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ABSTRACT 20 

Standard metabolic rates (SMR) were measured in Brown Bullheads collected from two 21 

locations of the Detroit River, North America, representative of highly contaminated and 22 

uncontaminated areas. Measurements of SMR were completed within 10 d of fish collections 23 

(acute trials), for fish held in a common pond environment for 1 year (clearance trials) and for F1 24 

generation fish raised in the pond environment (F1 study).  SMRs were significantly higher 25 

(26%) in fish from the contaminated area during acute trials.  Both populations showed large 26 

decreases in SMR (49 to 52 %) following clearance, however, differences between populations 27 

were still evident. There were no significant differences in SMRs between populations for F1 28 

fish. This study demonstrates that Detroit River Brown Bullheads from contaminated areas have 29 

higher metabolic rates than fish from clean locations and this metabolic effect is retained for long 30 

durations after fish are placed in a common environment. The loss of metabolic differences in F1 31 

offspring indicates that the observed differences in SMR were acclimation based and not 32 

adaptive or related to maternal effects. 33 

Key Words: Brown Bullhead, Standard metabolic rate, pollution adaptation, bioenergetics 34 

  35 
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INTRODUCTION 36 

Standard metabolic rate (SMR) is an important component of the energy budget and 37 

represents the minimal energy required to sustain physiological function excluding consumption, 38 

digestion and activity (Enders et al. 2006).  Since the SMR defines the baseline for the scope of 39 

somatic growth and reproduction in fish (Adam and Breck 1990), SMR may have strong 40 

linkages to animal fitness and can be subject to selective pressures under different environments 41 

and chronic stressors/interactions (Fitzgibbon et al. 2007; Burton et al. 2011; Killen et al. 2013).  42 

Further, SMRs are known to vary within populations as a result of intrinsic and extrinsic factors 43 

(Norin and Malte 2012).  Inherent factors such as genotype, maternal effects, early development 44 

conditions and behavioural traits have all been shown to influence the energetic maintenance 45 

costs of conspecifics (Burton et. al. 2011). Extrinsic conditions are also known to cause changes 46 

in fish SMR including social interactions, seasonal shifts (Beamish 1964; Sloman et al. 2000; 47 

Chipps et al. 2000), photoperiod (Biswas and Takeuchi 2002), habitat (Millidine et al. 2006), 48 

fish density (Reid et al. 2011), feeding activity, water quality (e.g. low dissolved oxygen 49 

concentrations and pH) (Ginnekena and Thillart 2009; Fromm 1980; Cech et al. 1985) and 50 

contaminant exposure.  Despite these interactions, the common bioenergetic modelling approach 51 

(e.g. Wisconsin Model) treats all individuals of a species equally and provides little opportunity 52 

for adjustment to intrinsic or extrinsic variables described above. In order to improve the 53 

accuracy of bioenergetic modelling applications it is necessary to improve our understanding of 54 

extrinsic factor/SMR relationships by comparing SMRs among populations of fish under 55 

different environmental conditions.  56 

 One extrinsic factor that has been shown to directly influence metabolic rate of fish is 57 

exposure to toxic contaminants.  Exposure to metals, pesticides, polycyclic aromatic 58 
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hydrocarbons (PAHs) and persistent organic pollutants (POPs), and the subsequent metabolic 59 

effects (e.g. change in O2 consumption rates) in fish have been well documented (Heath 1987; 60 

Handy and DePledge 1999). For example, Waiwood and Beamish (1978) observed that for a 61 

given swimming speed and pH, Rainbow Trout (Oncorhynchus mykiss) in water dosed with 62 

copper (25 and 40 µg/L) exhibited higher oxygen consumption rates than controls. Exposure to 63 

PAHs has also been shown to affect metabolic rates of Mummichog (Fundulus heteroclitus), 64 

whereby fish exposed to PAHs in their diet (900 ng/g Σ-PAH) demonstrated a 13% increase in 65 

oxygen consumption rate relative to controls (Merten 2005). In other studies, both Largemouth 66 

Bass (Micropterus salmoides) and Rainbow Trout O2 consumption rates significantly increased 67 

following exposure to elevated pesticide concentrations of dieldrin and DDT respectively (Lunn 68 

et al. 1976; Beyers et al. 1999). The above studies indicate that contaminant exposures have a 69 

bioenergetic cost on fish.  Whether this effect is the result of energy allocation related to an 70 

acclimated response to the stressor (Jobling 1994; Barton 2002) or the result of a direct 71 

interaction between the chemical and a biochemical pathway regulating fish metabolism (i.e. a 72 

toxic consequence of the exposure; Basha et al. 1984; Ali et al. 1993; Willet et al. 2001;  Richter 73 

et al. 2011) is unknown. Long-term exposure to chemical stressors in the environment may also 74 

contribute to natural selection in exposed fish populations resulting in heritable differences in 75 

fish/stressor responses (Meyer and Di Giulio 2002, 2003; Breckels and Neff 2010; Wirgin et al. 76 

