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ARTICLE

Insights from molecular dynamics on substrate binding and
effects of active site mutations in �1-pyrroline-5-carboxylate
dehydrogenase
Bogdan F. Ion, Mohamed M. Aboelnga, and James W. Gauld

Abstract: The NAD+-dependent enzyme, �1-pyrroline-5-carboxylate dehydrogenase (P5CDH), has an important role in proline
and hydroxyproline catabolism for humans. Specifically, this aldehyde dehydrogenase is responsible for the oxidation of both
L-glutamate-�-semialdehyde (GSA) and 4-erythro-hydroxy-L-glutamate-�-semialdehyde (4-OH-GSA) to their respective L-glutamate
product forms. We have performed a detailed molecular dynamics (MD) study of both the reactant and product complex
structures of P5CDH to gain insights into ligand binding (i.e., GSA, 4-OH-GSA, NAD+, GLU) in the active site. Moreover, our
investigations were further extended to examine the structural impact of S352L, S352A, and E314A mutations on the deficiency
in the P5CDH enzymatic activity. Our in silico mutation analysis indicated that the conserved Glu447 has significantly shifted in
both the S352L and E314A mutants, causing NAD+ to be displaced from its predictive orientation in the binding site and hence
forming a catalytically inactive enzyme. However in the case of S352A, the catalytic site including the oxyanion hole and Cys348
remain virtually unchanged, and the coenzyme maintains its binding position.

Key words: aldehyde dehydrogenase, NAD, mutagenesis, molecular dynamics, binding conformation.

Résumé : La �1-pyrroline-5-carboxylate déshydrogénase (P5CDH), une enzyme dépendante du NAD+, joue un rôle important dans
le catabolisme de la proline et de l’hydroxyproline chez l’humain. En particulier, cette aldéhyde déshydrogénase est responsable
de l’oxydation du L-glutamate-�-semialdéhyde (GSA) et du 4-érythro-hydroxy-L-glutamate-�-semialdéhyde (4-OH-GSA) en leurs
formes respectives du L-glutamate. Nous avons réalisé une étude détaillée de dynamique moléculaire (DM) portant sur les
structures des réactifs (c.-à-d. le GSA, le 4-OH-GSA, le NAD+ et le GLU) et celles de leurs complexes avec la P5CDH en vue de mieux
comprendre la liaison du ligand au site actif. De plus, nous avons approfondi nos recherches afin d’examiner l’incidence
structurale des mutations S352L, S352A et E314A sur la réduction de l’activité enzymatique de la P5CDH. Notre analyse in silico des
mutations a montré que le résidu Glu447 conservé dans les mutants S352L et E314A s’est considérablement déplacé, ce qui a
entraîné un changement de position du NAD+ par rapport à son orientation prévue dans le site de liaison, et par conséquent, la
formation d’une enzyme inactive sur le plan catalytique. Toutefois, dans le cas de la mutation S352A, le site catalytique
comprenant le trou oxyanion et le résidu Cys348 demeure essentiellement inchangé, et la coenzyme conserve la position de sa
liaison. [Traduit par la Rédaction]

Mots-clés : aldéhyde déshydrogénase, NAD, mutagenèse, dynamique moléculaire, conformation de liaison.

Introduction
Pyridine nucleotides are coenzymes that play important roles

in protein biochemistry, including metabolic and regulatory sig-
naling pathways.1–3 More specific functions of these nucleotides
include redox reactions,4 ion channel regulation,5–6 apoptosis,7–8

cell survival,9 and cell signaling,10–11 with these occurring under
both physiological and pathological conditions.

The NAD+ dinucleotide and its phosphorylated form, NADP+,
commonly serve as coenzymes in cellular metabolism.1,12–13 In
such cases they not only behave as electron carriers in oxidative
phosphorylation but also can act as substrates for ADP-ribosylation
reactions as well as precursors of the calcium-mobilizing cyclic ADP-
ribose.14 More importantly, they are involved in proline metabolism
with functions such as osmolytic control15 and regulation of cel-
lular stress responses.16–17

NAD+/NADP+-dependent dehydrogenases are an important group
of enzymes that play significant roles in metabolism18–20 and as a

result are also thought to be important to several physiological dis-
orders.21–22 In particular, type II hyperprolinemia is an autosomal
genetic disorder that is believed to cause neurodegeneration in hu-
mans.23–24 This pathology is linked to a deficiency in �1-pyrroline-5-
carboxylate dehydrogenase (P5CDH) activity; that is, a decrease in
the catalyzed conversion of L-glutamate-�-semialdehyde (GSA) to
L-glutamate (Scheme 1).23 This results in an overproduction of �1-
pyrroline-5-carboxylate (P5C),25 causing an elevation in concentra-
tion of cellular plasma L-proline, an important amino acid believed to
have a central nervous system-related role in mammals.26 P5CDH is
also involved in hydroxyproline catabolism, making it a dual sub-
strate specific enzyme. P5CDH can also bind the hydroxylated form
of its GSA substrate, 4-erythro-hydroxy-L-glutamate-�-semialdehyde
(4-OH-GSA) and form the respective hydroxylated L-glutamate prod-
uct (4-OH-GLU).27

Early site-directed mutagenesis studies by Wang et al.28 sug-
gested that mitochondrial aldehyde dehydrogenase (ALDH) relies
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on a glutamate residue (Glu268) for initial activation of a catalyt-
ically essential cysteinyl, Cys302. Point mutation studies by Farres
et al.29 further supported the suggestion that Cys302 residue acts
as the mechanistic nucleophile.

