; Rondeau Bay Rees, et al., 1978
Eastern 1975 0.1 0.1 - 0.3 headless and eviscerated Frank et al., 1978
Eastern 1976 0.003 N.D. - 0.01 muscle Crawford & Brunato, 1978
Eastern 1968 <0.1 a2 headless and eviscerated Frank et al., 1978
Whole lake 1978 0.23 + 0.10 wet wt. whole fish Great Lakes Water

(5 fish in composite) Quality, 1979, App. B.
Western 1973 0.5 headless and eviscerated Frank et al., 1978

(10 fish in composite)
Western 1975 0.4 0.2 - 0.6 headless and eviscerated frank et al., 1978

(60 fish in composite)
Western 1976 0.06 Ont. M. Agr. Food (unpubl.)

in Konasewich et al., 1978




Fish Basin Year Level Range Remarks References
PCB's
Rainbow smelt Western 1978 0.65 0.36 - 1.16 whole fish Rees, et al., 1979
Central 1968 0.2 0.2 - 0.3 "headless and eviscerated frank et al., 1978
(13 fish in composite)
Central 1971 1.3 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Central 1973 0.5 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Central 1975 0.1 . headless and eviscerated Frank et al., 1978
(70 fish in composite)
Central 1976 0.59 Ont. M. Agr. Food., 1976 in
Konasewich et al., 1978
Central 1978 0.63 0.32 - 0.85 whole fish Rees, et al., 1979
Eastern 1971 1.3 1.2 - 1.4 headless and eviscerated Frank et al., 1978
(7 fish in composite)
Eastern 1975 0.3 0.1 - 0.6 headless and eviscerated Frank et al., 1978
(23 fish in composite) ;
Eastern 1976 0.32 0.25 - 0.95 Long Pt. Bay Ont. M. Agr. fFood in
Konasewich et al., 1978
Eastern 1976 0.3 <0.1 - 1.4 headless and eviscerated Frank et al., 1978
Eastern 1978 0.60 0.4 - 0.76 whole fish; Port Dover Rees, et al., 1979
Eastern 1978 0.44 0.33 - 0.56 muscle; Inner Long Pt. Bay Rees, et al., 1979
Rainbow trout Western 1975 0.70 Mich. D.N.R., 1976 (unpubl.)

in Konasewich et al., 1978



Fish Basin Year Level Range Remarks References
PB's
Rainbow trout Central 1974 0.3 0.1 - 0.8 headless and eviscerated Frank et al., 1978
Central 1977 1.18 0.6 - 2.4 muscle Crawford & Brunato, 1978
Eastern 1978 0.77 0.34 - 1.29 muscle; Haldimand- Rees, et al., 1979
Norfolk area
Wck bass Eastern 1968 0.2 <0.1 - 0.5 headless and eviscerated Frank et al., 1978
Eastern 1971 0.3 0.2 - 0.6 headless and eviscerated Frank et al., 1978
auger Central 1977 0.07 0.05 - 0.1 muscle Crawford & Brunato, 1978
mal lmouth bass Central 1977 1.0 0.25 - 2.69 muscle Crawford & Brunato, 1978
Eastern 1968 0.3 0.2 - 0.84 headless and eviscerated Frank et al., 1978
Eastern 1971 5.8 2.3.=9.3 headless and eviscerated Frank et al., 1978
Eastern 1972 0.7 0.y 9.2" headless and eviscerated Frank et al., 1978
Eastern 1975 0.3 0.2 - 0.4 headless and eviscerated Frank et al., 1978
Spot-tail shiner Western 1975 0.06 0.04 --0.07 headless and eviscerated Frank et al., 1978
(60 fish in composite)
Western 1975 0.85 + 0.40 Point Pelée (wet wt.) Suns & Rees, 1978
Eastern 1975 0.08 + 0.03 Port Colborn (wet wt.) Suns & Rees, 1978
0.06 + 0.03 Port Rowan (wet wt.)
Nalle);e Whole lake 1976 0.11 edible portion Penn. D.N.R., 1977 in
Konasewich et al., 1978
Western 1968 0.2 (0.1 - 0.3 headless and eviscerated Frank et al., 1978
Western 1971 1.0 0.5 - 1.6 headless and eviscerated Frank et al., 1978