2011). Adaptive responses and/or maternal effects to fish metabolic rate would be expected to 77 

contribute to population differences in energy metabolism of fish, observable in offspring reared 78 

outside of the environment of parental capture. 79 

To date, most investigations studying the effects of contaminants on fish SMR have been 80 

performed under laboratory conditions (Macleod and Pessah 1973; Heath 1987; Beyers et al. 81 
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1999).  There exists limited information about how the SMRs of natural fish populations respond 82 

to long-term (multi-generation) exposures to mixtures of toxic contaminants in the field. In the 83 

present study, intraspecific variation of SMR was determined in two relatively isolated 84 

populations (Soderberg 2013) of Brown Bullhead (Ameiurus nebulosus) inhabiting clean and 85 

contaminated areas within the Detroit River. This three part study was developed to contrast 86 

SMR in the two populations of fish i) immediately following capture from their natural 87 

environment (acute study), ii) following a long-term acclimation of field captured individuals to 88 

a clean aquaculture environment (clearance study) and iii) in F1 offspring derived from each 89 

population (F1 study).  This permitted an examination of inter-population differences in SMR 90 

and attributing such responses to acclimation or heritable response/maternal effects.  91 

MATERIALS and METHODS 92 

Site description and fish collections 93 

The Detroit River is a connecting channel within the Huron-Erie corridor of the 94 

Laurentian Great Lakes.  In 1987 the river was designated as a Great Lakes Area of Concern by 95 

the International Joint Commission owing to a series of beneficial use impairments, many being 96 

related to toxic contaminants in water and sediments (Green et al. 2010). Previous sediment 97 

surveys of the Detroit River have reported widespread and elevated concentrations of PAHs, 98 

PCBs, organochlorine pesticides and metals (e.g. copper, mercury, cadmium, lead, nickel and 99 

zinc) within depositional zones along the south east channel of the river (e.g. Trenton Channel) 100 

compared to less contaminated upstream locations (e.g. Peche Island)  (Kashian et al. 2008; 101 

Drouillard et al. 2006; Szalinska et al. 2007; Szalinska et al. 2013). Contamination of the lower 102 

downstream reach is believed to be a long-term legacy phenomena associated with a hundred 103 
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years of intense population growth and industrial activities within the region (Kauss and Hamdy 104 

1985, UGLCCS 1988).  105 

Sampling of Brown Bullheads was conducted in the above two regions, with Peche Island 106 

(42˚20’42.29” N and 82˚55’39.30” W) representative of the clean location and Trenton Channel 107 

(42˚10’49.01” N and 83˚09’09.42”W) representative of contaminant areas. In order to eliminate 108 

environmental factors that may affect between-population SMR comparisons in this study, 109 

sampling locations were carefully chosen to ensure that habitat between the two sites were 110 

similar. This included sampling fish from sites with similar depths, cover, current, temperature, 111 

pH, dissolved oxygen concentrations, substrate, and submergent macrophtye community (i.e. 112 

habitat structure) for acute trials and maintaining fish under identical pond environments for 113 

clearance trials.   114 

Despite inhabiting the same system, genetic evidence suggests that fish from these two 115 

locations are reproductively isolated from one another (Soderberg 2013).  Fish from these two 116 

areas also display large differences in tissue-accumulated contaminant concentrations (Leadley et 117 

al. 1998; Farwell et al. 2013). Measurements of SMR were conducted in three main study trials 118 

to contrast metabolic rate of fish derived from clean and contaminated sites.  The first study 119 

(Acute SMR) involved measurement of SMRs in fish from clean and contaminated sites shortly 120 

(within 3-10 d of collection) following their capture from the field.  The second study (Cleared 121 

SMR) involved measurement of SMRs in fish from the two locations after holding the fish in 122 

mesocosm ponds at an aquaculture facility for a period of 1 year.  The third study (F1 SMR) 123 

involved measurement of SMR in offspring of the cleared fish used in study 2. Experimental 124 

conditions for each sub-study are outlined in greater detail below.  All studies described were 125 
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performed following ethical review and approval from the local animal care committee at the 126 

University of Windsor in compliance with the Canadian Council for Animal Care guidelines. 127 

Detroit River Brown Bullheads were collected from July through September 2009 to 128 

generate fish for long-term holding for Cleared and F1 studies. Fish were collected using a 5 129 

meter single boom electrofishing vessel equipped with a 5 kW generator. Two bow netters 130 

retrieved stunned fish as they appeared and the collected fish were immediately transferred to 131 

onboard aerated live wells for positive identification and recovery. A total of 50 Brown 132 

Bullheads with a wet mass ranging from 163 - 495 g, were collected from Trenton Channel 133 

followed by 53 Brown Bullheads from Peche Island with a wet mass ranging from 113 – 495 g.  134 

Fish from each sampling location were rapidly transferred to a nearby fish farm in Essex, Ontario 135 

where they were released into separate earthen ponds (mesocosms) following a 30-minute 136 

acclimation period. These semi natural mesocosms each measured approximately 140 m3 (L 12.5 137 

m x W 7.5 m x D 1.5 m) and were supplied with continuous 24h aeration year round. The 138 

bullheads were held in the mesocosms for a period of one year and allowed to spawn naturally 139 

the following spring. 140 

Between July and October 2010 both river locations were re-sampled in order to collect 141 

bullheads for the acute SMR study. Post reproductive Bullheads were collected as described 142 

above and then quickly transferred to indoor holding facilities. A total of 21 bullheads with a wet 143 

mass ranging from 119-495 g were collected from Trenton Channel and 23 bullheads with a wet 144 

mass ranging from 113-399 g were collected from Peche Island. Fish were held in tanks as 145 

detailed below and SMR measurements were conducted on each individual in the acute trial 146 

following a brief tank acclimation of 24-48h to ensure clearance of the gastrointestinal (GI) tract.   147 

