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Abstract 

Tropical birds are little studied relative to temperate birds, despite the fact that tropical species 

often exhibit unique behaviours, not seen in the temperate-zone. I explore the link between 

male vocal behaviour and female movement in neotropical lekking Long-tailed Manakins 

(Chiroxiphia linearis) using acoustic recordings to monitor male vocalizations and a novel 

telemetry system to monitor female visitation behaviour. I report surprisingly few relationships 

between male vocalizations and female visitation behaviour, in contrast to results from another 

long-term study population in a different habitat. I examine the timing of male calling behaviour, 

showing that males avoid overlapping known neighbours, but actively overlap unknown 

intruders simulated through playback. Overall, my thesis provides insight into acoustic 

communication in manakins, revealing that male vocalizations play less of a role than expected 

in female mate choice, and that males modify the timing of their calls in response to the 

vocalizations of other nearby individuals. 
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Bird song 

Animals can convey information through an incredible diversity of signals. These can 

range from the electrical signals of certain species of knifefish, which function in mate attraction 

(Hopkins 2010); to the scent markings of wolves, which function in territory defence (Sillero-

Zubiri and MacDonald 1998); to the dewlap displays of anole lizards, which function in species 

recognition (Williams and Rand 1977, Bloch and Irschick 2006). Across these diverse signalling 

modalities, one method that has been extensively studied is that of acoustic signalling (Bradbury 

and Vehrencamp 2011). Acoustic signals differ from other signalling modalities in many respects. 

Unlike tactile or electrical signals, acoustic signals transmit over long distances. Whereas 

chemical signals cannot be modulated rapidly, acoustic signals can be modified during the 

course of a bout of behaviour. In contrast to visual signals, acoustic signals can be actively 

interfered with either by conspecifics or heterospecifics (Ficken et al. 1974, Dabelsteen et al. 

1997, Catchpole and Slater 2008). Acoustic communication has been particularly well studied in 

birds (Class: Aves; Catchpole and Slater 2008). Within the class Aves, the order Passeriformes – 

the songbirds – have the most complex and diverse assortment of vocal behaviours, from the 

extraordinarily variable songs of the open-ended learning lyrebirds (Menura spp.), to the innate, 

genetically-inherited calls of the suboscines (Suborder: Tyranni; Kroodsma 1984, Kroodsma and 

Konishi 1991, Zann and Dunstan 2008). 

Bird song is generally thought to serve dual roles in territory defence and mate 

attraction (Catchpole and Slater 2008). In terms of territory defence, playback of male song has 

been shown to decrease territorial intrusions, trespassing, and occupation by neighbours across 

a wide array of species including, for example, Red-winged Blackbirds (Agelaius phoeniceus), 

White-throated Sparrows (Zonotrichia albicollis), and Anna’s Hummingbirds (Calypte anna; 

Yasukawa 1981, Falls 1988, Goldberg and Ewald 1991). Male Red-winged Blackbirds that were 
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surgically modified to be incapable of producing songs experienced more territorial intrusions by 

prospecting males and higher levels of intrasexual aggression (Peek 1972). When their ability to 

produce song was restored, they were able to exclude interlopers from their territories again 

(Peek 1972, Catchpole and Slater 2008). Playback of unfamiliar male song within a bird’s 

territory promotes aggressive behaviour on the part of the territory holder in the form of 

increased vocal output, approaches to speakers, and attacks of taxidermic mounts, as has been 

shown in Carolina Wrens (Thryothorus ludovicianus), Black-throated Blue Warblers (Setophaga 

caerulescens), and Swamp Sparrows (Melospiza georgiana) among others (Hyman 2005, 

Ballentine et al. 2008, Hof and Hazlett 2010). In these and many other studies, bird song has 

been shown to function as an aggressive signal important in territory defence.  

Bird song also plays an important role in intersexual communication, serving as the 

primary means of mate attraction in many birds. The evidence for this is diverse and wide-

ranging. For example, female Ficedula flycatchers will occupy nest boxes where male song is 

playing but not those where there is no song (Erikson and Wallin 1986). Male Nightingales 

(Luscinia megarhynchos) will continue singing at a high rate until they pair with a social mate, 

after which point they subsequently decrease their singing rates (Amrhein et al. 2007). Similarly, 

male Bay Wrens (Thryothorus nigricapillus) will increase their song output following the removal 

of their partner, and decrease their singing rate following re-pairing (Levin 1996). But it is not 

only the level of output that females attend to; females of many species have been shown to 

prefer specific types of songs, usually those that are longer, more complex, and more 

challenging to produce or learn (Catchpole and Slater 2008). Female Canaries (Serinus canaria), 

for example, have been shown to prefer males that produce songs with a higher diversity of 

syllables (Vallet and Kreutzer 1995). Similarly, female Medium Ground Finches (Geospiza fortis) 

prefer males that produce songs with rapid frequency changes (Podos 2001). Together with the 
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results of many other studies, these findings demonstrate that bird song functions in mate 

attraction, and that females select males based on the output and the quality of their songs.  

It should be noted that the term “song” is typically restricted to oscine songbirds 

(Passeriforme birds in suborder Passeres); this is because early researchers believed that only 

oscine songbirds learned their songs, while the vocalizations of all other species were innate or 

genetically programmed, and were termed “calls” (Kroodsma 1984). New evidence has 

demonstrated that song learning is not restricted to the oscine songbirds. Parrots (Order: 

Psittaciformes) and hummingbirds (Order: Apodiformes; Family: Trochilidae) have also been 

shown to learn their vocalizations (Baptista 1990, Farabaugh and Dooling 1996), and evidence 

from some species of suboscine birds (Passeriformes in suborder Tyranni) also suggests that 

vocalizations may be learned (e.g. Trainer et al. 2002, Saranathan et al. 2005). Regardless of 

what definition of “song” is used, the fact remains that many species possess complex acoustic 

ornaments important in territory defence and mate attraction. Suboscines and other species 

without learned songs still use their calls in the context of territory defence and mate attraction 

(e.g. Bard et al. 2002, Tobias et al. 2011). To follow established convention, in this thesis 

concerning a suboscine songbird, I will refer to the vocalizations of my study species as “calls” 

(except when following the convention established by McDonald (2010) of referring to one of 

the courtship vocalizations of my study species as a “dance song”). 

Leks 

 Leks are aggregations of males that display for females, and are associated with 

promiscuous mating systems. There are four main factors that must be present for a mating 

system to be defined as a lek (see Balmford 1991, Höglund and Alatalo 1995 for reviews). (1) 

Males must provide only gametes; i.e. they do not contribute resources to the female or 
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provision the young. (2) There is some defined arena or display site where males display, and 

this site is separate from areas that the species use for other activities (e.g. foraging or nesting). 

(3) The sites where males display are not associated with any resources that the female may 

benefit from, such as food, water, nest sites, or other physical resources. (4) Females choose 

freely between the males within the population; i.e. there is no male coercion of females and 

females are able to inspect males without harassment. If the second factor is not present, and 

males do not aggregate in a single central area, the lek may be considered to be an “exploded” 

or “dispersed” lek, as opposed to a “classical” or “concentrated” lek (Prum 1994, Höglund and 

Alatalo 1995). Lekking in birds is not uncommon. Despite the fact that many mating systems 

remain undescribed, lek-based mating systems have been documented in over 100 species 

spanning 14 families (Prum 1994, Höglund and Alatalo 1995). 

 Lekking animals present an ideal system for studying mate choice. In non-lekking 

species, females will often select their social mates on the basis of their male’s territory quality, 

or his level of provisioning for nestlings, while seeking extra-pair copulations with males with 

more elaborate sexually-selected traits (e.g. Westneat et al. 1990, Buchanan and Catchpole 

2000). Leks eliminate these confounding variables, since by their very definition males do not 

provide resources for a female, or provision her offspring (Höglund and Alatalo 1995). 

Consequently, by studying lekking animals, we can focus directly on the link between male traits 

and female preference for those traits without the influence of these other potentially 

confounding factors on females’ decisions (Balmford 1991).  

 Manakins (Family: Pipridae) are widespread neotropical suboscine songbirds. Lekking 

occurs in at least 32 species of the 52 species of manakin, and can range from the classical leks 

of the Blue-crowned Manakin (Lepidothrix coronata), to the dispersed or exploded leks of the 

Crimson-hooded Manakin (Pipra aureola; Prum 1994). One unusual form of lekking is that of 
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cooperative lekking seen in Chiroxiphia manakins (Prum 1994). Males in this genus display in a 

lek arena where multiple males perform elaborate displays for females in a small display area 

(McDonald 1989). Within each display area, male social interactions are governed by a linear 

dominance hierarchy, and typically only the most dominant male has the opportunity to mate 

with females (McDonald 1989, McDonald and Potts 1994). Several groups of displaying males 

may be found over a relatively small geographic distance (McDonald 1989). As a result, one can 

consider the individual display area a lek, based on the concentration of males; but one can also 

consider the total collection of male groups as a dispersed lek, given that each individual display 

pair only has one functionally reproductive male (Prum 1994). Throughout this thesis I will refer 

to the area comprising all of the display perches of a single pair of males as a “display area” and 

the total collection of display areas in the population as a “lek”.  

 Females visiting leks may benefit by being able to simultaneously assess and compare a 

large number of males (Balmford 1991). Females may assess males on the basis of their 

phenotypic or behavioural traits, and use these as a basis for deciding which males to mate with 

(Balmford 1991). Historically, females were only thought to receive indirect benefits from lek-

based mating (i.e. high quality genes from her chosen copulation partner). For example, the 

vocal and visual displays of males may serve as honest indicators of male quality, which females 

use when assessing mates (Balmford 1991, Kirkpatrick and Ryan 1991). The quality of male 

displays and ornaments may be correlated with parasite load, and by selecting males with good 

traits females may be selecting for increased parasite resistance in their offspring (Balmford 

1991, Kirkpatrick and Ryan 1991). Alternatively, the elaborate male traits that females select 

may represent an innate preference, resulting in runaway selection (Kirkpatrick and Ryan 1991). 

In this sense, the elaborateness of a trait may not reflect male quality, or any direct benefit, but 
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may still result in a benefit to the female who will produce offspring with the same preference 

and elaborate trait (Kirkpatrick and Ryan 1991, Kokko et al. 2002).  

Recently, there has been increased support for the idea that lek-based mating systems 

may provide females with direct benefits as well (see Balmford 1991, Kirkpatrick and Ryan 1991 

for review). Females can benefit from increased fertility assurance by mating with multiple 

males, or selecting a male that is most likely to increase her chances of successful fertilization 

(Balmford 1991). For example, in certain lek-mating frogs, females select males that are 

approximately 30% lighter than them, as heavier males impede mating success, and lighter 

males lack sufficient sperm to fertilize her eggs (Robertson 1990, Balmford 1991). It has also 

been suggested that females may experience reduced predation by mating in a lek where there 

are many other individuals in attendance (Wiley 1974, Balmford 1991; but see Balmford and 

Turyhao 1992). By improving our understanding of lekking behaviour within a single species we 

can gain insight into factors influencing lek formation, social organization, and female mate 

choice at a larger scale. 

Long-tailed Manakins 

 
My thesis research focuses on Long-tailed Manakins, a neotropical suboscine songbird 

with an interesting lek-based mating system (Fig. 1.1; see McDonald 2010 for review). Males 

exhibit delayed plumage maturation, going through four pre-definitive (juvenile) plumages 

before attaining their definitive (adult) plumage in their fifth year (Doucet et al. 2007). Two 

unrelated males form a long-term association and work together to produce highly coordinated 

vocal duets to attract prospecting females (McDonald and Potts 1994). When they attract a 

female, males move to their display perch, where they engage in a series of backwards leapfrog 

hops, and laboured “butterfly” flight (McDonald 1989). If the female is receptive, she will remain 
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on the perch and mate with the dominant male. The system is governed by female choice and 

males are never able to successfully copulate with a non-receptive female (McDonald and Potts 

1994, McDonald 2010). With rare exceptions only the dominant (alpha) male of a pair mates 

with the female; the subordinate (beta) male is thought to gain delayed fitness benefits by 

inheriting the display perch after the alpha male dies (McDonald and Potts 1994). Because 

females show site fidelity, returning to the same perch between years, a subordinate male is 

able to improve his chances of future reproductive success by displaying regularly with his 

dominant partner, thus improving the reputation of the display area (McDonald 1989, McDonald 

and Potts 1994). Most beta males are at least eight years old, while most alphas are at least 13 

(McDonald 2009, McDonald 2010). At each perch area, the alpha and beta males may be joined 

by up to 13 other affiliate males, these males may range from being first years to definitive 

adults, and social interactions between these males follow a linear dominance hierarchy 

(McDonald 1989, McDonald 2009). While a male’s position in this dominance hierarchy is largely 

dependent on age, it is also affected by his connectivity within the network (McDonald 2009). At 

birth, males have no perch area affiliations; as they age they move through the population 

interacting with males at different perches, gradually restricting their interactions to a few 

specific males later in their life (McDonald 2009). Social interactions, and connectivity to 

dominant males, are important for ensuring a male’s future reproductive success in this species 

(McDonald 2009, McDonald 2010). 

 Male Long-tailed Manakins have an unusually large repertoire of more than 13 distinct 

calls, which they use in social interactions and female mate-attraction contexts (Trainer and 

McDonald 1993). These vocalizations, and their suspected functions are summarized in Table 1. 

The most important calls in the context of my thesis are the teeamoo, toledo, owng, nyanyownh 

(or “dance song”), and buzz-weent calls.  
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Table 1.1 The 13 most common calls of male Long-tailed Manakins and their suspected function 

(information is derived from Trainer and McDonald 1993, and personal observations*). 

Call Intended Receiver Function 

Chitter Dominant male, or 

other males* 

Given by birds in socially aggressive contexts. 

Buzz-Weent Subordinate partner Given by the dominant male at the end of a 

dance display, stimulating the subordinate male 

to leave before the dominant male can continue 

with solo display.  

Doodoodoo Unknown Unknown. Playback of this vocalization 

stimulates silent approach of males.  

Nyanyownh  

(or “dance song”) 

Female Given by both male partners during the dance 

display. 

Owng Female, alpha or beta Stimulates the female to move to the display 

perch; may be used to indicate the presence of a 

female to one or both of the dominant males. 

Pee-wit, Pee-wit-

oh 

Unknown Unknown, though potentially an unusual 

derivation of the teeamoo call*. 

Teeamoo Partner Produced by the alpha or beta male to attract 

his partner; often occurs before bouts of toledo 

duets. 

Toledo (duet) Female Attracts females to the display area. 

Toodleloo Unknown Unknown. 

Waanh Males Close range contact call. 

Weet Threats and other 

manakins 

Alarm call. 

Wheeoo Potential threats, or 

known males 

Can be used as a mobbing call, or as a contact 

call between males*. 

Wit Partner Precedes toledos, thought to function in 

synchronizing duet contributions.  

May also serve as a short-range contact call 

between males*. 
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 Previous studies by McDonald (1989) on a study population of Long-tailed Manakins in 

the mountains of central Costa Rica demonstrated that female visitation was positively 

correlated with many aspects of male display. Female visitation increased with the number of 

toledos males performed, the number of bouts of toledos males performed, and the amount of 

time that two or more males spent in the immediate vicinity of the display perch. Similarly, 

McDonald’s research showed that female visitation was negatively correlated with the number 

of minutes between successive bouts of toledos, the frequency of the teeamoo call, and the 

presence of one or no males (McDonald 1989). Other factors that were weakly negatively 

associated with female visitation in some years of McDonald’s study included the presence of 

more than two males on the display perch, the length of toledo bouts, and the number of a 

variety of vocalizations associated with male-male interactions (McDonald 1989).  

In a later study of the same study population, Trainer and McDonald (1995) showed that 

the degree of frequency matching between the two males’ contributions to a toledo duet was 

highly correlated with female visitation and mating success. They suggest that the level of 

frequency matching may represent a theoretical ideal that females could be using in their 

assessment of males (Trainer and McDonald 1995). The level of frequency matching is also 

correlated with the length of the alpha beta partnership (Trainer et al. 2002). In this sense, 

females might be using the level of frequency matching to select males that have formed longer 

associations (Trainer et al. 2002). This might be especially important in Long-tailed Manakins, 

given that the formation of strong social bonds and longevity are important factors in ensuring 

reproductive success in this species (Trainer et al. 2002, McDonald 2009, McDonald 2010). 

Previous researchers have suggested the possibility that the level of temporal synchrony in duets 

may also be an important measure of quality (Hall 2004). Trainer and McDonald (1995) tested 
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this by measuring the temporal synchrony between the two duet contributions but found no 

correlation with female visitation or male mating success (Trainer and McDonald 1995).  

 The majority of the studies conducted on this species to date have taken place in the 

Monteverde cloud forest, by Dr. Dave McDonald and his research team over an 18-year study 

(McDonald 2010). While some studies have examined the vocalizations of Long-tailed Manakins 

in other habitats (Foster 1977, Trainer and Parsons 2001), no one has attempted to document 

whether the patterns revealed by McDonald and colleagues hold true in other populations and 

other habitats. This is problematic, given that many studies have shown that females often 

prefer different traits in different populations (Schluter and Price 1993). For example Dunn et al. 

(2008) showed that female Common Yellowthroats (Geothlypis trichas) prefer males with large 

black masks in a study population in Wisconsin, but that mask size did not correlate with female 

preference in New York. The New York females instead appeared to favour males with larger 

yellow bibs (Dunn et al. 2008). Many studies are only ever conducted on a single population, and 

the findings from these studies are then applied to the species as a whole (Dugatkin 2001). This 

is problematic given that different populations will experience different environmental 

conditions, population dynamics, and selective pressures (Dugatkin 2001). This may be especially 

true of species that span a large range or exist in many different types of habitats, like Long-

tailed Manakins (Dugatkin 2001; Trainer and Parsons 2001).  

I studied a population of Long-tailed Manakins living in Santa Rosa National Park, which 

is a dramatically different habitat from the Monteverde cloud forest where they have been 

previously studied; this is despite the fact that they are only separated by 115 km (McDonald 

2003). Monteverde is a mid-elevation cloud forest, while Santa Rosa is a near-sea-level dry 

forest (McDonald 2003). These two habitats differ dramatically in the composition and diversity 

of species and climatic characteristics (Nadkarni and Wheelwright 2000). Santa Rosa has a 
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distinct rainy season and a dry season (Chapman 1988). Rainfall ranges between 900 and 

2400mm a year, and occurs almost entirely in the rainy season between May and December 

(Chapman 1988). Many of the trees are drought deciduous and lose their leaves during the dry 

season (Chapman 1988). Throughout the year the average monthly daytime temperature within 

the park ranges between 21 and 34°C (Burham 1997). Comparatively, Monteverde has three 

seasons: a wet-misty season, a wet season and a dry season and receives an average of 2500mm 

of rain annually (Bohlman et al. 1995). The average monthly daytime temperature in 

Monteverde ranges between 16 and 19°C (Johnson et al. 2005). 

The Use of New Technology for Monitoring Animals 

 Technological advances have served to drive forward the field of avian bioacoustics, field 

ornithology, and behavioural ecology (Catchpole and Slater 2008, Blumstein et al. 2011, 

Birkhead 2011). For example, the use of aluminum leg bands or rings has allowed us to better 

understand patterns of migration and identify recaptured individuals (Birkhead 2011). Similarly 

the invention of miniature radio-transmitters has let us record the movements of secretive 

species through the densest of forests (Neudorf et al. 1997, Anders et al. 1998). In terms of 

acoustic data, the advent of programmable digital recorders in the last decade has meant that 

we are now able to record vocal behaviour of birds over longer time periods than ever before. 

These new technologies provide us with a means of answering questions that have previously 

been beyond our ability to address. 

 New technologies are especially important in tropical research. Historically the scientific 

literature on birds has been biased towards temperate research, in that the majority of papers 

published focus on temperate species (Stutchbury and Morton 2001). This is despite the fact 

that the vast majority of species occur within the tropics, where species exhibit unique and 
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unusual behaviours that are rare or absent from the temperate zone (Stuchbury and Morton 

2001). Generally this has been attributed to the fact that the majority of major research 

institutions are located in the temperate zone, and as a result temperate species are often more 

easily studied (Stuchbury and Morton 2001). Because tropical study sites often lack the 

infrastructure or long-term study populations that are more common in the temperate zone, we 

need to employ new techniques and make use of new technologies to address similar questions. 

