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ABSTRACT 

Multi-Population Cultural Algorithms (MPCA) define a set of individuals that can 

be categorized as belonging to one of a set of populations. Not only reserved for 

Cultural Algorithms, the concept of Multi-Populations has been used in 

evolutionary algorithms to explore different search spaces or search for different 

goals simultaneously, with the capability of sharing knowledge with each other. 

The populations themselves can define specific goals or knowledge to use in the 

context of the problem. One limitation of MPCA is that an individual can only 

belong to one population at a time, which can restrict the potential and realism of 

the algorithm. This thesis proposes a novel approach to represent population usage 

called “Heritage,” which allows individuals to belong to multiple populations with 

weighted influence. Heritage-Dynamic Cultural Algorithm (HDCA) is used to test 

against different domains to examine the advantages and disadvantages of this 

approach. 
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CHAPTER 1 

Heritage and Evolutionary Algorithms 

1.1 Existing Evolutionary Algorithms 

 

Evolutionary Algorithms (EA) are a set of algorithms related to evolutionary computation 

in the field of artificial intelligence (Back 1996). In their purest form, they represent a 

series of solutions which improve over time through evolution. This concept is inspired 

by biological evolution where species of living organisms evolve and improve with many 

generations. The benefit of utilizing this in computer programming is that computers can 

iterate through (simplified) generations of individuals at incredible speed: millions of 

years of evolution could be calculated within a day! 

 

Typically, EA can be generalized in pseudo-code as being comprised of three main 

functions that help form a new generation of individuals from the previous generation. 

These are called selection, reproduction and mutation (Back 1996). Selection and 

reproduction select appropriate individuals to generate offspring as a combination of 

traits, and mutation allows controlled random variance to help discover elements of new 

solutions not represented by the parents. To help select the best performing individuals a 

fitness function (typically the problem that is to be solved) is used to rank the individuals 

numerically. With this in mind, it makes sense that the majority of research with EA 

relates to optimization problems. 

 

There are many types of EA, each inspired by different aspects of nature. Some of these 

include Genetic Algorithms, Ant-Colony Optimization, Bees-Algorithm, Particle-Swarm 
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Optimization, and Cultural Algorithms (Back 1996). Of these, Genetic Algorithms (GA) 

and Cultural Algorithms (CA) are of the most interest in this study. GA use a basic 

structure of selection, reproduction, and mutation, defining individuals as a set of 

modulated memes that represent smaller parts of a larger solution (Holland 1992). By 

defining individuals in this manner it is easier to combine individuals in the reproduction 

stage to generate new individuals.  CA are said to be an extension of GA, but utilize 

additional logic and knowledge in the individual’s generation. This is accomplished with 

a “belief-space” that keeps memory of the best found knowledge so far discovered, which 

can quickly distribute knowledge without waiting for explicit sharing between individuals 

(Reynolds 1994). 

 

The term “individuals” is often used for the solutions represented in each generation. In 

agent-based modeling, an agent (or “intelligent agent”) is described as an autonomous 

entity which observes its environment and directs its activity to achieve its goals. A 

multi-agent system allows communication between agents to achieve such goals (Niazi 

and Hussain 2011). This description is not too different from how CA are defined, as 

such CA are especially well-suited to agent-based modeling where agents represent the 

individuals. Some work in the literature uses EA with agents (Gilbert and Terna 2000, 

Kobti et al. 2003). 

 

While CA are generally considered an improvement over GA, they can still be limited in 

that the agents are uniform: other than the specific search space they occupy, their 

problem solving methods are typically identical amongst the population. To solve this 
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problem, Multi-Population EA (MP-EA) have been introduced more recently, including 

MPCA (Digalakis and Margaritis 2002). This acts as multiple CA working in parallel, 

each as its own population with its own individuals and belief-space. By defining 

separate groups the agents can be defined to use separate strategies and knowledge 

sources as well as explore different search spaces or optimize different variables. As a 

drawback of MPCA being a new concept with less examples of it in existing work, very 

few studies currently use MPCA directly for agent-modeling and simulation. This is 

unfortunate as the ease of defining different strategies of communication and knowledge 

use makes them directly applicable to this type of model. 

 

1.2 Limitations of Genetic, Cultural and Multi-Population Algorithms 

 

The main benefit of GA is their ease of implementation and flexibility. Little to no 

explicit knowledge of the problem itself is needed for GA to be programmed: the only 

requirement is the format of an appropriate solution to the problem to help define the 

format of the individuals.  The problem definition is treated as a “blind-box” for the 

fitness function to rank the individuals. However, this simplicity can come at the cost of 

optimization. While GA may be capable of reaching acceptable solutions with good 

speed, bare GA are not intended to always reach the best or most optimal solution. 

 

It appears intuitive that CA would perform better than GA since they are meant to use 

explicit knowledge for problem solving. Studies show this to be true, but it leads to a 

difficult question of how exactly knowledge should be defined in a computer algorithm. 

There are any number of ways to define knowledge, and using that logic efficiently 
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requires much insight from the programmer. Should the problem’s criteria change 

slightly, a CA would need to be re-written from scratch, unlike the more flexible GA. The 

generalization of CA in the manner of GA to make them more adaptable for various 

problems is still under study. Also, as previously stated as the inspiration for MPCA, 

standard CA is uniform amongst its individuals for simplicity, which limits how logic can 

be defined and utilized. 

 

MPCA are designed to be capable of utilizing multiple strategies and knowledge 

resources independently, while allowing separate goals. This can allow competitive, 

cooperative, or independent forms of CA to be run in parallel for the same problem 

domain while allowing the ability to share knowledge between populations. This can lead 

to faster convergence to solutions of optimization problems, to the discovery of better 

problems that a standard CA might miss, and is also better suited for complex problems 

that include multiple variables or parameters in the solution format. In a way this is a 

better representation of the complexity of interaction among evolutionary species as this 

was inspired by nature and by problem solving logic. However, one flaw which 

contradicts these inspirations is that agents are set to belong to one population at a time. 

They may switch between populations at the jurisdiction of the programmer, but to date 

no implementation exists that allows an agent to belong to more than one population at a 

time. This ensures the agents are still to some extent limited, since each agent mimics the 

behavior and logic of their population In reality one would see a much more diverse 

spectrum of behaviors, logics and goals in each individual, even if parts of them overlap. 
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This observation suggests that MPCA is still too simple, in the same way that CA is a 

simplified representation of human problem solving. 

 

Another serious issue in MPCA is the wide potential of inter-population communication 

and lack of standardization. MPCA’s strength is that it contains multiple populations 

which can share and communicate their discoveries with one another. But how do they 

make these exchanges? In existing work that define MPCA, examples have shown 

exchange through individual agents communicating with agents from other populations, 

like saying hello to a neighbor. Other examples limit agent communication to only other 

agents within the same population, similar to having students from the same school talk 

to each other, where sharing between populations occurs when an agent migrates from 

one population to another (moves to a “new school”). Some uses of MPCA skip agent 

communication and focus on inter-belief-space communication, which in theory might 

propagate the best discoveries more quickly. Even further, there exist examples where a 

single global belief-space is shared amongst all populations and controls how knowledge 

is distributed. These all bring up a variety of questions: do agents themselves maintain 

individual-belief-spaces or local knowledge in the way their populations do for when 

communication occurs? Do optimization the only concern to use MPCA or can it involve 

testing other factors of the problem-solving process? To what depth and detail is 

knowledge represented in these belief-spaces? If a global shared belief-space is used, 

what exactly is the difference between MPCA and CA? 
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MPCA is still a recent EA and the lack of standardization with both CA and MPCA 

reduce their applicability, where GA’s simplicity makes it much easier to create and 

maintain for any problem. To put it simply, GA only requires extensive knowledge of the 

solution format, but CA and MPCA requires both extensive knowledge of the solution 

and the problem itself, which many researchers struggle with.   

 

1.3 The Introduction of Heritage as a Paradigm 

 

While the exact use and definition of MPCA is debatable, this thesis will attempt to solve 

the first problem of MPCA defined in Section 1.2. Currently, an agent in MPCA can only 

belong to one population at a time. To allow agents to be defined as belonging to more 

than one population at once, and therefore to take advantage of the benefits of these 

multiple groups, this text introduces a new heuristic approach called “Heritage.” 

 

The definition of Heritage in the context of this study would be described as a binary tree 

comparable to the classical “family tree.” During the reproduction process of MPCA 

where the traits of two parent agents are combined into a child agent for the new 

generation, a single variable that defines the population that child belongs to would 

normally copy that of the parents (or should the parents be mixed, then of the stronger 

parent). By using a binary tree that history of populations is not lost, allowing generations 

far into the future to have a varied and diverse group of individuals as defined by their 

Heritage. Along with setting the population id, a numeric weight value is added to 

describe the amount of influence that population has on the agent’s Heritage. This would 

allow two benefits: 1) in cases where knowledge discoveries and strategies cannot be 
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easily merged between populations, a weighted-random selection process can be used to 

determine an agent’s immediate actions, and 2) the further down the tree a population 

resides, or the older the population is in the Heritage, the less effect it should have on the 

agent, which can be easily implemented by reducing all current influence values before 

extending the tree.  

 

While seemingly creating further complexity to the MPCA model, using Heritage 

requires certain assumptions. Heritage must be used in a MP-algorithm, EA with only 

one population that is uniform in its agents would have nothing to benefit in seeking 

varied behavior in its individuals. Heritage as it is defined here can be used in other MP-

EA, but MPCA is the main focus of this study as it purposely defines the concepts of 

knowledge in its structure. This definition of Heritage requires that it must be possible for 

new generations to be created through the mating of agents across different populations, 

otherwise an agent’s Heritage would only have a single population throughout its span. It 

also allows the assumption that individual agents themselves do not necessarily maintain 

individual knowledge through the generations: by defining an agent with a potentially 

unique Heritage, individuality can be seen in the Heritage alone even though the 

population’s belief-spaces maintain the knowledge being used. In this way the 

implementation may be reduced to a higher level that focuses on the populations and their 

belief-space definitions, even though the individual agents still do the work to solve the 

problem. 
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Aside from historic knowledge of whom an agent’s ancestors’ populations were, Heritage 

also represents symbolic ties to those older populations. Unlike historic knowledge that 

maintains a snapshot of the knowledge itself, Heritage is a dynamic link to populations, 

so as the populations change over time, so do the actions the agent carries out when 

consulting its Heritage. Heritage is not meant to replace existing concepts of knowledge 

in MPCA, but to be used alongside it. Like most EA, Heritage is based on observation of 

nature. In the animal kingdom, some species will show signs of devotion and loyalty to 

its family or community. In the human race, as people migrate to new homes, the cities 

and countries that make up their culture are an important factor in their way of life, even 

though their current home might hold the greatest influence. When countries change, 

even people with more distant ties to that country are affected. In this way, Heritage is a 

better representation of “culture” than that seen in most implementations of cultural 

algorithms. 

 

The use of Heritage may still be questioned. While it makes sense through hypothetical 

scenarios, it may not necessarily be used effectively in most optimization or search 

problems. Our hypothesis is that it will not. The existing design of example MPCA show 

that removing traits that inspired the initial design from nature led to better performance. 

But in that vein, EA are not necessarily the best choice for optimization problems either. 

What is expected is that using Heritage will help maintain a greater diversity and make it 

more difficult to lose what might have been important information, which may be 

especially appropriate for stability in dynamic problems. More importantly, the use of 

Heritage can make it easier to implement and observe outcomes in problems related to 
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the interactions and evolution of the individuals, the study of cultural evolution and social 

networks. Again, most EA are not the best choice for these types of problems, so why use 

them at all? Because they provide reasonable results and are easily understood, allowing 

insight into conclusions that might not be possible otherwise.  

 

1.4 Summary of Thesis Contributions 

 

In summary, the contributions of this thesis include: 

 Enabling individuals in Multi-Population Evolutionary Algorithms to belong to 

more than one population at a time, allowing it to combine advantages (and 

disadvantages) of multiple groups at once, through a proposed paradigm called 

“Heritage.” 

 Defining the operations and rules for Heritage by example in Heritage-Dynamic 

Cultural Algorithm, as an example of a more standardized and flexible version of 

Multi-Population Cultural Algorithm. 

 Testing the benefits of Heritage-Dynamic Cultural Algorithm in numerical 

optimization functions as a typical benchmark problem, and testing ease of use 

and capabilities with a simulation of historical politics.  

 Showing that Heritage-Dynamic Cultural Algorithm does provide greater 

diversity in its population over related algorithms, that it had better learning 

properties in dynamic environments over related algorithms, and that the use of 

Heritage allows modeling of complex problems with greater ease. 
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1.5 The Structure of This Thesis 

 

The following chapters will continue to explain the inspirations and details of Heritage, 

used in what is called a “Heritage-Dynamic Cultural Algorithm” (HDCA). This leaves 

out MP because it is assumed that HDCA would require MP. Chapter 2 provides an in-

depth survey of existing work in EA, specifically MPCA, plus the concepts of weighted-

links to populations and the use of EA for agent-based modeling. Chapter 3 explains in 

detail the structure and implementation of Heritage and HDCA. Chapter 4 tests HDCA 

against related EA algorithms in static and dynamic environments built around single-

goal optimization functions. Chapter 5 provides an in-depth example of HDCA to model 

a simulation of the Peloponnesian War of Ancient Greece history. Chapter 6 summarizes 

the conclusions of each chapter and discusses further avenues of research. 
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CHAPTER 2 

A Background Review 

This chapter includes an in-depth overview of Evolutionary Algorithms (EA), 

specifically Cultural Algorithms (CA), Multi-Population Cultural Algorithms (MPCA) 

and their uses with agent-based modeling and simulation. This is included not only for its 

relevance and importance to understanding the contributions of this thesis, but also 

because there does not yet exist a summary of this nature elsewhere in available 

literature. 

 

2.1 Evolutionary Algorithms 

 

2.1.1 General Evolutionary Algorithms and Genetic Algorithms 

 

EAs mimic the basic processes of evolution as understood by modern natural sciences, 

where the name originates. There are many common examples of algorithms that can be 

categorized as EA, including Genetic Algorithms, Ant-Colony Optimization Algorithms, 

Particle-Swarm Optimization and Cultural Algorithms, each of which are also inspired 

from different observations of nature (Back 1996). These types of algorithms are often 

associated with optimization or search problems, and are designed with both their 

inspirations and problem solving goals in mind.  

 

Different types of EA typically share certain features. One is that a population of artificial 

creatures, referred to as “individuals,” represent the algorithm’s progress towards a 

solution, and the cycle of an EA involves the evolution of these individuals. These 
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individuals usually represent solutions to the problem that algorithm is attempting to 

solve, symbolized as fixed length strings (Jones 1998).  

 

In the first generation, the individuals are produced randomly. During each time-step, an 

EA evolves the current population into a new generation with three steps: “selection,” 

“reproduction” and “mutation.” First, the “selection” process occurs where the best-fit 

individuals are chosen by testing against the problem (a “fitness function”) and 

comparing the numeric results. The “reproduction” process breeds new individuals with 

those chosen during the selection process.  This is done with crossover operations that 

combine the individuals, using individual elements from at least two individuals to create 

the new individual. A third process called “mutation” is completed at the same time as 

the reproduction process, randomly making slight modifications in the new individual’s 

parameters. Mutation is justified by observations of unusual occurrences in natural 

evolution. A child is never exactly like its parents: there are always slight differences that 

appear for the first time in the child, and sometimes children can have properties that 

make them outliers to the rest of their population. This also makes sense for problem 

solving – if not for mutation, an EA would converge quickly to a certain solution and 

never explore values outside of those randomly generated in the first generation. These 

processes of selection, reproduction and mutation occur indefinitely, until a satisfactory 

solution is reached or until a time limit has expired. Specific details of these steps, such 

as how many individuals to choose during the selection process or how many parents a 

new child should have, or exactly how individuals are selected and reproduced, are 

entirely up to the programmer, the specific algorithm, and the problem at hand. 
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While the exact solution of the problem may not yet be known, the fitness function must 

be capable of returning a value indicating how well the solution has performed so far. A 

simple example is a mathematical function F(x,y) with two variables x and y: the 

individuals would have two values that represent example values for x and y. The 

individuals that return the highest values of F(x,y) are kept for the selection process. The 

fitness function is treated as a blind-box component, such that the algorithm’s 

programming logic does not know any details about the function when attempting to 

solve it. 

 

There are three main implementation branches of EA: Genetic Algorithms, Evolution 

Strategies, and Evolutionary Programming (Jones 1998). This thesis focuses on Genetic 

Algorithm examples.  

 

Genetic Algorithms (GA) are a popular EA to use, partly because of its simplicity and 

partly because of its adaptive nature to many problems. Holland (1992) is credited with 

the original design of the GA, the concept of which can be viewed in Figure 1. 

Individuals are described as genes with a set of chromosomes, which is where the name 

comes from. 

 

As Figure 1 shows, the pseudo-code of GA is not too different from the description of a 

typical EA. Instead of simply choosing the top individuals during the selection process, 

the roulette wheel parent selection process ensures that even poor-performing individuals 
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have a chance to be selected, albeit with less probability than more successful individuals 

(this also means there is no guarantee that the best performing individuals are used at all). 

The parents are purposely paired in two’s, so new children would only have two parents 

in the reproduction process. Probability values based on their success helps combine the 

parents’ genes for the creation of the child, with mutation performed afterwards. While 

certain details here are more specific than the previous description of EA provided, GA 

can still vary in implementation, and so the exact differentiating factors between a basic 

EA and GA are not clear, although EA can also classify more complicated algorithms 

other than GA.  

 

GENETIC ALGORITHM 

 

1. A population of u random individuals is 
initialized. 

2. Fitness scores are assigned to each individual. 
3. Using roulette wheel parent selection u/2 pairs  

of parents are chosen from the current 

population to form a new population. 

4. With probability Pc, children are formed by       

   performing crossover on the u/2 pairs of  

   parents. The children replace the parents in the  

   new population. 