Unlike other NAD+-binding proteins, aldehyde dehydrogenases
have unique structural features that allow them to make fewer
contacts with the coenzyme after binding.30–32 Crystallographic
studies by Hammen et al.33 showed that the nicotinamide ring of
NAD+ can have multiple conformations upon binding to ALDH.
In particular, one NAD+ conformation prevents the proposed gen-
eral base, Glu268, from activating (deprotonating) the thiol of
Cys302. In contrast, in another conformation the nicotinamide moi-
ety is not close enough to the aldehyde substrate for an efficient
hydride transfer. Perez-Miller et al.34 used X-ray crystallography and
mutagenic studies to determine the structures of the wild-type and
C302S mutant complexed with both NAD+ and NADH. They con-
cluded that the oxidized cofactor prefers the extended conformation
necessary for hydride transfer, whereas NADH binds in a contracted
conformation, allowing the deacylation reaction to occur.

Subsequently, Inagaki et al.18 obtained several X-ray crystallo-
graphic structures of a P5CDH from Thermus thermophilus, includ-
ing the apoenzyme, as well as complexes of the enzyme with
NAD+, NADH, and product (GLU) bound within the active site.
They concluded that no activator was in fact available to deproto-
nate the thiol of Cys302. Rather, an oxyanion hole might increase
the electrophilic character of the substrate’s aldehyde carbon
(Ccarb), increasing its susceptibility to nucleophilic attack by the
sulfur of Cys302. However it should be noted that Tsybovsky
et al.32 have suggested that the active site glutamate in aldehyde
dehydrogenases may not only be involved in the thioester hy-
drolysis but also in the activation of the catalytic cysteinyl.

Consequently, the overall catalytic mechanism of P5CDH has been
proposed to occur in essentially three stages (Scheme 2); (i) substrate
and coenzyme binding, (ii) acylation, and (iii) deacylation.18

More specifically, in the first stage the NAD+ coenzyme and GSA
substrate bind within the active site resulting in conformational
changes of several active site residues. In particular, the R-group
carboxylate of Glu314 (equivalent of Glu268) rotates to point away
from the active site. Meanwhile, the peptide backbone between
Cys315 and Gly316 shifts, allowing the backbone carbonyl oxygen
of Cys315 to hydrogen bond with the nicotinamide’s –NH moiety.

In the subsequent acylation (Stage 2) the thiol sulfur of Cys348
(equivalent of Cys302) nucleophilically attacks the substrate
aldehyde carbon (Ccarb) to form a tetrahedral hemithioacteal
intermediate. As noted above, whether or not the Cys is acti-
vated is unclear; in Scheme 2 we have shown the thiol as neutral.
The hemithioacetal’s oxyanion is thought to be stabilized by
an oxyanion hole comprising hydrogen bonds with the R-group
amide of Asn211 and the backbone –NH– of Cys348. Similar to
several amidase studies,35–37 these two participating residues are
known to form the oxyanion hole. Collapse of this tetrahedral
intermediate results in the formation of a thioacyl enzyme with
concurrent production of NADH. The latter coenzyme then leaves
the active site, enabling the R-group of Glu314 and peptide back-
bone between Cys315 and Gly316 to return to their initial confor-
mations.

This is then followed by deacylation (Stage 3). A water molecule
binds within the active site. This water is activated via a hydrogen
bond with the R-group carboxylate of Glu314, enabling its oxygen
to nucleophilically attack at the covalent enzyme-intermediate’s
�C to occur. The tetrahedral intermediate formed is then able to
collapse with cleavage of the Cys348–�C bond, forming the prod-
uct glutamate (GLU). The Cys348 R-group can then reposition en-
abling the release of GLU and regeneration of the unbound active
site.

Using molecular dynamics (MD) simulations and available X-ray
crystal structures,18 Hempel et al.38 investigated the impact of the
hyperprolinemia-associated mutation S352L on the structure of
P5CDH. They concluded that this mutation disrupts the water
network between a serinyl residue and the catalytic cysteinyl.
However Srivastava et al.23 have performed X-ray crystallographic
and mutagenic studies and suggested that the S352L mutation
instead disrupts substrate recognition, NAD+ binding, and orien-
tation of the Cys348.

In this study, we have used molecular dynamics to investigate
the effects of substrate, product, and coenzyme binding within
the active site of P5CDH. In particular, we have examined the roles
of proposed key active site residues on the binding of substrate,
coenzyme, and (or) product. In addition, we have also performed
a series of genetically important in silico mutations to better un-
derstand the roles of the various key residues as well as the impact
of such mutations.

Computational methods
All molecular dynamics (MD) calculations were done using

the Molecular Operating Environment (MOE)39 and NAMD40

programs.

Chemical models
The reactant and product complexes were modeled based on

several X-ray crystallographic structures of a homo-dimeric �1-
pyrroline-5-carboxylate dehydrogenase (P5CDH) from a mouse.
Specifically, the reactant complex (RC) was prepared from a ho-
loenzyme, bound with the NAD+ coenzyme (PDB ID: 3V9L).23 This
structure was then docked with the L-glutamate-�-semialdehyde
(GSA) substrate, where the binding interactions were based on the
GLU-bound P5CDH (PDB ID: 3V9K)23 due to the similarity of the
ligands. The template structure for the product complex (PC) is
the unbound P5CDH active site (PDB ID: 3V9J),23 where the gluta-
mate product was then added and positioned such that it was in
close agreement with its observed position in the X-ray crystal
structure of the GLU-bound complex (PDB ID: 3V9K).23 Note that
the X-ray crystallographic structure of the enzyme-product com-
plex was not used as the template for the PC model as the side
chain of the critical active Glu314 was not fully crystallized. In
addition, the thiol group of Cys348 was modeled as neutral in both
RC and PC complexes. Although the enzyme is homo-dimeric, we
have chosen to keep both monomers due to presence of interface
residues.

