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ABSTRACT 

Understanding how communities and species assemblages persist is among the 

most fundamental objectives in ecology, particularly as human modifications to the 

landscape increase. Through application of traditional community metrics with emerging 

biochemical tracers in combination with community/food web ecology theory, I provide 

an evaluation of the effects of anthropogenically-altered freshwater flow disturbance on 

estuarine nekton community structure and trophic interactions. These two parameters are 

central toward understanding the functioning of aquatic communities and ensuring their 

persistence. 

This dissertation provides data regarding the effects of human-altered freshwater 

flow on estuarine nekton communities in tidal rivers and, in doing so, has fostered 

valuable findings regarding the application of stable isotopes to estuarine fishes and large 

vertebrates. Specifically, this research demonstrates that losses of estuarine nekton 

community biodiversity (Chapter 2), the shift in resource availability to lower trophic 

level species (Chapter 5), and changes to energy flow pathways leading to higher trophic 

level consumers (Chapter 6), are all associated with high flow events. This dissertation 

further demonstrates that the application of stable isotopes requires consideration of a 

species life history characteristics, as interpretation of a species diet and trophic roles can 

be complex (Chapters 3 and 4).   

Collectively, these findings suggest that high flow events affect the structure and 

trophic interactions of estuarine nekton communities and provide a greater understanding 

of the impacts of such anthropogenic-mediated stressors on these complex ecosystems. 

Whether altered high-flow disturbance events result in adverse or beneficial effects on the 
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persistence of estuaries remains to be established. However, in order to maintain and/or 

restore the integrity of an ecosystem requires that conservation and management actions 

be firmly grounded in scientific understanding. This becomes especially relevant as 

worldwide changes to hydrologic connectivity continue with increasing anthropogenic 

pressures. 

This research demonstrates the potential for the simplification of food webs and 

changes to dominant trophic assemblages that are associated with flow alteration. For the 

commercially, recreationally and ecologically valuable species that define estuarine 

nekton communities, these observations emphasize the necessity of research and 

management programs aimed at maintaining the integrity of these highly-valued 

ecosystems. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 
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The food web is one of the central and unifying concepts in ecology (Lindeman 

1942; Martinez 1995) representing an integration of all ecological relationships within a 

community (Elton 1927). The food web concept provides the framework to test and 

quantify ecosystem processes such as population dynamics, predator - prey relationships, 

feeding ecology, and responses to disturbance. Food webs are modeled on the unifying 

theory of energy transfer (Lindeman 1942) which provides a mechanism for 

characterizing the trophic interactions and exchanges within and between communities 

(Odum 1968). As such, understanding the factors regulating food web structure is critical. 

This is especially relevant in aquatic food webs, where species extinction rates are 

increasing as a result of multiple anthropogenic stresses (Ricciardi and Rasmussen 1999; 

Jackson et al. 2001). 

 

DISTURBANCE 

Periodic disturbances are a natural component of nearly all ecosystems and are 

important determinants of community structure and dynamics (Sousa 1984; Pickett and 

White 1985). A disturbance as defined by Pickett and White (1985) is a relatively 

discrete event in time that disrupts community or population structure, and changes 

resource availability or the nature of the physical environment. 

Some ecological models predict that species mortalities as imposed by occasional 

natural disturbances, such as fires, are integral components of most ecosystems and can 

be vital for maintaining biological diversity as well as renewing essential nutrients 

(Pickett and White 1985; Webster and Halpern 2010). However, many of these same 

models also predict a decrease in diversity when the frequency or severity in magnitude 
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of the disturbance is too great (intermediate disturbance hypothesis; Connell 1978). In 

aquatic systems, this is best illustrated by drought and storm events, where reductions in 

species complexity i.e., decrease in diversity, in stream (Walters and Post 2011), 

estuarine (Livingston et al. 1997; Greenwood et al. 2006; Baptista et al. 2010) and coastal 

marine (Byrnes et al. 2011) communities have been documented to coincide with these 

events. Understanding how such reductions in diversity impact community functioning is 

critical for regulating anthropogenic-mediated effects of habitat degradation (Mora et al. 

2007), urbanization (Marchetti et al. 2006), species invasions (Lodge 1993) and species 

overexploitation (Pauly et al. 1998). This is especially relevant as climate change models 

predict increased frequency and severity of many forms of large abiotic disturbances, 

such as tropical storms (Easterling et al. 2000; Meehl et al. 2000). As such, simplification 

of food webs is an expected consequence.  

Recently, it has been argued that some of the most fundamental aspects behind the 

persistence and functioning of complex systems may be manifested in their ability to 

adapt in the face of disturbance (Levin 1998). McCann and Rooney (2009) argue that 

temporal and spatial variability in food web structure and the ability of species to rapidly 

respond to such variation are critical to the persistence of food webs. McCann (2007)  

and McCann and Rooney (2009) advocate the empirical examination of food web 

variability by evaluating how communities, specifically those with relatively consistent 

species assemblages, respond and/or change across resource gradients in natural and 

anthropogenic altered systems. Such evaluations will enable predictions regarding the 

consequences of human modifications on the structure and functioning of ecosystems 

(McCann 2007). In this manner, food web dynamics are fundamentally based on the 
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premise of predicting species interactions and thereby understanding predator-prey 

relationships. This permits the ability to determine the magnitude of energy available to a 

consumer and also facilitates an understanding of the extent of resource exploitation that 

may be influenced by disturbance events. The loss of individual species and subsequent 

biodiversity is known to impact the functioning of both organisms and ecosystems 

(Cardinale et al. 2006). Should natural or anthropogenic-mediated disturbance events 

function similarly to alter species abundance and diversity, such changes can lead to 

significant impairments to ecosystem structure and functioning (McCann and Rooney 

2009). Given the increasing frequency of anthropogenic-mediated disturbances such as 

species invasions, habitat loss and climate change, there is a need to understand how 

species and ecosystems respond to such events (McCann 2000). 

 

ESTUARIES: ECOLOGY AND IMPORTANCE 

Cowardin et al. (1979) formally defined estuaries as “deep-water tidal habitats 

and adjacent tidal wetlands which are usually semi-enclosed by land, but have open, 

partially obstructed, or sporadic address to the open ocean and in which water is at least 

occasionally diluted by freshwater runoff from the land.” As such, estuaries are thus 

viewed as transition zones between terrestrial, and freshwater and marine aquatic systems 

(Dardeu et al. 1992). This confluence of freshwater and marine aquatic environments 

results in a wide spectrum of abiotic and biotic characteristics that influence estuarine 

physical and biological community structure (Dardeu et al. 1992; Rush et al. 2010). 

Consequently, estuaries are valued as highly productive environments that provide 

important spawning, nursery, refuge and foraging habitats for a number of species, 
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including commercial and recreational fishes during one or more of their life history 

stages (Beck et al. 2001). For example, a recent estimate of U.S. fisheries indicated that 

approximately 46% of the commercial and 80% of the recreational fisheries harvests are 

derived from the communities of Gulf Coast estuaries (Lellis-Dibble et al. 2008). 

Estuaries, however, are among the most intensely modified ecosystems as a 

consequence of extensive hydrological alteration, habitat alteration and chemical and 

organic pollution (Lotze et al. 2006). Globally, there are few estuarine systems that 

remain unaffected by upstream manipulation of their freshwater flow (Dynesius and 

Nilsson 1994; Nilsson et al. 2005). River regulation by dams has fragmented hydrological 

and ecological processes (Nilsson et al. 2005) often restricting or severing connectivity to 

estuaries and coastal marine systems, as well as facilitating the introduction and 

establishment of invasive species which can modulate flows of energy and nutrients 

(Bunn and Arthington 2002). Such anthropogenic-mediated alterations can be detrimental 

to downstream communities, as freshwater inflow from riverine sources provides 

nutrients, sediment and organic matter essential for primary and secondary production in 

these systems (Mallin et al. 1993; Chanton and Lewis 2002).  

Anthropogenic-mediated alterations to freshwater flow indirectly affect the 

physicochemical characteristics of the system by shifting the salinity and dissolved 

oxygen gradients, and increasing turbidity, among other impacts (Sklar and Browder 

1998; Gillson 2011). Predicting the response of estuaries to changing environmental 

conditions is challenging, as it necessitates understanding interactions among several 

trophic levels and among multiple nutrient sources (Rush et al. 2010). Many life-history 

stages of estuarine species from juveniles to adult are intimately tied to water flow (Bunn 
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and Arthington 2002; Rehage and Trexler 2006). For example, larval stages of many 

estuarine fishes are reliant on freshwater flow as a cue for migration into estuaries 

(Strydom et al. 2002; Gillanders et al. 2011). Thus, disruption of this natural event affects 

recruitment, and thus growth and mortality of these species (Purtlebaugh and Allen 

2010). Consequently, the effects of altered flow on estuarine communities are expected to 

be revealed not only by the presence or absence of certain species (Hofmann and Powell 

1998) but also by changes in food web interactions (Akin et al. 2005).   

 

STUDY SITES 

The Charlotte Harbor Estuary is a large (~700 km2) relatively shallow estuary on 

the southwest coast of Florida that serves as a forage and/or nursery area for more than 

255 species of resident, migrant, recreational and commercial fishes of the Gulf of 

Mexico (Poulakis et al. 2004), as well as to federally-protected species (e.g., manatees, 

sea turtles and dolphins). The Caloosahatchee and Myakka Rivers (see Figure 2.1; details 

on the study areas can be found in the following chapters) are major tributaries of 

Charlotte Harbor Estuary. These rivers are subject to different anthropogenic influences, 

regarding land-use development, shoreline modification and freshwater flow. 

Specifically, the Myakka River has been subjected to relatively minor anthropogenic 

modifications and experiences relatively natural flow regimes. In contrast, the artificial 

connection of Lake Okeechobee to the Caloosahatchee River represents a unique 

anthropogenic manipulation of riverine hydrology (Doering and Charmberlain 1998), 

whereby substantial seasonal discharge from Lake Okeechobee occurs for flood control 

and water supply, as well as to flush algal blooms and salt water intrusion (Flaig and 
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Capece 1998). Accompanying these hydrologic changes is a decrease in water quality, 

marked by increases in turbidity and nutrient loading, changes in water residence time in 

the estuary, and alteration in the natural salinity gradient (Barnes 2005). These flow 

characteristics of the Caloosahatchee and Myakka provide a unique opportunity to test 

how disturbance, in the form of altered flow regimes, affects food webs and provides the 

context by which this dissertation was developed.   

 

DISSERTATION OBJECTIVES 

The objective of this dissertation was to apply the principles and foundations of 

community/food web ecology to understanding estuarine community response to 

anthropogenically-altered freshwater flow disturbance. Patterns of community response 

to flow variability were investigated in a framework that encompassed both temporal and 

spatial scales and addressed changes in community characteristics associated with a 

human-driven disturbance. Specifically, this dissertation investigates the effects of altered 

freshwater flow on community structure and trophic interactions of estuarine 

communities by comparing the Myakka and Caloosahatchee Rivers and their contrasting 

flow regimes.  

To investigate the effects of altered flow disturbance on estuarine communities, I 

applied a combination of traditional community metrics with biochemical tracers to 

demonstrate how altered vs. natural flow affect temporal estuarine community structure 

and function. Traditional metrics included estimates of species density, diversity, 

richness, and evenness. The biochemical tracers included stable isotopes of carbon 

(δ13C), nitrogen (δ15N) and sulfur (δ34S), and fatty acid biomarkers.  
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Application of biochemical tracers, especially stable isotopes and fatty acids, have 

become increasingly prevalent for investigations of diet, trophic interactions and foraging 

habitats (Peterson and Fry 1987; Iverson et al. 1997; Post et al. 2000; Rubenstein and 

Hobson 2004) which has allowed for broad evaluation and inference regarding the 

changing structure and function of food webs (Vander Zanden et al. 1999; Hebert et al. 

2006). The stable isotope approach is based on the fact that the ratios of the stable 

isotopes of nitrogen (15N/14N), carbon (13C/12C) and sulfur (34S/32S) in consumers’ tissues 

reflect (1) isotopic composition of their dietary resources and (2) isotopic fractionation 

during diet assimilation (DeNiro and Epstein 1978, 1981). Enrichment of isotopes within 

tissues of a consumer over that of its diet arises as a result of the greater retention of the 

heavier over the lighter isotope during the process of protein amination and deamination 

for 15N and 34S, and respiration for 13C (DeNiro and Epstein 1978; 1981). This produces 

ratios in a consumer’s tissues, between approximately 0 and 2‰ for δ13C and δ34S, and 2 

and 5‰ for δ15N, higher than those of its diet (DeNiro and Epstein 1981; Minagawa and 

Wada 1984; Post 2002; Vanderklift and Ponsard 2003). Specifically, δ15N values have 

found application in determining the relative trophic position of a consumer (Minagawa 

and Wada1984; Post 2002), and δ13C and δ34S values have found application in 

determining basal organic matter sources incorporated into a consumer’s diet (Peterson 

and Fry 1987), species habitat use (Herzka 2005) and dependence on marine and/or 

terrestrial/freshwater energy pathways (Simenstad and Wissmar 1985; Darnaude et al. 

2004; McLeod and Wing 2009). 

Fatty acids are the main constituents of many types of lipid and are required for 

normal growth and development of an organism (Arts 1999). Essential fatty acids are 
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fatty acids that cannot be efficiently synthesized by consumers in amounts sufficient for 

optimal growth and development, instead originate in primary producers and need to be 

acquired through diet (Arts et al. 2001). The utility of fatty acids as biochemical tracers 

of food web pathways stems from the fact that they are highly conserved during trophic 

interactions (Iverson et al. 2004) and incorporated into consumers’ tissue in largely 

unmodified form (Falk-Peterson et al. 2002; Hall et al. 2006), thereby allowing 

inferences to be made regarding consumer diet composition (Iverson et al. 2004; Hebert 

et al. 2009). For example, the ratio of ω3/ω6 polyunsaturated fatty acids (PUFA) is a 

useful indicator of the relative contribution of aquatic vs. terrestrial-derived resources in a 

consumers’ diet (Smith et al. 1996; Hebert et al. 2009).  

 

OVERVIEW OF CHAPTERS 

In Chapter 2 (Loss of seasonal variability in nekton community structure in a tidal 

river: evidence for homogenization in a flow-altered system), I evaluated seasonal trends 

(i.e., the transition of dry to wet season) of estuarine nekton trawl and seine assemblages 

from the Myakka and Caloosahatchee estuaries, with the prediction that the these 

estuaries would exhibit contrasting responses to the onset of the wet season, i.e., the 

Caloosahatchee Estuary would exhibit loss in diversity, whereas the Myakka would 

exhibit an increase. By comparing, nekton density, diversity, richness, and evenness 

within and between estuaries, this chapter provides unique evidence regarding nekton 

community response to altered high-flow. This chapter provides a baseline by which 

hypotheses in subsequent chapters regarding effects of high-flow on the nekton 

community were posed. 
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Stable isotope analysis has proven to be a powerful tool for the study of estuarine 

food webs (Peterson and Fry 1987). Despite the prevalence of stable isotope analyses in 

ecological studies of diet and food webs, there are still a number of confounding factors 

that can complicate interpretations of stable isotope data and studies have recommended 

establishing species-specific criteria for accurate isotopic assessment of an organism 

(Sweeting et al. 2007). I tested assumptions regarding (1) tissue stable isotope values of 

young individuals reflecting their current diet and (2) estuarine fishes exhibiting 

ontogenetic or body-size based shifts in dietary resources. In this manner, Chapter 3 and 

Chapter 4 allowed me to determine whether a species, sampled over variable time periods 

and over a range of sizes, would be suitable for use in subsequent community analyses, 

without confounding size-based effects.  

In Chapter 3 (Maternal meddling in neonatal sharks: implications for interpreting 

stable isotopes in young animals), I examined the relationships between several size 

metrics and stable isotope values of δ13C and δ15N measured from muscle and liver 

tissues of two species of placentatrophic shark to determine the length of time tissues of 

young individuals are influenced by their mothers’ isotopic signal. This chapter provides 

guidance regarding estimation of trophic position and characterization of carbon sources 

and diet of young sharks using stable isotopes.  

In Chapter 4 (Isotopic ratios reveal mixed seasonal variation among fishes from 

two subtropical estuarine systems), I examined temporal and spatial relationships 

between body size and δ15N, δ13C and δ34S values for fish species across multiple trophic 

levels, with the expectation that temporal variability would be manifested in changes to 

δ13C and δ34S with season, and that δ15N would scale with body size. This chapter 
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supports previous observations in estuarine fishes regarding body size and in that context 

allows for inclusion of estuarine fishes in subsequent food web analyses.  

  In Chapter 5 (Going with the flow: reduced inter-specific variability in stable 

isotope ratios of nekton in response to altered high flow), I evaluated the effect of altered 

high-flow on food web structure by comparing seasonal isotopic trends (δ13C, δ15N and 

δ34S) in consumer species sampled over four trophic levels in the Caloosahatchee and 

Myakka estuaries. From the community perspective, I hypothesized that extreme high 

flows would be most evident among lower trophic level species (i.e., primary and 

secondary consumers). Specifically, we expected species sampled following the dry 

season to be enriched in 13C and 34S relative to those sampled following the wet season, 

reflecting a polyhaline estuarine status (i.e., tidally influenced).  In contrast, those 

sampled following the wet season would be depleted in 13C and 34S reflective of an 

oligohaline estuarine status (i.e., terrestrial/freshwater influenced). Additionally, the 

magnitude in the seasonal isotopic shifts would be expected to be greater in the 

Caloosahatchee as opposed to the Myakka. This chapter demonstrates the effect that 

altered high flow has on isotopic values of consumer species and in so doing, 

demonstrates the effect on the overall food web structure, regarding relative trophic 

position and carbon resources of estuarine consumers.  

 In Chapter 6 (Changes in resource exploitation by estuarine consumers in response to 

altered high flow as inferred from fatty acid biomarkers), I used fatty acid biomarkers to 

evaluate the main trophic pathways and relative importance of different energy sources to 

the diet of estuarine consumers under different flow regimes. I hypothesized that the 

contribution of allochthonous carbon sources (i.e., terrestrially-derived) would be more 
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important during the wet season than the dry season and would be especially evident 

during extreme high flow. Fatty acid biomarkers and specific fatty acid ratios (i.e., 

ω3/ω6) indicative of marine vs. terrestrial/freshwater resource use were measured in 

species that constitute several trophic guilds, sampled seasonally from both estuaries. 

This chapter provides a novel application of fatty acid biomarkers to track altered flow 

events in estuaries and provides a compliment to Chapter 5, for determining flow-related 

changes to carbon source and energy pathways of estuarine consumers.  

In light of escalating human water demand, urbanization, and climate change that 

will ultimately lead to increased frequency of extreme flow events, in chapter 7, I 

summarize the chapters  presented here and discuss their contribution to understanding of 

how altered flow effects estuarine nekton communities in the context of maintaining 

structure and stability of these productive systems.  
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INTRODUCTION 

Extensive fragmentation of riverine systems by dams, and associated 

modifications to fluvial processes (e.g., flux of water, nutrients and sediment) represent a 

pervasive alteration of the landscape (Nilsson et al. 2005; Poff et al. 2007). These human 

modifications, which alter the timing and magnitude of freshwater flow, have led to 

unprecedented changes in natural seasonal and inter-annual hydrologic connectivity, 

reducing the natural seasonal variability in flow regimes (Poff et al. 2007). This 

disturbance to natural flow dynamics poses a significant threat to riverine and 

downstream estuarine and coastal community composition and biodiversity, and as a 

consequence, compromises the overall structure and function of these important 

ecosystems (Rozas et al. 2005; Poff and Zimmerman 2010; Carlisle et al. 2011).  

Freshwater flow is known to be an important factor structuring nekton 

communities of estuarine reaches within tidal rivers (Peterson and Ross 1991; Sklar and 

Browder 1998), with the nekton assemblages changing most rapidly at the oligohaline-

mesohaline boundary (Greenwood et al. 2007). Because many estuarine species have 

evolved life history strategies in response to natural seasonal flow regimes (Bunn and 

Arthington 2002; Lytle and Poff 2004), alterations to the magnitude and timing of flow 

can be detrimental (Drinkwater and Frank 1994; Gillson 2011). For example, a reduction 

in species growth rates (Edeline et al. 2005; Rypel and Layman 2008) and recruitment 

dynamics (Jenkins et al. 2010), and changes to the overall structure of estuarine food 

webs (Adams et al. 2009) have been documented in response to altered flow regimes.  

Periodic disturbances are a natural component of nearly all ecosystems and are 

important determinants of community structure and dynamics (e.g., Sousa 1984; Pickett 



 

21 
 

and White 1985). However, extreme events where the frequency or severity of the 

disturbance becomes too great result in a decrease in species diversity (Connell 1978). 

This is best illustrated by drought and storm events in aquatic systems, where a reduction 

in complexity (i.e., decreases in diversity and abundance) in stream (Walters and Post 

2011), estuarine (Livingston et al. 1997; Greenwood et al. 2006; Baptista et al. 2010) and 

coastal marine (Byrnes et al. 2011) communities have been documented. More 

specifically in estuarine environments, a decrease in the diversity of estuarine resident, 

and marine nekton and macrofaunal species, have been associated with prolonged periods 

of freshwater inflow resulting from human alteration (Rutger and Wing 2006; McLeod 

and Wing 2008). As well, Chamberlain and Doering (1998) indicated that seagrasses, 

oyster beds, juvenile fish abundance, and richness decreased, partly in response to rapidly 

changing salinities and sediment loads as a result of heavy freshwater flows. The 

consequences of altered flow for the complexity of estuarine communities however, can 

be unpredictable. For example, Kimmerer (2002) observed that lower trophic levels (i.e., 

plankton) negatively responded to high flow (i.e., decreased abundance), whereas higher 

trophic level (i.e., fishes) responded positively to flow (i.e., increased abundance). 

Nevertheless, reduced species diversity and abundance following extreme disturbance 

events have the potential to destabilize food webs (McCann et al. 1998; Rooney et al. 

2006).   

Contention over flow regime management arises not only from competition 

among water uses, but also from the difficulty of specifying flow requirements, i.e., 

management measures, that will maintain ecological integrity in aquatic systems 

(Freeman et al. 2001). Highly altered ecosystems can therefore serve as endpoints for 
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examining how changes in assemblage structure influence food web function, a study of 

which can aid the development of key management and restoration strategies (Cross et al. 

2011). Understanding the biotic response to altered flow regimes is required to 

effectively manage aquatic ecosystems and is critical in estuarine systems, as escalating 

human water demand, urbanization, and climate change will ultimately lead to increased 

frequency of extreme flow events (Vörösmarty et al. 2000). To address this question, we 

sampled nekton assemblages of two tidal rivers in the Charlotte Harbor Estuary, Florida; 

one that has undergone major human development and experiences altered flow regimes, 

and one that is relatively natural. By comparing the seasonal nekton assemblage trends in 

these two systems, this study aimed to determine the response of estuarine nekton 

communities to altered flows, specifically anthropogenic-induced high flows. Because 

periods of moderate flow have resulted in the highest abundance of species (Idelberger 

and Greenwood 2005; Cross et al. 2011), we predict the natural estuary would exhibit an 

increase in nekton density and diversity with the seasonal progression of dry to wet 

conditions. Additionally, we predict that species composition would reflect the conditions 

of the estuary, i.e., dry and wet seasons. For example, density and diversity of freshwater 

species would increase during the wet season, whereas the opposite trend would be 

observed in marine species. In contrast, within the altered estuary we predicted that 

extreme high flows would negatively disturb the nekton community, whereby the density 

and diversity would decrease with the seasonal progression of dry to wet conditions. As 

physicochemical conditions (i.e., salinity, temperature) have been demonstrated to be 

important determinants of spatial and temporal fish assemblage structure (Akin et al. 

2005; Greenwood et al. 2007) and are commonly correlated with flow, we expect that this 
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disturbance would largely be evidenced in a decrease in marine and less tolerant estuarine 

species.  

 

MATERIALS AND METHODS 

The Caloosahatchee River (26°30' N, 81°54' W) is a major tributary of Charlotte 

Harbor Estuary, a large (~700 km2) relatively shallow estuary on the southwest coast of 

Florida, USA (Fig. 2.1). The artificial connection of Lake Okeechobee to the 

Caloosahatchee River represents a unique anthropogenic manipulation of hydrology 

(Doering and Charmberlain 1998), whereby substantial seasonal discharge from Lake 

Okeechobee occurs for flood control and water supply, as well as to flush algal blooms 

and salt water intrusion (Flaig and Capece 1998). Major modifications to the hydrology, 

along with land-use transformations and dredging for navigation (e.g., ~70% of shoreline 

is hardened with seawalls and rip-rap) have resulted in large-scale alterations within the 

estuary (Barnes 2005). The volume of the Caloosahatchee estuary is approximately 105 x 

106 m3, while the median annual discharge is 870 x 106 m3 (Flaig and Capece 1998). 

During periods of low freshwater discharge (i.e., during winter/spring months), salt water 

regularly intrudes to S-79, the most downstream water control structure, often exceeding 

10‰ (Fig. 2.1). High freshwater discharge (i.e., during summer/fall months) can cause 

salinity to drop below 5‰ at the mouth and the transition between the two states can be 

rapid, sometimes occurring in less than a week (Doering et al. 2002). These fluctuations 

observed at the head and mouth of the estuary, exceed the salinity tolerances of most 

oligohaline and marine species (Barnes 2005). These alterations to flow patterns of the 

Caloosahatchee are particularly relevant, in light of implications for the Comprehensive 
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Everglades Restoration Plan, thereby creating an ideal system to document the effects of 

altered flow on community dynamics (RECOVER 2008).  

Trends in abundances of nekton can be influenced by myriad factors, including 

recruitment and/or stochastic climactic events (Greenwood et al. 2007a). To minimize 

variability associated with these factors, we chose the Myakka River (82°12' W, 26°57' 

N) for comparison with the Caloosahatchee, as it is proximately located (< 100 km; Fig. 

2.1) and therefore is accessible to fishes of Charlotte Harbor. Additionally, the Myakka 

estuary experiences relatively natural flow periods and it’s shoreline has been subjected 

to relatively minor anthropogenic modification (i.e., ~40% of shoreline area is hardened; 

estimated from 2007 Digital Ortho Quad County Mosaic, USDA, Geospatial Data 

Gateway in ArcGIS (ESRI ArcGIS version 9)). The natural shoreline areas of the 

Myakka estuary are characterized by mangroves and saltmarsh, principally R. mangle, 

black mangrove Avicennia germinans, saltmarsh cordgrass Spartina alterniflora and 

black needlerush Juncus roemerianus. Based on similar trends in fish and macrofaunal 

abundance among proximate estuaries in Chesapeake Bay (Kraus and Secor 2004), and 

among three river-estuaries along the Texas coast (Palmer et al. 2011), the Myakka 

provides a control by which comparisons of nekton community dynamics to the 

Caloosahatchee can be made.  

 

Nekton community composition 

Data on nekton assemblages in the Myakka and Caloosahatchee estuaries were 

obtained from a long-term fisheries-independent monitoring (FIM) program in the 

Charlotte Harbor Estuary. Between 2004 and 2009, monthly stratified-random sampling 



 

25 
 

was conducted in the estuarine reaches of the Myakka and Caloosahatchee rivers using a 

6.1-m trawl (38-mm stretch mesh, 3.2-mm stretch mesh liner) and using a 21.3 m seine 

(3.2-mm stretch-mesh, center-bag). Sampling locations were chosen randomly each 

month from all possible sites that contained adequate depth for trawling (1.8–7.6 m) and 

seining (0.3–1.8 m). The sampling effort implemented within the areas used in this study 

were 3 trawls and 4 seines/month for the Myakka and 4-5 trawls and 10-12 seines/ month 

for the Caloosahatchee. The trawl was towed for 5 minutes at 0.6 m•s-1, providing a tow 

length of ~180 m. Trawl width averaged ~4 m, providing an approximate area of 720 m2 

sampled by a typical tow. The seine was deployed from a boat in a shallow arc parallel to 

shore and hauled directly along the shoreline. The two ends of the seine were pulled 

together, sampling an area of ~68 m2.  

During each sampling event, environmental parameters—including temperature 

(°C), salinity (ppt) and dissolved oxygen (mgl−1)—were profiled with a Hydrolab water 

quality datasonde (measurements taken at 0.2 m, 1.0 m if applicable, and at the bottom). 

Fishes and select invertebrates collected during each sample event were identified to the 

lowest practical taxonomic level (nomenclature for fishes follows Nelson et al. 2004), 

measured (standard length (SL) for fishes and carapace width (CW) for crabs), counted 

and released. Representative subsamples of organisms were retained for laboratory 

verification. For specific details on site selection and sampling technique refer to 

Idelberger and Greenwood (2005) and Idelberger et al. (2011). 

Each sampled species was categorized into an ecological guild according to Elliot 

et al. (2007) and Nordlie (pers. comm.) (Table 2.S1 Supplemental Material): freshwater 

species (FW); estuarine species (ES) [i.e., estuarine resident—those that complete their 
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life history in the river and estuarine dependent—those that spawn at sea and recruit to 

rivers as juveniles], and marine migrants (MM) [i.e., species that spawn at sea and use 

estuarine and nearshore waters]. Based on primary dietary resources, species were then 

further classified according to trophic or feeding guild (e.g., Froese and Pauly 2009; 

Table 2S.1 Supplemental Material): primary consumer, diet composed largely of algae 

and detritus (>70%); secondary consumer, diet composed primarily of invertebrate 

species; tertiary consumer, diet composed of both fishes and invertebrates; and piscivore, 

diet composed primarily of fishes (> 80%). For the overall nekton community, and each 

ecological and trophic guild, density (individuals•100 m-2), diversity (Shannon index, H′), 

richness and evenness (Pielou index, J′) was calculated for each unique sampling event 

(i.e., trawl and seine) from both dry and wet seasons in both estuaries. The Sorenson 

Similarity Index (Cs) was calculated to compare beta diversity (β) between seasons in 

each estuary. Open water species with extreme abundances that form large schools with 

patchy distributions (i.e., Anchoa mitchilli and Membras martinica; Clark and Warwick 

2001) were excluded prior to the calculations of the community metrics (e.g., Tsou and 

Matheson 2002; see Table 2S.1 Supplemental Material).  

 

Statistical analysis 

In southwest Florida, many rivers are categorized as having the southern river 

flow pattern, i.e., a significant proportion of riverine annual flow (~60%) is concentrated 

in the wet season, which occurs during the months of June-September (Kelly and Gore 

2008). In the case of the Caloosahatchee, a fundamental premise in our analysis is that 

the wet season is further exaggerated by altered discharges from Lake Okeechobee, while 
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the Myakka experiences a relatively natural hydrological cycle. For both rivers, data for 

all trawl and seines from dry and wet seasons were therefore grouped for the months of 

May–June (low flow) and August–September (high flow), respectively, from 2006, 2008 

and 2009. Data from 2004 and 2005 were excluded from the analyses because of known 

hurricane effects to fish assemblages that occurred throughout Charlotte Harbor 

(Greenwood et al. 2006). Data from 2007 were excluded from the analyses because of 

severe drought that led to minimal differences in flow between dry and wet seasons in the 

rivers (see Fig. 2.2).  

Each unique sampling event (i.e., a single trawl or seine) was considered as the 

sample unit for all analyses. To assess if the environmental parameters of the two 

estuaries differed, flow and environmental parameters (i.e., salinity, temperature, 

dissolved oxygen) recorded for each unique sampling event were compared by estuary 

(Myakka and Caloosahatchee), season (spring–dry and autumn–wet) and their interaction 

(estuary x season) using a two-way factorial analysis of variance (ANOVA). Two sets of 

analyses were then conducted for the trawl and seine nekton community data for both the 

Myakka and the Caloosahatchee. First, linear mixed-effect models were constructed to 

investigate the effects of altered freshwater flow on the nekton assemblages of the two 

estuaries, by comparing dry and wet seasons. Second, multivariate techniques were 

applied to investigate the differences in nekton community structure between the dry and 

wet seasons among estuaries.  

Linear mixed-effect models, with year as the random effect, were applied to test 

for differences in the dependent variables (i.e., density, diversity, richness and evenness) 

between seasons in each estuary. This was based on the premise that we were testing for 
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the effects of altered flow on the nekton communities, not annual variation in the 

magnitude of flow. For each mixed-effects model, we applied orthogonal linear contrasts 

(glht in the multcomp package available in the statistical program R: R Development 

Core Team 2011) to compare dependent variables between seasons in each estuary. 

Separate analyses were conducted to test for differences in the dependent variables 

among nekton assemblages, ecological guilds and trophic guilds, for trawl and seine data.  