5. With probability Pm, mutation is performed on  

   the new population. 

6. The new population becomes the current  

   population. 

7. If the termination conditions are satisfied  

   exit, otherwise go to step 3. 

 

Figure 1 A Typical GA (Holland 1992) 

 

The main limit of GA is its easy convergence to local optima of a problem and lack of 

problem-specific knowledge to solve the problem. But few researchers ever point out its 

benefit, that the lack of problem-specific knowledge makes it easy to apply to many 

problems with minimal alteration. Varying programmer-set variables can speed up 
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convergence at cost of final solution fitness, and vice-versa. This simplicity can make it 

troublesome for researchers to understand how a solution was found, making higher-level 

understanding difficult with GA. 

 

It is worth pointing out that the individual’s representation in GA can be as simple as a 

string of binary values (Holland 1992), but can be implemented with strings of integer 

values or more complicated representations, including matrices (Michalewicz 1992) and 

trees (Zhou and Gen 1999, Syarif et al. 2002). While the use of trees as the chromosomes 

of an individual is meant for optimizing network trees purely for representing the solution 

format, this concept has loose ties to the inspiration behind the proposed contribution of 

this thesis in Chapter 3.  GA are now a widely known EA, and while many publications 

exist with them using various extensions and novel problems, including wind turbine 

placement (Grady et al. 2005), vehicle routing (Ombuki et al. 2006) and bankruptcy 

prediction (Min et al. 2006), few research projects stand out as being important to the 

development of GA in the last ten years.  

 

2.1.2 Cultural Algorithms 

 

Robert G. Reynolds (1994) is credited for proposing the concept of Cultural Algorithms 

(CA). He describes evolution as a process of “dual inheritance,” occurring both at the 

individual level, and being generalized into a group “mappa,” otherwise called a “belief-

space,” which in turn influences evolution in future generations with group knowledge 

not yet known by all individuals.  
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The inspiration of CA is said to come from the concept of cultural evolution. Where some 

EA, such as GA, focus on the genetic level for evolution and progress, cultural evolution 

suggests that faster adaptation can occur through societies then through standard 

biological inheritance (Reynolds 1994). Interestingly, the concept of “cultural evolution” 

as a field of study in computer modeling appears to be non-existent at the time of this 

writing.  

 

In its simplest form, CA can derive directly from GA, although forms of CA based on 

other EA can be produced. The traits saved in the belief-space can vary greatly, but again 

the simplest form is to take the best performing values of what the population has done so 

far.  Pseudo-code for CA (Reynolds 1994) is provided in Figure 2. 

 

CULTURAL ALGORITHM 

begin 

t=0; 

Initialize Population POP(0); 

Initialize Belief Network BLF(0); 

Initialize Communication Channel CHL(0); 

Evaluate (POP(0)); 

t=1; 

repeat 

Communicate (POP(0), BLF(t)); 

Adjust (BLF(t)); 

Communicate (BLF(t), POP(t)); 

Modulate Fitness (BLF(t), POP(t)); 

t = t+1; 

Select POP(t) from POP(t-1); 

Evolve (POP(t)); 

Evaluate (POP(t)); 

until (termination condition) 

end 

Figure 2 The Original CA (Reynolds 1994) 
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Comparing Figure 1 and Figure 2, the main differences in CA is the addition of a belief-

space network and a communication channel between the population and the belief-

space. Here, each time-step has the population’s individuals communicate to the belief-

space, the belief-space adjusting its generalized knowledge, then having the belief-space 

communicate back to all of the individuals. After this, the evolution process occurs in the 

same fashion as GA. 

 

Five specific knowledge categories have been defined to describe types of knowledge 

that can be used (Reynolds and Saleem 2005): Situational knowledge storing well-

performing past individuals for specific environment situations, Domain knowledge able 

to use problem-specific intuition to predict environment patterns, Normative knowledge 

storing dynamic ranges for finding optimized parameters, Historical knowledge storing 

sequences of past environmental changes from a global perspective, and Topographical 

knowledge that divides the landscape into sub-maps for sampling to predict unknown 

data. While Reynolds and Saleem provide fair contextual examples using a “Cone’s 

World” problem (a simple maximization problem where the domain is a set of hills), the 

representation and usage of these can vary greatly based on the problem. Exactly which 

knowledge should be used at certain periods during the problem solving phase brings 

questions.  

 

It intuitively makes sense that CA would lead to faster solutions than GA, since a belief-

space shared with all individuals would help communicate knowledge of other solutions 

much faster than propagating knowledge through nearest-neighbor strategies in GA. 
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However, GA has no such requirement: GA’s selection process does not state that only 

nearby (or else those with similar genetics) individuals can mate with each other. GA 

assumes individuals are globally accessible, and while their selection process can vary 

from a variety of methods including tournament selection, truncation selection, roulette-

wheel selection and others (Thierens and Goldberg 1994), using positional comparisons 

between individuals is not common.  

 

So if the increased speed of best-found solutions is not a benefit of CA over GA, what is 

the purpose of CA? CA has a belief-space that can hold knowledge more advanced than 

what genomes of individuals in GA can represent, with greater flexibility not limited to 

the individual. That CA can technically represent its population using GA, neural 

networks, swarm intelligence, or any other number of forms (Reynolds and Saleem 2005) 

gives it further flexibility, although this freedom can lead to more confusion during 

implementation. Most importantly, it is clear from these sources that the ability to use 

location-based information and selective knowledge dispersal allows the study of 

knowledge distribution and acceptance in a variety of domains, to be able to determine if 

certain knowledge types are more powerful than another or if a certain communication 

method is more realistic than another. The use of the belief-space, its main unique factor 

over other EA, represents elements of society that may not be fully understood, but is 

high-level enough to be implemented for study of other external elements despite not 

understanding those finer details. The belief-space itself can provide a generalized 

overview of the population as a whole rather than the best-performing individuals for 

review by researchers. 
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While seemingly of little meaning, these thoughts suggests that CA were not meant 

purely for the study of optimization problems, and begin to delve further into qualitative 

information for new types of problems, even though using functions that return 

comparable fitness values still helps greatly in testing. This mindset is part of the 

inspiration behind the developments in Chapter 3. Recent uses of CA focus on the 

specific design and uses of social structures and patterns (Ali et al. 2013, Reynolds et al. 

2014), but significant developments in CA have slowed down in the past few years. 

 

2.1.3 Multi-Population Evolutionary Algorithms 

 

Multi-Population Cultural Algorithms (MPCA) are a natural extension of CA that are still 

relatively new in modern research. The concept is straight-forward: CA are defined as 

having a population of individuals with a global belief-space helping guide their 

evolution. Instead of a single population with a single belief-space, it could be beneficial 

to have more than one, for greater variety and capability of easier representations of 

different groups (two heads are better than one!). So MPCA consists of two or more sub-

populations, each with its own individuals and its own belief-space. Note that some may 

prefer to describe MPCA as a set of “sub-populations” instead of a set of “populations;” 

“sub-populations” suggests that they are still part of a larger group or algorithm rather 

than being entirely separate, but since many other sources in this field use the same 

definition for both terms, they will be used interchangeably in this thesis with the same 

meaning. 
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While MPCA is the main focus of this section, it should be pointed out that the concept 

of Multi-Population (MP) has been applied to other EA as early as 1991, including GA 

(Cohoon et al. 1991), memetic algorithms (Quintero and Pierre 2003) and swarm 

algorithms (Blackwell and Brake 2004). Coincidently, research using MPCA specifically 

is fairly recent and sparse as of this writing. 

 

MPCA implementations usually do not require extensive alteration of existing definitions 

of CA. The focus of designing a functional MPCA, and the new area of research which 

MPCA allows, is how these separate populations interact with each other. Should 

populations be completely separate or have a form of shared memory? Should they share 

all available information whenever possible, share the best available information, or share 

information expected to help respective neighbor populations based on their unique 

goals? Should they communicate knowledge between each other or should they migrate 

individuals that contain knowledge or behavior traits for the population to recognize over 

time? These vary based on what the purpose of the implementation requires, and these 

thoughts have led to a variety of different MPCA. 

 

MPCA first appeared in 2002 from Digalakis and Margaritis, although their 

implementation was called a “parallel-co-operating cultural algorithm” (PARCA). The 

concept was still similar to later works that used the MPCA name, and involved using 

multiple sub-populations of CA to solve local parts of a scheduling problem. A master 

global-knowledge module would keep track of the sub-populations as they each evolved 

with their own unique goals. Each sub-population has access to different data sets, but 
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communicate with each other to avoid redundant exploration through the exchange of 

their best individuals.  

 

Other uses of MPCA are to specifically find and keep track of more than one solution to a 

problem (Alami et al. 2007), to speed up evolution (Guo et al. 2011) and to discover 

dominant uses of specific types of knowledge (Hlynka and Kobti 2013). While some 

work uses MPCA with a defined finite-set of sub-populations (Digalakis and Margaritis 

2002), some use dynamically forming sets of sub-populations such that new populations 

can appear (Alami et al. 2007, Xu et al. 2012). Additionally, while some uses of MPCA 

share knowledge through the migration of individuals between sub-populations 

(Digalakis and Margaritis 2002, Da Silva and De Oliveira 2009, Mokom and Kobti 

2014), others share knowledge directly in the sub-belief-spaces (Alami et al. 2007, Guo et 

al. 2011, Raeesi and Kobti 2012), and some even simplify MPCA to have a single global 

belief-space for all sub-populations (Guo and Liu 2011, Raeesi and Kobti 2013). 

 

It is significant that there does not exist many examples of MPCA designed for traditional 

numerical optimization problems (Raessi and Kobti 2013), a common benchmark for 

algorithm comparison involving optimizing multiple parameters of a mathematical 

function. This may be due to MPCA still being a new concept in algorithmic research, as 

standard CA has been used in numerical optimization (Reynolds and Chung 1997, Coello 

Coello and Becerra 2004). It is difficult to confirm that having multiple populations can 

lead to faster or better solutions, although research with Heterogeneous Multi-Population 

Cultural Algorithm (Raessi and Kobti 2013) provides results that help with this argument. 
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It is a fair assumption for both MPCA and CA that problem-specific information does not 

necessarily improve performance, and that added complexity could hurt performance if 

not used correctly. 

 

While things like quicker evolution, multiple solutions, solving multi-goal problems and 

maintaining diversity during search were common reasons cited for using MPCA, it is 

clear from these varied implementations that MPCA is plagued with lack of 

standardization, adding complexity and confusion to similar issues in CA. Many of these 

cited articles also like to “extend” their version of MPCA as its own algorithm: these 

include PARCA (Digalakis and Margaritis 2002), MCGA (Da Silva and De Oliveira 

2009), MCAKM (Guo et al. 2011), MCPSCA (Guo and Liu 2011), MCDE (Xu et al. 

2012), H-MPCA (Raessi and Kobti 2013) and TAMPCA (Hlynka and Kobti 2013), just 

to name a few (these terms can be found on the “Abbreviations” page of this thesis).  

 

One might bring up whether or not the existence of MPCA is really necessary. In theory, 

could the functionality of MPCA be made in a single CA? In examples where there is a 

single large belief-space shared amongst several sub-populations, yes. It would make 

sense to have a numerical ID assigned to each individual to keep track of what population 

it belongs to, which would affect communication and goals for the individual, otherwise a 

single standard CA will carry out the same general functionality. In the case where there 

are multiple belief-spaces, the algorithm requires multiple separate CA. However, from a 

‘meta’ point-of-view, a set of populations can be seen as a set of individuals, such that 

MPCA is really just a complex GA with smarter individuals (each individual being made 
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up of a subpopulation of the MPCA). Truly, the main reason to use MPCA is for 

organization of complex interactions between individuals that would normally be difficult 

to implement with CA or GA alone. Moreover, multiple belief-spaces can be observed 

along with the output data for conclusions. Because of the nature of the structure, it is 

easier to understand the interactions of these complex individuals using MPCA.  

 

As discussed in Chapter 1, an individual can migrate between populations, but cannot 

belong to two or more populations concurrently. This missing element is the basis of the 

contributions in Chapter 3.  

 

2.2 Agent-Based Modeling 

 

2.2.1 General Overview 

 

Agent-based modeling is a computational model consisting of multiple autonomous 

agents, which themselves are simple individuals able to sense parts of their local 

environment or other local agents and act upon their discoveries to achieve goals. 

Typically “agent-based modeling” is concerned with the agent framework themselves and 

their collective behavior to deduce qualitative understanding, where the term “multi-

agent system” refers to a system with multiple agents applied to more traditional 

problems of practical significance (Niazi and Hussain 2011). The exact definition and use 

of agents can vary greatly based on the problem. It is even possible to have an agent 

defined as a series of sub-agents that reach the larger agent’s conclusion and action 

(Russell and Norvig 2010).  
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2.2.2 Agent-Modeling in Evolutionary Algorithms 

 

GA, CA, MPCA and other similar EA are often specifically defined as being a set of 

“individuals,” not “agents.” Many experts in the field will correct someone trying to 

define these EA as a set of agents. The term “agent” may be inaccurate for algorithms 

such as GA, where the individuals do not necessarily have a local environment or other 

individuals to sense to determine actions. GA will constantly use selection, reproduction 

and mutation, the only decisions to be made is which individuals to use at each 

generation and how to use them, decisions made by the global class and not by the 

individuals themselves. 

 

However, the definition of CA in Chapter 2.1.2 suggests that decisions become an 

important part of the process. A belief-space is introduced, as well as more complex uses 

of knowledge. The purpose to store knowledge is to make some form of decision with it 

at various stages. Further, the belief-space is meant to spread knowledge more quickly, 

suggesting that local individuals could not simply spread knowledge to the rest of the 

algorithm otherwise, and that the concept of “local” individuals is in fact considered. 

These ideas lend themselves perfectly to the thoughts of agents and agent-based 

modeling. MPCA, meant to encourage diversity and multiple goals, seems even better 

suited for the concept of using agents as the individuals. The opposite can also be 

considered, to use GA, CA or other EA as elements of a single agent’s reasoning process, 

for example to have a GA-agent-based-model instead of an agent-based-model-GA.  
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A brief search revealed the existence of agent-based-models that use GA for the 

fundamental learning process of the individual agents (Gilbert and Terna 2000), although 

some existing work does refer to GA/MPGA using populations of agents (Chen and Yeh 

2001). CA has significantly less results appear in existing literature that relates to agents, 

again using CA in the logical process of agent-based-models (Ostrowshi et al. 2002) and 

using CA with agents instead of individuals (Kobti et al. 2003, Peng and Reynolds 2004, 

Reynolds et al. 2014). Use of MPCA and agents is limited to a handful of articles at the 

time of this writing (Hlynka and Kobti 2013, Mokom and Kobti 2014). The reduction in 

use of agents as they become more relevant seems only related to the amount of work 

available in the EA, with little on MPCA due to it being in its infancy in modern 

research.  

 

The purpose of this section is to demonstrate that the words “agents” and “individuals” 

being used interchangeably in this thesis is appropriate based on past work and the 

problems studied in later chapters. 

 

2.3 Weighted-Connections in Computer Algorithms 

 

An important feature of Chapter 3 will be the concept of using weighted connections in 

MPCA, as opposed to a binary variable that only allows an agent to belong to one 

population at a time.  

 

Weighted connections exist in a variety of algorithms in computer science. Artificial 

Neural Networks are a common example, using weighted connections between 
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components that update over time (Russell and Norvig 2010). More specifically in agent-

modeling, Denton Cockburn (2012) proposed a Weight-Allocated Social Pressure System 

(WASPS) to improve specialization in an agent framework.  

 

EA concepts have been used to improve neural networks (Yao and Liu 1997, Karaboga et 

al. 2007) and similar problems involving the design of networks (Juang 2004). One 

example of MPGA with weights given to the populations to determine direction to 

explore solutions was found (Chang et al. 2007). However, no examples exist in the 

literature to allow individuals in MPGA or MPCA to belong to more than one population 

at once through non-binary weight values. 
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CHAPTER 3 

Using Heritage with Multi-Population Cultural Algorithm  

3.1 What is Heritage?  

 

Heritage is a new proposed heuristic approach to extend Multi-Population Cultural-

Algorithms (MPCA). Similarly, the concept of Heritage as it is defined here can be 

applied to other MP algorithms and not strictly to CA. 

 

According to the Merriam-Webster Online English Dictionary, the word “Heritage” can 

be defined as “something transmitted by or acquired from a predecessor” (Def. 2, July 20, 

2015). This definition is not too different from how the concept of “culture” is defined in 

CA, as a form of information passed down from generation to generation. However, the 

term “Heritage” does not just suggest knowledge, but also “tradition,” where knowledge 

and behavior might be passed down based on ties to the source. For example, in human 

societies, cultural-Heritage refers to countries, clans or groups that the individual’s 

ancestors belonged to, and those groups still hold meaning to descendants that were not 

directly part of those groups. More importantly, in human-societies Heritage is additive, 

growing over time as a combination of ties to many groups, such that many unique 

Heritage trees exist among individuals, instead of a tie to a single group. 

 

With this in mind, Heritage as it relates to MPCA is meant to be a method to represent 

individuals that belong to multiple populations at the same time. Currently, while 

individuals could migrate from one population to another, there exist no examples of 

MPCA that allow individuals to belong to multiple populations at a single instance. 
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Heritage is built by combining the Heritage of two parent agents to become the Heritage 

of their child, and after several generations individuals would have diverse cultural 

makeups. When agents act based on their Heritage, weight values keep track of which 

populations in the Heritage have the most influence in helping determine current 

behavior, strategies and goals. Aside from being a more complex yet manageable solution 

for agent-based modeling with MPCA, this concept could also take advantage of 

combining traits from multiple populations in search decisions for potential improvement 

against certain problems. 