Solvation and energy minimization
For the fully-bound wild-type reactant (RCGSA/NAD+) and GLU-

bound product (PCGLU) complexes, missing hydrogen atoms were
added using the MOE default method. After removing the solvent
from each X-ray crystal structure, both enzyme–ligand complexes
were then solvated with a 4 Å spherical layer of water molecules.
To force the system to lie within the volume of space defined by the
surrounding shell of water molecules, an ellipsoidal potential wall
with a scaling constant of 2 was placed around the solvated enzyme–
ligand complexes. To allow the electrostatic and van der Waals po-
tentials to decay smoothly beyond 8–10 Å, a damping functional
factor was included. The geometries of the solvated complexes
were then optimized using the AMBER12:EHT force field until
the root-mean-square gradient of the total energy fell below

Scheme 1. Overall reaction for the conversion of L-glutamate-�-
semialdehyde (GSA) to glutamate by P5CDH.23 [Colour online.]
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0.21 kJ mol−1 Å−1. In addition, to reduce computational expense
but retain sufficient flexibility, and as the present study is focused
on gaining insight into the changes that may occur within the
active site, only those residues and water molecules within the
second environmental shell neighboring the P5CDH active
site, <27 Å from Ccarb of active site ligand, were free to move in
both the minimizations and MD simulations.

Thermal relaxation
MD simulations were then performed under constrained pres-

sure and temperature. The equations of motion were coupled
with the Nosé–Poincaré thermostat,41 and the time step for nu-
merical integration was set to 2 fs. Initially, the systems were
heated from 150 to 300 K for a period of 100 ps, followed by a
production run of 10 ns at 300 K and pressure of 1 atm (1 atm =
101.325 kPa). Based on active site RMSD and cluster analyses, a
representative structure was chosen from each RCGSA/NAD+ and
PCGLU trajectory and then optimized using AMBER12:EHT. These
optimized structures were then used as templates to generate a
starting structure for all other wild-type and mutated reactant
and product complexes considered (see below).

Summary of complexes considered
In total, 20 different enzyme and enzyme–ligand(s) complexes

were examined and are summarized in the supporting informa-
tion (Tables S1–S3) (see Supplementary material section). More
specifically, as well as the above RCGSA/NAD+ and PCGLU complexes,
we also considered wild-type reactant complexes of P5CDH with

NAD+ and the alternate substrate 4-OH-GSA bound in the active
site, or with only NAD+ or GSA bound. In addition, an MC (GSA-
and NAD+-bound) containing an activated (deprotonated) Cys348
(Cys348S−) and neutral Glu314 (Glu314COOH) was used to examine
the possible role of Glu314 in acylation. An unbound (i.e., no GLU
bound) product complex (PC) was also examined. Several genetically
important in silico mutations (S352L, S352A, and E314A) were
performed on the RCGSA/NAD+ and PCGLU complexes (i.e., gener-
ated using PDB ID: 3V9L or 3V9J, respectively),23 and the struc-
tures of their fully-bound (NAD+ + substrate for RCs and GLU for
PCs) and unbound active site structures investigated. Collectively,
these models were selected as they enabled us to examine multi-
ple aspects that may affect active site structure, including ioniza-
tion states of key residues, binding of ligands, and their possible
bound orientations. For these additional complexes the same sim-
ulation procedure as described in the Thermal relaxation section
was applied, with the exception that a 5 ns production run was
used instead. All of these calculations were subjected to several
RMSD and cluster analyses, resulting in average structures. Each
model representative was then used for geometric and compari-
son analysis to other complexes. We have successfully applied this
MD protocol in the study of other enzymatic systems.42–43

Results and discussion

Reactant and product Michaelis complexes
As noted in Computational methods, we first examined the

flexibility of the fully bound wild-type reactant (RCGSA/NAD+) and

Scheme 2. The three-stage mechanistic proposal for the conversion of glutamate-�-semialdehyde to glutamate as catalyzed by P5CDH.18

[Colour online.]
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product (PCGLU) complex active sites. More specifically, we consid-
ered the RMSDs of key residues in and around the active site,
associated water molecules, and bound-ligands during 10 ns sim-
ulations, which are plotted in Fig. 1. That is, we first examined
from a broader perspective the flexibility over time of the bound
active sites and surrounding environment. It should be noted that
the large initial increase in RMSD occurs during the 100 ps ther-
mal relaxation period and is simply included for completeness.

More importantly, during the 10 ns production run the RMSDs
for RCGSA/NAD+ lie within a relatively narrow range of 0.57 ± 0.10 Å
(Fig. 1A). Similarly, the RMSDs for the GLU-bound product com-
plex PCGLU also lie within a narrow range of just 0.39 ± 0.08 Å
(Fig. 1B). It should be noted that for these RMSD calculations the
residues Cys348, Glu314, Asn211, GLU, and mechanistic water near
Glu314 were used. This lower variability may be due in part to the
lack of the flexible NAD+ coenzyme in PCGLU unlike RCGSA/NAD+.