Fish Basin Year Level Range Remarks References
PXB's
Walleye Western 1971 1.0 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Western 1974 0.22 + 0.4 Mich. D.N.R., 1976 (unpubl.)
in Konasewich et al., 1978
Western 1975 0.34 + 0.42 Mich. D.N.R., 1976 (unpubl.)
in Konasewich et al., 1978
Western 1975 1.3 0.3 - 5.1 headless and eviscerated Frank et al., 1978
(14 fish in composite)
Western 1976 4.6 Ont. M. Agr. Food, 1976 in
Konasewich et al., 1978
Central 1977 0.13 0.02 -.,0.45 muscle Crawford & Brunato, 1978
Eastern 1971 0.6 headless and eviscerated Frank et al., 1978
White bass whole lake 1976 0.32 edible portion Penn. D.N.R. in Konasewich et
al., 1978
Western 1968 0.1 <0.1 - 0.3 headless and eviscerated Frank et al., 1978
Western 1971 2.2 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Western 1971 2.2 1.1 - 4.8 headless and eviscerated Frank et al., 1978A
Western 1972 5.6 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Western 1974 2.18 + 1.22 Mich. D.N.R., 1976 (unpubl.)

in Konasewich et al., 1978




Basin Year Level Range Remarks References
PCB's
White bass Western 1975 0.55 Monroe; 10" Mich. D.N.R., 1976 (unpubl.)
1.78 + 1.10 Monroe; 10" in Konasewich et al., 1978
Western 1976 0.26 Ont. M. Agr. Food., 1976 in
Konasewich et al., 1978
Western 1978 0.59 0.17 - 1.54 muscle; Pelée Island Rees, et al., 1979
Central 1971 1.6 0.9 - 2.2 headless and eviscerated Frank et al., 1978
Central 1971 1.6 MOE, 1976 (unpubl.) in
1.5 Konasewich et al., 1978
Central 1972 0.96 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Central 1976 0.1 Ont. M. Agr. Food in
Konasewich et al., 1978
Central 1978 0.79 0.29 - 1.39 muscle Rees; ek al., 1979
Eastern 1968 <0.1 headless and eviscerated Frank et al., 1978
Eastern 1970-1971 231 1.4 - 4.3 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Eastern 1971 0.8 0.5 - 1.4 headless and eviscerated Frank et al., 1978
Eastern 1972 5.6 MOE, 1976 (unpubl.) in
1.0 0.6 - 1.7 Long Pt. Bay Konasewich et al., 1978
Easlern 1972 1.0 0.5 = 5.4 headless and eviscerated Frank et al., 1978
white crappie Eastern 1976 N.D. muscle Crawford & Brunato, 1978
White sucker Central 1969 2.5 MOE, 1976 (unpubl.) in

Konasewich et al., 1978




Fish Basin Year Level Range Remarks References
PB's
White sucker Central 1976 0.05 fillet Penn. D.N.R. 1977 in
: Konasewich et al., 1978
Eastern 1976 N.D. muscle Crawford & Brunato, 1978
Yellow perch Whole lake 1976 0.18 edible portion Penn. D.N.R., 1977 in
Konasewich et al., 1978
whole lake 1978 0.22 + 0.17 wet wt. (whole fish) Great Lakes Water Quality,
1979, App. B
Western 1968 0.1 " headless and eviscerated Frank et al., 1978
Western 1971 1.0 0.2 - 2.6 headless and eviscerated Frank et al., 1978
Western 1971 0.96 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Western 1974 0.03 Mich. D.N.R., 1976 (unpubl.)
in Konasewich et al., 1978
Western 1975 0.6 0.4 - 0.9 headless and eviscerated Frank et al., 1978
(59 fish in composite)
Western 1976 0.58 Ont. M. Agr. food, 1976 in
0.6 Konasewich et al., 1978
Western 1977 0.44 whole body Herdendorf et al., 1978 in
0.35 whole body Konasewich et al., 1978
0.25 fillet
e carcass
Central 1969 2.3 MOE, 1976 (unpubl.) in