 

This concept is used in a new example algorithm called “Heritage-Dynamic Cultural 

Algorithm” (HDCA). Multi-Population is left out of the name because the existence of 

Heritage assumes the existence of multiple populations. Additionally, Heritage assumes 

that the definitions of the populations, whether it be through their objectives or methods 

to obtain those objectives, are unique from one another. In this way, HDCA is loosely 

related to concepts explored in Heterogeneous MPCA (Raessi and Kobti 2013). 

 

3.2 Why Use Heritage?  

 

Current research around MPCA does not allow individuals to belong to more than one 

population. This is a flaw that only exists in the concept of MP algorithms, and has no 

relevance to traditional single-population CA or GA. Because MPCA are still a recent 

concept in algorithmic research, the use of Heritage seems a natural evolution in the early 

stages of MPCA. 
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There are a handful of theoretical benefits to using Heritage. One is the representation of 

a new property inspired by natural behavior. Evolutionary algorithms are often inspired 

by specific traits in nature and perform with reasonable success. This would make them 

well-suited as general algorithms for agent-based models the require modeling of natural 

properties, but most evolutionary algorithms are left in their most basic forms for 

simplicity, leaving a lot of potential details overlooked. Heritage and MPCA do not 

satisfy all the potential influences in the world to represent cultures and societies, but as a 

generalization can do more than MPCA alone.  Further, enough implementation details of 

MPCA are left open that they could be added later when an appropriate problem could 

make use of them. 

 

A greater benefit of Heritage, and the greatest factor in its inspiration, is the creation of 

greater diversity. One of the reasons MPCA is utilized today is that the separate 

populations can act differently from each other, using diversity in ways that help keep 

track of different solutions or to help find new solutions in different spaces. However, 

individuals can only belong to one population at a time, only receiving influence from 

one belief-space at a time. The level of diversity is limited by the number of populations 

defined. This may have been by design, to help maintain simplicity and allow closer 

study of the populations as a whole instead of the individuals. But with Heritage, 

individuals would have unique combinations of existing populations to drive their 

behavior. This means that opposed to homogeneous individuals forming groups, 

individuals are unique from each other and have a more important role: the micro-level of 

evolution becomes as important as the macro-level. 
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Aside from being diverse, Heritage is something that is always part of the individual, 

even if the influence value becomes very small. This way, information (or in this case, 

ties to a certain population) is more difficult to lose. Standard CA and MPCA converge 

by only using the best individuals in the reproduction of a new generation, but HDCA 

uses evolution both to create new generations and to change weight values of Heritage 

nodes. This added complexity makes it difficult to suggest that HDCA can lead to better 

or faster solutions (storing potentially insignificant information may confuse which 

strategy to use), but the greater diversity it does maintain can prove significant. In 

dynamic environments where repeated patterns are likely to occur, Heritage’s ability to 

retain older combinations in some form might make it more likely to perform favorably.  

 

Another aspect of belonging to multiple populations is the potential for finding 

combinations of populations that work well together, as a simplified form of feature 

selection for reducing parameters used in an optimization problem. MPCA is well-suited 

to representing different objectives amongst different groups or populations. Combining 

the goals of these groups in some manner has been studied in Heterogeneous MPCA 

(Raeesi et al. 2014), meant to improve performance by testing strategies of dividing 

multi-dimension problems into sub-problems per population. By using Heritage, 

dimension combinations would be found naturally during the evolution process instead of 

during pre-processing, poor-performing combinations would be less likely to affect future 

generations while better combinations thrive. Heritage also allows weighted influence 

amongst these goals, adding further depth in potential combinations. 
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This section describes many intuitive reasons to make Heritage a favorable addition to 

the library of evolutionary algorithm paradigms, but it also promises a more generalized 

method to represent MPCA. Certain assumptions must be made to use Heritage. By 

assuming Heritage, agents must be capable of producing offspring together regardless of 

their corresponding population. It no longer makes sense to keep populations as separate 

physical groups with controlled migration of agents or knowledge between them. The 

concept of “population” is reduced to the population’s belief-space, as originally intended 

in early forms of MPCA and CA, to be a hypothetical example of knowledge distributing 

quickly to influence its new generations, and to represent the population as a whole. 

Further, the definitions of individuals themselves had always been dependent on the 

target problem, posing questions such as whether individuals should have their own logic 

and belief-space outside that of the population. Now, Heritage itself would define the 

individual, with the individual’s goals and past knowledge being stored exclusively in the 

population’s belief-spaces, the only local knowledge being the agent’s current state and 

surrounding environment. Then the aspects of the populations themselves and how 

multiple populations differentiate themselves can be focused on. Not meant to replace 

other methods of knowledge representation, Heritage does not interfere with how 

populations describe storing and utilizing problem solving components. While the 

individual is given greater focus than other forms of MPCA, this description also makes 

it easier to observe and design the populations. 
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Heritage in MPCA can remove open decisions about how to control communication and 

migration between different populations, and how to differentiate individuals from 

populations. While not meant to become a standard component of MPCA, the inclusion 

of Heritage helps bring a generalization that MPCA and CA have lacked, potentially 

being a benefit to programmers looking to implement algorithms in this family. 

 

3.3 How is Heritage Defined?  

 

This section discusses how to implement Heritage in a Heritage-Dynamic Cultural 

Algorithm (HDCA). 

 

3.3.1 Heritage Representation as a Tree 

 

The concept of Heritage can be best related to the common idea of a family tree. A 

typical family tree can be traced from the child to its parents, from the parents to their 

parents, and so on. A family tree can also grow into a complex web when additional 

children or siblings not directly related to the original child’s lineage are included. For 

the sake of representing Heritage, these additional components are not necessary, so the 

tree is simplified to a linear tree. 

 

During the reproduction process of MPCA, traits of two or more parents are combined to 

create a new child. With Heritage saved in each individual, it can also be passed down 

from the parents to the children. So each individual contains at least two references of a 

programmer-defined node type, and this would be built like a typical tree in computer 
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programming. In a simple implementation, the programmer may only need to consider 

two parents per child, and therefore only needs two references. But for flexibility, this 

can also be expanded to using a linked-list reference, which ultimately acts as a list of 

lists. 

 

A node contains two additional variables besides references to other nodes. It also 

contains information on the current population with a numeric ID, and a real value that 

represents the strength of influence the node would have on children. When initialized, a 

agent or node with no existing Heritage still has a current population and influence value 

initialized. 

 

Exactly how influence values are defined can be up to the programmer. It may be worth 

considering using the performance from the fitness function to help determine this 

number. But there is a natural occurrence of Heritage in real life that inspires Heritage as 

a paradigm: when a node is farther in the past of the tree, it should automatically have 

less influence. So when the influence of a node of the current child is calculated, it should 

use the number of branches it took to reach it as a decreasing factor. This can be 

calculated in real-time at run-time when a child is accessing its Heritage, but to do so 

often can require large computation. It may be worth storing a set to quickly store the 

influence values after a single calculation for quick reference (this is explained in further 

detail in Chapter 3.3.2). Influence is additive, so if a node with the same population 

occurs more than once, all instances add together to give that population a greater 

influence on the individual. This also allows populations a chance to gain dominance 
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should they appear often in the past, instead of assuming the most recent population has 

the greatest effect on the individual. 

 

The current population of a node can be determined in different ways. It can be 

determined based on past Heritage using the influence values, or it can be randomized. 

The act of randomizing the current node of an agent to state population can be seen as 

part of the mutation process of EA. If randomized, it better ensures that all populations 

can be represented somewhere in the individuals, but if mutation is not used to determine 

current population than this would be an appropriate method for modeling opportunities 

of population extinction. 

 

Figure 3 shows a diagram example of a Heritage tree growing, and how the influence 

values change accordingly in future generations. Figure 4 provides example pseudo-code 

that describes how Heritage can be stored and updated in an example agent. 

 

The use of a list of lists can grow to a limitless size, and can be effected quickly by 

hardware limits. If a child is limited to only having two parents, each generation would 

have Heritage growing by approximately O(n2) at each time-step, where n is the number 

of generations. From the previous description, nodes far in the past would always have a 

very low influence on the current generation, so it may be acceptable to check and delete 

older nodes that have influence below a certain threshold. This then allows for flexibility 

based on the intentions of the problem. 
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Figure 3 A Visual Example of Heritage (Tree) 

 

HERITAGE_TREE 

begin 

Node 

  List<Node> parents = null; 

  Int population_id = 1; 

  Double influence = 1.0; 

End Node 

Update_Heritage(List<Node> parents) 

  Node.parents = parents; 

End Update_Heritage 

Get_Influence(int pop_id, double degree) 

  Double influence = 0.0f; 

  If (node.population_id == pop_id) 

   Influence +=  

node.influence * degree; 

  For each (p in node.parents) 

Influence +=  

 p.Get_Influence(pop_id,  

degree*0.5); 

  End loop 

  Return influence; 

End Get_Influence 

end 

Figure 4 Pseudo-code for Heritage (Tree) 
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The purpose of storing Heritage explicitly as a tree is to be able to track the origins of 

Heritage. In certain problem environments it is helpful to know this type of information 

to recognize patterns from past experiences. Further, the Heritage tree itself could result 

in patterns that help guide appropriate Heritage in future generations. It could show 

certain combinations of parents / Heritages working well and others not. Heritage is not 

meant to replace historic knowledge, but using Heritage in this way could help add to 

historic information to make decisions. The exact usage of Heritage is open for many 

types of applications. But in cases where this type of historical pattern information is not 

of benefit, storing Heritage as a set instead of a tree can save memory and still provide 

general information on influence values. 

 

3.3.2 Heritage Representation as a Set 

 

To use Heritage as defined in this thesis with evolutionary algorithms, the major criteria 

is to have an influence value corresponding to each existing population. The simplest 

form of this is a set or array of real values, normalized between 0.0 and 1.0, such that the 

sum of all the values add up to 1.0. Every individual would have their own set indicating 

the influence populations have on them. 

 

At the beginning of an HDCA, it is assumed the set of individuals will be initialized to 

belong to a single population. This means their Heritage set has one value of 1.0 and 

many 0.0’s.  When Heritage is combined at the reproduction stage for a new individual, 

the Heritage from the parents are combined and added together. If the Heritage was 

originally normalized in the parents, than the new sum of the values in the child’s 
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Heritage should be 2.0. After being added, to represent the decrease in Heritage over 

time, the values are decreased by a certain percentage (to match the similar strategy of 

Chapter 3.3.1, the valued are decreased by half as an example). Similar to Chapter 3.3.1, 

the programmer may or may not choose to use mutation to add value to the influence 

from a specific population, or may add value based on the existing influence values in the 

Heritage. In this case, the Heritage values would need to be normalized again, such that 

all values in the set add up to 1.0. Normalizing the values at the end of the reproduction 

stage helps ensure consistency and makes it easier to compare the values for further study 

during a simulation. 

 

Figure 5 shows a diagram example of Heritage sets developing over multiple generations, 

and Figure 6 shows example pseudo-code to help guide how such a set would be 

programmed. 

 

Compared to a tree, storing Heritage as a set can be beneficial for computation. The 

memory usage for each individual would be consistent, at O(k), where k is the number of 

populations. Accessing the influence values is also more straight forward. 

 

As described in Chapter 3.3.1, the programmer may wish to use both a tree and a set to 

represent Heritage: the set could be a place to store the total influence values in the tree, 

and the tree would act as a secondary source in instances where the origin of Heritage 

points were required. But in some cases the use of this type of historic information may 

not be needed, and using a set alone would suffice. In such examples, the focus would not 
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be about the evolution and history of Heritage for individuals, but the combinations of 

existing populations to set and reach appropriate goals. In this case, the definition of the 

populations themselves and their role in HDCA is crucial. 

 

 

 

Figure 5 A Visual Example of Heritage (Set) 

 

 

HERITAGE_SET 

begin 

Double[] Set = new Double[population.count]; 

Update_Heritage(List<Set> parents) 

  Set += parents.set; 

  Set *= 0.5; 

  Set += 1.0 for mutation value; 

  Set.Normalize(); 

End Update_Heritage 

Get_Influence(int pop_id, double degree) 

  Double influence = 0.0f; 

  Influence = Set[pop_id]; 

  Return influence; 

End Get_Influence 

end 

Figure 6 Pseudo-code for Heritage (Set) 
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3.3.3 Heritage Functionality at the Action Stage  

 

Heritage can define combinations of populations that help define an agent. The majority 

of focus in an implementation of HDCA is how those populations should be defined. 

Unlike traditional MPCA, a population is no longer a subset of individuals and their 

collective belief-space – it is only the belief-space. 

 

Once an individual has their Heritage defined, they must use that Heritage to determine 

actions in the environment, or else define how to represent a solution to the user. This is 

where population belief-spaces come in. Populations may store goals unique to one 

another that guides the individual on what to focus on. They may store historic, 

topographic, situational, domain or normative knowledge that provide clues on 

optimizing those goals. But Heritage defines a combination of populations. This forces a 

standardization of the definition of a population’s belief-space, such that the conclusions 

made from one population can be merged with the conclusions of a second population. 

 

As an example, suppose two populations each had a unique goal to be solved in a multi-

objective problem, where the problem has one parameter to optimize. Each population 

might store knowledge of the best found parameter value so far. If an individual had 

Heritage with a combination of these two populations, it may act by going towards the 

average of the two best-found values provided by the two populations. If the influence of 

one population is greater than another, than this might cause the individual to move 

closer to one population’s preferred search area. In other cases where population goals 

did not conflict with each other, the actions might be able to co-exist. As a second 
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example, if two populations were trying to optimize separate parameters of a function, 

the individual could use knowledge from both populations in improving those separate 

parameters, and using them together only when grading the final solution using a fitness 

function. 

 

In situations where populations are defined in a way where their actions cannot be 

merged, the influence values can be used in a statistical roulette-wheel approach to 

picking a single population to follow for a given time-step. Implementers could take 

advantage of this scenario: if a population is chosen to be followed and immediately leads 

to worse results, then the influence of that population in that individual’s Heritage could 

be reduced to make it less likely to be picked again.  

 

In addition to a population having influence on an individual, the individual should have 

similar influence on the population. That is to say, an individual with a population that 

has dominating influence on its Heritage should also have greater influence on that 

corresponding population compared to individuals with more varied Heritages that are 

less dedicated. This is a representation of certain individuals having the priorities of the 

population having a greater effect on that population. This is not a requirement of HDCA, 

but if chosen to be used, the influence values stored in the individual’s Heritage could be 

passed along with the solution to the population’s belief-space. By storing this alongside 

found solutions in the belief-space, influence values would play in the decisions of future 

generations when they determine how to act. 
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3.3.4 Dynamically-Generating Populations  

 

All usages of Heritage so far in this chapter assume the population belief-spaces to be 

well-defined at the start of the problem. Depending on the simulation or problem, the 

programmer may wish to make these elements more flexible. Perhaps a population’s 

goals would change over time, based on the success or failure of other populations. 

Perhaps populations could go extinct or die out. Perhaps new populations could be born 

as a grouping of commonly-found population combinations from existing Heritages.  

 

While this level of complexity will not be studied in great detail in this thesis, this is an 

example of how the explicit study of cultural evolution could benefit from the 

representation of Heritage. More interactions and situations could be represented in ways 

that a traditional MPCA was not capable of. 

 

3.3.5 Full Implementation Example of Heritage-Dynamic Cultural Algorithm  

 

This section includes a complete pseudo-code example of HDCA, as seen in Figure 7. It 

assumes Heritage is defined as it is in Figure 4 or Figure 6. Keep in mind that details such 

as population belief-space definition, agents chosen during selection and ways of 

generating new agents in reproduction can vary greatly based on the problem and the 

programmer. 
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HDCA 

begin 

Initialize list_of_agents; 

Initialize population_belief_spaces; 

Initialize Heritage in list_of_agents; 

Until termination 

  Select best from list_of_agents; 

  Initialize new generation of agents  

new_agents; 

    For each n in new_agents 

     New_agents.UpdateHeritage(2 or  

more parents from best); 

     Use New_agents.GetInfluence()  

to reach new solution; 

    End loop 

    Replace worst from list_of_agents  

with new_agents; 

Repeat loop 

end 

Figure 7 Pseudo-code for HDCA 

 

3.4 Really Need Heritage?  

 

MPCA already has many variations that utilize different concepts (see Chapter 2.1.3). Is 

it necessary to define Heritage and HDCA as yet another form of MPCA?  

 

In the case of statistically choosing a population to follow at each time, is this not 

identical to representing migration in MPCA? For the most part, yes it is. MPCA already 

has examples that allow individuals to migrate from one population to another. Doing this 

often could be similar to pretending to be part of many populations and picking one to be 

at for an instance. But this would also require the individual to retain its own belief-space 

of knowledge, such that it can carry it over to other populations. With HDCA, it is not 

necessary for an individual to retain this type of information; the Heritage itself and its 

relation to multiple population belief-spaces makes up the theoretical belief-space of the 

individual. Otherwise, using Heritage is a more standardized form of migration and 
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knowledge transfer that otherwise did not exist with MPCA. In the concept of merging 

the strategies of multiple populations to determine an action of an individual, MPCA is 

not capable of this in any existing form. 

 

Once more, many people would translate Heritage as just a form of historic knowledge, 

but this is inaccurate. While Heritage as a tree does retain historic knowledge as to how 

the Heritage was formed, the strength in Heritage is the ability to access multiple 

population belief-spaces at once. As those belief-spaces update, changes can be seen 

accordingly in the individual, whereas historic knowledge would be static and cut off 

from updates not collected by the individual directly. Heritage is not necessarily a form 

of knowledge as defined in other CA, as it decides how to use knowledge defined in the 

population belief spaces; if there was no other knowledge defined, Heritage would be 

meaningless. In this way, Heritage and historic (or other) knowledge can and should co-

exist. 

 

3.5 An Example Case of Using Heritage 

 

The inspiration behind Heritage and HDCA was the desire to model a complex system of 

multiple groups, and to have varied individuals defined in a simple manner. This section 

describes the “True King” problem, a potential game environment that can make use of 

HDCA in a multi-agent system.  

