
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2012

Improvements in AODV towards Smart Grid
Routing - Test Bed Development & Prioritized
Routing for Emergency Scenarios
Shawn Andrew Ruppert

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Ruppert, Shawn Andrew, "Improvements in AODV towards Smart Grid Routing - Test Bed Development & Prioritized Routing for
Emergency Scenarios" (2012). Electronic Theses and Dissertations. Paper 5371.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72793414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5371?utm_source=scholar.uwindsor.ca%2Fetd%2F5371&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Improvements in AODV towards Smart Grid Routing - Test Bed Development &

Prioritized Routing for Emergency Scenarios

by

Shawn A. Ruppert

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2012

© 2012 Shawn A. Ruppert

Improvements in AODV towards Smart Grid Routing - Test Bed Development &

Prioritized Routing for Emergency Scenarios

by

Shawn A. Ruppert

APPROVED BY:

__

Dr. Subir Bandyopadhyay

School of Computer Science

__

Dr. Esam Abdel-Raheem

Department of Electrical and Computer Engineering

__

Dr. Kemal Tepe, Advisor

Department of Electrical and Computer Engineering

__

Dr. Sid-Ahmed, Chair of Defense

Department of Electrical and Computer Engineering

September 18, 2012

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise, are

fully acknowledged in accordance with the standard referencing practices. Furthermore, to the

extent that I have included copyrighted material that surpasses the bounds of fair dealing within

the meaning of the Canada Copyright Act, I certify that I have obtained a written permission

from the copyright owner(s) to include such material(s) in my thesis and have included copies of

such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

The Smart Grid project is a global effort towards a reliable and robust power grid. With

estimated funding in the billions in just the next few years, this project will be an on-going multi-

disciplinary feature of engineering. Designated as one of the subsections of the Smart Grid effort

is power line monitoring or transmission line monitoring. For a reliable power grid power lines,

transformers, and other field equipment must be monitored. Wireless mesh networks have

already began to deploy in different sectors and is a viable strategy for power line monitoring.

They can be easily deployed with sensors and can create data paths to monitoring stations on

their own. Ad-Hoc On-Demand Distance Vector Routing (AODV) is a routing protocol that has

received much attention over the years and has been chosen as a basis for alteration for moving

towards a more intelligent smart grid routing protocol. Wireless mesh networking protocols

have generally been simulated in nearly all the research, live testing is tedious and requires

hardware and test schedules. These problems are solved with the developed Java Ad-Hoc

Network Test Bed which will allow even novice users to complete rudimentary network tests on

live systems.

Emergencies in the field such as transmission line faults and/or transformers misbehaving

need to get information to hydro companies as quick as possible. A quality of Service prioritized

emergency route solves the problems of network congestion during an emergency. When a

sensor detects that a power line has gone down, it will request a specialized higher speed route

to the control end, therefore resulting in a lower latency and assurance of quick emergency data

delivery.

v

DEDICATION

I would like to dedicate my Master’s Thesis to a few select people:

To my Mother who supported me the entire way through and would wake up early every

morning to make sure I had a good lunch prepared for school. She gave all the unconditional

love a person could give and I am thankful for that.

To my Father and Stepmother who were always there with the right answer for every question

and/or a helping hand with anything I have experienced along the way. My father has taught me

so many things; from getting around in this world to standing up for myself.

To my Brother for being a great friend who has always had the time to sit and talk over a cold

beer about all the difficulties we’ve faced, the music we love, and the things in life that matter.

To my great friend Mary who has listened to constant complaining from me about issues I’ve

had throughout my graduate studies and who has opened up her heart and her home to me

through the entire duration of my Master’s research. I have learned many things from her; from

her huge heart and shining personality.

vi

ACKNOWLEDGEMENTS

I would first and foremost like to acknowledge Dr. Kemel Tepe, my advisor and mentor. His

attitude towards academia and research has allowed myself and fellow lab members to expand

our knowledge to subjects not only focused on our research areas but other new and interesting

topics in the field. I would not have pursued graduate studies if I had not met Dr. Tepe and felt

so welcome and at home working as part of his team. The mutual respect between himself and

his students has led me to strive for quality work. Not only has he been there for guidance

throughout my graduate studies but also as an understanding friend who treats his students

much like a family rather than a worker that pursues his interests.

I would like to acknowledge Dr. Nabih Jaber, a man with more philosophical ideas and

intelligence than I could ever hope to acquire, for his guidance and friendship. He has helped me

along the way to publish my research and create quality work for Dr. Tepe. Thank you for the

many long discussions and interesting ideas you shared throughout the day to break up the busy

schedule.

I would also like to thank the members of the WICIP team that I had the pleasure of working

with. I have received help from nearly everyone on subjects pertaining to programming, Linux

kernels, wireless concepts, etc. Of all my peers, most of all I’d like to acknowledge Mr. Ahmed El

Baba for his friendship and partnership. We’ve spent many long nights working on projects and

sharing ideas together and sometimes I wonder if I’d have been able to complete the long

strenuous graduate school process without him.

Thank you all.