Respirometry and SMR Determination 148 
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 All SMR measurements were performed using a single chamber intermittent flow 149 

respirometer (Loligo Systems; DAQ-PAC-G1S) controlled through AutoResp™ 1.  The typical 150 

configuration for the respirometer requires the fish be placed in a closed respirometer chamber 151 

which is then immersed in an ambient tank where two small recirculation pumps move water 152 

through the system during the computer controlled flush and measurement periods.  This 153 

configuration was modified with the addition of a 950 L freshwater tank in combination with the 154 

ambient tank. The extra tank provided a location to connect inline heating and chilling units as 155 

well as a place for air stone placement (i.e. aeration) away from the ambient tank. A submersible 156 

water pump was used to provide a continuous flow of fresh water to the ambient tank where the 157 

respirometer chamber was located.  This set up ensured a more stable system in terms of 158 

maintaining saturated dissolved oxygen concentrations, temperature and overall water quality 159 

while also minimizing vibration and noise.   160 

To obtain reliable estimates of oxygen consumption rate, three sizes of respirometry 161 

chambers were used in the study.  A large sized chamber (volume = 2924 mL) was used for 162 

bullheads in the size range of 200+ mm, a medium sized chamber (volume = 1133 mL) was used 163 

for bullheads in the size range of 150 – 200 mm and a small chamber (volume = 196 mL) was 164 

used for bullheads that were less than 100 mm (mainly trial 3; F1 offspring fish).  Prior to 165 

placement in the respirometry chamber, fish were sedated by immersion in an aerated 20 L pail 166 

with MS-222 (50 mg/L) buffered with sodium bicarbonate. Once the fish was unresponsive, it 167 

was removed and measured for total length (mm), mass (g) and volume (L; via water 168 

displacement).  The data on fish mass and volume was entered into the respirometry software, 169 

the respirometer was set to a constant flush cycle and the fish was placed in the chamber and 170 

allowed to recover.  When the fish demonstrated signs of recovery, all air bubbles were removed 171 



9 
 

from the chamber and the respirometry computer program was initialized. Flush and 172 

measurement cycles (typically 400 and 375 seconds respectively) were adjusted to ensure that 173 

oxygen levels remained near saturation in the chamber during the measurement cycle when the 174 

chamber was sealed.  SMR measurements were taken for each fish over a 12-24 h period. All 175 

measurements were taken under low light conditions by covering the ambient tank.  Since the 176 

respirometer used was a single chamber design, only one fish SMR was recorded at a time.  In 177 

order to correct for oxygen consumption that occurs from the natural build-up of microbial 178 

biomass within the respirometer system (Grottum and Sigholt 1998; Clark et al. 2013) blank 179 

measurements (i.e. trial runs with no fish) were conducted at the end of each study run. The 180 

resulting mean O2 consumption value of blanks was subtracted from the fish O2 consumption 181 

value of each study trial.   182 

Across fish, heightened oxygen consumption rates were commonly observed during the 183 

first 4 h after initiating the AutoResp™ 1 computer program.  This was interpreted as stress 184 

associated with handling, sedation recovery and initial response of fish to confinement. As a 185 

general rule, all readings from the first 4h of measurement were censored from consideration in 186 

the evaluation of SMR.  Fish O2 consumption profiles typically show variable periods in the rate 187 

of O2 consumption as opposed to a steady consumption rate (Steffensen 1989). For the 188 

calculation of SMR, only measurements that occurred within the 25th and 75th percentile during 189 

the post 4h measurement period were considered. This was done to exclude spontaneous periods 190 

of high or low O2 consumption. The high values were attributed to acute periods of routine 191 

metabolism (i.e. spontaneous activity) (Steffenson 1989). Abnormally low values were attributed 192 

to either a brief change in the metabolic rate of the fish (e.g. hypometabolism, hypoventilation) 193 

or irregular sensor readings resulting in abnormally low and invalid O2 consumption 194 
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measurements (Clarke et al. 2013).  Selected respirograms, reflecting raw O2 consumption 195 

measurements with time for an individual fish are presented in Figure 1. Only measurements 196 

post 4 h of experiment initiation (left of vertical line) and within the 25-75 percentile distribution 197 