 My thesis research takes advantage of two new technologies to address questions 

related to Long-tailed Manakin behavioural ecology, lekking, and female choice. I employ both 

autonomous digital recorders, and an Encounternet radiotelemetry system. In Appendix I, I 

present the details of a field test of a new Encounternet technology, and demonstrate that this 

technology provides an effective way for monitoring female visitation behaviour. In chapter 2, I 

combine Encounternet monitoring of female movement with long-term recordings of male vocal 

behaviour, in order to understand how male vocalizations influence female visitation choice. In 

chapter 3, I use autonomous stereo recorders and call playback to experimentally study how 

males acoustically interact with one another.  

Summary and Goals 

 In summary, the vocalizations of birds are complex and play an important role in both 

territory defence and mate attraction (Catchpole and Slater 2008). Females can use both the 

total output of these vocalizations or their fine structural qualities when assessing males and 

choosing mates (Podos 2001). Lek-based mating systems represent an ideal system for studying 

female choice because lekking birds lack many of the factors that confound female mate choice 

decisions, which may be present in territorial species (Höglund and Alatalo 1995). Long-tailed 

Manakins have a complex lek-based mating system, which has only been studied in detail in a 
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single study population (McDonald 2010). This is problematic, given that previous studies have 

shown that female preference for male traits can vary between locations (Schluter and Price 

1993). My work employs two recent technological innovations—an Encounternet radiotelemetry 

system for monitoring female movement, and autonomous digital recorders for long-term 

monitoring of male vocal behaviour—to examine the mating system and acoustic interactions of 

Long-tailed Manakins in a wild population. 

 The main goal of my thesis is to improve our understanding of the inter- and intra- 

sexual interactions that occur in lekking Long-tailed Manakins. In chapter 2 I examine how male 

vocal performance affects female mating decisions using automated recorders and a novel 

radio-tracking technology. In chapter 3 I turn my attention to the interactions between 

neighbouring males and how they divide up their acoustic environment. Here I employ a new 

stereo recording technique to discriminate between calling males, and use experimental 

playback to simulate instances of counter-calling. I include an appendix that details the first field 

test of the Encounternet system, which provides important support for the methods outlined in 

chapter 2.  
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Figure 1.1. (A) A pair of definitive Long-tailed Manakin males at a display perch. The males sit 

close to one another while performing their coordinated toledo duets. When a female arrives, 

they will perform dance songs and elaborate leapfrog dances on this perch. (B) A female Long-

tailed Manakin wearing an Encounternet radiotag. We monitor the movement of females 

through the population using autonomous short range radio tags and receivers. 
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Chapter 2: The relationship between male vocal behaviour and female visitation in 

lekking Long-tailed Manakins: Analyses with a novel radiotracking technology 
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Chapter Summary 

The acoustic signals of many animals play an important role in mate attraction, and the vocal 

behaviour of songbirds provides some of the most well-studied examples. Research on lekking 

birds presents a unique opportunity for studying mate choice for male acoustic ornaments 

because female preference for male vocal behaviour is not simultaneously influenced by male 

territorial behaviour. In this study we explore the vocal behaviour of male Long-tailed Manakins, 

a neotropical lekking suboscine songbird with a complex repertoire of calls that they use in a 

variety of contexts. We focused on five vocalizations thought to be especially important in 

female mate attraction in this species. We recorded male vocal behaviour at 38 display areas 

over the course of two years, quantified vocal output and the level of synchrony of male 

vocalizations, and compared these features to female visitation behaviour, which we measured 

through a novel Encounternet radiotracking system. Three male vocalizations associated with 

mating displays (owngs, dance song bouts, and buzz-weents) showed no relationship with 

female visitation behaviour. The level of synchrony of mate-attraction toledo duets, showed no 

relationship with female visitation behaviour. Output of both toledo duets and teeamoo calls 

showed significant relationships with female visitation, but in the opposite direction of our 

predictions. We discuss the potential explanations for these unexpected findings. We analyzed 

diel variation in male vocal behaviour and female visitation and found that both female visitation 

to male display areas and the output of toledos, owngs, and dance song bouts showed a peak in 

the morning. We compare and contrast these results to another nearby long-term study 

population. Our surprising results did not show a strong relationship between male mate 

attraction vocalizations and female visitation behaviour, but did reveal that male vocal output of 

some types of vocalizations and female visitation show parallel patterns of diel variation. 
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Introduction 

 Many animals use acoustic signals to communicate aggression during competition for 

resources, and to attract breeding partners (Bradbury and Vehrencamp 2011). In Red Deer 

(Cervus elaphus), for example, females preferentially mate with males with deeper roars, which 

are associated with large body size (Charlton et al. 2007). In Túngara Frogs (Engystomops 

pustulosus), females preferentially mate with males with the most complex calls (Rand and Ryan 

1981). Similarly, in Greater Sac-winged Bats (Saccopteryx bilineata), females are attracted to 

males with more complex vocal repertoires (Davidson and Wilkinson 2004). Birds produce the 

most well-studied acoustic signals in the animal kingdom, and the widespread use of male 

vocalizations in mate attraction is well documented across many species (Catchpole and Slater 

2008). 

 Female birds may use male vocal output or the quality of male vocalizations as a means 

of assessing males and determining which male to mate with (Catchpole and Slater 2008). In 

some species, male vocalizations provide information about direct benefits available to females. 

This has been shown to be the case in Sedge Warblers (Acrocephalus schoenobaenus), where 

males with larger repertoires of more complex vocalizations show higher levels of provisioning 

for their offspring (Buchanan and Catchpole 2000). In other cases, male vocalizations provide 

information about indirect genetic benefits available to females. For example, Spencer et al. 

(2005) showed that young Canaries (Serinus canaria) exposed to malaria parasites develop 

fewer, simpler songs later in life. In this way, females who mate with males with larger 

repertoires of complex songs could be choosing to mate with males that have genes conveying 

parasite resistance. Whether they provide females with a means of assessing direct or indirect 

benefits, acoustic ornaments have been shown to be important in mate choice (Gil and Gahr 

2002). 
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 Studies of male acoustic ornaments and female mate choice are not always 

straightforward. For example, under laboratory conditions female Song Sparrows (Melospiza 

melodia) solicit copulations from males with larger, more complex repertoires (Searcy 1984). 

However, no such relationship exists when tested under field conditions; males with larger high 

quality repertoires did not attract mates or re-pair after their mate was removed any sooner 

than males with small repertoires (Searcy 1984). However, it is known that most socially 

monogamous birds engage in extra-pair copulations with males other than their social mate 

(Griffith et al. 2002). Consequently, female Song Sparrows may select a social partner using 

different criteria than the males that ultimately fertilize their eggs (Searcy 1984, 1992). Some 

support for this idea comes from Great Reed Warblers (Acrocephalus arundinaceus), where 

females seek extra pair copulations from neighbouring males with larger repertoires (Hasselquist 

et al. 1996).  

One way to circumvent the potentially confounding effects of social mates and extra-

pair partners when studying female mate choice is to focus on species where males and females 

do not form social partnerships. Lekking species can serve as an ideal study system for 

researching female mate choice (Balmford 1991). In lekking species, males provide only gametes 

and do not provision the young or provide nesting females with territories (Höglund and Alatalo 

1995). Males may mate with multiple females and females are free to choose between males 

(Höglund and Alatalo 1995). Therefore, by studying the relationship between male acoustic traits 

and female preferences for those traits in a lekking species, we can focus on that relationship in 

the absence of the potentially confounding variables imposed by social mates (Balmford 1991). 

 Long-tailed Manakins (Chiroxiphia linearis) are neotropical lekking birds with an unusual 

mating system (Foster 1977). Pairs of unrelated males form long-term partnerships and together 

produce coordinated vocal duets to attract females to their display area (McDonald and Potts 
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1994). Upon the arrival of a female males perform a complex leapfrog dance display on a low 

horizontal “display perch” while producing additional vocalizations, males may also engage in 

dual “butterfly” flight between the display perch and surrounding vegetation (McDonald 1989). 

Males may have one to a few display perches that they use regularly within their display area. If 

the female is receptive, the dominant (alpha) male will mate with her (McDonald 1989). While 

the subordinate (beta) male gains no direct benefits, it has been shown that the subordinate 

male receives delayed fitness benefits (McDonald and Potts 1994). By cooperating with the 

alpha male, subordinate males improve the reputation of the display area, allowing them to 

attract more females later in life (McDonald and Potts 1994). Females show site fidelity and 

subordinate males inherit the display area from their dominant partners, as result subordinate 

males achieve fitness benefits through displaying, but these benefits are offset in time 

(McDonald 1989, McDonald and Potts 1994).  

 In this species the number of females seen copulating at a given display area has been 

shown to be highly correlated with female visitation (McDonald 1989). As a result, we were 

interested in measuring levels of female visitation to display areas which we thought might serve 

as a proxy for male mating success, as has been done in previous studies of this species (e.g. 

Trainer and McDonald 1995). 

Long-tailed Manakins have a large repertoire of at least 13 unique vocalizations (see 

Table 1; or the full description in Trainer and McDonald 1993). Among these there are five 

vocalizations that function primarily in mate attraction, or are associated with the dance displays 

that males perform for prospecting females. (1) The teeamoo call is a solo vocalization given by 

an alpha or beta male to attract his male partner, and typically precedes a series of toledo duets 

performed by the pair. (2) The toledo duet is the most common vocalization of male Long-tailed 

Manakins, and is produced by pairs of males to attract females to their display area. (3) The 
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owng call is used by the dominant males to indicate the presence of a female near the display 

perch to their partner, or to stimulate a nearby female to move to the display perch. (4) The 

nyanyownh duet or “dance song” is given while pairs of males dance for visiting females at their 

horizontal display perch. (5) The buzz-weent call is given at the end of dance display by the 

dominant male to his subordinate partner, stimulating the subordinate to leave; the dominant 

male then begins a silent solo display that may end in copulation. Each of these vocalizations is 

associated with female mate attraction, or some aspect of dance displays for prospecting 

females (Trainer and McDonald 1995). 

 Previous research on manakins in the montane cloud forests of Costa Rica has revealed 

some relationships between male vocal behaviour and female visitation and mating behaviour. 

Based on observations at manakin display areas over a 2-year study, McDonald (1989) showed 

that the number of toledo duets and dances was positively correlated with female visitation and 

mating success. Conversely, the number of teeamoos males gave was negatively correlated with 

female visitation; this pattern was interpreted as one of the male partners being unresponsive to 

his partner’s attempt to initiate mate attraction toledo duets, resulting in fewer displays 

(McDonald 1989). In previous studies, females appeared to be influenced by not only the total 

output of vocalizations, but also the quality of those vocalizations. Trainer and McDonald (1995) 

showed that the level of frequency matching between the two contributions of a toledo duet 

was positively correlated with female visitation. They hypothesized that duets that were closely 

matched could reflect a high quality pair of duetting males (Trainer and McDonald 1995, Trainer 

et al. 2002). Support for this idea came from the observation that males who had been partners 

for longer periods of time had duets that were more closely matched in terms of frequency 

(Trainer et al. 2002). Consequently, females might use frequency matching as an indicator of 



 27  

longevity, or the ability to maintain a partnership—factors that are important in the Long-tailed 

Manakin mating system (Trainer and McDonald 1995, Trainer et al. 2002). 

 Another unusual feature of the Long-tailed Manakin mating system is that the males’ 

output of these highly coordinated vocal and visual displays appears to remain relatively 

constant over the course of the day— a pattern that differs markedly from that of several other 

species of manakin who show pronounced morning and afternoon peaks in output (Snow 1962, 

Bradbury et al. 1989, Trainer and McDonald 1993, McDonald 2010). Female visitation to display 

areas also appears to remain relatively constant throughout the day, with visits by females 

roughly corresponding to male vocal output (McDonald 2010). The fact that male vocal output 

and female lek visitation appear to show parallel patterns of diel variation provides further 

support for the idea that these behaviours are linked. 

In this field study of Long-tailed Manakins, we address the hypothesis that female 

visitation behaviour is influenced by male vocal behaviour. We use passive digital recordings to 

sample male vocal behaviour, and an automated radiotelemetry system to monitor female 

visitation behaviour. First, we assess whether the output of five types of male vocalizations 

correspond with female visitation to male lek sites. Second, we evaluate whether the time and 

frequency coordination of male-male duets corresponds with female visitation to male display 

areas. Third, we describe patterns of diel variation in male vocal behaviour and female visitation 

behaviour. For all three of these analyses, we compare the results of our study population in 

Costa Rica’s lowland Pacific dry forests to the published results from a long-term study 

population of this species in Costa Rica’s montane cloud forests, and evaluate whether climatic 

patterns may shape the similarities and differences that we see between these two study 

populations. 
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Methods 

 We conducted our research in Sector Santa Rosa of the Guanacaste Conservation Area in 

Guanacaste Province, northwest Costa Rica (10°53’ N, 85°46’ W). The Guanacaste Conservation 

Area is the world’s largest remaining stand of neotropical dry forest, and is home to a long-term 

study population of Long-tailed Manakins, which have been captured and colour banded by SMD 

since 2003. In total, 675 manakins have been outfitted with unique band combinations since 

2003. 

 Our study of the relationship between male vocal behaviour and female visitation began 

in 2010 and continued through 2011. To address the question of how male vocal behaviour 

influenced female visitation we collected data following a three-fold approach: (1) we measured 

female visitation with a new automated radiotelemetry system called “Encounternet” (see 

Appendix I); (2) we quantified male vocal output using autonomous digital recorders; and (3) we 

analyzed duet quality using sound analysis software. 

Female Visitation 

 We located the low horizontal branches that males regularly displayed on for females 

(display perches) by listening for the soft nyanyownh vocalization that males produce when 

dancing (Trainer and McDonald 1993). We confirmed that the perch was being used by adult 

males to display for females through visual observation. We then captured females using mist 

nets placed in the area around these display perches and banded the females with an aluminum 

leg band and a unique combination of coloured leg bands. We outfitted females with an 

Encounternet radiotag (J. Burt, Seattle, WA). Full details of the Encounternet system are given in 

Appendix I, including results of a field test that confirms that this new radiotelemetry system 

provides reliable data on female visitation behaviour. Briefly, over the course of the two-year 
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study period we tagged 82 females, 70 of which we detected more than one day after release. 

We attached receiver stations to branches above male display perches, to monitor females as 

they came within range. We analyzed data from reciever stations at 22 different display areas in 

2010 and 38 in 2011 where we also recorded male vocalizations (details below). We evaluated 

all female encounters where the female remained in range of the receiver station for at least 12 

seconds (equivalent to three tag pulses). This allowed us to eliminate cases where females may 

have flown near the receiver station, but not remained in the area to assess males. In 2010 we 

detected females between April 4th and April 30th, and in 2011 we detected females between 

April 13th and May 16th. In this study, we focus on the display areas in the core area of our study 

site, the ‘Bosque Humedo’ section of Sector Santa Rosa, where we captured and tagged the vast 

majority of females.  

Male Vocal Output 

 We deployed autonomous digital recorders in display areas near display perches 

(approximately 3-10m from the display perch). We used a different recording apparatus in 2010 

than in 2011. In 2010 we used digital recorders as described by Hill et al. (2006), consisting of 

Marantz PMD-670 digital recorders connected to Sennheiser ME62/K6 omnidirectional 

microphones. In 2011 we used Wildlife Acoustics Song Meter SM-2 digital recorders with built-in 

omnidirectional microphones. Recordings were collected with 22050 kHz sampling frequency, 

with 16 bit accuracy in WAVE format. We deployed recorders in the early morning (0500-

0700H), and allowed them to record until the battery had died or 24 h had elapsed, whichever 

came first.  

We visualized sound using Syrinx-PC sound analysis software (J. Burt, Seattle, WA) and 

documented the number of teeamoos, toledos, owngs, bouts of dance songs (i.e. repeated 
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utterances of nyanyownh calls with no breaks >1.0 seconds), and buzz-weents. We annotated 

over 330 hours of recording for 25 unique display areas in 2010; and over 831 hours of recording 

for 38 unique display areas in 2011. In 2010 we analyzed recordings collected between May 30th 

and June 16th, and in 2011 we analyzed recordings between April 4th and May 9th. In total we 

annotated more than 85,000 vocalizations in 2010, and more than 123,000 vocalizations in 2011. 

Our recordings varied in length in both 2010 (range= 1.2-15.8 h), and 2011 (range= 22.5-24.0 h). 

To control for this we converted the vocal output into rate data (number of vocalizations per 

hour) to facilitate comparisons.  

Duet Quality 

 Previous research has suggested that the degree of frequency matching between the 

two males’ contributions to the toledo duet may be important in female mate attraction (Trainer 

and McDonald 1995, Trainer et al. 2002). Meanwhile, research on the duets of other species 

suggests that the degree of temporal synchronization may reflect the quality of the singers (Hall 

2004). To quantify the level of both frequency matching and temporal synchrony we followed a 

modified version of the methods outlined by Trainer and McDonald (1995). We used Syrinx-PC 

to visualize a single continuous recording and select 10 separate bouts of duetting with a high 

signal-to-noise ratio. A bout was defined as a series of at least 10 toledo duets separated by no 

more than 10 seconds. Within a single bout we used a random number generator (Microsoft 

Excel, 2007) to select a single duet. We restricted our sampling to duets that did not start or end 

a bout (i.e. the first and last duets were never selected) because we were concerned that these 

would not be representative of the bout as a whole. In some cases males did not perform 10 

separate bouts; in these cases we selected another random duet from within one of the 

previously measured bouts.  
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Using AviSoft SASLab Pro we computed spectrograms (parameters: FFT length: 512, 

Frame size 100%, overlap 93.75%) and adjusted the cut-off frequencies to a high pass of 1.00 

kHz and a low pass of 2.00 kHz. We used AviSoft’s “magic reticule cursor” to trace the frequency 

of maximum amplitude of each male’s duet contribution, setting the cursor’s threshold to -50 dB 

with a snap distance of 82 Hz. We took 10 measurements at specific stereotyped points for each 

bird’s duet contribution, or 20 measurements per duet (see Fig. 2.1 for description of these 

points). We took the average difference between the 10 time and frequency values and used 

this as our measures of temporal and frequency synchrony respectively. Larger differences 

between the two contributions to a duet produce a larger score—therefore, these two measures 

are best thought of as being measures of temporal and frequency asynchrony, where a higher 

score indicates less synchronous duets. 

Temperature 

 We used the automated temperature recorders present in our Wildlife Acoustics Song 

Meters to log the temperature over the course of the day. We measured the temperature at 10 

separate locations between May 5th and June 12th 2011. We then calculated the average hourly 

temperature between 0530 and 1830 at these 10 locations (Fig. 2.4H).  

Statistical Analyses 

Our method of using Encounternet to study female visitation behaviour produced six 

measures: the number of unique females that arrived on each perch and visited near each perch 

(≥5.0m from perch); the total number of visits made on and near each perch; and the average 

time spent by females on and near each perch. These variables were correlated (r2: average ± SE: 

0.57±0.06; range: 0.22-0.92) so we performed a principal components analysis to condense 
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them into a single multivariate score. This analysis yielded a single principal component with an 

eigenvalue greater than 1. This principal component explained 67% of the variation in the data, 

and had positive loadings from all six variables (eigenvectors: average ± SE: 0.40±0.04; range: 

0.21 to 0.46; See table 2.2. for loadings). We used this principal component as our measure of 

female visitation.  

We explored the relationship between male vocal behaviour and female visitation using 

general linear mixed models. In our first model, the female visitation principal component score 

was our response variable, male vocal behaviours (rate of teeamoos, toledos, owngs, bouts of 

dance songs, and buzz-weents) were our fixed effects, and display area was included as a 

random effect to account for the fact that some display areas were sampled in both 2010 and 

2011. Our output variables were non-normal, however the residuals of our whole model were 

normal. Our second model was the same, except that the fixed effects were our time asynchrony 

and frequency asynchrony measures, which were normally distributed, and produced normally 

distributed residuals.  

