University of Windsor Scholarship at UWindsor

Great Lakes Institute for Environmental Research Publications

Great Lakes Institute for Environmental Research

2015

PCB Food web dynamics quantify nutrient and energy flow in aquatic ecosystems

Anne M. McLeod University of Windsor

Gord Paterson State University of New York, Syracuse

Ken G. Drouillard

Douglas G. Haffner University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/glierpub

Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation

McLeod, Anne M.; Paterson, Gord; Drouillard, Ken G.; and Haffner, Douglas G. (2015). PCB Food web dynamics quantify nutrient and energy flow in aquatic ecosystems. *Environmental Science and Technology*, 49, 12832-12839. https://scholar.uwindsor.ca/glierpub/15

This Article is brought to you for free and open access by the Great Lakes Institute for Environmental Research at Scholarship at UWindsor. It has been accepted for inclusion in Great Lakes Institute for Environmental Research Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

¹ PCB Food Web Dynamics Quantify Nutrient and

² Energy Flow in Aquatic Ecosystems

3 Anne M. McLeod^{1*}, Gordon Paterson², Ken G. Drouillard¹, G. Douglas Haffner¹

¹Great Lakes Institute for Environmental Research, University of Windsor, Ontario, Canada
N9B3P4.

² State University of New York, College of Environmental Science & Forestry, Syracuse, New
York, USA, 13035

8 *Correspondence to: mcleod15@uwindsor.ca, (519) 253-3000 ext 3752, fax: 519-971-3616

9 KEYWORDS. Persistent Organic Pollutants as Chemical Tracers, Energy and Nutrient Flow,

10 Food webs, Lake Huron, Lake Trout.

11

12

13 Accepted in Environmental Science and Technology, Oct. 2015.

14 ABSTRACT. Measuring *in situ* nutrient and energy flows in spatially and temporally complex 15 aquatic ecosystems represents a major ecological challenge. Food web structure, energy and 16 nutrient budgets are difficult to measure, and it is becoming more important to quantify both 17 energy and nutrient flow to determine how food web processes and structure are being modified 18 by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an 19 ideal tracer to quantify *in situ* energy and nutrient flow between trophic levels. Here, we 20 demonstrate how an understanding of PCB congener bioaccumulation dynamics provides 21 multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate 22 this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for 23 Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish 24 life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (> 5 yr) recycled an average of 482 Tonnes \cdot yr⁻¹ of N, 45 Tonnes \cdot yr⁻¹ of 25 P and assimilated 22 TJ yr⁻¹ of energy. Compared to total P loading rates of 590 Tonnes·yr⁻¹, the 26 27 recycling of primarily bioavailable nutrients by fish plays an important role regulating the 28 nutrient states of oligotrophic lakes.

29

30 **Introduction:**

Anthropogenic climate change, chemical pollution, nutrient loading, and habitat degradation are some of the most critical factors simultaneously affecting aquatic ecosystems. These multiple stressors can act synergistically resulting in a myriad of unpredictable responses causing aquatic food webs to be irreparably altered. These perturbations are often enhanced by invasive species¹ and can lead to declining fish abundances and condition, changes in reproductive success², and potentially lead to food web contractions and regime shifts³⁻⁴. While it is possible to estimate the effects of environmental and anthropogenic stressors on fish ecology and physiology⁵⁻⁸, as well
as identify changes in resource exploitation by fish through gut contents and stable isotope
analyses⁹⁻¹⁰, there are currently no methods to directly measure individual-based nutrient and
energy flows in food webs¹¹. To achieve such measurements it is essential to be able to quantify
individual, *in situ* fish consumption rates.

42

Quantifying fish consumption rates is critical to understanding food web dynamics because fish
have been identified as both sinks¹² and vectors of essential nutrients and energy transport¹³. Fish
communities play a critical role regulating the transport and fate of nutrients in aquatic
ecosystems as they are an important part of the overall nutrient pool¹². Understanding nutrient
cycling and transport in biota is vital for predicting ecosystem responses to issues such as
eutrophication, species invasions and setting fisheries quotas.

49

50 The importance of quantifying fish consumption rates has long been recognized. Species-specific 51 bioenergetics models incorporating growth, metabolic and waste processes have been developed for a suite of aquatic species, both juvenile and adult, starting with bluegills in 1974¹⁴. As of 52 53 2000, papers being published a year on bioenergetics modeling have increased rapidly¹⁵. These 54 models rely on both laboratory and field data to estimate average consumption rates of different age cohorts of fish¹⁶. Validations of bioenergetics models, however, generally tend to 55 56 demonstrate a poor fit between model predicted and lab or field data¹⁵. Thus, efforts to complete 57 hypothesis based testing of individual model parameters will serve to improve model structure and performance¹⁵. Further, bioenergetics modelling efforts tend towards population based 58 59 predictions of predator demand rather than assessing individual based responses to ecosystem

perturbations^{11,17}. Similarly, the mass-balance approach is incorporated into Ecopath, Ecosim,
and Ecospace model estimates of consumption and trophic interactions¹⁸. Again, however, these
are population-wide estimates with a Bayesian resampling approach to estimating uncertainty¹⁸
without tracking individual responses within populations.

64

65 Chemical tracer mass balance approaches using Mercury and Cesium^{19,20} have also provided 66 alternative methods of calculating fish consumption rates. However, these approaches are limited 67 as singular metrics of dietary consumption and do not necessarily track similar environmental 68 processes. As food webs are temporally and spatially complex²¹, there is need for a method that 69 directly quantifies fish consumption rates and provides statistical power through multiple 70 repeatable metrics while tracking fish bioenergetics responses to environmental change.

71

72 This study proposes the use of persistent organic pollutants (POPs) as metrics to quantify 73 nutrient and energy flow within aquatic food webs. POPs, such as polychlorinated biphenyls (PCBs), are globally ubiquitous pollutants that span a wide range of chemical hydrophobicities²² 74 75 and many congeners are highly resistant to environmental and biological degradation^{23,24}. These chemical properties regulate their bioaccumulation in fish²², with the fraction of accumulation 76 77 from dietary versus aqueous sources ranging from 70% for less hydrophobic congeners (logKow 78 \leq 6.5) to 100% for increasingly hydrophobic congeners²⁵. Furthermore, elimination rates of the 79 more hydrophobic congeners (log K_{OW} >6.5) are very low resulting in long chemical half-lives with respect to the life span of fish²⁶. Therefore, the body burden of super-hydrophobic 80 81 congeners (those with $\log K_{OW} > 6.5$) represents a proxy of the total amount of food a fish has 82 consumed in its lifetime. Thus, the kinetics of PCB congeners in aquatic consumers have the

potential to provide an *in-situ* repeatable method to quantify the total mass of food consumed
over the duration of a fish's life. Therefore persistent hydrophobic chemicals can be used as
multiple independent markers to directly measure nutrient and energy flow through the upper
trophic levels of food webs.