 

The “True King” world is defined as the following: suppose there exist a set of n villages 

that make up a kingdom ruled by a benevolent king. The new player is a man who wants 
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to become the new king, and must convince the villages that he is a worthy alternative. 

Individual people who live in each village are allowed to move from one village to 

another. The village as a whole has a shared belief-space that represents their favor with 

the player. Each village may have different desires to be met in order for them to side 

with the player. If the people of the kingdom had to make a unanimous decision about 

whether or not to follow him, would he be crowned the true king? 

 

In this example, the villages make up the different sub-populations of a larger system, 

and the individuals living in each village are agents. In a traditional CA, this might be 

modeled as one giant system, with a global belief-space storing the unanimous decisions 

of the entire kingdom, but it would be difficult to implement the unique individuals and 

obtain information about different villages. In a traditional MPCA, the villages could be 

modeled separately, but individuals would be simplified to belonging to a single village 

at a time. This might be acceptable, but intuitively if a village was against someone and a 

person who used to belong to that village heard, that person would also have an instinct 

to be against that person, which in turn could have small effect on his current village. 

 

With HDCA, it becomes simpler to implement this system of agents. Individual agents do 

not need to retain their own knowledge. Their actions would be decided by the collective 

strategies of their Heritage populations, and their results would update their populations 

to make global decisions. Defining individuals to be able to move from place to place 

while retaining these ties becomes understandable. And having unique agents with 
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different points of view becomes easier to manage without writing every individual from 

scratch. 

 

In this situation, the fitness function value is the overall acceptance of the player in the 

kingdom, and the problem is really based around how one optimize their actions to 

modify the opinions of the villagers. This shows how HDCA can be suited for modeling 

rather than strict problem-solving. Alternatively, other examples could have the agents 

represent solutions with HDCA guiding their evolution with varied search. As an off-

topic example, the villagers in the kingdom may be trying to maximize their happiness, 

with each village having their own unique desires such that individuals with multiple 

villages in their Heritage have more varied goals. This then guides them as a simple 

human simulation. Such an example could be used to model an existing city to determine 

if certain traits or interests can be properly satisfied based on the resources in the area. 

 

So far all examples of HDCA suggest ties with populations or groups, as if belonging to a 

society. These populations could also be used for other categorical representations, like 

people with common interests or with literal families with common desires.  
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CHAPTER 4 

Heritage with Multi-Population Cultural Algorithm against Optimization Problems  

4.1 Introduction 

 

Numerical optimization problems are a common method to test algorithms against each 

other in speed and performance. They usually involve optimizing the output of a 

mathematical function by altering the values of multiple input parameters - for example, 

optimizing function F(x,y) by finding ideal values of x and y. Simple problems involve 

single objectives, but more complex problems may involve multiple objectives, where it 

is mandatory to fulfill all defined criteria (for example, optimize function F1(x,y) while 

keeping F2(x,y) > 0).  

 

It may be possible to check all possible solutions if the parameter values have finite 

precision, but more interesting search algorithms can find near-optimal solutions in a 

much shorter span of time without checking all possibilities. While such optimization 

functions may loosely represent real-world problems, they are used in research fields as a 

general basis to test multiple algorithms against each other in a non-biased environment. 

Under real-world circumstances, a near-optimal solution may be accepted if it can be 

achieved more quickly. 

 

Multi-Population Cultural Algorithms (MPCA) have not been tested thoroughly against 

these generalized mathematical problems (see Section 2.1.3). Standard Cultural 

Algorithms (CA) and Genetic Algorithms (GA) have more examples of published work 

with optimization problems. This chapter tests Heterogeneous-MPCA (Raeesi and Kobti 
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2013), CA (Reynolds and Chung 1997) and GA (Holland 1992) against Heritage-

Dynamic CA (HDCA), as closely related evolutionary algorithms. This uses modified 

test functions taken from the CEC 2014 special session on single objective numerical 

optimization (Liang et al. 2013), updated to be tested as both static and dynamic 

environments. The dynamic versions of these functions are tested by reversing the output 

values of the function at every 10 time steps. As an example, F(1,2) = 5 becomes F(1,2) = 

-5, then becomes F(1,2) = 5, and so on. These are tested to optimize the maximum value 

of the chosen function, which is irrelevant in the case of the dynamic test. Unlike the 

functions explicitly described in CEC 2014’s list, these functions are not rotated or 

shifted. 

 

Although the basis of CA is to utilize knowledge over time to improve performance, the 

definition of said knowledge can become a detriment to the algorithm if used incorrectly. 

Under this logic, it is possible GA can outperform the advanced algorithms that are 

dependent on that extra knowledge. It is expected the HDCA will not perform better than 

any of these algorithms in the static tests for these same reasons, knowing that the use of 

additional knowledge through ties with multiple populations may only further confuse the 

algorithm’s logic. However, it is also expected that HDCA may show signs of promise in 

the dynamic test functions, as it may be better suited to retaining knowledge than the 

other algorithms in this test.  Additionally, the representation of HDCA may show 

information about specific combinations of parameters having greater influence on the 

function than others, a feature difficult to see in other algorithms used here. 
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4.2 Definition of Algorithms 

4.2.1 Heritage-Dynamic Cultural Algorithm 

For these tests HDCA is defined with the simplistic model, as a set instead of a tree. 

Searching the origins of obtained Heritage is not used for this specific case.  

 

HDCA requires multiple populations, which here are defined by goals. If the function in 

the test has n parameters, then n populations will be initialized, each with a goal of 

optimizing a single parameter. A set of agents (100 agents are used here for all 

algorithms) are initialized and distributed equally among the populations. At the start 

each agent wishes to optimize only one parameter of the problem. Each agent is 

represented as a set of parameter values that together make a solution when entered into 

the function (randomly initialized), and each agent has its own Heritage set of influence 

values describing its ties to the populations from 0.0 to 1.0. The belief-spaces for each 

population are represented as a set of best parameter values (for its specific goal 

parameter) found so far, with an influence value representing its source and the fitness 

score it received to describe its success. This helps represent both how a population 

influences an individual and how the individual influences the population. 

 

After each time-step, the belief-spaces of all populations are updated with all parameter 

values found in the previous time-step with respect to the population’s goal. For example, 

if population 1 is optimizing the first parameter, it will collect all values of the first 

parameter from all agents with Heritage containing ties to population 1. Each value is 

collected along with the influence value the population has on said agent, plus a 
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calculated fitness value returned from the function (the agent’s entire solution is used for 

calculating the fitness, although only the one parameter is saved in the population’s 

belief-space).  

 

The top n percentage among the agents (the top 10% were used, an arbitrary value) are 

kept during the reproduction process into the new generation, both their solutions and 

their Heritage. They are also used exclusively for the selection process before 

reproduction. The remaining 90% of the new generation are a combination of two 

random parents from the top n of the previous generation. Unlike traditional MPCA or 

CA, the passed-down traits are the parents’ Heritage rather than their solutions. The 

values from the parents’ Heritage are halved and passed down, potentially summed if 

elements of their Heritage are shared, to represent influence decreasing over time. The 

most successful parent based on the fitness of their solution decides the current 

population of the child, equivalent to the population of the greatest influence. The 

influence values of the new Heritage set are normalized between 0.0 and 1.0 before being 

given to the new agent. 

 

The parameter solution values of the new agent are taken from the belief-spaces based on 

the Heritage values it has been given. A statistical roulette-wheel selection process takes 

values from the solutions in the population’s belief-space, where “value fitness” X 

“influence it had on the whole population” equates to the chances of it being chosen. 

Additional mutation allows variance in these parameter values to help find new solutions, 

where 50% of the parameter values will be shifted by up to 5 units (in a search space of 
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100). Any parameters not part of the new agent’s Heritage are randomized, representing 

such knowledge as unknown to the agent. 

 

For example, suppose agents A and B belong to populations 1 and 2 respectively at the 

start of the algorithm. Agent A only belongs to population 1, so its solution is 1.0 * 

fitness of A, where population 1 having the greatest influence on A means A has the 

greatest possible influence on population 1. A and B have a child called C, which has a 

Heritage of populations 1 and 2. Agent A performs better than B, so C belongs primarily 

to 1 and has greater influence from 1 than 2. C’s solution to population 1’s parameter is 

taken from 1’s belief-space (here, only from A), and C’s solution to population 2’s 

parameter is taken from 2’s belief-space (here, only from B). The influence values 

represent how the agents are represented in the belief-spaces used to pass down 

information to future generations. C will update 1 with a 0.75 influence and 2 with a 0.25 

influence, and C can have greater likelihood of passing down traits by being more 

dedicated to a population. 

 

4.2.2 Heterogeneous Multi-Population Cultural Algorithm  

H-MPCA from (Raeesi and Kobti 2013) is described as a class of MPCA where each 

population has unique goals from one another. In this way, it is not too different from 

how HDCA is defined. Currently, this is the most appropriate version of MPCA in the 

field to use against single-objective optimization problems, as others have been tested in 

different environments.  
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Each population is evenly assigned the parameters of the problem, instead of a single 

population for every parameter (this defines 40% the number of parameters as the 

number of populations, such that every population has 2-3 parameters to focus on as 

described in the original paper). Agents are initialized randomly. During most time-steps, 

they explore possible solutions through local search, reducing the search distance during 

each step as a simple form of simulated annealing. Every 5 time-steps, the search distance 

is re-initialized, and the best performing individuals (calculated by taking their parameter 

values with respect to their population with the best found values of other parameters 

stored in a globally-shared belief-space) update the belief-space, consisting of only the 

best individual parameters so far and their fitness value.  

 

Like the original paper, explicit knowledge used is simplistic and limited to storing the 

best found parameters so far. Unlike the original paper, offspring are generated in a 

simpler method by keeping the best found individuals and taking the combination of two 

parents from the best found. The original algorithm was tested against differential-

evolution algorithms, how H-MPCA would test against traditional CA (and whether or 

not such a comparison is appropriate) is uncertain. 

 

4.2.3 Cultural Algorithm 

Using a traditional CA or GA against the proposed extensions may be unnecessary, but 

since H-MPCA has not been formally tested against CA, and both HDCA and H-MPCA 

are ideally meant to be improvements of CA, it seems an appropriate opportunity. To use 

the purest form of CA without major alterations, this chapter uses one of the earliest 

forms of the algorithm used in this type of problem (Reynolds and Chung 1997). 



 

52 
 

 

The algorithm is defined by randomly initializing a population of individuals each 

representing a full solution, and at each time-step generating new offspring. In the 

example provided by the text, situational and normative knowledge are used, and so they 

are used here. Situational knowledge is represented as a set of best individual solutions 

found so far, and normative knowledge is an interval range where the best parameter 

values are likely to be found. Both are stored in the population’s belief-space. The best 

performing agents update the belief-space at the beginning of each time-step, and new 

offspring equal in number to the previous generation use the population’s belief-space to 

define their solution. The old and new generations are combined, the best half remaining 

while the worst half is removed.  

 

4.2.4 Genetic Algorithm 

GA is defined well in (Holland 1992), but is simple enough to implement from scratch. 

An initial population of agents are generated with random solutions. The top n (20%) are 

selected for reproduction, offspring being combinations of two parents with individual 

parameters from parent 1, parent 2, or an average of both. Mutation (of 50% likelihood) 

modifies individual parameters by up to 5 units in a 100-large search space. The top 

individuals remain in the new generation. A large mutation rate is used to help speed up 

search since best solutions are kept through older individuals, but the search radius is 

small enough that improvements due to mutations are gradual. Note that the values used 

in this example are arbitrary and not optimized since this is the least relevant algorithm in 

this test (but the results of GA turn out to be quite surprising).  
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Unlike H-MPCA and CA, where the parameter values are taken directly from the 

publications cited in Chapters 4.2.2 and 4.2.3, the parameters in both GA and HDCA are 

arbitrary. This is because of the huge range of possibilities for these values, making up an 

infinite number of variations. This is especially true for HDCA, H-MPCA and CA, which 

require the definition of strategies and goals that may be defined with new functions 

rather than numeric values. In a way, this makes the use of these evolutionary algorithms 

for optimization, and the study of optimizing the algorithms themselves, a very difficult 

and abstract concept. Chapter 4 is meant as an example comparison only, and better 

results for all the algorithms used is possible.  

 

4.3 Test Functions and Results  

 

The test functions are borrowed from the CEC’14 Test Suite of Single Objective Real-

Parameter Numerical Optimization problems (Liang et al. 2013). In this suite, there are 

four categories of functions, named “Unimodal,” “Simple Multimodal,” “Hybrid,” and 

“Composition.”  

 

The experiments here are not comprehensive, as a general overview of how HDCA 

performs is the purpose of these tests and there is not enough room in this chapter for 

further data.  A handful of functions from the suite are randomly chosen from each 

category. The search space for each input parameter is 0 to 100. Applied rotations and 

shifts to the functions as described from the suite are not used. In addition to testing static 

performance, a dynamic environment where the function’s value is inverted (F(x) = 1 

becomes F(x) = -1, and so on) every 10 time-steps is also tested to observe HDCA’s 
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features. The number of parameters to optimize is kept at 10, again to not overcrowd this 

chapter, but tests with 5 and 20 parameters are also done and briefly summarized to give 

an indication of change in performance in the algorithms. 

 

The functions used here are Discus Function (unimodal, non-separable, one sensitive 

direction) and High-Conditioned Elliptic Function (unimodal, non-separable, Quadratic 

ill-conditioned), Ackley (multi-modal, non-separable), Griewank (multi-modal, non-

separable) and Rastrigin (multi-modal, separable, many local optima), Hybrid Functions 

1 (Schwefel’s, Rastrigin’s and Elliptic Functions) and 5 (Scaffer’s, HGBat, 

Rosenbrock’s, Schwefel’s and Elliptic Functions), and Composition functions 1 

(Rosenbrock’s, Elliptic, Bent Cigar, Discus and Elliptic Functions, multi-modal, non-

separable, asymmetrical, different properties around different local optima), 3 

(Schwefel’s, Rastrigin’s and Elliptic Functions, multi-modal, non-separable, 

asymmetrical, different properties around different local optima) and 7 (Hybrid functions 

1, 2 and 3, multi-modal, non-separable, asymmetrical, different properties around 

different local optima and different properties for different variable subcomponents), for 

a total of 10 test functions.  

 

Figure 8 and Figure 9 shows two sample graphs of Griewank’s function with the four 

algorithms, one graph for the dynamic version and a second graph for the static. Figure 

10 shows an additional graph showing a normalized average of the algorithms’ 

performance against the ten functions to better compare them. Appendix A is a multi-

page chart that details numerical data from the tests. The algorithms were run ten times 
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and the average “group average” and the average “best performing individual” is 

recorded, as well as standard deviation. The average of every 5 time-steps is recorded to 

show signs of improvement during each stage. Every 10 time-steps the dynamic function 

changes from negative to positive stages and vice versa, the results changing accordingly. 

Only the first 50 time-steps are recorded to save space. Static data is also recorded, first 

the average of the first ten 10 time-steps and the final results after 100 time-steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Example results from dynamic function (Griewank) 

 

 

Figure 9 Example results from static function (Griewank) 
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Figure 10 Normalized comparison of EA  

 

4.4 Discussion of the Results 

 

4.4.1 General Performance Conclusions 

 

Both the average performance of the group as a whole and the best individuals of the 

group are recorded, as well as standard deviation. 

 

Briefly, the results of the static functions show GA outperforms the other functions in 

nearly all instances in evolving the group as a whole towards the maximum optimal 

value. Depending on the problem and the usage, the individual finding an optimal value 

is the goal rather than the whole group, but GA also shows itself as having individuals 

reach that optimal value more quickly in every case. CA almost matches GA in both 

group and best-individual evolution on average, but typically does not have an individual 

find the optimal solution even when GA, H-MPCA and HDCA do. HDCA has 
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individuals finding optimal values less often than GA but more often than the other 

algorithms. H-MPCA has individuals finding optimal values only for two functions 

(Discus in the first 10 time-steps, and also Ackley by the end of 100 time-steps), and does 

not show outstanding performance anywhere else. The largest standard deviation for the 

group and individual is usually H-MPCA and sometimes HDCA. Minor improvement 

continues to occur after the first 10 time steps for all algorithms. The difference in 

performance for the best-performing individual for each algorithm is minimal enough to 

allow any of them to be a fair substitute for each other. 

 

While CA shows the most promise with group convergence in this traditional form of 

optimization, it may seem unusual that GA’s individuals generally outperformed CA. 

Notably CA rarely has any individual reach the optimum value of the function, even 

when the other algorithms do after 100 time-steps. Both GA and CA are older algorithms, 

and that H-MPCA did not outperform them despite being a recent development seems 

contradictory. H-MPCA was not originally tested against GA and CA when conceived 

(Raeesi and Kobti 2013). This is an example where over-complicating the evolution 

process in EA does not necessarily lead to improvement. 

 

For HDCA, testing against static optimization functions shows that high values are 

generally found by individuals quickly (sometimes second only to GA during the first 10 

time-steps), but the group as a whole generally shows the weak performance, only 

outperforming H-MPCA on average (individual functions would have varied results as to 

which outperformed the other) and by a slight margin. HDCA also shows large standard 
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deviation based on the runs collected, showing its performance can vary. The range 

between the group average and best individual seems greater in HDCA than the other 

algorithms. This all matches with the intended design of maintaining diversity in its 

individuals to better extend the search space instead of converging everyone too quickly. 

Given that all algorithms were able to find good solutions quickly, there was little room 

for improvement by expanding the search space through the diversity Heritage provides. 

 

Using dynamic optimization functions show that CA is the better performing algorithm 

on average for all functions. Specifically, CA continuously shows better performance 

when the dynamic function is in its positive stage. The dynamic nature of the functions 

mean that doing well during the positive stage can mean doing poorly in the negative 

stage, and vice versa. A safer algorithm might be one that is slow to converge to a 

maxima, for never reaching a local maxima means never being at the worst possible point 

during a stage change. This safer approach accurately describes GA, which shows better 

results than H-MPCA. H-MPCA occasionally performs well during the positive stage as 

a group and sometimes for individuals, but always does poorly in the negative, and due to 

converging too quickly after the first few environment changes and not overcoming the 

local maxima it found.  