To evaluate differences among the nekton communities of the Myakka and 

Caloosahatchee estuaries, a multivariate ANOVA based on dissimilarities (adonis 

function in R) was performed on density data across estuaries and seasons. To reduce the 

influence of rare species, only the twenty most abundant species collected from either 

estuary for trawl and seine data were included. Non-metric multidimensional scaling 

(NMDS; metaMDS function in R) ordination was used to graphically coordinate the 

patterns in community structure and composition among estuaries. Data from a Bray-

Curtis similarity matrix were used to construct the ordination plots. NMDS data, 

reflecting dry and wet seasons within each estuary were fitted with 95% confidence 

ellipses to depict the distribution patterns of the season-estuary communities. In addition, 

environmental parameters (i.e., flow, salinity and DO) that had low correlation values (< 

0.6) were log-transformed and fit to the NMDS (envfit function in R) to determine the 

influence of these variables on the distribution patterns of the season-estuary 

communities.  

Prior to all analyses, environmental parameters were tested for normality using 

Shapiro-Wilk tests and quantile-quantile probability plots. Data were then log-

transformed where appropriate. To reduce the influence of highly abundant species, the 
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density estimates for each species were square-root transformed. An examination of the 

probability plots of residuals from linear mixed-effect models indicated that models fit 

adequately, and quantile-quantile plots showed data to be generally described by 

normally distributed errors for all comparisons. All statistical analyses were performed in 

R 2.13.0 (R Development Core Team 2011) with a criterion for significance of P < 0.05 

used for all comparisons. Diversity, richness and evenness estimates, and NMDS were 

performed using the vegan package (Oksanen et al. 2011) and linear mixed-effect models 

were fit using the lme4 package (Bates and Maechler 2010). 

 

RESULTS 

Environmental parameters 

Mean daily freshwater flow significantly increased while salinity, measured 

during both trawl and seine surveys significantly decreased in both estuaries, between dry 

and wet seasons (Table 2.1). As expected, the magnitude of flow in the Caloosahatchee 

was significantly greater during both seasons relative to the Myakka (Fig. 2.2). Water 

temperatures ranged between ~25 and 33°C with each estuary exhibiting a similar 

seasonal pattern from both trawl and seine surveys; a consistent temperature in the 

Caloosahatchee across survey periods, and an increase in water temperature during the 

wet season in the Myakka (Table 2.1). Dissolved oxygen exhibited a decrease during the 

wet, relative to the dry season in both estuaries for both sampling gear types (Table 2.1).  

 

Nekton community: Trawl  
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A total of 5,162 individuals of 52 species were sampled from trawl surveys; 37 

species from the Myakka and 43 species from the Caloosahatchee. The majority of these 

species were characterized as estuarine species (20 and 21 species) and secondary 

consumers (25 and 23 species) from the Myakka and Caloosahatchee, respectively (Table 

2S.1 Supplemental Material). Nekton assemblages were more similar between seasons in 

the Caloosahatchee (22 common species; Cs = 0.67) relative to the Myakka (15 common 

species; Cs = 0.54).  

For trawl data in the Myakka, linear mixed-effect models found that both mean 

nekton density (Fig. 2.3A) and mean nekton richness (Table 2.2) significantly increased 

during the wet season compared with the dry season. In contrast, in the Caloosahatchee 

there were no statistically significant trends for nekton density (Fig. 2.3C), diversity or 

richness (Table 2.2) among seasons although a trend of declining nekton density was 

observed.  

In the Myakka, the density, diversity and richness of estuarine species 

significantly increased in the wet season, while there was no change in these metrics for 

freshwater and marine migrants between seasons (Table 2.2; Fig. 2.3B). During the wet 

season in the Caloosahatchee, there was a significant decrease in the density and richness 

of marine migrants and an increase in density and richness of freshwater species, but no 

observed effect on estuarine species (Table 2.2; Fig. 2.3D). 

The density of secondary and tertiary consumers (Fig. 2.3C), and the diversity, 

richness and evenness of tertiary consumers (Table 2.2) increased in the Myakka during 

the wet season. Primary, secondary, and tertiary consumers of the Caloosahatchee 

showed no significant change in density (Fig. 2.3F) or diversity (Table 2.2) with 



 

31 
 

increased flow, but secondary consumers were observed at higher densities during the dry 

season (Fig. 2.3F). Results of Tukey contrasts from linear mixed-effect models are 

presented in Table 2S.2 in Supplemental Material. 

 

Nekton community: Seine 

A total of 33,105 individuals of 70 species were sampled from seine surveys; 49 

species from the Myakka and 62 species from the Caloosahatchee (Table 2S.1 

Supplemental Material). Similar to the trawl surveys, the majority of these species were 

characterized as estuarine species (25 and 28 species) and secondary consumers (26 and 

34 species) from the Myakka and Caloosahatchee, respectively (Table 2S.1 Supplemental 

Material). In contrast to the trawl surveys, the seine surveys exhibited less similarity 

between the dry and wet seasons (Caloosahatchee, 28 common species, Cs = 0.31; 

Myakka, 20 species, Cs = 0.29).  

For seine data, linear mixed effects models found no statistical change in nekton 

density for either the Myakka (Fig. 2.4A) or Caloosahatchee (Fig. 2.4C). For the Myakka, 

there was a significant increase in nekton diversity, richness and evenness (Table 2.2) 

between seasons indicating that a greater number of species, with more evenly distributed 

abundances were present following high flow. 

In the Myakka, the diversity and richness of freshwater and estuarine species 

increased during the wet season (Table 2.2), even though no significant change in density 

was identified in either ecological guild (Fig. 2.4B). Similarly, in the Caloosahatchee, 

density did not significantly change for any of the ecological guilds between seasons 

(Fig. 2.4E), but there was a decrease in the diversity and richness of marine migrants and 
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a corresponding increase in richness of freshwater species during the wet season (Table 

2.2). In terms of trophic guilds, in the Myakka, there was an increase in the density (Fig. 

2.4C) and richness of primary consumers and the diversity, richness and evenness of 

secondary consumers during the wet season (Table 2.2). In the Caloosahatchee, tertiary 

consumers exhibited a significant decrease in all community metrics during the wet 

season (Table 2.2; Fig. 2.4F). Results of Tukey contrasts from linear mixed-effect models 

are presented in Table 2S.2 in Supplemental Material. 

 

Comparisons of nekton communities between estuaries 

MANOVA testing between the Myakka and the Caloosahatchee found significant 

differences in nekton density between estuaries (Trawl: F1,82=1.835, R2=0.02, P = 0.02; 

Seine: F1,131 = 1.629, R2 = 0.013, P = 0.0421 ), seasons (Trawl: F1,82 = 3.863, R2 = 0.044, 

P = 0.01; Seine: F1,131 = 6.062, R2 = 0.044, P = 0.005),  and their interaction (Trawl: F1,82 

= 2.562, R2 = 0.02, P = 0.01; Seine: F1,131 = 1.710, R2 = 0.013, P = 0.0389) and supported 

the relationships depicted in the NMDS plots.  

The trawl assemblages of the Myakka during dry and wet seasons were different 

based on non-overlapping 95% confidence ellipses (Fig. 2.5A). In contrast, the 95% 

confidence ellipses of the dry and wet seasonal trawl assemblages in the Caloosahatchee 

overlapped (Fig. 2.5A), in agreement with the linear mixed model analysis. In contrast, 

the confidence ellipses of the dry and wet seine assemblages of both estuaries showed 

separation (Fig. 2.5B). Considering vector length, salinity (best correlated with axis 1, r = 

-0.827, R2 = 0.242, P = 0.001) and flow (best correlated with axis 2, r = -0.644, R2 = 

0.084, P = 0.037) were the most important environmental parameters influencing the 



 

33 
 

trawl assemblages of both the Myakka and the Caloosahatchee (Fig. 2.5A). Similarly, 

salinity and flow (best correlated with axis 2, salinity: r = -0.917, R2 = 0.171, P = 0.001 

and flow: r = 0.884, R2 = 0.094, P = 0.005) exhibited the greatest influence on the seine 

assemblages of both rivers (Fig. 2.5B). The dry-season trawl assemblages of the Myakka 

estuary clearly separated from the dry-season trawl assemblage of the Caloosahatchee, 

whereas the seine data showed overlap between the two, and in the case of the Myakka, 

were positively associated with salinity (Fig. 2.5A). The wet-season assemblages of the 

Caloosahatchee were positively associated with flow (Fig. 2.5A, 2.5B).  

 

DISCUSSION 

Given the extent of current hydrological alteration to riverine systems, 

understanding the effects of altered high-flow disturbance on estuarine nekton 

assemblage structure is critical for maintaining highly productive estuarine habitats 

worldwide. Our comparison of seasonal nekton assemblage dynamics in two estuaries 

with different hydrological patterns suggests that human altered high-flow resulted in a 

loss of seasonal variability in community structure. In the Myakka Estuary where the 

hydrology is more natural, there were clear changes in nekton community metrics 

between dry and wet seasons. These were represented by a marked increase in the density 

and species richness of larger-bodied deeper water fishes (i.e., trawl sampled) and 

increased diversity, species richness and evenness (but not density) of small-bodied 

shoreline fishes (i.e., seine sampled). These trends are what would be expected in a 

natural system (Greenwood et al. 2007; Sheaves et al. 2010). In the modified 

Caloosahatchee Estuary, these seasonal trends were not apparent. In contrast, declines in 
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diversity and species richness of the nekton assemblages were observed with altered 

high-flow, although the response was more subtle than predicted (i.e., lack of significant 

negative trends). These findings are consistent with the premise that high level 

disturbance in estuaries result in less diverse and more simplified communities (Cross et 

al. 2011) and importantly we identify that this type of disturbance was most influential on 

estuarine dependent species.  

Unraveling the influences of altered freshwater inflow patterns on nekton 

communities presents a challenge. The difficulty arises from distinguishing the direct 

effects of altered flow regimes from indirect effects associated with land-use change that 

often accompany urbanization and water resource development. Greater urbanization in 

the Caloosahatchee relative to the Myakka River is exemplified by the presence of major 

cities, artificial connections to adjacent inland systems, and greater amount of hardened 

shoreline (70% vs. 40%). Fish assemblages respond to urbanization gradients with 

sensitive fishes disappearing as urbanization increases and heterogeneity of habitat 

decreases (Pease 1999; Morgan and Cushman 2005; Walters et al. 2003). To isolate if 

altered high flow is the factor driving nekton assemblage differences it is therefore 

necessary to identify cross comparison reference points (Mayer and Galatowitsch 2001; 

Tsou and Matheson 2002).  In the dry season, diversity, richness and evenness estimates 

for trawl assemblages were similar between the two estuaries, and to a lesser degree, 

between the seine assemblages. The similarity between these defined reference points 

between estuaries during the dry season provides confidence that altered flow was the 

likely cause for divergence of nekton community metrics that occurred during the wet 

season. Moreover, similar trends in fish abundance and assemblage composition have 
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been observed in proximate estuaries (Kraus and Secor 2004; Idelberger and Greenwood 

2005), lending further support to our cross-system comparisons through defined reference 

points.  

Seasonal changes observed in nekton community metrics in the natural flow, 

Myakka Estuary were largely driven by estuarine species, a pattern not observed in the 

altered-flow Caloosahatchee. This provides important insights into altered river flow on a 

critically important ecological guild. Seasonal variation in estuarine fish assemblages is 

strongly influenced by biological factors including the spawning and recruitment patterns 

of the individual species within or outside the estuary (King et al. 2003; Sheaves et al. 

2010). Additionally, the physical and chemical qualities of freshwater are known to be 

important drivers of species migratory processes into estuaries (Champalbert and 

Koutsikopoulos 1995; Barbin 1998). Idelberger and Greenwood (2005), observed 

recruitment of the majority of estuarine fish species, those that spawn in the estuary and 

recruit to rivers as juveniles (e.g., Bairdiella. chrysoura, Cynoscion arenarius), into the 

Myakka between May/June and September/October, potentially suggesting these species 

take advantage of such factors as abundant food resources and shelter (in the form of 

enhanced turbidity and access to complex shoreline habitats) associated with increased 

river discharge. Moreover, Purtlebaugh and Allen (2010) not only demonstrated a 

positive relationship between relative abundance and river flow for juveniles of estuarine 

species (i.e., age-0 C. nebulosus and C. arenarius) in the lower Suwannee River, but that 

these fishes experienced increased growth rates during the wet season (i.e., period of 

increased flow). Our cross-system comparison lends support to the importance of natural 

variation in river flow to estuarine ecosystems and as a consequence, the importance of 
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natural flow variation for maintaining fisheries stocks of ecologically and recreationally 

important estuarine species.   

High flow events are known to impact estuarine ecosystems causing, for example, 

declines in the catches of estuarine and coastal fisheries (Drinkwater and Frank 1994), 

and decreases in abundances of estuarine fishes and invertebrates (Costa et al. 2007; 

McLeod and Wing 2008). The significant declines observed in the nekton community 

metrics with high flow extremes in the Caloosahatchee Estuary would therefore be 

expected. Although declines in community metrics in the Caloosahatchee did occur, they 

were non-significant and to a lesser extent than expected. These results demonstrate that 

extreme flow events likely create a physical barrier to recruitment of fishes into estuaries 

(Purtlebaugh and Allen 2010 and references therein).  The lack of change of community 

metrics suggests that the magnitude and duration of the high-flows in the Caloosahatchee 

may be beyond optimum for supporting natural system variability between seasons, 

however not great enough to result in significant decreases in community metrics, which 

are apparent after major freshwater inflow events associated with hurricanes for example 

(Greenwood et al. 2006, 2007; Stevens et al. 2006).  

The geomorphology of a river system is also an important factor to consider when 

examining the effects of altered flow on nekton community assemblages (Visintainer et 

al. 2006; Allen et al. 2007). It is possible that the effect of high flow extremes on nekton 

community structure of the Caloosahatchee River were dampened through the 

geomorphologic characteristics creating a balance between individuals leaving and 

entering the system. As the Caloosahatchee River descends from the Franklin Lock, it 

abruptly widens to 2.5 km and remains wide for ~30 km to its mouth. This relatively long 
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mixing zone in the Caloosahatchee, combined with the exaggerated high-flow event, 

could result in clearly defined isohalines within the estuarine reach of the river that would 

not necessarily be so apparent under natural flow regimes. With distinct isohalines the 

distribution of ecological guilds and their centers of abundance would be expected to 

shift, e.g., freshwater species move downstream with freshwater flow (Kimmerer 2002; 

Greenwood et al. 2007). Such distributional responses following high inflow events could 

account for the increases in density of the trawl-sampled freshwater guild in the estuarine 

portion of the Caloosahatchee coincident with decreases in the density of the marine 

guild, as they were displaced downstream and potentially out of the system. This overall 

effect would therefore be interpreted as no change in the nekton assemblage, when indeed 

shifts did occur. Given the different dynamics in estuaries and the balance between 

marine and freshwater guilds, it is important to reiterate that there was no seasonal 

change in the community metrics of the estuarine species, which conflicts with the results 

of the natural dynamics of tidal rivers.  

In terms of the trophic guilds, primary consumers did not exhibit marked changes 

in community metrics, with the exception of the high-flow altered Caloosahatchee — a 

likely result of the high flow event driving a movement of freshwater primary consumers 

into the estuarine component of the system. Changes in the trophic guilds of the Myakka 

were largely driven by increases in secondary and tertiary trophic guilds during the wet 

season.  These trophic guilds were composed of predominantly estuarine species (e.g., 

Bairdiella chrysoura and C. arenarius) and the increase in abundance is likely a result of 

natural recruitment dynamics in tidal rivers (Greenwood et al. 2007; Sheaves et al. 2010). 

In contrast, the Caloosahatchee exhibited a marked decrease in density, diversity and 
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richness of tertiary consumers, specifically in the seine assemblage with high-flow. This 

decline likely reflects the mobile nature of the tertiary consumers sampled here and the 

fact that they are marine species (e.g., belonids and sparids); species that are unable to 

remain in these extreme physicochemical conditions and are therefore forced to move out 

of the system. The lack of tertiary consumers in the Caloosahatchee may have important 

implications for community structure, particularly high trophic level species, such as the 

bull shark, Carcharhinus leucas, that is dependent on estuarine habitats during the first 

years of life. Layman et al. (2007) demonstrated a collapse in the trophic niche of the 

grey snapper (Lutjanus griseus), a top predator in Bahamian tidal creeks, as a 

consequence of reduced prey diversity in an anthropogenically-fragmented tidal creek. 

Reduction in diversity and richness of a particular trophic guild within a community can 

result in a loss and/or overall homogenization of energy flow pathways and ultimately a 

less stable and more simplified food web structure (Layman et al. 2007).  

 

Management implications 

Modified flow regimes are known to diminish the abundance of fish and 

invertebrates in estuarine and coastal systems (Gillson 2011). Understanding how other 

estuarine taxa (i.e., macro-invertebrates and top-level predators) and processes (e.g., 

primary and secondary production) respond to flow variability could enhance our ability 

to modify flow so as to increase the ecological integrity of altered systems. Our analysis 

of the composition of nekton assemblages between low vs. high flow periods were based 

on overall trends in assemblage structure between contrasting seasons and the use of 

ecological and  trophic guilds to provide context on the distribution and structure of these 
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assemblages faced with variable hydrological conditions. For that reason, the present 

study focused on the assemblage-level response to altered high-flow and we recognize 

that other attributes of these assemblages (e.g., relative change in species biomass) may 

be important for understanding full effects of altered high-flow.  

In order to maintain and restore the integrity of any ecosystem requires that 

conservation and management actions be firmly grounded in scientific understanding. 

However, current management approaches often fail to recognize the scientific principle 

that the integrity of flowing water systems depends largely on their natural dynamic 

character; as a result, these methods frequently prevent successful maintenance. 

Management strategies of flow-altered rivers have focused on provision of minimal flows 

intended to prevent deleterious biological impacts of frequent or extreme water 

depletions or additions (Poff et al. 1997). Pulse release, for example has proven positive 

in other estuaries (Odum et al. 1995; Day et al. 2009; Piazza and Le Peyre 2011). 

Managers of the Caloosahatchee River recognize these strategies for minimizing 

prolonged and excessive low and high flows and have attempted to mitigate discharge 

effects by implemented policies of minimal flow and pulsed release (Barnes 2005).  

However policies of pulse release were not in practice at the time of this study and as a 

consequence our results characterize the effects of extreme high flow events.  

Given that studies monitoring altered flow focus on different biological aspects 

(i.e., taxonomic identities vs. overall community) and the often difficult task of 

standardizing data across multiple systems that differ in size and scale of urbanization, 

there is an increasing demand to devise classification schemes or strategies which best 

represent the structure and functioning of biological communities, that can be comparable 
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both regionally and on a global basis (Whitfield and Elliott 2002). Applying ecological 

and trophic guilds (sensu Elliott et al. 2007), as community classifications provides a 

context in which to draw broad distributional and structural community comparisons in 

response to altered flow. By indirectly comparing across systems, we provide a 

benchmark as to what we expect to occur seasonally in natural systems and are able to 

observe any departures from these reference conditions. To advance the management of 

altered riverine systems, a management framework for monitoring these systems could be 

developed which builds on the current analysis through integrating the ecological and 

trophic measures, i.e., examining ecological guilds within trophic guilds (sense Elliott et 

al. 2007). Through this type of standardized monitoring framework, managers would 

have transparent guidelines with which to monitor the effects of flow alteration on 

estuarine community structure and to modify management plans to mitigate against 

deleterious effects.   

Estuaries are complex, composed of species that have variable biotic and abiotic 

requirements. Susceptibility to altered high-flow varied in this study, suggesting that 

some ecological (e.g., estuarine species) and trophic guilds (e.g., tertiary consumers) that 

exhibited a marked negative response, might be good indicators of the potential impacts 

associated with extreme flow alteration. Understanding these changes in nekton 

community assemblages are therefore of particular importance in light of predictions of 

global climate change models that show a future characterized by increased frequency 

and severity of abiotic disturbances (Easterling et al. 2000; Meehl et al. 2000), 

particularly rainfall events (Wolock and McCabe 1999). What remains to be better 

understood is how management of the timing and magnitude of flow interact with 
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community composition and how these effects can alter energy flow and food web 

interactions of estuarine-associated species (Kimmerer 2002; Piazza and La Peyre 2011).  
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Table 2.1 Flow1 and environmental parameters2 measured from each sampling event in 
the Myakka and Caloosahatchee estuaries during the dry (spring—May and June) and 
wet (autumn—August and September) seasons of 2006, 2008 and 2009. Data are mean (± 
SE) and range. Bold values reflect significant differences at α = 0.05. 
 

1 Flow data was obtained from the South Florida Water Management District for the Caloosahatchee and 
the USGS for the Myakka, and represents the mean daily flow recorded for each unique sampling event 
combined over the complete sampling period; 2008-2009 for the Myakka; 2006, 2008 and 2009 for the 
Caloosahatchee.  
2Environmental parameters are mean data collected from all trawls and seines within each estuary for each 
sampling period combined from 2006, 2008 and 2009.

TRAWL     
 Myakka  Caloosahatchee F1,72 

 Dry (n = 17) Wet (n = 18)  Dry (n = 20) Wet (n = 20) Estuary Season Estuary x 
Season 

Flow (m3s-1) 1.3 ± 0.1 
(0.04–3.1) 

13.5 ± 0.4 
(7.1–28.6)  25.9 ± 0.5 

(18.3–46.1) 
131.0 ± 1.5 

(77.5–165.1) 
300.328 

P = 0.000 
169.745 

P = 0.000 
11.892 

P = 0.000 

Salinity (ppt) 27.8 ± 0.1 
(24.4–32.9) 

5.9 ± 0.2 
(0.2–10.5)  21.1 ± 0.4 

(14.8–33.2) 
2.7 ± 0.2 

(0.1–15.5) 
20.799 

P = 0.000 
69.286 

P = 0.000 
0.703 

P = 0.404 
Temperature 
(°C) 

28.7 ± 0.1 
(25.5–30.9) 

29.7 ± 0.03 
(28.7–30.6)  29.5 ± 0.1 

(27.4–32.0) 
29.1 ± 0.1 

(26.3–33.3) 
0.007 

P = 0.933 
0.3669 

P = 0.546 
2.031 

P = 0.057 

DO (mgl−1) 6.3 ± 0.1 
(5.3–7.5) 

5.9 ± 0.1 
(4.0–6.7)  6.1 ± 0.1 

(2.8–8.6) 
5.1 ± 0.1 
(2.5–7.0) 

0.231 
P = 0.632 

0.463 
P = 0.712 

0.272 
P = 0.604 

SEINE         
 Myakka  Caloosahatchee F1,124 

 Dry (n = 24 ) Wet (n = 24  )  Dry (n = 42 ) Wet (n = 42) Estuary Season Estuary x 
Season 

Flow (m3s-1) 1.3 ± 1.3 
(0.0–3.3) 

12.6 ± 1.8 
(7.7–24.7)  23.8 ± 2.4 

(0.0–42.3) 
148.7 ± 22.9 
(9.1–401.0) 

16.785 
P = 0.000 

30.382 
P = 0.000 

8.425 
P = 0.004 

Salinity (ppt) 24.8 ± 0.5 
(17.7–28.4) 

2.9 ± 0.6 
(0.2–10.3)  15.0 ± 1.4 

(0.9–35.7) 
2.8 ± 0.6 

(0.1–20.7) 
7.804 

P = 0.006 
154.854 

P = 0.000 
0.265 

P = 0.608 
Temperature 
(°C) 

28.7 ± 0.4 
(26.0–31.0) 

30.0 ± 0.2 
(28.5–32.0)  29.4 ± 0.2 

(27.2–32.1) 
29.0 ± 0.2 

(26.7–32.3) 
0.661 

P = 0.418 
0.6961 

P = 0.408 
1.518 

P = 0.234 

DO (mgl−1) 6.6 ± 0.2 
(5.0–7.7) 

5.2 ± 0.3 
(3.7–7.8)  6.5 ± 0.2 

(4.4–10.5) 
5.8 ± 0.3 
(2.5–11) 

0.890 
P = 0.347 

18.577 
P = 0.000 

1.205 
P = 0.274 



 

49 
 

Table 2.2 Community metrics estimated (mean ± SD) from trawl and seine sampling events for the nekton assemblages, and the 
ecological and trophic guilds, sampled from the Myakka and the Caloosahatchee estuaries during the dry and wet seasons.1 Bold 
values reflect significant differences at α = 0.05 (see Table S2.2 Supplemental Material for results of the analyses). 
 

   TRAWL SEINE 

   Myakka (n = 18) Caloosahatchee (n = 20) Myakka (n = 24) Caloosahatchee (n= 42) 
   Dry Wet Dry Wet Dry Wet Dry Wet 
Nekton  Diversity 1.3 ± 0.6 1.3 ± 0.5 1.2 ± 0.5 1.0 ± 0.5 0.8 ± 0.4 1.3 ± 0.4 1.0 ± 0.6 0.8 ± 0.5 
Community Richness 5.2 ± 3.1 7.4 ± 2.7 5.2 ± 2.5 5.0 ± 2.8 5.1 ± 2.8 7.1 ± 3.0 6.1 ± 3.7 5.8 ± 3.5 
  Evenness 0.8 ± 0.2 0.6 ± 0.3 0.8 ± 0.2 0.6 ± 0.3 0.4 ± 0.3 0.7 ± 0.2 0.6 ± 0.3 0.5 ± 0.3 
 Freshwater species Diversity 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0 0.1 ± 0.3 
  Richness 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.6 0.1 ± 0.2 0.3 ± 0.8 0.1 ± 0.2 0.6 ± 1.1 
  Evenness 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3 0.0 ± 0.0 0.1 ± 0.2 0.01 ± 0.0 0.1 ± 0.3 
           
 Estuarine species Diversity 0.7 ± 0.6 1.0 ± 0.5 0.9 ± 0.5 0.8 ± 0.5 0.4 ± 0.4 0.8 ± 0.5 0.4 ± 0.4 0.4 ± 0.4 
Ecological Richness 2.8 ± 1.7 5.2 ± 1.7 3.7 ± 1.7 3.5 ± 1.7 2.7 ± 1.7 4.1 ± 1.9 2.8 ± 2.4 3.2 ± 2.0 
Guild  Evenness 0.5 ± 0.5 0.6 ± 0.3 0.7 ± 0.3 0.7 ± 0.3 0.3 ± 0.3 0.5 ± 0.3 0.3 ± 0.3 0.3 ± 0.3 
           
 Marine migrants Diversity 0.7 ± 0.5 0.5 ± 0.5 0.5 ± 0.4 0.2 ± 0.4 0.5 ± 0.4 0.7 ± 0.4 0.7 ± 0.5 0.5 ± 0.4 
  Richness 2.5 ± 1.9 2.2 ± 1.8 2.0 ± 1.5 1.0 ± 1.3 2.6 ± 1.5 2.7 ± 1.3 3.2 ± 2.0 2.2 ± 1.8 
  Evenness 0.6 ± 0.4 0.4 ± 0.4 0.5 ± 0.4 0.2 ± 0.3 0.5 ± 0.4 0.7 ± 0.3 0.6 ± 0.4 0.4 ± 0.4 
 Primary consumers Diversity 0.0 ± 0.0 0.0 ± 0.0 0.04 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.03 ± 0.1 0.01 ± 0.1 
  Richness 0.6 ± 0.5 0.7 ± 0.5 0.5 ± 0.7 0.3 ± 0.5 0.2 ± 0.4 0.8 ± 0.8 0.5 ± 0.7 0.3 ± 0.5 
  Evenness 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.03 ± 0.1 0.01 ± 0.1 
           
 Secondary consumers Diversity 1.0 ± 0.7 0.8 ± 0.5 0.8 ± 0.4 0.7 ± 0.5 0.6 ± 0.4 1.1 ± 0.4 0.8 ± 0.5 0.7 ± 0.4 
Trophic  Richness 3.9 ± 2.8 3.8 ± 2.0 3.2 ± 1.7 3.0 ± 1.1 3.7 ± 1.9 5.1 ± 2.0 4.2 ± 2.5 4.6 ± 2.6 
Guild Evenness 0.7 ± 0.4 0.6 ± 0.3 0.7 ± 0.3 0.5 ± 0.4 0.5 ± 0.3 0.7 ± 0.2 0.6 ± 0.3 0.5 ± 0.3 
           
 Tertiary consumers Diversity 0.1 ± 0.4 0.6 ± 0.4 0.3 ± 0.4 0.3 ± 0.4 0.3 ± 0.4 0.3 ± 0.4 0.4 ± 0.4 0.2 ± 0.4 
  Richness 0.7 ± 1.0 2.9 ± 1.2 1.5 ± 1.3 1.7 ± 1.5 1.4 ± 1.3 1.3 ± 1.2 1.7 ± 1.1 0.9 ± 1.1 
  Evenness 0.1 ± 0.3 0.6 ± 0.3 0.4 ± 0.4 0.3 ± 0.4 0.3 ± 0.4 0.3 ± 0.4 0.4 ± 0.4 0.2 ± 0.4 

1 For the Caloosahatchee, values are 2006 and 2009 for the dry season, and 2006 and 2008 for the wet season. For the Myakka, values are 2006, 2008 and 2009.
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Figure 2.1 Map of the study sites showing the estuarine reaches of the Myakka and 
Caloosahatchee Rivers with respect to the south western coast of Florida.  
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Figure 2.2 Mean daily river discharge recorded in the Caloosahatchee (black) and the 
Myakka (gray) from 2006 to 2010. River discharge data were obtained from the U.S. 
Geological Survey web site (http://water.usgs.gov/data.html) for the Myakka River at 
Myakka River near Sarasota (Station 02298830), and from the South Florida Water 
Management District web site (http://my.sfwmd.gov) for the Caloosahatchee River at the 
Cape Coral Bridge (Station CCORAL). 

http://water.usgs.gov/data.html�
http://my.sfwmd.gov/�
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Figure 2.3 (A), (D) Nekton assemblage, (B), (E) ecological guild (estuarine species, 
black points; marine migrant species, gray points; freshwater species, white points) and 
(C), (F) trophic guild density from trawl sampling (primary consumers, black points; 
secondary consumers, gray points; tertiary consumers, white points) against season (data 
are mean density ± SE).  Asterisks (*) indicates significant differences between dry and 
wet season at α = 0.05. 
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Figure 2.4 (A), (D) Nekton assemblage, (B), (E) ecological guild (estuarine species, 
black points; marine migrant species, gray points; freshwater species, white points)  and 
(C), (F) trophic guild density from seine sampling (primary consumers, black points; 
secondary consumers, gray points; tertiary consumers, white points)  against season (data 
are mean density ± SE). Asterisks (*) indicates significant differences between dry and 
wet season at α = 0.05. 
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Figure 2.5 Nonmetric multi-dimensional scaling (NMDS) depicting assemblage 
differences between the Myakka (dry: gray triangles; wet: gray circles) and 
Caloosahatchee (dry: black triangles; wet: black circles) estuaries. Data are density 
estimates of species collected via (A) trawl (stress: 0.12) and (B) seine (stress: 0.14), 
fitted with 95% confidence interval ellipses to represent the season-estuary differences. 
Strength of the environmental parameters is indicated in bold. Dotted lines represent the 
dry season and solid lines represent the wet season.
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SUPPLEMENTAL MATERIAL 
 
Table 2S.1 Summary of species and total abundance collected from trawl and seine 
surveys from the Myakka (MR; n = ~6 trawls and ~4 seines each season) and 
Caloosahatchee (CR; n = ~5 trawls and ~10 seines each season) estuaries during the dry 
and wet seasons of 2006, 2008 and 2009. Species are categorized using ecological guild 
(EG) and trophic guild (TG) designations1.  