87

This study investigates (1) the use of PCB bioaccumulation dynamics to develop quantitative measurements of both nutrient uptake and loss as well as the energy consumed over a fish's lifespan as compared with previous model prediction methods, and, (2) quantify the relative importance of fish for nutrient recycling in aquatic systems.

92

93 **Experimental:**

94 Sample Processing

95 Lake trout (*Salvelinus namayacush*; n = 195), rainbow smelt (*Osmerus mordax*; n = 34), round 96 goby (*Neogobius melanostomus*; n = 27), alewife (*Alosa pseudoharengus*; n = 8), and whitefish 97 species (*Coregonus artedi* and *Coregonus hoyi*; n = 54) were collected from the Canadian waters 98 of the Main Basin, Georgian Bay, and North Channel regions of Lake Huron throughout the 99 summers of 2010, 2011, and 2012. Fish were collected by overnight gill nets set by the Upper 100 Great Lakes Unit of the Ontario Ministry of Natural Resources. At each site a total of 18 nets 101 were set, and each net consisted of 15m panel of (32mm) mesh and a 25 m panel of 38 mm mesh 102 followed by 50m panels of 51, 64, 76, 89, 102, 114 and 127 mm meshes. Length and weight 103 measurements were taken, sex was determined, and otoliths and gut tracts removed, then samples were placed on dry ice. Frozen samples were transported back to the Great Lakes Institute for
Environmental Research (GLIER) and stored at -25 °C until processing.

106

107 Sample processing included homogenization of whole fish samples and the measurement of 108 whole body lipid contents. Moisture contents were obtained by drying approximately 0.5 g of 109 homogenate for 24 hours. Individual PCB congener concentrations and lipid contents were determined using the microextraction method described by Daley et al.²⁷ In brief, 0.5 g of whole 110 111 body homogenate was ground with 15 g of sodium sulfate using a glass mortar and pestle, and 112 then wet packed into a glass chromatography column containing 15 mL of a 50 : 50 113 hexane(Hex):Dichloromethane(DCM) (v/v) extraction mixture, along with 35 ng of a PCB 34 114 extraction performance recovery standard. After solvent elution, an additional 15 mL of 115 Hex:DCM was added to extract the homogenate. Sample extracts were then evaporated under 116 vacuum to ~2 mL, and then diluted to 10 mL with hexane in a volumetric flask. Neutral lipid content was determined gravimetrically using 1 mL of this solution²⁸. Six grams of Florisil 117 118 topped with approximately 1 g of sodium sulfate was then used for sample clean up with 50 mL 119 hexane wash. The final extract was evaporated under vacuum to <1 mL and brought to a final 120 volume of 1 mL with iso-octane for analysis by gas chromatography-electron capture detector 121 (GC-ECD)²⁹. All samples were analyzed for the following PCB congeners (IUPAC #): 18/19, 122 31/28, 33, 52, 49, 44, 74, 70, 95, 101, 99, 87, 110, 151/82, 149, 118, 153, 105/132, 138, 158, 123 187, 183, 128, 177, 156/171, 180, 191, 170, 199, 195/208, 194, 205, 206, and 209. 124

125 A method blank and an in house reference tissue homogenate of Detroit River carp were

126 extracted simultaneously as quality assurance for every set of 6 sample extractions. All sum PCB

127	concentrations quantified in the reference tissue were in compliance with the Great Lakes
128	Institute for Environmental Research organic analytical laboratory's quality assurance guidelines
129	(mean ±2 standard deviations (SD)). Recoveries of the internal standard averaged 89% $\pm1\%$
130	(Standard Error; $n = 195$), and sample concentrations were not recovery corrected.
131	
132	Gut content analyses were performed using the Ontario Ministry of Natural Resources protocol.
133	Contents of the gut were removed and food items were identified by using calcified structures
134	such as otoliths that are generally resistant to digestion. Prey items were then enumerated and
135	species proportions calculated using the number of each prey item obtained.
136	
137	Consumption Estimates
138	One of the major assumptions of the PCB approach proposed in this paper is that
139	biotransformation and depuration mechanisms do not contribute significantly to the whole body
140	elimination of the super hydrophobic congeners being used as food web tracers. All
141	metabolizable congeners were removed from the analyses to ensure no biotransformation was
142	occurring ³⁴ . A review of literature estimates of elimination rates of PCB congeners by fish
143	demonstrated that congeners with a $\log K_{OW}$ greater than 6.5 did not demonstrate significant
144	elimination (see Fig. 1. ³⁵⁻⁴⁰). Furthermore, the non-significant elimination rates for these
145	congeners resulted in a t95, or time to steady state, vastly exceeding the life expectancy of the
146	organism. Therefore, the total body burden of any one of these super-hydrophobic congeners
147	represents an individual's lifetime of food consumption.

148 Amounts of nitrogen and phosphorus recycled were calculated using the concentrations of PCB

149 congeners in the whole fish sample. First, concentration data were converted to mass values. The

amount of each PCB congener ingested was then calculated according to equation (1).

151 (1) Amount PCB_i ingested [ng] = $m_{PCB_i} \times f_{PCB_i} \times (E_{d,PCB_i})^{-1}$

152 where PCB_i is the chosen PCB congener, m_{PCB_i} is the mass of PCB_i in the consumer (in ng), E_d ,

153 _{PCB_i} is the chemical assimilation efficiency for PCB_i in food (prey), and f_{PCB_i} is the fraction of

154 PCB_i mass which is accumulated through dietary uptake as opposed to gill intake (Table S1).

155 Using the results from the gut content analyses (Figure S2), the number of smelt, round goby and

156 other fish consumed were calculated according to equation (2)

157 (2) number of fish consumed =
$$\left(\frac{Amount of PCB_i ingested}{PCB_{i,prey}}\right) \times p_{prey}$$

where amount of PCB_i ingested is calculated using equation (1), PCB_i, prey is the average mass
(ng) of PCB_i in the prey species (smelt, round goby, or other), and p_{prey} is the proportion of diet
made up of that prey species (where proportion of smelt, round goby, and other fish consumed
by lake trout were, respectively, 0.88, 0.075, and 0.045 for the Main Basin of Lake Huron, 0.77,
0.1, and 0.13 for the Georgian Bay, and 0.98, 0.015, and 0.005 for the North Channel).
Consumption estimates were then compared to consumption estimates presented in Stewart et

- 164 al.¹⁶ and Pazzia et al.²⁰ by extrapolating their estimates to include 13 year old fish using the
- 165 equations provided in their work.