 

HDCA in the dynamic functions shows itself to perform reasonably and is second to CA 

overall, but shows promise particularly during the negative stages. This is sometimes true 

observing the group’s behavior and often significantly true observing the best performing 

individual. The only explanation for this is that the negative stage occurs first in the 
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cycle, and HDCA may do better in keeping memory of those better solutions even in later 

instances when those solutions are no longer important. When looking at a graph (see 

Figure 8) it is clear that HDCA does improve more quickly in the negative stages than the 

other algorithms. As to exactly why HDCA does not perform as competitively in the 

positive stages, this may also be because the experience from the negative stages is 

dampening the ability to find those new solutions. The change in the second half of each 

stage is recorded in Appendix A to see which algorithms show the most improvement. 

HDCA, CA and GA each share maximum improvement depending on the stage and 

comparative solutions found. Generally, CA shows better group improvement, HDCA 

and GA show better individual improvement, but finding good solutions early usually 

means limited improvement is possible and removes best-performing algorithms from 

this area of thought. If an algorithm finds the best solution quickly, it cannot improve in 

the time-steps following immediately afterward, and this type of growth can seem 

irrelevant for certain instances, for example why CA does not show the best improvement 

consistently in every case. 

 

HDCA’s interesting property is the sign of improvement in certain functions, gaining 

dominance in the negative stages later on during the simulation. This is more noticeable 

in Rastrigin’s, Griewank’s and especially Ackley’s functions (all multi-modal functions), 

where HDCA did not surpass the others at first but did in the second and successive 

occurrences of the negative stages. Further running showed HDCA outperforming CA on 

average for both group and individuals if the first few stages are ignored. This shows 

more apparent learning that the other algorithms were less susceptible to, and H-MPCA 
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in particular was weak with. While not reaching these results as quickly as the others, 

HDCA becomes only second to CA over most of the functions if those initial learning-

generations are ignored. 

 

The algorithms’ completion time were measured in seconds to give an estimate of their 

practical performance. The four algorithms were each run against 10 functions, 10 times 

each, as they were to obtain the data for this chapter. The hardware used was a Microsoft 

Sufrace Pro 3 with an Intel i3-4020Y 1.50GHz CPU, 4.00 GB of RAM and Windows 8.1 

64-bit OS. It is worth mentioning that most of the functions were solved quickly, but the 

final function (“Composition07”) took the majority of time spent for the entire test. The 

times for completion were as follows: GA was 86 seconds, CA was 135 seconds, H-

MPCA was 58 seconds, and HDCA was 180 seconds. That H-MPCA is so efficient, even 

more so than GA, matches with the authors’ original intentions for the algorithm (Raeesi 

and Kobti 2013) despite the solutions found being less favorable. Since HDCA was not 

intended to be optimal the results are not surprising, but anyone wishing to use HDCA 

will want to keep this information in mind. 

 

Overall, HDCA performs as expected, not performing better than all related EA but 

showing ability to retain information to allow better performing individuals rather than a 

better performing population as a whole. In situations where the goals or environment 

change, having a diverse population in this manner becomes desirable. CA shows 

surprising resilience in both static and dynamic functions by being able to converge its 

population quickly, but not necessarily always having individuals able to outperform the 
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individuals in HDCA, and is least likely to have individuals find the global maximum in 

static functions. GA performs comparatively well in static environments but performs 

poorly in dynamic environments, although the static data suggests the algorithm 

converges to reasonable solutions within the time frame that the dynamic function used to 

set change. H-MPCA is the most recent state-of-the-art adaption of MPCA and CA, and 

yet HDCA on average outperformed it in static functions and significantly bested it in 

dynamic function, for converging too quickly made H-MPCA a poor choice for that type 

of environment.  

 

4.4.2 Additional Insight and Test Variances with HDCA  

 

One aspect of the design of HDCA in this example was that the influence a population 

had on an agent’s Heritage also defined the influence that agent had on the corresponding 

population. This means that more successful solutions found by an individual may not 

automatically be used in successive generations if that individual had a large Heritage 

made up of many populations, that is to say if the agent’s “dedication” towards that 

population was low. Other researchers might suggest that this is a flaw that may hold 

back the success of the algorithm against optimization problems. 

 

Experiments did test the algorithm again with a modified HDCA that ignored the 

influence the agent had on a population: while the population would still store multiple 

solutions, the fitness score of the parameter would be the only value used in the 

randomized roulette-wheel selection process when generating a new individual’s 

solution. In theory, this would ensure that better-performing parameters would be chosen 
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more often, which was not a guarantee in the previous design. While the results of this 

test are not outlined in detail to save space, the outcome was surprising. In dynamic 

functions, the group’s overall average was consistently worse than the results from the 

original design in Chapter 4.3, although the “Best in Group Average” was split evenly, 

sometimes improving and sometimes worsening on average, with no clear relation 

between functions. It is possible the results from the best performing individual can be 

accredited to statistical variance, as the changes were small enough to fit within the 

standard deviation range from previous results, but the group average decreasing in every 

instance is significant. Similar results occurred against static functions, only the Hybrid01 

and Composition03 functions showed increase in the group averages; the rest showed 

decrease in both the first 10 time-steps and at the 100th time-step. In both cases the results 

did not change the algorithm’s ranking against H-MPCA, CA or GA, but the general 

decrease is against the hypothesis. This could be a sign that agents searching for multiple 

goals at once can lead to misguided results against other agents dedicated to optimizing 

fewer goals, but further analysis is required to make certain conclusions. 

 

The decision to have dynamic test functions change every 10 time-steps was based on the 

original design specifications of H-MPCA, which normally requires part of its 

functionality to occur every 5 time-steps. After seeing that H-MPCA performed poorly 

under the dynamic functions, the tests were repeated with a quicker speed of change, to 

change the function every 5 time-steps instead of 10. The hypothesis was that the CA’s 

overall performance would not be as strong, since the CA would not be at high levels for 

as long, giving chances for other algorithms that may or may not converge faster to shine. 
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Specifically, HDCA might have performed better in comparison to the other algorithms. 

Ultimately this did not turn out to be true. While the difference in average overall 

performance between HDCA and CA reduced slightly, CA’s overall group average and 

best-in-group average was still the best of the four algorithms. 

 

While not recorded in depth, the experiments were repeated for parameter sizes of 5 and 

20. The optima that exist may change with different parameter numbers, so the only 

relevant information was the comparable data of each algorithm with each other. There 

did not appear to be any change for static or dynamic functions regardless of parameter 

size, and CA continued to be the dominant method. 

 

One of the features of HDCA that the other EA in this chapter are not capable of is the 

ability to combine population goals into the Heritage of new individuals, and observing 

the Heritage influence values of that individual as a simple form of feature selection. This 

could help categorize which parameters, if any, have the greatest influence on the 

optimization functions being tested. To test this, code printed out the best performing 

individual of the group at the end of each run of 100 time-steps. Unfortunately, the results 

were disappointing, showing the top individual always had a Heritage made up of a 

single population. This could mean that the best individuals had parents of the same 

background, and is less likely to mean that a random individual from the very first time-

step reached the best solution since varied improvement does occur in each step. This 

could also suggest the success of HDCA came from large dependence on randomized 

parameters for new generations, explaining why the group as a whole rarely mimics the 



 

64 
 

performance of the best individuals, but this would be a poor conclusion seeing how well 

its best individuals performed against the other EA. After several runs, the single 

parameters of the best individual remain fairly consistent, a handful of parameters from 

each function appearing more often than others. If one had printed out more information 

than simply the one top individual, or increased the top individuals kept to allow greater 

variety in Heritage populations, or allowed for mutation to occur in Heritage and not just 

the solutions, then the results might provide more insight, but this requires further testing 

in future work. 

 

As described in Chapter 4.2.4, it is possible that the parameters can be tested with 

variations to improve all of these algorithms, including HDCA. While not expected, this 

also means that HDCA may be able to outperform CA under the right conditions. 

 

The code for HDCA, written in Java and as used for the experiments in this Chapter, can 

be seen in Appendix B. 
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CHAPTER 5 

Using Heritage in Simulation with the Peloponnesian War 

5.1 Heritage in a Simulation Context 

 

One of the major influences of the design of Heritage is the desire to model complex and 

varied individuals in a simplified manner.  

 

Connected individuals in varied environments with different goals, desires and strategies 

can be intimidating, and when such a model is meant to represent realistic parameters the 

implementation becomes all the more daunting. Heritage focuses on the definitions of the 

populations, with the individuals limited to being represented as combinations of those 

populations, which would make it simpler to control and change the behaviors of all 

individuals involved. 

 

As described in Chapter 3, the populations in Heritage-Dynamic Cultural Algorithm 

(HDCA) would represent differing objectives, strategies or knowledge acquired. This 

well-suits requirements for agent-based models, where agents must make decisions based 

on the environment around them. It is also possible to create a system with no explicit 

environment, where the simulation observes the links between the individuals and how 

they react with each other. The merging of different strategies from an individual’s 

Heritage, or else the randomized selection of a strategy, also has room for further testing 

and research from the designer.  
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It can be difficult to find appropriate test-cases to verify the use of a system design in 

simulation compared to solving a problem. This is partly because simulated models 

representing real-world scenarios are not always meant to use optimality in their actions. 

If this is the case, then evolving individuals using Evolutionary Algorithms (EA) where a 

fitness function plays a crucial part in the design appears less suitable. HDCA was 

initially meant for use with social systems, where an individual that could be categorized 

as a combination of features would react to other individuals based on the population 

belief-spaces from those features. For this type of simulation, much data is required to 

represent friendships over a period of time, for example, data collected from modern 

social networking websites and services. Alternatively, models to simulate political 

preferences and alliances within individual cities, across provinces or between countries 

over time could also be made with Heritage. Unfortunately, data sets of this nature are 

not easily accessible for use at the time of this writing, but as “big data” becomes 

available to researchers, HDCA may become more appropriate to representing these 

types of systems. 

 

This chapter is meant to show the use of HDCA in a simulation context by in-depth 

example. For this case study, an example is generated using available information on the 

Peloponnesian War, a conflict in Greece involving many cities circa 430 BC.  

 

5.2 The Peloponnesian War 

 

The Peloponnesian War was a conflict in Greece from 431-404 BC, fought between two 

groups led by Athens and Sparta.  During this time, Sparta was growing its empire and 



 

67 
 

influence while Athens’ powerful navy, economy and size made it feared by some 

provinces for being too dominant. The war was a series of battles and internal rebellions 

that led to the downfall of Athens. Information of the events of this war is limited to 

accounts of the time. The specific perspective of Thucydides is covered in great detail in 

the book A History of Ancient Greece in its Mediterranean Context from pages 254 – 272 

(Demand 2013). This is the source of the information used to build the model in this 

chapter, the events of which are summarized in the following paragraphs. 

 

As early as 450 BC, Athens was known for its naval fleet, giving it greater strength and 

providing a means of transportation for a strong economy. In the 430’s, Athens knows it 

needs to keep control of the Aegean coast for timber supply, as well as the silver and gold 

mined in the area. Athens establishes Amphipolis along the route to these cities, but had 

to fight the local population to take it. Athens aligns with Corcyra and both countries 

battle against Corinth, a city originally part of Corcyra. Athens also asks for Potidaea’s 

allegiance to be symbolized by bringing down its walls of protection against Macedonia 

(which was aligned with Athens) and rejecting Corinth. Potidaea refuses, and with 

support from Sparta, declares itself against Athens. Megara is sentenced by decree to be 

forbidden access to Athens for trade, which would later cause economic difficulties for 

Megara, a decree that Sparta said would be cause for war later on. Thebes attacks Plataea, 

where Plataea was an ally of Athens but also an easy target. Plataea survives this conflict 

and kills 180 Theban hostages, which was seen as unusually cruel. Afterwards, Plataea 

would receive greater support from Athens while Thebes receives support from Sparta. 
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At this point, war seems certain, and the account says that young men were excited for 

battle from the stories of glory in the past, and that Greece overall seems to favor Sparta.  

 

In 431 Athens walls itself from other cities on land to protect itself from Sparta’s forces. 

Peloponnesus attempts to invade Athens, but Athens would raid Peloponnesus, Megara 

and Aegina, repopulating them with citizens from Athens. Athens gains an alliance with 

Thrace and Macedonia. Sparta invades Attica, and Potidacia formally surrenders to 

Athens. In 430, 429 and 427, Athens gets three separate occurrences of a plague, exactly 

which disease it was is still unknown today but estimates suggest that approximately 25% 

to 33% of Athens’ citizens were lost. Peloponnesus does not attack Athens out of fear of 

the plague, but focuses their forces against Plataea instead. Lesbos, seeing a chance in 

Athens’ weakening, revolts against Athens by siding with Mytilene, and both rely on 

Sparta’s support to defend against Athens. However, Sparta does not arrive in time and 

Athens defeats Lesbos and Mytilene, ultimately deciding not to kill off their entire 

population in mercy. Sparta overtakes Plataea and executes most of their citizens. Civil 

strife breaks out in Corcyra, and Athens’ plague has led to untimely replacement of 

important leaders and unusually large inheritances of wealth being collected by family 

members. 

 

In 425 Athens fortifies their ally Pylos for it being close in vicinity to Sparta. Sparta in 

turn sets up a base at Sphakteria but loses control of it to Athens; local Spartan citizens 

are kept as hostages by the Athenians. Sparta offers to makes peace with Athens, but 

Athens declines; alternatively, Sparta tries to send food to their hostages under Athens for 
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their survival, and Athens reacts by taking the hostages back to Athens for security. 

Athens tries to expand their empire into Boeotia, takes Delium, but due to poor 

organization loses heavily to Thebes. Athens also loses to Sparta the important 

Amphipolis, a significant source of timber, silver and gold. In 423 Athens and Sparta 

agree on a peace treaty, but an attempted revolt of Scione from Athens ruins this trust, 

and Athens destroys Scione for their actions. Athens tries to retake Amphipolis from 

Sparta but fails, with important figures being lost in the battle. Athens and Sparta call a 

truce again in 421, and agree to refrain from attack each other for seven more years. 

 

During this truce, Athens focuses its forces on Scione, Melos and Mytilene, and then 

prepares to attack Sicily for resources. Attempts by Athens to gain nearby allies were 

fruitless. Around 414 Athens attempts an attack on Syracuse, but fails, and then fails a 

second time. Due to superstition, their forces waited too long to retreat from Sicily and 

most were killed. In 410 Athens defeats Cyzius in battle at sea. Sparta again asks for 

peace, but negotiations fail. Sparta concentrates on strengthening Ionia instead of 

Hellespont, which would later be seen as a strategic mistake to be acted upon in the 

future. During this time, several cities under Athens’ control begin to revolt; Athens is 

able to subdue some of them but the revolts continue to grow. 

 

The events after 410 are not included in the simulation of this chapter, but in summary, 

Athens would win multiple victories after 410 to show its dominance, and recover cities 

they had lost. The general that led Athens to these victories is not re-elected as general 

after 406 and is exiled from the city. During a naval battle between Sparta and Athens, 
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Athens is victorious but due to weather conditions is unable to complete the fight. In 

outrage some of Athens’ top naval commanders were executed, which decreased moral in 

the city. Sparta took Hellespont after not having done so before in 410, which was 

Athens’ main source of grain. Athens attempted to fight back but is defeated. Facing 

starvation and disease, Athens surrendered in 404 BC. Instead of being decimated, Sparta 

took Athens as a city under them. 

 

5.3 Translating the War into a Computer Model 

 

5.3.1 Background Insight and Preparation 

 

Tracing the events outlined in Section 5.2 requires an in-depth understanding of 

geography, politics, and events leading up to the war, and can be a great area of further 

research by devoted experts in the field of Ancient Greek history. For those not well-

versed in the subject matter, the references to different cities, provinces and countries can 

be overwhelming. It can be difficult to find resources that confirm the alliances these 

cities had before the war and the countries they belonged to during this period, which 

may differ from modern maps of the region.  

 

It was decided that a computer model of the Peloponnesian War designed with HDCA 

would be a general model of the political climate, to determine alliances of cities as a 

whole towards either Athens, Sparta or neutral. Individuals would be modeled to make an 

estimate of the population of each city, representing the varied Heritage at work that 

might cause a city to have unexplained influence from another city. Another numeric 



 

71 
 

factor called ‘mutation’ would be recorded, to represent civil unrest at times of large 

death counts. As a factor, this might help explain why certain decisions were carried out 

in situations that conflict with descriptions of other data. While individuals are modeled, 

the environment and resource management is not, and updates are made once every year 

as a broad representation. Therefore, this is not accurately defined as an agent-based 

model because there is no explicit environment for the individuals to traverse and interact 

with. The time period is kept between 450 BC and 410 BC: the resource (Demand 2013) 

cited years as early as this and including these in this simulation helps initialize factors in 

the world before conflict begins over a decade later. The last few years of the war were 

ignored for simplicity and because they have greater reliance on food resources which is 

not included in this model. 

 

To begin, a class called “Population” was made to represent both cities (and groups of 

countries) and the individuals (people) living in those countries. A list of Population 

representing cities and a list of Population representing people are initialized. With 

Heritage in mind, Population can store a local Heritage set (see Chapter 3.3.2) that 

represents uni-directional hierarchical relationships. In the case of cities, Heritage 

represents the ownership of a city, for example city A belonging to country B would have 

B in the set, but B would not have A in the set. In situations where a city overtakes 

another city as part of them, this is also represented in the Heritage set. In the case of 

people, Heritage represents the cultural Heritage of where that person (and their 

ancestors) lived. For example if person X moves from city A to city B, both A and B 

would be in X’s Heritage, with B holding greater weight.  
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There are certain keywords of events in the resource that repeat enough to be used in the 

design of the model. These include occurrences such as attacking one another, 

strengthening bond through trade or alliances, taking over a city, killing individuals from 

a city, and the result of civil strife by various circumstances. These are further simplified 

down to functions to update Heritage, update Friendship, update Side and update 

Mutation, where each makes up the knowledge stored in each entity of Population.  