Ligand-bound reactant complexes
To gain more detailed insights into the dynamics of the bound

active sites, as noted in Computational methods, average struc-
tures were obtained of RCGSA/NAD+ and PCGLU from the 10 ns runs
and used as templates for starting structures of several different
wild-type enzyme–ligand complexes (Tables S1 and S3). MD simu-
lations were then run on these complexes for 5 ns to ensure con-
formational equilibrium was achieved.

For the RC complex with only GSA bound in the active site
(RCGSA), the calculated RMSDs included not only GSA, but also the
R-group thiol, carboxyl, and amide of Cys348, Glu314, and Asn211,

respectively, and the peptide backbone between Cys348 and
Lys347, and is plotted in Fig. 2A. As can be seen, after approxi-
mately 2.5 ns there is a marked shift in RMSD values from around
approximately 0.5 to 0.9 Å, which remains around there until the
end of the simulation. As a result, the RMSDs over the course of
the simulation have a much broader range of 0.87 ± 0.22 Å than
observed for the fully bound reactant complex RCGSA/NAD+.

This variability was investigated via cluster analysis, grouping
the RMSDs into five clusters. A representative structure of each
cluster was selected and overlaid as seen in Fig. 3A. As can be seen,
the largest variation appears to occur in the position of the alde-
hyde of the GSA substrate and the R-group carboxylate of Glu165.
However, to better understand the contributions of the various
components, cluster analysis of the RMSDs was also performed in
which the (i) GSA, or (ii) GSA and Asn211 amide were excluded
form the analysis, Figs. 2B and 2C respectively, and (iii) only the
RMSDs of the GSA were considered (Fig. 2D).

When the GSA substrate is excluded from the RMSD analysis,
the RMSDs are low and all fall within a very narrow range (see
Fig. 2B). The spikes observed correspond to the Asn211 amide side
chain undergoing very short-lived conformational shifts. Specifi-
cally, it becomes distal with respect to the substrate’s carbonyl
oxygen (Ocarb), significantly increasing the Ocarb···HNN211 distance
from 6.29 (average) to 8.17 Å (Table 1). Regardless, there is no
hydrogen bond formed between Ocarb and Asn211’s amide, a pro-
posed key interaction in the oxyanion hole. This may be due to the
absence of bound NAD+ coenzyme.

Fig. 1. Plots of the RMSDs obtained during the 100 ps thermal relaxation and subsequent 10 ns production runs of wild-type P5CDH with
(A) GSA + NAD+ (RCGSA/NAD+) or (B) GLU (PCGLU) bound within its active site (see text). [Colour online.]

Fig. 2. Plots of the RMSDs obtained for RCGSA (A) with inclusion of GSA, or excluding (B) only the GSA, or (C) both GSA and the Asn211 amide,
or (D) all but the GSA substrate. [Colour online.]
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When the RMSDs are recalculated, but now excluding both GSA
and Asn211, they now fall in a quite narrow range of only 0.48 ±
0.07 Å (Fig. 2C). As can be seen from the overlaid representative
structures (Fig. 3C), the remaining residues maintain relatively
consistent positions, with the minor exception of the thiol proton
of Cys348 which rotates in and out of the active site. This is per-
haps expected due to the lack of structural constraints imposed
by, for instance, an oxyanion hole.

Finally, when only the RMSDs of the GSA in RCGSA are consid-
ered (Figs. 2D and 3D), it appears that after 1.8–1.9 ns the initial
bound conformer of GSA (with average RMSD of �0.2 Å) shifts to
a short lived (�0.5 ns) second conformation (with average RSMD
of �0.3 Å) before shifting to a third and longer lived conformation
for the last 2.6 ns of the simulation (with an average RMSD of just
over 0.8 Å). Each of these RMSD conformational plateaus has
quite a small variability, with the largest range being 0.30 ±
0.05 Å, and the small differences between each of the conformers is
illustrated in Fig. 3D. For each of these conformations, select average
interaction distances were also calculated. Notably, the mechanis-
tically relevant average Ccarb···SC348 distances were quite long at,
in order of occurrence of conformation in the MD simulation,
3.67, 3.84, and 4.12 Å. Similarly, the distances between GSA’s OCarb
centre and the proposed oxyanion hydrogen bond donors
R-group –NH2 of Asn211 and backbone –NH– of C348 are also

moderately large with their shortest average lengths being 3.03
and 4.41 Å, respectively. These results also suggest that in the
absence of bound NAD+ coenzyme the GSA-bound active site may
not be consistently favourably positioned for catalysis.

It is noted that in addition to the fully bound reactant complex
(RCGSA/NAD+), we also performed MD simulations and cluster analy-
sis on an RCNAD+ complex (i.e., only NAD+ bound), and RCGSA/NAD+-
derived structure with no GSA or NAD+ bound (RCNL). Importantly, in
the fully boundRCGSA/NAD+ complex the average r(Ccarb···SC348) = 4.13 Å
(see Table 2), 0.25 Å closer than in RCGSA. Similarly, the sug-
gested oxyanion hole interactions r(Ocarb···HNC348) = 3.29 Å and
r(Ocarb···HNN211) = 5.39 Å, are 0.39 and 0.90 Å shorter, respectively.
Nevertheless, these distances still seem mechanistically too long
with respect to GSA’s aldehyde group, suggesting that the sub-
strate or residues may not yet be suitably positioned for reaction.