Konasewich et al., 1978




PaB's

Yellow perch

Basin Year Level Range Remarks References
Central 1971 0.34 MOE, 1976 (unpubl.) in
0.65 Konasewich et al., 1978
Central 1971 0.3 0.2 - 0.6 headless and eviscerated Frank et al., 1978
Central 1972 0.25 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Central 1975 0.2 <0.1 - 0.8 headless and eviscerated Frank et al., 1978
. (70 fish in composite)
Central 1976 0.29 Ont. M. Agr. Food, 1976 in
0.23 Konasewich et al., 1978
Eastern 1968 <0.1 <0.1 - 0.1 headless and eviscerated Frank et al., 1978
Eastern 1971 0.6 0.3 - 1.0 headless and eviscerated Frank et al., 1978
Eastern 1970-1971 0.8 0.2 - 2.4 MOE, 1976 (unpubl.) in
Konasewich et al., 1978
Eastern 1972 0.25 0.18 - 0.33 MOE, 1976 (unpubl.) in
Konsewich et al., 1978
Eastern 1972 0.3 0.1 - 0.4 headless and eviscerated Frank et al., 1978
Eastern 1975 0.1 0.1 - 0.8 headless and eviscerated Frank et al., 1978
(26 fish in composite)
Eastern 1976 0.2 (0.1 - 0.8 headless and eviscerated Frank et al., 1978
Eastern 1976 TR. N.D. - 0.001 muscle Crawford & Brunato, 1978
Eastern 1978 0.36 0.055 - 0.52 muscle; Port Dover Rees, et al., 1979
0.13 N.D. - 0.45 muscle; Long Pt. Bay
0.02 N.D. - 0.05 whole fish; Long Pt. Bay




Appendix 5

Results of toxicity experiments
found in the literature




Appendix 5b

Organism

Chlamydomonas sp.

Chlorella vulgaris

Selenastrum
capricornutum

Scenedesmus

quadricauda

Euglena gracilis

Daphnia pulex

Type type

significant

inhibition of

growth

decreased
growth rate

decreased
growth rate

reduced growth
reduced growth

48 hr ID-50
48 hy ID-50

48 hr LC50

AROCLOR 1221 4.4 ppm
ARCCLOR 1232 55 ppm

oil and grease

type

furpace oil
Assam crude
UAE crude
Bombay high
crude

furance o0il
ASSAM crude
UAE crude

Bombay high
crude .

diesel oil
lubricating oil

Naphthalene
Phenanthrene

level

2 ppb
5 ppb
5 ppb
30 ppb

2.0 ppb
S ppb
5 ppb
5 ppb

<0.1% by volume
10% by volume

3.4 ppm
1.14 ppm

Remarks

algae isolated from L. Michigan
25 day exposure

furnace oil most toxic

12 day exposure

% reduction varies

furnace oil most toxic

12 day exposure

% reduction varies

12 day exposure 180C

Euglena not affected by either
oil at_levels tested

250C

02 consumption and
Filtering rate also considered

References

Christensen & Zi

Gaur & Kumar,

Gaur & Kumar,

Dennington et

Ewald et al.,

Geiger & Buik

1981

1981

al 1975
di.;, 17/0

1976




Appendix 5a. continued

Organism

Dugesia

[ sp.
Hyalella sp.

fish - several

pomis gibbosus

Type

96 hr LC50
96 hr LC50

growth
retarded
or death

24 hr LC50
48 hr LC50
96 hr LC50

As

Cd cr, Cu
4.9+0.25 ppm

85+10 ppb

4-12 ppb

2.8 ppm 19.1 ppm 3.5 ppm
2.2 ppm 17.8 ppm 2.9 ppm
| gl

ppm 17.0 ppm 2.7 ppm:

0.4
0.3
0.3

Ni

Zn

Remarks

as Cd Cljp

not fed 48 hr
prior to exp't
TOC=230C;
hardness=20 mg/1
as CaCOs3

embryos & larvae
larvae more
sensitive than
embryos

30-60 day exposure

1 ppm 16.4 ppm 25.1ppm TOC = 28°C
9 ppm 12.1 ppm 21.0ppm hardness = 55 mg/1
O ppm 8.0 ppm 20.lppm D.O. 6.9 mg/1