vii

DECLARATION OF ORIGINALITY .. iii

ABSTRACT .. iv

DEDICATION ... v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS... xii

CHAPTER 1: Introduction and Background Information1

1.1 Introduction ... 1

1.2 Smart Grid ... 3

1.3 Wireless Ad-hoc Network Routing Protocols ... 4

1.4 Thesis Objectives .. 5

1.4.1 Ad-hoc Network Test Bed ... 5

1.4.2 QoS Emergency Priority Route .. 6

1.5 Thesis Structure .. 6

1.6 Chapter Summery ... 6

CHAPTER 2: Literature Review ...7

2.1 Introduction to AODV ... 7

2.1.1 AODV Functionality .. 7

2.2 Quality of Service in Ad-Hoc Networks .. 10

2.2.1 QoS Metrics ... 11

2.2.2 Non-Real-time and Real-Time QoS Requirements ... 11

2.3 Ad-hoc Network Performance Testing ... 12

2.4 External Testing Utilities ... 12

2.4.1 Iperf 2.0.4 Network Testing Tool .. 13

2.4.2 Script module ... 14

CHAPTER 3: Ad-Hoc Wireless Network Java Test Bed 15

3.1 Introduction .. 15

viii

3.2 Ad-Hoc Network Test Bed Development ... 15

3.2.1 Test Node Preparation ... 18

3.2.1.1 AODV-UU install .. 19

3.2.2 Discovery of Test Nodes ... 19

3.2.3 Topology Setup .. 22

3.2.3.1 Topology Table.. 22

3.2.3.2 Topology Decoder ... 23

3.2.4 Run Iperf Test... 26

3.2.5 Node/Listener Software ... 29

3.3 Chapter Summary ... 34

CHAPTER 4: AODV QoS Design and Methodology 34

4.1 Introduction .. 34

4.2 Traffic Reduction Methodology .. 34

4.3 Quality of Service Design ... 35

4.3.1 Emergency Instantiation ... 36

4.3.2 Intermediate Node Emergency Processing .. 36

4.4 Chapter Summary .. 38

CHAPTER 5: Results and Analysis ... 39

5.1 Introduction .. 39

5.2 Test Scenario ... 39

5.2.1 Simulated Emergency ... 39

5.2.2 Test schedule & Results ... 39

5.3 Chapter Summary .. 44

CHAPTER 6: Conclusions and Future Works ... 44

6.1 Introduction .. 44

6.2 Concluding Remarks .. 44

6.2.1 Java Ad-Hoc Network Test Bed .. 44

6.2.2 QoS Prioritized Emergency Route for AODV-UU ... 45

6.3 Future Works ... 45

6.3.1 Java Ad-Hoc Network Test Bed .. 45

6.3.2 QoS Prioritized Emergency Route for AODV-UU ... 46

ix

6.4 Chapter Summary .. 47

APPENDICES ... 48

See attached supplemental files. ... 48

 Java Wireless Ad hoc Network Testbed .. 48

 AODV-UU Source files with QoS Amendments .. 48

REFERENCES ... 49

VITA AUCTORIS ... 51

x

LIST OF TABLES

Table 1 - RREQ Structure ... 9

Table 2 - RREP Structure.. 10

Table 3 - Test Node Preparation Commands.. 18

Table 4 - Test Node IP addressing .. 18

Table 5 - AODV-UU Install Procedure .. 19

xi

LIST OF FIGURES

Figure 1 - Mesh Networking Protocols... 5

Figure 2 - AODV Topology Example ... 7

Figure 3 - Neighbor RREQ .. 8

Figure 4 - RREQ Propagation ... 8

Figure 5 - RREP to Source .. 9

Figure 6- Iperf Command Example .. 13

Figure 7 - Iperf data sample .. 14

Figure 9- Test Bed System Flowchart ... 16

Figure 9 - Test Bed System Flowchart .. 16

Figure 10 - Full Test Bed screenshot .. 17

Figure 11 - Node Discovery Screenshot ... 19

Figure 12 - Node Discovery Exchange .. 20

Figure 13 - Node Discovery Flowchart ... 21

Figure 14 - Topology Setup .. 22

Figure 15 - Topology table screenshot ... 23

Figure 16 - Topology Table flowchart pt1 .. 24

Figure 17 - Topology Table flowchart pt2 .. 25

Figure 18 - Iperf test screenshot .. 26

Figure 19- IPERF process flowchart pt1 ... 28

Figure 20 - IPERF Process flowchart pt2 ... 29

Figure 21 - Basic Layout of Listener Software .. 30

Figure 22 - Listener Software main flowchart .. 31

Figure 23 - Listener Software flowchart pt2 ... 32

Figure 24 - Listener Software flowchart pt3 ... 33

Figure 25 - QoS C files ... 35

Figure 26 - Code Excerpt send_rreq... 36

Figure 27 - Code Excerpt rreq_process .. 37

Figure 28 - Code Excerpt manage_ips .. 37

Figure 29 - Test Topology .. 40

Figure 30 - Emergency Route triggered in A... 40

Figure 31 - Throughput comparison .. 41

Figure 32 - Latency of node A .. 42

Figure 33 - Latency drop during emergency... 43

file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169846
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169847
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169848
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169849
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169850
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169851
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169852
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169853
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169854
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169855
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169857
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169858
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169859
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169860
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169861
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169862
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169863
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169864
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169865
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169866
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169867
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169868
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169869
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169870
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169872
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169873
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169874
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169875
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169876
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169877
file:///C:/Users/ruppesaw/Documents/Schaeffler%20Forms/Masters_Thesis_Shawn_Ruppert_Sept11_v8(1).docx%23_Toc338169878

xii

LIST OF ABBREVIATIONS

AODV – Ad hoc On-demand Distance Vector

AODV-UU – Ad hoc On-demand Distance Vector-Uppsala University

BATMAN – Better Approach To Mobile Ad hoc Networking

DAST – Distributed Applications Support Team

DSDV – Destination Sequenced Distance Vector

DSL – Digital Subscriber Line

DSLAM – Digital Subscriber Line Access Multiplexer

DSR – Dynamic Source Routing

IP – Internet Protocol

IPTV – Internet Protocol Television

MAC – Media Access Control

MANET – Mobile Ad hoc Network

NS-2 – Network Simulator 2

NLANR – National Laboratory for Applied Network Research

OLSR – Optimized Link State Routing

QoS – Quality of Service

RREP – Route Reply

RREQ – Route Request

SG – Smart Grid

TCP – Transmission Control Protocol

UDP – User Datagram Protocol

VOIP – Voice over Internet Protocol

WLAN – Wireless Local Area Network

ZRP –Zone Routing Protocol

1

CHAPTER 1: Introduction and Background Information

1.1 Introduction

The Smart Grid (SG) movement is sweeping the globe with full force as industries from appliance

manufactures to power generation companies begin to define, design, and develop standards,

networks, and network enabled products to fuel the Smart Grid project. IDC Energy Insights

identified an average of 17% increase in spending between 2010 and 2015 for the various SG

projects with an overall spending of circa 46 billion U.S. dollars, with some countries such as

China viewing an increase in spending of up to 33% [1]. Nearly all subsectors of SG applications

involve connected devices and systems. As these subsectors develop there is a finer definition of

what is needed to accommodate the new idea’s that will pave the way to the future in power

grid reliability and efficiency.

There is a magnitude of research and design efforts in the area of power line monitoring for

SG[2]. From hundreds of start-ups joining the market and big contenders such as General

Electric and Siemens joining, there are many different definitions being derived as to how the

world’s power grids should be monitored in the SG movement. The ability to have two-way

communication with sensors, breakers, transformers, and generation systems will make the

system robust and efficient. One very broad ranged idea being investigated is the use of mesh

networks to support sensor networks for monitoring purposes[3]. Already companies are

utilizing mesh networking protocols for data collection such is the case with Elster and its smart

meter that calculates usage throughout the day and transmits hydro usage to companies

directly from the smart meter attached to the customer’s homes[4]. Mesh networks create

2

redundancy in the system by adding multiple paths to destinations. Protocols that fall under the

mesh network category are generally self-configuring and self-healing. This is an attractive

feature for SG applications because of the shear number of devices that will be added into each

of the network systems. One particular mesh networking routing protocol has found popularity

amongst researcher and it is known as Ad-Hoc On-Demand Distance Vector Routing Protocol

(AODV)[5,6]. This protocol has been the focus of countless simulations and modifications for use

in networks requiring mesh network-like qualities.

Testing of ad-hoc networks is a tedious time consuming activity. Networks have a few main

metrics that benchmark performance such as latency, throughput, and jitter among many other

things. Simulation tools such as Network Simulator 2 and OMNET++ are common tools used to

calculate these metrics for given system setups with countless variables ranging from channel-

type to congestion and density[7,8]. Although simulations carry much weight within the

scientific research community, real-time/live testing brings to light issues that were previously

over-looked in the simulated environment.

This thesis intends on making two steps forward in the SG research area. As development

toward power line monitoring takes places with mesh networked systems the need for a quality

of service (QoS) based prioritized route to the hydro company has been established. Emergency

data such as over-current, electrical faults, or pertinent transformer sensor readings need to

arrive to the control center in a nearly real-time fashion. Periodic or continuous non-real-time

data congests networks and therefore hinders the decreased latency of real-time data. The

proposed prioritized route solves this problem by giving notice to the network infrastructure

that high priority information is being transmitted and requires more network resources than

3

other traversing data. The amendments to AODV that have been implemented take the

information being traversed and read the priority level. Based on the level of severity of the

packet being sent the revised protocol will take the appropriate steps to propagate the packet

along the desired path while reducing the bandwidth of other network nodes to allow for

minimal latency of the emergency packets.