However, it was observed that in RCGSA/NAD+ the R-group car-
boxyl of Glu447 hydrogen bonds with the ribose moiety of the
NAD+, in agreement with experiment.23 In contrast, in RCGSA the
glutamyl side chain hydrogen bonds with the R-group hydroxyl of
Ser287 (Fig. S4), suggesting Glu447 has a role in NAD+ binding as
proposed by Srivastava and co-workers.23

Ligand-bound product complexes
For the GLU-bound PC (PCGLU; Table 3), the active site calculated

RMSDs included not only GLU, but also the R-group thiol, carbox-
yl, and amide of Cys348, Glu314, and Asn211, respectively, and the
peptide backbone between Cys348 and Lys347, and are plotted in
Fig. 4A. It can be seen that these overall RMSDs occur in the range
of 0.56 ± 0.14 Å. However, frequent fluctuations were observed
over the course of the simulation.

Insight into these fluctuations can be obtained by cluster anal-
ysis of the RMSDs and overlaying a representative structure from
each of the five clusters (Fig. 5A). Many of the proposed mechanis-
tic interactions (e.g., oxyanion hole) are reasonably consistent
over the period of the simulations. For example, the Ocarb···HNC348
and Ocarb···HNN211 distances are 1.88 and 1.87 Å, respectively, indi-

Fig. 3. Overlays of representative structures obtained from cluster analysis of the RMSDs of RCGSA (A) with inclusion of GSA, excluding (B) the
GSA substrate, or (C) both GSA and the Asn211 amide, and (D) all but the GSA substrate. Note, some additional functional groups not used in
the RMSD calculations are also shown (see text). [Colour online.]

Table 1. Select average distances (Å) of RCGSA corresponding to struc-
tures shown in Fig. 3.

Structure Ccarb···SC348 Ocarb···HSC348 Ocarb···HNC348 Ocarb···HNN211

Avg. B 4.38 2.66 3.68 6.29
Spike 4.83 3.35 3.80 8.17
Avg. D 5.14 3.13 3.76 5.32
1st plateau 3.67 4.57 3.03 4.90
2nd plateau 3.84 2.01 3.20 5.30
3rd plateau 4.12 1.91 4.24 4.41

Ion et al. 1155
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cating that they are moderately strong hydrogen bonds, and vary
by 0.18 and 0.29 Å, respectively. In contrast, the positioning of the
Cys348 thiol, and hence its interactions, are considerably more
variable. In particular, the Ccarb···(H)SC348 and Ocarb···HSC348 dis-
tances fluctuate by as much as 1.55 and 3.19 Å, respectively. In
addition, the �N–�C–�C–S angle of Cys348 varies between −27.9
and −153.7°. As noted in the Introduction, release of the GLU prod-
uct is thought to require the Cys348 thiol group to reposition
away from the catalytic site. The fluctuations in Fig. 4A illustrate
that this process occurs reasonably regularly as an interconver-
sion between the thiol being inside (�0.3 Å RMSD region) and
outside (�0.6 Å RMSD region) the active site over the course of the
5 ns simulation. Lastly, the average �CE314···(H)SC348 distance in
PCGLU was 4.08 Å (not shown), whereas in RCGSA/NAD+ the average
�CE314···(H)SC348 distance is 10.26 Å (not shown). Thus, the carboxyl
of Glu314 may be better placed to act as the base in the deacylation
stage of the mechanism.

Analogous to that detailed above for RCGSA/NAD+, greater in-
sights into the role and behavior of key residues and the product
was obtained by reanalyzing the above RMSDs but excluding spe-
cific selected group(s). The resulting RMSDs and overlaid represen-
tative structures obtained via cluster analysis for each complex
are shown in Figs. 4 and 5. In the absence of the carboxylate of
Glu314 and (or) thiol of Cys348, the RMSDs of the remaining active
site residues (Figs. 4B and 4C), and corresponding representative
structures (Figs. 5B and 5C), show greater consistency as illus-

trated by RMSD ranges of 0.37 ± 0.06 and 0.52 ± 0.06 Å, respec-
tively. Finally, when only the RMSDs of the GLU product are
considered, we can see from Fig. 4D that the resulting plot indi-
cates little conformational variation (0.28 ± 0.05 Å) over the course
of the simulation. Collectively, these additional analyses suggest
that the source of the large fluctuations in Fig. 4A are due to the
high positional variability of the Cys348 thiol in PCGLU.

In unbound PC (PCNL) the calculated RMSDs reached conver-
gence within the first 0.50 ns (Fig. S5). Notably, the oxyanion
hole collapsed, resulting in rapid repositioning of the Asn211
amide and Cys348 –NH– backbone away from the active site
with �� (N–�C–�C–�C) = 94.0° and �� (N–�C–�C–S) = 103.7°,
respectively (Fig. S6). These conformational changes provide more
space within the active site for entrance and binding of GSA and
NAD+.

Activated and hydroxylated-Michaelis complexes
As stated in the Introduction it has been suggested that Glu314

may act as a base and abstract the Cys348 thiol proton, thereby
activating P5CDH for catalysis.28,32 Using a fully bound activated
enzyme complex, i.e., NAD+ and GSA (actRCGSA/NAD+) or 4-hydroxylated
GSA (4-OH-GSA; actRC4GSA/NAD+) bound with an anionic Cys348
(Cys348S−) and neutral Glu314 (Glu314COOH), we examined the
structural and binding consequences of such an activation. The
resulting plots of RMSD versus time are shown in Fig. 6.

Table 2. Select average distances (Å) for RCGSA/NAD+, actRCGSA/NAD+, and RC4GSA/NAD+.

