University of Windsor Scholarship at UWindsor

International Joint Commission (IJC) Digital Archive

International Joint Commission

1977-11-01

Effects of Livestock Activity on Surface Water Quality: Project 20: Final Report for International Reference Group on Great Lakes Pollution from Land Use Activities, Task C

Beak Consultants Limited

Follow this and additional works at: https://scholar.uwindsor.ca/ijcarchive

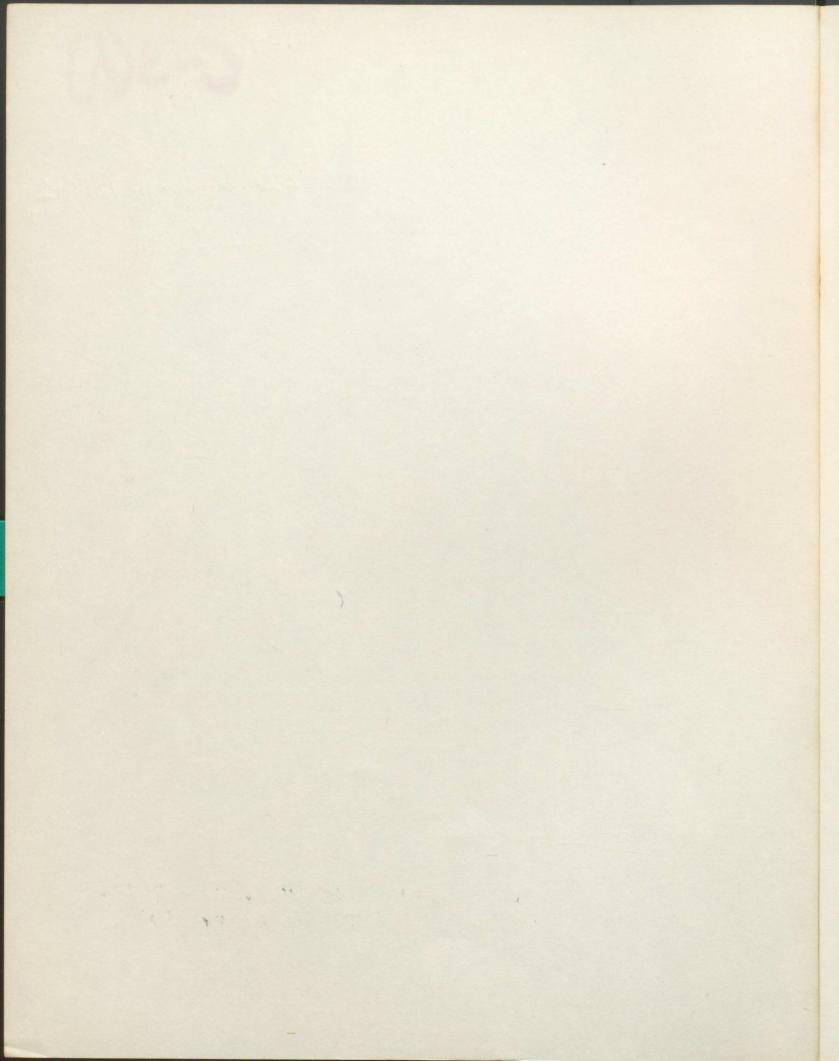
Recommended Citation

Beak Consultants Limited (1977). Effects of Livestock Activity on Surface Water Quality: Project 20: Final Report for International Reference Group on Great Lakes Pollution from Land Use Activities, Task C. *International Joint Commission (IJC) Digital Archive*. https://scholar.uwindsor.ca/ijcarchive/154

This Report is brought to you for free and open access by the International Joint Commission at Scholarship at UWindsor. It has been accepted for inclusion in International Joint Commission (IJC) Digital Archive by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

3(h) ON GREAT LAKES POLLUTION **FROM LAND USE** ACTIVITIES

TASK C



GLC ZZ JC.91 78P041

INTERNATIONAL JOINT COMMISSION

77-061

EFFECTS OF LIVESTOCK ACTIVITY ON SURFACE WATER QUALITY

Effects of Livestock Activity on Surface Water Quality Project 20

Final Report/

for:

International Reference Group on Great Lakes Pollution From Land Use Activities Task C

November 1977

This report prepared by Beak Consultants Limited

in co-operation with its funding body Ontario Ministry of Agriculture and Food

DISCLAIMER

The study discussed in this report was carried out as part of the efforts of the International Reference Group on Great Lakes Pollution from Land Use Activities (PLUARG), an organization of the International Joint Commission, established under the Canada-U.S. Great Lakes Water Quality Agreement of 1972. Results and conclusions are those of the authors and do not necessarily reflect the views of the Reference Group or its recommendations to the Commission.

Any reproduction in whole or in part of this report is not permitted without express consent of the International Reference Group.

8 RELATIONSHIP OF PROJECT RESOLTS TO PLUARO OBJECTIVES

Acknowledgements

We are extremely grateful to the following for their cooperation and assistance throughout the course of the study: Dr. D.M. Whitt (International Joint Commission), Ms. E.M. MacDonald (Agriculture Canada), Dr. D.R. Coote (Agriculture Canada), Dr. H.V. Morley (Agriculture Canada) and Dr. R. Frank (OMAF).