To examine diel variation in male vocal behaviour we analyzed vocal output at 32 display 

areas where we had 24 h recordings. To facilitate comparisons with previous research in the 

Monteverde population (McDonald 2010), we calculated hourly output between the hours of 

0530 and 1830H. We present vocal output as a proportion of total daily output (after McDonald 

2010). Because some types of vocalizations were never recorded at certain display areas, our 

sample size varies for each of the different types of vocalizations. To assess female visitation we 

used two separate measures: on the perch, and near the perch (5.0 m or more from the 

receiver; see Appendix I). We converted these data to proportions, where we divided the 

number of visits made to a single perch during one hour by the total number of visits made over 
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the course of the day. This was done to facilitate comparisons to previously published results by 

McDonald (2010). 

Results 

 Contrary to our predictions based on previous research, we found no strong positive 

relationships between the mate attraction vocalizations of male Long-tailed Manakins and 

female visits made to the male display areas. Mixed model analysis of the output of five manakin 

vocalizations involved in mating behaviour revealed that output of buzz-weents (F1, 40= 0.1, n= 

56, p=0.7), owngs (F1, 48= 0.6, p= 0.4), and dance song bouts (F1, 44= 0.04, n= 56, p=0.8) were not 

correlated with female visitation (Fig. 2.2). The remaining two types of vocalizations, teeamoos 

and toledos, were both correlated with female visitation. Toledo duets which are understood to 

attract females to display areas, were negatively correlated with female visitation (F1, 48= 4.1, 

n=56, p=0.05); and teeamoos, vocalizations which are understood to serve in partner attraction, 

before the initiation of bouts of toledos, were positively correlated with female visitation (F1, 48= 

4.8, n=56, p=0.03).  

In further contrast to our expectation, time and frequency synchronization within male 

toledo duets showed no relationship with female visitation behaviour. Mixed model analysis 

showed that neither frequency asynchrony (F1, 39= 2.8, n=49, p=0.10), nor temporal asynchrony 

(F1, 43= 0.6, n=49, p=0.43) were correlated with female visitation (Fig. 2.3).  

 Analysis of diel variation in vocal output showed pronounced differences with time of 

day. Teeamoos showed a relatively consistent output, with a very subtle increase in the early 

morning (0630 to 0830 h) reaching its highest levels in the early afternoon (1330 to 1430 h; Fig 

2.4A). Toledos showed a strong peak in the morning (0630 to 0830 h) and then declined to lower 

levels, increasing during a second peak in the mid-afternoon (1430 to 1530 h; Fig. 2.4B). Owngs 
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showed a strong peak in the morning (0630 and 0830 h) and then declined before later rising to 

a second, smaller peak in the afternoon (1330 to 1530 h; Fig. 2.4C). Dance song bouts had a 

dramatic peak from 0630 to 0830, and then occurred at low levels at all other hours of the day 

(Fig. 2.4D). Buzz-weents showed a similar trend to dance song bouts, but with less abrupt 

changes. Buzz-weents peaked between 0730 to 0830, before gradually declining and remaining 

relatively constant throughout the day (Fig. 2.4E). 

Female visitation to display perches showed substantial diel variation, with the highest 

levels in the morning (0630 to 0930 h) decreasing to lower levels at 0930 h and slowly declining 

as the day progressed (Fig. 2.4F). Female visitation to the area near the display perch (>5.0m) 

showed a similar trend that was slightly less demarcated (Fig. 2.4G).  

Of the five male vocalizations that we assessed, the diel pattern for male dance songs 

and buzz-weents showed the most similar trend to female visitations; all three showed a single 

peak in the morning before declining to a lower level throughout the remainder of the day. 

Average temperature varied over the course of the day, ranging from 23○C in the early 

morning to an average high of 28○C in the late afternoon (1330 h), and dropping off to 

approximately 26○C in the early evening (Fig. 2.4H).  

Discussion 

 Our analyses of digital recordings of male vocalizations and passive telemetry data of 

female visitation to male display areas shows that the vocalizations of male Long-tailed 

Manakins have little influence on female visitation behaviour. The toledo duets of manakins, 

which are understood to be important in attracting females to male display areas (McDonald 

1989), showed a weak but surprising negative correlation with female visitation. Furthermore, 
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teeamoo calls, which are understood to be produced by males to attract their male partner 

before commencing a bout of toledo duets, showed a weak but positive correlation with female 

visitation. We found no relationship between the output of male owng calls (a vocalization used 

when stimulating nearby females to move to the display perch), male dance song bouts (the 

vocalizations produced while males perform elaborate dances for females), or male buzz-weent 

calls (a vocalization given at the end of the dance display which signals a late stage in the 

courtship process), and female visitation behaviour. Furthermore, we found no effect of duet 

quality on female visitation, either in terms of frequency or temporal asynchrony. We quantified 

diel variation in male vocal behaviour and female visitation behaviour, and found that almost all 

measured activities showed high levels in the morning. Female visitation to display areas and the 

output of male dance song bouts and buzz-weent calls followed the most similar patterns of 

variation. We explore each of these results below, and contrast our findings to those of previous 

studies. 

Vocal output 

 We had anticipated that the vocalizations associated with dance displays (owngs, dance 

song bouts, and buzz-weents) would be positively correlated with female visitation given that 

dances are typically performed in the presence of a female (McDonald 1989). However, we 

found no such correlations. We found that the output of toledo duets was negatively correlated 

with female visitation in Long-tailed Manakins living in the lowland dry forests of Costa Rica. This 

result is counter-intuitive given that multiple previous studies suggest that toledo duets are used 

in mate attraction (McDonald 1989, Trainer and McDonald 1993, McDonald 2010). We also 

found that the output of teeamoo calls was positively correlated with female visitation. 

Teeamoo calls are used by the alpha or beta male to attract their partner and usually preceded a 
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bout of toledo duets, and previous findings have suggested that a greater output of teeamoo 

calls may reflect a poorly coordinated pair of males (McDonald 1989). As such, it is surprising 

that teaamoo output should be positively correlated with female visitation. Overall our analysis 

of male vocal output has produced results that contradict our expectations based on previous 

findings.  

There are multiple possible explanations for our unexpected findings. First, it is possible 

that females carrying Encounternet tags behaved differently from non-tagged females and this 

gave rise to our unusual findings. This seems unlikely. Our radiotags weighed less than 5% of 

female body mass (see Appendix I), as has been suggested as an appropriate weight limit for 

radiotags (Naef-Daenzer et al. 2001). There is little evidence in the literature that appropriately 

weighted radiotags (<5% of the bird’s body mass) affect avian behaviour. For example, 

radiotagged female Hooded Warblers (Wilsonia citrina) did not differ from untagged females in 

their provisioning rate, or time spent brooding (Neudorf and Pitcher 1997). Similarly, 

radiotagged Dickcissels (Spiza americana) exhibited a brief stress response to being tagged, but 

their stress level returned to baseline within the first 48 hours after being tagged (Wells et al. 

2003). Moreover, radiotagged tits (Parus spp.) showed patterns of survivorship that did not 

significantly differ from untagged birds (Naef-Daenzer et al. 2001). While some studies have 

found reduced levels of survivorship in radiotagged individuals (e.g. Petty et al. 2004), or 

reduced locomotory abilities in radiotagged individuals (Logue 2007), the suggestion that tagging 

would so dramatically alter a female’s behaviour, to the point where her behaviour was opposite 

to that of an untagged female, seems unlikely. Indeed, our analyses of tagged birds showed that 

females visited many perches after being tagged, often great distances apart (Ward et al. 

manuscript in prep.), and although our sample size is small, we found evidence of tagged 

females being present in the study population a year after being tagged (Appendix I). 
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A second possibility for the lack of correspondence between male vocalizations and 

female visitation is that females in our study population are selecting males on the basis of non-

acoustic traits. One trait of importance may be plumage ornaments. Long-tailed Manakins have 

elaborate plumage ornaments including long tail feathers, carotenoid-coloured crown patches, 

structurally-coloured blue mantle patches, bright orange legs, and melanin-coloured jet-black 

body plumage (Slud 1957, Doucet et al. 2007), and plumage has been shown to be of central 

importance to mating success in other species of manakin (Stein and Uy 2005). Another possible 

trait is the visual performance of male dance displays. The elaborate leap-frog dances and 

butterfly displays that precede copulation are performed directly in front of prospecting females 

(Slud 1957, Foster 1977, McDonald 1989) and may be more important than the acoustic traits 

we measured here. Yet another trait of importance may be display area centrality. In other 

species (e.g. Hovi et al. 1994, Stein and Uy 2005) males with display positions located centrally 

had higher reproductive success. Ongoing research of the plumage, dance displays, and lek 

placement of manakins in our study population will help to establish whether these traits may 

show a stronger correspondence with female visitation behaviour. 

 A third possibility for the lack of a relationship between male vocalizations and female 

visitation is that female behaviour may drive changes in male vocal output in unexpected ways. 

Under this explanation, males may adjust their calling behaviour in response to the number of 

females that visit their display area, and female visitation could either be random or controlled 

by some other unmeasured cue. Males that perform more teeamoo calls might not cause more 

females to visit by virtue of the vocalization itself; instead, a larger number of females visiting a 

display perch may incite higher output of teeamoo calls from a resident male as he attempts to 

attract his male partner to display for the visiting females. Similarly, higher levels of male toledo 

duets could be the result of lower levels of female visitation, where males that receive few 
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female visits spend more time producing this mate-attracting call. In many species of songbird, 

male song rate is highest before males attract a breeding partner (Catchcpole and Slater 2008). 

For example, in territorial Rufous-and-white Wrens (Thryothorus rufalbus) males produce more 

songs when unpaired compared to when those same birds pair with a partner (Hennin et al. 

2009). The idea that female mating behaviour can influence male vocal behaviour is well 

supported. Female Brown-headed Cowbirds (Molothrus ater) have been shown to alter the vocal 

behaviour of males through their use of non-vocal cues which indicate preferences for specific 

song features (King et al. 2005). Similar patterns have been noted in lekking birds. Male Satin 

Bowerbirds (Ptilonorhynchus violaceus) adjust their display intensity in response to female 

receptivity, and actually decrease the intensity of their displays in response to certain female 

behaviours (Patricelli et al. 2006). In this way, the presence of females and their behaviour could 

drive male vocal behaviour and alter male display rates consistent with the patterns we found 

for teeamoo and toledo vocalizations.  

A fourth possibility for our surprising results is that our sample size prevented us from 

detecting an effect (and, for two vocalizations, resulted in a spurious effect in the opposite 

direction to our prediction). Based on a comparison with the sample size of prior studies, we 

consider this possibility unlikely. Our sample size was larger than any previous study, in terms of 

the number of display areas studied and the number of hours over which we detected females, 

and our recording of vocal behaviour was comparable to previous studies. Therefore, it seems 

more likely that any spurious conclusions would be the product of small sample sizes from 

previous studies. A previous study reporting a relationship between male vocalizations and 

female visitation (McDonald 1989) relied on data from six display areas, whereas we monitored 

38 display areas. This previous study (McDonald 1989) monitored female visits to display areas 

over 1,396 hours, whereas we monitored visitation of tagged females for over 40,000 hours of 
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receivers being present at display areas. This previous study (McDonald 1989) recorded male 

vocalizations during 1,396 total hours at six different display areas (an average of 232 hours per 

display areas), whereas we recorded male vocalizations during 1,161 display areas hours at 38 

different display areas (an average of 30.5 hours per display areas). Only for this last comparison 

is our dataset smaller than prior studies, suggesting that future research should collect more 

hours of recordings per display areas to confirm the patterns we have documented here with 

similar rigor to prior studies.  

Duet quality 

 We detected no significant relationship between the level of duet synchrony – measured 

in terms of both frequency matching and temporal synchrony – and the level of female 

visitation. Previous researchers have suggested that the level of frequency matching or temporal 

synchrony within a vocal duet could indicate the duetting pair’s quality, and serve an important 

function in mate assessment (Trainer and McDonald 1995, Trainer et al. 2002, Hall 2004). 

Indeed, Trainer and McDonald (1995) showed that Long-tailed Manakin duets that were highly 

coordinated in terms of frequency-matching were associated with higher levels of female 

visitation. The possibility that our null result was the product of insufficient sampling seems 

unlikely, given that the previous study of Long-tailed Manakins that found a significant result 

relied on a sample size of seven display areas, while our study focused on 38 display areas 

(Trainer and McDonald 1995). We also analyzed female visitation for a longer period of time. 

While Trainer and McDonald (1995) monitored display areas for 18 to 38 hours, using 

Encounternet we were able to monitor visits by tagged females constantly throughout an 

extended breeding period (average total detection time per display perch 990 ± 49 hours). It is 

worth noting that although we found no statistically significant relationship, our result was in 
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the same direction as Trainer and McDonald’s (1995), where females were more likely to visit 

males that were more closely frequency matched. Trainer and McDonald’s (1995) bioacoustic 

methods involved measuring printouts of spectrograms, whereas our methods involved more 

rigorous automated measurement using the most up-to-date bioacoustic techniques. As such, it 

is conceivable that the results of Trainer and McDonald (1995) were driven by a simpler acoustic 

measurement approach. 

 It has been suggested that the frequency matching within a Long-tailed Manakin duet 

may serve as a proxy by which females can assess the duration of a partnership, or the longevity 

of the males (Trainer and McDonald 1995, Trainer et al. 2002). It is also thought that frequency 

matching may serve as an indicator of a pair’s quality since there is a theoretical maximum (i.e. 

perfectly synchronized male-male duet contributions), in a manner analogous to that of 

fluctuating asymmetry (i.e. perfect symmetry; Trainer and McDonald 1995). It is possible that 

although females have been shown to prefer males with highly frequency-matched duets in 

another population (Trainer and McDonald 1995), females do not attend to frequency matching 

in our study population. Such population differences in female preference have been shown in 

other systems, for example where the effect of fluctuating asymmetry, and female preference 

for male traits, differs between populations (Møller 1995). This could result from differences in 

environmental and developmental stressors between populations (Møller 1995).  

Population Differences 

 Why should two studies of Long-tailed Manakins exhibit such different patterns? In our 

lowland population female visitation did not appear to be influenced by vocal output or vocal 

quality in the same way as the highland population. Females also exhibited different patterns of 

diel variation in visitation over the course of the day in the two populations. As discussed above, 
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differences in experimental design and statistical analyses are an unlikely explanation given that 

our sample sizes are large. Instead, differences between these two populations could be driven 

by climatic differences between the two populations, or may result from differences in female 

preferences in the two populations. 

The climate of our lowland dry forest study site in Santa Rosa is dramatically different 

from that in the highland cloud forests in Monteverde (Nadkarni and Wheelwright 2000). Santa 

Rosa is much hotter (average monthly daytime temperature: 21-34 ˚C) than Monteverde (16-19 

˚C), and has different seasonal patterns of rainfall (Chapman 1988, Bohlman et al. 1995, Burham 

1997, Johnson et al. 2005). These differences in seasonality could impact male display and 

female nesting behaviour. Tropical birds have longer, more variable breeding seasons when 

compared to their temperate counterparts (Stuchbury and Morton 2001). This is thought to be 

due in part to a lack of external cues signalling the beginning or end of the breeding season, 

since day length is relatively constant and climatic changes are less dramatic in the tropics 

(Stuchbury and Morton 2001). In this sense the more dramatic change between the rainy and 

dry season observed in Santa Rosa may serve as a more immediate cue compared to the more 

subtle change between the dry, wet-misty, and wet seasons of Monteverde (Bohlman et al. 

1995, Topp and Mennill 2008). This may in turn alter female search strategies and preferences, 

or male display behaviour, in ways that have yet to be understood.   

It is well known that temperature can strongly influence metabolic demand, and it 

seems likely that males and females should adjust their energetically demanding activities (e.g. 

performance of the dance display or mate searching) to avoid times of the day when 

thermoregulation might be more challenging (Kendeigh 1969). This could explain the different 

patterns of diel variation in female visitation behaviour and male vocal behaviour between Santa 
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Rosa and Monteverde. The cooler temperatures of Monteverde may be more conducive to the 

production of energetically demanding dance displays by males, and mate searching by females, 

throughout the day. This may allow males and females to maintain relatively constant levels of 

vocal output and mate searching throughout the course of the day (McDonald 2010). 

Conversely, the high afternoon temperatures seen in Santa Rosa may severely limit animal 

activity, both in terms of male display behaviour and female mate searching behaviour. Evidence 

supporting this idea comes from the fact that both female visitation to display areas and the 

number of dance displays males perform appears to be lowest during the hottest point in the 

day (Fig. 2.4). 

An alternative explanation, that differences between populations could be the result of 

differences in innate female preferences, must also be considered. Many studies of female 

preferences for male traits focus on only a single population (Dugatkin 2001). This can result in 

spurious conclusions when those results are applied to a species as a whole, or even to other 

populations. This is because different populations can experience dramatically different 

environmental conditions and evolutionary forces, which can interact with one another resulting 

in unique female preferences between populations (Møller 1995, Dugatkin 2001, Dunn et al. 

2008). It is not uncommon for patterns observed in one population to be different in other 

populations. For example, Dunn et al. 2008 showed that Common Yellowthroat (Geothlypis 

trichas) females in their Wisconsin study site preferred males with larger black masks, while 

females in their New York population did not assess males on the basis of their yellow masks and 

instead preferred males with larger yellow bibs. This is also predicted on the basis of theoretical 

models, where populations that experience separation are likely to experience divergence in 

selection for sexually selected traits and female preferences for those traits (Schluter and Price 

1993). That is, provided that the benefits females receive from selecting different traits are 



 43  

equivalent (Schluter and Price 1993). The differences between our lowland population and the 

previously-studied montane population may provide an additional example of this pattern. 

Significance and Future Work 

 This work represents the first field test of a novel radiotracking system: Encounternet. 

This system is capable of monitoring many animals over long time periods in a challenging 

environment where previous researchers have had to invest many years to achieve similar 

results. The behaviour of tropical birds is grossly understudied (Stuchbury and Morton 2001), 

and our study confirms that Encounternet can provide data on the movement behaviour of 

tropical birds. Our findings also suggest that more research is required to understand the targets 

of female choice in lekking tropical animals. Whereas previous studies have found an effect of 

male vocalizations on female visitation behaviour, our work suggests that other factors must 

also influence female visitation behaviour, whether they may be plumage ornaments, visual 

displays, or display area centrality. Finally our research highlights the importance of studying 

multiple populations, as dramatically different patterns of female preference and male display 

can often exist between them (Schluter and Price 1993, Dugatkin 2001, Dunn et al. 2008). Future 

work on our lowland dry forest study population should focus on analyzing additional male 

ornaments and patterns of female mate choice. Information on mating success, as measured 

genetically, may provide more important insights than visitation alone (though these measures 

have been previously shown to be highly correlated; McDonald 1989, Trainer and McDonald 

1995, McDonald 2010).  

 In conclusion, our research on male vocal behaviour and female visitation in Long-tailed 

Manakins suggests that male vocalizations play less of a role in shaping patterns of female 

visitation than expected. Our findings differ from those of previous studies, and this may be due 
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in large part to the dramatic climatic differences between these populations, or result from 

differences in preferences of prospecting females in different populations. Overall our work 

sheds light on the unusual mating system of a little studied tropical bird, provides a strong test 

of a novel radiotracking technology, and highlights important differences between populations. 
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Table 2.1 The loadings of the variables used to assess female visitation on the principal 

component. This principal component explained 67% of the variation in the data, and was used 

as the measure of female visitation in the analyses that follow. 