              

    
 

TRAWL 
 

SEINE 
Family Species EG TG  MR CR  MR CR 

     Dry Wet Dry Wet  Dry Wet Dry Wet 
Achiridae Achirus lineatus ES TC  0 0 2 1  1 1 0 2 
 Trinectes maculatus ES SC  27 335 92 435  1 30 8 5 
Ariidae Ariopsis felis ES TC  1 81 47 167  0 0 0 2 
 Bagre marinus ES TC  0 16 1 6  0 0 0 0 
Atherinopsidae Menidia spp. ES SC  0 0 1 0  546 838 4,080 3,428 
 Labidesthes sicculus FW SC  0 0 0 0  0 0 0 1 
 Membras martinica FW SC  0 0 0 0  1,086 0 60 2 
Batrachoididae Opsanus beta ES TC  6 0 1 2  0 0 0 0 
Belonidae Strongylura marina MM TC  0 0 0 0  0 0 2 0 
 Strongylura notata MM TC  0 0 0 0  22 3 102 5 
 Strongylura spp. MM TC  0 0 0 0  1 0 46 3 
 Strongylura timucu MM TC  0 0 0 0  4 0 14 0 
Bothidae Ancylopsetta quadrocellata MM SC  0 0 1 0  0 0 0 0 
Carangidae Caranx hippos MM TC  0 0 0 1  0 0 0 2 
 Chloroscombrus chrysurus MM TC  0 0 0 3  0 0 0 0 
 Oligoplites saurus ES TC  0 0 0 0  60 11 31 23 
 Trachinotus falcatus MM TC  0 0 0 0  0 0 5 0 
Centrarchidae Lepomis macrochirus FW SC  0 0 0 0  0 0 0 273 
 Lepomis microlophus FW SC  0 0 0 0  0 0 0 1 
 Lepomis spp. FW SC  0 0 0 0  0 0 0 7 
Centropomidae Centropomus undecimalis ES TC  0 0 0 0  0 3 3 2 
Cichlidae Hemichromis letourneuxi FW SC  0 0 0 0  0 3 0 0 
 Cichlasoma urophthalmus FW SC  0 0 0 0  0 0 7 0 
 Oreochromis aureus ES PC  0 0 0 0  0 0 2 0 
 Tilapia mariae ES PC  0 0 0 0  0 0 0 9 
Clupeidae Dorosoma petenense FW PC  0 0 0 1  0 11 0 6 
 Harengula jaguana MM SC  0 0 0 0  1 0 0 8 
 Opisthonema oglinum ES SC  0 0 0 0  24 0 0 216 
 Brevoortia spp. MM PC  0 0 0 0  0 12 0 0 
Cynoglossidae Symphurus plagiusa MM SC  3 10 0 0  0 0 3 0 
Cyprinodontidae Cyprinodon variegatus ES SC  0 0 0 0  0 2 5 0 
Dasyatidae Dasyatis sabina ES SC  2 6 8 1  19 0 1 0 
Diodontidae Chilomycterus schoepfii MM SC  1 0 0 0  0 0 0 0 
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Elopidae Elops saurus MM TC  1 0 19 0  0 0 25 0 
Engraulidae Anchoa hepsetus ES SC  0 0 3 0  79 3 58 9 
 Anchoa mitchilli ES SC  0 348 1,110 153  3,654 505 6,020 6,404 
Ephippidae Chaetodipterus faber MM SC  3 5 0 0  0 0 0 0 
Fundulidae Adinia xenica ES PC  0 0 0 0  0 4 0 0 
 Fundulus grandis ES SC  0 0 0 0  0 23 0 0 
 Fundulus similis ES SC  0 0 0 0  1 42 0 0 
 Fundulus seminolis FW SC  0 0 0 0  0 0 0 1 
 Lucania parva ES SC  0 0 0 0  1 0 252 55 
Gerreidae Eucinostomus gula MM SC  5 4 18 33  24 3 157 12 
 Eucinostomus harengulus MM SC  0 12 14 63  206 128 557 95 
 Eucinostomus spp. MM SC  12 2 7 10  463 213 385 673 
 Eugerres plumieri ES SC  0 54 1 75  0 204 16 118 
Gobiesocidae Gobiesox strumosus ES SC  1 0 0 0  0 0 1 0 
Gobiidae Bathygobius soporator ES SC  0 0 0 1  0 0 0 0 
 Gobionellus oceanicus ES PC  0 0 1 0  0 0 0 0 
 Gobiosoma bosc ES SC  0 0 0 2  0 1 8 15 
 Gobiosoma robustum ES SC  2 0 0 0  1 0 3 0 
 Gobiosoma spp. ES SC  6 0 0 0  1 4 11 35 
 Microgobius gulosus ES SC  8 4 22 8  110 46 143 168 
 Microgobius thalassinus ES SC  1 0 1 0  0 0 0 0 
Haemulidae Orthopristis chrysoptera MM SC  27 0 60 0  0 0 1 0 
Hemiraamphidae Hyporhamphus spp. MM SC  0 0 0 0  0 0 3 0 
Ictaluridae Ameiurus catus FW TC  0 0 0 7  0 0 0 0 
 Ameiurus natalis FW TC  0 0 0 1  0 0 0 0 
 Ictalurus punctatus FW SC  0 0 0 6  0 0 0 0 
Lutjanidae Lutjanus griseus MM TC  1 0 0 2  0 1 1 2 
Monacanthidae Stephanolepis hispidus MM SC  1 0 0 0  0 0 0 0 
Mugilidae Mugil cephalus MM PC  0 0 0 0  1 12 65 6 
 Mugil curema MM PC  0 0 0 0  0 0 4 0 
 Mugil gyrans MM PC  0 0 0 0  6 0 4 0 
Paralichthyidae Paralichthys albigutta MM SC  0 0 3 1  0 0 0 0 
Penaeidae Farfantepenaeus duorarum MM PC  20 47 31 27  2 22 22 179 
Poeciliidae Gambusia holbrooki FW PC  0 0 0 0  1 41 0 2 
 Poecilia latipinna FW PC  0 0 0 0  0 26 0 2 
Portunidae Callinectes sapidus ES SC  10 15 50 47  1 1 25 8 
Sciaenidae Bairdiella chrysoura ES TC  6 332 22 135  0 41 216 4 
 Cynoscion arenarius ES TC  14 447 132 62  6 12 2 3 
 Cynoscion nebulosus ES TC  0 4 4 1  5 12 31 25 
 Leiostomus xanthurus MM SC  0 1 97 0  3 0 2 0 
 Menticirrhus americanus MM SC  14 107 19 6  6 0 46 0 
 Micropogonias undulatus MM TC  0 0 1 0  0 0 0 0 
 Sciaenops ocellatus ES TC  0 0 0 0  1 0 0 0 
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Sparidae Archosargus probatocephalus MM TC  0 1 2 1  0 4 7 3 
 Lagodon rhomboides MM SC  27 1 48 1  24 14 189 0 
Syngnathidae Hippocampus erectus ES SC  1 0 0 0  0 0 0 0 
 Microphis brachyurus ES SC  0 0 0 0  0 0 2 3 
 Syngnathus louisianae ES SC  3 1 0 0  0 0 1 0 
 Syngnathus scovelli ES SC  2 0 1 0  2 0 7 3 
Synodontidae Synodus foetens MM TC  4 0 5 0  3 0 5 1 
Tetraodontidae Sphoeroides nephelus ES TC  1 0 2 1  2 0 1 0 
Triglidae Prionotus scitulus MM SC  1 0 2 0  0 0 0 0 
1Ecological guilds: FW freshwater species; ES estuarine species; MM marine migrant species. Trophic 
guilds: PC primary consumer; SC secondary consumer; TC tertiary consumer.  
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Table 2S.2 Results of the Tukey contrasts from the linear mixed-effect models. Comparisons between seasonal estimates of nekton 
diversity, richness and evenness for each estuary are presented. Bold values reflect significant differences at α = 0.05. 
 

   Myakka  Caloosahatchee 
TRAWL   Density Diversity Richness Evenness  Density Diversity Richness Evenness 
 Nekton 

Community  t = -5.354, 
P = 0.000 

t = -0.415, 
P = 0.678 

t = -3.223, 
P = 0.001 

t = 1.775, 
P = 0.076 

 t = 0.403, 
P = 0.687 

t = -0.309, 
P = 0.758 

t = -0.146, 
P = 0.884 

t = 1.071, 
P = 0.284 

 
 Freshwater species     

 t = -1.996, 
P = 0.046 

t = -1.384, 
P = 0.166 

t = -2.186, 
P = 0.029 

t = -1.384, 
P = 0.166 

 Ecological  
Guilds Estuarine species t = -6.016, 

P = 0.000 
t = -2.423, 
P = 0.015 

t = -5.336, 
P = 0.000 

t = -1.004, 
P = 0.315 

 t = -0.545, 
P = 0.586 

t = 0.343, 
P = 0.732 

t = 0.058, 
P = 0.954 

t = -0.099, 
P = 0.921 

  Marine migrants t = -0.963, 
P = 0.336 

t = 1.303, 
P = 0.192 

t = 0.545, 
P = 0.586 

t = 1.729, 
P = 0.083 

 t = 2.360, 
P = 0.018 

t = 1.692, 
P = 0.091 

t = 2.037, 
P = 0.042 

t = 2.181, 
P = 0.029 

 
 Primary consumers t = -1.669, 

P = 0.095 
t = 1.474, 
P = 0.141 

t = 0.449, 
P = 0.653 

t = 1.474, 
P = 0.141 

 t = 0.441, 
P = 0.659 

t = 0.780, 
P = 0.435 

t = 0.087, 
P = 0.931 

t = 1.801, 
P = 0.071 

 Trophic  
Guilds Secondary consumers t = -3.629, 

P = 0.000 
t = 0.416, 
P = 0.678 

t = -0.632, 
P = 0.527 

t = 0.345, 
P = 0.738 

 t = 0.585, 
P = 0.559 

t = 0.538, 
P = 0.590 

t = -0.436, 
P = 0.663 

t = 1.074, 
P = 0.283 

  Tertiary consumers t = -5.007, 
P = 0.000 

t = -3.900, 
P = 0.009 

t = -5.635, 
P = 0.000 

t = -4.098, 
P = 0.004 

 t = -0.122, 
P = 0.903 

t = 0.087, 
P = 0.931 

t = -0.309, 
P = 0.757 

t = 0.314, 
P = 0.753 

SEINE Nekton 
Community  t = 0.341, 

P = 0.733 
t = -3.747, 
P = 0.000 

t = -2.232, 
P = 0.026 

t = -3.163, 
P = 0.002  t = -1.359, 

P = 0.174 
t = 0.905, 
P = 0.366 

t = 0.018, 
P = 0.985 

t = 0.601, 
P = 0.548 

 
 Freshwater species t = 1.841, 

P = 0.066 
t = 3.537, 
P = 0.000 

t = -2.074, 
P = 0.038 

t = -1.397, 
P = 0.163 

 t = 0.551, 
P = 0.480 

t = 0.047, 
P = 0.063 

t = -2.246, 
P = 0.024 

t = -1.629, 
P = 0.103 

 Ecological  
Guilds Estuarine species t = 1.011, 

P = 0.312 
t = -3.690, 
P = 0.000 

t = -3.318, 
P = 0.000 

t = -2.292, 
P = 0.022 

 t = -0.695, 
P = 0.487 

t = -0.800, 
P = 0.424 

t = -1.375, 
P = 0.169 

t = -1.220, 
P = 0.223 

  Marine migrants t = 0.907, 
P = 0.365 

t = -1.943, 
P = 0.052 

t = -0.185, 
P = 0.853 

t = -2.739, 
P = 0.006 

 t = 1.115, 
P = 0.265 

t = 2.520, 
P = 0.011 

t = 2.559, 
P = 0.010 

t = 1.576, 
P = 0.115 

 
 Primary consumers t = -3.419, 

P = 0.000 
t = -1.607, 
P = 0.108 

t = -3.079, 
P = 0.002 

t = -1.693, 
P = 0.090 

 t = -0.598, 
P = 0.550 

t = 0.128, 
P = 0.898 

t = 0.867, 
P = 0.386 

t = 0.211, 
P = 0.833 

 Trophic  
Guilds Secondary consumers t = 1.779, 

P = 0.075 
t = -3.575, 
P = 0.000 

t = -2.082, 
P = 0.037 

t = -3.124, 
P = 0.001 

 t = -0.900, 
P = 0.368 

t = 0.089, 
P = 0.929 

t = -1.495, 
P = 0.135 

t = 0.381, 
P = 0.704 

  Tertiary consumers t = 0.529, 
P = 0.597 

t = -0.100, 
P = 0.920 

t = 0.193, 
P = 0.847 

t = 0.017, 
P = 0.987 

 t = 3.277, 
P = 0.001 

t = 2.957, 
P = 0.003 

t = 3.775, 
P = 0.000 

t = 2.233, 
P = 0.025 
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CHAPTER 3 

 

MATERNAL MEDDLING IN NEONATAL SHARKS: IMPLICATIONS FOR 

INTERPRETING STABLE ISOTOPES IN YOUNG ANIMALS*

 

 

 

 

 

 

 

 

 

 

                                                        
* Olin JA, Hussey NE, Fritts M, Heupel MR, Simpfendorfer CA, Poulakis GR, Fisk AT. 2011. 
Maternal meddling in neonatal sharks: implications for interpreting stable isotopes in young 
animals. Rapid Communications in Mass Spectrometry 25:1008-1016. 
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INTRODUCTION 

The stable isotopes of carbon (δ13C) and nitrogen (δ15N) in different animal 

tissues provide a tool to examine species trophic interactions as they are dietary 

integrators across variable time scales (Peterson and Fry 1987). Enrichment of isotopes 

within tissues of a consumer over that of its diet arises as a result of the greater retention 

of the heavier over the lighter isotope during the process of protein amination and 

deamination for 15N and respiration for 13C, respectively (DeNiro and Epstein 1978; 

DeNiro and Epstein 1981). This produces ratios in a consumer’s tissues, between 

approximately 0-2‰ for δ13C and 2-5‰ for δ15N, higher than those of its diet (DeNiro 

and Epstein 1978; Minagawa and Wada 1984; Post 2002), but see the recent review (Caut 

et al. 2009).  

Size and season-based shifts in diet that reflect the changing role of an organism 

within an ecological community are common and often explain variation in stable isotope 

composition between species and among individuals within a population. However, 

changes in diet are not instantly manifested in the isotopic composition of a consumer’s 

tissues but require a period of time to achieve equilibrium (Tieszen et al. 1983; MacNeil 

et al. 2006).  A consumer’s tissue will reflect a combination of effects aside from diet (i.e. 

metabolism, growth, isotopic routing, and tissue protein composition) thereby potentially 

masking other factors that can cause a shift in isotopic composition as an animal grows 

(Vander Zanden et al. 2000). When considering newborn animals, interpreting stable 

isotope values is further complicated by (i) the mother-young transfer of maternal 

resources and hence isotopic signature, either during gestation and/or through post-

parturition survival on maternal reserves (Jenkins et al. 2001) and; (ii) known isotopic 
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discrimination between placental connected young and their mothers (Sare et al. 2005; 

McMeans et al. 2009). 

In light of the documented declines in some predator populations, raising 

concerns over ecosystem effects (Heithaus et al. 2008), understanding the trophic role of 

young age classes of sharks, assumed to be top predators within coastal habitats (Cortés 

1999) is important. Carcharhinid sharks bear live young and even though parental care is 

absent, young are provisioned with maternal resources in the form of an enlarged liver 

(Hussey et al. 2009, 2010). Although, neonatal sharks begin to feed soon after parturition, 

it is expected that the stable isotope composition of their tissues will reflect that of the 

mother and/or provisioned reserves. Indeed, it has been observed that embryos of the 

placentatrophic Atlantic sharpnose shark (Rhizoprionodon terraenovae) were enriched in 

both 15N and 13C in muscle and liver tissues relative to their respective mothers’ tissues 

(McMeans et al. 2009). At birth, the δ15N and δ13C values of neonates are therefore 

higher than those of young-of-year sharks whose postpartum feeding habits would have 

restructured their stable isotope profiles to reflect that of their postembryonic diet. 

Similar to other placental species (e.g., pinnipeds, ursids and viperids), stable isotope 

analysis of neonatal sharks is therefore confounded by variable mixtures of mother and 

own diet signals (Hobson et al. 1997; Pilgrim 2007; Ducatez et al. 2008), which if not 

accounted for, will distort the true nitrogen and carbon sources leading to 

misinterpretation of data.  

Values of δ13C and δ15N were measured in liver and muscle tissue of two species 

of sharks, the bull (Carcharhinus leucas; Valenciennes, 1839) and the Atlantic sharpnose 

(Rhizoprionodon terraenovae; Richardson, 1836), to measure the loss of the maternal 
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isotopic signal on the stable isotope values of growing neonate (< 4 weeks) and young-of-

year (< 1 year old) sharks. Three measures, considered to be proxies for age, were used to 

quantify this relationship; total length, date sampled, and umbilical scar stage. Umbilical 

scar stage is a unique characteristic among fishes, and was included in these analyses as it 

affords advantages over date sampled and total length by providing a quantifiable 

measure of the age of young animals (Duncan and Holland 2006). Inter- and intra-species 

variation in birth date and size at birth, are well documented (Parsons 1985; Neer et al. 

2005). Here we tested the prediction that isotopic values of neonatal/young-of-year 

sharks would decline with increasing total length and date sampled, and reduced 

umbilical scar presence, until they reached equilibrium with their diet, i.e., when the 

isotopic values of a young shark reflects its own diet. This prediction was based on (i) the 

known enrichment in 15N and 13C of neonates relative to their mothers (McMeans et al. 

2009), and (ii) the premise that the young sharks of both study species inhabit 

isotopically distinct habitats from adults; bull sharks remain in low-salinity estuaries for 

several years (Heupel and Simpfendorfer 2008) and Atlantic sharpnose sharks inhabit 

nearshore coastal environments (Carlson et al. 2008). Tissues of both bull and Atlantic 

sharpnose sharks will therefore adopt a more 13C and 15N depleted estuarine diet 

compared to their mothers’ marine signature, which will result in the predicted decline in 

δ13C and δ15N values over time. Moreover, because variable tissue turnover and growth 

rates influence isotopic values, we predicted that δ13C and δ15N values in neonatal/young-

of-year sharks would decline (i) at a faster rate in liver than muscle, and (ii) more quickly 

in the faster growing Atlantic sharpnose shark. 
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MATERIALS AND METHODS 

Liver and muscle (~5 g) were sampled from 39 bull and 42 Atlantic sharpnose 

sharks collected from nursery habitats of the Caloosahatchee and Myakka Rivers of 

Florida (USA) between May and October of 2006-2008, and from Georgia (USA) 

estuaries between May and August of 2005, respectively. Total length (TL), date sampled 

and umbilical scar stage (USS) was recorded for all individuals. A qualitative 6-point 

USS scale was devised where (i) open wound with umbilical remains attached (USS1), 

(ii) open wound without remains (USS2), (iii) wound partially open (USS3), (iv) wound 

completely closed (USS4), (v) faint scar present (USS5), and (vi) no scar present 

(USS6)). A limited amount of information is available on the time required for the 

umbilical scar to heal completely, but the majority of estimates range from 4 to 6 weeks 

Bass et al. 1973). Duncan and Holland (2006) estimated ~ 2 weeks for the umbilical scar 

of neonate scalloped hammerhead (Sphyrna lewini) to be healed, which corresponds to 

our USS4 descriptor.  Furthermore, Duncan and Holland (2006) suggest ~1 year for 

complete disappearance of the scar. Only sharks estimated to be ≤ 1 year old were 

included in the statistical analyses. 

Tissues were sub-sampled (~1.0 g), freeze-dried for 48 hrs, pulverized and lipid 

extracted by twice agitating the pulverized tissue in 2:1 chloroform: methanol solution for 

24 h and decanting the solvent (modified method outlined by Bligh & Dyer (1959)). 

Relative abundances of carbon (13C/12C) and nitrogen (15N/14N) were determined on ~0.5-

1.0 mg sub-samples on a Thermo Finnigan DeltaPlus mass-spectrometer (Thermo 

Finnigan, San Jose, CA, USA) coupled with an elemental analyzer (Costech, Valencia, 

CA, USA) at the Chemical Tracers Laboratory, Great Lakes Institute for Environmental 
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Research, University of Windsor and at the Odum School of Ecology, University of 

Georgia. Results are expressed in standard delta notation (δ), defined as parts per 

thousand as follows: δ = [(Rsample/Rstandard)-1] x 103, where R is the ratio of heavy to light 

isotopes in the sample and standard, respectively (Peterson and Fry 1987). The standard 

reference material was Pee Dee Belemnite carbonate for CO2 and atmospheric nitrogen 

for N2. The analytical precision based on the standard deviation of two standards (NIST 

8414 and internal lab standard; n = 76) for δ13C ranged from 0.06‰ to 0.09‰ and for 

δ15N ranged from 0.10‰ to 0.21‰. Accuracy of analysis based on NIST standards 

(sucrose (NIST 8542) and ammonium sulfate (NIST 8547); n = 3 for each) that were 

analyzed in-conjunction with the shark tissue samples were within 0.01‰ and 0.07‰ of 

certified values for δ13C and δ15N, respectively. 

Stable isotope data were found to be normally distributed based on probability 

plots consequently no data transformations were performed. We ruled out the possible 

effects of sex, season, sampling location and year on stable isotope values of both shark 

species (see Table 3S.1 Supplemental Material). Data were therefore grouped per species 

for all following analyses.  

To test the prediction that δ13C and δ15N values of neonatal/young-of-year sharks 

of each species declined with age; (1) the relationships between date sampled and tissue 

δ13C and δ15N values; and (2) the relationship between total length and tissue δ13C and 

δ15N values of both liver and muscle tissue were fitted with polynomial models (lm in R). 

This was based on the premise that polynomial models often produce the best fit for 

determining the relationship between stable isotope values and either total length and date 

sampled, as isotope assimilation of new diet into an individual’s tissues is expected to 
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experience a lag-time with the loss of maternal isotopic signal (Matich et al. 2010). In 

addition, the use of polynomial models best fit our prediction that isotopic values of 

neonate/young-of-year sharks will decline (e.g. representing the loss of the maternal 

signal), reach an asymptote or equilibrium with their diet (i.e. complete turnover of the 

maternal isotopic signal), and subsequently respond to the new diet (e.g. remain stable, 

increase or decrease). Consideration of an exponential decay model (Hobson and Clark 

1992) to characterize our predictions was taken; however we were unable to sample the 

required endpoints (i.e. mothers and new diet) (see Discussion). Because USS is an 

ordinal variable, one-way analyses of variance (ANOVA) was used to test for differences 

among umbilical scar stages. As the sample sizes were unbalanced, significance of pair-

wise comparisons was tested using adjusted Bonferroni tests. Statistical analyses were 

conducted using program R (R Development Core Team, 2009), with a criterion for 

significance of p < 0.05 used for all analyses. All mean values are presented ± one 

standard error. 

  

RESULTS 

For the Atlantic sharpnose, there was a significant decline in muscle δ13C values 

between USS1 and USS5 (-14.9‰ to -17.0‰; F5,36 = 4.178, p = 0.004; Fig. 1a). In liver 

tissue, the δ13C decline was more pronounced between USS1 and USS4 (-15.4‰ to -

18.8‰; F5,36 = 13.868, p < 0.0001; Fig. 3.1c). In agreement, the δ15N for the Atlantic 

sharpnose showed that both muscle and liver values decreased with USS (16.2 ‰ to 

14.7‰; F5,36 = 5.612, p = 0.001 and 15.8‰ to 13.7‰; F5,36 = 8.427, p < 0.0001, 

respectively; Fig. 3.1b, d). Pair-wise comparisons found that USS4 and USS5, δ13C and 
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δ15N muscle and liver tissue values were significantly lower than USS1 and USS2 (Fig. 

3.1a - d). For liver and muscle tissue, pair-wise comparisons indicated that stable isotope 

values of the Atlantic sharpnose do not continue to decline beyond USS4 and USS5, 

respectively (Fig. 3.1c and d). However, the low sample size of USS6 limits the 

interpretation of this result. 

For the bull shark, the decline in δ13C with USS was significant for both muscle 

and liver tissue (-15.0 to -16.2‰; F4,34 = 11.120, p < 0.0001 and -15.4 to -18.5‰; F4,34 = 

8.450, p < 0.0001, respectively;  Fig. 3.2a and c). USS5 muscle and liver δ13C values 

were significantly lower than all other USSs, accepting limited data for USS6. The range 

of δ15N values for both bull shark tissues were narrow and no significant δ15N-USS 

relationships were detected (muscle: F4,34 =0.299, p = 0.876; liver: F4,34 =0.675, p = 

0.614; Fig. 3.2b and d).  

For the Atlantic sharpnose, there was a significant decline in δ13C and δ15N values 

in muscle and liver tissue with increasing total length (Fig. 3.3a - d) and consecutive 

sampling date (Fig. 3.4a - d), yet date sampled exhibited stronger relationships than total 

length, based on the coefficients of determination. Despite the stronger δ13C and δ15N 

relationships, only the δ13C and δ15N relationship between Atlantic sharpnose liver and 

date sampled suggested sharks were approaching the point when the maternal stable 

isotope signal was no longer influencing the values seen in young-of-year sharks. Muscle 

δ13C and δ15N values vs. total length and sampling date indicated stable isotope data of 

sharks were still declining, and thus still potentially influenced by the mother’s isotope 

signal. In contrast, for the bull shark only the declines in δ13C with increasing total length 

(Fig. 3.3e and g) and consecutive sampling date (Fig. 3.4e and g) were significant but 
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neither tissue showed evidence of approaching the point where stable isotope values in 

the young-of-year were not influenced by maternal isotopes. Unlike the Atlantic 

sharpnose, bull shark total length exhibited a stronger relationship with muscle δ13C, 

whereas date sampled exhibited a stronger relationship with liver δ13C. The bull shark 

δ15N values of liver tissue showed a small depletion with increasing total length and 

consecutive sampling date (Fig. 3.3h and 3.4h), while for muscle tissue there was no 

change (Fig. 3.3f and 3.4f). Neither date sampled nor total length were strong predictors 

of either bull shark tissue δ15N relationships. 

 

DISCUSSION 

Our results revealed the distinct loss of enriched isotopic values commensurate 

with increasing total length, consecutive sampling date and healing of the umbilical scar 

in neonate to young-of-year Atlantic sharpnose and bull sharks. These trends, with the 

exception of bull shark δ15N, affirm the prediction that neonates of both study species 

have higher isotopic values than young-of-year, confirming that the interpretation of 

stable isotopes in young sharks is complicated as a result of the maternal isotopic signal. 

The expression of maternal isotopic signals in offspring has been documented in a 

number of non-elasmobranch species (Jenkins et al. 2001; Pilgrim 2007; Hobson et al. 

2000), but this is the first study to adopt multiple age measures to document the rate of 

maternal isotopic signal loss of neonatal sharks as they progress through their first year. 

Additionally, the loss of maternal isotopic signal was variable between species and 

tissues highlighting the potential implications for using stable isotope data from multiple 

tissues to characterize diet and habitat use of < 1 year old animals.  
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For both the Atlantic sharpnose and bull shark, δ13C and δ15N muscle and liver 

values declined with total length and consecutive sampling date, but most relationships 

did not reach an asymptote as predicted. This would suggest that both these age measures 

are problematic for estimating when complete loss of the maternal isotopic signal occurs 

in young sharks. Overall, date sampled was a stronger predictor of maternal signature 

loss compared with total length. However, date sampled can be difficult to quantify, 

specifically for the species in this study, as both species pup at various times throughout 

the spring and early summer (Clark and von Schmidt 1965). Consequently, if a species 

utilizes or revisits nursery habitat for an extended period of time (i.e., >1 yr), similar to 

the bull shark, second year cohorts could be misclassified as neonates or young-of-year 

although they would have already lost their maternal isotopic signal and tissue isotope 

values would be reflecting their own diet. If these >1 year old sharks were categorized 

based on sampling date, they would likely increase the variability in isotopic values in 

early age classes and complicate interpretation of these relationships.  

The length of sharks at birth (i.e. total length) is also highly variable and the size 

ranges of early age classes overlap (Parsons 1985; Neer et al. 2005). Size at birth of 

Atlantic sharpnose has been reported in the range of 25-41 cm TL (Parsons 1985; 

Branstetter and Stiles 1987; Loefer and Sedberry 2003). In this study, Atlantic sharpnose 

sharks collected in June had overlapping TLs but represented three umbilical scar stages 

and bull sharks from USS2 to USS4 included individuals ranging between 69 and 86 cm 

TL. Additionally, three bull sharks not included in these analyses exhibited 

characteristics of ≥ 1 year old individuals (lack of scar and different isotope values), but 

were of a similar length to the young-of-year sharks sampled here. It is therefore 
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necessary to couple TL and date sampled with USS to provide a more reliable estimate of 

the true age of the shark to assess if the maternal isotopic signal is still present. 

Atlantic sharpnose liver δ13C and δ15N values exhibited a significant change at USS4 

from earlier scar stages suggesting these young sharks had replaced the maternal isotopic 

signal with that of their own diet. Reported δ15N turnover rates in liver tissue of 

freshwater stingrays (Potamotrygon motoro) of ~166 days (MacNeil et al. 2006) provides 

further support that USS4 of the Atlantic sharpnose shark was at or near equilibrium, 

considering the USS timeline of Duncan and Holland (2006). Accurate inferences on the 

diet and trophic ecology of young Atlantic sharpnose using stable isotopes of liver would 

therefore seem permissible at stages later than USS4. Muscle δ13C and δ15N, however, 

did not indicate a diet switch until USS5 and USS6, respectively, which is expected as 

muscle tissues of juvenile sandbar sharks (Carcharhinus plumbeus) reached equilibrium 

at >500 days for δ13C and >300 days for δ15N (Logan and Lutcavage 2010). However, 

reported mother-embryo muscle tissue discrimination values for Atlantic sharpnose of 

1.3‰ for δ13C and 1.1‰ for δ15N (McMeans et al. 2009) would suggest the USS6 shark 

was approaching complete maternal signal replacement and assimilation of new diet, 

based on the difference between USS1 and USS6, but a larger range of sizes including 

adults would be required to confirm this. 

Bull shark muscle and liver δ13C values indicated loss of maternal isotopic signal 

and assimilation of new diet at USS5, however limited data (n =2) for USS6 warrants 

caution with interpretation. The lack of a δ15N-USS relationship limits any inferences 

made about maternal isotopic influence on δ15N in this species. If indeed we consider the 

estimates of turnover rates of muscle δ15N and δ13C detailed above, young bull sharks 
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would not be predicted to reach equilibrium with their diet, i.e. complete turnover of the 

maternal isotopic signal, until they were >1 year old or reached a TL of approximately 

90-100 cm (Neer et al. 2005; Branstetter and Stiles 1987). However, based on liver 

turnover rates, we would have expected bull shark liver tissue to have reached 

equilibrium prior to USS6. Therefore the reported turnover rates for elasmobranch liver 

tissue in conjunction with the fact that neither δ15N nor δ13C of bull shark tissues 

approached equilibrium, may suggest that USS is not appropriate for this slow growing 

species and that sampling older individuals is necessary to fully document loss of 

maternal signature. Likewise, both whole blood and plasma have been shown to 

assimilate the stable isotope ratios of a new diet within shorter time frames than muscle 

tissue, ranging from several days in the case of plasma (Hobson and Clark 1992; 

Podlesak et al. 2005) to several weeks (Oppel and Powell 2010) or months (Logan and 

Lutcavage 2010) in the case of whole blood. These tissues may be more easily quantified 

using USS, as they will show the loss of the maternal isotopic signal more definitively in 

slow growing species. Hence, a combined approach, USS and TL, and/or possibly the use 

of blood plasma would be an appropriate method to determine when newborn animals are 

in equilibrium with their own diet.  

The rate of loss of maternal isotopic signal was quicker in Atlantic sharpnose than 

bull sharks, based on the USS estimations for when the maternal isotope signal was lost. 

This was likely a result of the faster growth rate reported for this species and associated 

rate of tissue turnover. The growth coefficient (K) for bull sharks of 0.08-0.09 yr-1(Neer 

et al. 2005; Branstetter and Stiles 1987) is much lower than that for Atlantic sharpnose (K 

= 0.42-0.50 yr-1) (Parsons 1985; Loefer an d Sedberry 2003). The faster turnover in liver 
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stable isotope values of Atlantic sharpnose as opposed to muscle is consistent with trends 

seen for liver and muscle in fishes, birds and marine mammals (Tieszen et al. 1983; 

MacNeil et al. 2006; Hobson and Clark 1992; Logan and Lutcavage 2010; Guelinckx et 

al. 2007; Buchheister and Latour 2010). Thus, the length of time that the maternal 

isotopic signal will influence the stable isotope values of a young shark is inversely 

related to growth rate of the species and metabolic activity of the tissues.  

In contrast to our expectations, the mean δ13C USS2-USS4 values in both bull 

shark tissues were similar and did not decline until later stages. Additionally, ANOVAs 

revealed that three USS4 bull sharks collected furthest from the mouth of the river (26.5 

km upstream) had the most enriched 13C liver and muscle signatures (~13‰; see 

Supplementary material). Marine food webs are typically enriched in 13C compared to 

terrestrial C3 or freshwater food webs (Hobson et al. 2000) therefore neonate isotopic 

values were expected to diverge from their mothers as they assimilate a more δ13C-

depleted estuarine diet (mean consumer taxa δ13C ~-20.8 ± 0.19 in the Caloosahatchee 

and Myakka Rivers, J. Olin unpublished data). The lack of 13C depletion in the youngest 

sharks would suggest feeding in marine as opposed to estuarine environments, yet this 

would seem counterintuitive as bull sharks pup in estuarine environments and inhabit 

riverine systems for ~1-2 yrs (Heupel and Simpfendorfer 2008). It is more probable that 

the constant δ13C values observed in the youngest bull sharks reflect the use of liver 

reserves provisioned by the mother (Hussey et al. 2010). Considering the Atlantic 

sharpnose showed depletion in both 13C and 15N from birth, this may suggest greater 

maternal investment in bull sharks, as compared to the Atlantic sharpnose. Nevertheless, 

aside from variable growth rates between species, it is likely that variation in maternal 
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investment across shark species may also complicate establishing a single scar stage for 

all species at which stable isotopes reflect the actual diet of young sharks.  