We would like to thank the hydrology and monitoring section of the Ontario Ministry of the Environment for their cooperation in providing nutrient and continuous flow data for the study area and the laboratories branch for their assistance with analytical procedures.

The assistance of Dr. M. Sanderson of the University of Windsor in providing precipitation data for the study is also appreciated.

We also wish to express our gratitude to the Ausable Bayfield Conservation Authority for providing space and facilities for BEAK's mobile laboratory and also for their personal cooperation and assistance throughout the duration of the study.

TABLE OF CONTENTS:

1.0	SUMMARY	1
2.0	INTRODUCTION	5
	<pre>2.1 Study Objectives 2.2 Study Approach</pre>	5 6
3.0	DATA COLLECTION METHODS	8
	3.1 Sampling3.2 Chemical Analyses	8 8
4.0	EXPERIMENTAL RESULTS	10
	 4.1 Hydrology 4.2 Water Quality 4.3 Agricultural Practices 4.4 Operations Under Study 	10 12 14 15
5.0	DATA ANALYSIS AND INTERPRETATION	25
	 5.1 Hydrographic and Water Quality Analysis 5.2 Flux of Nutrients 5.3 Seasonal Effects 5.4 Correlation of Flux with Livestock 5.5 Interpretation of Bacteriology 5.6 Mass Balance on Branches 5.7 Form of Nutrients in Transport 5.8 Subsurface Drainage Systems 	25 27 29 31 33 35 36 38
6.0	RELATIONSHIP OF PROJECT RESULTS	

TO PLUARG OBJECTIVES

39

TABLES:	1A - 1HH	Summaries of Chemical Analysis
	2	Phosphorus Export Data
	3	Nitrogen Export Data
	4	Operation Fluxes
	5 a) b)	Farm Operation Summaries

TABLE OF CONTENTS (Cont'd)

TABLES: (Cont'd)

6	Relationship Between Operations and Stations				
7	Seasonal Export of Nutrients				
8	Export of Nutrients by Branch				
9	Export of Nutrients During Seasona				
	Events				
10	Form of Nutrients in Transport				
11	Groundwater Analysis				
12	Chemograph Study Data				
13	Log - Log Model				
14	Linear Flow Model				
15	Flux - Flow Relationship				
16	Bacteriological Data				

FIGURES:	1	Liv	vestock Operations
	2	Sam	pling Stations
	3	S2	Chemograph Plot
	4		Flow - Concentration Plot
	5	S5	Log - Log Plot
	6	S5	Flow - Flux Plot

1

had destended by the to

APPENDICES:	1	Analytical Methods
	2	Quality Control Program

1.0 SUMMARY

The objective of this study is to evaluate the losses of nutrients and bacteria to surface water due to the effects of livestock activities in the Little Ausable River Sub-basin (Watershed AG-3).

The following investigations were selected to attain this goal:

- 1. To determine the annual flux of nutrients into surface waters of the drainage basin from different segments of the basin representing various types and levels of livestock operations.
- 2. To determine the seasonal baseline and event contributions to this total flux of nutrients.
- 3. To determine in which form the nutrients, nitrogen and phosphorus are transported.
- To determine the effects of various livestock operations and practices on the release of total and fecal coliforms to surface waters.
 - 5. To determine the effect of drained versus undrained fields upon the flux of nutrients and bacteria into surface waters.

The basin (drainage area, 20.6 mi.²) consists mainly of clay soils with corn the major crop, followed by hay, small grains and soybeans. Cash crop and livestock operations are equally notable. Crops grown on the former are normally marketed while those grown on the latter are mostly used for feed. At present beef cattle operations predominate with lesser numbers of dairy and hog operations. Turnover of type of operation is fairly high throughout the basin.

The approach to the study is to measure the flux of nutrients and bacteria on a regular and event-oriented basis over a period of at least two years. Surface water loadings from farm operations would be related to the intensity and type of agricultural practice.

To accomplish this strategy, 26 sampling stations were established to monitor the loadings to surface waters from 17 farm operations, representing beef and dairy cattle, swine and non-livestock controls.

08000-01

The sampling stations were located to determine the contribution of nutrients and bacteria from each of these operations on a seasonal and event basis. The study farms and the monitoring stations are shown in Figures 1 and 2 respectively. Flows are measured at all stations at the time of sampling either directly by volume or through a stage discharge relationship with permanently established guages. Water quality analysis for total phosphorus, nitrate, nitrite, pH, conductivity, total alkalinity, total hardness, total and fecal coliforms were performed in BEAK's mobile laboratory installed near AG-3. Samples were analysed with a minimum of delay after sampling. Other analyses such as total kjeldahl nitrogen, ammonia nitrogen and dissolved phosphorus were conducted at BEAK's Toronto Laboratory.