Variable Loading on PC1 

Number of visits on perch 0.46 

Number of visits near perch 0.43 

Average visit length on perch 0.38 

Average visit length near perch 0.21 

Number of unique females on perch 0.46 

Number of unique females near perch 0.44 
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Figure 2.1. A typical toledo duet produced by two male Long-tailed Manakins, showing the 

points that were measured in our analysis of duet structure. The individual male’s contributions 

are highlighted in different colours (grey and black). For each individual’s contribution to the 

duet we measured the exact time and frequency at 10 stereotyped points. These points (from 

left to right and highlighted in red for one male and green for the other male) were: (1) the start 

of an individual’s toledo, (2) the nadir of the first dip following the start of the duet, (3) the apex 

of the first rise, (4) the nadir of the second dip following the first, (5) the point at the apex of the 

major rise, (6) halfway between the point at the apex of the rise and the end of the first element 

of the toledo, (7) the end of the first element of the toledo, (8) the beginning of the second 

element of the toledo, (9) halfway between the beginning and end of the second element of the 

toledo, (10) the end of the second element of the toledo. Phonetically, within the toledo call 

these measures correspond to: to (1-4), le (5-7), and do (8-10). 
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Figure 2.2. The relationship between male vocal output and female visitation at display areas of 

Long-tailed Manakins in Costa Rica. (A) The production of teeamoo calls was positively 

correlated with female visitation; this call is thought to be used by a male to recruit his partner 

to begin a bout of toledo duets. (B) Conversely, the production of toledo duets was negatively 

correlated with female visitation; this call is thought to be used to attract females to male 

display areas. (C) The production of owng calls was not correlated with female visitation; this call 

is thought to be used to signal the presence of a female or stimulate a female to move to the 

display perch. (D) The number of bouts of dancing that males engaged in was not correlated 

with female visitation. (E) The production of the buzz-weent calls were not correlated with 

female visitation; this call is used by the alpha male to signal dominance and the beginning of a 

period of solo display. The figures are standard bivariate plots of output versus female visitation, 

while the statistics discussed in the body of the paper relate to the output of a mixed model.  
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Figure 2.3. The relationship between male duet structure and female visitation at the display 

areas of Long-tailed Manakins in Costa Rica. The degree to which the two contributions to a 

toledo duet were mismatched (i.e. the level of asynchrony) did not correlate with female 

visitation. This was true when synchrony was measured in terms of frequency matching (A; the 

average absolute frequency difference between 10 stereotyped points within each duet 

contribution), and temporal synchrony (B; the average absolute time difference between the 

same 10 stereotyped points within each duet contribution). The figures are standard bivariate 

plots of asynchrony versus female visitation, while the statistics discussed in the body of the 

paper relate to the output of a mixed model. 
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Figure 2.4. Diel variation in male vocal behaviour, and female visitation behaviour of Long-tailed 

Manakins, and ambient temperature. Patterns of diel variation in 5 vocalizations: (A) teeamoo, 

(B) toledos, (C) owngs, (D) dance songs, and (E) buzz-weents. The pattern of diel variation in 

female visits to (F) male display areas and (G) the area near male display areas (≥5.0 m from 

male display perches). (H) Temperature also varied over the course of the day. 
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Chapter 3: Counter-calling behaviour in lekking Long-tailed Manakins: Duetting males 

avoid overlapping the duets of neighbours, but not simulated intruders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This chapter is the outcome of joint research and is co-authored with collaborators K.-A. Ward, 
S. Doucet, and D. Mennill.  
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Chapter Summary 

Animals that live in communication range of multiple conspecific receivers have the potential to 

interfere with neighbouring individuals’ signals, or avoid interference by signalling at different 

times. We used both an observational and experimental approach to study signal timing in 

lekking tropical songbirds. We recorded duetting male-male pairs of Long-tailed Manakins 

(Chiroxiphia linearis) during periods when two neighbouring pairs were calling under natural 

conditions, and during interactions between birds and a playback-simulated pair of intruding 

males. We use three complimentary analytical techniques to evaluate whether birds varried the 

timing of their duet calls relative to nearby animals: circular statistics, resampling analysis, and 

duty cycle models. Our analyses reveal that Long-tailed Manakins produce duets with non-

random timing during counter-calling interactions. During natural interactions, all three 

analytical techniques reveal that manakins time their duets to avoid overlapping nearby males’ 

duets. In response to playback, males showed more variable strategies. Males overlapped 

playback duets more than expected by chance, but often vocalized in the silent interval as well. 

During playback males increased their inter-call interval above pre-playback levels, and returned 

to intermediate levels following the end of playback. Our study shows that males alter the timing 

of their calls in response to the vocalizations of others around them, and uncovers similarities in 

the complex acoustic signalling behaviour of lekking birds relative to the better-studied signalling 

behaviour of territorial birds. 
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Introduction 

When animals live within communication range of multiple receivers, social factors can 

have a strong influence on signalling behaviour. Most animals produce long-range 

communication signals, especially in mating and territory defence contexts (Bradbury and 

Vehrencamp 2011). These signals can transmit long distances, beyond the average spacing 

between individuals, thus creating many opportunities for interference (McGregor 2005). 

Animals can vary the timing of signal production either to overlap or avoid overlapping other 

signallers in order to increase or decrease interference, respectively (Greenfield 1994a; 

Greenfield 1994b; Naguib and Mennill 2010). The strategies animals use to minimize 

interference varies with species (Greenfield 1994a), signal modality (Carlson and Copeland 1985; 

Johnston 1997), and context (Greenfield 1994b), and can have important fitness consequences 

for the individuals involved (Greenfield 1994a; Greenfield 1994b; Mennill et al. 2002; Mizyzaki 

and Waas 2002; Amy et al. 2008; Garcia Fernandez et al. 2010).  

There are at least six main reasons why animals might overlap each others’ signals 

(reviewed in Greenfield 1994b; Todt and Naguib 2000; Naguib and Mennill 2010). (1) 

Overlapping may be an agonistic signal that is an important part of counter-signalling exchanges 

(e.g. in counter-singing exchanges in songbirds, overlap can be associated with threat and 

contest escalation; Naguib and Mennill 2010; but see Searcy and Beecher 2009, 2011 for an 

alternate perspective). (2) Overlapping may occur when animals are tightly spaced, and must 

either produce overlapping signals or else decrease their signal output (e.g. in a chorus of toads 

or a cluster of fireflies; Greenfield 1994b). (3) Overlapping signals may make it more difficult for 

predators to detect a single individual, so that producing an overlapping signal is less risky than 

an alternating signal (e.g. hylid frogs are more susceptible to predation by bats when they 
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produce alternating calls; Tuttle and Ryan 1982). (4) Females may respond to males’ mating 

signals with signals of their own, and males may maximize their opportunity to detect female 

responses by producing synchronized calls, thereby preserving a silent period in which female 

signals can be detected. This has been demonstrated in the overlapping signals of fireflies, 

where males and females exchange bioluminescent flashes with one another; Buck and Case 

1986. (5) Females might assess males on their ability to synchronize their signals with those of 

other males, selecting for the evolution of overlapping calls (e.g. females select for synchronized, 

overlapping duet calls in some neotropical manakins; Trainer and McDonald 1995). (6) 

Alternatively, overlap may occur by chance if individuals produce signals with no reference to 

the timing of signals of nearby animals (Searcy and Beecher 2009; Searcy and Beecher 2011).  

There are at least four main reasons why animals might avoid overlap by producing 

signals in the intervals between other animals’ signals. (1) Alternating may communicate 

decreased threat or a de-escalation of aggressive contests (Naguib and Mennill 2010). (2) 

Alternating may allow individuals to broadcast their signal with minimal interference by animals 

around them (Greenfield 1994b). (3) For some signals, such as acoustic signals, animals may not 

be able to produce a signal and detect the signals of others simultaneously, and mutual listening 

may therefore favour signal alternation (Hultsch and Todt 1982). (4) Females may select for a 

higher duty cycle of signals between different areas of grouped males as an evolutionary by-

product of sexual selection for high duty cycle from a single individual. Since groups that 

alternate at a fixed rate will have higher duty cycle than more synchronous groups, selection 

would favour individuals that alternate (Greenfield 1994b).  

The acoustic signals of birds have been well studied from the perspective of signal 

timing. More than thirty observational and experimental studies have documented overlapping 
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behaviour in many species of birds (reviewed in Naguib and Mennill 2010). While the signal 

function of overlapping is contentious, and overlapping may occur by chance alone (Searcy and 

Beecher 2009), the fact that overlapping is associated with specific behaviours suggests that 

participants adjust their response based on the outcome of overlapping exchanges and use 

these exchanges to inform their subsequent behaviour (Naguib and Mennill 2010). Previously 

documented effects of overlapping include: (1) overlapped birds sometimes change their 

signalling behaviour, for example, by producing truncated signals or changing their signal rhythm 

(e.g. Dabelsteen et al. 1996; Naguib 1999; though see Searcy and Beecher 2011 who argue that 

this could be a by-product of jamming avoidance); (2) overlapped birds sometimes exhibit 

aggressive responses (e.g. Naguib and Todt 1997; Mennill and Ratcliffe 2004); and (3) the 

breeding partner of an overlapped bird sometimes changes their reproductive behaviour (e.g. 

Otter et al. 1999; Mennill et al. 2002). Overlapping appears to have wide-ranging effects on the 

behaviour of wild birds, and understanding whether it is a directed signal is an important area 

for study.  

This study on acoustic overlapping focuses on Long-tailed Manakins (Chiroxiphia 

linearis), neotropical suboscine songbirds with a lek-based mating system (Foster 1977). Males 

exhibit delayed plumage maturation, going through a graded series of plumages before attaining 

definitive plumage in their fifth year (Doucet et al. 2007). Definitive adult males form long-term 

obligate male-male partnerships and attract females to their display area and entice them to 

mate using a combination of coordinated male-male vocal duets and visual displays (McDonald 

1989a, Trainer and McDonald 1995). In other animals, vocal duets occur between the male and 

female of a mated pair, and are understood to function in acoustic contact, territory defence, 

and mate guarding among other functions (reviewed in Hall 2004; Douglas and Mennill 2010). 

Long-tailed Manakins are unusual in that their highly coordinated duets are performed by pairs 
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of unrelated males (McDonald and Potts 1994), a trait they share in common with several 

congeners (Prum 1994; DuVal 2007). Long-tailed Manakin duets consist of the two males 

producing nearly identical phrases, onomatopoeically similar to the word “toledo”, where each 

phrase is approximately 0.6 seconds in length and the two males’ contributions are synchronized 

within 0.1 seconds of one another (Fig. 3.1a). These are repeated every 2.5 to 4.0 seconds for 

extended periods of time, and males may produce as many as 1,000 duets per hour (Trainer and 

McDonald 1995). Male-male pairs call from fixed display areas that remain consistent over many 

consecutive years (Foster 1977; McDonald 2010). Pairs of males from adjacent display areas are 

visually isolated from one another by distances of approximately 75 m, but can be as close as 25 

m (Trainer and McDonald 1993; pers. obs.). Their vocal signals are long-ranging, transmitting 

upwards of 100 m (pers. obs.), and as a result, neighbouring pairs are routinely in acoustic 

contact. Consequently, pairs of Long-tailed Manakins attract females in an acoustically 

competitive environment and this sets the stage for acoustic interference to influence the 

signalling behaviour of neighbouring pairs of males.  

In this study we address the question: do pairs of duetting male manakins call non-

randomly? Do they actively avoid signalling at the same time as other males, or do they interfere 

with each other’s vocalizations by overlapping them? We used both an observational approach 

and a playback experiment to answer this question during a two-year study of a population of 

Long-tailed Manakins in Costa Rica. We used stereo digital recorders to monitor the timing of 

duets during naturally-occurring counter-calling bouts between neighbouring male-male pairs of 

manakins. We then conducted a playback study where we simulated a pair of males by playing 

duets near established pairs’ display areas. For both the natural counter-calling exchanges and 

the playback-induced counter-calling exchanges, we compared the level of overlapping calls to 

levels expected by chance. No single compelling null model for predicting chance levels of 
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overlap has been established (Searcy and Beecher 2009; Naguib and Mennill 2010; Searcy and 

Beecher 2011). As such, we analyzed the natural and experimental recordings using three 

complimentary null models to determine whether overlapping differed from levels expected 

based on chance.  

Methods 

Study Site 

We studied Long-tailed Manakins in Sector Santa Rosa within the Guanacaste 

Conservation Area in Guanacaste Province of northwestern Costa Rica (10°53’ N, 85°46’ W). This 

conservation area houses the world’s largest remaining stand of neotropical dry forest and has 

been designated as a World Heritage Site by the United Nations Educational, Scientific and 

Cultural Organization (UNESCO). Sector Santa Rosa is home to a large population of Long-tailed 

Manakins that have been studied in detail since 2003 (Doucet et al. 2007). 

 We located manakin display perches by listening for pairs of males performing vocal 

duets and then locating the low horizontal branches, where males perform elaborate dances for 

prospecting females (McDonald 1989a). A single pair of males may display on one to a few 

display perches in a small area (McDonald 1989a; Prum 1994). We captured birds using mist nets 

placed around the display areas and outfitted captured birds with an aluminum leg band and a 

unique combination of coloured leg bands to aid in identification. Not all birds in the study 

population were banded, yet observations of the colour-banded males demonstrate that the 

same birds routinely call from the same display areas. Based on this observation, as well as the 

background information on Long-tailed Manakin behaviour collected over two decades of field 
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study by D. McDonald (reviewed in McDonald 2010), we are confident that the male-male pairs 

observed at each display area were unique. 

Natural Counter-Calling Exchanges 

We recorded natural instances of counter-calling between neighbouring pairs of males 

between 14 April and 24 May 2010. We used a stereo recording apparatus positioned between 

two adjacent display areas. We deployed recorders between 0500 and 0700 in the morning and 

allowed them to run continuously, usually finishing between 1200 and 1400. Given that sound 

propagates slowly through air, we could exploit time-of-arrival differences between the two 

microphones to assign calls to the pairs of males on either side of the recording apparatus. Our 

recording system consisted of two omnidirectional microphones (Sennheiser ME62/K6) 

connected to a solid state digital recorder (Marantz PMD670; 22050 KHz, 16 bits, WAV format, 

stereo recording). We placed one of the microphones on the periphery of a pair’s display area, 

approximately 10m from the primary display perch, and the other microphone 15m away, in the 

direction of the nearest neighbouring display area. We attached both microphones to trees and 

suspended them approximately 2m above the ground. This recording system is an extension of 

the system described in Hill et al. (2006), except that our recordings were collected in stereo, 

rather than monaural. At each recording location, we remained in the area immediately 

following setup of the recording apparatus. For approximately one hour we made notes on the 

locations of calling males, allowing us to ground-truth that the stereo recording apparatus could 

provide reliable information on which pair of birds was calling. We found 100% agreement 

between our observations in the field (i.e. which pair of males produced which vocalization) and 

the direction that we determined based on differences in arrival times in the stereo recordings. 
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Consequently, we are confident that this apparatus allowed us to reliably assign duets to the 

correct pair of males during a counter-calling bout. 

We used Syrinx-PC Sound Analysis Software (J. Burt, Seattle, WA) to annotate the stereo 

recordings of natural bouts of counter-calling between adjacent pairs of males. We restricted 

our analyses to instances where the two pairs of males were calling in the absence of any other 

more distant males. Greenfield (1994a) has suggested that insects and frogs space their calls 

relative to their nearest/loudest neighbours, but by restricting our analyses to instances where 

only two pairs of males were calling concurrently we avoid the potentially confounding effect of 

other nearby animals. To ensure that our measurements were taken from bouts of counter-

calling, and not one-off calls from either pair of males, we further restricted analyses to 

instances where both pairs contributed at least 10 duets, where the duets were at most 10 

seconds apart. We recorded at 27 different locations, but had to discard 14 because there was 

no suitable period where the neighbouring pairs were calling in the absence of other callers. 

Bouts of counter-calling are common in this species. 

Our detailed analyses are based on 13 instances of natural counter-calling between 

neighbouring pairs of males. Each counter-calling dyad was unique, but six of the 26 pairs were 

involved in more than one comparison. We consider each dyad to be the relevant unit of 

sampling because counter-calling is a dynamic process where the response of one pair of 

individuals is not independent from the response of the other pair of individuals; in this sense 

the relationship of A to B can be considered different from that of A to C. We also analyzed a 

subset of our data where each particular male was only measured once, and the same patterns 

that we report in the Results held true.  
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Playback Experiment 

We conducted playback trials to simulate a pair of duetting males, allowing us to 

experimentally test how birds space their calls out relative to others. We created nine playback 

stimuli from recordings collected between 28 April and 3 May of 2008 through 2010 from males 

that were unlikely to have previously encountered members of our population (playback birds 

were recorded more than 4km away). We collected recordings from pairs of definitive males 

using a directional microphone (Sennheiser MKH 70) and digital recorder (Marantz PMD660; 

22050 Kbps, 16 bit, WAVE format, mono recording). We conducted these recordings between 

0500 and 0700 h. From recordings of nine different display areas, we selected a single duet with 

high signal to noise ratio (assessed visually) where the recordist identified that they were <10m 

from the calling males. Using Audition (Adobe Systems Inc.) we removed background noise by 

selecting the duet with the lasso tool and decreasing the amplitude of the background noise to 

1/20th of its original level. We then normalized the sound file to -1 dB. We used these normalized 

stimuli to create a playback track where the sound was repeated with 2.4 s or 3.5 s of silence 

between duets (see below), and stored the stimuli as an uncompressed sound file (22050 kHz, 

16 bits, WAV format). We repeated this process to create nine unique duet stimuli that shared 

identical amplitude characteristics. A pilot investigation in early 2010 suggested that males may 

alter their calling rate when calling concurrently with other males by lengthening their inter-call 

interval. To assess whether this affected a pair’s tendency to overlap or alternate, we created 

two versions of each stimulus: a “slow rate” consisting of a duet followed by 3.5 seconds of 

silence, and a “fast rate” stimulus which consisted of a duet followed by 2.4 seconds of silence. 

Under natural circumstances, when calling in the absence of other males, Long-tailed Manakins 

tended to space their calls with inter-call intervals of 2.0s (SE ± 0.1). Comparatively, when calling 

concurrently with other males Long-tailed Manakins tended to space their calls with inter-call 
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intervals of 2.4s (SE ± 0.1). As a result our fast rate playback was the most similar to the rate we 

observed under natural conditions with concurrently calling pairs. 

The playback device (Apple iPod classic) was operated by an observer who sat 10m from 

the loudspeaker (Anchor Audio Mini-Vox PB-25, Torrance, California; frequency response: 100 - 

12,000 Hz). The loudspeaker was mounted on a 1.5m pole and placed within the subjects’ 

display area, approximately 5-10m from their primary display perch. The amplitude of the 

playback stimuli was held constant across all trials at 80 dB (measured at a horizontal distance of 

1m from the upwards-oriented speaker using a RadioShack Sound Level Meter, fast response). 

Based on our assessment, this matched the source amplitude of live duetting males in this forest 

(Fig. 3.5). 

Playback trials were conducted between 0530 and 1030 h, a time when natural bouts of 

duetting were common (see figure 2.4B). After setting up the playback apparatus, but before 

commencing a trial, we recorded the focal males until they had produced a bout of at least 10 

duets (i.e. 10 duets produced in repetition with inter-call intervals of less than 10 seconds) or 30 

minutes had elapsed, whichever came first. We then waited until 10 seconds of silence had 

elapsed, before commencing playback. Long-tailed Manakins call at a fairly fixed rate with an 

inter-call interval of approximately two seconds (Fig. 3.5); by waiting 10 seconds after their final 

duet we were able to consider any vocalizations they produced a new bout. We repeated the 

playback stimuli until the focal males produced 10 or more duets in the absence of other 

neighbouring males’ duets (average ± SE playback length: 26 ± 3 min; n=39 trials). Playback 

continued until the focal males stopped duetting and became silent for 10 seconds. Once 

playback stopped, we recorded the males’ vocalizations for an additional 15 minutes.  
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We conducted 52 playback trials at 32 display areas. At each site we assigned one of the 

nine playback stimuli (random selection without replacement until all nine stimuli had been 

used). We randomly assigned whether each subject received a “slow” or “fast” playback rate. 

For 20 of the 32 display areas, we returned to the site on a different day (4.5 days later ± 0.8 

mean ± SE) and broadcast the same stimuli at the alternate rate; we ensured that these trials 

were conducted at the same time of day, within 1 hour, to minimize any influence of time-of-day 

on calling behaviour. We avoided conducting playback at the same site or adjacent sites within 

the same 48h period. In 13 of the 52 trials the males did not produce 10 duets in a row, reducing 

our final sample size to 39 trials at 24 separate display areas. 

We recorded all playback sessions using autonomous digital recorders (Wildlife 

Acoustics’ Song Meters 22050 kHz, WAV format, 16 bit, stereo recording). These recorders were 

placed 3-10 m away from the playback speaker. Within a single trial the fine structural qualities 

of the stimulus, its fixed spacing, and consistent amplitude allowed us to discriminate between it 

and any response from the males. We assigned duets to either the focal males or the playback 

speaker. 