Reference

Fennikoh
1978

Eaton et
1978

Rehwoldt
1972

[+
o

t al.,

L)



Appendix Sa. continued

Organism Type As cd Cr Cu Pb Hg Ni n Remarks Reference
Ephemerella 14 day LC50 0.18-0.2 3.5 ppm <9.2 ppm DOy = 7-12 mg/1 Nehring, 1976
grandis ppm 5 conductivity 130-340
umhos/cm
alk. = 30-70 mg/1
(CaCo3)
flow through
experiment
Nais sp. LC50 4.6-1.7 12.1-9.3 2.3-0.9 1.9-1.0 16.2-14.1 21.2 (24-96 hr) Rehwoldt et al.,
ppm ppm - ppm ppm ppm -18.4 ppm 1973
Gammarus sp. LC50 0.14-0.07 6.4-3.2 1.2-0.91 ) 0.09-0.01 15.2-13.0 10.2 Temp. = 179C
ppm ppm ppm ppm ppm -8.1 ppm
Chironomus sp. LC50 5.1-1.2 16.5-11.0 0.65-0.03 0.06-0.02 10.2-8.6 21.5- Hardness = 50 mg/1
ppm ppm ppm ppm ppm 18.2 ppm
Amnicola sp. LC50(adults) 10.1-8.4 10.2-8.4 1.5-0.9 1.1-0.08 21.2-14.3 16.8- pH = 7.6
ppm ppm ppm ppm ppm ~-14.0 ppm
LCS0 5.1-3.8 15.2-12.4 4.5-9.3 6.3-2.1 26.0-11.4 28.1- D.0. = 6.2 mg/1
ppm ppm ppm . ppm ppm 20.3 ppm

Dugesia doroto-
cephala 5 or 10 day LC50 (0.5 ppm mercury as methyl Best et al., 1981
mercuric chloride
animals collected
near Fort Collins,
Co.. TO8 = 229C

Chironomus 48 hr LC50 as Cd Clp as PoNO3 as HgClp as ZnSOy laboratory exp't Rao & Saxena, 1981
tendipes 25 ppm 50 ppm 64 ppm 62.5 ppm pH = 7; D.0. = 5 mg/1

Alk. = 216 mg/1

Hg est. at [ ] used;
100% mortality in
24 hrs.




Appendix 5a. continued

Organism

Daphnia pulex

Physa gyrin

Physa integra

fubificids
(mixed pop.)

Type

increase in
0, demand

24 hr LC50
48 hr LC50
96 hr LC50
228 hr LC50

48 hr LC50
96 hr LCS0
7 day LC50
28 day LC50
28 day LC50
4 day LC50
28 day LCS50
24 hr LC50

24 hr LC50
24 hr LC50

As

cd Cr
50 ppb
7.640.91 ppm

4.25+0.19 ppm
1.37+0.21 ppm
0.83+0.19 ppm

0.69+0.25 ppm
0.41+40.15 ppm

114 ppb
10.4 ppb

<3.0 ppb

Cu Pb

124 ppb
28.4 ppb

27.5 ppm
49 ppm

Ni

Zn

Remarks

experimental pond
used at U.of Kansas
cultured animals

adults

immature snails

hardness 45 mg/1
TOC 10-15°C

Reference

Kettle et al.,
1980

Wier & Walter,
1976

Wier & Walter,
1976

Spehar et al.,
1978

Spehar et al.,
1978

Spehar et al.,
1978

Whitley, 1967




Appendix 5a.