Analyses of concentration data as a function of flow from a chemograph and from the two years of data at each station indicate that phosphorus concentrations are flow sensitive (phosphorus concentrations increase as the flow rate increases) but that nitrogen concentrations are not flow sensitive. These relationships hold for both surface streams and tile drains. To estimate flow at each station in between sampling dates, regression equations were obtained relating flow at station i to the flow at the main station on the same day. A regression equation for station i coupled with the daily hydrograph at the mouth station gives an estimate of the daily hydrograph at station i. Since phosphorus concentrations are flow sensitive, relationships of phosphorus export at a station as a function of flow at the mouth station were obtained by regressing the phosphorus export (the measured flow times the measured concentration) on each sampling date with the corresponding flow at the mouth station, Qmsn. The relationship is of the form: $f_i = a_i Qmsn^{bi}$ where a_i and b_i are station coefficients ($b_i \approx 1.2$ for each station), and f_i is the station export, gm/day. Use of the station regression with the hydrograph at the main station gives an estimate of the daily export at a station. Nitrogen export was estimated using the average seasonal concentration and average seasonal flow rates.

With respect to the export of nutrients, from different sub-basins or due to different livestock management factors, the following conclusions are made:

1) The annual export rate is 0.48 Kg P/ha/yr,57 Kg N/ha/yr and 1.4 cfs/mi^2 of water. The basin consists of three sub-basins; the north sub-basin occupies 50 percent of the area and contributes 0.51 Kg P/ha/yr, 61 Kg N/ha/yr and 1.3 cfs/mi^2 of water; the middle sub-basin

2

occupies \sim 13 percent of the area and contributes 0.45 Kg P/ha/yr, 32 Kg N/ha/yr and 1.0 cfs/mi² of water; the south sub-basin occupies \sim 33 percent of the area and contributes 0.52 Kg P/ha/yr, 67 Kg N/ha/ yr and 1.6 cfs/mi² of water. The export of P, N and water from each sub-basin does not significantly differ from each other. (as opposed to previous reports where some discrepancies in the middle branch were observed. These discrepancies have been corrected with the inclusion of late-winter, early-spring runoff data and our methods for calculating export). These sub-basin exports demonstrate consistency in our data.

- 2) For phosphorus, BEAK estimates that the export from non-livestock areas (i.e. controls) is 0.33 Kg P/ha/yr. Export from livestock areas vary from this rate up to 2.3 Kg P/ha/yr. Two livestock operations export less than 0.33 Kg P/ha/yr. These particular estimates are made on tile drains which represent only a fraction of total export from that area. The average export of phosphorus from livestock areas sampled at surface sources is 0.87 Kg P/ha/yr. For nitrogen, the controls yield 42 Kg P/ha/yr while livestock areas yield 47 Kg N/ha/yr. There is no significance difference between these two yields.
- 3) Differences in export of nutrients cannot be attributed to type of livestock operation. The mean export rate and range of values are approximately the same for beef, dairy, swine and cash crop operations.
 - 4) Differences in phosphorus export between farms and bacterial contamination are attributable to specific physical and management factors. These relationships are described below; the operations for which these relationships seem to predominate are indicated in brackets. Phosphorus export is related to: distance from watercourse (No.s 1, 2, 3, 10, 20), improper subsurface drainage (No.s 2, 8), winter manure spreading in close proximity to watercourses (No.s 3, 4, 2), winter manure spreading upon the floodplain (No.s 3, 16), artificial channel reconstruction (No.5), streams flowing through open pastureland (No.10 stn. N9), residential communities (No.18) and the location of feedlots and manure storage (No.s 3, 18, 4).
 - 5) Compared to many large sized feedlots, all livestock operations in AG-3 are small to moderately sized (<500 individuals/operation). For this scale of operation, phosphorus export appears to be linked more to the management of an agricultural operation rather than to the type and density of livestock. A well managed feedlot of

this size exports a low amount of nutrient and bacteria (No.1) regardless of the type and density while a poorly managed operation exports a large amount of phosphorus proportional to the number of livestock and related directly to the type of livestock. The type and density of livestock are secondary factors mediated by management factors.

6) With respect to seasonal effects, the greatest part of phosphorus export occurs during the spring period from March 1 to May 31. This period is dominated by the export during spring breakup with the associated snowmelt and rain showers. More phosphorus leaves the basin during this season than the other three seasons combined. Nitrogen export occurs predominantly in the winter and sring periods.

> During any season, the daily export of nutrients during an event is an order of magnitude larger than the daily mean export for that season. The export of nutrient (both nitrogen and phosphorus) during one day in the spring breakup is of the order of 50X the value of nutrient export in one day for any other event.

- 7) With respect to forms of nutrients, surface water stations export 60 to 85 percent of the total phosphorus as dissolved phosphorus; the greatest part of this is soluble reactive P. Tile drains export 80 to 100 percent of its phosphorus in the dissolved form all of which is soluble reactive P. More than 85 percent of all nitrogen exported from operations under study is in the nitrate form. 3 (tiles) to 13 (surface water) percent of the nitrogen is in the organic form; nitrite and ammonia are present in trace amounts. In tile drains, 95 percent of the nitrogen is in nitrate form.
- 8) Values for chemical parameters pH, conductivity, hardness and alkalinity are typical of a moderately hard water.
- 9) The geometric mean (i) of total coliforms ranges from 290 to 52000 per 100ml, (ii) of fecal coliforms ranges from 9 to 8100/100ml, and (iii) fecal streptococci ranges from 5 to 1100/100ml for all stations. The ranges of 3000-5000/100ml for total coliforms, 200-400/100ml for fecal coliforms and 100-300ml for fecal streptococci include approximately 80 percent of all stations. These are the normal ranges for most surface stations. One tile station which is an order of magnitude higher than these normal ranges drains a farmyard; three tile stations which are an order of magnitude lower than these normal ranges drain field which are not influenced by either livestock or manure. The discharge of the tile drain, with large bacterial concentrations to the surface stream is not seen 200 feet downstream due to dilution.