 

Aside from Heritage representing links to cities, Friendship is stored in a similar way as a 

set of weighted numeric values. Friendship represents the relationship a city has with 

another city based on past events and not direct inheritance. An example would be if one 

city attacks another city, then the Friendship level between them would decrease. Side is 

a single integer that defines which side a city is on, either -1 for Athens, 1 for Sparta or 0 

for neutral. Mutation is an extra variable that represents civil strife from accounts and 

from a decrease in population, and while it does not have any effect on the other 

variables, it can stand as an explanation to certain actions occurring in later years that 

contradict the rest of the data. Only Heritage relates to the people, but all four are kept in 

the knowledge of the city’s belief-space. As defined by HDCA, individual people are 

represented as a combination of the cities, which in turn helps update the cities to 

represent complex interactions with each other. 

 

When certain recorded events occur during the war, they can be broken down to updating 

these four main variables. “Attacking” involves reducing the Friendship level between 
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two cities, and with an assumption that the armies fought and died in battle is equivalent 

to 50% of the smallest population size of each city, these individuals are killed. 

“Takeover” is a separate event from Attacking as it could occur willingly or not, but kills 

off 50% of the city’s population, replaces that same amount with individuals from the 

new city overtaking the old city, and the Heritage of the individuals and the city itself are 

updated accordingly. An event function called “Update Friendship” simply updates the 

friendship level directly between two cities, to represent a variety of events which 

symbolize changes in trust. Another event function called “Kill” kills individuals that 

belong to a specific city by a factor passed as a parameter. These functions are called 

accordingly each year based on written accounts of events to help the simulation occur. 

Killing individuals from a specific city was based explicitly on their ID indicating which 

city they belonged to, but sending individuals out to attack was based on any who had 

high friendship with each other to symbolize the sharing and supporting of armies. 

 

At the end of each year regardless of other events, the code updates the individual people, 

by increasing the population by 10% and decreasing the population by 4% each year 

(these factors are based on informal sources online that suggest that the average age of 

death was 25, thus statistically 1 25⁄  of the population would die each year, and that the 

average household had 5 children in the lifetime of the parents, which suggests the 

number of deaths * 5 per two parents would make up the annual birth rate). When 

generating new individuals, two parents are randomly selected from the existing 

individuals in the previous generation, and their Heritage is combined to make up the 

Heritage of a new individual. To allow for mutation and migration, the new individual is 
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randomly chosen to belong to a population and bring its old Heritage with it, with a 

greater preference to belong to a city that does not differ greatly from the old cities and 

their current side on the war. After new individuals are generated, the Friendship, Side, 

and Mutation values stored in each city’s belief-space are updated based on the Heritage 

of the individuals belonging to those cities. Here the individuals may have a stronger 

influence to the city they belong to, but the varied Heritage to other cities allows the 

Friendship levels from other cities to affect each other. Additionally the Friendship 

values of cities allows cities to affect the values with each other in equal measure as with 

the individuals. The Side to lean towards in the war is based on the Friendship levels, and 

the Mutation value is based on a rate of change in population size for each city. 

 

While not included, one additional factor that could have been considered was the spatial 

location of cities in relation to each other for affecting migration of new children and 

friendship values.  

 

5.3.2 HDCA Implementation 

 

 A set of cities with a name and index are initialized, 37 in total, 16 of which are 

overarching countries or provinces that the smaller cities belonged to. Smaller cities are 

initialized to have a Heritage set that includes weight to the country they belong to. A 

second set of individuals representing people are initialized, with one individual per 

every 1000 people, for simplicity. Using existing evidence (Demand 2013), Athens had a 

large population of roughly 315,000 and Sparta had roughly 16,000. In this model this is 

reduced to 315 and 16 individuals respectively. These two cities make up the leading and 
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unflinching symbols of both sides of the war, and they will not change sides. With lack of 

evidence, other cities are estimated to have approximately 10,000, represented as 10 

individuals in this model. These individuals are initialized to have a Heritage containing 

their city which will grow in future generations, plus a variable set to specify the current 

city they belong to.  

 

A year index is initialized to 450, and a loop repeats until the year is decremented to 410. 

During each year, events are written based on whatever is provided in the resource 

(Demand 2013). For example, in the year 434 BC, Corcyra aligns with Athens and causes 

a conflict between Corinth and Athens, resulting in both Corcyra and Athens attacking 

Corinth. This is summarized in code by 1) updating the side Corcyra belongs to, 2) 

reducing the Friendship value between Athens and Corinth, and 3) having both Corcyra 

and Athens use their forces to attack Corinth. Similar event summaries occur for the 

years between 436 and 410. 

 

After all events are carried out for a year, the entire population of individuals updates by 

reproducing new individuals and killing off others to simulate birth and death, and to 

propagate the generation of varied Heritage sets. The Friendship values of cities, 

including which side they ultimately side with during different years of the war, are 

updated with the Heritage makeup of their individuals and of cities they have close 

friendships with.  

 

This implementation can be seen summarized in the pseudo-code of Figure 11. 
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HDCA 

begin 

Initialize list_of_agents; 

Initialize population_belief_spaces; 

Initialize Heritage in list_of_agents and  

population_belief_spaces; 

Until termination (from 450 to 410) 

  If event occurred, play out event 

    Update individuals based on  

birth/death rate; 

  Update friendship values based on  

events and individuals. 

    Update mutation based on size change. 

Repeat loop 

end 

Figure 11 Pseudo-code for HDCA in Peloponnesian War 

 

5.4 Simulation Results and Discussion 

 

To trace the events of the war in this simulation, the Friendship sets, the Side, and the 

Mutation values of all 37 cities are exported into a 2D array for each year, for a total of 

40 matrices. For statistical purposes, the simulation is run 10 times and the average is 

used in the observations discussed in this section. This would take up many pages and is 

not included here (the data comes out to over 1,500 lines, which would require a 

minimum of 30 pages in this thesis). However, Figure 12 and 13 show the simulation’s 

estimates of the population size of Athens and Sparta and their mutation rates over time, 

and Figure 14 shows an estimate of how the other cities felt of these two sides during the 

course of the war. 
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Figure 12 Estimated population growth in Athens and Sparta 

 

 

Figure 13 Estimated civil unrest in Athens and Sparta 

 

 

Figure 14 Estimated overall alliances during the war 
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To verify whether or not HDCA was successful in representing this model, certain 

statements from the accounts (Demand 2013) are compared to the data to see if they 

conflict or complement each other. Additionally, the experiments looked for 

inconsistencies that did not appear correct to general logic.  

 

Figure 12 shows an estimate that the population size of Sparta was mostly static during 

the time frame of the simulation, only decreasing around 431 BC as conflicts began. In 

comparison, the size of Athens’ population was much larger and changes to its size are 

easier to see. It decreases slightly and at a constant rate at first, but after 444 BC shows a 

constant rate of growth; there is no reason for this other than the city’s size, but this does 

not explain the decrease that happened previously. A sharp decrease in population size 

occurs in 431 BC, at the time when conflicts were in full effect. By 427 BC the size of 

Athens stabilizes a bit, which can be explained by the occurrence of fewer fights (in 

comparison to the years prior) and the use of Athens’ other cities to represent it during 

the war, an assumption made that is better suited with the use of Heritage. However, the 

plague that hits Athens three times (in 430, 429 and 427 BC) do not appear to be 

represented properly in these results, suggesting an error in implementation.  

 

Figure 13 shows civil unrest in the two main cities, here a term describing the change in 

population size, where greater levels of unrest represent a decrease in population size 

from the previous year, and low levels of unrest represent an increase in population size. 

That Athens shows a general decrease (to levels of 0.0) of unrest when Sparta shows a 
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fairly consistent increase suggests that the size of Athens made it more likely that new 

individuals would live there, and this unrest in Sparta is likely similar to what occurred in 

other cities. Athens and Sparta both rise to high levels of unrest when conflicts occur, and 

here effects of the plague on Athens are visible. Consider Sparta’s attempts to call a truce 

with Athens in 425, 423 and 421: Athens’ high unrest in 425 may relate to its decline of a 

truce in 425, and its decrease in unrest in 423 and 421 may explain why Athens was more 

open to a truce. However, this does not explain Sparta’s motivation, where it shows 

unrest at maximum levels during most of this time (this may be attributed to the statistical 

occurrence of more people coming to live in Athens over time). 

 

Figure 14 shows a summary of the other cities and how they sided with Athens or Sparta 

during this time period. This is represented as an average value where all cities have 

equal representation. Favor appears to be mostly on the side of Athens until 423 BC, 

where the favor between Athens and Sparta is mostly neutral. For the entire time period, 

favor for Athens was not especially high, suggesting that both sides had significant 

influence, a sign that the simulation behaves appropriately.  The decrease around 423 

could have resulted from Athens starting battles and losing, which in the implemented 

code means the target city would have reduced trust for Athens. The lower levels of 

influence of Athens from 423 BC onwards also corresponds to when they agree to peace 

treaty offers from Sparta, suggesting again that the simulation behaves appropriately and 

that this may have been a factor during this event. 
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In comparison, could it be possible to make a model like this with Multi-Population 

Cultural Algorithm (MPCA)? This would mean individuals could in theory still store past 

history of where they lived when they migrate, but this would not connect to current 

feelings in each city. The evolution of Friendship values between cities seems dependent 

largely on those individuals and their migration, and storing past thoughts of a city’s 

beliefs would add further complexity than connecting to the city’s most recent belief. It 

seems impossible to implement such a model without using weighted connections 

between the cities to represent Friendship and without using the individuals to connect 

them, which ultimately leads to what Heritage is all about. 

 

In conclusion, the implementation of HDCA for the Peloponnesian War had some issues 

with larger cities gaining population size and smaller cities decreasing, an occurrence that 

may be realistic but may also be remedied in code should one desire in future 

implementations. The significant size of Athens compared to the other cities made it 

more difficult to compare with Sparta for those reasons. Otherwise, initial results of this 

simulation suggest that factors like change in population size and influence on other cities 

can effect political choices such as conflict or calling for peace. This is a big assumption, 

and not much else can be said with these results without more data from the real time 

period, but HDCA appears to be acceptable here as a simulation algorithm. 
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CHAPTER 6 

Conclusions and Retrospective 

6.1 Concluding Remarks of Previous Chapters 

 

Chapter 3 discussed in detail the implantation and reasoning of Heritage for use with 

existing Multi-Population Evolutionary Algorithms such as Multi-Population Cultural 

Algorithms (MPCA). Heritage is a weight-based component passed down through 

successive generations of individuals to allow variety in them, as opposed to uniform 

status of belonging to a single population at any time. This is described by example in the 

use of Heritage-Dynamic Cultural Algorithm (HDCA). 

 

Chapter 4 uses HDCA against MPCA, Cultural Algorithm (CA) and Genetic Algorithm 

(GA) with Single-Objective Real Optimization Problems, both in traditional static 

versions and un-traditional dynamic versions. Against our hypothesis, GA outperformed 

all of these “improved” algorithms in the static problems, but overall CA performed well 

in both static and dynamic functions to be the winner of the four. HDCA showed an 

interesting property of learning in dynamic functions that the other algorithms did not. 

Due to this and its ability to have varied individuals instead of individuals with strict 

singular goals, HDCA generally outperformed MPCA (technically H-MPCA, a most 

recent form of MPCA that was tested against similar problems) in static functions and at 

a greater level in dynamic functions, on both a group-evolution and best-individual level. 

When comparing the best-individuals, HDCA even compared favorably with CA, making 

HDCA an appropriate algorithm for these types of problems and worth the effort to 

optimize further. 
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Chapter 5 used HDCA in a detailed test-case of the Peloponnesian War to show its 

capabilities for simulation modeling. Heritage was a useful way to represent the 

relationships of the cities with each other and the people with the cities, and a way to use 

the individuals to represent the interactions and relationships between the cities. 

Implementing any model to simulate real events can be challenging, and both due to 

implementation problems and lack of further information on the events, the resulting 

simulation both provided minimal insight. Regardless, this in-depth example shows how 

HDCA can be used to build a simulation model and that Heritage is appropriate for 

specific types of models to accomplish this, a type of problem Evolutionary Algorithms 

typically do not focus on. 

 

6.2 Future Improvements and Directions 

 

Initially, it was intended for HDCA to be tested in an agent-based model. The difference 

between an agent-model and a simulation as seen in Chapter 5 is that an agent typically 

explores and reacts to an environment in a spatial perspective, not just other individuals. 

For HDCA to be appropriate for an agent-model, the model must require individuals that 

can have a combination of pre-defined properties that affect the decisions and actions of 

the individual, and the model must have time-based data to allow for successive 

generations and updating Heritage. After months of research, it still proved too difficult 

to find an appropriate test-case example to verify HDCA and obtain the respective data. 

However, HDCA has great potential as an appropriate algorithm to maintain complex 

agent models in a simplified manner. Future opportunities may use HDCA in situations 
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where verification against real-world data is not significant to build a seemingly complex 

and realistic world, for example crowds of dynamic and unique people in the background 

of computer games without the need to define each person meticulously.  

 

In Chapter 3, it was explained that HDCA can represent Heritage as either a uni-

directional “Family Tree” or as a simplified Heritage set of fixed size. The examples of 

HDCA for both Chapters 4 and 5 use a set instead of a tree, so this thesis does not include 

an explicit example implementation for a tree. This is partly because the benefit of using 

a tree over a set (the ability to trace the history of the Heritage’s generation) was not 

important for the problems addressed, for example, understanding why a concluding 

answer was reached rather than the answer itself. Researchers may wish to search for 

problems where that level of detail is helpful; otherwise, this theoretical implementation 

method may continue to go unutilized. 

 

Some of the preceding might be taken to suggest that the uses for HDCA are few and 

uncertain. It could be predicted that “big data,” where data is collected everywhere at 

many instances of time from many people and places, will become a significant source of 

new problems where HDCA can be used. Future issues on privacy and maintenance need 

to be overcome to ensure this type of data is widely available to researchers interested in 

experimenting with new solutions and problems; otherwise, research and applications 

with this type of data will progress very slowly. 
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Other improvements can be made towards using HDCA for feature selection problems or 

classification problems. While this text has shown that HDCA has interesting properties 

of learning, there are other types of problems for knowledge and understanding that 

should be researched further. Specifically the evolution of Heritage and the ability to 

define new populations as combinations of existing Heritage sets. If this aspect is 

considered, HDCA can be an appropriate algorithm for the study of cultural evolution 

and the origin of cultural aspects in the same species. This relates to the study of using 

HDCA for simulation rather than optimization problems with fitness functions, a 

direction that Evolutionary Algorithmic research will continue to take in the future.  
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APPENDICES  

Appendix A 

 

The following is additional data from the results of experiments performed in Chapter 4. 

 HDCA H-MPCA CA GA 

Function – 

Dynamic 

(Time Range) 

Group 

Average 

Avg. 

Best in 

Group  Avg. 

(1) Group 

Average 

Avg. 

Best in 

Group  Avg. 

(2) Group 

Average 

Avg. 

Best in 

Group  Avg. 

Group 

Average 

Avg. 

Best in 

Group Avg. 