(horizontal dashed lines) were used to generate a mean SMR value for each fish used in the 198 

studies. 199 

 200 

Study 1 (Acute SMR) 201 

Following field collections, fish designated for the acute SMR study were transferred to a 7000 L 202 

indoor tank equipped with a recirculating bio-filtration unit that included supplemental aeration 203 

and three 120 Watt UV sterilizers. The holding tank water temperature was equivalent to the 204 

river temperature. Acute fish were brought from the field in batches, placed in coolers containing 205 

water from their site of capture.  The coolers were then suspended in the holding tanks, and tank 206 

water was slowly added over of period 2 h.  When the water was fully renewed in the cooler, it 207 

was fully immersed allowing the fish to swim freely out of the cooler. The exact same procedure 208 

was used in the case of field and pond held fish which were being collected over the same time 209 

frame. 210 

Submerged open-ended 600 mm by 76 mm potable PVC pipes were added to the tanks as 211 

refuges for fish and the ambient tank was covered with an opaque lid to reduce overhead light 212 

and eliminate external room shadows.  Following acclimation, the SMR of fish of both clean and 213 

contaminated origin were measured at 23˚C (12-24 hr trial runs) using the respirometer as 214 

described above.   The acute SMR trials were started immediately following the initial 48 hr fast 215 

and conducted on individual fish from July 27 through November 1 2010. Depending upon 216 

collection success on a particular sampling day, an unavoidable time lag occurred between the 217 
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time of collection for some bullheads and the start of their SMR measurements (i.e. some fish 218 

remained in the holding tank longer than others). Most fish were assessed within 5 days of 219 

collection from the field to a maximum of 10 days.  The SMR of each fish was measured only 220 

once.  221 

Study 2 (Cleared SMR)  222 

Fish collected for the long-term holding investigation were placed in two separate 223 

outdoor ~140 m3 earthen ponds. The fish were kept in the uncontaminated mesocosms for a 224 

period of one year (July 2009 to July 2010) under natural photoperiod and temperature 225 

conditions. The ponds were supplied with continuous aeration year round and fish were 226 

provisioned with a maintenance ration of fish pellets recommended for cool water fish (Martin 227 

Mills Inc.). Bullheads were not fed pellet rations when pond temperature fell below 8˚C.   228 

Basic water quality conditions were periodically assessed within each of the ponds to 229 

ensure dissolved O2, pH, and temperature were within acceptable ranges for the health of the fish 230 

and to ensure that water quality between the ponds remained within similar ranges. Basic water 231 

quality parameters were measured in situ using a Hydrolab Surveyor 3/ Reporter multiparameter 232 

water quality logging system. 233 

The removal of these fish from their original sources of contaminant exposure (i.e. 234 

sample locations) and subsequent yearlong holding into an uncontaminated system allowed 235 

accumulated contaminants in the fish to be depurated. Consequently Study 2 bullheads are 236 

hereafter referred to as “cleared” in reference to the long-term contaminant depuration of these 237 

fish in the holding ponds (for a description of reductions in persistent organic pollutant burdens 238 

measured in pond held fish see Farwell et al. 2012 and data in Table 1).  239 
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Following the holding period, the bullheads were removed from both ponds and 240 

transferred to a 7000 L indoor tank (identical to those used in Study 1) according to the same 241 

procedure used in acute trials.  Water temperatures were maintained at 23oC during measurement 242 

and all fish were acclimated to the new tank for 72 hours before SMR measurements 243 

commenced.  Similar to Study 1, all fish were fasted for 48 h prior to placement in the chamber 244 

and individual measurements were taken over a 12-24 h period.  Fish from different treatments 245 

were measured in an alternating fashion across SMR trials periodically interrupted for 246 

completing acute SMR (Study 1) trials as fish were collected. SMR measurements for all Study 2 247 

fish commenced July 27 2010 and were completed November 1 2010. 248 

Study 3 (F1 SMR) 249 

The study 2 fish residing in the two treatment ponds spawned naturally during the spring 250 

of 2010. Schools of young bullhead, hereafter designated as F1 fish, were observed in both ponds 251 

during late June 2010.  The F1 fish were allowed to grow out in each of the parental ponds and 252 

were not sampled until they reached a mean mass of ~20 g.  During the grow out period, the F1 253 

fish were provided Silver Cup® starter feed in addition to the ration provided to adult fish, as 254 

well as naturally occurring forage .  In mid-August, 17 F1 fish from the Peche Island pond and 8 255 

fish from the Trenton Channel Pond were collected and transferred to the 7000 L indoor tanks 256 

(water temperature of 23ºC) used for holding fish in Study 1 and 2 during SMR measurements. 257 

The low numbers of F1 fish retrieved from the ponds were not a result of low survivorship but a 258 

result of other projects making use of these F1 fish for other research trials.  The SMR 259 

measurements of individual fish followed the same protocol as described for the previous Study 260 

1 and 2 with the exception of utilizing a smaller respirometry chamber (volume = 196 mL) to 261 
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increase the sensitivity of the respirometry measurements.  A total of 25 measurements were 262 

taken for F1 fish from the two treatment groups between August 17 and September 30 2011. 263 

Data Analysis 264 

Prior to analysis, assumptions of data normality and heteroscedacitity were tested using Shapiro-265 

Wilk normality test and Levene's Test for homogeneity of variance.  Non-normal data were log 266 

transformed and re-tested to ensure assumptions of analysis of variance were met. A general 267 

linear model (GLM) was used to test treatment differences as well as all combinations of 268 

treatment interactions in a 2 x 3 design whereby: 269 

Log SMR = log BW + Population + Treatment + Log BW * Population + Log BW * Treatment 270 

+ Treatment * Population + Log BW * Treatment * Population + Constant 271 

In the above model, BW is fish body mass (g) measured for each fish tested, population is a 272 

categorical variable corresponding to fish origin (or parental origin) and treatment is categorical 273 

variable corresponding to the three experimental trials: Acute, Cleared or F1 trials.  Following 274 

initial model evaluation it was observed that body mass had a highly significant effect on SMR 275 