2.0 INTRODUCTION

2.1 Study Objectives

Article VI of the Great Lakes Water Quality Agreement, 1972, requested that the International Joint Commission inquire into and report on "pollution of the boundary water of the Great Lakes System from agricultural, forestry and other land use activities, in accordance with the terms of reference attached to this agreement". The International Joint Commission (I.J.C.) established the International Reference Group on Great Lakes Pollution from Land Use Activities (PLUARG) to plan and implement the requested study.

In March 1973, PLUARG submitted to the International Joint Commission a study plan to assess pollution of the Great Lakes from land use activities. This preliminary study plan outlined four main tasks including assessment of the problem (Task A), inventory of land use activities (Task B), watershed studies (Task C) and lake studies (Task D). A "Detailed Study Plan to Assess Great Lakes Pollution from Land Use Activities" was prepared (February 1974) and formed the basis for the PLUARG study.

Task C was described as, "Intensive studies of a small number of representative watersheds, selected and conducted to permit some extrapolation of data to the entire Great Lakes Basin, and to relate contamination of water quality, which may be found at river mouths on the Great Lakes to specific land uses and practices".

Activity 1 (Canada) of Task C called for "Pilot Agricultural Watershed Surveys". The objective of this activity was "to obtain data on the inputs of pollutants into the Great Lakes Drainage System which have their origins in the complex land use activities known as agriculture".

In February 1974, the Agricultural Sub-Committee of the Task C Technical Committee, PLUARG, prepared a "Detailed Plan for the Study of Agricultural Watersheds in the Great Lakes Drainage Basin - Canada -1974-1975". This plan called for a preliminary phase consisting of a monitoring programme and additional studies for collection of background data. The second and intensive phase would consist of detailed studies of pollutants associated with agricultural land use. The preliminary study phase, April 1974-1975, has been reported in detail in "Agricultural Watershed Studies, Great Lakes Drainage Basin, Canada, Annual Report, 1974-1975". The requirements for continuation of the study were identified in that report and included a monitoring network, a detailed studies programme, and a programme for remedial measures or other future requirements.

The objective identified for the Phase I Monitoring Programme was to measure the ambient concentrations and loading rates for various pollutants that occur with agricultural land use. The Phase II Detailed Studies would be directed towards the determination of the effects of soil, land use and associated practices on concentrations and loading rates of selected pollutants; the study of mechanisms of transport and storage of these pollutants in selected agricultural watersheds; and finally, the development of a predictive capability to allow extrapolation to other areas.

Six agricultural watersheds were selected as sites for detailed study under Phase II. Project 20 is involved in studying one of these watersheds designated AG-3 (Upper Little Ausable River Sub-basin). The objective of this study is to evaluate the losses to surface water of nutrients and bacteria directly related to livestock activity. In order to assess these, several areas of study were selected:

- determine the annual nutrients flux into the surface waters of the AG-3 sub-basin from various types and densities of livestock operations.
- breakdown this total flux of nutrients into seasonal baseline and event contributions
- 3) identify the forms in which the nutrients, nitrogen and phosphorus are transported
- 4) analyse the effect of various livestock operations and practices on the release of bacteria to surface waters
- 5) assess the effect of tile drainage upon nutrient and bacterial fluxes into surface waters

2.2 Study Approach

The Little Ausable River Sub-basin (AG-3) is located in south-western Ontario approximately 30 kilometres due north of London Ontario. The Little Ausable is a sub-basin of the Ausable River Watershed that drains into Lake Huron at Grand Bend.

The AG-3 basin is relatively flat, predominantly clay-leam, encompassing 5,670 ha which drains through both natural ditches and municipal drains. The area is almost exclusively (97%) agricultural usage, mainly small mixed and cash crop farms. Main crop is corn with lesser amounts of mixed grains, white beans, hay and pasture; crops on mixed farms are grown primarily for feed, those on cash crop farms grown for marketing. Beef feedlots presently predominate livestock operations with lesser density of swine and dairy operations in the basin. Turnover of type of operation is frequent with many operations switching from livestock to cash-cropping.

The study approach chosen was to measure the flux of nutrient and bacteria on a regular and event-oriented basis over a period of two years from June 1975 to June 1977. Surface water loadings from various operations are then related to the intensity and type of agricultural practice.

In order to accomplish this, 26 sampling sites were established at locations with relatively continuous water flow to monitor the surface water loadings from 17 farm operations representing major livestock operations and non-livestock controls from the 94 farming operations in the basin. Flows are measured at all stations at the time of sampling either directly by volume or through a staff discharge relationship. The samples collected are then analyzed for nutrient and bacterial concentrations. The data is then run on a mathematical model in order to determine fluxes and meet the study objectives.