166

167 Nitrogen and Phosphorus Recycling Estimates

168 Determination of nitrogen content was conducted in the Chemical Tracers laboratory at GLIER 169 using a continuous-flow isotope ratio mass spectrometer (Finnigan MAT Deltaplus; Thermo Finnigan, San Jose, California) on freeze dried homogenates (Labconco co., Kansas City Missouri)
which had been ground using mortar and pestle, and then lipid extracted using chloroformmethanol²⁹.

173

Total mg of nitrogen was subsequently calculated from dry weight (g) according to equations 3and 4.

176 (3) Dry weight[g] (dw) = ww - ww
$$\left(\frac{\% moisture}{100}\right)$$

177 (4)
$$N [mg] = \left(\left(\frac{\% N}{100} \right) \times dw \right) \times 1000$$

where ww is the wet weight of the fish. The amount of phosphorus was then estimated using the
P:N ratio of 1:10.6 for wild caught fish³⁰. Total calories in each diet item were calculated using
fish energy densities³¹.

181

182 Using the calculated mass of N, the total amount of N ingested by each lake trout was

183 determined according to equation 5.

184 (5) N ingested [mg] = $\sum N_{prey} \times number \ of \ fish \ consumed_{prey}$

185 where N_{prey} is the average amount of nitrogen (mg) in the prey fish calculated using equation (4),

and the number of fish consumed_{prey} by a lake trout was estimated using equation (2). This was

187 then summed across all prey species. Both P and calories ingested were calculated in a similar

188 manner, where P (mg)_{prey} was estimated using a P:N ratio of $1:10.6^{30}$, and calories in prey fish

- 189 were calculated using energy densities². Finally, mass of N recycled was calculated according to
- equation 6.

$$(6) N recycled [mg] = N_{ingested} - N_{lake trout}$$

192 where N_{lake trout} (mg) was calculated using equation (4), and N_{ingested} (mg) was calculated using

193 equation (5). The mass of P recycled was calculated in a similar manner.

194

195 Data analysis

196 Growth rates of Lake Huron lake trout were calculated using the von Bertalanffy (VBL) growth197 rate model comparing total length and age (equation 7)

198

199 (7)
$$L_t = L_{\infty} \left(1 - e^{-k(t-t_0)} \right)$$

200

where t is lake trout age (yr), L_t is the total length (cm) of the fish at time t, L_{∞} is the asymptotic 201 length (cm), and k the growth coefficient (yr⁻¹). The model was calculated using a value of $t_0 = 0$, 202 for the theoretical age at a total length of 0, an assumption validated for whitefish³², another 203 salmonid, and used for lake trout³³. Calculations of the VBL growth models were done using the 204 205 non-linear regression module of SYSTAT (SYSTAT 11). Multiple iterations were done to 206 achieve optimal model fit. The square of the correlation coefficients between observed and predicted values were used to calculate the coefficient of determination (r^2) values for the VBL 207 208 growth models. Individual growth rates ($\% \cdot \text{year}^{-1}$) were obtained by equation 8.

209

210 (8) Growth rate
$$(\% \cdot year^{-1}) = \left(\frac{w}{w_t}\right) \times ln\left(\frac{w_t}{w_{t+1}}\right) \times 100$$

211 where *w* is the measured weight of the individual, w_t the von Bertalanffy predicted weight at age 212 *t*, and w_{t+1} the von Bertalanffy predicted weight at age *t*+1.

215 A unique aspect of using PCBs as markers of individual consumption rates is their potential to 216 offer multiple, repeatable metrics for calculating consumption dynamics in individual fish. To 217 demonstrate the power of the PCB approach, we used an ANOVA to compare congener-specific 218 consumption estimates for the 15 most abundant congeners and found no significant differences 219 among the 9 congeners with $\log K_{OW} > 6.5$ (p > 0.15). This lack of significant differences 220 demonstrates that the measured consumption rates are not chemical dependent, hence any of 221 these highly hydrophobic congeners represent tracers of prey consumption. For our purposes, we 222 chose PCB 153, a highly recalciatrant and ubiquitous PCB congener that is commonly monitored in trophic magnification studies^{41,42}, as well as other contaminant ecology studies^{43,44}. Moreover, 223 224 the similar variability among the congeners further demonstrates that each congener is tracking 225 common bioaccumulation processes (Figure 2). This correspondence in individual variability and 226 bioaccumulation rates among congeners confirms that super-hydrophobic PCB congeners offer 227 multiple, repeatable metrics for calculating consumption dynamics in fish.

229 Quantifying the consumption rates of top predator in aquatic ecosystems is essential for 230 understanding pollutant and nutrient trophodynamics and multiple approaches have been 231 developed to generate such consumption estimates. For instance, bioenergetics studies have used 232 sub-models of physiological characteristics such as metabolism, growth, excretion, and reproduction to develop consumption estimates for age cohorts within a population^{14,16,45}, while 233 more empirical approaches have used Mercury (Hg) and Cesium-137 (¹³⁷Cs) dynamics^{19,20}. 234 235 Figure 3 compares fish consumption estimates using the PCB 153 method presented here with estimates modeled by Stewart et al.¹⁶ for Lake Michigan lake trout, and by ¹³⁷Cs estimates 236

observed by Pazzia et al.²⁰ for Lake Ontario lake trout. Calculations of maximum consumption 237 238 (C_{max}) provided in Stewart et al.¹⁶ are also included in Figure 3 using temperature and weight 239 data obtained from the present study. As observed in Figure 3, the PCB model developed in the 240 current study provides consumption estimates below those of C_{max} , and similar to those obtained 241 or estimated from the other studies or models. The PCB method, however, provides direct 242 measurement of individual-based consumption, using concentrations observed in individual fish. 243 As Figure 3 demonstrates, there is considerable individual variability in consumption within a 244 population and the PCB method offers greater resolution as to the causes of these individual-245 level differences.