With relation to the testing of ad-hoc network this thesis intends to take the tedious task of ad-

hoc network testing and simplify it by introducing a newly developed java-based ad-hoc network

test bed. Such features as node discovery, network topology setup, and testing between various

network nodes from a centralized test center will allow the tester to obtain certain network

characteristics and performance metrics that would normally facilitate steep learning curves and

independent setup programming of each test node. Java has been chosen due to the swing

components. A graphical user interface was desired and due to the network libraries and

interface capabilities java was a very desirable candidate for the test bed development.

1.2 Smart Grid

The Smart Grid is an evolving vision of an interconnected power grid system. Green energy is

leading to many localized generation centers. Wind power and solar power farms are

functioning without connection to the entire power grid because society is lacking the

infrastructure to tie them in reliably and efficiently. Distributed Load Generation has become a

topic of interest due to added reliability and sustainability being vital qualities that we need as a

part of the updated power grid. Subsectors include power line monitoring, smart meter services,

network enables home appliances, distributed load generation, sensor networks, and many

more[9].

4

1.3 Wireless Ad-hoc Network Routing Protocols

In ad-hoc networking there is no “main” protocol that is used. There is a variety of protocols

that can be chosen to match the functionality of the system. Under discussion will be Mobile Ad-

hoc Network (MANET) routing protocols. These protocols have been designed for nodes with

mobility, thus quickly changing topologies[11]. MANET protocols have benefits on static network

topologies due to the self-configurability of the network due to the design constraints put upon

them with mobility as a factor. The three main protocol categories for ad-hoc networks would

be Reactive, Proactive, and Hybrid. A reactive protocol reacts to routing needs of the

nodes/computers in the network. Routes are established based on the need to send data to

another network node and therefore less space is used storing routes to every other node in the

network. A proactive protocol utilizes a full routing table on every node. This assures that every

node within the network has a known path to the desired destination. This routing table can be

very large and network scalability can be costly due to routing table updates during network

expansion[20]. A hybrid is basically a combination of both as designed with desired functionality

in mind.

5

1.4 Thesis Objectives

This thesis details the development of a static ad-hoc network test bed along with development

and testing of a minor extension of AODV-UU to include a best possible QoS level for emergency

packets.

1.4.1 Ad-hoc Network Test Bed

The java-based network testing software will allow a user to connect all nodes that need to be

tested to the test center. The user can choose the network topology via and intuitive yet simple

table based topology tool. The test center will allow new scripts to be written in different

languages and be used for node testing. A built in throughput testing method is given as an

option for users with intelligent logging and retrieval of test data from the nodes involved in the

test.

Mesh
Networking
Protocols

Reactive

AODV

DSR

BATMAN

Proactive

DSDV

OLSR

Hybrid

ZRP

Figure 1 - Mesh Networking Protocols

6

1.4.2 QoS Emergency Priority Route

Through alterations and added functions, the original AODV-UU 0.9.6 was modified to create

the optional ability to request a route with a higher priority. For testing purposes a simulated

emergency has been programmed into the C code to mimic a trigger sent to the network layer

by a sensor or device that requires an emergency best-offered route to a notifying authority

such as a hydro company control center.

1.5 Thesis Structure

This thesis is organized as follows: Chapter 1 introduces the necessary topics to aid in the

understanding of the motives and the reasoning for the thesis topic. Chapter 2 begins the in-

depth design explanation and system functionality of the newly developed test bed. Chapter 3

explains the flow of the code and reasoning for implementing the QoS prioritized emergency

route that could aid smart grid applications. Chapter 4 yields all test scenarios and methods

used for testing while also displaying the findings from testing the designed protocol. Chapter 5

concludes this thesis with remarks on the improvements towards reducing latency and

increasing throughput in emergency situations and also focuses on future works and ideas

pertaining to both the test bed design and the QoS implementation.

1.6 Chapter Summery

This chapter began by providing an introduction to what this thesis covers. Introductions to

many of the underlying principles to the motives of this research have been discussed which

show need for this research and reason for development. Basic explanations have been given as

to the functionality of AODV-UU which is a necessity to understanding the work completed on

this thesis and the relevance of the QoS alterations to the existing code.

7

CHAPTER 2: Literature Review

2.1 Introduction to AODV

2.1.1 AODV Functionality

The main point of the network routing protocol is to forward and route packets to the correct

destination. Due to the fact that a protocol was needed for testing and design, Uppsala

University’s version was used AODV-UU[6,12]. Discussion will continue to explain this

functioning open source protocol. The protocol uses three main packet types: Route Request,

Route Reply,

and Route Error. The initial stages of network setup occur with a broadcast “hello” message.

This is used to find immediate neighbors. The system keeps these neighbors updated by periodic

“hello” messages defined by a “hello interval” in the code. When data needs to be sent from a

given node a Route Request (RREQ) is assembled and sent out to each of his neighbors. Assume

the following topology where “A” is looking to forward data to “F” with the arrows representing

node connections.

Figure 2 - AODV Topology Example

8

When “A” would like to communicate to “F”, it generates an RREQ and sends it out to his

neighbors.

As nodes “B” and “C” receive the RREQ they check to see if they have an immediate neighbor

“F”, when they realize they do not they forward the RREQ to their neighbors.

Mechanisms are built into AODV-UU that allow it to recognize already-processed RREQs.

Sequence numbers matched with ID numbers and source addresses give AODV-UU a robust

functionality in terms of efficiency.

As the RREQ reaches node “E” and it checks whether it has found the destination node, it

realized that it has “F” as a neighbor. A Route Reply (RREP) is generated and reverse route

Figure 3 - Neighbor RREQ

Figure 4 - RREQ Propagation

9

entries are used to send the route information back to the source node. “A” now has the route

to “F”. Each node only knows the next hop toward the destination and the amount of hops

onward until the destination. The information carried in the packets are as follows:

Table 1 - RREQ Structure

RREQ Structure

Type | J | R | G | D | U | Reserved Hop Count

Broadcast ID

Destination IP Address

Destination Sequence Number

Source IP Address

Source Sequence Number

Figure 5 - RREP to Source

10

Table 2 - RREP Structure

RREP Structure

Type | R | A | Reserved Prefix Size Hop Count

Destination IP Address

Destination Sequence Number

Source IP Address

Lifetime (TTL)

There are more functional aspects of AODV such as a Route Error (RERR) packet that propagates

the network when a link has been lost to a neighbor but for the purpose of introducing the

methodology of AODV to a point where the intent of this thesis can be realized, in depth

discussion will not take place for these points.

2.2 Quality of Service in Ad-Hoc Networks

There are different reasons to implement a Quality of Service (QoS) scheme. As defined, Totality

of characteristics of a telecommunications service that bear on its ability to satisfy stated and

implied needs of the user of the service [13]. Quality of service implementations set certain

thresholds based on network metrics to assure a desired functionality or outcome of a task. The

task and the level of network performance will determine the use of a QoS metric.