For the bull shark, the lack of a decline in δ15N values with age could result from 

(1) young sharks feeding on a diet with comparable δ15N values to their mothers or (2) 

equivalent source δ15N values between young/mother habitats. Given the trend of 

increasing body size-trophic level relationships in large predatory fish and sharks (Scharf 

et al. 2000; Lucifora et al. 2009), mother-young feeding at the same trophic level would 

seem unlikely. A more probable explanation is equivalent source δ15N values between 

young/mother habitats. Baseline estuarine δ15N values in developed areas, like the 

Caloosahatchee River estuary, are reportedly higher than coastal values (Heaton 1986) 

therefore δ15N values of young individuals would be artificially inflated. 

An unanticipated result was the lack of difference in the rate of maternal isotopic signal 

loss among liver and muscle tissues of the bull shark. If we consider the previous 

argument, that baseline δ15N signatures are similar between neonate and mother habitat, 

then it is probable that we can extend this point to explain the similar δ15N values 

between liver and muscle tissue of the bull shark. Liver tissue δ15N turns over 

significantly faster than muscle tissue δ15N (MacNeil et al. 2006; Logan and Lutcavage 

2010) Therefore, bull shark liver would reflect a diet representative of the enriched 15N 

baseline, producing similar δ15N values to the slow turnover muscle tissue which would 

reflect maternal reserves.  

How the maternal stable isotope signal in near-term sharks and rays varies 

between species or families adopting different reproductive strategies (i.e. oviparous, 

ovoviviparous) is unknown. In teleost fishes, embryos are often depleted in 13C, as a 
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result of feeding on lipid-rich yolk, and isotopic values increase post-hatch with 

assimilation of new dietary resources (Murchie and Power 2004; Witting et al. 2004). 

Clearly, consideration of the maternal influence through the mother-young transfer of 

maternal resources is thus necessary in any study using stable isotopes to assess diet, 

foraging behaviour and/or habitat use of young animals.  

Future research should focus on determining tissue-specific turnover rates of the 

maternal signal in neonate to young-of-year sharks by applying exponential decay models 

Hobson and Clark 1992; Fry and Arnold 1982). Through sampling pregnant females (and 

associated newborn pups) and principal prey items in the diet of neonate/young-of-year 

sharks within the nursery habitat, exponential decay models would facilitate an 

examination of the rate of isotopic change or loss of maternal signature. This type of 

model would provide a predictive framework for investigators to determine when stable 

isotope values in tissues represent true diet and which juvenile animals could be sampled 

without the influence from maternal reserves. Defining the maternal and dietary 

endpoints of large sharks, however may be challenging when considering; (i) sampling 

large pregnant females within a nursery ground is inherently difficult, (ii) defining the 

dietary endpoint of neonatal sharks may be complex as many species undergo a rapid diet 

shift with size, which may overlap the dietary endpoint of interest and (iii) for certain 

shark species, juvenile and adult habitat overlap and therefore nursery habitat will not be 

isotopically distinct, which complicates the definition of neonatal/young-of-year dietary 

endpoints. Furthermore, the maternal isotopic signal is inherently variable (Barnes et al. 

2008), both within a species and among species, and is influenced by whether the species 

is a generalist or specialist feeder and/or if mothers forage in the same/variable habitat. A 
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single estimate of maternal isotopic tissue turnover would therefore not be applicable to 

all species, but would guide field-sampling protocols.  

It is difficult to draw definitive conclusions over the precise timing of tissue δ13C 

and δ15N values achieving equilibrium with diet (i.e. exact USS or TL) when considering 

that growth and maternal investment are species-specific. The declining trend of δ13C 

values of both species for all three age measures, however, supports the hypothesis that 

the maternal isotopic influence on stable isotope values of young sharks is evident for an 

extended period of time after birth. Regardless of determining the exact stage of stable 

isotope diet-equilibrium, our data provide the first practical approach for understanding 

and measuring the loss of the maternal signal in stable isotope values of young sharks.  

Until a comprehensive timeline for stable isotope tissue turnover in these age classes and 

across species can be determined, we suggest a combination of USS and TL will enable 

investigators to effectively sample animals that will provide accurate data for dietary and 

food web studies. 
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Figure 3.1 Relationships between USS and δ13C and δ15N values (mean ± SE) for 
(a), (b) muscle and (c), (d) liver of the Atlantic sharpnose (Rhizoprionodon 
terraenovae). Letters displayed above a given USS indicate the USS(s) for which 
pair-wise comparisons revealed significant differences. Numbers in plot (a) and 
(c) represent the sample size of sharks per USS. 
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Figure 3.2 Relationships between USS and δ13C and δ15N values (mean ± SE) for 
(a), (b) muscle and (c), (d) liver of the bull shark (Carcharhinus leucas). Letters 
displayed above a given USS indicate the USS(s) for which pair-wise 
comparisons revealed significant differences. Numbers in plot (a) and (c) 
represent the sample size of sharks sampled per USS. 
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Figure 3.3 Relationships between total length (TL) and δ13C and δ15N values for 
(a), (b) muscle and (c), (d) for liver tissues of the Atlantic sharpnose shark 
(Rhizoprionodon terraenovae) and (e), (f) for muscle and (g), (h) for liver of the 
bull shark (Carcharhinus leucas); curves were fitted with polynomial models.  
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Figure 3.4 Changes in δ13C and δ15N values in regard to date sampled for (a), (b), 
muscle and (c), (d) for liver tissues of the Atlantic sharpnose shark 
(Rhizoprionodon terraenovae) and (e), (f) for muscle and (g), (h) for liver of the 
bull shark (Carcharhinus leucas); curves were fitted with polynomial models. 
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SUPPLEMENTAL MATERIAL 

Sex did not have a significant influence on δ13C or δ15N of either tissue in 

both species of shark (Table S3.1). Season, year, river and sampling location were 

significant parameters influencing the stable isotope values of bull shark tissues, 

particularly liver (p < 0.05; see Table S3.1). Sampling location by way of distance 

from mouth of river was significant for δ13C of bull sharks. However, contrary to 

our expectations, the results of the analysis indicated that three USS4 stage 

individuals collected furthest from the mouth of the river (26.5 km) had enriched 

13C signatures in liver and muscle (~13‰). Based on distance to the mouth and 

work of Heupel & Simpfendorfer (2008) showing residency of bull sharks in 

rivers for extended periods of time, it is unlikely that these individuals are 

travelling 26.5 km to the mouth of the river to feed. Significant seasonal, annual 

or river differences are not unexpected, as inherent variability within the system is 

likely. Further, because individuals representing different life history stages were 

combined for these analyses, differences were anticipated.  
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Table S3.1. Results of GLMs used to test the effect of sex, season, sampling 
location and year of sampling on δ13C and δ15N of the two species of shark. 
Significance is denoted by bold text (α = 0.05). 
 
   

Muscle 
  

Liver 
  δ15N  δ13C  δ15N  δ13C 
Atlantic sharpnose shark df F P  F P  F P  F P 
Sex 1,40 1.474 0.232  1.133 0.293  0.003 0.959  0.080 0.778 
Sampling Location 2,40 0.001 0.976  1.891 0.177  1.137 0.293  1.530 0.223 
Bull Shark             
Sex 1,36 0.189 0.665  0.426 0.517  0.027 0.870  0.671 0.417 
Season 1,36 0.440 0.646  0.440 0.646  0.372 0.546  3.365 0.019 
River 1,36 0.161 0.504  0.586 0.447  3.937 0.055  0.276 0.602 
Distance from mouth 1,36 1.173 0.330  4.793 0.005  0.563 0.358  0.103 0.750 
Year 2,36 2.466 0.122  0.757 0.388  0.323 0.726  4.932 0.012 
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CHAPTER 4 

 

ISOTOPIC RATIOS REVEAL MIXED SEASONAL VARIATION AMONG FISHES 

FROM TWO SUBTROPICAL ESTUARINE SYSTEMS*

 

 

 

 

 

 

 

 

 

 

 

                                                        
*Olin JA, Rush SA, MacNeil MA, Fisk AT. 2011. Isotopic ratios reveal mixed seasonal variation 
among fishes from two subtropical estuarine systems. Estuaries and Coasts doi: 10.1007/s12237-
011-9467-6. 
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INTRODUCTION 

Estuaries are highly productive and complex ecosystems that derive organic 

carbon from a combination of sources (Bouillon et al. 2004; Peterson and Howarth 1987). 

As a result, estuaries serve as nursery, rearing and feeding grounds for a diverse 

assemblage of both resident and transient fish and invertebrate species (e.g., Beck et al. 

2001). This complexity makes characterizing feeding relationships and dietary resource 

partitioning in these systems especially challenging, particularly when considering that 

body sizes of some individual consumer species can range over an order of magnitude 

(Rountree and Able 1992) and that trophic roles can vary with ontogeny (Wilson and 

Sheaves 2001).  

The use of stable isotopes of nitrogen (δ15N), carbon (δ13C) and sulfur (δ34S) to 

characterize dietary resources has become commonplace in studies of feeding ecology, as 

they provide a time-integrated perspective of a consumer’s diet (Peterson and Fry 1987). 

Specifically, δ15N values are used in determining the relative trophic position of a 

consumer (Minagawa and Wada 1984) and δ13C and δ34S values have found application 

in determining basal organic matter sources incorporated into a consumer’s diet (Peterson 

and Fry 1987). Changes in δ15N in particular, can be attributed to either a trophic level 

shift (i.e. feeding on more 15N enriched or depleted prey) or to a change in organic matter 

sources supplementing the diet (i.e. pelagic to terrestrial-derived organic matter) or both 

(Peterson and Howarth 1987). Thus applying δ13C and δ34S with δ15N in combination can 

help to distinguish the potentially wide range of dietary resources available to consumers 

(Connolly et al. 2004; Peterson and Howarth 1987). 
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Body size has long been recognized as influential on the structural and functional 

complexity of aquatic food webs (Elton 1927). Size-based shifts in dietary resources, 

reflecting the changing role of an organism within its community, are widespread in 

aquatic species, including invertebrates (Cherel et al. 2009; Hoeninghaus and Davis 

2007), teleosts (Deudero et al. 2004; Greenwood et al. 2010; Kolasinski et al. 2009), 

marine turtles (Godley et al. 1998) and marine mammals (Newsome et al. 2009). Such 

size-based differences often explain variation in stable isotope composition between 

species (Akin and Winemiller 2008), and among conspecifics within a population 

(Davenport and Bax 2002; Jennings et al. 2002). However, the ability to detect size-based 

isotopic variation is often limited (Galván et al. 2010), as sampling the range of body 

sizes needed to account for ontogenetic differences in the feeding ecology of consumers 

can be difficult. This is particularly relevant in estuarine ecosystems, as high levels of 

spatial and temporal variability in the physical and chemical properties (Deegan and 

Garritt 1997; Abrantes and Sheaves 2010) influence the age class composition of species 

at any particular time.  

Size-dependent temporal variation in δ15N and δ13C has been observed in coastal 

and open-water marine organisms (Goering et al. 1990; Jennings et al. 2008). Although 

these observations were largely noted in lower trophic level species, such as zooplankton 

and invertebrates, body size-related temporal variation has been identified in fishes 

(Vizzini and Mazzola 2003). However, evidence against size- and temporal-based 

isotopic shifts has been reported within estuarine consumers that indicated a dietary shift 

with size, based on stomach content analyses (Wilson et al. 2009). Detection of temporal 

variation in a consumer’s isotopic values however, is in part dependent on the lag 
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associated with processing alternative dietary resources (i.e. growth rates, and tissue 

turnover rates, or both; Fry and Arnold 1982; Hesslein et al. 1993). Temporal shifts in 

isotopic values would therefore be more likely to be detected in species or individuals 

(e.g., smaller fish) with fast growth and tissue turnover rates (MacNeil et al. 2006). 

Using the estuarine reaches of two subtropical tidal rivers located in southwestern 

Florida, USA (the Caloosahatchee and the Myakka), we examine temporal and spatial 

relationships between body size and δ15N, δ13C and δ34S values for fish species across 

multiple trophic levels. Because riverine systems undergo periods of increased freshwater 

flow, that provides terrestrial organic matter and nutrients to the receiving estuary (e.g., 

Chanton and Lewis 2002) we hypothesize that small bodied relative to larger bodied 

fishes, will reflect the seasonal variability of the two estuaries, via their δ13C and δ34S 

values. An additional hypothesis is that δ15N will scale with body size within each fish 

species. Our objectives were to (1) determine whether body size or season influence the 

isotopic values of individual fish species; (2) determine whether these relationships are 

consistent for multiple fish species; and (3) determine whether body size/seasonal-

isotopic relationships were consistent across estuarine systems. 

 

MATERIALS AND METHODS 

Sample collection 

The Caloosahatchee (26°30' N, 81°54' W) and Myakka (82°12' W, 26°57' N) 

Rivers are major tributaries of Charlotte Harbor, a large relatively shallow estuary on the 

southwest coast of Florida (Fig. 4.1). The study was completed in the estuarine reach of 

the two rivers, encompassing ~27 km of habitat in the Caloosahatchee and ~32 km in the 
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Myakka (Fig. 4.1Inset). The upper reaches of the Caloosahatchee and the shoreline areas 

of the Myakka are characterized by mangroves and saltmarsh, principally red mangrove 

Rhizophora mangle, black mangrove Avicennia germinans, saltmarsh cordgrass Spartina 

alterniflora and black needlerush Juncus roemerianus. The shoreline habitats closer to 

the Caloosahatchee River mouth, have been largely altered by urbanization, as evidenced 

by extensive canal developments and shoreline modifications.  

From 2006 to 2008, fishes were collected during spring (i.e., May–June) and 

autumn (i.e., September–October) from the Caloosahatchee and Myakka estuaries, as a 

component of a larger study aimed at characterizing the food web dynamics of the two 

estuaries, using a shallow water (< 10 m) longline (800 m), seine (21.3x1.8 m at the 

centre bag, 3-mm-stretch mesh), gillnet (50 m) and otter trawl (6.1m with 38 mm stretch 

mesh and 3 mm mesh liner). Upon collection, individuals were measured (standard length 

(SL), to the nearest cm) and white muscle tissue was excised from the dorsal area anterior 

to the first dorsal fin. Muscle samples were stored on ice in the field and then stored 

frozen upon return to the laboratory (-20°C). 

 

Stable isotope analysis 

Muscle tissues were sub-sampled (~1.0 g), freeze-dried for 48 h, and 

homogenized in a SPEX CertiPrep 8000-D ball milling unit (SPEX CertiPrep, Metuchen, 

New Jersey). Lipids are depleted in 13C relative to other major tissue components (i.e. 

proteins and carbohydrates; DeNiro and Epstein 1977) and their presence in muscle tissue 

samples can negatively skew observed δ13C values (Post et al. 2007). Thus, to standardize 

within and among species, lipids were removed from all samples prior to isotopic 
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analysis using a modified method outlined by Bligh and Dyer (1959): twice vortexing the 

pulverized tissue in 5 ml of 2:1 chloroform: methanol solution for 24 h and decanting the 

solvent through filter paper (Whatman™ Grade-1, 125 mm) to isolate the muscle tissue 

sample.  

Relative abundances of nitrogen (15N/14N) and carbon (13C/12C) were determined 

on ~0.5 mg sub-samples sealed in tin capsules on a Thermo Finnigan DeltaPlus mass-

spectrometer (Thermo Finnigan, San Jose, CA, USA) coupled with an elemental analyzer 

(Costech, Valencia, CA, USA) at the Chemical Tracers Laboratory, Great Lakes Institute 

for Environmental Research, University of Windsor. Relative abundance of sulfur 

(34S/32S) was determined on ~2 mg and ~ 6 mg sub-samples sealed in tin capsules on an 

Isochrom Continuous Flow IRMS (GV Instruments / Micromass, UK) coupled with an 

elemental analyzer (Costech, Valencia, CA, USA), at the Environmental Isotope 

Laboratory, University of Waterloo and by a Thermo-Electron DeltaPlus Advantage IRMS 

at the Colorado Plateau Stable Isotope Laboratory, Northern Arizona University, 

respectively.   

Stable isotope results are expressed in standard delta notation (δ), which are parts 

per thousand differences from a standard as follows: δ = [(Rsample/Rstandard) -1] x 103 

(Peterson and Fry 1987), where R is the ratio of heavy to light isotopes in the sample and 

a standard reference material (atmospheric nitrogen for nitrogen, Pee Dee Belemnite 

carbonate for carbon, and Canyon Diablo Troilite for sulfur). The analytical precision 

based on the standard deviation of two standards (NIST 8414 and internal lab standard; n 

= 76) ranged from 0.10‰ to 0.21‰ in δ15N, 0.06‰ to 0.09‰ in δ13C, and 0.3‰ for δ34S, 

based on three sulfide standards (NBS-123, EIl-40 and EIL-43). Accuracy of analysis 
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based on the analysis of NIST standards, performed with muscle tissue sample analysis, 

sucrose (NIST 8542), ammonium sulfate (NIST 8547) and bovine liver and mussel (n = 3 

for each), were within 0.07‰ for δ15N, 0.01‰ for δ13C, and 0.5‰ for δ34S of certified 

values.  

 

Data analysis 

Seven common estuarine fish species representing a range of trophic guilds, i.e., 

primary, secondary and tertiary consumers, were chosen for this analysis (for species 

names and descriptions, see Table 4.1). These fishes were collected from a number of 

locations throughout each estuary. The authors recognize that consumers occupying 

different locations within an estuary often differ in their isotopic values (e.g., Chanton 

and Lewis 2002), specifically those sampled up-river relative to those sampled near the 

mouth. However, Wilson et al. (2009) and Chanton and Lewis (2002) observed no 

significant differences in δ15N and δ34S values, respectively, of consumers sampled from 

upper and middle reaches of the Apalachicola Bay. Therefore, because of sample size 

consideration in this study, we elected to group all individuals of each species, regardless 

of sampling location. Because fishes were sampled from the two estuaries during the 

same time-periods annually (i.e., 2006–2008), using the same sampling techniques, 

isotopic data were pooled from all years for each river (following Layman et al. 2005), to 

examine whether body size or environmental (i.e., seasonal) factors influence δ15N, δ13C 

and δ34S muscle tissue values of individual species and whether evidence exists for size-

based seasonal variability in isotopic values.  
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Body size and seasonal relationships were analyzed using linear mixed-effects 

models fit using restricted maximum likelihood in the lme4 package in R (R Core 

Development Team 2009; Bates and Maechler 2010). Prior to analysis all stable isotope 

data were tested for normality using quantile-quantile probability plots and log-

transformed where appropriate. We developed a set of three candidate models with 

estuary as the random effect and body size and season as fixed effects: a model with no 

predictors (Null model; Isotope = γ0 + β0 + ε), and models including the body size 

(Isotope = γ0 + γ1Body Size + β0 + ε) and seasonal (Isotope = γ0 + γ2Season + β0 + ε) 

predictors suspected of influencing isotopic values of the fishes collected during the 

sampling period. All candidate models were implemented for each species. An 

examination of the probability plots of residuals from all candidate models relating site-

specific species isotopic values to species body size and season sampled, indicated that 

candidate models fit adequately, and quantile-quantile plots showed data to be generally-

described by normally distributed errors for all fishes.  

Model selection was based on Akaike’s Information Criterion (AIC; Akaike 

1973) with small-sample bias adjustment (AICc; Hurvich and Tsai 2002). In determining 

model AICc values, both random (i.e., estuary) and fixed (i.e., body size and season) 

effects were counted as unique parameters and the number of observations used to 

compute the log-likelihood were used in calculating AICc. Models were ranked and 

compared using AICc weights and ΔAICc, where AICc weights measure the weight in 

support of the model given the data and ΔAICc is the relative difference between the top 

ranked model and each alternative model. In most cases the model with the lowest AICc 

value was considered the best-supported model. However, when the AICc of several 
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models differed by ≤ 2, we considered these models to be equally parsimonious. 

Additionally, if the number of parameters (K) in comparative models differed by 1, then 

model selection was based on the log-likelihood, with the best supported model having 

the lower log-likelihood (Burnham and Anderson 2002). Akaike weights (wi) were 

calculated to interpret the weight of evidence for the best fitting model with evidence 

ratios used to compare among models (Johnson and Omland 2004). For the best 

supported model, parameter estimates and associated 95% confidence intervals (CIs) 

were determined using the HPDinterval function provided in the lme4 package in R. For 

each estimated parameter, predictors were considered significant if the confidence 

interval did not contain zero. To test the effect of body size and season among estuaries, 

we calculated the intraclass correlation coefficients (ICC), reflecting the proportion of 

variance attributable to each level of the model (see Raudenbush and Bryk 2002; Elgee et 

al. 2010). The ICC approaches 1 when the between-estuary variation is large relative to 

the within-estuary variation and this coefficient has a 0 value when the within-estuary 

variation equals the between-estuary variation.  

 

RESULTS 

Results from the candidate models used to describe the relationships between 

δ15N and season-body size effects in the fishes sampled from both the Caloosahatchee 

and Myakka estuaries indicated that the null model was the top-ranked model for five out 

of seven species (i.e., there was no effect of season or body size) (Table 4.2; see Table 

4S.1 Supplemental Material for full model comparisons for δ15N). However, evidence 

based on model comparisons indicated that season was the most plausible model 
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describing the δ15N values of two species; Mugil cephalus, and Chaetodipterus faber 

(Table 4.2). The parameter estimates for season were significant for both species (Fig. 

4.2A; i.e. zero was not included within the CI) and evidence ratios estimated for these 

species, indicate that the model that included season was 48.5 and 47 times more likely 

than the model that included body size, respectively (see Table 4S.1). Model comparisons 

indicated depletion in 15N between spring and autumn in C. faber (Table 4.1), whereas M. 

cephalus enriched in 15N between spring and autumn.  

Relationships between season and body size and δ13C, favored the null model for 

four of the seven species in this study (Table 4.2; see Table 4S.2Supplemental Material 

for full model comparisons for δ13C), suggesting limited evidence for size or seasonal 

effects in the data. The most plausible model describing the δ13C values of Bagre 

marinus, M. cephalus and Eugerres plumieri included season (Table 4.2). However, 

confidence intervals that overlapped zero suggest there is only weak evidence of a 

seasonal effect on the δ13C values of B. marinus (Fig. 4.2B). Carbon isotope values of E. 

plumieri were generally lower in the autumn relative to the spring, and evidence ratios 

indicated the model that included season was 2.8 times more likely than the model that 

included body size. This was also the case for the δ13C values of M. cephalus; a clear 

depletion in 13C in the autumn (Table 4.1; Fig. 4.2B).  

Seasonal variability was identified in four of the seven species using δ34S (Table 

4.2; see Table 4S.3Supplemental Material for full model comparisons for δ34S). The 

support for C. faber, B. marinus and Ariopsis felis was strong (Fig. 4.2C) with the model 

that included season being 30, 4.1 and 32 times more likely than the model containing 

body size, respectively (see Table 4S.3). Moreover, depletion in 34S from spring to 
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autumn was evident for the three species (Table 4.1) further supporting a seasonal effect 

in both estuaries (Fig. 2C). Alternatively, the best model describing the sulfur isotopes of 

E. plumieri indicated a general enrichment in 34S in the autumn relative to spring (Fig. 

4.2C). Intraclass correlation coefficients indicated that the proportion of variance 

attributable to the seasonal variation within-estuary (61–100%) was greater than the 

proportion attributable to season between-estuary (0–39%) in all isotopic comparisons in 

all species, suggesting that seasonal variability was similar between our study locations.    

 

DISCUSSION 

Our results provide evidence that for most species examined, season is the 

dominant influence on isotopic values within the Caloosahatchee and Myakka estuaries 

relative to body size of the fishes sampled here. Our results are in accordance with those 

of Wilson et al. (2009), supporting the fact that body size is not an important determinant 

of isotopic enrichment in estuarine fishes. However, there was evidence for seasonal 

variability in isotopic values in fish species that spanned several trophic levels and across 

spatially distinct systems. It is well known that many fishes undergo size-based or 

ontogenetic changes in diet, and thereby occupy a number of trophic levels in the course 

of their life history (Winemiller 1990). The absence of intra-specific association between 

δ15N, δ13C, δ34S, and body size, suggests that these estuarine fish species do not undergo 

size-based dietary changes within the size ranges sampled here. However, the seasonal 

shift in isotopic values supports the finding of Polis and Strong (1996) in that the relative 

trophic positions of species, whether attributable to a change in diet or a shift in isotopic 

values of organic matter sources in food webs, are dynamic rather than fixed. The 
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estuarine fishes examined in the current study exhibit plasticity in their feeding strategy, 

as they are clearly responding to changes in production source. Differing δ15N, δ13C and 

δ34S values between seasons, suggests that seasonal variability influences the isotopic 

values of estuarine fishes, and thus the species interactions and the food web structure of 

these estuarine systems. 

 

Body size variability 

The absence of body-size based- δ15N relationships in the fishes sampled likely 

result from (1) dietary preferences of these fishes not shifting within the range of body 

sizes sampled, (2) the fishes do shift to alternative diets with size, yet the isotope ratios of 

the new diet are similar to the former and are not reflected in isotopic distinctions, or (3) 

that spatial and temporal variation in isotopic signatures of prey negate any size-based 

relationships in higher trophic level species (Vander Zanden et al. 2000). Deudero et al. 

(2004) observed no size-based δ15N changes in fishes that fed primarily on small benthic 

invertebrates, suggesting that although these fishes possess very diverse diets throughout 

their lives, they likely select prey of relatively similar trophic level. Given the trend of 

increasing body size-trophic level relationships in large predatory (Scharf et al. 2000) and 

piscivorous fishes (Deudero et al. 2004), the lack of size-based δ15N relationships in the 

fishes included in our study may be a consequence of the fact they are predominantly 

secondary and tertiary consumers. As such, early life stages (i.e. larvae and young-of-

year) generally feed in the pelagic environment on zooplankton and switch to benthic 

macro-invertebrates in later stages, thus significant size-based δ15N relationships would 

likely have been evident from a broader range of sizes that including larval individuals 
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(Mittelbach and Persson 1998). Nonetheless, similar results for estuarine species of the 

Apalachicola Bay, an estuary in northern Florida, have been observed (Wilson et al. 

2009).  

Galván et al. (2010) raised the point that, the absence of a size-based relationship 

with δ15N often resulted from the statistical power being too low to detect a significant 

relationship. This may be the case here, as both sample size and range of sizes sampled 

were low for a number of species. Yet, given the assumptions for estimating the minimal 

sample size required to analyze size based feeding relationships using δ15N (Galván et al. 

2010), the body-size independent δ15N results for 57% of the focal species (4/7) were 

sampled across size ranges that exceeded Galvan's suggested cutoff. Although, we are 

confident in our relationships for the majority of species sampled, limited statistical 

power suggests further sampling may be required for some species. For species that did 

not meet the sample size minimum for each season, i.e., Mugil cephalus, Lagodon 

rhomboides and Chaetodipterus faber, improvement in power can be achieved by 

sampling a greater number of individuals over a broader size range, to confirm the 

absence of size relationships with δ15N and seasonal shifts in isotopic values. However, it 

is important to note that use of estuaries by fishes is often seasonally based (Sheaves et 

al. 2010) and therefore sampling the entire size range of an individual species may not be 

possible. 

Body size-dependent shifts in isotope ratios that reflect a shift in a consumer’s 

diet can be attributed to either a trophic level shift and/or changes in organic matter 

source available to a consumer. However, in complex ecosystems, such as tropical 

floodplain rivers, size-related isotopic shifts are less common than in temperate aquatic 
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habitats (Jennings et al. 2002), as multiple primary production sources support highly 

variable trophic assemblages whose interactions may favor a diversification of size across 

trophic levels (Layman et al. 2005). Our finding that neither δ13C nor δ34S was associated 

with body size suggests the potential for absence of systematic shifts in organic matter 

source use that could potentially obscure the δ15N trends with body size, lending support 

to the lack of evidence of size-based isotopic shifts within our study systems.   

 

Seasonal variability 

Body-size dependent diet shifts have been shown to influence temporal variation 

in aquatic food webs, particularly in highly seasonal systems (Winemiller 1990). Goering 

et al. (1990) suggested that aside from primary producers, seasonal isotopic variability is 

confined to relatively short-lived primary consumers because of relatively fast growth 

and associated tissue turnover rates. This has been supported by studies examining the 

influence of seasonal variation on producers and consumers (Jennings et al. 2008), 

attributing the lack of evidence in secondary and tertiary consumers, to weak seasonal 

variability of the system under examination and to the relatively slow rate of muscle 

turnover in vertebrate species (MacAvoy et al. 2001). Despite these potential limitations, 

seasonal variability was evident for all three isotopes employed in our study, a result 

similar to those reported by Vizzini and Mazzola (2003) from a Mediterranean coastal 

lagoon, and by Chanton and Lewis (2002) from the Apalachicola Bay.  

Generally, with respect to δ13C and δ34S, the most depleted values were observed 

in autumn. Although we did not characterize the primary producers of either estuary, 

overall seasonal variability in δ13C (mean ± SE; spring, -19.6 ± 0.3‰ and -20.8 ± 0.4‰; 
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autumn, -20.6 ± 0.4‰ and -20.6 ± 0.3‰) and δ34S (mean ± SE; spring, 12.9 ± 0.3‰ and 

12.7 ± 0.3‰; autumn, 10.3 ± 0.4‰ and 11.1 ± 0.3‰) of all fishes combined in the 

Caloosahatchee and the Myakka respectively, was relatively low. Shifts in δ13C and δ34S 

are however reflected in the fishes’ tissues likely indicating either movement to new 

habitats or a shift in organic matter source associated with the transition of dry to wet 

seasons in these estuaries. With the onset of the wet season, both rivers experience 

increased freshwater flow from natural sources such as rain and subsequent watershed 

drainage. This source of freshwater into the system could lead to consumers assimilating 

a more mangrove/upland carbon and sulfur source. The autumnal shift in the sulfur 

isotope ratios potentially reflects the input of upland/mangrove organic matters sources 

into the estuaries. The fact that this shift was more evident in δ34S as opposed to δ13C 

may be a consequence of sulfur sources being more distinguishable (i.e., sulfide vs. 

sulfate). Interpreting δ13C values in estuarine organisms can often be difficult because a 

mixture of terrestrial (∼27‰) and salt-marsh (∼13‰) organic matter sources can yield a 

δ13C value similar to marine phytoplankton (∼21‰; Connelly et al. 2004; Peterson and 

Fry 1987). 

Seasonal variation in isotopic values was prevalent in the majority of fishes, 

regardless of trophic position. This result has implications for the trophic roles of species 

in estuarine food webs and the tools we use to identify these relationships within the food 

web. One way that seasonal variation can influence our conceptual understanding of 

trophic relationships within estuaries relates to the use of stable isotopes. Because tissue 

turnover is related to growth and metabolism, rates can vary by species, tissue type and 

body size. For instance, generally accepted estimates of isotopic turnover in muscle range 
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from less than a week for larval red drum (Sciaenops ocellatus; Herzka and Holt 2000) to 

> 400 days in juvenile catfish (Ictalurus punctatus; MacAvoy et al. 2001) to > 500 days 

for δ13C and > 300 days for δ15N in muscle tissues of juvenile sandbar sharks 

(Carcharhinus plumbeus; Logan and Lutcavage 2010). Consideration of temporal 

variability in isotope values must be taken into account in all species of the community, 

despite the expected lag in tissue turnover rates, as shifts in prey resources or 

environmental conditions can greatly alter isotopic signals.  

 

Spatial variability 

The seasonally driven isotopic trends were similar among conspecifics of the 

Caloosahatchee and Myakka estuaries, as the proportion of variance attributable to 

seasonal effects within-estuary was greater than that attributable to seasonal effects 

between-estuary, despite the limitation of small sample size for some species. Arguably, 

there is the potential that the similar seasonal trends observed here among the estuaries is 

a result of small sample sizes and that more focused sampling would result in different 

results. Estuarine consumers however, are known to exhibit omnivory and have the 

ability to exploit peaks of prey abundance. Isotopic differences among conspecifics have 

been identified at multiple spatial scales: among habitats within an estuary (Deegan and 

Garritt 1997) and among neighboring estuaries (Griffin and Valiela 2001). Spatial 

differences in isotopic values would indicate that fishes adopt site-specific feeding 

strategies or the variability in the isotopic composition of prey resources. Similar trends 

between conspecifics of the two rivers, therefore suggests that the seasonal factors 
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driving the isotopic dynamics of these fish species are of similar magnitude, and that the 

fishes are responding to environmental factors in a comparable fashion.  