246

247 The PCB method not only provides a way of calculating individual consumption estimates, but 248 provides a foundation for estimating nitrogen and phosphorus recycling by individual organisms. 249 Estimates of the lifetime nitrogen (N) and phosphorus (P) recycled by lake trout (Salvelinus 250 namaycush) based on PCB 153 accumulation dynamics revealed a power relationship, where the 251 mass of N and P recycled by fish increased with age (Figure 4). As the fish reached the 252 maximum asymptotic length predicted by the von Bertalanffy (VBL) growth model, the mass of 253 recycled nutrients increased exponentially. Specifically, as growth rates slow to this asymptote, 254 the majority of consumed prey energy and nutrients will be turned over via metabolic respiration 255 rather than assimilated into new somatic growth. Therefore these older individuals become 256 increasingly important sources of nutrient recycling. The relationship between nutrient recycling 257 and fish age and size is further resolved by examining fish growth rates. Individual growth rates 258 $(\% \cdot \text{year}^{-1})$ as a function of fish age (Figure 4, d), indicates that lake trout ≥ 5 years of age had 259 individual growth rates below 50% yr⁻¹. At this time in their life history, these upper age cohorts

become nutrient sources through recycling rather than net nutrient sinks. The importance of older
fish regarding nutrient recycling increases exponentially as their growth rates continue to
decrease with age.

263

264 In one year, a single 13 year old lake trout from Lake Huron will have consumed 65 MJ of 265 energy and will have recycled 1441 g of N and 136 g of P. If fish population age structure estimates are made using the yearly stocking levels of 4.3×10^6 yearlings with 40% 266 mortalities/year⁴⁶ and assuming a simple exponential decay model, then over a one year period, 267 268 in total, the lake trout population between 5 and 13 years of age (estimated at 1.7×10^6 269 individuals; capped at 13 as that is the oldest fish captured in the study) will have recycled 482 270 Tonnes of N, 45 Tonnes of P, and have acquired 22 TJ of energy. This compares to zebra 271 (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels that are estimated to divert up 272 to 20 Tonnes of P in Lake Huron's Saginaw Bay region and are also associated with the nearshore shunt in Great Lakes ecosystems⁴⁷. Total annual P loads to Lake Huron are estimated to be 273 274 590 Tonnes and the results of our study indicate that lake trout can recycle up to 7.6% of this 275 total load. However, it must be emphasized that much of the phosphorus recycled by fish will be 276 in bioavailable form and thus capable of directly supporting a significant proportion of primary production in the lake⁴⁸. Furthermore, nutrient recycling by other fish species will increase this 277 278 estimate.

279

Although the impact of fish as a phosphorus sink has been previously documented¹², their importance as nutrient recycling sources has been highly disputed. It is recognized that

anadromous species, such as Pacific salmon (*Oncorhynchus* spp), are important sources of

283 nutrients in coastal freshwater communities, acting as biovectors, transporting nutrients 284 accumulated in the marine environment to coastal freshwater systems^{49,50}. Studies of larger, piscivorous fish have noted their importance as potential nutrient sources^{51,52} whilst others 285 examining smaller, forage fish argue to the contrary⁵³. Previous nutrient studies relied on 286 287 bioenergetics modeling and population density and growth estimates to estimate the relative importance of fish on nutrient recycling in aquatic ecosystems^{14,17}. The PCB method developed 288 289 in the current study provides a novel approach to quantify in situ the magnitude of nutrient 290 recycling achieved by fish using multiple, repeatable metrics. In this capacity, top predator 291 species such as lake trout can act as off-shore vectors of these limiting nutrients thereby reducing 292 the impact of the near shore shunt phenomenon as associated with dreissenid mussel establishment⁴⁷. 293

294

295 The life history of other large piscivores, however, can prevent these top predators from acting as 296 off-shore nutrient shunts. For instance, Lake Huron is also stocked with Pacific salmonids 297 (Onchorhynchus spp) which, in contrast to lake trout, grow more rapidly, have shorter life spans and migrate to tributaries and streams at maturity where they spawn and die⁵⁴⁻⁵⁶. This specific 298 299 reproductive ecology has garnered Pacific salmonids much attention as sources of nutrients and 300 contaminants in spawning tributaries⁵⁷⁻⁶¹. Pacific salmonid spawning migrations generally occur 301 only when individual growth rates decline below 50% per year. These older salmon provide 302 limited contributions to offshore nutrient recycling with the mature senescent individuals 303 exporting a significant mass of nutrients out of the lake⁶¹. These observations highlight the 304 importance of piscivore life history with respect to nutrient transportation and export in aquatic 305 ecosystems.

307 While multiple factors have been identified as contributing to the regime shift in Lake Huron⁶², 308 there is general agreement the lake is showing definite signs of 'oligotrophication'. The results of 309 this study indicate that older lake trout can play an important role in the nutrient recycling in 310 oligotrophic lakes, systems to which they have well-adapted life histories. The stocking of fish 311 like salmon, however, is predicted to contribute significantly to a decline in bioavailable 312 nutrients, especially in the pelagic compartment. In Lake Huron, however, Pacific salmonid 313 abundances have declined dramatically following the collapse of alewife stocks⁴⁶ and older (> 5 314 yrs) lake trout have become the predominant off-shore salmonid predator population in the lake⁶³. Given the differing life-spans, growth rates and reproductive strategies of lake trout 315 316 relative to stocked Pacific salmonids in the Great Lakes⁵⁴, the results of this study demonstrate 317 that lake trout provide a critical ecosystem service by effectively recycling offshore nutrients to 318 enhance food web stability and productivity in highly oligotrophic ecosystems.

319

320 Most importantly, this study demonstrates that PCB congeners can be used to quantify *in situ* 321 nutrient and energy flow in aquatic systems. Through the use of this metric, we have been able to 322 demonstrate the importance of fish growth rates and life history on the recycling of essential 323 limiting nutrients in oligotrophic lakes. The ubiquitous nature of PCBs implies that this 324 technique is applicable to aquatic systems across the globe. Moreover, due to the presence of 325 different congeners, PCBs provide repeatable, independent metrics for measuring nutrient and 326 energy flow which will allow us to quantify the effects of multiple environmental and 327 anthropogenic stressors across different aquatic ecosystems.

329 FIGURES

Figure 1: Literature t_{95} estimates across a range of log K_{OWS}. Only those congeners depicting significant elimination are shown³⁵⁻⁴⁰. The dashed line represents the cut off at a log K_{OW} of 6.5, after which very few studies revealed significant elimination of congeners and these congeners were only in small fish. All estimates presented here are measured t_{95} estimates, with the exception of lake trout which were modeled; hence the elimination rates may not have been significant. However, the elimination rate estimates demonstrate that it takes at least a hundred years for congeners with higher log K_{OWS} to reach steady state.

Figure 2. The relationship between calories consumed and logK_{OW} for the 15 most abundant

341 PCB congeners (PCBs 52, 70, 95, 99, 101, 110, 118, 128, 138, 149, 153, 170, 177, 180, 187).

342 Piece-wise linear regressions were completed and no significant slope was found for congeners

³⁴³ with $\log K_{OW} > 6.5$.