Data Analysis 

 Which null model is most appropriate for estimating chance levels of overlap is a 

controversial topic (see Searcy and Beecher 2009; Naguib and Mennill 2010, Searcy and Beecher 

2011). Research on invertebrates and anurans favours the use of circular statistics and phase 

response curves (e.g. Greenfield 1994a; Greenfield 1994b). Some cetacean and avian 

researchers use a resampling approach (e.g. Miller et al. 2004; Fitzsimmons et al. 2008; Schulz et 

al. 2008). Other avian behavioural biologists use duty cycle models to estimate chance levels of 

overlap (Ficken et al. 1974; Searcy and Beecher 2009). Given the diversity of null models for 
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estimating chance levels of overlap, and the fact that each model can provide different 

interpretations, we opted to use three complementary null models to assess whether male 

Long-tailed Manakins space their duets non-randomly relative to rival males to increase or 

decrease levels of overlap: (1) circular statistics, (2) resampling analyses, and (3) duty cycle 

calculations. The circular statistics approach assesses whether males called non-randomly 

relative to one another and accounts for the cyclic nature of counter-calling interactions. The 

resampling approach, in contrast, assesses whether overlapping is more or less frequent than 

expected if males were calling without reference to one another while maintaining the same call 

rate. Finally, the duty cycle approach assesses whether the total number of overlapping calls is 

different than we would expect based on chance, and whether birds are more likely to overlap 

versus avoid being overlapped. 

In our analysis of playback trials, we treated the playback sounds as the reference 

against which the natural males’ response was measured. In naturally-occurring interactions, 

there is no obvious reference pair of males, because the two pairs of males call back-and–forth 

in succession. We arbitrarily chose a reference pair in natural counter-calling bouts, assigning 

the pair of males that produced the final duet within a bout of counter-calling as the reference 

pair. The reference pair can be considered analogous to the playback males in the playback 

trials, in that all measurements are made relative to this pair. We then re-analyzed each two-

way interaction in our naturally-occurring interactions, treating the other pair of birds as the 

reference pair. By performing these analyses both ways, and representing each as a separate 

analysis, we avoid pseudoreplication in that we do not have two points from the same trial 

represented in one analysis.  
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Null Model 1: Circular Statistics 

To calculate the timing of each duet relative to the reference males we performed 

calculations following a modified version of the methods outlined in Zar (1999) (Equation 1.). 

Equation 1. 

 

 

Where A is degrees between the onset of the responding males’ duet and the last duet 

from the reference males; X is the time of the onset of the response of interest (in this 

case the duet of the responding males); R1 is the time of the onset of the reference 

males’ duet preceding the responding males’ duet; and R2 is the time of onset of the 

next duet from the reference males. A value for A of 180 degrees would represent a 

duet from the responding males that began exactly halfway between two successive 

duets from the reference pair; a value of 10 degrees would represent a duet from the 

responding males that began shortly after the onset of a duet from the reference pair; 

and a value of 350 degrees would represent a duet from the responding males shortly 

before that of the reference males’ next duet. 

  To calculate the average response for each trial we converted A to X, Y coordinates by 

taking the sine (X coordinate) and cosine (y coordinate) of the angle A. By taking the average of 

the X and Y points for each recording we were able to calculate an average response within each 

group (Zar 1999). When plotted on a canonical plot this generated a single point, where the 

angle from the origin represented the average timing of where the responding males spaced 

their duets relative to the reference pair’s duets (analogous to A described above), and where 

A = 
360 (X- R1) 

R2 - R1 
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the distance from the origin (r) represented the consistency of call spacing (r varies from 0 to 1; 

a value of 1 would mean males were invariant in where they spaced their duets relative to the 

reference males’ duets, while a value of 0 would indicate that males were calling completely 

randomly). We then calculated the “mean of the means” by taking the average of all of the 

groups’ responses, giving a mean angle and associated effect size for the population (Zar 1999). 

We then performed a parametric one-sample second-order analysis of angles to test the null 

hypothesis of no directionality that one would predict if males were calling randomly (Zar 1999). 

When the combined trials showed an effect that was significantly different from the null value of 

0, we calculated 95 percent confidence limits for the second-order mean angle where possible 

(Zar 1999; for circular statistics, confidence limit calculations are not possible when the 95 

percent confidence interval exceeds 180 degrees). 

To analyze playback responses using circular statistics, we repeated the method 

described above of calculating an average response for each trial, and for all of the trials pooled 

together, using the playback as the reference against which we judged the responding males. In 

six of the 39 trails where males responded, there was a playback period (>10 playback duets) 

where a lone male produced solo calls (Fig. 3.1b), in contrast to the typical response where both 

males responded with coordinated duets. Our preliminary observations suggested that these 

“solo males” timed their calls differently, often overlapping the playback; we therefore chose to 

analyze solo responses separately from the duet responses. We analyzed solo responses using 

only the circular statistics method of analysis; solo responses were not easily analyzed with 

resampling or duty cycle techniques (below) because they were often non-continuous meaning 

they could be interspersed with a period of duets. Resampling and duty cycle models both 

require that analyses are conducted over an interval where both individuals are calling (See 
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Planck et al. 1975 for a formal description of this problem), and as such we could not analyze 

these non-continuous data using these two methods. 

Null Model 2: Resampling Statistics 

 Our resampling approach involved comparing the observed amount of overlapping in 

calls during counter-calling exchanges (either naturally occurring, or in response to playback) to 

the amount of overlapping during counter-calling exchanges where the relative timing of calls 

had been altered by the addition of a fixed random interval multiple times. This approach 

removed the association of timing between the two counter-calling pairs’ duets, permitting a 

calculation of the chance level of overlap if the pairs of males were calling with the same 

spacing, but with no reference to one another. We assigned the males producing the final duet 

as being the reference pair against which we measured the responding pair. Keeping the timing 

of the calls of the reference pair fixed, we added a single random value to the start time of each 

of the responding males’ duets between zero and the average rate of the reference males’ duets 

(range: 0 to 4.2 sec). We then measured the total amount of time (in seconds) that overlapping 

of duets occurred in this manufactured bout of counter-calling. Using a custom-written macro 

(Microsoft Excel, 2007) we repeated this process 5,000 times for each recording, varying the 

random number each time, to calculate a null distribution of the total amount of overlap. We 

calculated the median of the null distribution for each pair of males and then compared this to 

the observed value using a Wilcoxon signed-rank test. As described above, we then flipped the 

identity of the reference and responding males and repeated the analysis. 

 To analyze playback responses using a resampling approach, we followed the same 

method, assigning the playback duets to be the reference against which we judged the natural 

males’ response. We calculated the total amount of overlap (i.e. playback overlapping 
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responding males and responding males overlapping playback), and compared these to our null 

value using two separate Wilcoxon signed-rank tests, one for slow-rate playback and one for 

fast-rate playback.  

Null Model 3: Duty Cycle Analysis 

 We followed a modified version of the duty cycle methods outlined by Ficken et al. 

(1974) for determining the expected number of overlapping vocalizations (Equation 2).  

Equation 2. 

PT = NA DB + NB DA 

Where PT is the total number of calls that would be expected to be overlapping if males 

were calling randomly with no reference to one another; NA is the total number of calls 

produced by the first pair of males; DB is the duty cycle, or proportion of time spent 

calling, of the second set of males; NB is the total number of calls produced by the 

second pair of males; and DA is the duty cycle of the first set of males. We compared the 

predicted number of overlaps based on duty cycle to the observed number using a 

Wilcoxon signed-rank test. This equation determines the total number of times that A is 

expected to overlap B, plus the number of times that A is expected to be overlapped by 

B if A and B are calling with no reference to one another.  

 To analyze playback responses with a duty cycle approach, we additionally tested 

whether males overlapped playback or were overlapped by playback more or less than would be 

expected (Equations 3 and 4 respectively). By analyzing the data using these different 

approaches we can determine whether birds overlapped more duets than we would expect 
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based on chance, and whether they were selectively calling after the onset of playback 

(overlapping the playback), or before the onset (being overlapped by the playback). We 

calculated the expected and observed values for each of these methods and tested for 

significance using a Wilcoxon signed-rank test. We did this for each playback rate, so each pair of 

males was only represented once in each test. 

Equation 3. 

PM=NADB 

Where PM is the number of playback calls that males are expected to overlap; NA is the 

number of calls produced by the males; and DB is the duty cycle of the playback. 

Equation 4. 

PP=NBDA 

Where PP is the number of playback calls that are expected to overlap the males; NB is 

the number of calls produced by the playback; and DA is the duty cycle of the males. 

Behaviour During Playback 

 To characterize the responses of males to playback, we compared the interval 

between their calls during pre-playback, playback, and post-playback periods. We were 

interested in understanding whether males adjusted their calling rate in response to 

playback, and whether their calling rate varied with the two rates of playback. As 

explained above, the pre-playback and playback period varied in length depending on 

the behaviour of the subjects. For this analysis, we focused on the first 10 consecutive 
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(where the time between successive calls did not exceed 10 seconds) duets of the pre-

playback, playback and post-playback periods. Our response variable was the average 

inter-call interval between the first 10 calls within a bout. We normalized this response 

variable using a log transformation, but present the non-transformed values in our 

figures. We performed a Student’s t-test to examine differences between treatments. 

 Circular statistics were calculated manually using Microsoft Excel 2007. All 

remaining statistics were conducted in JMP (SAS Institute; version 8). All values are 

reported as means ± SE. 

Results 

Natural Counter-Calling Exchanges 

During natural counter-calling exchanges between neighbouring pairs of duetting males, 

Long-tailed Manakins selectively called in the silent interval between their neighbours’ duets 

(e.g. Fig. 3.1c). We used circular statistics to analyze these counter-calling exchanges, using each 

of the two pairs of males as the reference pair in turn. In both analyses, there was a significant 

departure from the null model of no directionality (parametric one-sample second-order 

analysis of angles; Fig. 3.2a: F2, 11= 57.1, N=13, P <0.001; Fig 3.2b: F2, 11= 59.5, N= 13, P <0.001). 

The mean phase angles were 176.6° (Fig. 3.2a) and 181.3° (Fig. 3.2b) with r values of 0.28 and 

0.21 respectively, placing the average timing of calls almost perfectly out-of-phase with the 

reference males’ duets. In other words, circular statistical analysis demonstrates that counter-

calling pairs of Long-tailed Manakins alternate their calls during bouts of concurrent calling. 

 We used a second null model to evaluate call overlapping using a resampling approach. 

This approach showed that Long-tailed Manakins overlapped significantly less than expected by 
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chance (Wilcoxon signed-rank tests: Fig 3.2c: W=45.5, N=13, P< 0.001; Fig 3.2d: W=45.5, N=13, 

P< 0.001). Males overlapped one another almost 50% less than would be expected if they were 

calling at the same rate with no reference to one another. In other words, resampling analyses 

supports the conclusion that Long-tailed Manakins avoid overlapping the duets of neighbouring 

males. 

We used a third null model to evaluate call timing involving duty cycle calculations. This 

approach showed that the number of duets that neighbouring males overlapped was 

significantly less than would be expected if males were calling randomly (Equation 2; Wilcoxon 

signed-rank tests: Fig. 3.2e: W=45.5, n=13, P<0.001; Fig 3.2f: W=45.5, n=13, P<0.001). This 

analysis revealed males overlap nearly 50% fewer calls than would be expected under a null 

model of random calling. 

Playback Experiment 

In experimental counter-calling exchanges where duetting male Long-tailed Manakins 

responded to playback of a nearby unfamiliar pair of rivals, birds behaved differently, calling 

with substantial variability with respect to the timing of playback duets (e.g. Fig. 3.1d). Circular 

statistics revealed that responses to playback of duets at a slow rate revealed significant 

departure from the null hypothesis of no directionality (Fig. 3.3a; F2, 13= 6.4, N=15, P=0.01). The 

average phase angle was 171.2°, representing males calling near the middle of the silent interval 

between playback duets, on average; yet the strength of this relationship was weak (r=0.03) 

indicating substantial variation in the timing of calls (Zar 1999). Similarly, responses to playback 

at the fast rate also showed a significant departure from the null hypothesis of no directionality 

(Fig. 3.3a; F2, 19= 11.3, N=21, P<0.001). Here, the average phase angle was 282.3°, representing 

males calling late in the silent interval between playback duets, on average; however, the 
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strength of this relationship was also weak (r=0.06) indicating substantial variation in the timing 

of calls (Zar 1999; note that the small r-values for both slow- and fast-rate playback preclude the 

calculation of confidence intervals). Taken together, these results suggest that pairs of males do 

not call randomly, but they do not space their duets relative to playback according to the more 

consistent pattern as we observed during natural counter-calling exchanges.  

Using a null model based on resampling to calculate chance levels of overlap, we found 

that male-male pairs of Long-tailed Manakins overlap playback more than would be expected by 

chance. Pairs overlapped playback up to 50% more compared to the null hypothesis of chance 

overlapping. This higher-than-chance level of overlap was true for playback duets presented at a 

slow rate (Fig. 3.3c) and fast rate (Fig. 3.3d), although only the fast rate was significant at the 

two-tailed level (Wilcoxon signed-rank test: slow rate W=39.5, N=18, P=0.09; fast rate: W=64.5, 

N=21, P=0.02;).  

 Using a null model based on duty cycle to calculate chance levels of overlap, we found 

that the total number of overlapping calls (i.e. the sum of males overlapping playback and 

playback overlapping males; Equation 2), was not significantly different from levels expected by 

chance. This was true for both slow rate playback (Fig. 3.3e; W= 22.5, N=21, P=0.45) and the fast 

rate playback (Fig. 3.3f; W=30.5, N=18, P=0.20). Males also did not significantly alter the number 

of playback duets that they overlapped either at the slow rate (expected: 11.8 ± 2.6; observed: 

11.8 ± 2.6; W=7.5, N=18, P=0.8) or the fast rate (expected: 7.0 ± 1.0; observed: 9.6 ± 3.1; W=7.5, 

N=18, P=0.8). However, the number of times playback duets overlapped the subjects’ duets was 

lower than expected under a duty cycle model for both the slow rate playback (expected: 11.2 ± 

2.5; observed: 9.9 ± 2.6; W=48.5, N=18, P=0.03) and the fast rate playback (expected: 7.3 ± 1.0; 

observed: 6.3 ± 1.1; W=50.5, N=21, P=0.08) although this was statistically significant only for the 
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slow rate analysis. Consequently, the duty cycle model demonstrates that males call in such a 

way as to avoid being overlapped. 

Throughout the majority of all 39 responses, birds responded to playback with vocal 

duets. However, during six trials there was a period where a single male produced solo toledo 

calls (e.g. Fig. 3.1b) in response to the playback. These solo callers timed their calls to begin just 

after the playback (Fig 3.1d; Fig. 3.4). The small sample size (N=3 instances in both the slow and 

fast rate playbacks) precludes the use of circular statistics to test for directionality, yet the 

strength of the effect appeared high (r=0.49 and 0.90 respectively) and the direction in which 

males were spacing their calls was consistent (17.2° and 4.1° respectively). Therefore, solo-

calling males appear to space their calls to actively overlap with playback, calling immediately 

after the onset of playback duets.  

Behaviour During Playback 

 Compared to pre-playback call rates, males slowed their rate of calling during playback. 

A linear mixed-effects model of inter-call interval before, during, and after duets played back at 

slow and fast rates revealed significant variation, where the inter-call interval was significantly 

shorter before playback than it was during playback, returning to an intermediate level following 

the end of playback (Fig. 3.5; playback period fixed effect: F2, 77 = 3.1, P = 0.05); call rate did not 

vary significantly between slow rate and fast rate playback treatments (playback rate fixed 

effect: F1, 87 = 0.0, P = 1.0). In 22 of our 52 playbacks, male Long-tailed Manakins approached the 

area near the playback speaker, sometimes coming as close as 5m from the loudspeaker, but 

usually 10m or farther. This occurred at 15 of the 32 display areas where we performed 

playback. These males would often flick their wings and give chitter vocalizations, which are 

thought to function in agonistic interactions (see table 1; Trainer and McDonald 1993).  
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Discussion 

Stereo recordings of naturally-occurring bouts of counter-calling between Long-tailed 

Manakins revealed that males timed the production of duets to avoid overlapping the duets of 

males at neighbouring display areas. Males were significantly more likely to produce duets in the 

middle of the silent interval between their neighbours’ duets, and they overlapped their 

neighbours’ duets less frequently and for less total time than would be expected under two 

different null models. In contrast to natural counter-calling behaviour, males behaved differently 

when presented with playback simulating a pair of unfamiliar males calling close to their display 

perch. Under these circumstances males called with little reference to the timing of playback 

duets. Different analytical models yielded different conclusions with respect to the incidence of 

overlapping during playback; circular statistics showed that males called non-randomly but with 

substantial variation; a resampling approach showed that males overlapped fast rate playback 

more than expected by chance and slow rate playback showed a trend in the same direction; 

conversely, duty cycle models showed that overlapping did not exceed levels predicted by 

chance. Interestingly, males sometimes produced solo calls in response to playback; these solo 

callers appeared to actively overlap the playback, calling immediately after the onset of playback 

and effectively turning the playback duets into trios. Overall, our analyses reveal that males 

avoid overlapping known neighbours at adjacent display perches, but produce duets with more 

variability in timing when counter-calling with playback simulating unfamiliar rivals in close 

proximity to their display perch. 

Call Timing During Natural Bouts of Counter-calling 

More than 30 studies have examined overlapping during vocal interactions in birds 

(reviewed in Naguib and Mennill 2010). These studies reveal that animals may alter the degree 
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of overlap depending on context (e.g. paired Nightingales overlap playback less than bachelors; 

Kunc et al. 2007), or they may alter their behaviour after being overlapped (e.g. overlapped 

European Blackbirds decrease song duration and avoid song posts where they had been 

overlapped; Todt 1981). Several studies reveal that levels of overlap under natural 

circumstances are lower than expected based on chance (e.g. Foote et al. 2008; Fitzsimmons et 

al. 2008), just as we found for natural counter-calling bouts in manakins. At least one previous 

study has demonstrated that neighbouring males vary their song rate relative to their 

neighbours, producing a predictable pattern of alternation (Smith and Norman 1979). Compared 

to these previous investigations, our findings most closely resemble those of Brindley (1991), 

who found that European Robins overlapped playback of familiar neighbours less, and unknown 

territorial intruders more. Taken together, these results support the following conclusions: 

under natural circumstances with known neighbours, birds tend to avoid overlap; during 

encounters with other rival individuals, either simulated through playback or under natural 

circumstances during intrusions, birds show more variable call timing and sometimes an increase 

in their level of overlap.  

During natural bouts of counter-calling, Long-tailed Manakin males avoid overlap. They 

may do so for several reasons. First, if overlapping sounds masks the identity of the callers, or 

the quality of their vocalizations, males may strive to preserve the fine structural qualities of 

their duets by avoiding overlap. Second, if overlapping is a threatening or aggressive signal, 

neighbouring birds may avoid overlap in order to minimize aggressive interactions between 

frequently-encountered animals. Third, males may assess the quality of adjacent, rival animals 

by listening to their duets, and avoid overlapping so that they can have the opportunity to assess 

their neighbours in their own inter-call intervals. Fourth, by alternating the spacing of their calls 

males can create a higher duty cycle of species-typical vocalizations for the area around their 
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display areas, which might increase female mate attraction opportunities. Our playback results, 

where males did not avoid overlap to the same degree as in the natural counter-calling 

interactions, do not provide support for the third or fourth explanation. The third explanation is 

not supported given that unknown intruders are typically considered a greater threat than 

known neighbours, and males should be particularly attentive to assessing the quality of the 

unknown potential competitors (Ydenberg et al. 1988), which we did not observe in our 

playback data. Similarly, the fourth explanation is not supported, given that enhancing the duty 

cycle of an area should be just as common if the contributors are familiar or unfamiliar rivals. 

Given that the duet calls of Long-tailed Manakins are understood to function primarily in mate 

attraction, and the fine structural details are thought to be associated with mating success 

(Trainer and McDonald 1995), the first of these four explanations seems most likely; males may 

maximize their sexual advertisements if they minimize their broadcast of overlapping calls. 