11

2.2.1 QoS Metrics

A QoS metric can be based on a number of different objectives. Prioritization values are a

method of assuring that certain levels of QoS are met for a given application. An excellent

example of prioritized QoS implementation would be a customer’s Digital Subscriber Line (DSL)

service where different packets are given different levels of service based on their priority

level[21]. This example generally deals with metrics like throughput, or latency. In remote

sensor nodes or battery operated networked devices QoS may define routes based on minimum

transmit energy[14,15]. Other applications may rely on certain security services along a network

route to define a possible route to the destination. Systems implementing a QoS such as this

may or may not send data if network conditions are not met.

2.2.2 Non-Real-time and Real-Time QoS Requirements

Data is categorized on its need to be transmitted real-time or as best effort. Surfing the internet

is a prime example of best effort data transfer. As a webpage is viewed the data is loaded as fast

as possible though at times this is not as fast as preferred. Touching back on the example of QoS

in DSL systems, network solution companies use an Access Multiplexer (DSLAM) which

implements three services geared toward quality of service: queuing, shaping, and policing[16].

Companies such as Alcatel-Lucent offer services to customers where a single DSL line will

provide internet browsing, Voice Over IP (VOIP), and television broadcast over the DSL (IPTV).

Prioritized values are given to each type of packet to assure a certain level of QoS. When a

packet carrying video (IPTV) information is delayed, the viewing for the customer suffers far

more than if a millisecond of a phone conversation (VOIP) is delayed. In the same respect, a

millisecond of a phone conversation being delayed is worse than a webpage taking an extra

12

second to load. Therefore the services implemented in the DSLAM aim to give precedence to

packets marked with higher priority levels to assure a level of QoS for the provided customer

product.

2.3 Ad-hoc Network Performance Testing

The performance of a network is an important metric to be understood when designing a

network for a specific purpose. Performance defines service quality. Networks are hard to test

due to testing infrastructure and resources. Simulation has taken a large role in assessing

network characteristics and performance values provided by the system. The problem with

simulation is that the mathematics and scientific principals governing the test scenarios and

results are all theoretical, though accurate, they sometimes do not depict an accurate rendition

of real world functionality. This is common with ad-hoc network testing. Test’s including

hundreds of nodes with velocity vectors and random channel interference can be utilized to try

and provide network performance indices though when compared with real world results they

can vary due to a number of causes. Two of the most used network simulation tools are

Network Simulator 2 (NS-2) and OMNET++.

2.4 External Testing Utilities

The java interface provided circa 50% of the system functionality and functioned as a basis to tie

multiple utilities together. Java development encompassed the node discovery portion as well

as the Topology Table Decoder for building the desired commands and administering them to

the appropriate nodes for topology setup. For the purpose of testing the nodes for network

performance metrics, a program accepted amongst the network testing community known as

iperf 2.0.4 was integrated with the java test bed. The java test bed incorporated a scheme to

13

accept modules, one being scripts written in bash or C to be loaded and test nodes executing

them.

2.4.1 Iperf 2.0.4 Network Testing Tool

Iperf was developed by the Distributed Applications Support Team (DAST) at the National

Laboratory for Applied Network Research (NLANR)[17]. Iperf claims a cross-platform tool that

will output standardized performance measurements that can be used on any network. Iperf is

set up on a node as an accepting server program. On another node iperf is set up with test

parameters as a client node and contacts the server based node. The test then commences with

the desired test type and duration. The tests can depict UDP or TCP as a transport layer protocol

and allows for uni-direction or bi-direction testing. The commands to use iperf can be shown in

the following example:

The “-c” sets the iperf up as a client to the following IP “192.168.3.2”. The interval of reporting is

given by the “-i” flag with the argument a value in seconds. The total time of the throughput test

is t=60 seconds. There are many more commands and options available and can be found via

the “iperf –h” command. Iperf sends out its data in a well organized fashion for the user to read.

A parsing program has been developed in Visual Basic for extracting the data fields out of the

outputs of the iperf data file.

Iperf –c 192.168.3.2 –i 0.5 –t 60

Figure 6- Iperf Command Example

14

2.4.2 Script module

The test bed allows for scripts to be placed in a directory and loaded. Users who write bash

scripts or C scripts can use this function to send out scripts to nodes and specify another node in

the network to complete the script on. The script needs to be written in a method that is

accepted by the java test bed, in that the script must be executable with 2 parameters:

-i xxx.xxx.xxx.xxx and -o outputfilename.xx

Figure 7 - Iperf data sample

15

CHAPTER 3: Ad-Hoc Wireless Network Java Test Bed

3.1 Introduction

The need for a simple method of testing wireless ad-hoc network protocols has become evident

after manually configures test nodes during test procedures. Working with multiple network

connected nodes requires much moving around being that a manually administered test

requires each node (netbook to be synonymous with node for network testing in this thesis) be

programmed separately for all parts of a test which include topology setup, client-server

throughput test commands, data gathering, retrieval of data from each tested node, data

naming schemes, etc.. The developed test bed performs these functions with minimal

interaction on the test nodes.

Java by means of Netbeans IDE was chosen for the test bed due to its .NET extensions allowing

for easy network functions such as socket connections and file output streaming. Java swing

components provided a simple enough interface to provide the user with functionality as well

adhering to a reasonable software development timeline.

3.2 Ad-Hoc Network Test Bed Development

A basic structure of the test bed is given in the following flowchart. Variations from the original

pre-development design were minor. The test bed operates in a sequential manner in terms of

steps to perform a network test. The steps can be visualized in the total system design

flowchart.

16

Figure 9 - Test Bed System Flowchart

No No
Yes

Start

Discover nodes for

testing

Topology Setup

Test Type?

IPERF Test Script Based Test

Run IPERF test Run Test Script

Continue

Testing?

Continue

Testing?

Terminate

Yes

Select nodes &

Parameters for

IPERF

Select nodes & Script

to run

User creates desired

network topology

17

There are two main parts to the Java Ad-Hoc Network Test Bed: The master and the

slave/listener java software groups. The master software is the graphical user interface. This

software is run on only one PC and must have a connection to every node in the test network.

The main point of the testing software is minimal interaction with all of the involved test nodes,

this is achieved by the Test Center. The other software is the slave, or listener software (referred

to as the test node). This must be running on each of the nodes that would like to be involved in

the testing. As commands are being issued from the Test Center, this software must

differentiate between types of commands and different chains of action to complete. The slave

software, while running, will remain indefinitely in a waiting period for commands from the

master software.

The full graphical user interface is displayed in a visually pleasing manner with a step-by-step

type layout. The final design is show in the below figure though changes to the positioning can

be easily changed in future test bed versions.

Figure 10 - Full Test Bed screenshot

18

3.2.1 Test Node Preparation

Prior to test setup the nodes require some manual configuration. To begin testing a network

there is no way to get around putting the network into existence. On a Linux based system

certain commands can issued to creating the ad-hoc test network. The IP subnet of the test

center will determine the subnet on which you must attach the test nodes. The test center

always must have the first IP address in the subnet.

Table 3 - Test Node Preparation Commands

Step: Command: Variables:

1 sudo /etc/init.d/network-manager stop -

2 ifconfig *wlan0 down *Interface card ID

3 iwconfig *wlan0 mode ad-hoc *Interface card ID

4 iwconfig *wlan0 ESSID **test_network **network name

5 iwconfig *wlan0 channel ***5 ***channel 1-10

6 ifconfig *wlan0 up *Interface card ID

7 ifconfig *wlan0 xxx.xxx.xxx.xxx testcenter IP = xxx.xxx.xxx.1

The IP addresses should be arranged with additional nodes following the pattern in Table 4 on

increasing the digit on the last octet as more nodes are added to the test.