Structure Ccarb···SC348 Ocarb···HSC348 Ocarb···HNC348 Ocarb···HNN211 Cpyr···SC348 Cpyr···Hcarb

RCGSA/NAD+ 4.13 2.81 3.29 5.39 3.54 7.20
actRCGSA/NAD+ 3.55 N/A 2.21 4.52 3.65 6.39
RC4GSA/NAD+ 4.17 2.04 3.75 4.58 3.81 7.83

Table 3. Select average distances (Å) for S352 LRCGSA/NAD+, S352 LRC, S352 LPCGLU and S352 LPC.

Structure Ccarb···SC348 Ocarb···HSC348 Ocarb···HNC348 Ocarb···HNN211 �CF449···�CC348 �CE447···�CC348

S352 LRCGSA/NAD+ 4.49 4.74 3.89 4.86 8.03 6.76
S352 LRC N/A N/A N/A N/A 3.98 11.29
S352 LPCGLU 5.12 5.23 1.87 1.81 4.44 7.49
S352 LPC N/A N/A N/A N/A 4.81 9.19

Fig. 4. Plots of the RMSDs obtained for PCGLU (A) with inclusion of GLU, and excluding (B) the thiol of Cys348 or (C) both the thiol of Cys348
and R-group carboxyl of Glu314, or (D) all but the GLU product. [Colour online.]
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In the plot of RMSDs for actRCGSA/NAD+, Fig. 6A, a spike in RMSDs
is observed near initiation of the simulation. This is due to re-
positioning of the NAD+ coenzyme. However, once repositioned,
the RMSDs are quite consistent, as also evidenced by the consis-
tent overlay of the five representative structures obtained from
cluster analysis (Fig. 7A). A comparison of the average structures
of actRCGSA/NAD+ with the fully bound ‘unactivated’ RCGSA/NAD+

complex is shown in Fig. 8A. Importantly, it can be seen that the
mechanistically important Ccarb···(H)SC348 distance in the acti-
vated form is considerably shorter by 0.58 Å at 3.55 Å, than in
RCGSA/NAD+. Furthermore, the oxyanion hole-relevant distance
Ocarb···HNN211 is also markedly shorter at 2.21 Å and can now in
fact be thought of as at least a weak hydrogen bond. The distance
between the hydride acceptor site in the NAD+ (Cpyr) and substrate
hydride to be abstracted (Hcarb) is 0.81 Å shorter at 6.39 Å in
actRCGSA/NAD+. Presumably, this shorter distance would help facili-
tate the required hydride transfer to NAD+. Collectively, these results
suggest that the presence of an anionic Cys348 thiolate aids in position-
ing of the substrate, coenzyme, and key active site residues for reaction.

A previous crystallographic study on a related member of the al-
dehyde dehydrogenase family,32 suggested that there may be two
active site conformations; in one the cysteinyl sulfur and C4 of the
nicotinamide ring are covalently cross-linked, while in the other
they are not and lie 2.60 Å apart. In the present study the average
r(Cpyr···SC348) distance is quite large at 3.65 Å, and the nicotinamide
ring is still planar (Table 2). Furthermore, the anionic charge on the
Cys348 thiolate is stabilized by hydrogen bonds with the R-group
amide of Asn211, average r(SC348···HN�N211) = 2.19 Å, and the amide
moiety of the nicotinamide ring with an average r(SC348···HNpyr) of
2.09 Å (see also Fig. 8A). It is noted that the latter amide moiety is
flipped with respect to its position in the ”unactivated” RCGSA/NAD+

complex. This conformation of the ”activated” RCGSA/NAD+ complex,
actRCGSA/NAD+, appears to be dominant at equilibrium, as might be
expected if Cys348S− is to act as the nucleophile.

P5CDH is also able to catalyze the oxidation the 4-hydroxylated
derivative of GSA, 4-OH-GSA.27 Hence, for completeness, we also
examined the structural consequences of this substrate hydroxylation
on the fully bound (neutral Cys348 thiol) enzyme, RC4GSA/NAD+.

Fig. 5. Overlays of representative structures obtained from cluster analysis of the RMSDs of PCGLU (A) with inclusion of GLU, excluding (B) the
thiol of Cys348, or (C) both the thiol of Cys348 and R-group carboxyl of Glu314, and (D) all but the GLU product. Note that some additional
functional groups not used in the RMSD calculations are also shown (see text). [Colour online.]

Fig. 6. Plots of the RMSDs obtained for the fully bound actRC
complexes containing (A) GSA, (B) 4-OH-GSA, and (C) the active
enzyme with only NAD+ bound (actRCNAD+). [Colour online.]
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The plot of the RMSDs for this complex over the course of the
simulation are shown in Fig. 6B, while overlaid representative
structures are shown in Figs. 7C and 7D. As can be seen, all values
lie within a very narrow range of 0.48 ± 0.09 Å range. To further

illustrate any structural differences with the initial RCGSA/NAD+

complexes, we have overlaid their average structures in Fig. 8B.
The �-hydroxyl group of 4-OH-GSA maintains a consistent

strong hydrogen bond interaction with the R-group carboxyl of

Fig. 7. Overlays of representative structures obtained from cluster analysis of the RMSDs of actRCNAD+ in which GSA is (A) included or (B) not
included in RMSD calculation, and in which 4-OH-GSA is (C) included or (D) not included in RMSD calculation. Note that some additional
functional groups not used in the RMSD calculations are also shown (see text). [Colour online.]