We expected that the seasonal isotopic trends of the fishes examined here would 

have differed over these moderate spatial scales. However, within the southeastern USA, 

the magnitude of nutrient input entering into estuarine systems depends strongly on 

riverine discharge and can vary seasonally (Dardeu et al. 1992). In southwest Florida, 

many rivers are categorized as having the southern river flow pattern, i.e. a significant 

proportion of riverine annual flow (~60%) is concentrated in the rainy season, which 

generally occurs in the months of June-September (Kelly and Gore 2008). This is 

particularly relevant to the Caloosahatchee and Myakka Rivers, and provides a rationale 

for the similar seasonal trends exhibited between the two estuaries.  

 

Conclusions 

We have established that isotopic variation in the Caloosahatchee and Myakka 

estuaries is influenced by seasonal differences as opposed to size based structuring within 

fish species. Evidence of seasonal variability among fishes, across a range of trophic 

levels, suggests that these fishes exhibit plasticity in feeding strategies that may afford 

greater adaptive flexibility in response to specific changes in food availability resulting 

from changes in environmental conditions. Likewise, the response of conspecifics 

between the two estuaries is similar suggesting that the environmental influence on the 

isotopic composition (δ13C and δ34S) of these estuarine fishes is of comparable 

magnitude. These results further suggest that the trophic structure of these estuarine food 

webs, as indicated by δ15N, is variable among seasons, a result that may be attributable to 
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the alteration in organic matter and/or nutrient sources associated with changes to 

hydrological regime.   
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Table 4.1 Maximum recorded standard lengths (MSL1; cm), length (FL, mean ± SE, range; cm), sample size (n), and δ15N, δ13C and 
δ34S  values for muscle tissue (‰ mean ± SE) of fish species sampled seasonally (i.e. spring May–June; autumn September–October) 
from the Caloosahatchee and Myakka estuaries. For n < 3, all values are presented.  
 

Species 
  

Caloosahatchee River  Myakka River 
 

 Season MSL1 n Length δ15N δ13C δ34S  n Length δ15N δ13C δ34S 

Striped mullet  
Mugil cephalus Spring 90 5 22.8 ± 0.3 (21-24) 7.6 ± 0.3 -14.1 ± 0.8 8.3 ± 0.7  1 19.0 5.74 -14.57 5.23 

 Autumn  6 19.0 ± 7.5 (2-43) 9.4 ± 0.2 -21.9 ± 1.8 9.0 ± 1.1  4 69.3 ± 11 (37-86) 7.4 ± 1.0 -19.26 ± 1.5 10.1 ± 2.3 
Striped mojarra  
Eugerres plumieri Spring 34 10 15.5 ± 1.7 (9-23) 10.2 ± 0.3 -18.4 ± 1.3 5.3 ± 1.7  1 9.5 10.0 -22.8 10.6 
 Autumn  31 9.0 ± 1.0 (3-24) 10.6 ± 0.3 -21.6 ± 0.8 9.0 ± 0.7  17 4.6 ± 0.5 (1-8) 9.0 ± 0.1 -22.3 ± 0.5 10.6 ± 0.3 
Pinfish  
Lagodon rhomboides Spring 37 12 9.4 ± 0.6 (6-12) 11.2 ± 0.4 -19.4 ± 0.8 13.7 ± 0.8  11 9.7 ± 0.4 (7-12) 9.6 ± 0.2 -21.8 ± 0.5 13.4 ± 0.3 
 Autumn  5 12 ± 1.9 (8-18) 10.6 ± 0.6 -18.9 ± 1.0 11.4 ±1.1  3 12.3 ± 0.9 (11-14) 10.0 ± 0.3 -22.2 ± 0.9 13.4 ± 0.4 
Atlantic spadefish  
Chaetodipterus faber Spring 85 10 12.1 ± 1.2 (7-19) 12.2 ± 0.2 -20.6 ± 0.4 13.4 ± 0.4  3 10.5 ± 4.0 (6-19) 11.3 ± 0.2 -21.3 ± 0.6 11.8 ± 0.7 
 Autumn  9 17.9 ± 0.9 (11-21) 10.2 ± 0.6 -20.0 ± 0.6 10.9 ± 0.9  2 7.0, 20.0 10.7, 11.5 -22.0, -24.1 12.9, 13.5 
Hardhead catfish  
Ariopsis felis Spring 62 12 30.4 ± 0.8 (25-33) 11.8 ± 0.3 -21.1 ± 0.4 13.5 ± 0.4  10 29.7 ± 1.5 (23-38) 11.0 ± 0.3 -21.4 ± 0.5 12.7 ± 0.6 
 Autumn  28 23.5 ± 1.8 (5-35) 12.1 ± 0.3 -21.0 ± 0.4 12.6 ± 0.5  13 24.4 ± 4.0 (6-40) 10.5 ± 0.6 -20.9 ± 0.8 11.0 ± 0.4 
Gafftopsail catfish  
Bagre marinus Spring 60 13 30.0 ± 2.3 (20-50) 12.4 ± 0.7 -20.5 ± 0.7 14.0 ± 0.5  6 42.2 ± 3.8 (29-57) 12.1 ± 0.1 -18.9 ± 0.5 13.6 ± 0.2 
 Autumn  10 24.4 ± 4.6 (10-47) 11.1 ± 1.0 -19.1± 1.0 12.9 ± 0.6  16 38.3 ± 2.3 (13-46) 11.1 ± 0.3 -18.9 ± 0.6 12.2 ± 0.3 
Bull shark2  
Carcharhinus leucas Spring 180 12 91.3 ± 2.9 (81-106) 13.1 ± 0.1 -18.0 ± 0.4 11.5 ± 0.5  3 102.5 ± 3.0 (87-98) 12.6 ± 0.3 -17.8 ± 0.4 11.1 ± 0.6 
 Autumn  3 127.1 ± 18.4 (95-159) 14.1 ± 0.7 -17.7 ± 0.6 13.4 ± 0.5  3 91.6 ± 13.8 (78-126) 12.7 ± 0.2 -18.5 ± 0.7 12.0 ± 0.1 
1Maximum recorded standard lengths derived from FishBase (Froese and Pauly 2010). Maximum length recorded for C. leucas presented here represents size at maturity, as only 
individuals ranging from neonate to juvenile age classes are common to these estuaries. 
2 Only bull sharks with healed umbilical scars (c. ≥ 1 year old) were included in this study to eliminate any potential for maternal isotopic influence (Olin et al. 2011). 
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Table 4.2 Model selection results1 for top-ranked models for δ15N, δ13C and δ34S values 
of each fish species pooled across both estuaries.  
 

Species   Model K n LogLik AIC AICc wi 

Mugil cephalus δ15N Season 4 16 -24.21 56.41 60.06 0.97 
 δ13C Season 4  -39.44 86.89 90.52 0.99 
 δ34S Null 3  -39.34 84.69 86.68 0.37 
Eugerres plumieri δ15N Null 3 59 -98.83 203.70 204.10 0.69 
 δ13C Season 4  -161.00 330.00 330.74 0.71 
 δ34S Season 4  -152.40 312.90 313.54 0.96 
Lagodon rhomboides δ15N Null 3 31 -49.12 104.20 105.13 0.68 
 δ13C Null 3  -68.04 142.10 142.97 0.57 
 δ34S Null 3  -66.40 138.80 139.69 0.29 
Chaetodipterus faber δ15N Season 4 25 -40.47 88.93 90.94 0.93 
 δ13C Null 3  -45.61 97.21 98.36 0.70 
 δ34S Season 4  -50.59 109.20 111.18 0.77 
Ariopsis felis δ15N Null 3 63 -113.00 231.90 232.41 0.73 
 δ13C Null 3  -138.5 283.00 283.41 0.65 
 δ34S Season 4  -127.10 262.10 262.89 0.80 
Bagre marinus δ15N Null 3 45 -99.38 204.80 205.35 0.28 
 δ13C Season 4  -103.6 215.10 216.20 0.70 
 δ34S Season 4  -81.15 170.30 171.30 0.92 
Carcharhinus leucas δ15N Null 4 21 -22.18 50.36 51.77 0.34 
  δ13C Null 3  -31.68 69.36 70.77 0.76 
 δ34S Null 3  -37.72 81.45 90.62 0.33 

1K, number of model parameters; n, sample size; logLik, model log-likelihood; AIC, Akaike’s  
information criterion; AICc, AIC with small-sample bias adjustment; wi, Akaike’s weight. 
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Figure 4.1 Map of the study site showing the locations of the Caloosahatchee and Myakka Rivers with respect to the south western 
coast of Florida. Insets: Locations of the estuarine portions of the two rivers from which fishes were sampled (black squares represent 
spring sample locations; gray circles represent autumn sample locations).   
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Figure 4.2 Parameter estimate results with 95% confidence intervals for the best-fit models for (A) δ15N, (B) δ13C and (C) δ34S values 
for each fish species sampled from the Caloosahatchee and Myakka estuaries. Symbols indicate species isotopic relationships were 
best described by season (●) or body size (□) where AIC c supported such an effect. Negative parameter estimates represent enriched 
isotopic values in autumn and positive parameter estimates represent depleted isotopic values in autumn. Trophic position1 is indicated 
along the y-axis for each species.  
1Trophic position (TP) was estimated for all fishes using δ15N as follows: TP = TPbaseline + (δ15Nconsumer - δ15Nbaseline)/Δ15N, where TPbaseline is the estimated TP of the baseline 
organism, δ15Nconsumer and δ15Nbaseline are the mean δ15N of the consumer of interest and of the baseline organism, respectively, and 3.4‰ was used as the Δ15N (Post 2002). Mean 
δ15N of Mugil cephalus, designated as TP 2.0, was used as the baseline for all fishes, as this species is characterized as a primary consumer over the size range sampled here 
(Platell et al. 2006).  
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SUPPLEMENTAL MATERIAL 
 

Table 4S.1 Model results for δ15N values of each fish species pooled across both 
estuaries. 
 

Species Model K n LogLik AIC AICc ΔAICc wi 
Mugil cephalus Season* 4 16 -24.21 56.41 60.06 0.00 0.97 
 Body Size 4  -28.09 62.19 67.82 7.76 0.02 
 Null 3  -30.41 68.82 68.82 8.76 0.01 
Eugerres plumieri Null* 3 59 -98.83 203.70 204.10 0.00 0.69 
 Season 4  -98.65 205.30 206.04 1.94 0.26 
 Body Size 4  -100.40 208.90 209.54 5.44 0.05 
Lagodon rhomboides Null* 3 31 -49.12 104.20 105.13 0.00 0.68 
 Season 4  -48.90 105.80 107.34 2.22 0.23 
 Body Size 4  -49.76 107.50 109.06 3.93 0.10 
Chaetodipterus faber Season* 4 25 -40.47 88.93 90.94 0.00 0.93 
 Null 3  -44.82 95.65 96.78 5.84 0.05 
 Body Size 4  -44.32 96.65 98.64 7.70 0.02 
Ariopsis felis Null* 3 63 -113.00 231.90 232.41 0.00 0.73 
 Season 4  -113.00 234.00 234.69 2.28 0.23 
 Body Size 4  -115.00 237.90 238.69 6.28 0.03 
Bagre marinus Season 4 45 -97.30 202.60 203.60 0.00 0.69 
 Null* 3  -99.38 204.80 205.35 1.75 0.29 
 Body Size 4  -100.90 209.80 210.80 7.20 0.02 
Carcharhinus leucas Season 4 21 -19.98 47.96 50.46 0.00 0.66 
 Null* 3  -22.18 50.36 51.77 1.31 0.34 
 Body Size 4  -25.79 59.57 62.08 11.62 0.00 
K, number of model parameters; n, sample size; logLik, model log-likelihood; AIC, Akaike’s information  
criterion; AICc, AIC with small-sample bias adjustment; ΔAICc, estimates the relative difference between  
the top ranked and each alternative model; wi, Akaike’s weights. * indicates best model for each species. 
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Table 4S.2 Model results for δ13C values of each fish species pooled across both 
estuaries. 
  

Species Model K n LogLik AIC AICc ΔAICc wi 

Mugil cephalus Season* 4 16 -39.44 86.89 90.52 0.00 0.99 
 Null 3  -46.56 99.13 101.12 10.60 0.00 
  Body Size 4  -48.54 105.10 108.72 18.20 0.00 
Eugerres plumieri Season* 4 59 -161.00 330.00 330.74 0.00 0.71 
 Body Size 4  -162.10 332.20 332.94 2.20 0.24 
  Null 3  -164.70 335.40 335.84 5.10 0.06 
Lagodon rhomboides Null* 3 31 -68.04 142.10 142.97 0.00 0.57 
 Season 4  -67.22 142.40 143.98 1.01 0.35 
  Body Size 4  -68.70 145.40 146.94 3.97 0.08 
Chaetodipterus faber Null* 3 25 -45.61 97.21 98.36 0.00 0.70 
 Season 4  -45.18 98.36 100.36 2.00 0.26 
  Body Size 4  -46.84 101.70 103.68 5.32 0.05 
Ariopsis felis Null* 3 63 -138.50 283.00 283.41 0.00 0.65 
 Season 4  -138.00 284.00 284.69 1.28 0.34 
  Body Size 4  -141.10 290.10 290.89 7.48 0.02 
Bagre marinus Season* 4 45 -103.60 215.10 216.20 0.00 0.70 
 Body Size 4  -105.00 216.10 219.00 2.80 0.17 
 Null 3  -106.50 221.00 219.59 3.39 0.13 
Carcharhinus leucas Null* 3 21 -31.68 69.36 70.77 0.00 0.76 
 Season 4  -31.31 70.62 73.12 2.35 0.23 
  Body Size 4  -34.79 77.58 80.08 9.31 0.01 

K, number of model parameters; n, sample size; logLik, model log-likelihood; AIC, Akaike’s information  
criterion; AICc, AIC with small-sample bias adjustment; ΔAICc, estimates the relative difference between  
the top ranked and each alternative model; wi, Akaike’s weights. * indicates best model for each species. 
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Table 4S.3 Model results for δ34S values of each fish species pooled across both 
estuaries. 
 

Species Model K n LogLik AIC AICc ΔAICc wi 

Mugil cephalus Season 4 16 -36.99 81.97 85.62 0.00 0.63 
 Null* 3  -39.34 84.69 86.68 1.06 0.37 
 Body Size 4  -41.68 91.35 95.00 9.38 0.01 
Eugerres plumieri Season* 4 59 -152.40 312.90 313.54 0.00 0.96 
 Null 3  -157.10 320.10 320.64 7.10 0.03 
 Body Size 4  -157.20 322.30 323.14 9.60 0.01 
Lagodon rhomboides Season 4 31 -64.20 136.40 137.94 0.00 0.68 
 Null* 3  -66.40 138.80 136.69 1.75 0.29 
 Body Size 4  -67.32 142.60 144.18 6.24 0.03 
Chaetodipterus faber Season* 4 25 -50.59 109.20 111.18 0.00 0.77 
 Null 3  -53.38 112.80 113.90 2.72 0.17 
  Body Size 4  -53.71 115.40 117.42 6.24 0.03 
Ariopsis felis Season* 4 63 -127.10 262.10 262.89 0.00 0.80 
 Null 3  -129.80 265.70 266.01 3.12 0.17 
 Body Size 4  -130.20 268.30 269.09 6.20 0.04 
Bagre marinus Season* 4 45 -81.15 170.30 171.30 0.00 0.92 
 Null 3  -85.10 178.20 176.79 5.49 0.06 
 Body Size 4  -85.24 176.50 179.48 8.18 0.02 
Carcharhinus leucas Season 3 21 -35.50 78.99 81.50 0.00 0.66 
 Null* 4  -37.72 81.45 82.85 1.35 0.33 
  Body Size 4  -40.06 88.12 90.62 9.12 0.01 

K, number of model parameters; n, sample size; logLik, model log-likelihood; AIC, Akaike’s information  
criterion; AICc, AIC with small-sample bias adjustment; ΔAICc, estimates the relative difference between  
the top ranked and each alternative model; wi, Akaike’s weights. * indicates best model for each species. 
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CHAPTER 5 

 

GOING WITH THE FLOW: SEASONAL SHIFTS IN THE FLOW OF ENERGY THROUGH 

AN ESTUARINE FOOD WEB EXPERIENCING ALTERED HIGH FLOW 



 
 

115 
 

INTRODUCTION 

Hydrological connectivity or the water-mediated transfer of matter, energy and/or 

organisms within or between elements of the hydrological cycle, is considered to be the 

most influential factor driving aquatic ecosystem dynamics (Pringle 2001). 

Anthropogenic alterations to this connectivity, in the form of dams and diversions have 

resulted in habitat fragmentation and degradation, and modifications to river flow 

(Nilsson et al. 2005; Lotze et al. 2006). Modifications to river flow, primarily driven by 

appropriation of freshwater for human use, is considered the most pervasive and 

deleterious effect on rivers (Kingsford 2011). As few estuarine systems world-wide 

remain unaffected by upstream manipulation of their freshwater inflow (Dynesius and 

Nilsson 1994), these modifications can have major implications for individual species 

and thus the structure of downstream estuarine and coastal marine communities (Edeline 

et al. 2005; Serrano et al. 2010; Olin et al. in review).  

The contribution of freshwater to downstream habitats is regarded as a critical 

landscape process in riverine systems (Sklar and Browder 1998), regulating the physical, 

chemical and biological properties of terrestrial, lacustrine, and marine environments 

(Paerl et al. 2010; Rush et al. 2010). Within estuaries, freshwater inflow from riverine 

sources provides nutrients, sediment and organic matter essential for primary and 

secondary production (Mallin et al. 1993; Drinkwater and Frank 1994; Chanton and 

Lewis 2002). Life history strategies (e.g., breeding, spawning and recruitment) of 

estuarine species are commonly synchronized with particular flow patterns (Bunn and 

Arthington 2002; Rehage and Trexler 2006) and variable salinity tolerances can produce 
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communities segregated along salinity gradients (Rakocinski et al. 1992; Gelwick et al. 

2001; Montagna et al. 2002; Akin et al. 2003).  

The occurrence of high freshwater flow events are considered a major form of 

disturbance in riverine and estuarine systems and are often influential in restructuring 

communities (Resh et al. 1988; Montagna et al. 2002), such as oyster reefs (e.g. Tolley et 

al. 2006) and nekton assemblages (e.g. Olin et al. in review). Specifically, Olin et al. (in 

review) demonstrated variable responses by nekton assemblages to natural and altered 

flow patterns, whereby an increase in nekton density, diversity and species richness was 

observed with the increase of flow in a natural estuary, whereas no changes in the same 

metrics were observed in a flow-altered estuary. Thereby, suggesting a loss of seasonal 

variability in these nekton assemblages with extreme high flows. This has broad 

implications for individual species, in terms of their feeding ecology, trophic interactions 

and dietary resource use, which in turn can impact ecological function and overall 

stability of communities. From a community perspective, alterations to the estuarine 

salinity gradient as a result of extreme high flows are anticipated to be most evident 

among lower trophic level species (i.e., primary and secondary consumers). This 

prediction is based on primary and secondary consumers having limited mobility, yet are 

capable of assimilating variable mixtures of locally-based organic matter sources 

(Deegan and Garritt 1997; Wainright et al. 2000; Hsieh et al. 2002), that often coincide 

with changes in physiochemical processes (McLeod and Wing 2008).  

The aim of this study was to test the hypothesis that estuarine food webs differ 

between dry and wet seasons, and in so doing, specifically address the influence of 

anthropogenically-induced high flow. Our objectives were to, (1) determine the effect of 
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altered-flow, especially extreme high flow on estuarine food web structure; and (2) 

determine the magnitude to which low vs. high flow affects the relative trophic position 

of individual species. To accomplish this and to provide a context for our results, we 

compare seasonal (i.e., transition from dry to wet season) trends in stable isotopes of 

carbon, (δ13C), nitrogen (δ15N) and sulfur (δ34S) between estuaries of two tidal rivers; one 

that has undergone major human development and experiences an altered-flow regime, 

and one that is relatively natural. A significant proportion of annual riverine flow (~60%) 

is concentrated in the wet season (i.e., June-September) in the majority of rivers in 

southwest Florida (Kelly and Gore 2008). A fundamental premise of our analysis is that 

the wet season is further exaggerated by anthropogenic-altered flow in the modified river. 

Shifts in isotopic values of estuarine species have been observed to occur with extreme 

high flows, particularly those associated with heavy rains and monsoons (Abrantes and 

Sheaves 2010; Wai et al. 2008).With the exaggerated wet season we therefore expect that 

species sampled following the dry season will be enriched in 13C and 34S relative to those 

sampled following the wet season, reflecting a polyhaline estuarine status (i.e., tidally 

influenced).  In contrast, those sampled following the wet season would have depleted 

13C and 34S values, reflective of an oligohaline estuarine status (i.e., terrestrial/freshwater 

influenced; Chanton and Lewis 2002).   

 

MATERIALS AND METHODS 

Study sites 

The Caloosahatchee River, located on the southwest coast of Florida, (26°30' N, 

81°54' W) is a major tributary of Charlotte Harbor, Florida, USA (Fig. 5.1). The 
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Caloosahatchee River watershed drains an area of approximately 4,550 km2. Prior to the 

artificial connection to Lake Okeechobee, the Caloosahatchee River was a smaller, 

meandering river originating at the west end of Lake Flirt and extending to Beautiful 

Island in Ft. Myers (Flaig and Capece 1998). Intensive agriculture became the major land 

use in the watershed with the construction of extensive drainage projects in the 1880’s; 

additional channelization and construction have occurred at Moore Haven (S-77), Ortona 

(S-78) and Franklin Lock and Dam (S-79) (Flaig and Capece 1998). The Caloosahatchee 

River currently extends about 68 km from Lake Okeechobee to S-79. This final 

downstream structure defines the beginning of the Caloosahatchee Estuary and extends 

for approximately 42 km to San Carlos Bay. These modifications to the hydrology of the 

Caloosahatchee River in combination with land-use development (e.g., Ft. Myers) have 

resulted in large-scale alterations in the estuary (Barnes 2005). The salinity gradient of 

the Caloosahatchee estuary cycles annually; during the winter/spring months (dry season) 

the estuary ranges from mesohaline (salinity ranging from 5 to 18‰) to polyhaline 

(salinity range of 18 to 30‰) and during the summer/autumn months (wet season) the 

estuary can become exclusively oligohaline (salinity range 0 to 5‰), with minimal tidal 

influence (Fig. 5.2; Doering and Chamberlain 1998; Flaig and Capece 1998). This 

transition between dry and wet seasons can be rapid, often occurring in less than a week 

(Doering and Chamberlain 1998). After flows decrease, the river returns to a mesohaline 

gradient.  

The Myakka River (82°12' W, 26°57' N), draining into the northern portion of 

Charlotte Harbor, was selected as a control site for comparison with the Caloosahatchee. 

The Myakka River was chosen for several reasons; (1) it is proximately located (< 100 
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km; Fig. 5.1) to the Caloosahatchee River, and therefore is accessible by fishes and 

macro-invertebrates of the Charlotte Harbor and; (2) in contrast to the Caloosahatchee 

River, it experiences relatively natural flow periods and its shoreline areas have been 

subjected to relatively minor anthropogenic modification. Further, although, much of the 

shoreline habitat of the Caloosahatchee estuary has largely been altered by urbanization, 

as evidenced by extensive shoreline modifications, the upper reaches and some 

downstream areas are composed of similar ecological communities, including saltmarsh 

and mangrove species. Specifically, the natural shoreline areas of both estuaries are 

characterized by mangroves and saltmarsh, principally R. mangle, black mangrove 

Avicennia germinans, saltmarsh cordgrass Spartina alterniflora and black needlerush 

Juncus roemerianus. Palmer et al. (2011) and Vinagre et al. (2011) conducted 

comparisons of community and food web structure of proximate estuaries respectively, 

citing similar species composition among the two study systems. In this context, the 

Myakka estuary provides a reference by which a comparison of food web dynamics to the 

Caloosahatchee estuary can be made.  

 

Sample collection  

Samples were collected during 2008 targeting the dry (May and June) and wet 

(September and October) seasons that occur in the Myakka and Caloosahatchee estuaries 

(Fig. 5.2). In an effort to sample a broad range of nekton species (see Table 5.1 for a 

complete list of species sampled), shallow water (< 10 m) longlines (800 m), seines (21.3 

m with 3.2-mm stretch mesh, center bag), and trawls (6.1-m 3with 8-mm stretch mesh, 

3.2-mm stretch mesh liner) were used for all collections. Longlines were set for periods 



 
 

120 
 

from 30 min to 2 h, with most set for approximately 1.5 h. The trawl was towed for 5–7 

minutes at 0.6 m•s-1, providing a tow length of ~180 m. Trawl width averaged ~4 m, 

providing an approximate area of 720 m2 sampled by a typical tow. The seine was 

deployed from a boat in a shallow arc parallel to shore and hauled directly along the 

shoreline. The two ends of the seine were pulled together, sampling an area of ~68 m2.  

During each sampling event, environmental parameters—including temperature 

(°C), salinity (ppt) and dissolved oxygen (mgl-1)—were recorded from depths ranging 

from 0.5 to 2.5 m, using an YSI water quality meter (YSI Inc., Yellow Springs, OH, 

USA; see Table 5S.1 Supplemental Material). Upon collection, all fishes and macro-

invertebrates were measured; standard length for fishes, carapace width for crabs and disc 

width for stingrays (to the nearest mm). White muscle tissue was excised from the dorsal 

area anterior to the first dorsal fin from all fishes and from the dorsal surface from 

stingrays. Oysters and crabs were dissected prior to drying and only soft tissue was 

retained for stable isotope analyses. Muscle tissue samples were stored on ice in the field 

and then stored frozen upon return to the laboratory (-20° C).  

 

Stable isotope analysis 

Muscle tissues were sub-sampled (~1.0 g), freeze-dried for 48 h, and 

homogenized in a SPEX CertiPrep 8000-D ball milling unit (SPEX CertiPrep, Metuchen, 

New Jersey). Lipids are depleted in 13C relative to other major tissue components (i.e., 

proteins and carbohydrates; DeNiro and Epstein 1977) and their presence in muscle tissue 

samples can negatively skew observed δ13C values (Post et al. 2007). To standardize δ13C 

values within and among species, lipids were removed from all samples prior to isotopic 
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analysis using a modified method outlined by Bligh and Dyer (1959): twice vortexing the 

pulverized tissue in 5 ml of 2:1 chloroform: methanol solution for 24 h and decanting the 

solvent through filter paper to isolate the lipid-free study sample.  

Relative abundances of nitrogen (15N/14N) and carbon (13C/12C) isotopes were 

determined on ~0.5 mg sub-samples sealed in tin capsules on a Thermo Finnigan DeltaPlus 

mass-spectrometer (Thermo Finnigan, San Jose, CA, USA) coupled with an elemental 

analyzer (Costech, Valencia, CA, USA) at the Great Lakes Institute for Environmental 

Research. Relative abundances of sulfur (34S/32S) were determined on ~2 mg and ~ 6 mg 

sub-samples sealed in tin capsules on an Isochrom Continuous Flow IRMS (GV 

Instruments / Micromass, UK) coupled with an elemental analyzer (Costech, Valencia, 

CA, USA), at the Environmental Isotope Laboratory, University of Waterloo and by a 

Thermo-Electron DeltaPlus Advantage IRMS at the Colorado Plateau Stable Isotope 

Laboratory, Northern Arizona University, respectively.   

Stable isotope results are expressed in standard delta notation (δ), defined as parts 

per thousand as follows: δ = [(Rsample/Rstandard) -1] x 103 (Peterson and Fry 1987), where R 

is the ratio of heavy to light isotopes in the sample and standard. The standard reference 

material was atmospheric nitrogen for N2, Pee Dee Belemnite carbonate for CO2, and 

Canyon Diablo Troilite for SO4. The analytical precision based on the standard deviation 

of two standards (NIST 8414 and internal fish muscle lab standard; n = 76) for δ15N were 

0.10‰ and 0.21‰ and for δ13C were 0.06‰ and 0.09‰, respectively, and based on three 

sulfide standards (NBS-123, EIl-40 and EIL-43) for δ34S was 0.3‰. Analytical accuracy 

based on the analysis of NIST standards, performed with muscle tissue sample, sucrose 

(NIST 8542), ammonium sulfate (NIST 8547) and bovine liver and mussel samples (n = 
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3 for each), were within 0.07‰ for δ15N, 0.01‰ for δ13C, and 0.5‰ for  δ34S, of certified 

values. 

 

Data analysis 

To examine the effect of season (dry vs. wet) on the food webs of the Myakka (11 

consumer species) and the Caloosahatchee estuaries (12 consumer species), analysis of 

variance (ANOVA)  was applied to the δ15N, δ13C and δ34S data of each species for each 

estuary, separately. To further differentiate the food web response to altered flow, all 

species were (1) assigned to one of four groups termed “trophic guilds” (see below) and 

(2) to one of two groups termed “resource use categories” representing either pelagic or 

benthic feeders. All assignments were based on dietary data from the literature (see Table 

2 for designation). Trophic guilds were defined as: primary consumer, diet composed 

largely of algae and detritus (>70%); secondary consumer, diet composed primarily of 

invertebrate species; tertiary consumer, diet composed of both fishes and invertebrates 

and; piscivore, diet composed primarily of fishes (> 80%). To examine the influence of 

altered high-flow, resource use and their interaction on the defined trophic guilds, a two-

factor ANOVA was applied to the δ15N, δ13C and δ34S data of the secondary and tertiary 

consumers in the Myakka, and the primary and secondary consumers in the 

Caloosahatchee, as those trophic guilds included both pelagic and benthic feeders.  

Prior to all analyses, stable isotope data were tested for normality using Shapiro-

Wilks test and for homogeneity of variance using Bartlett’s test. Isotope data were log 

transformed to meet assumptions. All analyses were conducted in R 2.13.0 (R 
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Development Core Team 2011) with a criterion for significance of P < 0.05 used for all 

statistical tests. 

 

RESULTS 

For the Myakka, the natural system, a similar range and magnitude of stable 

isotope values of δ13C in the dry and wet seasons, respectively [(absolute range: 10.5‰ 

(range: -14.6 to -25.1) vs. 11.8‰ (range: -14.1 to -25.9)] and of δ15N [7.6‰ (range: 5.7 to 

13.3) vs. 6.6‰ (range: 6.5 to 13.1)] was observed (Fig. 5.3). The range in δ34S values, 

however, differed between dry and wet seasons [9.6‰ (range: 5.2 to 14.8) vs. 7.3‰ 

(range: 7.3 to 14.7)]. Similarly, in the Caloosahatchee, the range and magnitude of stable 

isotope values observed between seasons were comparable [(absolute range: 14.8‰ 

(range: -12.4 to -27.2) vs. 14.8‰ (range: -14.3 to -29.1) for δ13C; 9.6‰ (range: 4.5 to 

14.1) vs. 8.3‰ (range: 6.1 to 14.4) for δ15N; 15.3‰ (range: -0.3 to 15.0) vs. 15.0‰ 

(range: 1.4 to 16.4) for δ34S, respectively (Fig. 5.4)]). However, in contrast to the 

Myakka, a clear shift in the range of food web values was observed in the 

Caloosahatchee; depletion in 13C and enrichment in 15N of ~2‰. For each isotope the 

absolute range of values in the dry and wet seasons were greater in the Caloosahatchee 

relative to the Myakka (Fig. 5.3, 5.4). 

 In the Caloosahatchee, changes to the species-level δ15N-, δ13C- and δ34S-season 

relationships were predominantly driven by primary and secondary consumers (see Table 

5S.2 Supplemental Material for ANOVA statistics). Species whose δ13C values varied 

significantly between season were all depleted in 13C following the wet season (Fig. 

5.5A). For species that did not exhibit a significant shift in δ13C, a declining trend in δ13C 
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values with the wet season was observed, with the exception of Crassostrea virginica and 

Eugerres plumieri (Fig. 5.5A). The δ15N values of the majority of primary and secondary 

consumers were significantly enriched in 15N following altered-high flow (i.e. Fig. 5.5B). 

The δ15N values of the primary consumers, C. virginica and M. cephalus, significantly 

increased by approximately 2‰ and 1.5‰, respectively between seasons (Fig. 5.5B). 

Unlike the Myakka, the δ34S values of tertiary consumers of the Caloosahatchee did not 

show an overall depletion in 34S. On the contrary, Lutjanus griseus exhibited an 

enrichment in 34S following the wet season (Fig. 5.5C). 

In contrast to the Caloosahatchee, species in the Myakka exhibited a mixed 

response to the onset of the wet season, but overall significant shifts in isotope values 

were limited to only a few species (Fig. 5.5D-F; see Table 5S.2 Supplemental Material 

for ANOVA statistics). These differences were principally driven by tertiary consumers. 

No overall trend of depletion or enrichment was identified for 13C (Fig. 5.5D) or 15N (Fig. 

5.5E). However significant depletion in 34S was identified in the tertiary consumers, 

Ariopsis felis, Bagre marinus, and Cynoscion arenarius in the wet season (Fig. 5.5F).  