Organism

Daphnia galeata
mendotae

Daphnia magna
Daphnia pulex
Daphnia parvula

Daphnia ambigua

Daglmia magna

Daphnia ambiqua
Daphnia magna
Daphnia magna

Daphnia ambiqua
Daphnia galeata

continued

Type As Cd
50% reductions

in carrying capacity

1% reduction in 0.15

carrying capacity

LC50 S ppb

72 hr LC50
72 hr LC50
72 hr LCS0

72 hr LC50

72 hr LC50
72 hr LCS0
72 hr LC50
72 hr LC50

72 hr LC50

72 hr LC50

72 hr LC50

72 hr LC5D

Cr

1.721.2

ppm
5.242.8

ppm

Cu PL

86.5 ppb
86 ppb
72 ppb

67.7 ppb

13.542.72 ppm
25.240.42 ppm
31.6 ppm

78.2+16.6 ppm
85.1+3.63 ppm

12.441.46

ppm
13.542.72
ppm

72 hr
72 hr

Daphnia pulicara 72 hr

LC50
LC50
LC50

42.1+8.49 ppm
7.7+1.34 ppm
65.6+1.75 ppm
110.8+30.1ppm

Hg

Ni

N

Remarks Reference
L. Michigan water
22 week exposure

newborn daphnids
Alk.=100-119 mg/1 1976;
DO=8.7-11.4 mg/1 Winner, 1976

pH = 8.2-9.5
T0C = 20°C
CuS04.5H20 used
in algae

unaerated, filtered Winner, 1976
Standard (ph 6.8-7.9)

unaerated, unfiltered

Standard

aerated, unfiltered

Standard

Medium pH=8.2-9.5,

Alk. =110-120;

Pond pH=8.2-9.5,

Alk. = 100-118

unaerated filtered Winner, 1976
Standard
pH=6.7-7.9

in pond water Winner, 1976

Marshall, 1978

1

Winner & Farrell,
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Appendix 5a.
Organism

Scenedesmus
quadricauda

Chlorella sp.

Scenedesmus
quadrc jauda

Ankistrodesmus

falcatus

Anabaena flos-

aquae

Selenas trum

capri cornutum

Selenas trum
capricornutum

Chlamydomonas
sp.

Daphnia pulex

continued

Type As

EC-50

EC-50

significant
growth
reduct ion

initial growth

rate reduction
complete inhibition
algicidal

24 hr lag growth
48 hr lag growth
72 hr laqg growth

inhibits growth 74.9 ppb

72 hr LC50
96 hr LC50

Cd Cr

50 ppb

80 ppb
650 ppb

50 ppb
60 ppb

62(54-72)ppb
47+5 ppb

Cu Pb "Hg Ni

0.1 ppb
0.1 ppm
0.1 ppm
0.6 ppm

50 ppb

90 ppb

300 ppb

50460 ppb

70 ppb

Zn Remarks
519.3 laboratory culture
ppm ZnS0y
CuS0y
EDTA in culture
media.
2.4+ laboratory cultures

96 hr. exp't

laboratory tests
Ni as NiNO3

14 day biomass
T0C=20°C;

16 hr 1light

pH = 7.2

30 ppb pH 7.1-7.2
laboratory exp't
120 ppb -cultures used

700 ppb

30-40 ppb
50+60 ppb

algae isolated
from L. Michigan
25 day expaosure

fed Chlorella and
yeast daily

Re ference

Petersen, 1982

Rachlin & Farran
1974

Spencer & Greene,
1981

Bartlett et al.,
1974

Bartlett et al.,
1974

Christensen &
Zielski, 1980

Bertram & Hart,
1979




Appendix 5a.

Organism

mixed bacteria
culture

bacteria

nixed natural
zooplankton
op.

Asterionella
formosa

Aquatic plants
(several sp.)

Type

resazurin IC 50
resazurin IC 50
resazurin IC 50

resazurin IC 06
resazurin IC 67
resazurin IC 90

pop. decrease
general
EC 50

18% reduction
in growth
25% reduction
in growth
46% reduction
in growth

growth inhibition

25 ppm
100 ppm
2000 ppm

Cd

5.0 ppb

3.5 ppb

1.9 ppb
4.1 ppb

8.8 ppb

Cr

10.0 ppm

Pb

AL JOINT CDMM!SSION

PROPERTY OF
CIBRARY

WRTERNATION

}.nv—D
oo~
TP
EEE

Remarks Reference
Na arsenite 2  Anderson et al
Na arsenate hr. 1980 in Liu, 1
Na cacodylate ) exp't
8 day test Liu, 1981
L Michigan Marshall &
samples Mellinger,
field exp't 1980
21 day exposure
CdClp used Conway &
Williams,
1979
algal sp. Mangi et al.,
collected mostly 1978
from
Susquehanna R.
(Penn.-N.Y.)
- amount of

growth inhibi-
tion varied
from plant

to plant

22
981
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