Fig. 8. Overlays of average structures of the (A) fully bound reactant complex RCGSA/NAD+ in both its unactivated and active states and
(B) unactivated fully bound reactant complexes of GSA or 4-OH-GSA bound. Note that some additional functional groups not used in the
RMSD calculations are also shown (see text). [Colour online.]
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Glu165, average r(HO4-OH-GSA···−OOCE165) = 1.63 Å. In addition, in
RC4GSA/NAD+ the average r(Ccarb···SC348)distance of 4.17 Å is just
0.04 Å longer than in RCGSA/NAD+ (Table 2). Consequently, the
4-OH-GSA and GSA substrates are similarly positioned within the
active site. In contrast, the coenzyme’s nicotinamide ring appears
to shift away from the active site with its amide moiety now
flipped (see above; Figs. 7C, 7D, and S7). Importantly, due to the
coenzyme’s positioning, the Cpyr···(H)SC348 and Cpyr···Hcarb dis-
tances in RC4GSA/NAD+ are longer compared to RCGSA/NAD+ by 0.27
and 0.63 Å with average distances of 3.81 and 7.83 Å, respectively
(Fig. 7C and Table 2). These longer interactions also suggest that
the hydride transfer from GSA/4-OH-GSA to NAD+ may be less
facile when Cys348 has a neutral thiol.

Effects of selected mutations
It has been experimentally shown that several physiological

disorders, e.g., type II hyperprolinemia, may be associated with
certain P5CDH genetic mutations. Hence, the effects of several
possible mutations on the structure of the active site and sub-
strate binding were examined.

S352L
The mutation of Ser352 to Leu has been suggested to reduce the

enzymatic activity of P5CDH through, at least in part, changes in the
positioning of several key residues or their interactions.1,38 It has
been experimentally shown to render the enzyme inactive and un-
able to bind NAD+.1 We constructed several possible S352L mutant
reactant-derived (S352LRCGSA/NAD+, S352LRC) and product-derived
(S352LPCGLU, S352LPC) complexes in both fully-bound and unbound
states. The resulting average structure obtained for each complex is
overlaid with its corresponding wild-type enzyme complex in Fig. 9.

For S352LRCGSA/NAD+ (Fig. 9A) it can be seen that upon mutation,
large positional changes are observed for Phe449 and Glu447.
Relative to the corresponding fully bound wild-type enzyme com-
plex RCGSA/NAD+ the average r(�CF449···�CC348) and r(�CE447···�CC348)
have changed by 4.11 and 4.35 Å, respectively to 8.03 and 6.76 Å
(Table 3). As a result, the hydrophobic R-group of Leu352 clashes
sterically with the phenyl ring of Phe449, disrupting the hydrogen
bond between the R-group carboxylate of Glu447 and 3=-OH of
NAD+’s ribose. The latter observation is in agreement with exper-

Fig. 9. Overlays of average structures of the wild-type and S352L mutated (A) fully bound (RCGSA/NAD+ and S352LRCGSA/NAD+) and (B) unbound
(RC and S352LRC) reactant complexes, and (C) fully bound (PCGLU and S32LRCGLU) and (D) unbound (PC and S352LPC) product complexes. [Colour
online.]
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iment,1 where the S352L mutation was concluded to cause Glu447
to no longer bind NAD+. In the present simulation, its loss causes
the NAD+ moiety to shift markedly away from the GSA and active
site. It is noted that one limitation of the present in silico mu-
tagenesis studies is that the NAD+ moiety is unable to completely
leave the binding site. Experimentally1 the Cys348 thiol was sug-
gested to face the wrong way for reaction with the substrate.
However, in the present model the significant shift in the position
of the NAD+ results in the Cys348 thiol rotating away from the
GSA substrate with a marked increase in the distance between the
substrate’s aldehyde carbon (Ccarb) and Cys348 sulfur of 0.22 Å
(Table 3). It is also noted that experimentally1 the S352L mutation
was also suggested to disrupt the Ser349···substrate interaction. In
the present model a shift in the position of the side chain of Ser349
away from the GSA substrate is observed (Fig. 9A). In contrast, com-
parison of the unbound wild-type and S352L mutant enzyme (RC,
S352LRC), Fig. 9B, indicates that the mutations greatest effect is on the
positioning of the aromatic phenyl ring of Phe449.

For the product-derived complexes, S352LPCGLU and S352LPC, the
S352L mutation appears to have little effect on the active site of
P5CDH and binding of GLU (Figs. 9C and 9D). In the last stage of
the overall catalytic mechanism of P5CDH (deacylation), the
NADH coenzyme formed is thought to be absent to enable a water
to become available for the required hydrolysis.

We also performed in silico mutagenesis studies in which
Ser352 was replaced by alanine. That is, the R-group hydroxyl of
Ser352 was simply replaced by a hydrogen, thus removing the
effects of increased steric bulk introduced through the S352L mu-
tation. Importantly, for all of the corresponding reactant- and
product-derived complexes considered, the absence of the seryl
side chain hydroxyl –OH did not cause any major conformational
changes in the active sites (Fig. S13 and Table S6). This further
supports the suggestion that it is the bulky hydrophobic side
chain of the leucyl in the S352L that induces the conformational
changes in the active site.

E314A
In earlier experimental32 studies on 10-formyltetrahydrofolate

dehydrogenase, mutation of Glu673 (equivalent of Glu314 in
P5CDH) to an alanine, resulted in inactivation of the enzyme.32 It
was thus suggested that the glutamyl may be involved in substrate
acylation. Consequently, to examine the role of Glu314 in acylation,
we constructed several E314A mutant reactant- (S352LRCGSA/NAD+,
S352LRC) and product-derived (S352LPCGLU, S352LPC) complexes in
both their fully bound and unbound states. The resulting average
structure obtained for each complex is overlaid with its corre-
sponding wild-type enzyme complex in Fig. 10.