When considering the relationships between season and resource use of trophic 

guilds, in the Myakka, both secondary and tertiary consumers exhibited significant 

differences in δ34S between seasons (Table 5.3). The δ15N values varied significantly with 

resource use category in the secondary consumers, and with the interaction in tertiary 

consumers (Table 5.3). The δ13C values varied significantly with resource use in the 

tertiary consumers (Table 5.3). Together these results support the idea that benthic and 

pelagic species derive their energy from different components of the food web. In 

contrast, in the Caloosahatchee, the δ13C and δ15N values varied significantly with 
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season, resource use category and in the case of δ13C the interaction for primary 

consumers (i.e., C. virginica and M. cephalus; Table 5.3), indicating that altered-high 

flow affects both pelagic and benthic components of the food web. For δ13C, this is 

specifically driven by the depletion observed in M. cephalus, whereas for δ15N, both 

primary consumers showed enriched values of ~1.5‰ in the wet season. However, no 

δ13C or δ15N effects were observed in secondary consumers. Statistically significant 

differences in δ34S were limited to resource use, but were identified in both the primary 

and secondary consumer trophic guilds (Table 5.3). 

 

DISCUSSION 

As the extent of alterations to natural hydrological connectivity increases to 

accommodate the growing human demand for water resources, understanding the effects 

of freshwater flow alteration are crucial for management and sustainability of estuarine 

systems worldwide. Our comparison of seasonal dynamics of nekton assemblages in two 

tidal estuaries that experience vastly different flow patterns indicates that 

anthropogenically altered-high flow results in changes to isotopic values of estuarine 

species that are not evident in a natural system. In the Myakka estuary, where the 

hydrology is more natural than in the Caloosahatchee, there were no clear seasonal 

isotopic patterns, with the exception of more estuarine δ34S values of tertiary consumers 

in the wet season. In the Caloosahatchee estuary, the results revealed a dichotomous 

response by estuarine species to altered-high flow. Specifically primary and secondary 

consumers exhibited a distinct shift in δ13C and δ15N, whereas evidence of a weaker 

response among higher trophic level species was detected. This shift in δ15N values and 
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δ13C to a lesser extent of the primary consumers (i.e. Crassostrea virginica and Mugil 

cephalus), suggests that altered-high flow affected both pelagic and benthic components 

of this estuarine food web. Differences in the response of conspecifics in the 

Caloosahatchee support the assertion that high freshwater flow differentially affects 

organisms and could indicate that the variable responses may be related to species-

specific behaviour, size or life-history characteristics (Power et al. 1996).  

Estuaries that are strongly influenced by hydrologic conditions have been 

observed to reflect seasonal differences in their basal productivity (Kaldy et al. 2005). 

Our hypothesis was that species sampled following the dry season would reflect tidal 

influence (i.e., enriched values of 13C and 34S) relative to those species sampled following 

the compounded wet season, which would reflect freshwater influences (i.e. depleted 

values of 13C and 34S). Given the extreme high flow event, this hypothesis was supported 

in the Caloosahatchee by the δ13C data and was particularly evident in lower trophic level 

species. The observed trends are consistent with our expectations of assimilation by the 

estuarine species of a 13C-depleted source following high flow.  This variation may be 

attributed to two effects: the increasing influence of terrestrial organic matter with 

extreme high flow and/or the increasing influence of 13C-depleted dissolved inorganic 

carbon (DIC) sourcing phytoplankton in waters with decreasing salinity (Chanton and 

Lewis 2002). When considering the values for marine organic matter and carbon from 

plants that use the C4 photosynthetic process, they are enriched in 13C (δ13C of marine 

plants, -18 to -22‰; δ13C of C4 plants, -6 to -19‰) relative to carbon sourced from C3 

plants and terrestrial sources (δ13C of C3 plants, -24 to -30‰) (Moncreiff and Sullivan 

2001; Winemiller et al. 2007). Marine plankton (-22‰; Chanton and Lewis 1999) also 
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tends to be more enriched than riverine plankton (-28‰; Chanton and Lewis 1999). 

While the δ13C values of the consumers sampled from the Caloosahatchee remain more 

similar to the marine end of the spectrum even after the wet season, there is a distinct 

shift in primary and secondary consumers toward the terrestrial end of the spectrum.  

With known species that partition their feeding strategies and resource use 

between benthic vs. pelagic food webs (Table 5.2), our data suggest that lower trophic 

levels, despite feeding in the benthic or pelagic food web, appear to be assimilating a 

similar carbon source in the wet season. Firstly, there was a distinct depletion in 13C in 

primary and secondary consumers in the modified estuary with altered high flow. 

Whether the shift to more depleted 13C is a result of higher phytoplankton productivity or 

inputs of terrestrial organic matter remains to be understood. And, unlike data presented 

by Chanton and Lewis (2002), there was a general absence of 34S depletion and minimal 

differences in δ34S values of species between seasons in the Caloosahatchee. Likely, 

these results were observed because the mixing dynamics of estuaries favor the dominant 

seawater sulfate source; the contribution of marine sulfate overwhelms the signal of 

riverine sulfur, even at a salinity of l% (Chanton and Lewis 1999). However, the two 

species that generally feed on pelagic resources, C. virginica and Chaetodipterus faber, 

showed a similar depletion in 34S following high flow, suggestive of a sulfate from a 

freshwater source (Fry and Chumchal 2011).  

Temporal and spatial variation in basal resource δ13C and δ15N contributes to 

variation in the isotopic signatures of consumers (Vander Zanden and Rasmussen 1999; 

Matthews and Mazumder 2003). Therefore, ecosystem changes, such as shifts in salinity 

regime or availability of terrestrial organic matter are likely first evidenced in the diet of 
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primary consumers, such as bivalves. Because it is relatively long-lived and sedentary, 

the oyster, C. virginica—a good indicator species for ecosystem alteration—can provide 

an important link between terrestrial organic matter and higher trophic level consumers 

(Riera and Richard 1996, 1997; Chanton and Lewis 2002; Wilson et al. 2010). The fact 

that δ13C of C. virginica sampled from the Caloosahatchee did not shift between seasons 

in this study, maintaining δ13C values of ~-23‰, suggests continued use of a plankton-

based organic matter; however, the depletion in 34S and enrichment in 15N of the muscle 

tissue of C. virginica between seasons, provides further support of a freshwater/terrestrial 

influence from the available water-column carbon. Moreover, the significant depletion in 

13C of the lower trophic level species (i.e., M. cephalus, Callinectes sapidus and 

Eucinostomus harengulus) also supports a shift to a depleted 13C source. Although C. 

virginica was not sampled in the Myakka, the δ13C trend of the benthic primary consumer 

M. cephalus is similar to conspecifics in the Caloosahatchee, suggesting that the wet 

season does alter isotopic values of lower trophic level consumers. Regardless of whether 

C. virginica in the Myakka does exhibit depletion in 13C, these trends are not propagated 

to higher trophic levels in that system. The significant δ13C shifts in the Caloosahatchee 

with high flow strongly supports the trend of increased terrestrial influence. However 

stable isotope values of primary production and organic matter sources would be required 

to confirm these conclusions. 

Stable isotope ratios of nitrogen generally increased following altered-high flow 

in the modified Caloosahatchee, most notably in the primary and secondary consumers. 

This trend was not apparent in the natural Myakka Estuary. It is unlikely that variation in 

body size contributes significantly to the observed differences in δ15N of conspecifics 
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between seasons as demonstrated by Olin et al. (in revision). As well, it is unlikely that 

prey resources shifted with altered flow, as unlike the positive response observed in the 

Myakka, neither density nor species richness of consumers changed between seasons in 

the Caloosahatchee Estuary (Olin et al. in review). Rather, these differences likely 

reflected high nutrient loads associated with freshwater inflow, similar to McClelland and 

Valiela (1998) who demonstrated a strong link between proximity to urbanization and 

elevated δ15N values in estuarine species. The Caloosahatchee River and downstream 

estuary receive considerable urban and agricultural runoff (Flaig and Capece 1998). 

Although the variable levels of enrichment in 15N were observed throughout the 

community and may be interpreted as relatively minor in the higher trophic level species, 

the increase in δ15N values is consistent with the decrease in values of δ13C. This further 

supports the conclusion that altered-high flow influences the available production and 

nutrient resources available to these consumers.  

A critical assumption, however, is that the species we examined exhibited site 

fidelity, i.e. that they were present long enough to acquire the dominant isotopic signal of 

the system. In our study, the δ13C of all primary and secondary consumers that exhibited 

significant temporal differences decreased to a similar value. This result, coupled with the 

enrichment of 15N in the majority of primary and secondary consumers, supports the 

contention that most species were not moving to alternative habitats and were likely 

integrating similar production sources. Indeed, a number of studies have demonstrated 

that estuarine consumer species exhibit site fidelity and their tissues reflect the organic 

matter close to the areas in which they inhabit (Deegan and Garritt 1997; Guest and 

Connolly 2004).   
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The magnitude of response of the upper trophic level species to extreme high flow 

in the Caloosahatchee was less relative to the lower trophic level species, based on stable 

isotope values. Specifically, the absence of significant isotopic changes in the upper 

trophic levels indicates that the shifts evidenced in the isotopes of the lower trophic levels 

were not observed throughout the food web. One explanation for this response difference 

could be that these upper trophic level species, which are generally more mobile, 

migrated out of the Caloosahatchee estuary during high flow and continued to feed on 

resources with similar isotope values. However the species considered were sampled 

within the estuary during both collection periods. Moreover, the δ13C and δ15N trends of 

these species were similar to those observed in the lower trophic levels, suggesting that 

movement to, and subsequent feeding in a different ecosystem is unlikely. Rather, it 

could be argued that the absence of a significant change in the isotopic values in the 

upper trophic levels of the Caloosahatchee may indicate that the duration of high 

freshwater flow was too short to elicit a shift in the isotope values of these species. Given 

these species are of relatively large body size when compared with the primary and 

secondary consumers, there would likely be a delay in the transfer of the new isotope 

values from the lower trophic levels to those of higher trophic levels as a result of (1) 

variable muscle tissue turnover rates in higher trophic level species and/or (2) a lag 

associated with movement of different isotopic values through the food web (e.g., 

Guelinckx et al. 2007; Jennings et al. 2008). This is not to suggest that the isotopic values 

of higher trophic level species do not change in a similar fashion to lower trophic level 

species, just that the time associated with the trophic transfer of isotopes is longer than 

the duration of the disturbance. This has consequences for using stable isotopes to assess 
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trophic ecology of species that have isotope turnover times in sampled tissues that are 

longer than disturbance events (i.e., events that alter isotope values at the base of the food 

web). Sampling of high turnover tissues, for example blood plasma (Hobson and Clark 

1992), could aid in clarifying effect of high flow disturbance events on higher trophic 

level species. Likewise, the use of alternative chemical tracers, such as fatty acids, could 

provide a complementary mechanism for identifying temporal changes in prey resources 

to a consumer (Hebert et al. 2009), and understanding the physiological response of an 

organism (Arts et al. 2001) to this category of disturbance.  

Although specific conclusions about diet and resource use by higher trophic level 

species under the different freshwater flow regimes cannot be made, these results 

indicated that higher trophic levels species are not as influenced by the high-flow in the 

Caloosahatchee when compared to lower trophic level species. Since the stable isotope 

values of muscle tissue reflect diet assimilated over a specific time period, minimal 

change in δ15N and δ13C of the higher trophic species residing in the Caloosahatchee 

through both seasons, indicated that the body composition of these animals, reflect 

resources assimilated during both hydrologic regimes. Importantly, it also suggests that 

disturbance of this magnitude does not systematically affect the upper trophic level 

species included here, based on stable isotopes. In contrast the tissues of the lower trophic 

level species of the Caloosahatchee reflected resources assimilated during each of the 

seasons.  

It is important to note, that if this disturbance event in the Caloosahatchee was of 

longer duration or occurred more frequently, for example as predicted by global climate 

change models (Pearlstine et al. 2010), then this alteration of the salinity gradient may 
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have more serious consequences, particularly with respect to the physiological and 

dietary requirements of these species (e.g., maintaining osmotic balance; Nordlie 2006). 

Indeed, Olin et al. (in review) demonstrated a loss of diversity and richness of marine 

migrant species sampled via trawl and seine with the wet season in the Caloosahatchee. 

Jack et al. (2009) further demonstrated the consequences of prolonged low-salinity events 

which resulted in alteration to the diet of the red rock lobster, Jasus edwardsii, to a less 

preferable species. The authors attributed this diet shift to reductions in the abundance of 

filter-feeding invertebrates, including oysters (Pollack et al. 2011) and infaunal clams and 

mussels (Rutger and Wing 2006; Jack et al. 2009). It is therefore critical to understand 

the effects of anthropogenic modifications to hydrology on food web dynamics, as 

community structure may be compromised and simplified through extirpation of non-

tolerant species. To advance our understanding of the species- and food web-level effects 

observed in this study will require future studies that focus on determining seasonal 

trends in primary production and organic matter sources, as well as monitoring trophic 

structure of food webs that experience varying flow management strategies, for example, 

pulse-release.  

 

Conclusions 

Establishment of freshwater inflow criteria is becoming increasingly important 

(e.g., Arthington et al. 2006) however, development of these criteria is dependent on 

understanding the response of communities to altered freshwater flow. This study 

highlights shifts in food web structure likely driven by resource use (i.e., production 

source) that occur in consumers, predominantly lower trophic level species of estuarine 
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communities, faced with altered flow. Shifts in resource use by primary and secondary 

consumers with flow, are supported by previous studies in modified systems (Jack et al. 

2009; McLeod et al. 2010). Alteration to riverine flow indeed has implications for 

estuarine community structure (Olin et al. in review) and as presented here, the flow of 

energy to higher trophic levels through the food web. Whether these implications result in 

advantageous (e.g., nutrients for production) or deleterious (e.g., cause mortality) effects 

to estuarine species requires further research. However, the results of this study indicate 

that the assemblage of lower trophic level species could be influenced to a greater extent. 

Ultimately the frequency, intensity and duration of each disturbance dictates the 

characteristics that control ecosystem recovery, but the legacy effects of disturbance can 

leave a system more vulnerable to additional disturbances (Scheffer et al. 2001; Harris et 

al. 2010). Estuaries serve as nursery, rearing and feeding grounds for a diverse 

assemblage of fish and invertebrate species (e.g. Beck et al. 2001) that are often of 

recreational and commercial value. Thus, changes to natural flow regimes or anticipated 

precipitation patterns that modify the duration and intensity of freshwater flow, may hold 

significant consequences for the productivity of estuarine communities.  
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Table 5.1 Stable isotope values (n = number of individuals sampled; ‰ mean ± SE) of species collected from the Myakka and Caloosahatchee 
estuaries following the dry and wet season.  
Species Season  n Length (cm)1 δ13C (‰) δ15N (‰) δ34S (‰)  n Length (cm)1 δ13C (‰) δ15N (‰) δ34S (‰) 

INVERTEBRATES   MYAKKA  CALOOSAHATCHEE 
Crassostrea virginica, Eastern oyster Dry        3  -23.5 ± 0.3 4.9 ± 0.2 13.7 ± 0.1 
 Wet        3  -23.0 ± 0.6 6.6 ± 0.4 11.1 ± 0.5 
Callinectes sapidus, blue crab Dry  9 12.2 ± 1.0 -22.7 ± 0.3 8.5 ± 0.6 12.5 ± 0.6  3 19.0 ± 1.7 -20.6 ± 0.3 9.3 ± 0.3 14.0 ± 0.8 
 Wet  6 15.3 ± 0.3 -18.6 ± 0.5 10.4 ± 1.1 9.9 ± 1.0  6 9.8 ± 0.1 -23.8 ± 0.7 10.7 ± 0.4 12.6 ± 0.3 
FISHES              

Mugil cephalus, striped mullet Dry  1 19.0 -14.6 5.7 5.2  4 22.9 ± 0.4 -14.7 ± 1.1 7.8 ± 0.4 8.6 ± 0.9 
 Wet  3 29.4 ± 3.2 -20.7 ± 0.3 8.4 ± 0.3 12.4 ± 0.6  6 19.1 ± 7.5 -22.7 ± 1.8 9.4 ± 0.2 9. 7 ± 1.1 
Trinectes maculatus, hogchoker Dry  3 7.9 ± 0.7 -21.0 ± 1.9 9.6 ± 0.3 7.2 ± 0.6       
 Wet  3 6.9 ± 0.8 -22.4 ± 0.3 11.0 ± 0.5 9.7 ± 1.2       
Eucinostomus harengulus, tidewater mojarra Dry        5 10.4 ± 0.4 -15.2 ± 0.5 9.4 ± 0.1 0.5 ± 0.4 
 Wet        10 5.4 ± 0.4 -23.5 ± 1.1 10.5 ± 0.4 8.8 ± 1.3 
Eugerres plumieri, striped mojarra Dry  1 9.5 -22.8 10.0 10.6  5 15.5 ± 1.7 -21.7 ± 1.5 10.9 ± 0.4 9.8 ± 1.6 
 Wet  17 4.6 ± 0.5 -22.5 ± 0.5 9.0 ± 0.1 9.5 ± 0.3  10 12.7 ± 1.3 -20.5 ± 1.8 10.3 ± 0.4 8.6 ± 1.5 
Lagodon rhomboides, pinfish Dry  10 9.6 ± 0.4 -21.8 ± 0.5 9.6 ± 0.2 13.5 ± 0.3  4 9.3 ± 0.6 -16.6 ± 0.3 9.7 ± 0.6 11.7 ± 0.9 
 Wet  5 11.2 ± 0.9 -21.7 ± 0.6 10.0 ± 0.2 12.9 ± 0.5  5 12.0 ± 1.9 -19.7 ± 0.8 11.2 ± 0.3 12.3 ± 0.8 
Dasyatis sabina, Atlantic stingray Dry        3 23.5 ± 1.7 -14.9 ± 0.2 9.9 ± 0.1 8.2 ± 1.8 
 Wet        7 13.4 ± 0.3 -19.5 ± 0.6 12.1 ± 0.4 10.8 ± 0.9 
Chaetodipterus faber, Atlantic spadefish Dry  4 10.5 ± 2.8 -21.3 ± 0.6 11.3 ± 0.2 11.8± 0.5  4 12.1 ± 1.2 -19.4 ± 0.6 11.6 ± 0.4 13.2 ± 0.3 
 Wet  3 14.0 ± 3.8 -22.4 ± 0.9 11.1 ± 0.2 12.3 ± 0.9  8 17.9 ± 0.9 -20.0 ± 0.6 10.1 ± 0.7 10.7 ± 1.0 
Menticirrhus americanus, Southern kingfish Dry  3 19.7 ± 0.4 -23.3 ± 0.4 11.0 ± 0.4 11.6 ± 0.2       
 Wet  5 22.6 ± 0.2 -21.8 ± 0.2 9.9 ± 0.1 12.1 ± 0.1       
Ariopsis felis, hardhead catfish Dry  10 29.7 ± 1.5 -21.4 ± 0.5 11.0 ± 0.3 12.7 ± 0.6  6 30.4 ± 0.8 -20.4 ± 0.7 11.3 ± 0.4 12.6 ± 0.5 
 Wet  8 17.4 ± 4.9 -21.2 ± 0.4 10.7 ± 0.3 10.7 ± 0.6  24 23.5 ± 1.8 -21.2 ± 0.4 12.2 ± 0.3 12.6 ± 0.5 
Lutjanus griseus, grey snapper Dry        5 16.2 ± 1.3 -14.5 ± 0.7 11.6 ± 0.2 10.9 ± 0.5 
 Wet        3 12.1 ± 4.1 -16.1 ± 0.5 11.8 ± 0.2 13.9 ± 0.5 
Cynoscion arenarius, sand seatrout Dry  3 17.8 ± 1.3 -23.9 ± 0.2 12.4 ± 0.1 13.0 ± 0.4       
 Wet  5 27.6 ± 4.4 -21.7 ± 0.2 10.4 ± 0.1 12.0 ± 0.1       
Bagre marinus, gafftopsail catfish Dry  6 42.2 ± 3.8 -18.9 ± 0.5 12.1 ± 0.1 13.6 ± 0.2  6 40.6 ± 1.8 -19.4 ± 0.6 12.9 ± 0.4 12.9 ± 0.5 
 Wet  11 36.4 ± 3.2 -19.4 ± 0.3 11.6 ± 0.2 12.2 ± 0.4  7 24.4 ± 4.6 -20.8 ± 0.5 12.8 ± 0.5 12.9 ± 0.7 
Carcharhinus leucas, bull shark2 Dry  3 102.5 ± 3.0 -17.8 ± 0.4 12.6 ± 0.3 11.0 ± 0.6  3 94.3 ± 2.9 -16.6 ± 0.3 12.6 ± 0.2 11.6 ± 1.1 
 Wet  3 91.6 ± 13.8 -18.5 ± 0.7 12.7 ± 0.2 12.0 ± 0.1  3 102.1 ± 12.6 -17.4 ± 0.5 13.4 ± 0.5 13.3 ± 1.0 
1Length indicates standard length for fishes, disc width for stingrays and carapace width for crabs (cm). 2Only bull sharks measuring ≥ 70 cm in standard length with healed 
umbilical scars (c. ≥ 1 year old) were included in this study to eliminate any potential maternal isotopic influence (Olin et al. 2011). 
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Table 5.2 Trophic guilds1 and resource use categories (benthic, pelagic) based on dietary sources compiled from published literature, 
for consumer species sampled from the Caloosahatchee and Myakka estuaries.  
Species Resource use Predominant prey items2 References 

Primary consumers    
Crassostrea virginica, Eastern oyster Pelagic Plankton, Diatoms Riera and Richard (1996) 
Mugil cephalus, striped mullet Benthic Detritus, Microalgae Platell et al. (2006) 
Secondary consumers    
Callinectes sapidus, blue crab Benthic Crustaceans, Mollusca, Detritus, Algae Laughlin (1982) 
Trinectes maculatus, hogchoker Benthic Annelids, Arthropods Derrick and Kennedy (1997) 
Eucinostomus harengulus, tidewater mojarra Benthic Crustaceans, Polychaetes, Mollusca Ley et al. (1994) 
Eugerres plumieri, striped mojarra Benthic Crustaceans, Mollusca, Detritus Austin and Austin (1971) 
Lagodon rhomboides, pinfish Benthic Mollusca, Crustaceans, Polychaetes, Algae Motta et al. (1995)  
Dasyatis sabina, Atlantic stingray Benthic Crustaceans, Polychaetes, Ophiuroidea Cook (1994) 
Chaetodipterus faber, Atlantic spadefish Pelagic Hydrozoa, Anthozoa Hayse (1990) 
Menticirrhus americanus, Southern kingfish Benthic Polychaetes, Molluscs, Penaeids Woodland et al. (2011) 
Tertiary consumers    
Ariopsis felis, hardhead catfish Benthic Decapoda, Amphipoda, Small teleosts Yáñez-Arancibia and Lara-Domínguez (1988) 
Lutjanus griseus, grey snapper Benthic Teleosts (Engraulidae), Amphipoda, Decapoda  Harrigan et al. (1989) 
Cynoscion arenarius, sand seatrout Pelagic Teleosts (Engraulidae), Penaeids Sheridan et al. (1984) 
Bagre marinus, gafftopsail catfish Benthic Brachyura, Stomatopoda, Small teleosts Yáñez-Arancibia and Lara-Domínguez (1988) 
Piscivore    
Carcharhinus leucas, bull shark Benthic Teleosts (Ariidae), Elasmobranchs (Dasyatidae) Cortés (1999); J.A. Olin and A.T. Fisk (unpublished data) 
1 Trophic guilds were defined as: primary consumer, diet composed largely of algae and detritus (>70%); secondary consumer, diet composed primarily of invertebrate species; 
tertiary consumer, diet composed of both fishes and invertebrates and; piscivore, diet composed primarily of fishes (> 80%). 
2 Only the most frequently observed diet items are provided for each species (i.e., not a complete list). Predominant prey items for C. leucas presented here represent juvenile 
individuals as this age class is common to estuaries.  
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Table 5.3 Results of two-way ANOVAs used to test the effect of (1) season (dry vs. wet) and (2) resource use category (benthic vs. 
pelagic) on δ13C, δ15N, and δ34S values of species within the designated trophic guilds (statistical significance at α = 0.05 indicated in 
bold). 
 

MYAKKA                

 δ13C (‰)  δ15N (‰)  δ34S (‰) 

Secondary consumer df SS MS F P  SS MS F P  SS MS F P 
Season 1 2.991 2.991 0.761 0.386  0.468 0.468 0.287 0.594  38.165 38.165 11.196 0.001 
Resource use 1 0.192 0.192 0.049 0.826  18.077 18.077 11.057 0.001  2.474 2.474 0.726 0.397 
Season x resource use 1 4.615 4.615 1.174 0.283  0.327 0.327 0.200 0.656  7.583 7.583 2.224 0.141 
Error 65 255.565 3.932    106.271 1.635    221.583 3.409   

Tertiary consumer                
Season 1 1.138 1.138 0.448 0.507  2.77 2.770 3.550 0.066  14.587 14.587 7.061 0.011 
Resource use 1 43.605 43.605 17.158 0.000  0.761 0.762 0.976 0.328  0.907 0.907 0.439 0.511 
Season x resource use 1 6.355 6.355 2.501 0.121  5.791 5.791 7.424 0.009  0.008 0.008 0.004 0.949 
Error 45 114.361 2.541    35.104 0.780    92.961 2.066   

CALOOSAHATCHEE      

 δ13C (‰)  δ15N (‰)  δ34S (‰) 

Primary consumer df SS MS F P  SS MS F P  SS MS F P 

Season 1 75.478 75.478 8.039 0.015  14.489 14.489 35.825 0.000  1.380 1.380 0.357 0.561 
Resource use 1 65.588 65.588 6.986 0.021  30.319 30.319 74.965 0.000  36.192 36.192 9.373 0.010 
Season x resource use 1 65.534 65.534 6.980 0.022  0.039 0.039 0.098 0.760  12.620 12.620 3.268 0.096 
Error 12 112.670 9.389    4.853 0.404    46.337 3.861   

Secondary consumer                
Season 1 10.651 10.651 0.703 0.405  1.194 1.194 0.652 0.423  27.475 27.475 1.642 0.206 
Resource use 1 0.000 0.000 0.000 0.987  0.063 0.063 0.034 0.854  75.010 75.010 4.481 0.039 
Season x resource use 1 7.918 7.918 0.523 0.473  4.856 4.856 2.650 0.109  51.259 51.259 3.062 0.086 
Error 56 848.330 15.149    102.618 1.832    920.590 16.738   
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Figure 5.1 Map of the study site showing the location of the Caloosahatchee and Myakka 
Rivers with respect to the south-western coast of Florida. Inset: Indicates the sampling 
locations (e.g., water quality and consumer species;    spring; ▲autumn) within the 
estuarine portion of the rivers.  

S-79 
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Figure 5.2 Mean daily river discharge recorded in the Myakka (gray) and the 
Caloosahatchee (black) from (A) 2006 to 2010, with special reference to discharge 
recorded from (B) 2008. River discharge data were obtained from the U.S. Geological 
Survey (http://water.usgs.gov/data) for the Myakka River at Myakka River near Sarasota 
(Station 02298830), and from the South Florida Water Management District 
(http://my.sfwmd.gov) for the Caloosahatchee River at the Cape Coral Bridge (Station 
CCORAL). 

http://my.sfwmd.gov/�
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Figure 5.3 Mean (‰ ± 95% confidence interval) values of δ13C, δ15N and δ34S in 
consumer species sampled from the Myakka estuary following the dry (A), (C) and wet 
(B), (D) seasons.  
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Figure 5.4 Mean (‰ ± 95% confidence interval) values of δ13C, δ15N and δ34S in 
consumer species sampled from the Caloosahatchee estuary following the dry (A), (C) 
and wet (B), (D) seasons.  
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Figure 5.5 Mean (‰ ± SE) values of (A), (D) δ13C, (B), (E) δ15N and (C), (F) δ34S depicting differences between seasons (● dry; ○ 
wet) in consumer species sampled from the Caloosahatchee and Myakka estuaries. Vertical sold lines and broken lines represents 
mean isotopic values for the food web of dry and wet seasons, respectively. Significant differences in isotopic values between seasons, 
based on ANOVA, are highlighted in gray (α = 0.05). 



 
 

149 
 

SUPPLEMENTAL MATERIAL 
 

Table 5S.1 Environmental parameters measured from each sampling event in the 
Caloosahatchee and Myakka estuaries during the dry (spring—May and June) and wet 
(autumn—August and September) seasons of 2008. Data are mean ± SE.  
 

 CALOOSAHATCHEE  MYAKKA 

 Dry (n = 23) Wet (n = 36)  Dry (n = 29 ) Wet (n = 30) 
      
Salinity (ppt) 27.5 ± 7.4 3.9 ± 2.9  24.1 ± 1.2 10.0 ± 1.6 
Temperature (°C) 28.9 ± 1.5 28.6 ± 1.5  29.0 ± 0.3 28.4 ± 0.2 
DO (mgl-1) 6.3 ± 0.9 5.33 ± 0.2  5.7 ± 0.1 6.4 ± 0.2 
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Table 5S.2 Results of the analyses of variance (ANOVA) performed to test for differences in δ13C, δ15N and δ34S values among 
consumer species sampled following dry and wet season (statistical significance at α = 0.05 highlighted in bold). 

Species CALOOSAHATCHEE   MYAKKA 

  δ13C (‰) δ15N (‰) δ34S (‰)   δ13C (‰) δ15N (‰) δ34S (‰) 

 df F P F P F P  df F P F P F P 
Primary consumers                
Crassostrea virginica, Eastern oyster 1,4 0.329 0.597 16.63 0.015 24.85 0.008         
Mugil cephalus, striped mullet 1,8 11.26 0.009 12.67 0.007 0.546 0.481  1,2 79.31 0.012 21.96 0.043 41.54 0.023 
Secondary consumers                
Callinectes sapidus, blue crab 1,7 9.053 0.019 4.413 0.040 0.772 0.409  1,13 14.38 0.002 2.79 0.119 23.28 0.000 
Trinectes maculatus, hogchoker         1,4 0.53 0.504 5.30 0.083 3.55 0.133 
Eucinostomus harengulus, tidewater mojarra 1,13 10.48 0.006 8.168 0.013 19.52 0.013         
Eugerres plumieri, striped mojarra 1,13 0.201 0.661 0.933 0.352 0.238 0.634  1,16 0.03 0.855 4.32 0.055 0.896 0.358 
Lagodon rhomboides, pinfish 1,7 3.702 0.044 2.875 0.032 0.027 0.874  1,13 0.02 0.884 2.47 0.140 1.439 0.252 
Dasyatis sabina, Atlantic stingray 1,7 14.37 0.007 7.791 0.027 1.921 0.215         
Chaetodipterus faber, Atlantic spadefish 1,10 0.451 0.517 5.173 0.036 4.891 0.041  1,5 1.29 0.308 0.25 0.633 0.31 0.602 
Menticirrhus americanus, Southern kingfish         1,6 16.00 0.007 29.34 0.002 1.953 0.212 
Tertiary consumers                
Ariopsis felis, hardhead catfish 1,28 0.750 0.394 2.406 0.132 0.000 0.986  1,16 0.14 0.717 0.39 0.541 6.40 0.022 
Lutjanus griseus, grey snapper 1,6 2.926 0.138 0.261 0.628 17.38 0.006         
Cynoscion arenarius, sand seatrout         1,6 75.00 0.000 161.30 0.000 11.51 0.015 
Bagre marinus, gafftopsail catfish 1,11 3.515 0.087 0.014 0.909 0.012 0.913  1,15 0.78 0.398 4.12 0.061 5.96 0.028 
Piscivore                
Carcharhinus leucas, bull shark 1,3 1.164 0.359 3.109 0.176 2.132 0.240  1,4 0.76 0.434 0.09 0.780 2.44 0.194 
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CHAPTER 6 

 

CHANGES IN RESOURCE EXPLOITATION BY ESTUARINE CONSUMERS IN 

RESPONSE TO ALTERED HIGH FLOW AS INFERRED FROM FATTY ACID 

BIOMARKERS 
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INTRODUCTION 

Production in tidal rivers represents a composite of a range of autochthonous and 

allochthonous resources. Allochthonous contributions to these systems can include 

terrestrially derived dissolved and/or particulate organic matter and leaf litter from 

forested catchments and mangroves (Mfilinge et al. 2005; McLeod and Wing 2009). 

Additionally, marine-derived organic matter from adjacent coastal habitats including 

seagrass meadows and offshore planktonic production also contribute to the nutrient and 

resource pools in estuarine food webs (Kharlamenko et al. 2001; Kang et al. 2003). It is 

well established that this diverse range of resources is critical to the overall structure and 

production of estuarine nekton communities (Chanton and Lewis 2002; Darnaude et al. 