(F1,85 = 27.67; p<0.001) as expected from known allometric relationships between body size 276 

and fish metabolic rate.  However, all interaction terms involving body mass were found to be 277 

non-significant (Population * BW, F1,85 = 1.375, p >0.2; Treatment * BW, F2,85 = 1.072, p>0.3 278 

and Population * Treatment * BW, F2,85 = 0.792, p>0.4).  This indicated that each population and 279 

treatment exhibited similar allometry of SMR with respect to body size.  Subsequently, analysis 280 

of covariance was performed using log BW as a co-variate within the 2 x 3 factorial design by 281 

removing the interaction terms involving BW according to: 282 

Log SMR = log BW + Population + Treatment + Treatment * Population + Constant 283 
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In this case, the R2 of the second model showed only a small decrease in explanatory power (R2 284 

of model 1 was 0.89 while the R2 of model 2 was 0.87) and both model I and II exhibited similar 285 

Akaiki Information Criteria (AIC) values at -221.3 and -221.9, respectively.  Given the large size 286 

differences between treatments, especially since F1 fish which were much smaller than acute or 287 

cleared fish, Model II was considered the more appropriate method for testing main effects.  288 

Following interpretation of the main effects, a posteriori tests (Tukeys HSD) were used to 289 

examine differences between SMR for each combination of population and treatment. All 290 

statistical tests were completed using SYSTAT 13 statistical software. For data summary 291 

purposes, SMRs were size corrected to a standard 200 g fish based on the slope generated for log 292 

BW (-0.336) from model 2 such that: 293 

    𝑆𝑀𝑅𝑆𝑆 =
log(−0.336·𝐵𝑊)

log(−0.336·200)
· 𝑆𝑀𝑅 294 

Throughout the text means and standard errors (SE) are reported for variables that exhibited 295 

normal distribution, while geometric means and 95% confidence intervals are reported for 296 

variables that exhibited log normal distributions 297 

RESULTS 298 

Bullhead mortalities soon after the transfer to the outdoor mesocosms were observed in 299 

both ponds (TR = 2 fish and PI = 1 fish) and attributed to collection and transfer stress. No 300 

bullhead deaths were recorded in the facility’s large holding tanks during the pre SMR holding 301 

period, but two Trenton Channel bullheads (TR) deaths occurred during the SMR trials in the 302 

respirometer chamber due to a flush pump failure. Data from these trials were excluded. 303 
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Bullheads in each pond began accepting pellet food within 7 days following the transfer 304 

from their respective river locations. Pond water quality remained within acceptable guidelines 305 

(CCME 1999) throughout the holding period (DO > 6 mg ∙L-1, pH 7.2 to 7.6). Pond temperatures 306 

increased and decreased naturally following seasonal progression. In order to avoid excessive 307 

pond warming during peak summer months, aerators were placed in the shallow areas of the 308 

ponds to avoid complete mixing of the entire pond thereby allowing bottom waters to remain 309 

cooler. Winter aeration allowed for the exchange of gases preventing potential winterkill (Lynch 310 

and Norland 2001). No winter mortalities were noted for either pond. 311 

 Data on body size, sample numbers and raw standard metabolic rate (uncorrected for fish 312 

size) are presented in Table 1. The GLM Model II fit to the data explained 87% of the variation 313 

across treatments and populations. There were highly significant differences between SMRs for 314 

the two populations (F1,90 = 12.7; p<0.001); highly significant differences between the three 315 

treatments (F2,90 = 145.4; p<0.001) and significant differences among SMRs for the treatment x 316 

population interaction (F2,90 = 6.5; p<0.01).  In order to demonstrate GLM Model II fits, 317 

uncorrected SMR data are expressed against fish body mass for each experimental group in 318 

Figure 2 along with predictions generated from the GLM Model II.  GLM model predictions 319 

were strongest for Peche Island Acute and Cleared trials, while data for F1 showed poorer 320 

allometric response, mainly due to the limited size range of fish tested in that trial.  Model 321 

predictions also tended to underestimate SMR for Trenton Channel acute and cleared fish 322 

relative to actual measurements (Figure 2).  323 

Figure 3 presents a comparison of size corrected SMR data for PI and TC fish from each 324 

of the three experimental studies.  For Study 1 (Acute SMRSS), the mean and 95% confidence 325 

interval SMRss of PI fish was 80.7 mg O2∙kg-1∙hr-1  (95% CI: 73.5 to 88.5 mg O2∙kg-1∙hr-1) and 326 
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was significantly (p<0.001; Tukey’s HSD) lower than TC fish (100.7 mg O2∙kg-1∙hr-1; 95% CI: 327 

95.0 to 106.8 mg O2∙kg-1∙hr-1).  This corresponded to a between population difference in SMRss 328 

of 19.9%. In Study 2 (Cleared SMRss), the mean and 95% CI SMRss of PI fish (38.5 mg O2∙kg-329 