Fig. 10. Overlays of average structures of the wild-type and E314A mutated (A) fully bound (RCGSA/NAD+ and E314ARCGSA/NAD+) and (B) unbound
(RC and E314ARC) reactant complexes, and (C) fully bound (PCGLU and E314ARCGLU) and (D) unbound (PC and E314APC) product complexes.
[Colour online.]
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Similar to that observed in the S352L mutants, the E314A mu-
tation disrupts the hydrogen bond between the side chain carbox-
ylate of Glu447 and 3=-OH moiety of NAD+’s ribose. Again, the lack
of this interaction in the fully bound E314ARCGSA/NAD+ complex, as
in the corresponding S352L mutant S352LRCGSA/NAD+, results in a
repositioning of the NAD+ moiety. In addition, the Cys348 thiol
now hydrogen bonds to the carbonyl oxygen (Ocarb) of the coen-
zyme’s nicotinamide ring, again consistent with that also ob-
served in the case of the S352L mutation. Although, at least with
regard to the position of NAD+ in the active site, the outcome of
these mutations is the same, they do exhibit several differences.
In particular, the average r(�CF449···�CC348) distance is 3.77 Å (not
shown), meaning that the Phe449 residue has not shifted signifi-
cantly, and thus is not the cause of the loss of the Glu447···NAD+

interaction in the case of a E314A mutation. Instead there is a
significant change in the backbone between Ala314 and Cys315.
This likely results in the observed shift of the NAD+ away from the
active site (Fig. 10A). Upon mutating Glu314 to alanine there is also
an observed shift in the position and side chain of Glu447 for all
four mutant complexes considered, with the largest impacts be-
ing seen in the fully bound reactant (E314ARCGSA/NAD+) or product
(E314APCGLU) complexes as can be seen in Fig. 10.

Conclusions
We have performed a MD simulations-based investigation of

the active site of the aldehyde dehydrogenase �1-pyrroline-5-
carboxylate dehydrogenase (P5CDH), and the binding of its substrates
L-glutamate-�-semialdehyde (GSA) and 4-erythro-hydroxy-L-glutamate-
�-semialdehyde (4-OH-GSA) and their respective L-glutamyl (GLU)
type products, and coenzyme NAD+. In addition, we have exam-
ined the effects of activation of the Cys348 thiol, and several
known physiologically important genetic mutations of P5CDH
(S352L, S352A, and E314A) on the active site residues and substrate
binding.

The present results suggest that in the case of a wild-type reactant
enzyme complex with only GSA substrate bound (RCGSA), and with a
neutral active site Cys348 thiol, the substrate binds via its �-NH3

+

with the side chain carboxyl of Glu165, but is not suitably positioned
with respect to the putative oxyanion hole. When NAD+ is also
bound (i.e., the fully bound Michaelis complex RCGSA/NAD+) the alde-
hyde carbonyl Ocarb of GSA is positioned closer to the oxyanion hole,
though still not within hydrogen bonding distance. However, when
the thiol of the mechanistic nucleophile Cys348 is deprotonated
(with Glu314 modeled as the base) GSA’s Ocarb centre forms a hy-
drogen bond with the oxyanion hole’s –NH– backbone of Cys348,
with an average r(Ocarb···HNCys348) of 2.21 Å. That is, activation of
Cys348 facilitates positioning of the substrate for reaction. The
Cys348 thiolate is stabilized in part by hydrogen bonds with the side
chain amide of Asn211 and NAD+, as indicated by average
r(SC348···HN�N211) and r(SC348···HNpyr) distances of 2.19 and 2.09 Å,
respectively. Our MD studies also suggest that upon loss of the prod-
uct GLU, the oxyanion hole collapses shifting the Asn211 amide and
Cys348 –NH– backbone away from the catalytic site. This may assist
the enzyme in binding GSA and NAD+ for the next round of the
catalytic cycle.

The S352L mutation introduces a bulky hydrophobic side chain
into the active site, which sterically clashes with the phenyl of
Phe449. In addition, the hydrogen bond between the side chain
carboxyl of Glu447 and the NAD+ ribose 3=-OH group is disrupted.
Similarly in the E314A mutation, the hydrogen bond between the
Glu447 side chain carboxyl and 3=-OH moiety of nicotinamide
ribose is broken. In the fully bound active sites of both mutants,
the NAD+ moiety is shifted outwards from the active site. This
suggests that this hydrogen bond interaction is important for the
correct positioning of the NAD coenzyme. Both mutations also
include a shift in the position of the thiol of Cys348 away from the
substrate’s aldehyde group. Collectively these structural changes

may hinder the catalytic activity of P5CDH. Indeed, in the S352A
mutant, where the side chain of serinyl has been replaced by a
hydrogen, such large conformational changes in the bound active
sites are not observed. Furthermore, MD simulations on the four
product complex models, all of which occur after the NADH
formed during acylation is thought to have been released from
the active site, showed comparable conformations. That is, in the
reactant and product complexes, the S352L and E314A mutations
have greatest effect on the initial substrate and coenzyme binding
and positioning within the active site of P5CDH.

Supplementary material
Supplementary material is available with the article through

the journal Web site at http://nrcresearchpress.com/doi/suppl/
10.1139/cjc-2016-0286. Selected P5CDH active site overlays and RMSDs
with respect to time used in this current work are provided in
Figs. S1–S13 for select 5.1 ns MD simulations, summaries of the
various models considered (Tables S1–S3), and summaries of select
structural parameters of the complexes examined (Tables S4–S6).
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