2005). However, barriers to this connectivity between the marine and terrestrial habitat 

extremes of estuarine systems, such as altered hydrologic regimes, have the potential to 

negatively impact the magnitude and timing of allochthonous contributions thereby 

compromising biological productivity (Livingston et al. 1997; McLeod and Wing 2009; 

Abrantes and Sheaves 2010). 

The flow of energy and nutrients through food webs represents a complex 

pathway of resource acquisition and assimilation from prey to predator species (Hobson 

et al. 2002; Hebert et al. 2006). As such, many consumers have a high degree of feeding 

plasticity, as the composition and availability of resources can vary both spatially and 

temporally. Lipids typically represent the primary energy source in aquatic food webs 

(Arts et al. 2009) and also provide critical fatty acid (FA) constituents that are required 

for normal growth and development (Arts 1999).  In this capacity, dietary FA have the 

potential to provide insight toward the specific nutrient and energy resources exploited by 
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individual consumers (Dalsgaard et al. 2003). Specifically, essential fatty acids (EFA) 

cannot be synthesized by many animal species and must therefore be obtained from the 

diet in sufficient quantities to ensure optimal growth and development (Olsen 1999).  

Central to their use as dietary tracers is the consideration that EFAs are also 

minimally modified during their transfer from primary production to higher trophic level 

consumers (Parrish et al. 2000; Dalsgaard and St. John 2004).  Due to these 

characteristics, FAs have been applied as natural diet biomarkers for a variety of 

applications including understanding diet composition (Kharlamenko et al. 2001; 

Bradshaw et al. 2003), changes in foraging strategies (Hebert et al. 2009), investigating 

bottom-up primary production dynamics (Richoux and Froneman 2008; Koussoroplis et 

al. 2011), and impacts of non-indigenous species introduction on nutrient transfer 

(Nordin et al. 2008). Fatty acid biomarkers have been established/identified as 

characteristic biomarkers of bacterial (Richoux and Froneman 2008), diatom, 

dinoflagellate (Parrish et al. 2000), macroalgal (Johns et al .1979; Hanson et al. 2010) and 

vascular plant production sources in a range of aquatic and terrestrial ecosystems 

(Wannigama et al. 1981; Alfaro et al. 2006; Richoux and Froneman 2008). Such 

specificity of individual FAs to primary production sources provides the potential to trace 

the origin of organic matter in a system and to potentially resolve the differential 

contributions of the range of autochthonous and allochthonous production sources in 

dynamic systems such as tidal rivers. For example, aquatic primary production is 

typically defined by greater proportions of ω3 polyunsaturated FA (PUFA) including 

eicosapentaenoic acid (EPA; 20:5ω3), docosapentaenoic acid (DPA; 22:5ω3), and 

docosahexaenoic acid (DHA; 22:6ω3). In contrast, terrestrial resources are commonly 
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characterized by increased contributions of ω6 PUFA such as linoleic acid (LIN; 

18:2ω6), arachidonic acid (ARA; 20:4ω6) and γ-linolenic acid (18:3ω6; Smith et al. 

2005; Koussoroplis et al. 2008).   

Using the stable isotopes of carbon (δ13C), it was recently demonstrated that high 

flow disturbance events may alter the general resource pathways exploited by primary 

and secondary consumer species in an estuarine food web (Olin et al. unpublished data). 

Indeed, Wai et al. (2008) demonstrated a shift in resource pathways of estuarine 

invertebrates to a higher dependence on decomposing marine algae and terrestrial detritus 

subsidies after an extreme tropical storm disturbance event. The authors further went on 

to track these allochthonous trophic subsidies to higher order consumers, the bamboo 

shark Chiloscyllium plagiosum (Wai et al. 2011). Given the influence of freshwater flow 

in estuarine systems, the primary objective of the current study was to use FA biomarkers 

to determine the main trophic pathways and relative importance of different energy 

sources to estuarine consumers. To accomplish this objective, we compared seasonal FA 

biomarker composition of estuarine nekton conspecifics from contrasting tidal rivers; one 

that experiences regulated freshwater flow that often results in high flows, and one that 

experiences more natural riverine flows. We hypothesized that the contribution of 

allochthonous carbon sources (i.e., terrestrially-derived) would be more important during 

the wet season than the dry season and would be especially evident during extreme high 

flow. We expected that these differences will be manifest in reductions of ratios of ω3/ω6 

indicating a greater contribution of terrestrial organic matter to production as opposed to 

marine-based organic matter.  
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MATERIALS AND METHODS 

Study sites, species and sample collection 

We measured the concentrations of fatty acids in the total lipid fractions of 

muscle tissue in estuarine consumers collected from the Caloosahatchee and Myakka 

estuaries of southwest Florida. The Caloosahatchee River (26°30' N, 81°54' W) is part of 

a cross-Florida canal system that passes through Lake Okeechobee and connects the 

intracoastal waterways of Florida’s east and west coasts. The Caloosahatchee River has 

been substantially altered over the past 100 yrs through the construction of an artificial 

link to Lake Okeechobee, extensive canal systems, three locks to permit boat passage, 

and dams to regulate water flow (Doering and Chamberlain 1998). These alterations to 

the Rivers’ hydrology have greatly changed the freshwater flow in this system, resulting 

in large fluctuations in timing and quantity of discharge to the estuarine portion of the 

river (Flaig and Capece 1998; Barnes 2005). During periods of low freshwater discharge 

(i.e., during winter/spring months), salt water regularly intrudes to S-79, the most 

downstream water control structure, often exceeding 10‰ (see Fig. 2.1). High freshwater 

discharge (i.e., during summer/fall months) can cause salinity to drop below 5‰ at the 

mouth of the River and the transition between the two states can be rapid, sometimes 

occurring in less than a week (Doering et al. 2002). The Myakka River (82°12' W, 26°57' 

N) was chosen for comparison with the Caloosahatchee, as it is proximately located (< 

100 km; Fig. 2.1) and therefore is accessible to fishes of Charlotte Harbor and 

experiences similar temperature and weather patterns. More importantly, the Myakka 

estuary has not been greatly modified by water control structure and experiences 
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relatively natural seasonal flow periods (for more detailed description of the estuaries, see 

Olin et al. in review). 

Species were collected following the dry (May and June) and wet (September and 

October) seasons of 2008 from the Caloosahatchee and Myakka estuaries, using shallow 

water (< 10 m) longlines (800 m), seines (21.3 m with 3.2-mm stretch mesh, center bag), 

and trawls (6.1-m 3with 8-mm stretch mesh, 3.2-mm stretch mesh liner). Longlines were 

set for periods from 30 min to 2 h, with most set for approximately 1.5 h. The seine was 

deployed from a boat in a shallow arc parallel to shore and hauled directly along the 

shoreline. The two ends of the seine were pulled together, sampling an area of ~68 m2. 

The trawl was towed for 5–7 minutes at 0.6 m•s-1, providing a tow length of ~180 m. 

Trawl width averaged ~4 m, providing an approximate area of 720 m2 sampled by a 

typical tow.  

For comparative purposes with previous studies that used stable isotopes to assess 

altered high-flow affects on estuarine nekton consumers (Olin et al. unpublished data), 

we selected six species representing different trophic guilds for FA analysis. These 

species included (1) secondary consumers, blue crab Callinectes sapidus, pinfish 

Lagodon rhomboides and Atlantic spadefish Chaetodipterus faber; (2) tertiary 

consumers, hardhead catfish Ariopsis felis and gafftopsail catfish Bagre marinus and; (3) 

a piscivore bull shark Carcharhinus leucas. Upon collection all species were measured; 

carapace width for crabs and standard length for fishes (to the nearest mm). Crabs were 

dissected prior to drying and only soft tissue was retained for analyses. White muscle 

tissue was excised from the dorsal area anterior to the first dorsal fin from all fishes. 

Muscle samples for fatty acid analysis were stored in a liquid nitrogen (LN2) dewar in the 
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field and then stored frozen in a cryogenic freezer upon return to the laboratory (-80ºC). 

Only individuals of C. leucas with healed umbilical scars (c. ≥ 1 year old) were included 

in this study to eliminate any potential influence from maternal resources (Olin et al. 

2011; Belicka et al. unpublished data). 

 

Lipid and fatty acid analysis 

Fatty acid methyl esters (FAME) were obtained in a three-step process: 

extraction, derivatization, and quantification on a gas chromatograph (GC). Briefly, 

muscle tissues were sub-sampled and ~15–20 mg samples were extracted 3 times by 

grinding freeze dried tissue in (2:1 vol:vol) chloroform:methanol (Bligh and Dyer 1959) 

and centrifuged at 4,000 r.p.m. for 5 min to remove non-lipid material. A synthetic lipid 

(cholestane) was added to all samples as an internal standard to provide an estimate of 

extraction efficiency (Sigurgisladottir et al. 1992). From a final volume of 2 ml, 

duplicate, 200 µL aliquots were dispensed into pre-weighed vessels which were dried and 

re-weighed on a Sartorious M5 electron balance with 1 µg precision to provide a 

quantitative measure of total lipid content. The remaining extract (1.6 ml) was then 

transferred into a 5 ml Shimadzu vial (Sigma-Aldrich Canada Ltd, Oakville, CA) and 

evaporated to dryness using nitrogen gas and stored at -80°C until derivatization. The 

fatty acid extracts were re-suspended in 1.5 ml toluene prior to derivatization. Two 

milliliters of H2SO4/methanol (1%) were added to the vial before overnight methylation 

(16 h) in a water bath at 50°C. The extract was then evaporated to dryness under nitrogen, 

and re-dissolved in 2 ml hexane and transferred to a 2 ml glass GC vial and stored in a -
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80°C cryogenic freezer prior to GC analysis. A 250 µl portion of the resulting extracts 

was used for FAME analysis. 

FAME were analyzed using a Agilent 6890 Series GC System which was 

configured as follows: splitless injection; column = Supelco (SP-2560 column) 100 m X 

0.25 mm ID X 0.20 µm film thickness; oven = 140°C (hold for 5 min) to 240°C at 4°C 

min-1, hold for 15 min; carrier gas = helium, 1.2 mL min-1; detector = FID at 260°C; 

injector = 260°C; total run time = 45 min per sample. A 37-component FAME standard 

(Supelco no. 47885-U) was used to identify and quantify (four-point calibration curves) 

individual FAME in the samples, i.e., by comparing their retention times to those of the 

FAME standard. Results are reported as µg FAME · mg dry weight tissue-1 and are 

presented as weight percent or proportion of total fatty acids. Each fatty acid was 

described using the shorthand nomenclature of X:AωB, where X represents the number of 

carbon atoms, A the number of double bonds, and B the position of the double bond 

nearest the terminal methyl group.  

 

Data analysis 

Given the substantial seasonal flow from the Caloosahatchee River (ranging 

between ~ 10 and 1,278 m3s-1; South Florida Water Management District 2008) and the 

observed depletion in 13C in estuarine primary and secondary consumers (Olin et al. 

unpublished data), we anticipate that carbon utilization of consumers in the downstream 

estuary would vary according to season (wet vs. dry) and this variation would be evident 

in both low and high trophic level species. Simply finding significant differences in levels 

of a given FA between two groups however, does not indicate whether this difference is 
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biologically meaningful (Budge et al. 2006). Because the main focus of this analysis was 

to assess whether a seasonal shift in the contribution of primary production sources to a 

consumers’ diet occurred with the onset of the wet season in both the Caloosahatchee and 

Myakka estuaries, a subset of known FA biomarkers was used to characterize the 

potential differences (Table 6.1). Our statistical assessment focused primarily on FA 

biomarkers that have been established previously in the literature as useful indicators of 

specific primary production sources that are characteristic of estuarine ecosystems. As 

lipid content can vary within and among species, relative proportions of FA biomarkers 

were calculated (% of total fatty acids) as a method for standardization across species, 

and FA proportional data rather than FA concentration data was used for all statistical 

comparisons.  

Principal component analysis (PCA), an unconstrained ordination maximizing 

variation displayed on successive orthogonal axes, was performed on proportional FA 

data using correlation matrices of the 10 biomarkers (Table 6.1), to examine changes in 

FA composition of species within trophic guilds, for each estuary separately (rda 

function in the vegan package; Oksanen et al. 2011). Our initial PCA included species 

from all trophic guilds. However, the results of the PCA were highly skewed on account 

of the seasonal FA biomarker differences in the piscivore, C. leucas. We therefore chose 

to conduct further analyses on each trophic guild, instead of the complete dataset. The 

PCA analysis was performed with FAs as dependent variables and species within each 

trophic guild as independent variables. Results of the PCAs were graphically displayed as 

mean species FA biomarker values with ellipses representing one standard deviation 

placed around the mean of each season-species group, for secondary and tertiary 
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consumers respectively. To evaluate differences between season and among species on 

the principal components in the secondary and tertiary consumers, a two-way analysis of 

variance (ANOVA) of factor scores for each estuary was performed. To meet 

assumptions of normality and equal variances factor scores were transformed 

(log(x+10)). For the piscivore, ANOVA was used on transformed FA biomarker data to 

distinguish seasonal trends in each estuary. Ratios of ω-3 to ω-6 PUFAs were 

transformed similarly and the results were used in one-way ANOVA to determine the 

differences between season for each species in the Caloosahatchee and Myakka estuaries. 

All statistical analyses were performed in R 2.13.0 (R Development Core Team 2011) 

with a criterion for significance of P < 0.05 used for all comparisons.  

 

RESULTS 

Fatty acids of consumers 

Saturated fatty acids (SFA) constituted ~32-45% of the total fatty acids of 

consumers (see Table 6S.1 and 6S.2 Supplemental Material) and were predominantly 

represented by palmitic acid-16:0. Monounsaturated fatty acids (MUFA) constituted 

~40% of the total fatty acids in Carcharhinus leucas sampled from the Caloosahatchee 

(Table 6S.1), but only ~14-24% in all other consumers, including C. leucas sampled from 

the Myakka (Table 6S.1 and 6S.2). Oleic acid-18:1ω9 (brown alga biomarker), and to a 

lesser extent palmitoleic acid-16:1ω7 (diatom biomarker), constituted the highest 

proportion of MUFAs. All consumers exhibited high levels of polyunsaturated fatty acids 

(PUFA > 35%; Table 6S.1 and 6S.2) with the exception of C. leucas sampled from the 

Caloosahatchee (Table 6S.1). Most dominant, docosahexaenoic acid-22:6ω3 (DHA), 
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which is specific to dinoflagellates, constituted a high proportion in the secondary and 

tertiary consumers, except for Callinectes sapidus, where eicosapentaenoic acid-20:5ω3 

(EPA), a diatom biomarker, was in high proportion (Table 6S.1 and 6S.2). Although 

PUFA were generally high in all consumers, the proportions of particular PUFA varied 

substantially among them. For example, the ω-3/ω-6 ratios varied considerably and 

ranged from 1.7 to 5.8 in the Caloosahatchee and 1.6 to 7.6 in the Myakka. 

 

Variation in FA biomarkers of consumers in each trophic guild 

The variation in FA biomarker composition of species (Table 6. 2) within each 

trophic guild was examined first using principal component analysis (PCA), using a 

correlation matrix that included the 10 FA biomarkers for each PCA. For secondary 

consumers from the Caloosahatchee, the first principal component was positively related 

to six biomarkers, yet largely determined by 16:1ω7 (diatom marker) and the combined 

18:2ω6 + 18:3ω3 biomarkers representative of seagrass (Fig. 6.1A, Table 6.3). The 

second principal component was separated by DHA (positively) and by LCSFA and 

bacteria-Σ15Σ17 biomarkers (negatively; Fig. 6.1A, Table 6.3). The variance explained 

by these first two principal components was 39% and 22%. There were significant 

species and species x season interaction differences for PC1 and species differences for 

PC2 (Table 6.4). These differences were primarily driven by decreased proportions of 

LCSFA and bacteria, and increased proportions of 18:1ω9 biomarkers in Lagodon 

rhomboides, with the onset of the wet season (Fig. 6.1A). For the secondary consumers of 

the Myakka the first two principal components derived from the PCA accounted for 44% 

and 18% of the variation in FA biomarker composition in these consumers. The first 
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principal component was negatively related to three FA biomarkers, primarily DHA (Fig. 

6.1B, Table 6.3). The second principal component was positively associated with 

seagrass and α-linolenic-18:3ω3 (ALA) (Fig. 6.1B, Table 6.3). Significant species 

differences were identified by the two-way ANOVA for PC1, driven by high proportions 

of 18:1ω9, 16:1ω7 and EPA in Callinectes sapidus (Fig. 6.1B, Table 6.4).   

For tertiary consumers from the Caloosahatchee, the first principal component 

was positively related to six biomarkers, yet largely determined by seagrass and ALA, 

and negatively related to DHA, EPA and arachidonic acid (ARA) (Fig. 6.2A, Table 6.3). 

The second principal component was separated by seagrass, ALA and linoleic-18:2ω6 

(LIN) (positively) and by LCSFA and Σ15Σ17 (negatively; Fig. 6.1A, Table 6.3). The 

variance explained by these first two principal components was 28% and 25%. The 

significant seasonal differences for PC2 (Table 6.4) resulted from the shift from 

biomarkers of LCSFA to seagrass in Bagre marinus (Fig. 6.2A). For the tertiary 

consumers of the Myakka the first principal component was negatively related to 

seagrass, LCSFA, ALA and LIN (Fig. 6.2B, Table 6.3), whereas the second principal 

component was positively associated with DHA and negatively associated with 16:1ω7  

and 18:1ω9 (Fig. 6.1B, Table 6.3). No significant seasonal or species differences were 

identified for tertiary consumers of the Myakka (Table 6.4).  

Significant differences were identified from the one-way ANOVAs of biomarker 

proportions for C. leucas sampled from the Caloosahatchee estuary (Fig. 6.3A). 

Although, the FA biomarkers of C. leucas were dominated by 18:1ω9, the significant 

increase in DHA and decrease in 16:1ω7 suggests a shift from diatom to dinoflagellate 

production source with the onset of the wet season. In the Myakka, the fatty acid 
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biomarkers of C. leucas were dominated by DHA and 18:1ω9 and did not exhibit a shift 

in production source with the wet season (Fig. 6.3B).  

 

Ratio of ω3/ω6 PUFA 

To assess the possible influence of terrestrial production sources on nekton 

species in the Caloosahatchee and Myakka estuaries, we examined the proportion of ω-3 

with respect to ω-6 in the consumers. Variability among consumers’ values was greater 

following the wet season in the Caloosahatchee and greater following the dry season on 

the Myakka. Overall seasonal ω-3/ω-6 ratios for consumers of the Caloosahatchee were 

similar between seasons (~3; Fig. 6.4A). There were no significant seasonal ω-3/ω-6 ratio 

differences in the consumers of the Caloosahatchee (Fig. 6.4A). In contrast, in the 

Myakka there was a general trend of decreasing ω-3/ω-6 ratios (by ~1) in consumers with 

the onset of the wet season, with the exception of C. leucas (Fig. 6.4B), suggesting 

increase use of terrestrial sources. This trend was significant for Lagodon rhomboides 

(F1,10 = 4.713, P = 0.044), Ariopsis felis (F1,4 = 11.241, P = 0.028) and Bagre marinus 

(F1,9 = 4.951, P = 0.039).  

 

DISCUSSION 

Fatty acid biomarkers indicated that the relative importance of particular 

production sources to estuarine consumers shifted with season in the Caloosahatchee 

suggesting that high flow affects multiple components of the food web, including high 

trophic level species. In general, a FA signature consistent with dinoflagellate 

phytoplankton species (Alfaro et al. 2006) constituted the highest proportion of the 
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consumers’ diets, regardless of season or estuary sampled. Species-specific seasonal 

shifts in dominant production sources, however, were evident in consumers from the 

Caloosahatchee River, which receives freshwater inputs in the wet season. In contrast, 

seasonal shifts in dominant production sources were not observed in the consumers of the 

Myakka River which experiences a more natural flow regime throughout an annual 

period. These results support the contention that altered-high flow can influence the 

available production sources in estuarine systems. Moreover, consumers collected from 

both estuaries showed a greater influence from terrestrially derived allochthonous carbon 

following the wet season based on the ω3/ω6 ratios. This supports the hypothesis that 

terrestrially-derived carbon contributes to secondary production in estuaries during the 

wet season.   

Our analysis of FA biomarkers indicates that the majority of species utilize 

phytoplankton, namely dinoflagellates (22:6ω3-DHA) and to a lesser extent brown algae 

(18:1ω9-oleic acid) as their predominant primary production source, despite being 

characterized as benthic or pelagic feeders. These biomarkers for dinoflagellates and 

brown algae have been previously reported as major production resources for estuarine 

consumers (Alfaro et al. 2006). Similar patterns of fatty acid profiles in species that are 

unrelated or occupy different trophic levels may be associated with one of two 

mechanisms related to horizontal or vertical food web interactions (Czesny et al. 2011).  

Organisms can either share common food resources (horizontal) or one group constitutes 

prey for the other group (vertical; Czesney et al. 2011). Moreover, changes in FA profiles 

in an organism may reflect a combination of factors; (1) physiological or accumulation 

changes to the FA profile by the organism itself, (2) changes in FA profiles of prey 
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resources, or (3) a change in prey resources (Dalsgaard et al. 2003). As such, determining 

the specific trophic links and exact mechanisms by which these FA biomarkers are 

acquired would require direct sampling of carbon sources in the system and specific prey 

items of each predator. Regardless, the results of this study demonstrate that FA 

biomarkers are reliable tracers for characterizing the basal nutrient and resource pathways 

utilized by estuarine consumers in systems with varying flow regimes (Kharlamenko et 

al. 2001; Alfaro et al. 2006; Hanson et al. 2010). 

Both C. leucas and B. marinus collected from the Caloosahatchee River exhibited 

seasonal differences in the dominant FA biomarkers of their tissues. However, these 

shifts were not toward a similar dominant resource. Specifically, FA proportions 

indicated that dinoflagellate production contributes to a greater extent to C. leucas 

relative to B. marinus for which seagrass type FA resources were identified as important 

dietary components. These shifts may be indicative of dietary changes rather than 

seasonal fluctuations with regards to the available FA pools. Although we cannot specify 

as to whether these shifts represent a direct dietary change of the consumers, we can 

indicate that nutrient and resource utilization pathways do change for these species. 

However, it is unknown as to whether this occurs at the predator (consumption) or prey 

(production) level. It could be argued that body-size driven ontogenetic diet shifts can 

account for the shifts in dominant FA biomarkers in these species. However, consumer 

δ13C stable isotope signatures from these estuaries were not shown to have any significant 

relationships with body size (Olin et al. unpublished data). Although relationships 

between body size and fatty acid biomarkers cannot be ruled out owing to limited sample 

sizes for some species in the current study, body size is not anticipated have a strong 
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influence on the fatty acids biomarker profiles here. The lengths of individuals collected 

for each species were not vastly different and larval and young juvenile individuals were 

also not included in this study. Larval and young-of-year individuals commonly represent 

life history stages when critical ontogenetic diets shifts and maternal/in-utero 

mechanisms are known to influence biochemical tracer signatures (Czesney et al. 2011; 

Olin et al. 2011).  

Consumers sampled from the Myakka River showed a greater consumption of 

allochthonous carbon following the wet season relative to conspecifics sampled following 

the dry season based on ω3/ω6 ratios. This finding supports our hypothesis of increased 

dependence on terrestrial subsidies by higher order consumers following the wet season. 

It is well-established that estuaries are dependent on riverine inflows that provide 

floodplain detritus and nutrients that facilitate high levels of primary and secondary 

production (Chanton and Lewis 2002). That a similar shift toward allochthonous carbon 

dependence does not exist in the Caloosahatchee is surprising. Previous studies have 

demonstrated the increased dependence on terrestrially-derived sources following the wet 

season in estuaries, particularly in studies tracking major storm events such as monsoons 

(Wai et al. 2008; 2011; Abrantes and Sheaves 2010). The lack of significant decline in 

the ω3/ω6 ratios in the Caloosahatchee could result from the magnitude of the flow being 

so great that it provides large amounts of allochthonous materials that are used by 

consumers throughout the year. Allochthonous fluxes of carbon to ecosystems are often 

large (Pace et al. 2004) and therefore would be expected to be greater in the 

Caloosahatchee as the drainage basin is nearly 2.5 times greater than that of the Myakka. 
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Mangrove contributions were identified as more important in the dry season 

relative to the wet season in both estuaries, based on higher proportions of long-chain 

saturated fatty acids (LCSFA) in the consumers’ tissues. These results support the 

findings of Meziane and Tsuchiya (2000) whereby mangrove contributions to the diets of 

estuarine consumer species are greater when flow regimes are low. Dependence on 

mangroves declined in all consumers in both estuaries with the onset of the wet season, 

with the exception of C. sapidus that showed an increased proportion of mangrove in 

their tissues. Although mangrove forests are often considered to be highly productive, a 

number of studies have challenged the paradigm that mangroves provide a major source 

of nutrients to estuarine communities (Loneragan et al. 1997; Kieckbusch et al. 2004; 

Heithaus et al. 2011). Based on stable isotopes, Heithaus et al. (2011) found that 

mangroves did not contribute greatly to the carbon supply in a mangrove estuary in 

Australia.  Kieckbush et al. (2004) made a similar conclusion for a tropical lagoon in the 

Bahamas. In contrast, Alfaro et al. (2006) demonstrated that mangrove detritus dominates 

the suspended organic matter (SOM) fraction in estuarine waters and also concluded that 

grazing and filter feeding species have high reliance on these materials based on their 

LCSFA biomarker profiles. However, Heithaus et al. (2011) and Kieckbusch et al. (2004) 

quantified carbon stable isotope signatures in leaves as opposed to SOM as the primary 

mangrove component in consumers’ diets. Mangrove leaves are difficult to digest and are 

generally broken down through bacterial action in the sediments which could alter the 

stable isotope values (Hall et al. 2006). Therefore, the decrease in mangrove contribution 

may be a result of the flushing of the SOM from estuaries with high flow or a shift in 

bacterial composition and abundance. In any event, the greater proportions of LCSFA 
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observed in species sampled during the dry season suggest a greater availability of 

mangrove derived resources in the system at this time.  

 

Conclusions 

Seasonal variation in nutrient and resource availability at the base of aquatic food 

webs is tied to nutrient fluxes and physical conditions which in turn affect food resources 

for primary, secondary and higher trophic level consumers. Consequently, quantifying 

the temporal variability in such basal resources of an aquatic food web remains 

challenging. Characterizing the seasonal presence and abundances of the various primary 

production and organic matter sources in estuaries is critical to resolve the specific 

trophic responses of consumers to extreme flow events. The application of FA 

biomarkers provides a context to begin to understand seasonal resource and nutrient 

dynamics with relatively minimal sampling effort. However, sampling production 

sources is extremely important for comparing and resolving seasonal composition and 

dynamics of FA biomarkers across season, conspecifics and estuaries. Such studies 

provide valuable information for understanding shifts in carbon pathways and the 

responses of estuarine nekton species to high freshwater flow events. While quantitative 

estimates of diet using fatty acid profiles were not achieved here, our findings provide a 

general baseline to assess food web relationships influenced by extreme flow events. The 

results of the current study using FA biomarkers clearly distinguish seasonal dynamics in 

high trophic level species, a result not attained using stable isotopes (Olin et al. 

submitted). Under this consideration, FA profiles quantified in estuarine consumers may 
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provide greater resolution with respect toward characterizing the specific production 

resources impacted by anthropogenically altered flow events. 
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Table 6.1 Fatty acids and fatty acid ratios used as biomarkers for potential estuarine organic matter sources compiled from published 
literature. 
 
 

Source FA Biomarker Common Name References 

Diatoms 20:5ω3; 16:1ω7  Eicosapentaenoic acid (EPA); Palmitoleic acid Parrish et al. 2000; Budge & Parrish 1998; Richoux & Froneman 2008 

Dinoflagellates  22:6ω3 Docosahexaenoic acid (DHA) Parrish et al. 2000; Napolitano et al. 1997 

Bacteria  Σ15 + Σ17 Pentadecanoic acid; Heptadecanoic acid Volkman et al. 1980; Budge & Parrish 1998; Richoux & Froneman 2008 

Vascular plants (e.g., mangrove) LCSFA 20:0-24:0 
Arachidic acid; Heneicosanoic acid; Behenic 
acid; Tricosanoic acid; Lignoceric acid Wai et al. 2011 

Seagrass  18:2ω6 + 18:3ω3 Linoleic acid (LIN); α-Linolenic acid (ALA) Kharlamenko et al. 2001; Hanson et al. 2010 

Macroalgae (e.g., Sargassum sp. & red algae) 20:4ω6 Arachidonic acid (ARA) Wai et al. 2011; Turner & Rooker 2006; Hanson et al. 2010 

Brown algae (e.g., Dictyota sp.) 18:1ω9 Oleic acid Johns et al. 1979; Hanson et al. 2010 
Biomarkers for zooplankton (20:1ω9 and 22:1ω9, eicosenoic acids) were not included in the analyses as they have been shown to be relatively uninformative in estuarine systems 
(Alfaro et al. 2006; Richoux & Froneman 2008). 
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Table 6.2 Length, lipid content (% dry weight) and fatty acid values (n = number of individuals; % mean ± SE total fatty acids) of 
selected biomarkers of estuarine consumers sampled from the Caloosahatchee and Myakka estuaries during dry and wet seasons. For n 
< 3, all values are presented. 
 