The watershed has two main branches (the north and south) and a third smaller branch (the middle branch). The south branch, which is spring fed, tends to flow most of the year and was chosen for examination of the different forms of nutrients. The middle branch, which is the smallest, is the most intermittent, resulting in some summer and fall periods where no measurable flow occurs. The north branch, which drains approximately one-half of the basin is characterized as being somewhat intermittent and having two small hamlets. An equal diversity of farming types (dairy, beef, swine and cash crops) and agricultural practice is found on each branch. These branches together with livestock operations selected in this study are shown in Figure 1, the sampling stations selected are shown in Figure 2.

7

3.0 DATA COLLECTION METHODS

3.1 Sampling Procedures

In the AG-3 study area, twenty-six sampling locations were selected at points where water movement was relatively continuous and where the station could be related directly to one agricultural operation. Of the twenty-six stations chosen, eight are tile drain outlets, two are open channel single stations, fourteen are open channel difference (above and below) stations and two are mass-balance stations. These twenty-six stations can then be directly related to seventeen individual operations, six beef feedlots, three dairy farms, five swine producers and three cash crop operations.

The basin was subdivided into three branches for ease of identification; these were identified as the north (N), middle (M) and south (S) branches and the stations on each branch numbered sequentially from 1 at the mouth upriver to the source; hence, station M4 is the fourth station up the middle branch. Two samples were collected at each station, one in an acidwashed 12. malgene bottle for chemical analysis and one in a 250 ml acidwashed autoclaved glass bottle for bacterial analysis. Both samples were then stored immediately in portable coolers on ice. With each sampling a measurement of volume per unit time or stage was taken. Samples were collected branch by branch from the uppermost station downstream. All samples from one branch were transported to BEAK's mobile laboratory in Exeter and refrigerated before collecting samples from the next branch. Samples were refrigerated at 4°C within two hours of collection and kept on ice in the interim. (between 4 and 10°C). All collecting was done by grab sampling, collected consecutively, no samples were split. Additional 1% samples were collected at random locations consequent to regular samples; these samples were taken for additional analyses, replicate samples or sent to O.M.E. laboratories for cross-checks.

3.2 Chemical Analysis

Samples collected and transported back to BEAK's mobile laboratory in Exeter were subsequently analysed for nutrient and bacteria content. The major analyses, phosphate, nitrate and bacteria were performed as outlined in Standard Methods 13th. edition and are outlined in detail in Appendix 1, methods of analysis.

In addition, several standard water analyses were performed on each sample.

- Analysis for pH was performed according to section 144A Standard Methods¹using a Metrohm E488 meter with EA152 combination glass electrode.
- Specific Conductance was measured according to section 154 Standard Methods¹using a labline MC-1 conductivity bridge and a K=.1 conductivity cell. The readings were then corrected to 25°C.
 - iii) Total Hardness was determined by EDTA titrimetry, Standard Methods¹section 122B.
 - iv) Total Alkalinity was determined by acid titration using the pH meter described ini) following the procedure in section 102 Standard Methods¹.
- v) Nitrite Nitrogen was analysed following section 134 Standard Methods¹.
 - vi) Phosphate (total, soluble and total reactive) were analysed following the procedures outlined in section 223C and 223E Standard Methods¹incorporating several modifications outlined in Appendix 1.
 - vii) Nitrate Nitrogen was analysed according to section 213C Standard Methods¹ with modifications outlined in Appendix .
 - viii) Total and Fecal Coliforms were determined by membrane filtration as outlined in Appendix 1.
 - ix) Fecal Streptococci bacteria were added for analysis during the last year of the program using the same membrane filtration technique as in viii) and following procedures outlined in section 409C Standard Methods¹ using M-Enterococcus Agar.

In addition to these analyses, three stations S1, S4 and S9 were selected for Ammonia and Total Kjeldahl Analysis on each sampling collection; this analysis performed at BEAK's Toronto Laboratory. Standard Methods¹ sections 132 and 135 outline the procedures involved.

1 Analytical text is Standard Methods for the Examination of Water and Wastewater, thirteenth edition APHA 1971.

9

4.0 EXPERIMENTAL RESULTS

4.1 Hydrology

The Upper Little Ausable River Basin Consists of 5,670 ha. of drainage area in the corner of southwestern Ontario where Perth, Huron and Middlesex counties meet. The AG-3 sub-basin consists of three main branches which we have designated the north, middle and south branches. There are sampling stations on all branches of two types: open channel stations where flow is determined through a stage discharge relationship and tile drain stations (locations where a tile drain system empties into the channel) where flows are determined by collecting a known volume over a measured time period.

These three branches have different characters; the south branch originating in several spring areas flows year-round except in high drought periods, the middle branch which is considerably smaller than the other two is intermittent and dries up during some summer and fall periods. The north branch, which drains approximately one-half of the basin is occasionally intermittent depending on the water table; for most of the summer the section north of country road six has no measurable flow. Hence, the section that passes through Elimville and Winchelsea has the only consistent flow pattern. The drainage areas of each branch are similar in soil, crop, livestock and topography; Hydrological differences only seem to appear when the water table is down.