Table 4 - Test Node IP addressing

All nodes must have the tested protocol installed on the system prior to starting test bed.

NODE IP

Test Center 192.168.3.1

Test node 1 192.168.3.2

Test node 2 192.168.3.3

Test node 3…. 192.168.3.4…

19

3.2.1.1 AODV-UU install

AODV-UU can be downloaded from a variety of websites including www.sourceforge.com. Once

the file has been downloaded the user can enter the directory via the terminal and begin to

install the protocol.

Table 5 - AODV-UU Install Procedure

Step: Command: Variables:

1 cd /~/aodv-uu_0.9.6 -

2 make clean -

3 make -

4 make install -

5 aodvd runs the protocol

3.2.2 Discovery of Test Nodes

The first step in completing a network test using the java-based Ad-Hoc Wireless Network Test

Bed is to discover the test nodes involved. The user begins by inputting the number of total

nodes in the small test network including the test center node.

Figure 11 - Node Discovery Screenshot

20

The button is then pressed to begin searching and adding the nodes. The IP addresses are

cycled through in the java code while attempting to open socket connections. Once a successful

socket connection is made the test center contacts the node for information such as hostname

and MAC address of the interface being contacted.

The test center stores the data received from the node into an array which contains the IP of the

test node, the MAC address, and the hostname for visually aesthetic purposes on the GUI

interface. The items are then added to combo boxes and list boxes for user interaction. The

node discovery function cycles through as many IP’s as specified in the initial phase where the

user entered the number of nodes into the text area. This is to help cut down on time spent

trying to open sockets to unused IPs in the system. When discovery is finished the system

remains in an idle phase for the user to issue the next command.

Figure 12 - Node Discovery Exchange

Test Center

Program

Test Node

Client

Requesting MAC address & Hostname

Sending MAC address & Hostname

21

Discover nodes for testing

Start

for (i=1;i<=#ofNodes;i++)

Read number of
nodes

IP address =

192.168.3.i

Is this Test

Center’s IP ?

Yes

No

Attempt to Connect to

node VIA Socket

Exception

Connected

Receive node host name &

MAC address

Close socket

Add to jListBox &

Array

Figure 13 - Node Discovery Flowchart

22

3.2.3 Topology Setup

3.2.3.1 Topology Table

The graphical user interface of the test center utilizes a jTable as a method of allowing the user

to enter information about the desire network topology that is needed. Using the list that has

been populated during node discovery a user can select a node and then select a cell in the

table. The node that was selected from the list first will then populate the cell in the table

marking it as the position in the topology. The table functions on the basis that adjacent cells,

whether vertical or horizontal, are interconnected neighbors in the desired network topology.

Consider the following example as a means to setup a network topology:

 H I

E D

B E G

A C F J

A

B

C

E

F

D

G
I

H

J

Desired Topology

Table Input

Figure 14 - Topology Setup

23

The diversity of the topology arrangement is limited to the number of rows and columns in the

Topology Table. For the purpose of testing such real-time mesh network protocols as AODV, the

functionality has only been proven with up to 6 nodes[12], therefore the topology table need

not be of extensive size.

3.2.3.2 Topology Decoder

An intelligent and functional method has been developed in java as a means to assure that each

of the nodes receives the proper commands that will filter the correct MAC address to mimic

the topology needed. Upon selection of the Topology Setup command button the table is

scanned to view all nodes involved in the topology setup. The decoder then compares each item

in the array to a duplicate array and checks for column and row values that do not fall within

one increment or decrement of the current item. When the decoder finds such a case, an

iptables command is build and sent out to the appropriate node to block incoming

communication from that node[18]. After the entire array has been cycled through the topology

decoder process will have successfully arranged the network into the topology as desired by the

user. The following two figures display an actual rendering of the topology tables and the

functional flowchart respectively.

 Figure 15 - Topology table screenshot

24

Topology Setup

Start

Loop through Table

Cells

Is cell Empty?
Yes

No

Save node info in Handling

Array with row & column

Loop through
Handling Array [i]

Loop through

Handling Array [k]

End Loop

Yes

End Loop

End Loop

B No Is node[k]
immediate cell

neighbor of node[i]

A

Figure 16 - Topology Table flowchart pt1

25

Now that this stage is complete the user has the freedom run tests on the topology. If the user

decides to change the topology of the network it can be done by deleting the nodes from the

tables and re-arranging the nodes in the desired manner. When the topology setup command

button is selected again the test bed will flush all previous filtering rules from each of the nodes

and set them up according to the new orientation.

B

Build iptables

command

Connect to node[i] VIA

Socket

Close Socket Connection

Send command

A

Figure 17 - Topology Table flowchart pt2

26

3.2.4 Run Iperf Test

The test bed automatically fills in the drop boxes with all the available nodes at node discovery.

The section of the GUI that allows for iperf testing has already been populated with the

available test nodes. The first portion of running an iperf test involves choosing the test type.

There are two types of tests available to the user in the GUI. The user can either select a time

based test or a byte based test. The time based test has a default value of 10 seconds. The user

can specify a time to run the test in the text input field. This type of test will attempt to send a

maximum throughput of data from one node to another for the given time period with a

reporting interval of 0.5 seconds.

When the user specifies the byte based test, one node will attempt to send the desired amount

of data to the other participating node and the test will finish once the entire amount has be

sent through the network.

Figure 18 - Iperf test screenshot

27

The user then selects the nodes in which the test will be carried out on. The advantage of this

test is that a user can be running different mesh network routing protocols and collect data on

the throughput and latency of the system between given nodes whether they are directly

connected or contain a multi-hop route between the two nodes.

Once the RUN IPERF TEST command button is selected, the multiple variables governing the test

are retrieved and a socket connection is opened to the initiating node (the node in the “From:”

drop box). The IPERF command is built in a string format so that the node may execute the

command directly upon retrieval. The command already contains the information about the

time vs. byte test as well as the secondary test node. The secondary node will then be contacted

and a specific command issued to it to await connection from the primary node. The test center

will then open a socket to the primary test node and send the command. The primary node will

then execute the command, thus commencing the test between itself and the selected

secondary node. Upon completion of the test, the test file will be saved at the primary node.

The test node will then request a socket connection to the test center on a different socket to

send the data file from the test. The test center will save the test data with a name derived by

the nodes involved and the test type with appendages if necessary. The test center

automatically creates a directory for data files upon start up for the user. All tests are then to be

saved automatically in this directory. The files are saved in the original format as verbose output

to terminal from iperf for easy viewing. The files are saved with a header inserted inside the file

with some important information about the test such as the nodes involved in the test and their

IP addresses. A system flowchart of the iperf process is given in the following figures.