Figure 3: Lifetime prey consumption estimates (kg \cdot fish⁻¹) for lake trout calculated using PCB 153 (grey circles, solid black line of best fit; y = 6462.8x^{1.4} R² = 0.4), using C_{max} equation (dashed dark grey line) provided in Stewart et al. 1983¹⁶, with temperature and weight values obtained from our study, from extrapolation of bioenergetics estimates by Stewart et al. 1983¹⁶ for Lake Michigan lake trout (dashed-dotted dark grey line), and from extrapolation of ¹³⁷Cs estimates for Lake Ontario lake trout by Pazzia et al. 2002²⁰ (dotted grey line).

- 353
- 354

Figure 4: (A-C) Relationships between the amount of (A) energy consumed (MJ \cdot fish) and (B) nitrogen and (C) phosphorus recycled (g \cdot fish) by lake trout. The solid curve in panels A-C represents the von Bertalanffy growth curve for lake trout with dotted lines representing the 95% confidence intervals. The dashed line in panels A-C represent the best fit, non-linear regression (y = 16.625e^{0.3003x}, R² = 0.42) and N (y = 72.339e^{0.3122x}, R² = 0.40) and P (y = 6.8181e^{0.3122x}, R² =

- 363 0.40). Panel D provides the relationship between individual lake trout growth rate (% year⁻¹) and
 364 age with the dashed line indicating a growth rate of 50% year⁻¹.
- 365

366 ASSOCIATED CONTENT

367 Supporting Information.

- 368 Values for congener $\log K_{OW}^{22}$, $E_{d, PCBi}^{26}$ and f_{PCBi}^{25} used in the calculations of the amount of PCB_i
- 369 ingested by a fish, results from gut content analyses on Lake Trout. This material is available free
- 370 of charge via the Internet at http://pubs.acs.org.

371 AUTHOR INFORMATION

372 Corresponding Author

- 373 Great Lakes Institute for Environmental Research, University of Windsor, Ontario, Canada
- N9B3P4. Correspondence to: mcleod15@uwindsor.ca, (519) 253-3000 ext 3752.

375 Author Contributions

- 376 G.D.H., G.P., and A.M. initiated the study, while K.G.D. provided input on development of the
- 377 modeling component. All authors were involved in the writing of the paper, but the main
- 378 contributions were by A.M. All authors discussed the results and consulted on the paper.

379 Funding Sources

- 380 Funding was supported by NSERC and CRC grants to GDH.
- 381
- 382 ACKNOWLEDGMENT

383	This research was supported by the Ontario Ministry of Natural Resources Upper Great Lakes
384	Management Group who provided ship time and assisted with the ageing and diets of fish.
385	ABBREVIATIONS
386	PCB, polychlorinated biphenyl; N, nitrogen; P, phosphorus; POPs, persistent organic pollutants;
387	K _{OW} , octanol-water partition coefficient; Hex, hexane; DCM, dichloromethane; VBL, von
388	Bertalanffy Growth; dw, dry weight, m_{PCBi} , the mass of PCB _i in the fish (in ng); $E_{d, PCBi}$,
389	the organism's chemical assimilation efficiency for food for PCB _i ,; f _{PCBi} , the fraction of PCB _i
390	mass which is accumulated through ingestion; t , lake trout age (yr); L _t , the total length (cm) of
391	the fish at time t; L_{∞} , the asymptotic length (cm); k, the growth coefficient (yr ⁻¹).
392	REFERENCES
393	1. Riley, S. C.; Roseman, E. F.; Nichols, S. J.; O'Brien, T. P.; Kiley, C. S.; Schaeffer, J. S.
394	Deepwater demersal fish community collapse in Lake Huron. Trans. Am. Fish. Soc. 2008,
395	137(6), 1879-1890, DOI 10.1577/T07-141.1.
396	2. Paterson, G.; Hebert, C. E.; Drouillard, K. G.; Haffner, G. D. Congruent energy density
397	trends of fish and birds reflect ecosystem change. Limnol. Oceanogr. 2014, 59 (4), 1171-
398	1180, DOI 10.4319/lo.2014.59.4.1171.
399	3. Madenjian CP; Rutherford CS; Stow CA; Roseman EF; He JX. Trophic shift, not
400	collapse. Environ Sci Technol, 2013, 47(21) 11915-11916, DOI 10.1021/es404089y
401	4. Ridgway MS. Seasonal and annual patterns in density of double-crested cormorants in
402	two coastal regions of Lake Huron. J Gt Lakes Res, 2010, 36(3), 411-418, DOI
403	10.1016/j.jglr.2010.05.010
404	

405	5.	Waser W.; Sahoo, T. P.; Herczeg, G.; Merila, J.; Nikinmaa, M. Physiological
406		differentiation among nine-spined stickleback populations: Effects of copper exposure.
407		Aquat. Toxicol. 2010, 98 (2), 188-195; DOI 10.1016/j.aquatox.2010.02.009.
408	6.	MacFadyen, E.J.; Williamson, C. E.; Grad, G.; Lowery, M.; Jeffrey, W.H.; Mitchell, D.
409		L. Molecular response to climate change: temperature dependence of UV-induced DNA
410		damage and repair in the freshwater crustacean Daphnia pulicaria. Global Change Biol.
411		2004, 10 (4), 408-416; DOI 10.1111/j.1529-8817.2003.00750.x
412	7.	Davoren, G. (2013) Distribution of marine predator hotspots explained by persistent areas
413		of prey. Mar. Biol. 2013, 160 (12), 3043-3058; DOI 10.1007/s00227-013-2294-5
414	8.	Aurelio, M.; Faleiro, F.; Lopes, V. M.; Pires, V.; Lopes, A. R.; Pimentel, M. S.; Repolho,
415		T.; Baptista, M.; Narciso, L.; Rosa, R. Physiological and behavioural responses of
416		temperate seahorses (Hippocampus guttulatus) to environmental warming. Mar. Biol.
417		2013 , 160 (10), 2663-2670; DOI 10.1007/s00227-013-2259-8.
418	9.	Corrigan, L.J.; Winfield, I. J.; Hoelzel, A. R.; Lucas, M. C. Dietary plasticity in Arctic
419		charr (Salvelinus alpinus) in response to long-term environmental change. Ecol.
420		Freshwater Fish. 2011, 20 (1), 5-13; DOI 10.1111/j.1600-0633.2010.00446.x
421	10	. Lorenzini, S.; Baroni, C.; Fallick, A. E.; Baneschi, I.; Salvatore, M. C.; Zanchetta, G.;
422		Dallai, L. Stable isotopes reveal Holocene changes in the diet of Adélie penguins in
423		Northern Victoria Land (Ross Sea, Antarctica). Oecologia. 2011, 164 (4), 911-919; DOI
424		10.1007/s00442-010-1790-2.
425	11	. McCann K. Protecting biostructure. Nature. 2007, 226 (7131), 29; DOI
426		10.1038/446029a.