1∙hr-1; 95%CI: 36.0 to 41.1 mg O2∙kg-1∙hr-1) was significantly lower (Tukey’s HSD; p<0.001) 330 

than TC fish (50.1 mg O2∙kg-1∙hr-1; 95% CI: 43.1 to 58.3 mg O2∙kg-1∙hr-1).  In this case, the 331 

between population difference in SMR was 23.2%. Notably, the SMR of cleared fish from each 332 

population showed a decrease in SMR values compared to acute fish from each population.  PI 333 

fish showed a 52.3% decrease in SMR of cleared fish relative to acute fish.  Similarly, TC fish 334 

exhibited a 50.2% drop in SMR of cleared compared to acute fish.  For Study 3 (PI and TC F1 335 

SMRSS,), the mean and 95% CI SMRSS for TC F1 offspring (69.6 mg O2oxygen∙kg-1∙hr-1; 336 

95%CI: 60.8 to 79.7 mg O2∙kg-1∙hr-1) was not significantly different (p>0.9; Tukey’s HSD) from 337 

PI F1 fish (73.5 mg O2∙kg-1∙hr-1; 95%CI: 67.5 to 80.0 mg O2∙kg-1∙hr-1). However, F1 fish did 338 

show generally higher size corrected SMRss relative to cleared fish.  The PI acclimated fish had 339 

significantly (p<0.01; Tukey’s HSD) lower SMRSS compared to PI F1 fish, but were not 340 

significantly different (p>0.05; Tukey’s HSD) from TC F1 fish.  TC cleared fish were not 341 

significantly (p>0.9; Tukey’s HSD) different from TC F1 fish or PI F1 fish (p>0.6; Tukey’s 342 

HSD).  In contrast, acute fish from each treatment group were significantly higher than fish 343 

across all other groups from both cleared and acute trials.  These observations provide a general 344 

indication that cleared and F1 fish approached one another with respect to overall SMRSS 345 

compared to acute fish which consistently showed the highest size corrected SMRSS 346 

measurements. 347 

 348 

DISCUSSION 349 
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The results of Study 1 (Acute SMR) are consistent with the initial hypothesis that Brown 350 

Bullheads collected from contaminated regions within the Detroit River exhibit increased SMRSS 351 

compared to fish collected from less contaminated areas. Of interest was that the significant 352 

difference in SMRSS between the two populations persisted following a one year period where 353 

fish from the two populations were placed in a common clean low/stress environment (Study 2 354 

cleared SMR). Whether or not the between population differences in SMRSS represent permanent 355 

changes to SMR of examined fish or if between population differences in SMR are capable of 356 

being lost after longer holding periods is not known. 357 

The two acute collection locations were chosen to represent gradients in river 358 

contamination for pollutants such as PAHs known to contribute to altered metabolic rates of fish 359 

(Heath 1987; Handy and DePledge 1999; Merten 2005).  Sediment contamination for organic 360 

and metal contaminants at TC has been known to be enriched relative to upstream areas of the 361 

Detroit River since at least the 1970’s and the sediment chemistry related to PCBs, PAHs, OC-362 

pesticides, mercury and metals was shown to have been stable for the past 10 years (Drouillard et 363 

al. 2006; Szalinska et al. 2013).  These differences in sediment chemistry translate into different 364 

chemical exposures for biota within the system.  PCBs and PAHs in caged mussels sampled from 365 

the TC and PI (Gewurtz et al. 2002; Drouillard et al. 2013) showed notably higher contamination 366 

at TC compared to the up river reference location in the vicinity of PI.  Past studies further 367 

reported that bullheads from PI and TC exhibited significant differences in contaminant 368 

exposures to PCBs, PAHs and organochlorine compounds (e.g. DDD, DDE, DDT, heptachlor; 369 

chlorinated benzenes) (Leadley et al. 1998, 1999).  Notably, Farwell et al (2012) measured PCB 370 

residues in eggs generated by a subset of acute and cleared TC and PI fish used concurrently 371 

with the present study. The data from the above study is presented in Table 1. Results show that 372 
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eggs from acute TC fish contained 7.6 fold higher total PCB concentrations compared to PI fish 373 

ova.  Following one year of clearing in the mesocosms, both fish populations decreased their 374 

PCB concentrations by approximately 52 and 49% for TC and PI fish, respectively.  However, 375 

cleared TC fish in that study still contained higher concentrations than PI fish post clearing.  376 

Unfortunately, we did not measure PCBs in F1 fish from this study.  However, F1 fish of similar 377 

size from an alternate population (derived from Bay of Quinte, Lake Ontario) reared in the same 378 

ponds under the same conditions were analyzed. The alternate population F1 fish had sum PCB 379 

concentrations that were 50% and 30% lower than acute and cleared fish, respectively (Table 1).  380 

Thus, the somewhat higher SMRSS of F1 fish relative to cleared fish is not likely a result of PCBs 381 

levels in F1’s. 382 

In general, the between population differences in SMRSS observed for acute and cleared 383 

fish from the present research is consistent with the magnitude of SMR alterations shown to be 384 

induced under laboratory conditions after exposing fish to various contaminants.  For example, 385 