The AG-3 sub-basin of the Ausable River contributes an annual mean discharge of 1.07 m³/sec (1976 calendar year only). Discharge varies from 20-30 m³/sec during spring runoff to .02-.03 m³/sec during mid-summer. Maximum containable runoff is ~20 m3/sec; at most times of the year streamflow is contained within the natural channel; however, during the couple of days that spring breakup occurs most open channel reaches in the sub-basin overflow onto the surrounding fields. During this short period of time, considerable surface erosion occurs, alternately scouring and silting the stream bed. After this period the bed virtually stabilizes until the next spring; luxurient vegetational growth occurs in the channel and on both banks throughout April to November and little channel alteration occurs during this period. This "stabilization" allows for a stagedischarge relationship to be established for each open channel station. This stage-discharge relationship is based on a series of flow measurements during the year and must be revised after each spring breakup and backwater corrections applied during certain periods.

Ontario Ministry of the Environment has established a continuous monitoring station at the outlet from the drainage basin. We have attempted, as best as possible, to establish a daily flow relationship between this station and each open channel station upstream for the periods between samplings.

Each of the stations at the outlet of the tile drains are measured directly by volume per unit time at the time of sampling. Daily flow through these systems was similarly interpolated.

Over the course of a year, the hydrological scheme of the basin fluctuates. During the winter months December to February no streams have open water; flow in drains and channels are similar to those during the fall period but the water flows to a depth of around 10 cm.beneath 0.2-0.5m, of ice which lies beneath 1-2m, of snow. In most cases, stream channels are completely filled by ice and snow; hydrology estimates are extremely hard to determine for this period.

Spring ice breakup occurs first in the south branch around the end of February with 1-2m, snow still on the ground. The middle branch breaks up approximately 1 week later and the north branch opens up generally around mid-March.

During this breakup period, high flows of the order of $3-10m^3/sec$ are common. After open water or at north branch breakup maximum flows occur at the mouth station up to discharges of $20-30m^3/sec$ over a period of a day or two. At this point flow spills over the banks and across the fields and up to the top of bridge abutments. After this point the hydrograph for all stations gradually tapers off with occasional spring thundershowers creating small peaks in the hydrograph. During the spring period, flows are areally related. As the growing season progresses, vegetation starts in the streambed and on the banks stabilizing the prior siltation. At this point flows cease an areal relationship and tend towards dependence on production by springs that govern the flow regime all summer and into the fall season. Flows during late July and early August drop to 0.02- $0.03m^3/sec$ total for the entire basin. Throughout the low flow period April to November, the topography excludes the possibility of precipitation entering water courses via surface runoff except during extensive events.

In the late fall the hydrograph again starts to rise, abetted by late fall rainshowers and the flow tends back towards an areal relationship. Winter snowstorms and low temperatures commence the freezeup in mid-December and the hydrograph levels off. The Ausable R. basin is reknowned for its snowbelt location and severe winter conditions; however in AG-3 the snowfall buildup (usually 1-2m on the ground) tends to a slow snowmelt rather than creating the extensive flooding in the major watersheds.

4.2 Water Quality

In June 1975 water sampling was begun on the AG-3 sub-basin and continued until May 1977. During this two year period, thirty-two sample collections were made and the water samples analysed for pH, specific conductance, total hardness, total alkalinity, total phosphorus, total dissolved phosphorus, reactive phosphorus, nitrate, nitrite, ammonia, organic nitrogen, total and fecal coliforms and fecal streptococci bacteria. Analytical results of these collections are displayed in table 1. Omissions from the tables include only;

- i) Stations where no water sample was taken marked by a line of blanks (due to being either dry, frozen solid or inaccessible).
- Analyses where only selected stations were chosen (ammonia, Kjeldahl or dissolved phosphorus).
- iii) Analyses that were added during the course of the study (orthophosphorus and fecal strep.).
- iv) Bacterial samples that did not plate properly.

In addition to these regular collections and analyses, one collection was made to assess nitrogen and phosphorus in groundwater (table 11) and the distribution of nitrate and phosphate over the course of an event (chemograph). This chemograph was performed during the period of April 25-28, 1977, and the results appear in Table 12.

pH values throughout the study fluctuated very little with most values falling into the 7.0 - 8.0 range or slightly outside; no startling values for this chemical parameter were observed. Collection GG in March 1977 has dubious pH values due to a malfunctioning electrode which was subsequently replaced. All other pH values for the project fall within acceptable limits for receiving waters.

Specific Conductance values vary seasonally at most stations from a high in the spring and dropping off through the fall to a low in latewinter. Several exceptions to this pattern appear in the tables but these are special cases where nutrient values also vary from the norm. Total Hardness and Total Alkalinity vary minimally throughout the year; most values are similar for one collection as well as for any station and generally the values obtained are within those normally found in south-western Ontario.

Bacteria are found in varying numbers at different stations and different times of the year; their significance is outlined in detail in section 5.5. Generally speaking, bacterial counts for a water course are of the same order of magnitude for a collection; variations occur with lower than average (by an order) indicating source or near-source water and higher than average (by at least an order) indicating some contamination point problem. Most of the high counts occur at stations where animals have direct or indirect access to the watercourse.