All of the previous research examining acoustic overlap in birds has focused on territorial 

songbirds (with the exception of Miyazaki and Waas, 2002, who found that female Little Blue 

Penguins preferentially approach an overlapping loudspeaker). By focusing on non-territorial 

birds, our study provides an expanded perspective for understanding how animals space their 

signals to avoid interference with one another in an acoustically competitive environment. Like 

all lekking species, Long-tailed Manakins do not exhibit resource-based territoriality (Trainer and 

McDonald 1993). Instead, up to 13 males form dominance-structured social groups and display 

for females (McDonald 1993; Trainer and McDonald 1993). While individuals may defend their 

position in the dominance hierarchy through aggressive interactions, aggressive territorial 

interactions in this species are unknown (McDonald 1993). Our analyses reveal that manakins 

avoid signal overlap, in a pattern that matches what is known from several studies of territorial 

birds (Naguib and Mennill 2010). As with territorial birds, lekking animals are in regular contact 
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with other conspecific animals that are simultaneously attempting to attract breeding partners 

in an acoustically competitive environment. Our results reveal that call timing in a lekking 

manakin shows similar patterns to those seen in territorial songbirds. 

Call Timing in Response to Playback 

Our playback results show a different pattern, where male Long-tailed Manakins called 

with greater variation during interactions with unfamiliar rivals, and often overlapped unknown 

rivals while avoiding being overlapped themselves. These results suggest that lekking birds 

behave differently when counter-calling with unfamiliar rivals or rivals calling in immediate 

proximity to their display perch. This may be analogous to the “dear-enemy” phenomenon 

known in territorial songbirds, where neighbours’ songs represent less of a territorial threat 

because their position and behaviour is known (Fisher 1954; Temeles 1994). Conversely, the 

overlapping directed at the playback (as revealed through our resampling analysis of fast-rate 

playbacks) might represent an aggressive form of signal interference, as has been suggested by 

previous studies of territorial songbirds (Naguib and Todt 1997; Mennill and Ratcliffe 2004; 

Naguib and Mennill 2010). Another possible explanation for the difference between the 

response of males to familiar neighbours versus unfamiliar playback-simulated rivals is that the 

responding males did not perceive our simulation as a pair of manakins. This explanation is 

unsatisfactory for a variety of reasons, including the fact that our circular statistics showed that 

males were calling non-randomly with respect to playback sounds; males altered their call rates 

during playback; total overlap exceeded chance levels in the fast-rate playback trials (and 

showed a nonsignificant trend in the same direction for slow-rate playback trials); solo males 

actively overlapped the playback sounds; males avoided being overlapped by the playback; and 

males would often move to the area immediately around the speaker when responding.  
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Alternatively, pairs of male Long-tailed Manakins may have responded differently to 

playback duets compared to neighbours’ duets because of the location of the acoustic 

competitors. We presented playback 5-10m away from the primary display perch for each 

subject pair, which is closer to their display area than is typical for counter-calling males 

(typically the closest neighbouring perch in our population is approximately 75m away, although 

they can be as close as 25m; pers. obs.). Although lekking birds are understood to be non-

territorial, hearing such a nearby pair of rivals may incite different forms of behaviour. Female 

Long-tailed Manakins show site fidelity, returning to previously favoured display areas in 

successive years (McDonald 1989; McDonald and Potts 1994), and males are thought to build 

the “reputation” of the display area through their duets and visual displays each year (McDonald 

and Potts 1994; McDonald 2010). As a result, unknown males performing duets near the focal 

pairs’ display area could negatively influence the reputation of the area, or the unfamiliar males 

could be seen to be taking advantage of a display area’s reputation in an attempt to enhance 

their own mating opportunities (McDonald 1993). Future work could tease these two theories 

apart by presenting playback from familiar and unfamiliar males at different distances from the 

display perch, while examining the responding males’ overlapping behaviour. If proximity to the 

subject’s display perch is a key factor, this effect should disappear when sounds are presented 

from a distance more akin to what we see under natural circumstances (i.e. between 25 and 

75m). 

Although anecdotal, our results on the solo-calling behaviour of subjects in response to 

playback provides interesting insight into call timing. Our study animals, like many Chiroxiphia 

manakins, produce joint male-male displays to attract females to their display perch and entice 

them to mate (McDonald 1989b; DuVal 2007). However, unlike some Chiroxiphia, this male-male 

association is obligatory for Long-tailed Manakins; males displaying alone have never been 
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observed to copulate with a female (Trainer and McDonald 1993; Prum 1994; DuVal 2007). As a 

result, a solo male’s only opportunity to reproduce lies in producing coordinated displays with 

other males. Turning playback duets into trios may represent an attempt to join the queue at 

the display perch (McDonald 1993; Trainer et al. 2002). It is interesting to note that the only 

previous study to quantify the number of solo toledo calls found that “no bout of more than 

eight consecutive solo toledos was noted during more than 3,000 hours of scheduled 

observation” (Trainer and McDonald 1993). In contrast, we found six instances of males 

producing bouts of solo toledo calls, including five instances where males produced more than 

eight consecutive solo toledos (average = 15.4; in the sixth case, a bout of 10 solos was 

interrupted by a short bout of duets). This occurred over a comparatively small time scale (the 

total recording time for the playback experiment was just over 27 hours). Our findings suggest 

that solo males respond differently to playback than pairs of males.  

Null Models for Assessing Overlap 

 Currently there is no well-accepted null model for calculating chance levels of overlap, 

for comparison to the measured behaviour of communicating animals (Searcy and Beecher 

2009; Naguib and Mennill 2010; Searcy and Beecher 2011). For this reason, we used three 

different null models in our analyses of call timing; circular statistics, resampling analysis, and 

duty cycle models. We demonstrate that under some circumstances one can draw very different 

conclusions from these different null models. For example, in our investigation of male 

responses to playback, our resampling analyses showed that males overlapped playback for 

longer than would be expected based on chance, whereas our duty cycle analyses revealed that 

male duets overlapped the playback at levels that would be expected based on chance. While 

both showed higher levels of overlap than what we observed under natural conditions. Had we 
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only used a null model based on duty cycle and only performed a playback experiment we would 

conclude that counter-calling males do not deviate from chance levels of overlap, whereas the 

resampling approach would indicate that males overlapped playback significantly more often 

than expected based on chance. Consequently, the analytical approach used to calculate chance 

levels of behaviour must be considered carefully before sound conclusions can be drawn.  

The three different analytical approaches used here provide different perspectives, and 

each approach has strengths and limitations. Circular statistics provide an excellent descriptive 

tool, as they allow the researcher to easily assess whether there is deviation from randomness. 

Circular statistics are an effective tool for detecting subtle patterns in cyclical data, and the back-

and-forth dynamics of many animal signalling contests can be recorded as cyclical data. The 

circular statistics approach is limited when call rate or call duration of the reference signal varies 

greatly, and this technique is unable to detect even strong effects at low sample sizes, as we 

observed here. Resampling analysis is an effective tool for preserving even highly variable timing 

of calls, and for establishing chance levels that incorporate the actual spacing of calling birds. 

Resampling requires a great deal of computing power, however, as the bouts of signals must be 

shuffled several thousand times to create appropriate estimations. Analyses based on duty cycle 

models are relatively simple to perform, and as such they have received more widespread use 

(Searcy and Beecher 2009). Duty cycle models provide a very similar approach to resampling 

analysis, and may be more robust when analyzing natural counter-calling exchanges with 

variable call rates or very long inter-call intervals. Duty cycle measurements are less appropriate 

for short counter-calling exchanges, where changes in timing to just one call can lead to 

dramatic changes in calculated levels of overlap. Both duty cycle models and resampling 

analyses must be restricted to a single continuous bout where both individuals are calling (Ficken 

et al. 1974; Planck et al. 1975). We recommend the use of circular statistics to determine if the 
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spacing of calls between counter-calling individuals is random. As we showed here, circular 

statistics provide a compelling tool for visualizing that counter-calling males place their calls 

midway between the onset of their opponent’s previous and next calls. If circular statistics 

reveal non-random call timing, we recommend resampling as a follow-up analysis to quantify 

the amount of overlap that occurs, given that this technique appears capable of detecting subtle 

differences from background variation in call timing.  
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Figure 3.1. Sound spectrograms depicting the toledo calls of Long-tailed Manakin males 

(Chiroxiphia linearis). (a) A typical duet, comprising the tonal calls of a pair of males produced in 

near perfect synchrony. (b) A solo call, produced by a lone male; such vocalizations are 

uncommon, but occurred in 15% of playback trials. (c) Spectrogram of two counter-calling pairs 

of manakins at adjacent display perches. The vocalizations from one pair of males are 

underscored in black bars and the other pair in white bars. In this bout of naturally-occurring 

counter-calling, the two males produced duets in the silent intervals between each others’ calls 

in alternation. (d) Spectrogram showing playback stimuli (underscored in black bars) and the 

counter-calling responses of a pair of manakins (underscored in white bars). (e) Spectrogram 

showing playback stimuli (underscored in black bars) and the solo calls of a lone manakin, who 

overlapped the playback stimuli (underscored in white bars) to create trios. These recordings 

were collected with omni-directional microphones in the field, resulting in low signal-to-noise 

ratios. 
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Figure 3.2. Neighbouring pairs of Long-tailed Manakins time their duets to avoid overlap during 

natural bouts of counter-calling. Circular statistical analyses (a, b; see text) reveal that duetting 

males call in the silent interval between their neighbours’ calls (0 degrees represents the onset 

of the duet from the reference males, so that perfectly alternating calls are represented by a 

phase angle of 180 degrees; grey points show the mean for each trial; black arrows show means 

for the population where the length of the arrow corresponds to the effect size, r; the shaded 

areas correspond to the 95% confidence interval around the population mean; note that the 

perimeter of the circle corresponds to a value of r=0.6). Analysis involving a resampling approach 

(c, d; see text) reveals that adjacent pairs of males produce fewer overlapping duets (measured 

in seconds of overlapped sounds) than expected by chance. Analysis involving duty cycle models 

(e, f; see text) similarly reveal that adjacent pairs of males produced fewer overlapping duets 

than expected by chance. Values in (c) through (f) are means ± SE. In each analysis, the same 

pattern held true whether the males producing the final duet in the bout of counter-calling were 

used as the reference pair (a, c, e) or if the males producing the penultimate duet were used as 

the reference pair (b, d, f).   
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Figure 3.3. In response to playback simulating a rival, intruding pair, male Long-tailed Manakins 

called with substantial variation, both for playback broadcast at a slow-rate with an inter-call 

interval of 3.5 seconds (a, c, e) or a fast-rate where calls had an inter-call interval of 2.4 seconds 

(b, d, f). Circular statistical analyses (see text) reveal no strong directional pattern in the timing 

of subjects relative to playback duets either at a slow rate (a) or a fast rate (b), as indicated by 

the short vectors corresponding to the mean phase angles (0 degrees represents the onset of 

the playback duets; grey points show the mean for each trial; black arrows show means for the 

population where the length of the arrow corresponds to the effect size, r; in this case the edge 

of the circle corresponds to an r value of 1). Analysis involving a resampling approach (c, d; see 

text) reveals that subjects overlapped playback duets significantly more often than expected by 

chance for duets broadcast at a slow rate (c), and showed a tendency in the same direction for 

duets broadcast at a fast rate (d). In contrast, analysis involving duty cycle models revealed no 

difference between the observed and expected numbers of overlapping calls for duets broadcast 

at a slow rate (e) or a fast rate (f). Values in (c) through (f) are means ± SE.  
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Figure 3.4. In a minority of playback trials to Long-tailed Manakins, males produced solo toledo 

calls in response to playback, instead of the more typical duets. Circular statistical analysis of the 

timing of these solo calls reveals that the solo callers showed a strong tendency to produce their 

solos immediately after the start of playback (0 degrees represents the onset of the playback 

duets; grey points show the mean for each trial; black arrows show means for the population 

where the length of the arrow corresponds to the effect size, r; in this case the edge of the circle 

corresponds to an r value of 1). This pattern was evident for both duets broadcast at a slow rate 

(a) and duets broadcast at a fast rate (b). 
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Figure 3.5. Pairs of male Long-tailed Manakins varied their calling rate, represented here as 

inter-call interval, in response to playback. Prior to playback, birds called with the shortest inter-

call intervals; during playback, males called with significantly longer inter-call intervals; after 

playback had ceased, males called at statistically intermediate levels. Dots represent means and 

whiskers show standard error. Black dots represent slow-rate playback responses, and white 

dots represent fast-rate playback responses. Letters show a post-hoc test of honestly significant 

differences, where categories not connected by the same letter are statistically different. 
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Chapter 4: Thesis summary 
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Chapter summary 

Many animals produce acoustic signals which can function in agonistic intrasexual 

contexts as well as intersexual communication (Bradbury and Vehrencamp 2011). The elaborate 

songs of birds are a well studied example of signals that function in both territory defence and 

mate attraction (Catchpole and Slater 2008). Understanding the role vocalizations play in these 

contexts can often prove challenging, because the inter- and intra-sexual aspects of 

communication are often tightly connected. For example, measuring female preference for male 

acoustic ornaments is often confounded as a result of different factors being favoured in social 

mates versus extra-pair partners (Searcy 1984). By focusing on a lekking species where males are 

non-territorial we can eliminate this confounding effect. My thesis focused on the female 

attraction function (as measured through visitation) of male vocal behaviour in the absence of 

the potentially confounding influence of territory defence.  

In Chapter 2 I examined the effect of male vocal behaviour on female visitation in a 

population of Long-tailed Manakins in Costa Rica over the course of a two year field study. To 

quantify female visitation I analyzed the visitation behaviour of Long-tailed Manakin females at 

38 unique display areas using a novel radiotracking system called Encounternet (system details 

provided in Appendix I). To quantify vocal behaviour I collected and annotated over 1,100 hours 

of vocal recordings and quantified the level of temporal synchrony and frequency matching in 

over 510 duets. This is arguably the largest study of the link between female visitation and male 

vocal behaviour that has been performed to date in this species (McDonald 1989, Trainer and 

McDonald 1995) and one of the larger such studies across all avian species. Surprisingly, my 

analyses revealed that the production of male-male toledo duets, which are typically thought to 

function in female mate attraction, were negatively correlated with female visitation. The total 

output of teeamoo calls, a vocalization understood to serve in attracting a male partner to 
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perform duets, was positively correlated with female visitation. Other vocalizations that were 

predicted to be positively correlated with female visitation (the output of owng calls, dance song 

bouts, and buzz-weents) showed no relationship with female visitation. The quality of the toledo 

duets, both in terms of frequency matching and temporal synchrony, were also not correlated 

with female visitation behaviour. These results are counter-intuitive, and stand in contrast to 

previous investigations of a highland cloud forest population of this species that have been 

previously published (McDonald 1989, Trainer and McDonald 1995). I suggested that males that 

fail to attract females invest more time and energy in producing toledo duets in an attempt to 

increase their reproductive success, explaining the negative association between toledos and 

female visitation. Similar patterns of female visitation and behaviour shaping male vocal output 

have been seen in other tropical lekking birds as well as territorial species (Patricelli et al. 2006, 

Hennin et al. 2009). My results stand in contrast to some previous studies by McDonald and 

colleagues (McDonald 1989, Trainer and McDonald 1995, McDonald 2010), which have found 

positive correlations between female visitation and mating success and the output of toledos, 

dance songs and buzz-weents, as well as the degree of frequency synchrony between the two 

duet contributions. Similarly, those same studies found a negative correlation between the 

production of teeamoo calls and female mate attraction. This could be the result of climatic 

differences or differences in preferences between females within my study population versus 

McDonald’s study population. My research highlights the importance of studying multiple 

populations, where different factors may influence male vocal behaviour and female visitation 

behaviour.  

In Chapter 3 I employed an observational as well as experimental approach to assess 

how male Long-tailed Manakins coordinate the timing of their calls, by increasing or decreasing 

levels of temporal overlap. First, I employed a novel stereo recording system to collect long 
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natural bouts of concurrent calling between pairs of neighbouring males. I collected recordings 

from 13 unique dyads of neighbouring male pairs where each pair contributed at least 10 duets. 

I used three widely supported methods for studying call spacing and quantifying chance levels of 

overlap: circular statistics, resampling, and duty cycle analysis. Under natural conditions, with 

known neighbours, all three methods showed that neighbouring pairs space their calls out non-

randomly to avoid overlapping one another. I also performed a playback experiment where I 

presented pairs of males with recordings of toledo duets to simulate an unknown pair of rival 

males calling close to their display perch. I did this at 52 locations, and of these 39 responded 

with at least 10 duets. I performed the same three statistical analyses and found a pattern that 

differed from the natural bouts of counter-calling. Under playback conditions males called with 

little uniformity (as measured through circular statistics), but appeared to overlap the playback 

for longer than would be expected based on chance (as measured through resampling). This was 

in spite of the fact that they did not appear to selectively overlap more duets than would be 

expected based on chance (as measured through duty cycle analysis). However, the number of 

duets they overlapped was greater than what was seen under natural conditions. In a few cases 

where birds responded to playback with solos instead of duets, they actively overlapped the 

playback turning the duets into trios. A small sample size of solo toledos precluded statistical 

analyses. Overall these results show that males alter their calling behaviour based on those 

around them, in order to minimize overlap with known neighbours, but not to minimize overlap 

with playback simulating an unfamiliar rival pair calling close to their perch.  

More studies of male Long-tailed Manakin vocal behaviour with large sample sizes will 

be required to clarify the relationship between vocal behaviours and their influence on female 

mating behaviour. My recordings of male vocal behaviour lasted up to 24 hours. By assessing the 

relationship between male vocal behaviour and female visitation across longer timeframes, we 
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may better understand female preferences for male vocal performance, and how it changes over 

the course of a breeding season. The use of experimental approaches, either in the lab or in the 

field, provides potential for future research in this species in documenting female preference for 

male traits and assessing the relationship between female behaviour and male performance in 

this species. For example, to assess the role of female behaviour on male display Patricelli et al. 

(2006) used robotic models of Satin Bowerbirds that they could manipulate to determine if 

males altered their behaviour in the response to female signals. Similar methods could be used 

in Long-tailed Manakins to assess the effect of female behaviour on male courtship behaviour. 

To assess female preferences for male vocal quality independent of other effects would require 

an experimental design. Females could be placed in a choice arena either in a laboratory or 

outdoor aviary and presented with artificial male duets varying in their level of synchrony. 

Similar analyses have been performed to assess differences in female preferences for visual 

ornaments between populations of Common Yellowthroats (Geothlypis trichas; Dunn et al. 

2008). Future analyses should also consider other traits or factors that females might be using in 

their mate selection process (e.g. plumage colouration, male condition, centrality, male visual 

behaviour, etc.).  

Future experimental work on how male pairs time their vocalizations in the presence of 

known neighbours could build on the research presented in Chapter 3. Work from this thesis has 

demonstrated that males exhibit different calling behaviour when counter-calling with familiar 

neighbours versus unfamiliar males. Future research could assess the effect of distance and 

familiarity independently of one another by presenting playback of duets from known and 

unknown individuals at varying distances from focal display areas. Further studies investigating 

whether the act of overlapping vocalizations has fitness consequences could be performed (as 

has been documented in other species; Mennill et al. 2002). The use of taxademeric mounts has 
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been employed in this species in the past (so-called “manakin mannequins”; McDonald 1993); 

employing taxidermic mounts in combination with call playback could provide researchers with a 

means of assessing aggressive responses (i.e. are overlapped males more likely to attack 

taxidermic mounts than non-overlapped males, as tested through interactive playback). This 

would be especially interesting given that this species is not territorial (McDonald 1989, 

McDonald 1993). 

The tropics are home to an incredible diversity of animals that exhibit unique and 

unusual behaviours seen nowhere else (Stuchbury and Morton 2001). Understanding how male 

vocal behaviour influences female mate choice and male-male interactions has been studied 

extensively in the temperate region, but is only beginning to receive attention in tropical species 

(Stuchbury and Morton 2001). By improving our understanding of these systems we gain insight 

into sexual selection, factors governing female mate choice, and the relationships between 

neighbouring males. My research adds to our understanding of the function of male 

vocalizations in a tropical lekking bird and highlights the important insights that can be gained 

from tropical research. 
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Appendix I: A novel digital telemetry system for tracking wild animals: a field test for 

studying female movements in a lekking tropical bird 
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Appendix Summary 

1.  Radiotelemetry provides a tool for monitoring animals that are difficult to observe directly. 

Recent technical advances have given rise to new telemetry systems that present expanded 

opportunities for field research. We report the results of a field test of Encounternet, a new 

digital radiotelemetry system comprising portable receiver stations and digital tags designed 

for long-term studies of the social behaviour and ecology of free-living animals. 