427	12. Sereda, J. M.; Hudson, J. J.; Taylor, W. D.; Demers, E. Fish as sources and sinks of
428	nutrients in lakes. Freshwater Biol. 2007, 53 (2), 278-289; DOI 10.1111/j.1365-
429	2427.2007.01891.x.
430	13. Moore, J. W.; Schindler, D.E.; Carter, J.L.; Fox, J.; Griffiths, J.; Holtgrieve, G.W. Biotic
431	control of stream fluxes: Spawning salmon drive nutrient and matter export. Ecology
432	2007 , 88 (5), 1278-1291; DOI 10.1890/06-0782
433	14. Kitchell, J.F.; Koonce, J.F.; Magnuson, J.J.; O'Neill, R.V.; Shugart Jr, H.H.; Booth, R.S.
434	Model of fish biomass dynamics. Trans. Am. Fish. Soc. 1974, 103 (4), 786-798; DOI:
435	10.1577/1548-8659(1974)103'786:MOFBD.2.0.CO;2.
436	15. Chipps, S.R.; Wahl, D.H. Bioenergetics modeling in the 21st Century: Reviewing new
437	insights and revisiting old constraints. Trans. Am. Fish. Soc. 2008, 137 (1), 298-313; DOI:
438	10.1577/T05-236.1.
439	16. Stewart, D.J.; Weininger, D.; Rottiers, R.V.; Edsall, T.A. An energetics model for Lake
440	Trout, Salvelinus namaycush: Application to the Lake Michigan population. Can. J. Fish.
441	Aq. Sci. 1983, 40 (6), 681-698; DOI: 10.1139/f83-091.
442	17. Kraft C. Estimates of phosphorus and nitrogen cycling by fish using a bioenergetics
443	approach. Can. J. Fish. Aquat. Sci. 1992, 49 (12), 2596-2604; DOI 10.1139/f92-287.
444	18. Pauly, D.; Christensen, V; Walters, C. Ecopath, Ecosim, and Ecospace as tools for
445	evaluating ecosystem impacts of fisheries. J. of Marine Sci. 2000, 57(3), 697-706; DOI:
446	10.1006/imsc.2000.0726.
447	19. Trudel, M.; Tremblay, A.; Schetagne, R.; Rasmussen, J.B. Estimating food consumption
448	rates of fish using a mercury mass balance model. Can. J. Fish Aq. Sci. 2000, 57(2), 414-
449	428; DOI: 10.1139/f99-262.

450	20. Pazzia, I.; Trudel, M.; Ridgway, M.; Rasmussen, J.B. Influence of food web structure on
451	the growth and bioenergetics of lake trout (Salvelinus namaycush). Can. J. Fish. Aq. Sci.
452	2002, 59 (10) 1593-1605; DOI: 10.1139/f02-128.
453	21. Abma, R.A.; Paterson, G.; McLeod, A.; Haffner, G.D. Cross-basin comparison of mercury
454	bioaccumulation in Lake Huron lake trout emphasizes ecological characteristics. Environ.
455	Toxicol. Chem. 34 (2); 355-359, DOI: 10.1002/etc.2810.
456	22. Hawker, D. W.; Connell, D. W. Octanol-water partition coefficients of polychlorinated
457	biphenyl congeners. Environ. Sci Technol. 1988, 22 (4), 382-387; DOI
458	10.1021/es00169a004
459	23. Atlas, E.; Bidleman, T.; Giam, C. S. Atmospheric transport of PCB to the oceans. In
460	PCBs and the environment; Waid J. S., Eds.; CRC Press: Boca Raton 1986: pp 79-100
461	24. Tanabe, S.; Tatsukawa, R. Distribution, behavior and load of PCBs in the oceans. In
462	PCBs and the environment, Waid J. S., Eds.; CRC Press: Boca Raton 1986: pp 143-161
463	25. Arnot, J. A.; Gobas, F. A. P. C. Food web bioaccumulation model for organic chemicals
464	in aquatic ecosystems. Environ. Toxicol. Chem. 2004, 23 (10), 2343-2355, DOI
465	10.1897/03-438.
466	26. Liu, J.; Haffner, G. D.; Drouillard, K. G. The influence of diet on the assimilation
467	efficiency of 47 polychlorinated biphenyl congeners in Japanese koi (Cyprinus carpio).
468	Environ. Toxicol. Chem. 2009, 29 (2), 401-409, DOI 10.1002/etc.47.
469	27. Daley, J. M.; Leadley, T. A.; Drouillard, K. G. Evidence for bioamplification of nine
470	polychlorinated biphenyl (PCB) congeners in yellow perch (Perca flavescens) eggs
471	during incubation. Chemosphere. 2009, 75 (11), 1500-1505, DOI
472	10.1016/j.chemosphere.2009.02.013.

474	dichloromethane/hexane extractable lipids as surrogate measures of sample partition
475	capacity for organochlorines in fish tissues. Chemosphere 2004, 55 (3), 395-400, DOI
476	10.1016/j.chemosphere.2003.11.010.
477	29. Lazar, R.; Edwards, R. C.; Metcalfe, C. D.; Metcalfe, T.; Gobas, F. A. P. C.; Haffner, G.
478	D. A simple, novel method for the quantitative analysis of coplanar (non-ortho
479	substituted) polychlorinated biphenyls in environmental samples. Chemosphere 1992, 25
480	(4), 493-504, DOI 10.1016/0045-6535(92)90281-U.
481	30. Czamanski, M.; Nugraha, A.; Pondaven, P.; Lasbleiz, M.; Masson, A.; Caroff, N.;
482	Bellail, R.; Treguer, P. Carbon, nitrogen and phosphorus elemental stoichiometry in
483	aquacultured and wild-caught fish and consequences for pelagic nutrient dynamics. Mar.
484	Biol. 2011, 158 (12), 2847-2862, DOI 10.1007/s00227-011-1783-7.
485	31. Ruetz, C. R.; Strouse, D. L.; Pothoven, S. A. Energy density of introduced round goby
486	compared with four native fishes in a Lake Michigan tributary. T. Am. Fish. Soc. 2009,
487	138 (4), 938-947, DOI 10.1577/T08-048.1.
488	32. Beauchamp, K. C.; Collins, N.C.; Henderson, B.A. Covariation of growth and maturation
489	of lake whitefish (Coregonus clupeaformis). J. Great Lakes Res. 2004, 30 (3), 451-460;
490	DOI: 10.1016/S0380-1330(04)70361-5.
491	33. Paterson, G.; Whittle, D.M.; Drouillard, K.G.; Haffner, G.D. Declining lake trout
492	(Salvelinus namaycush) energy density: are there too many salmonid predators in the Great
493	Lakes? Can. J. Fish. Aq. Sci. 2009, 66 (6), 919-932; DOI: 10.1139/F09-048.
494	34. Elskus, A. A.; Stegeman, J. J.; Gooch, J. W.; Black, D. E.; Pruell, R. J. Polychlorinated
495	biphenyl congener distributions in winter flounder as related to gender, spawning site,

28. Drouillard, K. G.; Hagen, H.; Haffner, G. D. Evaluation of chloroform/methanol and

496 and congener metabolism. *Environ. Sci. Technol.* **1994**, 28 (3), 401-407, DOI

497 10.1021/es00052a010.