Merten et al. (2005) exposed Mummichog to a gradient of PAH contaminated food and observed 386 

a significant increase in Mummichog SMRs following exposure (120+ days) to a diet 387 

contaminated with PAHs (2800 ng/g w/w). Conversely, the Mummichog SMRs were depressed 388 

at 10% concentrations (840 ng/g w/w) compared to control fish. Beyer et al. (1999) observed a 389 

similar result in Largemouth Bass (Micropterus salmoides) where routine metabolic rates 390 

initially decreased following an acute (1-4 day) exposure to the pesticide dieldrin but increased 391 

significantly over time (16 days) with increasing exposure concentrations. Similar responses 392 

have also been shown to occur in fish following exposure to metals. For example, the SMR of 393 

fathead minnows and golden shiners both decreased following an acute exposure (24h) to 394 

cadmium and copper, where longer exposures (>96h) resulted in elevated SMRs in both species 395 
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(Pistole et al. 2008; Peles et al. 2012).  In the above case, the SMR of golden shiners exposed to 396 

the two treatments concentrations of 200 and 500 μg·L− 1 Cd for 96 h increased by 65% 397 

compared to the control fish (Peles et al. 2012).   These studies and several others support a 398 

metabolic cost for fish chronically exposed to multiple chemical stressors in the environment 399 

(Hopkins et al. 1999, Calow and Sibly 1990; Calow 1991; Rowe, 2003).   400 

However, not all potentially toxic chemicals encountered by fish in the natural 401 

environment result in altered SMRs. For example, despite laboratory studies demonstrating a 402 

16.7 percent increase in the SMR of Mosquitofish exposed to 100 µg/L of mercury for 48hrs 403 

(Tatara et al. 2001), no metabolic rate differences were observed in Mosquitofish with elevated 404 

body burdens of mercury and sampled from pre Hg dosed mesocosms compared to an 405 

uncontaminated reference population (Hopkins et al. 2003). In another study, Lake Chubsuckers  406 

(Erimyzon sucetta) exposed to coal ash–polluted sediments for 4 months had significantly 407 

elevated body burdens of Se, Sr, and V but no detectable differences in SMR, although increased 408 

mortality and significantly reduced growth rates demonstrated a bioenergetics cost experienced 409 

by exposed populations (Hopkins et al. 2000). 410 

Following the clearance period in outdoor mesocosms, both TC and PI fish showed 411 

decreases in their SMRSS (52% and 49 % respectively) relative to acute fish from the same 412 

respective population.  Notably, these within population differences in SMRSS pre- and post-413 

clearance were more than 2 fold greater than the between population differences observed in 414 

either study.  Differences in SMRSS between acute and cleared fish from the same populations 415 

were observed even though both groups exhibited similar size ranges and were measured at the 416 

same time owing to the staggered collection of fish used in acclimation trials and fish used for 417 

acute trials. This implies that a much broader set of extrinsic factors were influencing the SMR 418 
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of fish, beyond those of tissue burdens of POPs compounds such as measured for PCBs 419 

(Farewell et al. 2012).  Conditions other than exposure to environmental contaminants such as 420 

changes in diet and diet abundance, the presence and complexity of in-stream structural habitat, 421 

water quality (e.g. dissolved O2 concentrations), presence of conspecifics and social effects such 422 

as aggression and dominance have all been correlated with SMR in fish (Cech 1985; Lahti et al. 423 

2002; Millidine et al. 2009; Biro and Stamps 2010; Burton et al. 2011).  424 

Certainly a quiescent pond environment with ample food and change in diet that includes 425 

conditions of low predation risk, limited shelter and only the presence of conspecifics in a 426 

limited space represents a significant environmental change compared to the riverine system 427 

where the cleared fish were collected. Based on the wide range of extrinsic factors that are 428 

known to affect SMRs in fish, it is plausible that a non-adaptive response to the change in the 429 

environment may be in large part responsible for the decline in SMR that was observed in both 430 

cleared TC and PI populations. For example, a case for altered SMR based on the habitat 431 

complexity provided through artificial cover was demonstrated by Millidine et al. (2006), where 432 

the addition of shelter led to a 31% reduction in the mean SMR of Atlantic salmon parr (Salmo 433 

salar) compared to parr that were measured without shelter. In another more recent study, 434 

phenotypic plasticity in SMR has been shown to occur in Guppies (Poecilia reticulate) in 435 

response to a change in environment, particularly in the presence and absence of predator cues 436 

(Handelsman et al. 2013). 437 

Support for this non-adaptive response argument from the present research was that the 438 

population differences in SMRSS were found to be lost in Study 3 which involved rearing F1 439 

offspring from TC and PI populations in a common environment.  To our knowledge this is the 440 

first study to investigate the change in standard metabolic rates of fish populations following 441 
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acclimation to a common environment and in F1 offspring generated from the two populations. 442 

This enables rejection of the hypothesis that the population differences measured in SMRSS 443 

generated in study 1 and 2 reflect a local adaptation of fish from the two collection regions. 444 

Adaptation to chemical exposure has been demonstrated to occur across other traits in Brown 445 

Bullhead (Williams 2014) and other fish species (Rowe 2003; Hopkins et al. 2003). For example, 446 

fish collected from waters near cotton fields in Mississippi with a long exposure history of 447 

treatment with chlorinated hydrocarbon pesticides exhibited a marked resistance to DDT 448 

compared with fish sampled from areas with no past exposure to these chemicals (Bradleigh et 449 

al. 1963).  Study three also rules out maternal factors (either maternal offloading of contaminants 450 

or other maternal factors) as a potential modifier of SMR in the study system. 451 