2.  We present results from a series of field tests designed to evaluate the utility of Encounternet 

for monitoring animals in a neotropical forest, with an emphasis on evaluating the system’s 

capacity for studying mate sampling behaviour in female Long-tailed Manakins. In this 

tropical species, females visit male display areas where males perform elaborate dances on 

horizontal perches. Females are highly cryptic in both plumage and activities, and therefore 

Encounternet might provide unique insights into female behaviour and ecology. 

3.  Our first two tests revealed that pulse strength and probability of detection decrease with 

the distance between tag and receiver, and that tags placed on a fixed perch near a receiver 

showed significantly different patterns of reception than more distant tags. Our third test 

revealed that antenna angle had only a small influence on pulse strength. 

4.  Blind analysis of simulated bird movements confirmed that the system provides reliable 

information on animal activity. Data from multiple receivers permitted accurate 

reconstruction of simulated bird movements. Tag detections showed low levels of false 

negatives and false positives.  

5.  Female manakins responded well to carrying Encounternet tags attached by an elastic leg 

harness. Birds flew well upon release and were detected, on average, for 7.5±0.8 days after 
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release. Recaptures and re-sightings of females were rare in our large study population, yet 

there were two occasions where we confirmed that the tag fell off within one year.  

6.  We conclude that Encounternet technology provides a very effective tool for monitoring 

animal ecology and behaviour. We discuss the opportunities presented by Encounternet for 

studying the ecology and behaviour of free-living animals.  
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Introduction 

Tracking technologies have revolutionized ecological research by allowing long-term 

monitoring of animal movement and behaviour. The ecological and behavioural insights 

provided by radiotelemetry (e.g. Hinch and Rand 1998; Westcott and Graham 2000), satellite 

transmitters (e.g. Weimerskirch et al 2000; Hooker and Baird 2001), geolocators (e.g. Stutchbury 

et al. 2009; Montevecchi et al. 2011), microphone arrays (e.g. Blumstein et al. 2011), and related 

technologies have expanded our understanding of vertebrate biology beyond what was possible 

through direct observation or mark-recapture methods. Radiotelemetry, the most longstanding 

of these technologies, has facilitated monitoring silent or covert animal movements and 

behaviours, and has become a widely used approach for monitoring animals (reviewed in Cooke 

et al. 2004; Ropert-Coudert and Wilson 2005). Movements of animals that cannot be studied 

through direct observation can be quantified effectively with telemetry.  

Recent technological developments have produced new innovations in radiotelemetry, 

particularly due to the exponential enhancement in chip performance delivered by the 

semiconductor industry. Traditional radio-receivers were handheld devices, and animals were 

monitored primarily while researchers followed the tagged animal with an antenna (Amlaner 

and MacDonald 1980). More recently, autonomous receivers have allowed animals to be 

monitored while researchers are absent from the area (Cooke et al. 2004). Consequently, 

animals can be monitored around the clock, without the influence of the presence of the 

researcher. Analogue transmitters broadcasting signals at different frequencies can be manually 

monitored by receivers that scan multiple channels (e.g. Crofoot et al. 2010). Recent 

developments in digital transmitters allow for multiple tags to transmit at the same frequency 

with unique codes. These technical advances dramatically increase the opportunities for 

radiotelemetry technology to be used in the study of the ecology and behaviour of wild, free-
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living animals. Until very recently, these advancements in digital radiotelemetry have only been 

available for large-bodied animals (e.g. Hazen et al. 2010). 

Encounternet is a new radiotelemetry technology that brings the advantages of digital 

radio and automated monitoring to small animals for the first time. In an Encounternet system, 

tags as light as 0.8g are worn by small animals such as passerine birds (Fig. A.1a, b). The tags are 

similar in form to an analogue radiotag, but rather than a fixed-function analogue radio circuit, 

these tags contain a programmable microprocessor and a digital transceiver, allowing much 

greater flexibility in tag functionality. Encounternet tags are equipped with digital interface ports 

and analogue data converter inputs, allowing tags to include sensors to log temperature, sound, 

acceleration, GPS location, etc. The tags can be configured via radio commands, and tags can 

operate in many modes, such as a conventional transmitter tag, a tag-to-tag proximity logger, a 

radio transponder, or a radio repeater. The research described here – representing the first field 

test of this system – focuses exclusively on using Encounternet as a digital, automated telemetry 

logging system, where each tag periodically broadcasts a brief digital radio pulse encoded with a 

unique ID number.  

The second component of Encounternet is the wireless receiver station (Fig. A.1c, d). 

Receiver stations contain a microprocessor, transceiver radio, and a high capacity flash memory 

card. They function as automated monitoring devices, logging the ID number, time, and signal 

strength of every tag pulse that they receive. Receiver stations are environmentally hardened 

and powered by an external battery pack; with two rechargeable D-cell batteries, they can log ID 

pulses for weeks without maintenance. Receiver stations can be placed in strategic locations to 

monitor the presence of tagged animals, or be placed throughout the habitat to record the 

overall movement patterns of animals.  
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The third component of Encounternet is a manually operated “master node”, which 

serves as the user interface to the Encounternet tags and receiver stations. The master node 

consists of a modified receiver station mounted on a high-gain directional antenna, and attached 

to a laptop computer running custom interface software. The master node is used primarily to 

wirelessly configure tags and receiver stations, and to download tag ID pulse logs from receiver 

stations in the field. The master node can also operate as a radio tracking system to locate and 

track tagged animals, as in conventional radiotracking. 

We tested the capabilities of Encounternet in a field test designed to evaluate the utility 

of this technology for studying the movements of small birds in a neotropical forest habitat. In 

particular, we are interested in using Encounternet to study female movement and visitation 

behaviour in Long-tailed Manakins (Chiroxiphia linearis), a neotropical suboscine passerine bird. 

In this lek-mating species, males congregate in small groups (3-13 males) where social 

relationships follow linear, age-graded dominance hierarchies (Foster 1977; McDonald 1989a, b). 

The top two males in the hierarchy, the alpha and beta, attract females to their display areas 

through vocal duets and then perform complex, cooperative dances for prospecting females on 

“display perches”, low horizontal branches in the forest understory (Foster 1977; McDonald 

1989a, b). The collection of Long-tailed Manakin display areas within a population can be 

characterized as a single exploded lek, where different display areas are in visual but not 

acoustic isolation (Gilliard 1963; Foster 1977). Unlike most lek-mating species, however, females 

choose among alpha males at different display areas rather than within males at a single display 

area (McDonald 1989a). Mating success is highly skewed, with a small proportion of alpha males 

securing most of the copulations (McDonald 1989b; McDonald and Potts 1994). Previous studies 

have shown that synchronization of duets, duetting rates, and components of male behavioural 

displays influence female mate choice decisions (McDonald 1989b; Trainer and McDonald 1995). 
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Yet, we know little about how females go about selecting their mates. Females rarely vocalize, 

they are very cryptic in both behaviour and appearance, and re-sighting data indicate that they 

have much larger home ranges than males (McDonald 1989b). If Encounternet provides reliable 

data, devices attached to female Long-tailed Manakins would facilitate tracking of the display 

areas visitation behaviour of females and could provide novel insight into female mate choice 

behaviour and male mate attraction behaviour.  

In this study we conduct the first field test of Encounternet telemetry technology. Our 

field test is designed to evaluate the efficacy of this system for research on the visitation 

behaviour of female Long-tailed Manakins living in a dense neotropical dry forest, although this 

versatile system is expected to be useful for tracking many species of animals in a wide variety of 

habitats. We present a series of tests involving active Encounternet tags and receiver stations, 

each an investigation of the system’s capabilities for studying the ecology and behaviour of 

females (Encounternet tags) as they visit male display perches (Encounternet receiver stations).  

(1) We placed Encounternet tags at varying predetermined distances from receiver stations, and 

evaluated the signal strength values and the probability of detection of the tags across a range 

of distances; our goal was to quantify how detection varied when tagged animals changed their 

distance from a receiver station.  

(2) We placed Encounternet tags on the display perches at Long-tailed Manakin display areas, 

and quantified variation in signal strength values and the probability of detection over time; our 

goal was to understand how detection varied when a tagged animal sat in a fixed position near a 

receiver station for a period of time.  

(3) We changed the angle of the Encounternet tag antennas relative to the receiver station 

antennas, and evaluated whether their relative angles influenced signal strength value or the 
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probability of detection; our goal was to understand how detection varied as tagged animals 

changed their orientation, but not distance, relative to receiver stations.  

(4) We conducted simulated “flight tests” by moving active Encounternet tags around the forest 

to mimic the behaviour of female Long-tailed Manakins, and assessed how accurately the 

technology allowed us to reconstruct the behaviour of the simulated females; our goal was to 

evaluate whether we could correctly record the movements of simulated female manakins in a 

blind test. 

(5) Finally, we evaluated how tagged female Long-tailed Manakins responded to being outfitted 

with an Encounternet tag, and tested whether the receiver stations detected the tagged females 

after release.  

We discuss the utility and versatility of this system for conducting future studies of 

female Long-tailed Manakins, for studying mate choice in lekking animals, and for studying the 

ecology and behaviour of wild animals generally. This is the first test of an Encounternet 

automated telemetry system in the field. 

 

Methods 

 General field methods. Our field test of Encounternet took place in Sector Santa Rosa of 

the Guanacaste Conservation Area in northwestern Costa Rica from April to May of 2010 and 

2011. This site is designated a World Heritage site by the United Nations Educational, Scientific, 

and Cultural Organization (UNESCO) and is home to one of the largest remaining stands of dry 

forest habitat in the neotropics. The study took place in the mature humid forest section of this 

study site, where the thick vegetation makes direct observation of animals difficult (Mennill and 
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Vehrencamp 2008). Moreover, wet tropical habitats are expected to limit the accuracy of 

telemetry (Millspaugh and Marzluff 2001) as well as the function of electronic equipment. 

Consequently, this habitat provides a challenging environment for testing the utility of a 

radiotelemetry system. 

Equipment. The tags used in this field test were designed and built by the University of 

Washington Encounternet project (http://encounternet.net) and consisted of a 7x15mm circuit 

board (Encounternet tag version 3a) containing a Texas Instruments MSP430 microprocessor 

and Texas Instruments CC1101 digital radio transceiver operating at 433MHz, with a 16.5cm 

steel-wire antenna attached. Two size 5 zinc-air hearing aid batteries powered the tags. All 

components were embedded in an epoxy resin matrix for weatherproofing. Prior to placing tags 

on females, we used a green marker to colour the dried epoxy so that the tag would blend in 

with the female’s green plumage. Tags were programmed to transmit a unique ID pulse every 4 

seconds in 2010, and every 5 seconds in 2011 (we decreased the pulse rate to once every 5 

seconds in 2011 to enhance tag battery life). 

Receiver stations consisted of a circuit board (Encounternet receiver station version 1.1) 

with a Texas Instruments MSP430 microprocessor, Texas Instruments CC1101 digital radio 

transceiver operating at 433MHz, and a 2 gigabyte Micro-SD flash card for data storage. Receiver 

stations were housed in a 9x9x6 cm waterproof ABS plastic enclosure and were powered by two 

rechargeable Imedion NiMH D-cell batteries in an external battery holder attached via a cable. A 

12 cm omnidirectional 433MHz antenna was mounted on the case. Receiver stations were 

programmed to log all tag ID pulses to flash memory. Each log entry contained the ID of the 

receiver station and the tag, the time and date the ID pulse was received, and the received signal 

strength indication (RSSI) of the pulse.  



 109  

We used an Encounternet master node for collecting data from the receiver stations in 

the field. The master node consisted of a modified receiver station attached to a directional Yagi 

antenna, with a serial cable connection to a laptop computer. To download logs from the 

receiver stations, we walked within approximately 20m of receiver stations and issued a 

command on the computer to initiate transfer of tag ID pulse logs from the receiver station to 

the memory card on the master node. Data downloaded from the receiver stations in the field 

were transferred to the computer and saved in a tab-delimited text file format. 

Encounternet tags were attached to females with a figure eight leg harness, modified 

from Rappole and Tipton (1991). Elastic thread was fed through two Teflon tubes embedded in 

the epoxy that coated the tag, and tied off to create two loops that fit around birds’ legs so that 

the tag rode just above their preen gland, with the antenna running down and beyond the tail 

(Fig. A.1). The elastic thread we used to create the leg harnesses consisted of a rubber inner core 

and an outer layer of braided cotton thread. So that the harness would deteriorate more quickly 

and fall off over time, we created a weak point in the outer layer, using a scalpel to cut the 

cotton threads in a small section of the harness, near where the harness joins to the tag, 

exposing the rubber inner core for a small section of the harness. 

Field tests of Encounternet. To address the five goals of this study, we conducted a 

series of tests to evaluate the capabilities of Encounternet. The first three tests served to 

evaluate the system’s capabilities in the field, and calibrate the data collected by the receiver 

stations. The fourth test served to evaluate the accuracy of the system in measuring the 

behaviour of simulated female Long-tailed Manakins. The fourth test, based on the data 

collected in the first three tests, was a blind test (female movements were simulated by DJM; 

data were assessed by KAW, DFM, and SMD). The fifth and final test was an evaluation of how 

female birds responded to the presence of the Encounternet tags. 
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For all of the tests below, the Encounternet receiver stations were mounted at fixed 

locations near male display perches at our field site. We mounted the receiver stations on a 

vertical branch as close as possible to the male display perch (0.3 to 1.4m from the area where 

males would dance for females), at a height of approximately 1.5m (Fig. A.1). We pointed the 

antennas for all receiver stations directly towards the ground. 

Test 1: Variable tag-to-receiver distances. Our first test involved recording the pulses 

from Encounternet tags at variable distances from the receiver stations. We attached tags to the 

top of a 1m wooden pole and placed this pole at eight different distances from the receiver 

stations, measured with a measuring tape: 0.0m (directly beneath the receiver station), 5.0m, 

10.0m, 15.0m, 20.0m, 25.0m, and 30.0m. At each position, we rested the pole on the ground so 

that tags were consistently 1m above the ground, and we manually rotated the pole at a rate of 

ca. 6 rotations per minute, to simulate the subtle movements of a bird making small perch 

changes while sitting on a branch, and to simultaneously rule out an effect of a particular angle 

of the tag antennas in this test. Tags were recorded at each position for 60 sec. We conducted 

this test at n=24 different receiver stations using n=8 different tags.  

 Test 2: Variation between receiver stations. Our second test involved recording pulses 

from Encounternet tags that were set atop male display perches. We placed tags on the perch in 

an orientation that matched the way tags would sit when females visit the perch, with the 

antenna perpendicular to the axis of the perch, and hanging down slightly below the horizontal. 

In the wild, female Long-tailed Manakins vary where they sit on the display perch during 

courtship visits, resulting in on-the-perch distances that may vary by approximately 2m relative 

to the receiver stations. During this test, we placed the tags near the centre of the perch at a 

distance of approximately 0.3 to 1.4m from the receiver station (see below), whenever possible 

in places where we had seen females sit at that particular perch. We held the tag still and 
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recorded pulses for 60 sec. We then rotated the tag by 180 degrees, and recorded pulses for 

another 60 sec with the tag at the opposite, perpendicular angle. We conducted this test at n=64 

different display perches (i.e. n=64 receiver stations) using n=5 different tags. 

 Test 3: Variation with antenna angle. Our third test was an assessment of whether the 

recorded pulses varied with the angle of the Encounternet tag antenna relative to the receiver 

station antenna. We mounted tags on a pole, as in test 1, and positioned the tags exactly 2.00 

metres from the tip of the downwards-oriented antenna of the receiver station. We held the 

orientation of the tags’ antenna steady for 60 sec pointing the antennas towards the receiver 

station and parallel to the ground. We then rotated the tags by 90° so that their antennas 

pointed at a direction orthogonal to the receiver antenna and parallel to the ground. We 

conducted this test at n=9 different display perches (i.e. n=9 receiver stations) using n=2 

different tags. During each trial, we held the tags in a position with no vegetation in the space 

between the tags and receiver station. 

 Test 4: Simulated female behaviour. Our fourth test involved simulating female 

movement behaviour, to test the accuracy of the system for measuring the behaviour of female 

Long-tailed Manakins. In the field, we mounted two active Encounternet tags on the end of a 1m 

wooden pole, and carried the pole around the forest, positioning the tags near the active 

receiver stations that were mounted at the display perches for all known display areas in the 

study area. The field tests were conducted by DJM, and the data were analyzed by K-AAW, DFM, 

and SMD, who were blind to all aspects of the path the tags had traveled in the field. We 

conducted 11 tests with 22 different tags, including two tags in each test to check that the 

system produced similar results for both tags. Each tag was carried to 2 to 5 receiver stations 

(average±SE: 3.1±0.3), and was set on the perch (thereby simulating a female sitting on the 

display perch), or at a 5m horizontal distance from the perch (thereby simulating a female 
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perching nearby, but not alighting on the display perch), and held at each position for 1.0 to 8.0 

minutes (average±SE: 2.68±0.25 min). 

 After downloading the data from all receiver stations, we established a method for 

determining whether females visited the male display perch (as would a female inspecting males 

performing a courtship dance on the perch) or sat at a position ≥ 5m away from the display 

perch (as would a female listening to the vocalizations of males or watching them from afar, but 

not directly inspecting a courtship dance). Based on the data from test 1, we calculated a signal 

strength threshold that would be consistent with a tag emitting pulses from the display perch, or 

from ≥5.0m away from the display perch. We calculated the threshold in three different ways 

based on how much data we had collected for each receiver station. (1) For perches where we 

had data from both test 1 and test 2 (n=24), we calculated the threshold as the difference 

between the lower 25th percentile of the on-the-perch tag test data and the upper 25th 

percentile of the 5.0m tag test data. (2) For perches where we had data from test 2, but not test 

1 (n=64), we calculated a threshold as the lower 10 percent of the on-the-perch tag test data 

(we determined this cut-off from the average percentage of on-the-perch tag test points that fell 

below the threshold of each perch from the previous method). (3) For perches where we had 

data from neither test 1 or test 2 (n=24), we calculated the population average values of the 

difference between the lower 25th percentile of the on-the-perch tag test data and the upper 

25th percentile of the 5.0m tag test data, and used these values to determine our threshold. 

Based on the data from test 2 (see Results), it was clear that signal strength values at fixed 

distances fluctuate over time. We therefore used a criterion of 3 detections within a 30 second 

period at the appropriate thresholds to conclude that a female was present on or near the 

display perch. If fewer than three detections were recorded, we concluded that the tagged bird 

had moved through the area without stopping. The length of the visit was determined as the 
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beginning of such a 30-second period, until the last tag detection that fell within the appropriate 

threshold. 

Statistical analysis 

For tests 1 through 4, we evaluate two response variables. (1) Signal strength is a 

numerical estimate of how close the Encounternet tag is to the receiver. Signal strength values 

are whole numbers that vary on a scale from -50 to 25, where lower, negative numbers imply 

large distances between tag and receiver, and higher, positive numbers imply small distances 

between tag and receiver. Each pulse received by an Encounternet receiver station records the 

date, time, and identity of the signal, as well as the pulse’s signal strength value. When tags 

were left at a particular distance or orientation for a period of time, we calculated an average 

signal strength value. (2) Probability of detection is the proportion of total tag pulses received, 

where the numerator is the number of pulses recorded by the receiver station and the 

denominator is the number of pulses emitted by the tag.  