- 498 35. Könemann, H.; van Leeuwen, K. Toxicokinetics in fish: Accumulation and elimination of
 499 six chlorobenzenes by guppies. *Chemosphere*. **1980**, 9 (1), 3-19, DOI 10.1016/0045-
- 500 <u>6535(80)90150-2</u>
- 36. Bruggeman, W. A.; Martron, L. B. J. M.; Kooiman, D.; Hutzinger, O. Accumulation and
 elimination kinetics of di-, tri- and tetra chlorobiphenyls by goldfish after dietary and
- 503 aqueous exposure. *Chemosphere*. **1981**, 10 (8), 811-832, DOI <u>10.1016/0045-</u>
- 504 <u>6535(81)90082-5</u>.
- 505 37. Niimi, J.; Oliver, B. G. Biological half-lives of Polychlorinated Biphenyl (PCB)
- congeners in whole fish and muscle of rainbow-trout *Salmo-Gairdneri*. *Can. J. Fish Aquat. Sci.* 1983, 40 (9), 1388-1394, DOI 10.1139/f83-160
- 508 38. Paterson, G.; Drouillard, K. G.; Haffner, G. D. PCB elimination by yellow perch (*Perca*
- 509 *flavescens*) during an annual temperature cycle. *Environ. Sci. Technol.* **2007**, 41 (3), 824-
- 510 829, DOI 10.1021/es060266r.
- 511 39. Paterson G, Drouillard KG, Haffner GD (2007) Long-term polychlorinated biphenyl
- 512 elimination by three size classes of yellow perch (*Perca flavescens*). Can. J. Fish. Aquat.
- 513 *Sci.* **2007**, 64 (9), 1222-1233, DOI 10.1021/es802567p
- 40. Van Geest, J. L.; Mackay, D.; Poirier, D. G.; Sibley, P. K.; Solomon, K. R. Accumulation
- and depuration of Polychlorinated biphenyls from field-collected sediment in three
- 516 freshwater organisms. *Environ. Sci. Technol.* **2011**, 45 (16), 7011-7018, DOI
- 517 10.1021/es1043744.

518	41.	Selck, H.; Drouillard, K.G.; Eisenreich, K.; Koelmans, A.A.; Palmqvist, A.; Ruus, A.;
519		Salvito, D.; Schultz, I.; Stewart, R.; Weisbrod, A.; van den Brink, N.W.; van den Heuvel-
520		Greve, M. Explaining differences between bioaccumulation measurements in laboratory
521		and field data through us of a probabilistic modeling approach. Integrated Environmental
522		Assessment and Management, 2012, 8(1), 42-63; DOI: 10.1002/ieam.217.
523	42.	McLeod, A.M.; Arnot, J.A.; Borga, K.; Selck, H.; Kashian, D.R.; Krause, A.; Paterson, G.;
524		Haffner, G.D.; Drouillard, K.G. Quantifying uncertainty in the trophic magnification factor
525		related to spatial movements of organisms in a food web. Integrated Environmental
526		Assessment and Management, 2015, 11 (2), 306-318; DOI: 10.1002/ieam.1599.
527	43.	Hebert, C.E.; Haffner, G.D. Habitat partitioning and contaminant exposure in cyprinids.
528		Can. J. Fish. Aq. Sci. 1991, 48 (2), 261-266; DOI: 10.1139/f91-036.
529	44.	McLeod, A.M.; Paterson, G.; Drouillard, K.G.; Haffner, G.D. Ecological factors
530		contributing to variability of persistent organic pollutant bioaccumulation within forage
531		fish communities of the Detroit River, Ontario, Canada. Environ. Toxicol. Chem. 2014, 33
532		(8), 1825-1831; DOI: 10.1002/etc.2606.
533	45.	Kitchell, J.F.; Stewart, D. J., Weininger, D. Applications of a bioenergetics model to yellow
534		perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J. Fish. Res. Board
535		<i>Can.</i> 1977, 34 (10) 1922-1935, DOI 10.1139/f77-258.
536	46.	Riley, S. C. The State of Lake Huron in 2010. Great Lakes Fisheries Commission. 2010,
537		13-01.
538	47.	Cha, Y.; Stow, C. A.; Nalepa, T. F.; Reckhowt, K. H. Do invasive mussels restrict
539		offshore phosphorus transport in Lake Huron Watson, S.; Carpenter, D. Taking Action on
540		Lake Erie. International Joint Commission. 2013.

541	48. Brabrand, A.; Faafeng, B.A.; Petter, J.; Nilssen, M. Relative importance of phosphorus
542	supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish.
543	Aquat. Sci, 1990, 47(2), 364-372, DOI 10.1139/f90-038.
544	49. Gresh, T.; Lichatowich, J.; Schoonmaker, P. An estimation of historic and current levels
545	of salmon production in the northeast Pacific ecosystem: evidence of a nutrient deficit in
546	the freshwater systems of the Pacific Northwest. Fisheries. 2000, 25 (1), 15-21, DOI
547	10.1577/1548-8446(2000)025<0015:AEOHAC>2.0.CO;2.
548	50. Gregory-Eaves, I. Demers, M. J.; Kimpe, L.; Krummel, E. M.; MacDonald, R. W.;
549	Finney, B. P.; Blais, J. M. Tracing salmon-derived nutrients and contaminants in
550	freshwater food webs across a pronounced spawner density gradient. Environ. Toxicol.
551	Chem. 2007, 26 (6), 1100-1108, DOI 10.1897/06-402R.1
552	51. Lamarra, V. A. Digestive activities of carp as a major contributor to the nutrient loading
553	of lakes. Verh. Int. Ver. Theor. Agnew. Limnol. 1975, 19, 2461-2468.
554	52. Carpenter, S. R.; Kraft, C. E.; Wright, R.; Xi, H.; Soranno, P. A.; Hodgson, J. R.
555	Resilience and resistance of a lake phosphorus cycle before and after food web
556	manipulation. Am. Nat. 1992, 140, 781-798, DOI 10.1086/285440.
557	53. Nakashima, B. S.; Leggett, W. C. Yellow perch (Perca flavescens) biomass responses to
558	different levels of phytoplankton and benthic biomass in Lake Memphremagog, Quebec-
559	Vermont. J. Fish. Res. Board Can. 1975, 32 (10), 1785-1797.
560	54. Bagdovitz, M. S.; Taylor, W. W.; Wagner, W. C.; Nicolette, J. P.; Spangler, G. R. Pink
561	salmon populations in the U.S. waters of Lake Superior, 1981-1984. J. Great Lakes Res.
562	1986, 12 (1), 72-81, DOI <u>10.1016/S0380-1330(86)71701-2</u>