CALOOSAHATCHEE 

 Callinectes sapidus Lagodon rhomboides Chaetodipterus faber Ariopsis felis Bagre marinus Carcharhinus leucas 

 Low High Low High Low High Low High Low High Low High 

Length (cm) 19.0 ±  1.7  9.8 ± 0.1 12.0 ± 1.9 9.3 ± 0.6 12.1 ± 1.2  17.9 ± 0.9 30.1 ± 0.8 24.8 ± 2.1 39.6 ± 1.8 24.4 ± 4.6 94.3 ± 2.9 102.1 ± 12.6 

Lipid content  4.95 ± 1.90 6.45 ± 0.63 6.6 ± 1.5 6.57 ± 1.48 4.59 ± 0.84 4.66 ± 1.27 6.42 ± 0.94 4.30 ± 2.40 6.51 ± 1.44 3.91 ± 0.89 7.66 ± 0.43 5.23 ± 0.64 

n 3 3 4 5 4 6 4 16 5 5 3 3 

C16:1n7 3.88 ± 1.96 4.01 ± 0.80 1.49 ± 0.32 3.45 ±  1.36 1.59 ± 0.40 1.80 ± 0.19 1.43 ±  0.44 1.77 ± 0.75 1.91 ± 1.30 2.12 ± 1.06 12.49 ± 0.24 4.84 ± 2.56 

C18:1n9 15.36 ± 2.77 12.87 ± 4.16 6.92 ± 1.69 14.24 ± 3.14 9.05 ± 0.67 12.95 ± 2.69 12.09 ± 7.59 12.75 ±  3.47 9.21 ± 2.63 12.69 ± 2.30 27.17 ± 1.84 26.30 ± 2.64 

C18:2n6 2.44 ± 1.18 1.14 ± 1.27 0.45 ± 0.13 0.64 ± 0.29 0.60 ± 0.22 0.39 ±  0.37 0.63 ± 0.22 1.06 ± 0.77 0.86 ± 0.49 1.92 ± 1.52 1.45 ± 0.65 0.73 ± 0.23 

C18:3n3 2.52 ± 1.68 0.98 ± 0.85 0.52 ± 0.38 1.70 ± 2.09 0.91 ± 0.66 0.49 ± 0.39 1.81 ± 2.52 1.14 ± 1.80 0.38 ± 0.86 2.12 ± 2.16 0.81 ± 0.16 0.54 ± 0.03 

C20:4n6 6.34 ± 0.42 9.75 ± 4.01 8.95 ± 2.17 5.78 ± 1.67 14.15 ± 1.09 10.84 ± 3.78 8.53 ± 2.10 11.54 ± 3.69 8.22 ± 1.95 10.05 ± 3.09 0.30 ± 0.26 5.31 ± 3.54 

C20:5n3 15.45 ± 1.18 17.86 ± 0.66 8.61 ± 2.56 6.15 ± 1.07 6.10 ± 0.89 6.53 ± 1.31 7.30 ± 1.20 6.88 ± 2.28 5.03 ± 1.20 4.67 ± 1.69 0.82 ± 0.22 2.02 ± 0.53 

C22:6n3 13.03 ± 0.70 13.85 ± 3.02 17.37 ± 6.12 14.97 ± 1.61 18.36 ± 1.22 16.00 ± 4.59 14.84 ± 3.12 15.92 ± 4.65 18.30 ±5.73 22.15 ± 4.70 2.29 ± 0.93 12.12 ± 2.98 

Seagrass 4.96 ± 2.66 2.52 ± 1.36 0.97 ± 0.44 2.35 ± 2.17 1.51 ± 0.62 0.88 ± 0.64 2.45 ± 2.67 2.20 ± 1.82 1.24 ± 0.93 4.04 ± 3.23 2.26 ± 0.75 1.27 ± 0.24 

Bacteria 3.57 ± 0.72 4.11 ± 1.31 6.32 ± 6.12 3.33 ± 1.42 2.65 ± 0.35 3.02 ± 0.69 5.98 ± 4.99 3.14 ± 1.64 5.67 ± 3.18 2.42 ± 2.06 3.28 ± 2.03 1.19 ± 1.03 

LCSFA  1.05 ± 0.17 2.65 ± 3.32 6.38 ± 3.31 1.53 ± 1.01 0.99 ± 1.27 0.68 ± 0.92 4.04 ± 6.92 0.83 ± 2.01 4.11 ± 4.32 0.51 ± 0.78 6.76 ± 0.90 5.19 ± 4.79 

MYAKKA             

Length (cm) 12.2 ± 1.1 13.1 9.7 ± 0.4 11.7 ± 1.1 10.5 ± 4.0 7.0, 20.0 25.7 ± 1.1 31.1 ± 0.7 42.2 ± 3.8 40.2 ± 1.3 102.5 ± 3.0 91.6 ± 13.8 

Lipid content 4.17 ± 1.28 2.12 5.43 ± 1.80 6.78 ± 2.53 6.05 ± 1.34 6.34 ± 1.62 5.38 ± 3.35 5.55 ± 2.12 4.85 ± 1.17 5.11 ± 0.99 6.47 ± 2.01 5.55 ± 2.92 

n 4 1 8 4 3 2 3 3 6 5 3 3 

C16:1n7 5.92 ± 2.47 3.38 1.70 ± 0.81 2.71 ± 1.20 1.55 ± 0.33 1.36; 2.08 2.02 ± 1.03 1.59 ± 0.45 2.47 ± 1.97 4.37 ± 2.59 2.88 ± 0.45 3.33 ± 0.97 

C18:1n9 15.87 ± 1.66 15.48 8.84 ± 1.60 11.98 ± 4.67 10.35 ± 1.29 7.79; 11.00 15.71 ± 3.31 14.75 ± 3.92 12.14 ±3.29 12.42 ± 0.94 22.52 ± 3.03 17.34 ± 4.66 

C18:2n6 1.76 ± 0.73 3.20 0.76 ± 0.44 1.14 ± 0.42 0.71 ± 0.75 0.37; 1.01 0.97 ± 1.10 0.41 ± 0.08 0.56 ± 0.49 0.88 ± 0.31 1.23 ± 1.21 0.93 ± 0.72 

C18:3n3 2.70 ± 2.47 3.09 1.39 ± 1.17 2.44 ± 3.00 1.80 ± 1.59 1.82; 0.79 2.05 ± 3.26 1.36 ± 2.36 1.90 ± 1.53 0.25 ± 0.27 1.02 ± 1.25 0.23 ± 0.40 

C20:4n6 6.01 ± 0.94 9.60 7.83 ± 2.41 8.63 ± 1.08 9.37 ± 0.47 13.25; 15.05 10.82 ± 2.51 14.06 ± 0.80 7.42 ± 1.91 9.84 ± 2.68 6.48 ± 1.41 4.24 ± 1.27 
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C20:5n3 15.49 ± 5.11 14.27 7.74 ± 1.34 6.27 ± 0.76 6.01 ± 0.42 5.19;  8.45 8.04 ± 2.28 6.98 ± 1.56 6.34 ± 1.44 5.51 ± 1.05 1.80 ± 0.36 1.99 ± 1.06 

C22:6n3 10.25 ± 1.97 13.01 28.04 ± 6.49 21.30 ± 6.23 16.51 ± 1.03 24.93;  13.17 16.36 ± 2.29 15.30 ± 2.12 20.19 ±6.44 17.96 ± 4.23 16.12 ± 4.00 12.12 ± 4.55 

Seagrass 4.46 ± 2.72 6.29 2.15 ± 1.34 3.58 ± 2.72 2.51 ± 1.03 1.80;  2.18 3.02 ± 4.38 1.78 ± 2.44 2.46 ± 1.67 1.08 ± 0.39 2.25 ± 2.34 1.16 ± 0.71 

Bacteria 3.14 ± 0.57 5.68 2.22 ± 0.24 2.35 ± 0.22 3.61 ± 1.22 2.82;  4.24 3.85 ± 3.11 3.69 ± 0.98 4.53 ± 2.88 3.32 ± 1.22 1.62 ± 1.84 3.21 ± 1.52 

LCSFA  1.30 ± 0.57 1.86 2.70 ± 3.45 0.90 ± 0.70 2.10 ± 0.35 0.00; 0.00 2.24 ± 1.52 0.57 ± 1.00 2.17 ± 2.32 0.31 ± 0.69 2.31 ± 0.63 1.49 ± 2.58 
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Table 6.3 Loadings for the first two principal components (PC loadings) of the PCA of FA biomarkers of secondary (Fig. 1A, B) and 
tertiary consumers (Fig. 1C, D) from the Caloosahatchee and Myakka estuaries.  

  CALOOSAHATCHEE  MYAKKA 

 Secondary Consumers Tertiary Consumers  Secondary Consumers  Tertiary Consumers 
 PC Loadings  PC Loadings  PC Loadings  PC Loadings 
 1 2  1 2  1 2  1 2 
16:1ω7 1.105 -0.009  0.089 -0.011  0.984 -0.377  0.157 -0.842 
18:1ω9 0.641 0.240  -0.686 0.424  1.009 -0.504  0.158 -0.801 
18:2ω6 0.980 0.021  0.362 0.791  0.935 -0.029  -0.820 -0.284 
18:3ω3 1.004 -0.056  0.769 0.752  0.456 1.058  -0.990 0.316 
20:4ω6 -0.460 0.485  -0.829 0.161  -0.268 0.139  0.549 0.128 
20:5ω3 0.709 -0.118  -0.822 -0.318  0.830 -0.403  0.327 0.690 
22:6ω3 -0.503 0.726  -0.800 0.354  -1.031 -0.083  0.180 0.875 
LCSFA (20:0-24:0) -0.287 -1.139  0.697 -0.749  -0.256 0.251  -0.838 -0.115 
Bacteria (Σ15 + Σ17) -0.231 -1.165  0.633 -1.060  0.602 0.147  0.197 0.005 
Seagrass (18:2ω6 + 18:3ω3) 1.136 -0.028  0.802 0.966  0.751 0.913  -1.064 0.199 
Eigenvalue (%) 39 22  28 25  41 18  32 22 

The strongest contributions to principal components are bolded.  
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Table 6.4 Results of two-way ANOVAs performed on transformed factor scores from PCA used to test the effect of (1) trophic guild, 
(2) season (dry vs. wet) and (3) interaction on FA biomarkers profiles (α = 0.05; statistical significance highlighted in bold).  

  CALOOSAHATCHEE   MYAKKA 
Secondary 
Consumers  PC1 df SS MS F P  df SS MS F P 

 Species 2 0.015 0.007 21.033 0.000  2 0.020 0.010 35.227 0.000 
 Season 1 0.001 0.001 1.8162 0.194  1 0.001 0.001 1.946 0.183 
 Species x season 2 0.005 0.003 7.512 0.004  2 0.001 0.000 1.294 0.303 
 Error 19 0.007 0.000    15 0.004 0.000   
 PC2            
 Species 2 0.008 0.004 3.335 0.047  2 0.006 0.003 2.632 0.105 
 Season 1 0.001 0.001 0.721 0.406  1 0.003 0.003 3.164 0.096 
 Species x season 2 0.004 0.002 1.680 0.213  2 0.001 0.000 0.472 0.633 
 Error 19 0.023 0.001    15 0.016 0.001   
Tertiary 
Consumers  PC1            
 Species 1 0.001 0.001 1.132 0.297  1 0.000 0.000 0.000 0.988 
 Season 1 0.001 0.001 1.123 0.299  1 0.004 0.004 2.151 0.166 
 Species x season 1 0.000 0.000 0.209 0.652  1 0.000 0.000 0.035 0.854 
 Error 26 0.029 0.001    13 0.024 0.002   
 PC2            
 Species 1 0.000 0.000 0.156 0.696  1 0.000 0.000 0.008 0.932 
 Season 1 0.009 0.009 9.582 0.005  1 0.001 0.001 0.558 0.468 
 Species x season 1 0.002 0.002 1.751 0.197  1 0.001 0.001 0.358 0.560 
 Error 26 0.023 0.001    13 0.022 0.002   
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Figure 6.1 Principal component analyses of the secondary consumers depicting seasonal 
differences using FA. Ellipses are one standard deviation around the mean of each 
consumer’s biomarker profile given the season (closed symbols and black lines represent 
dry season; open symbols and gray lines represent wet season). Only biomarkers with the 
strongest contribution to principal components are depicted (Table 6.3).  
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Figure 6.2 Principal component analyses of the tertiary consumers depicting seasonal 
differences using FA biomarkers. Ellipses are one standard deviation around the mean of 
each consumer’s biomarker profile given the season (closed symbols and black lines 
represent dry season; open symbols and gray lines represent wet season). Biomarkers 
with the strongest contribution to principal components are depicted (Table 6.3).  
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Figure 6.3 Seasonal mean ± SE % FA biomarkers of total lipids of Carcharhinus leucas (black bars represents dry season; 
white bars represents wet season). Significant differences between seasons are indicated by asterisks (P < 0.05).   
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Figure 6.4 Ratio of ω3/ω6 FA (mean ± SE) in consumer species sampled 
following dry (black) and wet (white) season of the (A) Caloosahatchee and (B) 
Myakka estuaries. Dotted lines represent overall mean of ratios for each season 
(black represents dry; gray represents wet). Asterisk indicates significant one-way 
ANOVA at α = 0.05. 
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SUPPLEMENTAL MATERIAL 
 

Table 6S.1 Fatty acid composition of macro-invertebrate and fish consumers 
sampled from the Caloosahatchee estuary (mean % proportion ± SE of the total 
fatty acids) in 2008. 
 

 Callinectes 
sapidus 

Lagodon 
rhomboides 

Chaetodipterus 
faber 

Ariopsis 
felis 

Bagre 
marinus 

Carcharhinus 
leucas 

n 6 9 10 20 10 6 
Saturated fat acids (%)             

12:0 0.4 ± 0.4 0.4 ± 0.2 1.4 ± 0.4 1.2 ± 0.4 0.1 ± 0.1 0.7 ± 0.6 

14:0 1.3 ± 0.6 2.9 ± 1.0 1.6 ± 0.3 2.0 ± 0.5 1.3 ± 0.5 3.0 ± 1.2 

15:0 1.1 ± 0.4 1.9 ± 0.3 1.1 ± 0.1 1.5 ± 0.2 1.2 ± 0.4 1.1 ± 0.6 

16:0 15.2 ± 0.7 22.4 ± 1.7 21.8 ± 0.8 16.7 ± 0.8 17.6 ± 0.7 20.9 ± 1.5 

17:0 2.7 ± 0.6 2.7 ± 0.7 1.7 ± 0.1 2.2 ± 0.4 2.8 ± 0.6 1.2 ± 0.3 

18:0 10.3 ± 0.5 10.2 ± 0.7 9.7 ± 0.4 11.5 ± 0.5 12.2 ± 0.6 10.4 ± 0.5 

20:0 1.0 ± 0.3 1.5 ± 0.6 0.3 ± 0.1 0.8 ± 0. 5 1.2 ± 0.5 0.0 ± 0.0 

21:0 0.3 ± 0.3 0.8 ± 0.5 0.1 ± 0.1 0.2 ± 0.2 0.4 ± 0.3 0.0 ± 0.0 

22:0 0.5 ± 0.3 0.9 ± 0.4 0.4 ± 0.2 0.2 ± 0.2 0.3 ± 0.3 6.0 ± 1.3 

24:0 0.2 ± 0.2 0.5 ± 0.3 0.1 ± 0.1 0.3 ± 0.1 0.3 ± 0.2 0.0 ± 0.0 
Subtotal  32.9 ± 1.8 44.4 ± 3.0 38.2 ± 1.1 36.6 ± 1.5 37.8 ± 3.0 43.2 ± 1.4 
             

Monounsaturated fatty acids (%)             

14:1ω5 0.7 ± 0.4 0.7 ± 0.4 0.4 ± 0.3 0.7 ± 0.3 0.6 ± 0.4 0.0 ± 0.0 
16:1ω7 3.9 ± 0.6 2.6 ± 0.5 1.7 ± 0.1 1.7 ± 0.2 2.0 ± 0.4 8.7 ± 1.8 

17:1 0.0 ± 0.0 0.1 ± 0.1 0.7 ± 0.5 0.9 ± 0.3 3.5 ± 1.5 4.2 ± 1.9 
18:1ω9 14.1 ± 1.3 10.6 ± 1.7 10.8 ± 0.7 12.4 ± 0.9 11.0 ± 0.8 26.7 ± 0.8 

20:1ω9 0.4 ± 0.0 0.5 ± 0.0 0.4 ± 0.0 0.5 ± 0.0 0.1 ± 0.0 0.7 ± 0.0 
22:1ω9 0.1 ± 0.1 0.2 ± 0.1 0.3 ± 0.2 0.1 ± 0.1 0.4 ± 0.3 0.0 ± 0.0 
24:1ω9 0.2 ± 0.1 0.3 ± 0.1 0.1 ± 0.1 0.3 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 

Subtotal 19.5 ± 1.7 15.3 ± 2.0 14.7 ± 1.5 16.9 ± 1.0 17.7 ± 1.5 40.3 ± 3.9 

             

Polyunsaturated fatty acids (%)             

18:2ω6 1.8 ± 0.5 0.6 ± 0.1 0.5 ± 0.1 1.0 ± 0.2 1.4 ± 0.4 1.1 ± 0.2 

18:3ω6 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.2 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 

18:3ω3 2.0 ± 0.5 1.2 ± 0.6 0.7 ± 0.2 1.3 ± 0.4 1.3 ± 0.6 0.7 ± 0.1 

20:3ω6 0.2 ± 0.1 0.6 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.8 ± 0.2 0.2 ± 0.2 

20:3ω3 0.1 ± 0.1 0.7 ± 0.3 0.1 ± 0.1 0.4 ± 0.2 0.3 ± 0.2 0.0 ± 0.0 

20:4ω6 8.8 ± 1.2 7.2 ± 0.9 12.2 ± 1.1 10.9 ± 0.8 9.1 ± 0.8 2.8 ± 1.5 

20:5ω3 16.7 ± 0.6 7.2 ± 0.8 6.4 ± 0.4 7.0 ± 0.5 4.9 ± 0.4 1.4 ± 0.3 

22:5ω3 3.9 ± 0.4 5.0 ± 0.4 7.8 ± 0.9 7.6 ± 1.6 4.9 ± 0.3 4.2 ± 0.8 

22:6ω3 13.4 ± 0.8 16.1 ± 1.5 16.9 ± 1.2 15.7 ± 1.0 20.2 ± 1.7 7.2 ± 2.3 

Subtotal 49.4 ± 2.1 40.2 ± 2.9 47.1 ± 2.4 46.5 ± 1.3 44.5 ± 2.8 17.6 ± 4.8 

Sum ω-3 36.0 ± 1.2 30.1 ± 2.3 31.9 ± 1.4 31.9 ± 1.2 31.6 ± 2.0 13.4 ± 3.3 

Sum ω-6 11.9 ± 1.3 8.7 ± 0.9 13.9 ± 1.2 13.0 ± 0.8 11.32 ± 1.0 4.1 ± 1.5 

 
 
 
 



 
 

184 
 

Table 6S.2 Fatty acid composition of macro-invertebrate and fish consumers 
sampled from the Myakka estuary (mean % proportion ± SE of the total fatty 
acids) in 2008. 
 

 Callinectes 
sapidus 

Lagodon 
rhomboides 

Chaetodipterus 
faber 

Ariopsis 
felis 

Bagre 
marinus 

Carcharhinus 
leucas 

n 5 12 5 6 11 6 

Saturated fat acids (%)             

12:0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 1.0 ± 0.5 1.3 ± 0.7 

14:0 1.1 ± 0.3 0.9 ± 0.2 1.7 ± 0.2 0.7 ± 0.4 1.7 ± 0.2 1.5 ± 0.7 

15:0 1.8 ± 0.4 0.9 ± 0.1 1.6 ± 0.2 1.8 ± 0.8 2.5 ± 0.7 1.3 ± 0.4 

16:0 16.3 ± 1.0 19.6 ± 1.2 21.3 ± 0.6 15.7 ± 1.2 18.6 ± 0.9 19.3 ± 1.1 

17:0 1.8 ± 0.2 1.4 ± 0.1 2.0 ± 0.2 1.9 ± 0.3 1.5 ± 0.2 1.2 ± 0.5 

18:0 9.9 ± 0.8 8.2 ± 0.2 10.7 ± 0.5 13.3 ± 0.9 10.3 ± 1.0 12.9 ± 0.4 

20:0 1.1 ± 0.2 1.4 ± 0.9 0.5 ± 0.2 1.1 ± 0.6 1.1 ± 0.6 0.2 ± 0.2 

21:0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

22:0 0.3 ± 0.2 0.5 ± 0.1 0.3 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 1.50 ± 0.7 

24:0 0.2 ± 0.0 0.2 ± 0.1 0.4 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 
Subtotal 32.3 ± 1.1 33.0 ± 1.0 38.9 ± 1.4 34.9 ± 1.8 36.9 ± 1.50 39.2 ± 2.0 
             

Monounsaturated fatty acids (%)             
14:1ω5 1.3 ± 0.6 0.9± 0.5 1.1 ± 0.7 1.0 ± 0.7 0.8 ± 0.3 0.0 ± 0.0 
16:1ω7 5.4 ± 1.1 2.0 ± 0.3 1.6 ± 0.2 1.8 ± 0.3 3.1 ± 0.7 3.1 ± 0.3 
17:1 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.7 0.0 ± 0.0 0.4 ± 0.4 0.0 ± 0.0 
18:1ω9 15.8 ± 0.6 9.9 ± 0.9 10.0 ± 0.7 15.2 ± 1.3 12.3 ± 0.7 19.9 ± 1.8 
20:1ω9 0.7 ± 0.2 0.7 ± 0.1 0.6 ± 0.2 0.6 ± 0.1 0.6 ± 0.2 1.2 ± 0.3 
22:1ω9 0.2 ± 0.2 0.7 ± 0.4 0.3 ± 0.2 0.2 ± 0.2 0.1 ± 0.1 0.2 ± 0.1 
24:1ω9 0.5 ± 0.2 0.7 ± 0.1 0.6 ± 0.3 0.5 ± 0.2 0.4 ± 0.1 0.2 ± 0.2 
Subtotal 23.9 ± 2.2 14.8 ± 1.0 14.8 ± 1.6 19.3 ± 1.8 17.8 ± 1.3 24.8 ± 1.8 

             

Polyunsaturated fatty acids (%)             

18:2ω6 2.1 ± 0.4 0.9 ± 0.1 0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.1 1.1 ± 0.4 

18:3ω6 0.3 ± 0.2 0.5 ± 0.1 0.6 ± 0.2 0.4 ± 0.2 0.2 ± 0.1 0.0 ± 0.0 

18:3ω3 2.8 ± 1.0 1.7 ± 0.6 1.6 ± 0.5 1.7 ± 1.1 1.1 ± 0.4 0.6 ± 0.4 

20:3ω6 0.2 ± 0.2 0.7 ± 0.1 0.6 ± 0.2 0.8 ± 0.4 0.9 ± 0.1 0.9 ± 0.1 

20:3ω3 0.8 ± 0.5 0.6 ± 0.2 0.4 ± 0.2 0.8 ± 0.5 0.6 ± 0.3 0.2 ± 0.2 

20:4ω6 6.7 ± 0.8 8.1 ± 0.6 11.3 ± 1.2 12.4 ± 1.0 8.9 ± 0.7 5.4 ± 0.7 

20:5ω3 15.2 ± 2.0 7.3 ± 0.4 6.3 ± 0.6 7.5 ± 0.8 6.0 ± 0.4 1.9 ± 0.3 

22:5ω3 2.3 ± 0.4 4.7 ± 0.2 5.9 ± 0.3 4.3 ± 0.2 5.8 ± 0.3 10.6 ± 3.0 

22:6ω3 10.8 ± 0.9 25.8 ± 2.1 17.5 ± 2.0 15.8 ± 0.8 19.5 ± 1.6 14.1 ± 1.8 

Subtotal 43.7 ± 2.6 52.2± 1.6 46.4 ± 2.0 45.8 ± 2.1 45.3 ± 2.3 36.0 ± 2.1 

Sum ω-3 32.0 ± 2.6 40.1 ± 1.8 31.8 ± 1.9 30.1 ± 1.8 33.0 ± 2.36 27.4 ± 2.1 

Sum ω-6 9.3 ± 1.1 10.2 ± 0.6 13.2 ± 1.2 14.3 ± 1.1 10.8 ± 0.8 7.3 ± 0.6 
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CHAPTER 7 

 

GENERAL DISCUSSION
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Disturbances are natural events occurring in nearly all ecosystems and are 

important mechanisms shaping community structure and food web dynamics 

(Pickett and White 1985). However, extreme disturbance, where the frequency 

and severity of the disturbance is too great can disrupt natural community 

complexity and food web function (sensu Connell 1978). It has been argued that 

maintenance of a community is dependent on temporal and spatial variability in 

the structure of the community, as well as the ability of the species to rapidly 

respond to such variation (McCann and Rooney 2009). Consequently, 

understanding how communities respond to and persist in anthropogenic-altered 

environments has become one of the most fundamental objectives in ecology, 

particularly as human modifications to the landscape increase. This type of 

evaluation holds particular importance for estuarine ecosystems, as there are few 

estuaries worldwide that remain unaffected by upstream manipulation of their 

freshwater flow (Dynesius and Nilsson 1994; Nilsson et al. 2005).  Predicting the 

response of estuarine ecosystems to changing environmental condition is however 

challenging, as it necessitates understanding interactions among several trophic 

levels and multiple nutrient sources (marine, freshwater and terrestrial) (Rush et 

al. 2010).  

Collectively this dissertation provides important data regarding the effects 

of human-altered freshwater flow on estuarine nekton communities in tidal rivers, 

and in so doing has provided important findings regarding the application of 

stable isotopes to estuarine fishes and large vertebrates. In particular, we 

document how altered high-flow reduces seasonal-variability of nekton 
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community, through loss of density, diversity and richness of nekton species, 

highlighting the implications for food web simplification with this type of 

disturbance (Chapter 2). We further go on to demonstrate, through application of 

stable isotopes and fatty acids that altered high-flow shifts the carbon resources 

available to both  lower (i.e., primary and secondary consumers; Chapter 5) and 

higher (i.e., tertiary consumers and piscivores; Chapter 6) trophic levels towards 

more terrestrially-derived resources and reduces the inter-species variability in 

carbon resource use (Chapter 5). Collectively, these chapters provide insight on 

the role that altered freshwater flow plays in shaping estuarine nekton community 

structure and food web dynamics, in both space and time.  

In addition to demonstrating the ecological consequences of altered high-

flow to estuarine communities, we improved our knowledge and hence the 

applicability of stable isotopes for understanding isotope dynamics of estuarine 

fishes (Chapter 4) and high trophic level fish species, with unique life history 

strategies (Chapter 3). These two chapters highlight some of the limitations of 

stable isotope analyses that need to be considered and addressed prior to 

conducting diet composition and/or food web analyses using these tracers. 

Moreover, fatty acids emerged as an informative tool, by providing a unique 

perspective for assessing production sources used by estuarine species (Chapter 

6), offering a compliment to, and even advantages over application of stable 

isotopes for assessing trophic relationships and production sources of estuaries 

species. 
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CONTRIBUTIONS OF THE DISSERTATION  

Community ecology 

Loss of seasonal variability in community metrics of the Caloosahatchee 

was demonstrated in Chapter 2. Freshwater flow in the Caloosahatchee during the 

time of this study was not being managed for minimizing prolonged or excessive 

high flow, and therefore represents unadulterated release from Lake Okeechobee.  

As such, this chapter provides unique empirical evidence that high-flow affects 

the structural complexity of the different components of the estuarine nekton 

community, i.e., small-bodied and large-bodied species, a result not demonstrated 

in the Myakka. Further, by categorizing species into ecological and trophic guilds, 

this chapter contributes an original assessment of community response to altered 

high-flow disturbance, by demonstrating which component of the community is 

most affected. In this context, we demonstrated a shift in diversity and richness of 

ecological guilds, from more marine to freshwater dominated, as well as in 

trophic guilds, from higher to lower trophic level concomitant with altered-flow. 

The use of ecological and trophic guild to document the community response 

provides a new framework by which flow managers can assess overall effects on 

a community and develop management strategies to maximize community 

composition and diversity as opposed to using species-specific response to inform 

overall community management. Based on this analysis and in light of the 

prediction of increases in large storm events (Easterling et al. 2000), we can 

expect estuaries to become less seasonally-diverse and more simplified, being 

dominated by seasonally-tolerant species. 
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Food web ecology 

 Freshwater flow is necessary for proper estuarine functioning, as it provides 

nutrients and sediments, fueling primary and secondary productivity. Chapter 5 

highlights shifts in stable isotopes of estuarine consumers, predominately lower 

trophic level species, faced with altered flow. The significant depletion in 13C and 

enrichment in 15N alludes to changes in resource use (i.e., production sources) and 

changes in resource availability with high-flow. The fact that this trend is 

observed in the majority of primary and secondary consumers is a important 

result, as it suggests a homogenization of carbon sources in estuaries with extreme 

high flows. Although this shift was not evident in the tissues of higher trophic 

level species, the results do demonstrate that altered high flow does impact 

estuarine food webs. Because significant changes were only documented in lower 

trophic levels, when using stable isotopes to track seasonal variability, focus 

should be at the base of the food web, e.g., primary and secondary consumers, 

rather than across multiple trophic levels. We argue that the lag associated with 

transfer of stable isotopes from lower to higher trophic levels explains that lack of 

significant isotopic changes in the higher trophic levels.  

The novel application of fatty acid biomarker in Chapter 6 to track altered 

flow events in estuaries demonstrated that resource use of high trophic level 

species is indeed influenced by altered high-flow; a result not identified using 

stable isotopes of δ13C, δ15N and δ34S. This chapter provides a compliment to 

Chapter 5 and further demonstrates that terrestrially-derived allochthonous 
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resources are used by species across a broad range of trophic levels and because 

of the magnitude flow are utilized differently between the two estuaries. It is often 

difficult to sample seasonally all of the production and organic matter sources in 

food web, particularly in estuarine environments, where sources are derived from 

autochthonous and allochthonous sources. This unique application of fatty acid 

biomarkers may indeed prove an alternative to sampling each production source 

seasonally. Regardless, the use of fatty acids to track flow-related responses 

greatly improved the resolution by which we can observe a response and thereby 

provided a greater understanding of how high-flow manifests in estuarine food 

webs. 

 

Biochemical tracers 

Despite the prevalence of stable isotope analyses in ecological studies of 

diet and food webs, there are still a number of factors that can complicate 

interpretations of stable isotope data and studies have recommended establishing 

species-specific criteria for accurate isotopic assessment of an organism 

(Sweeting et al. 2007). Size and season-based changes in diet are common and 

often explain variation in stable isotope composition between species and among 

individuals in a population. However, a caveat of stable isotope analysis is that 

changes in the diet are not instantly manifest in the isotopic composition of a 

consumer’s tissues and a consumer’s tissues may reflect a combination of effects 

apart from diet (Vander Zanden et al. 2000).  
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In light of the documented declines in many shark populations, raising 

concerns over ecosystem effects (Heithaus et al. 2008), understanding the trophic 

role of young sharks, assumed to be top predators within coastal habitats is 

important (Cortés 1999). Chapter 3 provides an original and important 

contribution to understanding the application of stable isotopes in organisms that 

are provisioned, through a placental connection, with maternal resources. The 

results of this chapter indicate that retention of the maternal isotopic signal by 

neonate and young-of-year sharks is dependent on species-specific life history and 

tissue characteristics. This chapter highlights the use of a unique characteristic of 

sharks, the umbilical scar, to determine the time when the tissues of young-of-

year/juvenile sharks represent their own diet as opposed to their maternal 

provisions. These findings are especially relevant, as misinterpretation of feeding 

strategies, specifically overestimation of trophic position and incorrect assignment 

of dominant carbon sources to the diet would occur without these considerations. 

This chapter not only identifies the inability of using stable isotopes to 

characterize the diet of this young age-class, but takes the first step in attempting 

to quantify the change and provide guidance for future research addressing these 

age classes. As such, this chapter provides a significant contribution not only to 

the application of stable isotopes in young individuals of a species but to the study 

of sharks, and placental species in general.  

As I have advocated throughout this dissertation, estuaries are highly 

complex. This complexity makes characterizing feeding relationships of fishes in 

these systems especially challenging, particularly when considering that estuaries 
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are used by a range of life history stages of individual species, many of which 

exhibit ontogenetic diet shift with size. While body-size based shifts are often 

cited as drivers of isotopic dynamics, in Chapter 4 I found no evidence for body-

size based-isotopic relationships in estuarine fishes. Our results are consistent 

with previous observations that body size is not an important determinant of 

isotopic enrichment in estuarine fishes (Wilson et al. 2009). As such this chapter 

contributes to the broader understanding of stable isotope dynamics is relation to 

size and the relative importance of this factor in affecting stable isotopes 

dynamics in estuarine fishes. Outside of larval and young-of-year of fishes that 

show clear size based-isotopic shifts (Mittelbach and Persson 1998), estuarine 

fishes analyzed here do not appear to be influenced by size-based-isotopic 

relationships. Whether this result is a consequence of the fact the species analyzed 

here are predominantly secondary and tertiary consumers (Scharf et al. 2000), or 

that despite diverse diets throughout their lives, they likely select prey of 

relatively similar trophic level (Deudero et al. 2004), remains to be seen. However 

what we have show is that when including a species in food web analyses of 

estuarine ecosystems, sampling the entire size ranges of each consumer is perhaps 

less important, than it would be in a pelagic system that exhibits clear size-based 

structuring (Jennings et al. 2008).  

 

FUTURE DIRECTIONS 

Whether altered high-flow disturbance results in negative or positive 

effects on overall persistence of estuaries, remains to be seen. However, 
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analogous to high flow events, nekton communities have been shown to return to 

pre-storm conditions within a short period of time (e.g., 6-12 months), indicating 

relatively short effects on biota and community structure, and high ecosystem 

resiliency to hurricane pulses (Piazza and La Peyre 2009). Understanding the 

range of community change and resiliency that is experienced by a system in 

response to disturbance provides insight into ecosystem function that can guide 

management and potentially restoration of estuarine ecosystems. With this in 

mind, this dissertation provides a number of avenues for future research.  

We can extend the results of the community analysis by sampling over 

broader temporal scales, and in so doing address annual variability in flow 

dynamics. This dissertation initially set out to compare annual variation in flow 

regimes, however, in order to answer the primary questions regarding effect of 

flow on community structure and food web interactions, using multiple years with 

variable flow regimes became complicated. Testing temporal related hypotheses, 

particularly with the knowledge of which years were classified as high flow and 

those as drought, would be an avenue by which we can monitor how an estuarine 

system contends with such extremes. Droughts, similar to floods have been shown 

to produce distinct changes in community structure (Baptista et al. 2010). These 

environmental fluctuations influence the economic productivity of commercial 

and recreational fisheries by modifying the availability of fisheries resources 

(Gillson et al. 2011). Thus understanding these dynamics collectively could aid in 

providing information to managers. 
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The stable isotope and fatty acid results presented in this dissertation 

collectively suggest that altered high-flow shifts carbon flow. Sampling primary 

production and organic matter sources during the low and high flow season would 

confirm the conclusions of this dissertation and would allow for implicit 

conclusions regarding specific dietary changes of these consumers. In addition, 

sampling of primary consumers over seasonally relevant timescale would enhance 

our understanding and conclusions regarding seasonal changes to trophic structure 

in these estuaries, as it would allow for calculation of food chain length. Food 

chain length is an important characteristic of ecological communities, based on 

the ultimate trophic position in the food web and may be strongly influenced by 

disturbance. Shifts in food chain length can alter ecosystem function and modify 

trophic interactions (Walters and Post 2008) and can provide a top-down 

perspective of disturbance. 

The application of biochemical tracers to answer questions regarding food 

web structure and mechanisms regulating that structure are widely used. The 

different responses of conspecifics identified from stable isotopes and fatty acids 

techniques, highlight the differing conclusions that can be drawn from these 

tracers regarding effects of flow on estuarine consumers. Muscle tissue was the 

main tissue used for the analyses presented here. However, current literature 

suggests that liver, skin and blood have faster turnover rates relative to muscle 

(Hobson and Clark 1992; MacNeil et al. 2005) and therefore have the potential to 

track species response to altered flow across multiple timescales.  
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