Phosphorus has been isolated as one of the major pollutants to the Great Lakes Basin; therefore, during this study, greater emphasis was placed on investigating phosphorus significance and is discussed in much greater detail in sections 5 and 6. In most cases total phosphate as phosphorus analysed to less than 0.1 ppm. Sites displaying higher values of phosphorus tend to display lower than average values of nitrogen and would tend to indicate some source of pollution which is a point source rather than a diffuse one. These problems seem to be practice oriented; measures to correct or reduce the problem should be possible and are discussed in section 4.4. Samples were analysed for reactive phosphorus (ortho) and dissolved total phosphorus. Indications seem to be that for most samples, greater than 70 percent of the phosphorus is both dissolved and reactive; assays for both of these are the same. Very little of the total phosphorus is colloidal and this seems to hold with the lack of suspended sediment in the samples. However, at spring breakup, the sediment load greatly increases for a 1-2 week period and accordingly the amount of particulate phosphorus increases during this period. The fine particulate clay soil in the area is extremely susceptible to erosion during the short period of flooding and probably more sediment and the associated particulate phosphorus enter the water regime at this time than during the rest of the year.

Nitrogen is also one of the major nutrient inputs to the Great Lakes and the evaluation of its fluxes and impact are discussed in detail in sections 5 and 6. Water samples were analysed for nitrate, nitrite, ammonia and kjeldahl nitrogen. Essentially concentrations of these forms range: 1.0 - 15.0 ppm nitrate N, 0 - 0.1 ppm nitrite N, 0 - 0.2 ppm ammonia N, 0 - 1.0 ppm kjeldahl N. i.e. greater than 90 percent of nitrogen entering the surface water system is in the nitrate form. Table 10 indicates values of these constituents for three typical stations, S1, S4 and S9 which were chosen for more detailed analysis at the start of the study. These stations were selected as they appeared to show analytical values close to the norm and appeared to be relatively free from interference from point sources. S9 is the headwaters station on the south branch, a municipal drain with a manhole access. S4 is a surface water station approximately halfway down the branch below several agricultural operations but more than 1 km. from the nearest buildings. S1 is the mouth station of the south branch just above the confluence with the middle branch and again about 1 km. from the nearest buildings.

4.3 Agricultural Practices

The Little Ausable River Watershed (AG-3) is predominantly agricultural (97 percent) in nature, most of the operations have associated livestock activity, primarily beef, swine and dairy, although recently the trend has been towards a greater amount of cash crop farming. 1975 figures show 45 beef feedlots, 41 swine farms, 16 dairy herds and 9 poultry operations. There has been considerable interchange of livestock types in the past few years.

The operations under study in this project total 17 consisting of 6 beef, 4 swine, 3 dairy and 4 control (cash crop) farm operations. A summary of the operations appears in tables 5a and 5b.

1975 data for the AG-3 basin shows that manure was applied to 20 percent of the agricultural land at an average rate of 28.2 tons per hectare to 25 percent of the cropland and 71 percent of the hay and pasture. Manure was applied from October to May on the former and June to September on the latter. Most of this fertilizer is handled in the solid form with occasional operations handling the liquid form. Solid manure is stored outside in piles susceptible to rainfall leaching.

Of the 111 dwellings in the area, 94 are involved in mixed and cash crop farming. The major crop is corn (32 percent) with lesser amounts of mixed grain (16 percent), white beans (12 percent) hay (10 percent) and pasture (8 percent). (figures in brackets represent 1975 data). Residues from these crops were either removed for silage or incorporated.

Almost all land under cropping is plowed in the fall and disked in the spring; the exception is the wheat crop which is plowed in August and

tilled in September.

This study covered 17 operations in detail with a range of crops with the same ratio as those for the entire basin. These crops are listed in table 5a for each farm in order of abundance.

Inorganic fertilizer was applied prior to or during planting in most cases (75 percent) and to almost all major marketable crops listed above. This is done between April and June except for wheat which is fertilized in September. Nitrogen based fertilizer is also applied after planting to significant areas of corn (41 percent) and wheat (78 percent).

4.4 Description of Operations Under Study.

This section deals with a description of each operation being studied in Project 20, along with annual flux estimates and a short discussion of these estimates.

The average for the AG-3 Little Ausable River sub-basin is measured in Operation No. 14 which is a station (MSN) on the river where it exits the study basin. Operation No. 7 is a similar station close by on the north branch to enable some mass balance calculations on the three main branches.

The remaining operations are all single-unit agricultural activities which include:

- a) beef feedlot operations No. 1, 2, 3, 5, 11 and 16.
- b) dairy cattle operations No. 8, 9 and 10.
- c) swine operations No. 4, 12, 18 and 20.
- d) cash crop (non-livestock) operations No. 6, 13, 15 and 17.

Operation No. 1

This is a beef feeder operation of app 100 head. Drainage area is 93.4 ha. generating a flux of 58.77 gmP/ha. annually. The area, drained by a surface ditch is untiled; it is predominantly flat terrain in barley,

and hay. (Fields are cropped to within 3m. of ditch). Manure is stored in a bunker beside the feedlot and spread year-round on fields close-by; nearest point to watercourse is approximately 100 m., storage 250 m. from watercourse.

This operation is monitored at the point where the drainage ditch empties out of the area. Flux supports evaluation that no great problems should arise from this operation; sources of pollution are well removed from access to surface water, slope and small vegetated strips on streambank aid in reducing surface runoff. This operation is an example of good farming practices in producing a relatively low amount of nutrient to the surface water.