28

Run IPERF

Start

Retrieve node IPs

& test

parameters

Build individual commands

Connect to node 2 for iperf
server command

Send Command

Close Connection

Connect to node 1 for iperf
client command

Send Command

Close Connection

Exception

Success

Exception

C

Figure 19- IPERF process flowchart pt1

29

3.2.5 Node/Listener Software

A vital member of the functionality of this system is the software that must be running on each

of the nodes that may take part in testing. This software shall be denoted as the node software

or listener software. This software sits in a idle state awaiting socket connection requests from

the test center software. Once a socket connection has been requested, the listener software

communicates with the test center and determines what the test center is asking for. A series of

checks will determine what course of action is needed for the node to properly complete the

C

Receive connection

from node 1

Receive data file

Save file in

appropriate

directory

Close Connection

END

Figure 20 - IPERF Process flowchart pt2

30

correct function. The listener software is made up of two java files, the main decision making

class, and the runtime executing and file handling class. Between these two files the software

can make proper decisions, execute terminal commands, receive files, send files, and request

connections as well.

First the system detects the socket connection request and responds to it. The test center is

then programmed to immediately send the command. The commands are handled according to

what needs to be completed for each command.

The Java Execution class also has decision making taking place. When the executable command

is sent over to the execution function the command is first checked because in some cases file

transfer will need to occur. This is completed in the Java Execution class as well as receiving any

scripts that may need to be executed on the node. System flowcharts showing the control flow

design have been designed to give the reader a better basic understanding of the processes.

Node
Discovery
Request

retreive host name
and MAC address of

wireless interface
used

send data to test
center & close

connection

Topology
Setup

Request

send command to
java command

execution function

command is
exectucted then
close connection

Iperf
Network Test

Request

send command to
java command

execution function

command is
executed and test

carried out

data file is
transfered back to
test center & close

connection

Run External
Script test

send command to
java command

execution function

script file transfered
from test center to

node & test
executed

data file is
transfered back to
test center & close

connection

Figure 21 - Basic Layout of Listener Software

31

Client Listener/ Node

software

Start

Connection
Requested?

No

Yes

Connection
Type?

Node Discovery

Topology Setup

iperf Test

Script Run

Respond with MAC

Address & Host name

Close Socket

Execute received iptables

command

Close Socket

D

E

Figure 22 - Listener Software main flowchart

32

D

iperf request
type?

Server Client

Execute iperf server

command

Execute iperf client

command

Close Socket

Request File transfer

connection to Test center

Connection
Accepted?

No

Yes

Transfer iperf test data

file to test center

Close Connection

Close Socket

Figure 23 - Listener Software flowchart pt2

33

E

File transfer
Connection
Requested?

No

Yes

Receive script

to execute

Close Connection

Execute Script

Request File transfer

connection to Test

center

Connection
Accepted?

No

Transfer Script test

data file to test center

Close Connection

Figure 24 - Listener Software flowchart pt3

34

3.3 Chapter Summary

This chapter described the development and functionality of the Java Ad-Hoc Network Test

Center. Explanations of functionality and reason were given for the different functions of the

system. The background of the external testing utility was given as well as insight into running

external scripts on test nodes. A detailed breakdown of preparation, execution, and data

collection was given for the test bed. The main subjects were discussed – Node discovery,

Topology Setup, and IPERF test execution.

CHAPTER 4: AODV QoS Design and Methodology

4.1 Introduction

The need for low latency, reliable emergency data transfer is evident. In the case of power line

transmission monitoring, fault data or other data deemed to be of high importance must make

its way as quickly as possible to control centers and/or upstream smart grid decision making

devices. Current variations of QoS enabled mesh networking protocols do not include features

to allow for the fastest possible route in the case of emergency but rather incorporate a variety

of different strategies such as link statistics, geographical routing, etc.[19]. The following design

and development assures a quick reduced traffic route to the required destination to send small

amounts of emergency data for notification of a fault/failure in the system.

4.2 Traffic Reduction Methodology

Contrary to other QoS enabled designs available, this design incorporates network traffic

reduction along the route from the emergency to the control center (destination). The main

35

aspect of this design is to request a high priority route. The nodes involved in the route setup

will then give precedence to the node which has shown need for a low latency emergency route.

The emergency can then be transmitted with the fastest possible delay. The route discovery

structure in the base protocol is utilized and therefore the emergency route latency can be

modeled by the minimum latency in a completely unloaded network for a given node

transmission, dependent on topology and hop count to the destination node. The emergency

information is given sufficient time to propagate through the network and make its way to the

control center and then normal network operations resume.

4.3 Quality of Service Design

The design of the quality of service code was interleaved directly into the AODV-UU 0.96 C code.

Various functions were developed as a means to monitor and carry out different operations

necessary to moving towards a functional prioritized route. Along with multiple header files

there were five main C files that viewed added code to facilitate the designed QoS scheme.

Routing_table.c

aodv_rqos.c

main.c aodv_rreq.c

aodv_hello.c

Figure 25 - QoS C files

36

4.3.1 Emergency Instantiation

When an emergency is sensed the AODV code calls a different function which instantiates the

route request for the emergency route. The trigger is set high and then the AODV native route

request discovery function is called with a destination that shall be designated emergency IP,

the destination that the emergency data must traverse to. A timer (selected larger for testing

purposes) is then set which will eventually end the emergency data transmission period.

Figure 26 - Code Excerpt send_rreq

Upon calling the native route discovery function the request will begin to propagate throughout

the network with the knowledge of the emergency signified by the reserved header field being

changed.

4.3.2 Intermediate Node Emergency Processing

The received route request function has been altered to check for the emergency field. Upon

receiving a route request all nodes will begin the process with a check to acknowledge the QoS

metric of the route request. The reserved flag is saved to the trigger variable and is then

checked to see if an emergency route is needed. If an emergency route is needed, the

originating address and the destination address are saved into variables to acknowledge them as

37

having key roles in the transmission of the emergency data. Another variable is set high to

signify the need to clean non-emergency IPs.

Throughout the AODV code there are checks in multiple functions which check for the value of

clean_ips, a notifier of an emergency. These checks are based on new routing table entries into

each of the nodes. The check is also located in the native functions which add precursors to the

routing table. Once a new entry to a routing table has been acknowledged and the check has

passed for an emergency a function called manage_ips is called to save the useful IPs in the

route from the emergency to the emergency destination.

Figure 27 - Code Excerpt rreq_process

Figure 28 - Code Excerpt manage_ips

38

While managing the IPs, the precursors are saved into other variables so that they may be used

later. Upon solving for the proper IPs in the path, a function denoted as managed_iptables is

called to allow only the useful IPs in the emergency route. The native functions to invalidate and

delete entries in the routing tables are used. The function cycles through the neighbors of the

node checking to make sure the neighbor is not saved as the destination, source, or a useful

precursor to the emergency route. Given the neighbor is found to be non-useful it is invalidated,

deleted from the current routing table (to avoid congestion for rreq forwarding) and then

filtered temporarily by IP address to allow for the quickest emergency data forwarding.

The emergency data transmission timer is set to call the clean_iptables function. This function

will remove the rules which prohibit the other nodes from interrupting the emergency route

data stream. The system will then function as typical AODV-UU until the next emergency is

triggered.

4.4 Chapter Summary

The development of the QoS scheme has been documented. All code can be found in the

appendices though useful excerpts have been shown to allow the reader to follow the design

methodology and code flow. The emergency trigger will signal the emergency on a given node

which forms the basis for one set of code. The majority of the prioritization scheme is fulfilled by

the intermediate nodes which give precedence to any data from neighbors which are used in

the emergency route, while also checking to make sure traffic is originating from the emergency

source itself and not traversing through a neighbor node from an alternate source.