563	55. Rand, P. S.; Stewart, D. J. Prey fish exploitation, salmonine production, and pelagic food
564	web efficiency in Lake Ontario. Can. J. Fish. Aquat. Sci. 1998, 55 (2), 318-327, DOI
565	10.1139/cjfas-55-2-318.
566	56. Kitchell, J. F.; Cox, S. P.; Harvey, C. J.; Johnson, T. B.; Mason, D. M.; Schoen, K. K.;
567	Aydin, K.; Bronte, C.; Ebener, M.; Hansen, M.; Hoff, M.; Schram, S.; Schreiner, D.;
568	Walters, C. J. Sustainability of the Lake Superior fish community: interactions in a food
569	web context. Ecosystems 2000, 3 (6), 545-560, DOI 10.1007/s100210000048
570	57. Kline Jr., T. C.; Goering, J. J.; Mathisen, O. A.; Poe, P. H.; Parker, P. L. Recycling of
571	elements transported upstream by runs of Pacific Salmon: I. $\delta^{15}N$ and $\delta^{13}C$ evidence in
572	Sashin Creek, Southeastern Alaska. Can. J. Fish. Aquat. Sci. 1990, 47 (1), 136-144, DOI
573	10.1139/f90-014.
574	58. Kline Jr., T. C.; Goering, J. J.; Mathisen, O. A.; Poe, P. H.; Parker, P. L. Recycling of
575	elements transported upstream by runs of Pacific Salmon: II. $\delta^{15}N$ and $\delta^{13}C$ evidence in
576	Kvichak River Watershed, Bristol Bay, Southwestern Alaska. Can. J. Fish. Aquat. Sci.
577	1993, 50 (11), 2350-2365, DOI 10.1139/f93-259.
578	59. Bilby, R. E.; Fransen, B. R.; Bisson, P. A. Incorporation of nitrogen and carbon from
579	spawning coho salmon into the trophic system of small streams: evidence from stable
580	isotopes. Can. J. Fish. Aquat. Sci. 1996, 53 (1), 164-173, DOI 10.1139/cjfas-53-1-164.
581	60. Cederholm, C. J.; Kunze, M. D.; Murota, T.; Sibatani, A. Pacific Salmon carcasses:
582	Essential contributions of nutrients and energy for aquatic and terrestrial ecosystems.
583	<i>Fisheries</i> 1999 , 24 (10), 6-15, DOI 10.1577/1548-8446(1999)024<0006:PSC>2.0.CO;2.

584	61. Jonsson, B.; Jonsson, N. Migratory Atlantic salmon as vectors for the transfer of energy
585	and nutrients between freshwater and marine environments. Freshwater Biol. 2003, 48
586	(1), 21-27, DOI 10.1046/j.1365-2427.2003.00964.x.
587	62. Bunnell, D. B.; Barbiero, R. P.; Ludsin, S. A.; Madenjian, C. P.; Warren, G. J.; Dolan, D.
588	M.; Brenden, T. O.; Briland, R.; Gorman, O. T.; He, J. X.; Johengen, T. H.; Lantry, B.
589	F.; Lesht, B. M.; Nalepa, T. F.; Riley, S. C.; Riseng, C. M.; Treska, T. J.; Tsehaye, I.;
590	Walsh, M. G.; Warner, D. M.; Weidl, B. C. (2014) Changing ecosystem dynamics in the
591	Laurentian Great Lakes: Bottom-up and top-down regulation. <i>Bioscience</i> 2014, 64 (1),
592	26-39.
593	63. He, J. X.; Ebener, M. P.; Riley, S. C.; Cottrill, A.; Kowalski, A.; Koproski, S.; Mohr, L.;
594	Johnson, J. E. Lake Trout status in the Main Basin of Lake Huron, 1973-2010. North
595	Amer. J. of Fisheries Man. 2012, 32 (2), 402-412, DOI 10.1080/02755947.2012.675947.
506	

Supporting Information: PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems

- 600 AUTHOR NAMES. Anne M. McLeod^{*}, Gordon Paterson, Ken G. Drouillard, G. Douglas
 601 Haffner
- 602 AUTHOR ADDRESS. Great Lakes Institute for Environmental Research, University of
- 603 Windsor, Ontario, Canada N9B3P4. Correspondence to: mcleod15@uwindsor.ca, (519) 253-
- 604 3000 ext 3752.
- 605
- 606 File consists of one supporting table and one supporting figure.
- 607

608	Table	S1 .

PCB	logK _{OW} ^{a, 21}	$E_{d,\ PCBi}{}^{b,\ 25}$	f _{PCBi} c, 24
18/17	5.1	0.802	0.96
31/28	5.67	0.699	0.71
48	5.85	0.667	0.86
44	5.75	0.685	0.86
70	6.2	0.604	0.88
99	6.39	0.570	0.93
87	6.29	0.588	0.91
110	6.48	0.554	0.93
118	6.74	0.507	0.96
153	6.85	0.487	0.96
105/132	6.7	0.514	0.91
138	6.83	0.491	0.96
158	7.02	0.456	0.97
187	7.17	0.429	0.98
183	7.2	0.424	0.97
128	6.74	0.507	0.96
156/171	7.2	0.424	0.97
180	7.36	0.395	0.98
170	7.31	0.404	0.98
201	7.2	0.424	0.985
195/208	7.65	0.343	0.983
194	7.8	0.316	0.98
206	8.09	0.264	0.989
209	8.18	0.248	0.99

^a the octanol-water partition coefficient as reported in Hawker and Connell, 1988.
^b the organism's assimilation efficiency of PCB_i as reported in Liu et al. 2006.
^c the fraction of PCB_i accumulated from dietary sources as reported in Arnot and Gobas 2004.

Figure S1. Results from gut content analyses on Lake Trout from Lake Huron. Proportions are

- 618 based on the number of each prey item obtained.