The results of this investigation demonstrate that fish from contaminated environments in 452 

the Detroit River maintain elevated SMRs in comparison to fish inhabiting less contaminated 453 

sites within the same riverine system. These metabolic effects persist in fish after removing them 454 

from the contaminated environment over periods as long as one year. The results support a 455 

general acclimation syndrome response (Selye 1956; modified by Beyer et al. 1999), whereby 456 

the energy expenditure in an organism changes over time in order to compensate for the effects 457 

of an encountered stressor. Following this conceptual progression, altered SMRs and/or other 458 

metabolic costs expenditures (e.g. specific dynamic action) occur during the resistance stage in 459 

the syndrome where physiological compensation for the effects of the stressor(s) becomes part of 460 

the daily bioenergetic cost of living for the exposed animal (Beyer et al. 1999).  However, it is 461 

clear from this study that SMR as a physiological parameter is highly sensitive to a wide array of 462 

extrinsic factors. Notably the change of environment during clearing trials would appear to have 463 

had a large effect on SMR measurements, and thus the exact nature of the stressor(s) and stressor 464 
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interactions responsible for population differences in bullhead SMRs cannot be directly 465 

identified.   466 

Given that the location differences in SMR are not inherited attributes, and assuming the 467 

observed within and between population effects are potentially additive, the scope for variation 468 

in SMR among Detroit River bullheads ranges from 19.9 to 23.2% related to pollutant exposures 469 

and 50.3 to 52.3% differences attributed to environment.  Sherwood et al. (2000) demonstrated 470 

yellow perch from metal polluted lakes had 3 fold lower annual growth increments owing to 471 

elevated energetic costs of polluted fish.  However, in this case, the increased metabolic costs 472 

also included additional foraging costs due to pollutant induced reductions in prey. Notably, 473 

differences in SMR resulting from a combination of environment and pollution effects were 474 

observed to approach the magnitude of activity multipliers commonly used to convert SMR to a 475 

routine metabolic rate (RMR) estimate in bioenergetic models (Hanson et al. 1997; Brigs and 476 

Post 1997). Commonly, any differences in routine metabolic rate of fish as measured by in-situ 477 

methods are interpreted to largely represent differences in fish activity (see Sherwood et al. 478 

2000).  However, these observations support a growing body evidence that substantive 479 

intraspecific variation in SMRs exist within and among fish populations of the same species and 480 

more importantly that such differences can be sustained within a connected aquatic system 481 

(Burton et al. 2011).  The results have implications for bioenergetics modelling applications 482 

where all individuals of a species are treated similarly with respect to SMR.  Additional research 483 

aimed at generating a scope for environment or pollutant-induced SMR shifts in other species, 484 

similar to the scope of activity concept, would be useful to further expand the accuracy of fish 485 

bioenergetics models. 486 

 487 
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 716 

Table 1.  Body size, standard metabolic rates (mg O2·kg-1·h-1) and sum PCB concentrations 717 

(µg/g lipid) in brown bullheads from different experimental trials 718 

 719 

  720 

Trial Population Body Mass ± SE (g) N SMR (95%)
1 

(mg O2·kg
-1

·h
-1

) Sum PCBs ± SE (µ/g Lipid)

Acute Peche Island 262.9 ± 18.3 23 80.7 (69.5 - 87.1) 0.94 ± 0.04
2

Trenton Channel 256.1 ± 22.8 21 97.9 (91.0 - 105.3) 7.14 ± 0.50
2

Cleared Peche Island 320.7 ± 24.2 15 35.6 (33.3 - 38.1) 0.61± 0.09
2

Trenton Channel 273.5 ± 21.6 11 47.6 (40.8 - 55.5) 2.65± 0.162

F1 Peche Island 46.8 ± 8.8 18 106.6 (93.9 - 121.2) NA

Trenton Channel 35.2 ± 5.8 8 107.2 (91.7 - 125.4) NA

F1 from fish ponds 48 0.75± 0.07
3
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Figure Captions 721 

Figure 1.  Raw standard metabolic rate (SMR) readings for 3 selected Brown Bullhead 722 

treatments (acute, cleared and F1 groups) over time.  Vertical line designates first 4 h period 723 

which was censored from SMR calculations.  Horizontal solid lines represents 4-24 h mean of 724 

non-censored values, dashed horiztonal lines present 25% and 75% quartiles used to cenosor 725 

outlier readings. 726 

 727 

Figure 2. Standard metabolic rates measured in individual brown bullheads as a function of  728 

body mass in each experimental trial.  Top, middle and lower graphs represent acute, acclimated 729 

and F1 experiments.  Square symbols (■) present data for Peche Island fish, open circles (○) 730 

refer to data for Trenton Channel fish.  Solid line is the GLM predicted RMR for Peche Island 731 

fish in a given experimental trial.  Dashed line is the GLM predicted RMR for Trenton Channel 732 

fish in a given trial. 733 

 734 

Figure 3. Geometric mean size standardized resting metabolic rates of brown bullheads for 735 

different populations and treatments.  Error bars denote 95% confidence intervals around 736 

geometric mean.  Hollow bars are Peche Island Fish, thatched bars are Trenton Channel fish.  737 

Columns that have different letters are significantly different from one another (p<0.05; Tukey’s 738 

HSD). 739 

 740 
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 744 

Figure 2 745 
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