39

CHAPTER 5: Results and Analysis

5.1 Introduction

The QoS prioritization scheme has been successfully designed tested in a real world scenario

using test nodes in the form of netbooks. Four netbooks with N450 Intel atom processors were

the available equipment used for testing the QoS implementation. The testing was completed

using ping data for latency along with topology setup. Iperf tests were utilized to show the

differences in throughput with and without the prioritization scheme.

5.2 Test Scenario

5.2.1 Simulated Emergency

Whether the emergency be a transmission line fault, an overheating transformer, or burnt out

lamp, the system must be triggered by a sensor attached to an AODV QoS enabled device. Even

though live testing is the feature of this thesis, the emergency event must be simulated. The

AODV code has been modified for testing purposes to set an emergency flag high in a node after

a timer expires as to mimic a sensor reading error occurring after some time of running normal

data collection and transfer. The chosen time period was 20 seconds after AODV has been

running, then the emergency flag will be set high triggering a node to send the aforementioned

high priority route request.

5.2.2 Test schedule & Results

The test setup was chosen to facilitate two nodes sending periodic data through a junction node

toward another destination (simulated control center) node. This would allow for one of the

nodes to trigger an emergency. Measurements of the pre-emergency and post-emergency

40

bandwidth can then be calculated. The same scenario also proved useful for showing the latency

of each of the routes toward the destination address.

Nodes A and B are sending data to destination D. The bottle neck can be clearly seen at node C

where the link between C and D suffers due to the amount of data being double of what it is in

between links A – C as well as B – C. The QoS emergency is then triggered after some time in

node A. The system then changes to have the following data flow pattern.

Figure 29 - Test Topology

C

A

B

D

C

A

B

D

Figure 30 - Emergency Route triggered in A

41

The traffic in the link that was once sharing the throughput from both nodes A and B is now

dedicated solely to A for the emergency route. The throughput of the data has increased to the

maximum allowable throughput for the scenario to cope with the emergency.

The throughput of the data has increased dramatically from the first scenario to when the

emergency was triggered and traffic was halted from node B. Figure 32 displays the throughput

slightly differently than just displaying the throughput as MB/s at each time interval. The iperf

test was scheduled to output the amount of bytes transferred every half second. This graph

shows the cumulative bytes sent through the network by node A in a second frame. There are

multiple reasons that govern the dramatic increase in throughput displayed. Holding all link

qualities constant and the two sending nodes having equal transmission rates, it can be seen

that at C, the junction node, the bottleneck of the system occurs. In the normal route test set

link C – D has clearly been overloaded in comparison to links A – C and B – C which causes the

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9
x 10

6Emergency Data Sent vs. Regular Data Sent

Time (sec)

T
o

ta
l
B

y
te

s
 s

e
n

t

Normal Route

Emergency Route

Figure 31 - Throughput comparison

173% Increase

42

throughput to decrease. Node C is processing data from two senders as well and AODV must

appropriately continually forward data though itself. In the case of the emergency route, not

only does link C – D view cleared traffic congestion, but node C is now fully dedicated to passing

data from A to D. The throughput viewed in the emergency route scenario is essentially the

same throughput excepted from running a three node test with A – C – D as the topology.

The latency of the system has also decreased for the emergency period. As for the following test

schedule, the latency of pings from A – D have been plotted with external traffic from node B as

well as without traffic from node B.

The average latency of ping test data has been plotted as seen below with traffic and without

traffic. Multiple tests carried out with bursts of 10 pings have been accessed for data collection.

It can be seen that with external traffic the latency is much higher and yields a more sporadic

pattern due to the junction node being responsible for more data transfer and possible

collisions. When the latency of A is recovered without external traffic we view a reduced latency

with a more reliable data trend.

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

Latency Round Trip Time

Latency Tests

T
im

e
 (

m
s
e

c
)

No traffic

With External Traffic

Figure 32 - Latency of node A

43

The system is then tested for latency with the simulated emergency occurring during the ping

latency data collection period. 20 pings per set at intervals of one second are administered to

the network for both routes A – D and B – D. The emergency is then triggered at the 10 second

mark and the latency changes in the system can be viewed. For lack of a method to have

undefined points in the Matlab plot, the traffic data set has been dropped to an indefinable zero

value to better observe the graph. The diamond-point Traffic set should essentially move to

infinite latency during the five second emergency period denoted between the 10th and 15th

ping test. The emergency node clearly shows a reduction in latency during the emergency

designated period. These values coincide with the values viewed in the previous figure for

latency with traffic and without traffic.

0 5 10 15 20
0

1

2

3

4

5
5 Second Emergency

Ping test

L
a

te
n

c
y
 (

m
s
e

c
)

Emergency node

Traffic

Figure 33 - Latency drop during emergency

44

5.3 Chapter Summary

This chapter outlined the methods of testing the new QoS system implemented into AODV-UU

0.96. The explained methodology of a simulated emergency led to the explanation of the test

schedule and test topology. The throughput of the emergency node showed a large increase

with coincided with a similar throughput as to when a node is transferring data at the maximum

possible rate observable to its topology. The latency of the system decreased accordingly during

the emergency period until the simulated emergency data had been sent and then the

emergency period ended, thus returning the system to the original higher congested latency

value prior to the emergency transfer.

CHAPTER 6: Conclusions and Future Works

6.1 Introduction

The concluding remarks shall be stated as to the functionality of the newly developed test bed

and the improvements in AODV-UU towards low latency transfer of emergency data for smart

grid applications. Future work towards continual improvement to the test bed and QoS protocol

shall be discussed as well as ideas towards further efficiency of QoS enabled AODV.

6.2 Concluding Remarks

6.2.1 Java Ad-Hoc Network Test Bed

Java proved to be a useful tool in creating the test bed. Through the use of Netbeans IDE the

graphical user interface was well organized and created with minimal manual coding. Each stage

45

of the test bed (node discovery, topology setup, etc.) proved to function according to the

original plan. There are a wide range of uses for this test bed because a user can now test any

different type of wireless mesh network, have topology setup, and basic network testing tools

available without a sharp learning curve and the time wasted with tedious manual command

input on each of the test nodes.

6.2.2 QoS Prioritized Emergency Route for AODV-UU

The QoS scheme was interleaved into the code structure of AODV-UU with the functionality

goals met. The need for low-latency emergency data has fueled the need for a scheme of this

type. The system used basic principles that allowed for the emergency route to be implemented

with maximum efficiency in the network topology. A clear increase in throughput has been

achieved during a traffic-input emergency-triggered scenario. The latency of the node which

instantiates the emergency route request is seen to have a reduction immediately allowing for

faster data transfer in a time when pertinent data is needed to be transferred. The system has

functioned according to design specifications and previous speculations.

6.3 Future Works

6.3.1 Java Ad-Hoc Network Test Bed

The java test bed is fully functional though there are some aspects that could be improved for

future developed versions. The first improvement to the system would be a more efficient

method of node discovery using a multi-cast server method. Datagram packets were not used in

this version, though after more investigation and interaction with java development, this

method would be quicker and more efficient to finding all nodes in a certain subnet.