 

Discus (0-100) 9.81E+08 

± 1.63E+09 

3.49E+09 

± 1.16E+09 

-5.68E+07 

± 3.62E+07 

2.21E+08 

± 1.87E+04 

4.01E+09 

± 1.15E+08 

4.92E+09 

± 7.63E+07 

7.39E+07 

± 6.62E+07 

2.57E+08 

± 7.50E+07 

Discus (0-4) -1.60E+09 -1.53E+05 -2.07E+09 -1.16E+05 -1.33E+07 -9.48E+05 -3.72E+07 -7.29E+04 

Discus (5-9) -8.24E+07 -1.09E+04 -7.37E+05 -8.01E+03 -6.79E+05 -5.99E+05 -1.63E+06 -7.93E+03 

Discus (10-14) 3.42E+09 6.73E+09 5.00E+07 1.18E+08 7.51E+09 9.77E+09 1.01E+08 2.40E+08 

Discus (15-19) 5.04E+09 8.58E+09 2.72E+08 4.83E+08 9.93E+09 9.94E+09 6.20E+08 9.78E+08 

Discus (20-24) -1.75E+09 -7.77E+05 -3.70E+08 -3.32E+07 -1.69E+09 -5.36E+06 -5.00E+08 -2.65E+08 

Discus (25-29) -2.76E+08 -1.57E+04 -3.69E+08 -2.88E+04 -5.75E+05 -3.14E+05 -6.88E+07 -1.25E+07 

Discus (30-34) 2.46E+09 6.14E+09 3.92E+08 4.94E+08 7.46E+09 9.69E+09 1.27E+08 2.79E+08 

Discus (35-39) 3.38E+09 8.26E+09 4.91E+08 4.94E+08 9.88E+09 9.91E+09 6.62E+08 9.84E+08 

Discus (40-44) -9.41E+08 -3.19E+06 -3.76E+08 -3.32E+07 -1.71E+09 -5.12E+06 -5.20E+08 -2.89E+08 

Discus (45-50) -2.19E+07 -1.93E+04 -3.61E+08 -4.44E+04 -2.71E+05 -2.18E+05 -7.65E+07 -1.87E+07 

 

Elliptic (0-100) 2.13E+08 

± 3.90E+08 

9.71E+08 

± 3.16E+08 

1.28E+08 

± 7.97E+07 

4.07E+08 

± 1.22E+08 

1.22E+09 

± 4.99E+07 

1.55E+09 

± 4.57E+07 

2.02E+07 

± 2.03E+07 

7.26E+07 

± 2.25E+07 

Elliptic (0-4) -5.06E+08 -2.07E+07 -9.26E+08 -5.31E+07 -5.66E+07 -9.25E+06 -8.21E+07 -1.83E+07 

Elliptic (5-9) -3.09E+07 -4.19E+06 -4.51E+08 -3.16E+07 -4.48E+06 -2.12E+06 -7.16E+06 -3.59E+06 

Elliptic (10-14) 6.19E+08 1.83E+09 9.53E+08 2.59E+09 2.25E+09 3.02E+09 2.76E+07 6.03E+07 

Elliptic (15-19) 1.01E+09 2.48E+09 2.90E+09 3.14E+09 3.24E+09 3.28E+09 1.53E+08 2.36E+08 

Elliptic (20-24) -4.70E+08 -4.89E+07 -3.05E+09 -2.00E+09 -6.83E+08 -8.21E+07 -1.23E+08 -6.91E+07 

Elliptic (25-29) -1.49E+08 -1.52E+07 -3.07E+09 -2.00E+09 -9.99E+06 -3.90E+06 -1.88E+07 -5.78E+06 

Elliptic (30-34) 4.84E+08 1.40E+09 3.09E+09 3.12E+09 2.23E+09 3.00E+09 3.65E+07 7.53E+07 

Elliptic (35-39) 8.52E+08 1.96E+09 3.11E+09 3.12E+09 3.24E+09 3.28E+09 1.75E+08 2.55E+08 

Elliptic (40-44) -3.33E+08 -4.73E+07 -3.12E+09 -3.07E+09 -6.85E+08 -9.12E+07 -1.42E+08 -8.19E+07 

Elliptic (45-50) -6.10E+07 -9.54E+06 -3.11E+09 -3.07E+09 -1.18E+07 -4.87E+06 -2.73E+07 -9.02E+06 

 

Ackley (0-100) 3.61E-01 

± 1.25E+00 

1.97E+00 

± 1.53E+00 

7.52E-02 

± 2.28E-02 

1.69E-01 

± 3.72E-02 

4.30E-01 

± 2.43E-02 

8.07E-01 

± 7.28E-02 

3.27E-01 

± 4.02E-02 

9.05E-01 

± 6.20E-02 

Ackley (0-4) -2.14E+01 -2.07E+01 -2.15E+01 -2.08E+01 -2.12E+01 -2.06E+01 -2.14E+01 -2.06E+01 

Ackley (5-9) -2.10E+01 -2.03E+01 -2.09E+01 -2.04E+01 -2.09E+01 -2.05E+01 -2.11E+01 -2.02E+01 

Ackley (10-14) 2.15E+01 2.21E+01 2.12E+01 2.15E+01 2.19E+01 2.22E+01 2.19E+01 2.22E+01 

Ackley (15-19) 2.16E+01 2.22E+01 2.22E+01 2.23E+01 2.21E+01 2.23E+01 2.20E+01 2.23E+01 

Ackley (20-24) -2.12E+01 -2.04E+01 -2.22E+01 -2.21E+01 -2.14E+01 -2.08E+01 -2.14E+01 -2.06E+01 

Ackley (25-29) -2.04E+01 -1.88E+01 -2.22E+01 -2.21E+01 -2.10E+01 -2.04E+01 -2.11E+01 -2.03E+01 

Ackley (30-34) 2.10E+01 2.20E+01 2.23E+01 2.23E+01 2.19E+01 2.22E+01 2.19E+01 2.22E+01 

Ackley (35-39) 2.15E+01 2.21E+01 2.23E+01 2.23E+01 2.21E+01 2.23E+01 2.20E+01 2.23E+01 

Ackley (40-44) -2.08E+01 -1.87E+01 -2.22E+01 -2.22E+01 -2.14E+01 -2.08E+01 -2.14E+01 -2.07E+01 

Ackley (45-50) -1.97E+01 -1.69E+01 -2.22E+01 -2.22E+01 -2.10E+01 -2.05E+01 -2.11E+01 -2.03E+01 

 

Griewank 

(0-100) 

6.60E-01 

± 1.30E+00 

4.50E+00 

± 1.26E+00 

3.73E-01 

± 5.58E-01 

1.14E+00 

± 5.47E-01 

5.06E+00 

± 4.04E-01 

7.82E+00 

± 5.90E-01 

3.75E-02 

± 1.82E-01 

4.15E-01 

± 2.00E-01 

Griew. (0-4) -6.26E+00 -2.63E+00 -7.73E+00 -3.50E+00 -3.75E+00 -1.96E+00 -3.61E+00 -2.26E+00 

Griew. (5-9) -2.09E+00 -1.37E+00 -4.20E+00 -2.28E+00 -1.89E+00 -1.32E+00 -1.59E+00 -1.33E+00 

Griew. (10-14) 3.10E+00 9.51E+00 5.33E+00 7.30E+00 1.10E+01 1.55E+01 1.66E+00 1.96E+00 

Griew. (15-19) 6.07E+00 1.15E+01 1.22E+01 1.35E+01 1.77E+01 2.06E+01 2.34E+00 2.74E+00 

Griew. (20-24) -4.70E+00 -2.35E+00 -1.30E+01 -1.13E+01 -7.05E+00 -3.80E+00 -2.18E+00 -1.84E+00 

Griew. (25-29) -1.69E+00 -1.06E+00 -1.32E+01 -1.13E+01 -2.26E+00 -1.50E+00 -1.60E+00 -1.36E+00 

Griew. (30-34) 2.78E+00 9.30E+00 1.34E+01 1.36E+01 1.11E+01 1.56E+01 1.77E+00 2.06E+00 

Griew. (35-39) 5.43E+00 1.16E+01 1.35E+01 1.37E+01 1.75E+01 2.01E+01 2.48E+00 2.88E+00 

Griew. (40-44) -3.37E+00 -1.81E+00 -1.35E+01 -1.32E+01 -7.08E+00 -3.91E+00 -2.30E+00 -1.99E+00 

Griew. (45-50) -1.79E+00 -8.89E-01 -1.35E+01 -1.32E+01 -2.37E+00 -1.52E+00 -1.73E+00 -1.47E+00 
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 HDCA H-MPCA CA GA 

Function – 

Dynamic 

(Time Range) 

Group 

Average 

Avg. 

Best in 

Group  Avg. 

(3) Group 

Average 

Avg. 

Best in 

Group  Avg. 

(4) Group 

Average 

Avg. 

Best in 

Group  Avg. 

Group 

Average 

Avg. 

Best in 

Group Avg. 

 

Rastrigin  

(0-100) 

3.64E+03 

± 6.42E+03 

1.77E+04 

± 5.04E+03 

1.15E+03 

± 2.64E+03 

4.21E+03 

± 2.78E+03 

2.03E+04 

± 1.55E+03 

3.14E+04 

±2.26E+03 

1.37E+02 

± 8.98E+02 

1.53E+03 

± 9.43E+02 

Rastrig.(0-4) -2.27E+04 -7.80E+03 -2.74E+04 -9.97E+03 -1.17E+04 -4.34E+03 -1.06E+04 -5.17E+03 

Rastrig.(5-9) -5.83E+03 -2.76E+03 -1.35E+04 -5.32E+03 -3.88E+03 -1.46E+03 -2.71E+03 -1.79E+03 

Rastrig.(10-14) 9.42E+03 3.77E+04 1.71E+04 2.51E+04 3.98E+04 5.79E+04 3.01E+03 4.01E+03 

Rastrig.(15-19) 2.12E+04 4.47E+04 4.38E+04 4.85E+04 6.72E+04 7.86E+04 5.91E+03 7.41E+03 

Rastrig.(20-24) -1.35E+04 -5.62E+03 -4.74E+04 -3.87E+04 -2.49E+04 -1.19E+04 -5.34E+03 -4.26E+03 

Rastrig.(25-29) -4.00E+03 -1.62E+03 -4.80E+04 -3.87E+04 -5.45E+03 -2.15E+03 -2.93E+03 -2.18E+03 

Rastrig.(30-34) 1.31E+04 3.58E+04 4.82E+04 4.90E+04 4.16E+04 5.94E+04 3.52E+03 4.60E+03 

Rastrig.(35-39) 2.37E+04 4.41E+04 4.83E+04 4.94E+04 6.76E+04 7.83E+04 6.55E+03 8.08E+03 

Rastrig.(40-44) -1.41E+04 -6.50E+03 -4.88E+04 -4.77E+04 -2.50E+04 -1.20E+04 -5.93E+03 -4.74E+03 

Rastrig.(45-50) -2.57E+03 -9.08E+02 -4.88E+04 -4.77E+04 -5.46E+03 -2.08E+03 -3.35E+03 -2.52E+03 

 

Hybrid01  

(0-100) 

1.24E+66 

± 1.94E+66 

3.55E+66 

± 1.19E+66 

3.81E+65 

± 6.91E+65 

1.22E+66 

± 7.22E+65 

3.97E+66 

± 1.27E+65 

4.90E+66 

± 9.03E+64 

7.67E+64 

±4.42E+64 

2.54E+65 

± 5.09E+64 

Hyb01 (0-4) -1.49E+66 -1.07E+61 -3.01E+66 -1.49E+63 -1.19E+64 -3.40E+62 -4.09E+64 -2.59E+61 

Hyb01 (5-9) -6.87E+64 -7.74E+57 -1.33E+66 -1.49E+63 -6.69E+61 -5.11E+61 -1.66E+63 -5.53E+58 

Hyb01 (10-14) 2.21E+66 5.98E+66 3.04E+66 9.27E+66 7.34E+66 9.65E+66 9.80E+64 2.30E+65 

Hyb01 (15-19) 3.41E+66 8.17E+66 8.69E+66 9.27E+66 9.91E+66 9.91E+66 6.09E+65 9.52E+65 

Hyb01 (20-24) -8.85E+65 -1.66E+60 -9.09E+66 -6.38E+66 -1.77E+66 -1.18E+64 -4.72E+65 -2.49E+65 

Hyb01 (25-29) -5.65E+64 -9.45E+59 -9.16E+66 -6.38E+66 -5.33E+62 -4.70E+62 -6.01E+64 -1.16E+64 

Hyb01 (30-34) 3.81E+66 6.84E+66 9.21E+66 9.27E+66 7.32E+66 9.60E+66 1.21E+65 2.61E+65 

Hyb01 (35-39) 5.19E+66 9.04E+66 9.26E+66 9.27E+66 9.84E+66 9.89E+66 6.54E+65 9.69E+65 

Hyb01 (40-44) -1.64E+66 -1.11E+64 -9.27E+66 -9.21E+66 -1.74E+66 -3.91E+63 -5.18E+65 -2.88E+65 

Hyb01 (45-50) -2.32E+65 -7.56E+59 -9.27E+66 -9.21E+66 -7.82E+62 -4.45E+62 -7.01E+64 -1.78E+64 

 

Hybrid05  

(0-100) 

1.24E+71 

± 1.98E+71 

3.61E+71 

± 1.13E+71 

3.38E+70 

± 1.81E+71 

1.28E+71 

± 1.88E+71 

3.99E+71 

± 1.15E+70 

4.91E+71 

± 7.70E+69 

7.57E+69 

± 6.39E+69 

2.51E+70 

± 7.20E+69 

Hyb05 (0-4) -1.38E+71 -6.44E+66 -2.99E+71 -2.11E+68 -1.36E+69 -2.66E+67 -2.82E+69 -4.87E+64 

Hyb05 (5-9) -8.41E+69 -5.16E+63 -1.51E+71 -2.11E+68 -1.60E+67 -1.58E+67 -1.69E+68 -8.09E+63 

Hyb05 (10-14) 3.30E+71 5.68E+71 2.94E+71 8.73E+71 7.40E+71 9.75E+71 1.03E+70 2.35E+70 

Hyb05 (15-19) 4.18E+71 7.95E+71 8.04E+71 8.73E+71 9.91E+71 9.92E+71 5.88E+70 8.84E+70 

Hyb05 (20-24) -2.68E+71 -1.22E+70 -8.49E+71 -4.78E+71 -1.70E+71 -1.68E+68 -4.57E+70 -2.40E+70 

Hyb05 (25-29) -9.44E+70 -1.61E+64 -8.60E+71 -4.78E+71 -2.49E+67 -1.85E+67 -5.56E+69 -1.06E+69 

Hyb05 (30-34) 3.91E+71 7.00E+71 8.66E+71 8.73E+71 7.48E+71 9.81E+71 1.10E+70 2.49E+70 

Hyb05 (35-39) 4.90E+71 8.56E+71 8.71E+71 8.73E+71 9.94E+71 9.96E+71 6.48E+70 9.82E+70 

Hyb05 (40-44) -1.55E+71 -1.36E+67 -8.72E+71 -8.60E+71 -1.73E+71 -5.76E+68 -5.07E+70 -2.76E+70 

Hyb05 (45-50) -1.98E+70 -1.08E+65 -8.73E+71 -8.60E+71 -2.99E+67 -1.87E+67 -6.71E+69 -1.42E+69 

 

Composition01 

(0-100) 

2.96E+65 

± 3.73E+65 

7.04E+65 

± 2.58E+65 

6.58E+64 

± 2.01E+65 

2.03E+65 

± 2.10E+65 

7.96E+65 

± 2.44E+64 

9.81E+65 

± 1.80E+64 

1.50E+64 

± 1.10E+64 

4.98E+64 

± 1.32E+64 

Com01 (0-4) -3.09E+65 -9.62E+59 -5.71E+65 -3.27E+62 -3.75E+63 -2.37E+62 -5.99E+63 -1.41E+59 

Com01 (5-9) -1.65E+64 -1.32E+56 -2.48E+65 -3.27E+62 -7.20E+61 -4.84E+61 -3.50E+62 -1.34E+58 

Com01 (10-14) 5.38E+65 9.65E+65 5.48E+65 1.65E+66 1.48E+66 1.94E+66 1.91E+64 4.66E+64 

Com01 (15-19) 8.42E+65 1.41E+66 1.56E+66 1.65E+66 1.98E+66 1.98E+66 1.17E+65 1.77E+65 

Com01 (20-24) -2.34E+65 -7.12E+62 -1.62E+66 -1.29E+66 -3.58E+65 -4.00E+63 -9.01E+64 -4.43E+64 

Com01 (25-29) -6.30E+63 -6.44E+58 -1.63E+66 -1.29E+66 -1.12E+62 -4.49E+61 -9.69E+63 -1.52E+63 

Com01 (30-34) 6.40E+65 1.47E+66 1.64E+66 1.65E+66 1.51E+66 1.97E+66 2.15E+64 4.82E+64 

Com01 (35-39) 9.89E+65 1.88E+66 1.65E+66 1.65E+66 1.99E+66 1.99E+66 1.22E+65 1.88E+65 

Com01 (40-44) -3.05E+65 -2.35E+59 -1.65E+66 -1.62E+66 -3.50E+65 -1.04E+63 -9.48E+64 -4.90E+64 

Com01 (45-50) -3.11E+64 -1.42E+59 -1.65E+66 -1.62E+66 -1.78E+62 -1.14E+62 -1.14E+64 -1.78E+63 

 

Composition03 

(0-100) 

1.51E+64 

± 2.06E+64 

3.64E+64 

± 1.22E+64 

3.56E+63 

± 1.39E+64 

1.15E+64 

± 1.50E+64 

3.97E+64 

± 1.35E+63 

4.88E+64 

± 9.95E+62 

8.47E+62 

± 9.33E+62 

2.73E+63 

± 1.01E+63 

Com03 (0-4) -1.54E+64 -2.51E+59 -2.84E+64 -5.69E+61 -1.59E+62 -1.31E+61 -2.90E+62 -1.31E+59 

Com03 (5-9) -7.00E+62 -1.34E+56 -1.26E+64 -5.69E+61 -5.26E+60 -3.72E+60 -1.55E+61 -5.17E+56 

Com03 (10-14) 2.95E+64 6.97E+64 2.87E+64 8.74E+64 7.25E+64 9.59E+64 1.04E+63 2.52E+63 

Com03 (15-19) 4.49E+64 8.48E+64 8.20E+64 8.74E+64 9.89E+64 9.92E+64 6.39E+63 9.71E+63 

Com03 (20-24) -1.11E+64 -1.33E+58 -8.60E+64 -6.05E+64 -1.72E+64 -3.73E+61 -5.09E+63 -2.74E+63 

Com03 (25-29) -9.02E+62 -1.14E+58 -8.64E+64 -6.05E+64 -5.62E+60 -5.16E+60 -7.21E+62 -1.61E+62 

Com03 (30-34) 2.24E+64 4.74E+64 8.67E+64 8.74E+64 7.44E+64 9.59E+64 1.39E+63 2.98E+63 

Com03 (35-39) 3.80E+64 7.63E+64 8.72E+64 8.74E+64 9.87E+64 9.89E+64 7.04E+63 1.02E+64 

Com03 (40-44) -1.48E+64 -5.64E+60 -8.73E+64 -8.67E+64 -1.76E+64 -8.26E+61 -5.69E+63 -3.23E+63 

Com03 (45-50) -3.40E+63 -8.04E+57 -8.73E+64 -8.67E+64 -4.17E+60 -3.05E+60 -9.17E+62 -2.38E+62 
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 HDCA H-MPCA CA GA 

Function – 

Dynamic 

(Time Range) 

Group 

Average 

Avg. 

Best in 

Group  Avg. 

(5) Group 

Average 

Avg. 

Best in 

Group  Avg. 

(6) Group 

Average 

Avg. 

Best in 

Group  Avg. 

Group 

Average 

Avg. 

Best in 

Group Avg. 