We used linear mixed models to analyze signal strength and probability of detection, our 

response variables. To control for the fact that some tags were sampled repeatedly, and that 

each receiver station was sampled at multiple distances (test 1), we included tag and receiver 

station identity as random factors. We used the expected means squares (EMS) approach for our 

linear mixed models. Our sample sizes varied across the four tests, because there were instances 

where pulses were not detected (for example, in cases where there was a substantial distance 

between the tag and the receiver station). All statistics were conducted in JMP 8.0 (SAS Institute, 

Cary, NC). All tests are two-tailed and all values are presented as means±SE. 
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Results 

Test 1: Variable tag-to-receiver distances 

The strength of Encounternet tag signals detected by receiver stations decreased 

significantly with the distance between tag and receiver (Fig. A.2; linear mixed model; whole 

model: F34,402=124.6, p<0.0001; fixed effect of distance: F6=599.3, p<0.0001). For example, signal 

strength varied from 15.1±0.5 for tags directly under the receiver station, to -15.5±1.3 for tags 

30m away. A post-hoc test revealed significant differences between distances of 0, 5, 10, and 

15m between the tag and the receiver station, with overlapping signal strength values for 20, 25, 

and 30m (Fig. A.2). The random effects in the model revealed significant individual variation 

both for tags (random effect: F7=4.7, p<0.0001) and receiver stations (random effect: F21=21.8, 

p<0.0001). 

The proportion of pulses detected by the receivers also decreased with the distance 

between the receiver and the tag (Fig. A.2; linear mixed model; whole model: F34, 693=70.2, 

P<0.0001; fixed effect of distance: F6=288.2 P<0.0001). For example, the proportion detected 

varied from 96.2±2.6% for tags positioned directly beneath the receiver station, to 4.4±2.6% for 

tags positioned 30m from the receiver station. A post-hoc test revealed significant differences in 

the proportion of pulses detected between all distances except for 25m versus 30m, which were 

similarly low (Fig. A.2). The random effects in this model also revealed significant individual 

variation for both tags (random effect: F7=4.0, P=0.003) and receiver stations (random effect: 

F21=27.8, p<0.0001). 

Test 2: Variation between receiver stations 

The global average signal strength value for Encounternet tags placed on male Long-

tailed Manakin display perches was 5.1±0.7. A test of tags set on display perches for 2 min 
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revealed variation from one receiver station to the next (linear mixed model; whole model: 

F34,693=70.2, P<0.0001; fixed effect of receiver station: F41=122.2 P<0.0001; random effect of tag: 

F4=208.0, p<0.0001). The average signal strength values varied between display perches from -

14.4 to 25.0. This variation likely arose due to variation in the distance between the display 

perch and the receiver station (range: 0.3 to 1.4m), reflecting differences in the nearest vertical 

branch for mounting the receiver station.  

One important goal for future studies of Long-tailed Manakin mating behaviour is 

distinguishing between females who travel near to a display perch (i.e. prospecting females 

assessing males from a short distance) and females who visit a display perch (i.e. prospecting 

females watching males dance at close range). We found that Encounternet tags positioned on 

the display perch had significantly higher signal strength values than tags positioned 5m from 

the receiver station (on the perch: 6.75±0.63; 5m from receiver: -4.41±0.59; paired t-test for 

average signal strength value for on-the-perch versus 5m data averaged at each receiver station: 

t=5.7, P<0.0001, n=24 receiver stations where we collected on-the-perch and 5m-from-perch 

data using the same tags). Consequently, signal strength facilitates distinguishing females visiting 

male display perches from females observing display perches from a short distance. Tags 

positioned on the display perch recorded a statistically higher proportion of pulses, compared to 

tags positioned 5m from the receiver station (on the perch: 90.5±1.7%; 5m from receiver 

station: 59.5±3.6%; paired t-test: t=11.5, P<0.0001).  

Test 3: Signal strength and tag antenna angle  

 The signal strength of pulses from Encounternet tags held at a distance of 2.00m with 

antennas oriented parallel to the receiver antennas (signal strength: 5.8±3.5) was higher than 

when tag antennas were oriented perpendicular to the receiver antennas (signal strength: 

3.1±3.3; linear mixed model; whole model: F10,25=1.6, P=0.18; fixed effect of orientation: F1=5.8 
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P=0.02; neither random factor showed a significant effect: tag: F1=0.33, P=0.33; receiver station: 

F8=1.1, P=0.39). The difference between the means was subtle (parallel: 5.8; perpendicular: 3.1) 

and the ranges for parallel antennas (minimum: -4.1; median: 5.8; maximum 10.4) and 

perpendicular antennas (minimum: -1.7; median: 2.9; maximum 11.2) were overlapping. The 

probability of detection was 100% for both tag orientations at a close proximity to the receiver 

station (2.00m with no intervening vegetation). 

Test 4: Simulated female behaviour 

 Our blind analysis of simulated flights and perch visits of female Long-tailed Manakins 

showed that the Encounternet system can capably reconstruct the behaviour of moving animals. 

The tags were set on 28 display perches, simulating prospecting females arriving to inspect 

males during their dance displays, for an average “perch visit length” of 2.62±0.30 minutes. Our 

blind analysis detected 27 of the 28 simulated perch visits (96.4%; i.e. a “false negative” rate of 

3.6% for on-the-perch visits) and measured an average perch visit length of 2.53±0.33 min. The 

Encounternet-estimated perch visit length showed a strong correlation with the actual perch 

visit length (Pearson correlation: r=0.87, P<0.0001, n=27). The blind test of perch visits also 

detected four “false positives” where Encounternet incorrectly indicated that a tag was placed 

on the display perch (i.e. a “false positive” rate of detection of 12.9% for on-the-perch visits). In 

all four cases, the system incorrectly identified a tag that was placed on a branch 5m from the 

display perch as being positioned on the perch. The perch visit length for the false positive visits 

(6.5±1.4 tag pulse detections per visit, n=4) was significantly shorter than the perch visit length 

for the true visits (29.0±4.2 tag pulse detections, n=27; unpaired t-test: t29=2.0, P=0.05). 

 During the “flight tests”, the tags were also set on 26 branches that were 5m from 

display perches, simulating females coming near to male display perches but not visiting the 

perches directly, for an average visit length of 2.95±0.26 minutes. Our blind analysis detected 25 
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of the 26 simulated near-the-perch visits (96.1%; i.e. a “false negative” rate of detection of 3.9% 

for 5m-from-the-perch visits), and measured an average perch visit length of 2.88±0.39 minutes. 

The Encounternet-estimated perch visit length showed a positive correlation with actual perch 

visit length for tags placed 5m from male display perches, although this relationship was not as 

strong as for tags placed on male display perches (Pearson correlation: r=0.48, P=0.02, n=25). 

Our blind analysis detected an additional 27 instances of Encounternet detecting a female ≥ 5m 

from the display perch; all 27 were cases where the researcher carrying the tag through the 

forest walked in the vicinity of the receiver (estimated closest distances of approach: 10 to 30m), 

but did not pause to alight the tags on a branch. The perch visit length for these 27 visits 

(5.1±2.9 tag pulse detections per visit, n=27) was significantly shorter than the perch visit length 

for the true visits (23.7±3.0 tag pulse detections per visit, n=26; unpaired t-test: t51=4.4, 

P<0.0001).  

Test 5: Responses of females to wearing Encounternet tags 

Our final field test involved evaluating the responses of female Long-tailed Manakins 

fitted with an Encounternet tag, and determining whether tagged females were detected in the 

study site after release. Including the harness, tags weighed 0.88±0.01g (n=12 measured tags); 

females weighed 18.76±0.43g (mean±SE for the n=12 females carrying these tags). Therefore the 

tags weighed 4.69% of the female’s body mass, less than the 5% body mass guideline that is 

thought to be appropriate for radiotagging wild birds (Caccamise and Hedin 1985; Naef-Daenzer 

1994).  

Females responded well to being fitted with tags. During a two-year period, we tagged 

82 females. In 79 cases, the female flew well on release, gaining altitude and perching in the 

mid-story at distances of 20 to 50m and preening before flying out of sight, or flying out of sight 
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immediately upon release. In the remaining three cases, females flew only a very short distance 

and landed on a low perch or on the ground. In the first case, the female made a second, normal 

flight soon thereafter, and flew off without any further sign of impediment. In the second case, 

we attempted to minimize stress on the female by leaving the area while she was perched on a 

low branch; when we returned later she had left the area. In the third case, when the female 

made a second strained flight we immediately recaptured the bird and removed the tag; she 

showed no further sign of impediment on re-release without the tag. 

Seventy of the tagged females were detected moving around the area near the receiver 

stations for days to weeks after being tagged; the remaining females were not detected after the 

day they were released. Encounternet-tagged females moved around the study site, generating 

46,222 detections by the receiver stations (Fig. A.4). There were many detections with a signal 

strength value of 0 to 2 (Fig. A.4), which we assume are indicative of females sitting on male 

display perches. We calculated the length of female visits to male display perches, and found 

that most visits to male display perches were brief (3.8±0.2 min; range: 12 seconds to 86 

minutes; Fig. A.4). 

The average length of time from tag deployment to final detection was 7.5± 0.8 days 

(range: 1 to 24; n=70). We do not have sufficient data to determine whether the batteries in the 

tags died after this period, or whether females exited the area (female home range can be as 

large as 80ha; McDonald 1989b). In 2010, we located the active nests of two tagged females; in 

both cases the female was engaging in normal nesting activities and did not show any sign of 

impediment due to the presence of the Encounternet tag.  

Our study population is very large, and recapturing or re-sighting females is a rare 

occurrence, making it difficult to confirm what proportion of the tags fell off over time. In 2011 

we re-sighted three females who had been tagged previously (two were detected visually in the 
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field; one was detected on a video recording of a display perch). Two females who were tagged 

in 2010 had lost their tags. One female who was tagged earlier in 2011 was still wearing a tag 

that was no longer transmitting (25 days between tagging and re-sighting).  

Discussion 

The results of our field test of an Encounternet telemetry system demonstrate that this 

new technology provides a compelling tool for automated tracking of animal movement in the 

challenging field environment of a neotropical forest. The system, comprising digital radiotags 

worn by free-living animals and small receiver stations that autonomously log encounters with 

tags, met our expectations during a series of five tests. The tests were designed to evaluate the 

efficacy of the system for research on the visitation behaviour of females (i.e. animals carrying 

Encounternet tags) relative to the display perches of tropical manakins (i.e. the Encounternet 

receiver stations). (1) Encounternet tags showed significantly higher signal strength values and 

probability of detection as the distance between tags and receivers decreased, demonstrating 

that Encounternet can quantify the distance between a tagged animal and a receiver station. (2) 

Signal strength values were consistently higher when tags were placed on display perches 

compared to distances ≥5.0m from display perches, demonstrating that Encounternet can 

distinguish between tagged animals near a receiver station versus more distant animals. (3) Tag 

versus receiver antenna orientation influenced signal strength, but not probability of detection, 

and this variation was small in comparison to variation due to distance, demonstrating that tag 

orientation will have only a small influence when monitoring freely-moving tagged animals 

whose antennas vary in orientation over time. (4) Importantly, blind analysis of simulated Long-

tailed Manakin movements demonstrated that the system can provide accurate reconstructions 

of the movement of Encounternet tags, with reasonable rates of false positive and false negative 
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detections. (5) Females responded well to being fitted with Encounternet tags, and anecdotal 

records confirm that tags fell off over time. The 40 receiver stations produced more than 46,000 

detections from 70 tagged animals, and capably quantified the length of visits made by tagged 

animals to male display perches. Taken together, these results confirm that Encounternet 

provides an effective tool for measuring and monitoring the movements of tagged birds in a 

tropical forest. This is the first field test of this new technology. 

 Long-tailed Manakins exhibit a unique and complex mating and social system (McDonald 

2010), and Encounternet offers a special opportunity for understanding the behavioural ecology 

and evolution of this tropical bird. Males form social groups structured by stable linear 

dominance hierarchies, and entice prospecting females to mate by performing complex acoustic 

displays (Trainer and McDonald 1995), showcasing multiple elaborate plumage ornaments 

(Doucet et al. 2007b), and performing intricately-coordinated visual displays at their display 

perches (McDonald 1989b). Whereas males are conspicuous and reliably found in the same 

location, females are highly camouflaged (Doucet et al. 2007a) and their movement patterns are 

elusive. Consequently, the behavioural patterns of females are difficult to measure. In a study of 

this species at a montane site in Costa Rica, McDonald (2010) collected an incredible dataset on 

female visitation through thousands of hours of visual observations (15,000 display perch 

observation hours over an 18 year period) at a relatively small number of display areas (6 to 8 

display areas per year). Such intensive data collection is expensive and time consuming. By 

contrast, automated detection by Encounternet permits vastly extended sampling opportunities. 

For example, in our two-year study we collected approximately 40,000 observation hours at 

dozens of display areas per year. This system also facilitates tracking of individual females 

between each of the monitored display areas. Therefore Encounternet presents novel 
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opportunities for understanding topics as varied as female mate sampling behaviour to the 

influence of male ornaments on female visitation.  

One important concern for telemetry research is the influence of tag weight and the 

harness mechanism on the tagged animal’s well-being (Naef-Daenzer 1994; Dixon 2011). One 

common guideline for birds is that the weight of all components attached to a bird should be 

less than 5% of the bird’s mass (Caccamise and Hedin 1985). Tracking studies of a variety of birds 

confirm that tags weighing <5% of passerine birds’ body mass allow animals to continue normal 

activities, in species as varied as Hooded Warblers (Wilsonia citrina; Neudorf and Pitcher 1997), 

Jackass Penguins (Spheniscus demersus; Heath and Randall 1989), and Javan Hawk-Eagles 

(Spizaetus bartelsi; Gjershaug et al. 2004). Our analysis of 82 tagged tropical Long-tailed 

Manakins suggest that these birds can capably handle the presence of Encounternet tags 

weighing less than 5% of their body mass. Of 82 tagged female Long-tailed Manakins, 79 flew 

well upon release, 2 struggled with their first flight but appeared to quickly recover and adapt to 

the tag’s presence, and 1 bird was quickly recaptured so that the tag could be removed. Our field 

experience suggested that minimal handling time and minimal banding stress produced the 

optimal results for females upon release. We therefore encourage other researchers to attach 

tags and release birds as quickly as possible, without additional stressors such as bleeding or 

intensive morphological measurements, to minimize stress. 

Recapture and re-sighting of birds in our large study population is very rare, but multiple 

lines of evidence confirm that tagged birds continued to move through the study population. (1) 

Our receiver stations continued to encounter birds moving through the study site for extended 

periods after release (Fig. A.4); their activities are the subject of forthcoming behavioural studies 

(Maynard et al., Ward et al., unpublished data). (2) Two tagged females were found at their nest 

and were engaged in normal parental activities. (3) Three tagged birds were re-sighted after 
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extended periods in the wild; all three were engaged in normal activities, and (4) two birds re-

sighted a year after release had lost their tags. 

Encounternet has many possible applications in future studies. Encounternet systems 

will be useful whenever tracking of animals relative to fixed-position receiver stations provides 

information on the behaviour and ecology of tagged animals. In our study, we focused on female 

birds visiting display areas; however, this system may be used to monitor a variety of animals 

and is applicable to a variety of mating systems. For example, Encounternet can monitor 

visitation at nests, watering holes, feeding areas, and roosting sites. Encounternet can also be 

used to monitor habitat selection at different scales. Receivers can be set up at specific sites-of-

interest, as we did in this study. Alternatively, receivers can be set up in a grid-like pattern 

throughout a study site to monitor spatial and temporal use of habitat; the size of the area 

monitored will be limited by the fact that receivers can detect tags at distances of up to 30m. 

Such an application would provide a compelling approach to study species of conservation 

concern, to better understand movement and habitat use patterns (Rasmussen and Litzgus 

2010). General coverage of a study site with receivers can also be used to identify territory 

boundaries and to monitor resident excursions into neighbouring territories (e.g. for covert 

animal movements, such as extra-pair copulations; Double and Cockburn 2000).  

As an autonomous detection tool, Encounternet has enhanced capabilities beyond 

previous technologies for automated monitoring of tagged animals. Radio frequency 

identification (RFID), usually involving passive integrated transponder devices (PIT tags), is a 

widely-used technology also involving small devices worn by animals that are detected by fixed-

position receivers (Bonter and Bridge 2011). PIT tags require no battery and therefore the 

devices are lightweight and provide information over extended periods (Gibbons and Andrews 

2004). Although Encounternet tags are heavier and have finite battery life, they are capable of 
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transmitting signals that can be detected as far away as 30m (Fig. A.2), whereas PIT tags can 

typically be detected at ranges of ≤0.1m. An RFID system could not be used in the application we 

were testing here, for example, because the length of the male display perch (1 to 2m) would 

require many PIT tag readers. The other established technology most similar to the one we 

tested here is the use of receiver towers in radiotelemetry studies, where multiple telemetry 

towers can triangulate the position of tagged animals (e.g. Taylor et al. 2011). This technology 

has similar limitations to Encounternet in terms of tag weight and tag battery life. Tower-based 

telemetry, however, is limited by the logistics and cost of setting up the large towers, the 

transmission of tag signals over long distances to be received by the towers, and by the scale of 

resolution. Encounternet receiver stations are small and easy to set up (e.g. we easily set up 40 

receiver stations in just a few hours), and facilitate positioning of birds on the scale of meters. It 

is worthwhile to note that tower-based telemetry is compatible with Encounternet, and the two 

systems could work in concert. 

In conclusion, our field test of Encounternet digital telemetry confirms that this system 

provides a compelling approach for monitoring wild birds. The results of trials designed to 

evaluate the efficacy of the system for monitoring Long-tailed Manakins can be readily applied 

to studies of other animals. A new iteration of this technology permits tags to receive pulses 

from each other, and this development will facilitate unprecedented quantification of animal 

social networks, extra-pair behaviour, and other social interactions that are difficult to quantify 

in other ways. Uniquely, Encounternet provides round-the-clock monitoring of tagged animals, 

and represents a significant advance in the study of animal ecology and behaviour. 
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Figure A.1: Photographs of the components of the Encounternet automated telemetry system 

used in a field test to study Long-tailed Manakins in Costa Rica. (a) A female Long-tailed Manakin 

fitted with an Encounternet tag; the tag sits above her preen gland and the antenna runs down 

and beyond her tail. (b) An Encounternet tag, comprising two air-zinc batteries, an antenna, and 

a programmable chip that controls the timing of the radio pulses. The components are 

embedded in epoxy for waterproofing, and an elastic thread is fed through Teflon tubes at the 

two ends of the tag to create a leg harness. Here the tag is suspended between two blue screws. 

(c) An Encounternet receiver station; the receiver hardware is contained in a waterproof box, a 

cable that attaches to an external battery back, and a movable antenna is located on one side. 

(d) A screen capture from a video at a Long-tailed Manakin display perch. Two black males 

(lower left) dance on a display perch for a green female (lower right). The Encounternet receiver 

station (top) is mounted above a display perch the external battery pack can be seen below it).  
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Figure A.2. The signal strength (left) and the probability of detection (right) decreased with the 

distance between Encounternet digital tags and receiver stations in a neotropical forest in Costa 

Rica. Box plots show the full range of data for the mean values from each receiver station; the 

boxes show the 25th, 50th, and 75th percentile, and the whiskers show the maximum and 

minimum value. Letters above the box plots show the results of a post-hoc test of honestly 

significant differences; plots that are not connected by the same letter are statistically different. 
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Figure A.3. The signal strength (left) and the probability of detection (right) was significantly 

higher for tags placed on the display perch at Long-tailed Manakin display perches (approximate 

distance of 0.3 to 1.4m) than for tags placed 5.0m from the receiver station. Box plots show the 

full range of data for the mean values from each receiver station; the boxes show the 25th, 50th, 

and 75th percentile, and the whiskers show the maximum and minimum value. 

  

-20

-10

0

10

30

R
ec

ei
ve

d 
Si

gn
al

 S
tr

en
gt

h 
In

di
ca

ti
on

 (
R

SS
I) 20

Distance between 
tag and receiver

0

20

40

60

80

Pr
ob

ab
il

it
y 

of
 d

et
ec

ti
on 100

Distance between 
tag and receiver

On perch 5 m

a b

On perch 5 m

a b



 131  

 

 

Figure A.4. Summary data from n=70 female Long-tailed Manakins carrying Encounternet tags as 

detected by autonomous receiver stations at male display sites in a tropical forest in Costa Rica. 

A histogram of the strength of the received pulses (left) shows a high number of pulses with an 

RSSI value of 0 to 2 are indicative of females observing male courtship displays while visiting a 

male display perch. A histogram of the length of female visits to male display perches (right) 

shows that most female visits to male display perches were brief, although hundreds of visits 

were longer. Twenty visits longer than 30 min are excluded from the histogram; the longest visit 

detected in this dataset was 86 minutes. 
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