46

The iperf testing of nodes in the topology could one day include a multiple simultaneous test

option. This would facilitate multiple nodes testing throughput and latency to different paths

through the network. This would help users gain a better knowledge of junction node

bottlenecks and the effects of the routing protocols route establishment delays.

6.3.2 QoS Prioritized Emergency Route for AODV-UU

The emergency route implemented into AODV-UU is still strictly a network-layer protocol,

therefore the periodic data (“traffic”) sent during times of emergency are halted and must be

managed by the application or transport layer which is feeding the data to the lower layers for

routing. A future, multifunction system could also be implemented into AODV-UU that would

buffer data and alleviate the responsibility from the sensor reading data collection application.

This could be accomplished by each node receiving some type of acknowledgement before an

emergency route node is halting their traffic. The notified node could then take action to retain

the higher layer passed data for the short period that the emergency is occurring on the

emergency node.

The QoS scheme could be better tested with real sensors and hardware that could trigger

emergencies based on external input such as a rise in temperature. This would yield more

potent data as to what the size of an emergency packet should be and thus gaining a better

understanding of how the system will function in terms of latency and traffic with smaller or

larger emergency data size.

47

6.4 Chapter Summary

The concluding remarks have been stated showing the data by means of testing. Positive results

were yielded and discussed about the QoS implementation and the need for a ad-hoc mesh

network test bed reiterated. Future works were discussed for both portions of the thesis and

benefits of working towards further improvements have been identified.

48

APPENDICES

See attached supplemental files.

 Java Wireless Ad hoc Network Testbed

 AODV-UU Source files with QoS Amendments

49

REFERENCES

[1] Torchia, M. (2012). IDC Energy Insights, (2012). Worldwide Utility Smart Grid Spending

 Forecast, 2010-2015. IDC Energy Insights.

[2] U.S. Department of Energy: Office of Electricity Delivery & Energy Reliability. (2011).

 Smart Grid Research & Development: Multi-Year Program Plan (MYPP).

[3] Gungor, V.C.; Bin Lu; Hancke, G.P.; , "Opportunities and Challenges of Wireless Sensor

 Networks in Smart Grid," Industrial Electronics, IEEE Transactions on , vol.57, no.10,

 pp.3557-3564, Oct. 2010

[4] Elster. (2012). Residential Meters. Retrieved 07 07, 2012, from Elster Metering:

 http://www.elstermetering.com/en/residential_meters.html

[5] Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc On-Demand Distance Vector

 (AODV) Routing. Internet Experimental RFC 3561 .

[6] Nordstrom, E. (2002). AODV implementation on Linux. Retrieved from

 http://sourceforge.net/projects/aodvuu/

[7] ISI. (n.d.). Retrieved 03 25, 2011, from Network Simulator 2:

 http://www.isi.edu/nsnam/ns/

[8] Sommer, C., Dietrich, I., & Dressler, F. Simulation of Ad Hoc Routing Protocols using

 OMNeT++. Department of Computer Science, University of Erlangen, Germany.

[9] Flynn, B. R. (2009). Key Smart Grid Applications. GE Energy.

[10] Day, J.D.; Zimmermann, H.; , "The OSI reference model," Proceedings of the IEEE , vol.71,

 no.12, pp. 1334- 1340, Dec. 1983

[11] Ahmed, F., & Sajjadur Rahim, M. (2011). Performance Investigation of Two-Classes of

 Manet Routing Protocols Across various Mobility Models with QoS Contraints.

 Internation Journal of COmputer Networks & Communications (IJCNC) , Vol.3, No.2.

[12] RFC3561. (2003, 07). Retrieved 01 07, 2011, from IETF:

 http://www.ietf.org/rfc/rfc3561.txt

[13] E.800: Terms and definitions related to quality of service and network performance

 including dependability. (1994, 08). 2007/2008 Ammendments . ITU-T Recommendation.

[14] Badis, H., & Al Agha, K. (2005, 11). Quality of Service for Ad hoc Optimized Link State

 Routing Protocol (QOLSR). Vancouver, BC, Canada: Internet Engineering Task Force.

50

[15] Daqing Gu; Jinyun Zhang; , "QoS enhancement in IEEE 802.11 wireless local area

 networks," Communications Magazine, IEEE , vol.41, no.6, pp. 120- 124, June 2003

[16] Beijnum, I. v. (2002). Building Reliable Networks with the Border Gateway Protocol. In

 Traffic Engineering: Queuing, Traffic Shaping, and Policing. O'Reilly Media.

[17] Clayton, L. (2011). Testing Network Performance. Retrieved 07 2012, from Experts

 Exchange: http://www.experts-exchange.com/Networking/Network_Management/

 Network_Analysis/A_8010-Testing-Network-Performance.html

[18] Russel, P. (1999-2000). iptables Project. Retrieved 2011, from netfilter:

 http://www.netfilter.org/projects/iptables/index.html

[19] Djenouri, D.; Balasingham, I.; , "Power-aware QoS geographical routing for wireless

 sensor networks — Implementation using Contiki," Distributed Computing in Sensor

 Systems Workshops (DCOSSW), 2010 6th IEEE International Conference on , pp.1-5, 21-

 23 June 2010

[20] Lee, S.-J.; Gerla, M.; Toh, C.-K.; , "A simulation study of table-driven and on-demand

 routing protocols for mobile ad hoc networks," Network, IEEE , vol.13, no.4, pp.48-54,

 Jul/Aug 1999

[21] Wright, S.; Anschutz, T.; , "QoS requirements in DSL networks," Global

 Telecommunications Conference, 2003. GLOBECOM '03. IEEE , vol.7, no., pp. 4049- 4053

 vol.7, 1-5 Dec. 2003

[22] The Java Tutorials. (1995, 2012). Retrieved 01 07, 2012, from Oracle:

 http://docs.oracle.com/javase/tutorial/

[23] C, C++ Programming Tutorials. (1997, 2011). Retrieved 04 2012, from

 Cprogramming.com: http://www.cprogramming.com/tutorial.html

51

VITA AUCTORIS

Shawn A. Ruppert was born and raised in Windsor, ON in 1987. He graduated from Vincent

Massey Secondary School (V.M.S.S) in 2005 and then began Electrical Engineering at the

University of Windsor. Shawn was a part of the cooperative education program and gained

work experience with The Corporation of the Town of Lakeshore, Lakeshore, ON; INA Schaeffler

KG, Herzogenaurach, Germany; Chrysler Canada Automotive Research and Development Center,

Windsor, ON; and Alcatel-Lucent, Ottawa, ON. Shawn graduated with a Bachelors of Applied

Science in Honors Electrical & Computer Engineering in October 2010. He then began his

Masters of Applied Science at the University of Windsor in January 2011 under the supervision

of Dr. Kemal Tepe in the discipline of Wireless Communications and Computer Networks.

Shawn has been a part of many projects including Zigbee enabled transmission line monitoring,

Ad hoc mesh networking protocol testing, Android application development for electric vehicle

proof of concept, and Java wireless network test bed development.

	University of Windsor
	Scholarship at UWindsor
	2012

	Improvements in AODV towards Smart Grid Routing - Test Bed Development & Prioritized Routing for Emergency Scenarios
	Shawn Andrew Ruppert
	Recommended Citation

	tmp.1441303952.pdf.FmZV2