 

Composition07 

(0-100) 

1.40E+66 

± 1.79E+66 

3.61E+66 

± 1.15E+66 

3.62E+65 

± 6.86E+65 

1.22E+66 

± 8.13E+65 

3.98E+66 

± 1.24E+65 

4.90E+66 

± 8.64E+64 

8.59E+64 

± 6.23E+64 

2.79E+65 

± 7.07E+64 

Com07 (0-4) -1.68E+66 -7.15E+61 -2.73E+66 -3.41E+62 -2.13E+64 -2.38E+63 -3.81E+64 -8.50E+61 

Com07 (5-9) -1.27E+65 -2.33E+59 -1.13E+66 -3.41E+62 -3.39E+62 -2.28E+62 -1.76E+63 -3.11E+59 

Com07 (10-14) 2.43E+66 6.02E+66 2.68E+66 8.75E+66 7.58E+66 9.79E+66 1.03E+65 2.43E+65 

Com07 (15-19) 4.08E+66 9.44E+66 8.10E+66 8.75E+66 9.91E+66 9.93E+66 6.11E+65 9.15E+65 

Com07 (20-24) -1.17E+66 -1.25E+62 -8.51E+66 -5.34E+66 -1.70E+66 -3.64E+63 -4.89E+65 -2.74E+65 

Com07 (25-29) -8.05E+64 -2.73E+59 -8.62E+66 -5.34E+66 -5.70E+62 -4.76E+62 -6.44E+64 -1.52E+64 

Com07 (30-34) 2.69E+66 5.83E+66 8.69E+66 8.75E+66 7.46E+66 9.71E+66 1.25E+65 2.68E+65 

Com07 (35-39) 4.34E+66 7.68E+66 8.75E+66 8.75E+66 9.92E+66 9.94E+66 6.67E+65 1.01E+66 

Com07 (40-44) -1.58E+66 -4.26E+64 -8.75E+66 -8.74E+66 -1.72E+66 -4.32E+63 -5.35E+65 -3.03E+65 

Com07 (45-50) -1.30E+65 -1.13E+60 -8.75E+66 -8.74E+66 -8.41E+62 -5.24E+62 -8.64E+64 -2.08E+64 

 

 HDCA H-MPCA CA GA 

Function – 

Static  

(Time Range) 

Group 

Average 

Avg. 

Best in 

Group  Avg. 

(7) Group 

Average 

Avg. 

Best in 

Group  Avg. 

(8) Group 

Average 

Avg. 

Best in 

Group  Avg. 

Group 

Average 

Avg. 

Best in 

Group Avg. 

 

Discus 

(0-9) 

7.15E+09 

± 7.54E+08 

9.99E+09 

± 1.74E+07 

6.91E+09 

± 3.17E+08 

1.00E+10 

± 4.80E+06 

9.80E+09 

± 7.56E+07 

9.90E+09 

± 5.56E+07 

9.67E+09 

± 8.31E+07 

1.00E+10 

± 5.30E+03 

Discus 

(100) 

9.48E+09 

± 1.54E+08 

1.00E+10 

± 5.75E+03 

1.00E+10 

± 4.24E+03 

1.00E+10 

± 4.24E+03 

9.99E+09 

± 5.77E+06 

9.99E+09 

± 5.77E+06 

9.90E+09 

± 2.11E+07 

1.00E+10 

± 2.29E+02 

Elliptic 

(0-9) 

2.18E+09 

± 2.17E+08 

3.17E+09 

± 8.32E+07 

2.00E+09 

± 1.80E+08 

2.95E+09 

± 1.99E+08 

3.13E+09 

± 5.24E+07 

3.24E+09 

± 4.52E+07 

3.09E+09 

± 4.69E+07 

3.27E+09 

± 3.92E+07 

Elliptic 

(100) 

3.07E+09 

± 7.57E+07 

3.33E+09 

± 2.39E+07 

3.08E+09 

± 2.23E+08 

3.08E+09 

± 2.23E+08 

3.35E+09 

± 2.91E+06 

3.35E+09 

± 2.99E+06 

3.32E+09 

± 7.24E+06 

3.35E+09 

± 5.80E+05 

Ackley 

(0-9) 

2.17E+01 

± 2.56E-02 

2.22E+01 

± 3.27E-02 

2.20E+01 

± 2.91E-02 

2.22E+01 

± 3.41E-02 

2.21E+01 

± 1.51E-02 

2.22E+01 

± 2.62E-02 

2.19E+01 

± 2.27E-02 

2.23E+01 

± 2.70E-02 

Ackley 

(100) 

2.18E+01 

± 3.77E-02 

2.23E+01 

± 2.33E-02 

2.23E+01 

± 1.70E-02 

2.23E+01 

± 1.57E-02 

2.23E+01 

± 6.56E-03 

2.23E+01 

± 5.90E-03 

2.21E+01 

± 1.88E-02 

2.23E+01 

± 3.68E-03 

Griewank 

(0-9) 

1.21E+01 

± 6.07E-01 

1.77E+01 

± 9.59E-01 

1.31E+01 

± 1.17E+00 

1.75E+01 

± 1.31E+00 

1.71E+01 

± 4.56E-01 

2.01E+01 

± 6.82E-01 

1.90E+01 

± 6.17E-01 

2.13E+01 

± 7.31E-01 

Griewank 

(100) 

2.17E+01 

± 8.58E-01 

2.48E+01 

± 5.56E-01 

2.27E+01 

± 1.17E+00 

2.27E+01 

± 1.17E+00 

2.55E+01 

± 1.70E-01 

2.56E+01 

± 2.17E-01 

2.58E+01 

± 1.52E-02 

2.60E+01 

± 5.38E-05 

Rastrigin 

(0-9) 

4.48E+04 

± 2.86E+03 

6.87E+04 

± 4.41E+03 

5.04E+04 

± 4.07E+03 

6.60E+04 

± 4.97E+03 

6.50E+04 

± 2.51E+03 

7.70E+04 

± 3.34E+03 

7.13E+04 

± 2.02E+03 

8.02E+04 

± 2.18E+03 

Rastrigin 

(100) 

8.61E+04 

± 2.77E+03 

9.63E+04 

± 2.36E+03 

8.41E+04 

± 4.24E+03 

8.41E+04 

± 4.21E+03 

9.79E+04 

± 3.29E+02 

9.84E+04 

± 4.25E+02 

9.90E+04 

± 1.63E+02 

1.00E+05 

± 0.00E+00 

Hybrid01 

(0-9) 

6.52E+66 

± 1.24E+66 

9.99E+66 

± 6.81E+63 

6.41E+66 

± 3.72E+65 

9.83E+66 

± 1.58E+65 

9.83E+66 

± 8.92E+64 

9.94E+66 

± 5.06E+64 

9.68E+66 

± 6.47E+64 

1.00E+67 

± 5.57E+63 

Hybrid01 

(100) 

9.31E+66 

± 1.93E+65 

1.00E+67 

± 7.42E+59 

9.55E+66 

± 3.82E+65 

9.83E+66 

± 1.58E+65 

9.99E+66 

± 8.19E+63 

9.99E+66 

± 8.02E+63 

9.90E+66 

± 2.39E+64 

1.00E+67 

± 1.50E+51 

Hybrid05 

(0-9) 

7.07E+71 

± 1.11E+71 

1.00E+72 

± 4.02E+68 

5.96E+71 

± 6.12E+70 

9.83E+71 

± 1.96E+70 

9.78E+71 

± 1.15E+70 

9.90E+71 

± 7.52E+69 

9.67E+71 

± 7.38E+69 

1.00E+72 

± 3.85E+68 

Hybrid05 

(100) 

9.48E+71 

± 1.40E+70 

1.00E+72 

± 3.35E+59 

8.66E+71 

± 1.00E+71 

9.83E+71 

± 1.96E+70 

9.99E+71 

± 4.25E+68 

9.99E+71 

± 4.25E+68 

9.90E+71 

± 1.64E+69 

1.00E+72 

± 0.00E+00 

Composition01 

(0-9) 

1.42E+66 

± 1.61E+65 

2.00E+66 

± 5.01E+63 

1.28E+66 

± 7.89E+64 

1.96E+66 

± 3.07E+64 

1.96E+66 

± 1.58E+64 

1.98E+66 

± 1.19E+64 

1.93E+66 

± 1.25E+64 

2.00E+66 

± 2.94E+59 

Composition01 

(100) 

1.88E+66 

± 3.13E+64 

2.00E+66 

± 2.37E+58 

1.92E+66 

± 7.17E+64 

1.96E+66 

± 3.07E+64 

2.00E+66 

± 2.03E+63 

2.00E+66 

± 2.03E+63 

1.98E+66 

± 3.19E+63 

2.00E+66 

± 0.00E+00 

Composition03 

(0-9) 

7.18E+64 

± 1.15E+64 

9.99E+64 

± 1.22E+62 

6.05E+64 

± 5.33E+63 

9.76E+64 

± 1.22E+63 

9.74E+64 

± 1.43E+63 

9.86E+64 

± 1.23E+63 

9.67E+64 

± 8.76E+62 

1.00E+65 

± 2.36E+61 

Composition03 

(100) 

9.47E+64 

± 1.59E+63 

1.00E+65 

± 1.75E+57 

9.12E+64 

± 6.91E+63 

9.76E+64 

± 1.22E+63 

1.00E+65 

± 2.65E+61 

1.00E+65 

± 2.28E+61 

9.90E+64 

± 2.52E+62 

1.00E+65 

± 0.00E+00 

Composition07 

(0-9) 

7.32E+66 

± 3.95E+65 

9.99E+66 

± 1.65E+64 

5.85E+66 

± 4.86E+65 

9.69E+66 

± 1.96E+65 

9.81E+66 

± 8.71E+64 

9.91E+66 

± 6.30E+64 

9.67E+66 

± 8.78E+64 

1.00E+67 

± 1.63E+63 

Composition07 

(100) 

9.43E+66 

± 2.28E+65 

1.00E+67 

± 3.21E+58 

8.89E+66 

± 7.76E+65 

9.69E+66 

± 1.96E+65 

9.99E+66 

± 3.54E+63 

9.99E+66 

± 3.46E+63 

9.90E+66 

± 2.21E+64 

1.00E+67 

± 1.50E+51 
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Appendix B 

 

The following is the program code (Java) of HDCA as used in Chapter 4. 

import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.Random; 
 
public class HeritageAlgorithm{ 
 
    OptimizationFunction f;   //fitness function 
  
    ArrayList<double[]> population = new ArrayList();   
    //agents, each a set of parameters that form the solution 
 
    ArrayList<ArrayList<double[]>> populationTypes = new ArrayList();   
    //x by 3 (solution parameter, influence value, score), belief spaces 
 
    ArrayList<double[]> heritage = new ArrayList(); 
 
    int size; 
    int numOfParameters; 
    int max = 100; 
    int min = 0; 
   
    public HeritageAlgorithm_Op02(int size, int numOfParameters){ 
 this.size = size; 
 this.numOfParameters = numOfParameters; 
 Initialize(); 
    } 
  
    public void Initialize(){ 

//initialize population 
   
 Random rand = new Random(); 
 for (int i = 0; i < size; i++){ 
     double [] newAgent = new double[numOfParameters]; 
     for (int j = 0; j < numOfParameters; j++){ 
  newAgent[j] = rand.nextDouble() * (max - min);   
   //every parameter between 0 and 100 
     } 
     population.add(newAgent); 
 } 
 for (int i = 0; i < numOfParameters; i++){ 
     populationTypes.add(new ArrayList<>()); 
 } 
   
 //initialize agents to belong to population 
 for (int i = 0; i < size; i++){ 
     double [] newHeritage = new double[numOfParameters]; 
            for (int j = 0; j < numOfParameters; j++){ 
  newHeritage[j] = 0; 
     } 
     newHeritage[rand.nextInt(numOfParameters)] = 1; 
     heritage.add(newHeritage); 
 } 
   
    } 
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    public void SetFitness(OptimizationFunction newF){ 
 f = newF; 
    } 
  
    public void Update(){ 
 //update population "belief spaces" 
 for (int i = 0; i < numOfParameters; i++){ 
     populationTypes.get(i).clear(); 
 } 
 for (int i = 0; i < size; i++){ 
     for (int j = 0; j < numOfParameters; j++){ 
  if (heritage.get(i)[j] > 0){ 
      double[] newSolution = new double[3]; 
      newSolution[0] = population.get(i)[j]; 
      newSolution[1] = heritage.get(i)[j]; 
      newSolution[2] = f.CalculateValue(population.get(i)); 
      populationTypes.get(j).add(newSolution); 
  } 
     } 

} 
   
 //sort 
 ArrayList<double[]> sortedPopulation = population; 
 Collections.sort(sortedPopulation, new HDCAComparator()); 
   
 //choose top n for "selection" 
 double n = 0.1; 
 ArrayList<double[]> newPopulation = new ArrayList(); 
 ArrayList<double[]> newHeritage = new ArrayList(); 
 ArrayList<double[]> sortedHeritage = new ArrayList(); 
 for (int i = 0; i < size; i++){ 
     for (int j = 0; j < size; j++){ 
  if (sortedPopulation.get(i) == population.get(j)){ 
      sortedHeritage.add(heritage.get(j)); 
      break; 
  } 
     } 
 } 
 for (int i = 0; i < size*n; i++){ 
     newPopulation.add(sortedPopulation.get(i)); 
     newHeritage.add(sortedHeritage.get(i)); 
 } 
   

//combine top n for "reproduction" 
 Random rand = new Random(); 
 for (int i = (int)(size * n); i < size; i++){ 
     double [] newAgentHeritage = new double[numOfParameters]; 
     int parent1 = rand.nextInt((int)(size)); 
     int parent2 = rand.nextInt((int)(size)); 
     for (int j = 0; j < numOfParameters; j++){ 
  newAgentHeritage[j]  

= sortedHeritage.get(parent1)[j]*0.5 + sortedHeritage.get(parent2)[j]*0.5; 
     } 
    

    if (f.CalculateValue(sortedPopulation.get(parent1)) >=   
     f.CalculateValue(sortedPopulation.get(parent2))){ 

  int largestHeritage = 0; 
  for (int j = 0; j < numOfParameters; j++){ 
      if (sortedHeritage.get(parent1)[j] >   

sortedHeritage.get(parent1)[largestHeritage]) 
   largestHeritage = j; 
  } 
  newAgentHeritage[largestHeritage] += 1; 
     } 
     else{ 
  int largestHeritage = 0; 
  for (int j = 0; j < numOfParameters; j++){ 
      if (sortedHeritage.get(parent2)[j] >  

sortedHeritage.get(parent2)[largestHeritage]) 
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   largestHeritage = j; 
  } 
  newAgentHeritage[largestHeritage] += 1; 
     } 
 
     //normalize heritage values 
     double sumHeritage = 0; 
     for (int j = 0; j < numOfParameters; j++){ 
  sumHeritage += newAgentHeritage[j]; 
     } 
     for (int j = 0; j < numOfParameters; j++){ 
  newAgentHeritage[j] = newAgentHeritage[j] / sumHeritage; 
     } 
 
     //add new heritage to set 
     newHeritage.add(newAgentHeritage); 
 
     //define parameter values for agent 
     double[] newAgent = new double[numOfParameters]; 
     for (int j = 0; j < numOfParameters; j++){ 
  if (newAgentHeritage[j] > 0){ 
      double sumHeritageParameter = 0; 
      for (int k = 0; k < populationTypes.get(j).size(); k++){ 
   sumHeritageParameter  

+= populationTypes.get(j).get(k)[1] * populationTypes.get(j).get(k)[2]; 
      } 
      double choiceHeritageParameter = rand.nextDouble() * sumHeritageParameter; 
      sumHeritageParameter = 0; 
      for (int k = 0; k < populationTypes.get(j).size(); k++){ 
   if (choiceHeritageParameter < (populationTypes.get(j).get(k)[1] *  

    populationTypes.get(j).get(k)[2]) + sumHeritageParameter){ 
       newAgent[j] = populationTypes.get(j).get(k)[0]; 
       break; 
   } 
          else{ 
       sumHeritageParameter += populationTypes.get(j).get(k)[1] *  

populationTypes.get(j).get(k)[2]; 
          } 
      } 
         } 
      else{ 
      newAgent[j] = rand.nextDouble() * (max - min); 
  } 
     } 
     //add new agent to set 
     newPopulation.add(newAgent); 
 } 
   
 //modify some for "mutation" 
 for (int i = (int)(size * n); i < size; i++){ 
     if (rand.nextDouble() < 0.5){ 
  for (int j = 0; j < numOfParameters; j++){ 
      newPopulation.get(i)[j] += ((rand.nextDouble() * 10) - 5); 
  } 
     } 
 } 
   
 //fix to ensure all parameters are between 0 and 100 
 for (int i = 0; i < size; i++){ 
     for (int j = 0; j < numOfParameters; j++){ 
  newPopulation.get(i)[j] = Math.max(min, newPopulation.get(i)[j]); 
  newPopulation.get(i)[j] = Math.min(max, newPopulation.get(i)[j]); 
     } 
 } 
   
 //replace old population with new one 
 population.clear(); 
 population = newPopulation; 
 heritage.clear(); 
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 heritage = newHeritage; 
    } 
  
    public double [] PrintTopAgent(){ 
 ArrayList<double[]> newPopulation = population; 
 Collections.sort(newPopulation, new HDCAComparator()); 
   
 double average = 0; 
 for (int i = 0; i < size; i++){ 
     average += f.CalculateValue(population.get(i)); 
 } 
 average = average / (double)(size); 
   
 double averageHeritageSizes = 0; 
 for (int i = 0; i < size; i++){ 
     for (int j = 0; j < numOfParameters; j++){ 
  if (heritage.get(i)[j] > 0) 
      averageHeritageSizes += 1; 
     } 

} 
 averageHeritageSizes = averageHeritageSizes / (double)(size);  
 double best = f.CalculateValue(newPopulation.get(0)); 
 double [] returnValues = {average,best}; 
 
 return returnValues; 
    } 
  
    class HDCAComparator implements Comparator<double[]>{ 
 public int compare(double[] a, double[] b){ 
     double aValue = f.CalculateValue(a); 
     double bValue = f.CalculateValue(b); 
     if (aValue > bValue) 
  return -1; 
     else if (aValue < bValue) 
  return 1; 
     else 
  return 0; 
 } 
    } 
 
} 
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