Operation No. 2

A beef feeder operation of ∿200 head, this is a highly concentrated feedlot. The barn/feedlot/storage bunker sits atop a small hill overlooking the watercourse approximately 100m.away. Manure is spread yearround on fields surrounding the storage including the one between the buildings and stream. A farm laneway and 2m.grass verge help to buffer the effects of surface runoff. The area involved is 9ha. in size, generating an annual flux of 1127.79 gmP/ha. For the years of study this area has been exclusively cultivated in corn. It is also well tiled and most sampling occurs at the header outlet when accessible.

The high flux value supports field observations that a problem exists for this operation. Although this area provides very small flows, nutrient concentrations are almost always higher than any other sampling station. The presence of solid material and other evidence of bacterial decay lead us to believe that the sewage system of barn and/or house are connected to the tile drainage system. During high flow periods surface runoff to the watercourse is evident despite buffering effects of laneway and grass verge.

This operation could probably be markedly improved by locating the linkup of sewage and drainage systems and separating them.

Operation No. 3

This 114.6 ha. area has a 220 head beef feedlot located 10m. from the watercourse. Manure is contained in a concrete/wood bunker beside the barn the same distance from the stream. Manure is spread year-round on the field beside the feedlot cultivated solely in hay during the period of study. This application is made to within 5 m. of the stream. A

grass verge 3-5 m. in width aids in surface runoff containment but during the spring breakup period, this field and "buffer-zone" are flooded as the stream overflows its banks. The buildings on a small rise are not in the flood plain. The area is untiled, a total of 114.6 ha. in size producing an annual flux of 1047.46 gmP/ha; it is cultivated mainly in corn (67 percent), barley (17 percent) and hay (8 percent). This operation is sampled above and below its area and the data calculated by difference.

The high flux (2x basin average) upholds our assessment that although there is a buffer strip, the proximity of such a dense operation to the watercourse plus pre-breakup manure application to the flood-plain are problems associated with this operation at times of high water/ rainfall.

The problem in this case seems to be proximity of livestock wastes to the stream; as the relocation of the operation is probably impractical, possibly the feedlot could be relocated on the far side of the barn, storage moved or completely contained and winter spreading on the flood plain prohibited.

Operation No. 4

A moderate-sized (120 individuals) swine operation was begun in 1975 after several years of cash cropping, situated in a small barn 20-25 m. from the watercourse. Manure (solid-liquid) is stored in an open pile behind the barn and is spread year-round on the surrounding fields although no closer to the channel. A 2-3 m. wide strip of vegetation (grass) borders the river and the cropland, which is flat, in wheat (26 percent), mixed grains (24 percent) and barley (18 percent). Spring runoff swells the river in this location but does not overflow the banks. This farm is 89.2 hectares in size; data is measured by the difference of two stations (M2 and M3) above and below the area and has a yearly flux of 582.30 gm.P/ha.

We expected this operation to show above average flux figures; however, they are not as high as expected possibly due to the flat terrain, grass buffer strip, smallness of operation or a combination of all three.

This operation could probably be improved by some type of waste containment facility to prevent leaching.

Operation No. 5

This is a 280 head beef feeder operation; manure is piled unsheltered beside the feedlot, all 280-300 m. from stream. Manure is spread yearround on field behind farmyard (within 30 m. of stream). A grass strip 2-3 m. wide borders each bank providing a small buffer zone from the fields which produce crops of hay, corn and mixed grains. The channel running through this study area was dredged in 1975 and the area extensively tiled in 1976. Despite this disturbance to the water system, the flux of 457.25 gmP/ha. annually from these 191.6 ha. is close to the basin average. Data for this operation is measured by difference of stations above and below.

The open pile/feedlot were expected to have some effect upon the stream but the flux value obtained is similar to that for the entire basin, hence it is possible that the flat terrain and the distance from the watercourse are sufficient for containment. It is difficult to assess the effect of channel improvements/new tile drainage on the water quality ie., whether in the long run, clearing the channel of vegetation and sediment and improving the drainage is harmful or beneficial.

Operation No. 6

Operation 6 is a 173.2 hectare cash cropping set-up just recently converted from a beef feedlot. This farm sits near the watershed perimeter and there is a slight gradient from the buildings to the sampling point which is the point where the drainage water surfaces to a ditch from two old tiling systems and three new ones (1975). The buildings are ~ 800 m. from the sampling point although closer to the tile drains. During spring breakup, surface runoff also enters the channel at this point. The annual flux of phosphorus from this area is 266.49 gm/ha., about half of the basin average. Crops grown on this land include corn (23 percent), barley (17 percent) and fall wheat (16 percent).

Although there may be some residual nutrient runoff from the old livestock operation, it appears that the nutrient contribution from this farm is acceptable.

Operation No. 7

This is not a farming operation per se, but an additional station to aid in calculating the mass balance for the AG-3 basin; this station is the farthest downstream on the north branch. An area of 2409.7 hectares drains into this point with a flux of 505.94 gm.P/ha. Agriculture above this point is mixed; very similar to that of the entire AG-3 basin, (Operation No. 14). The slight amount that this is larger than the flux for No. 14 may be due to the two small hamlets that sit alongside the north branch (which also appear to affect Operation No. 18).

Operation No. 8

A dairy farm of 80 milkers is being studied here, on a drainage area of 55.6 hectares drained by a recently installed municipal drain/ tiling system. Sampling is done at the outlet of this drain to the streambed. The building and pasture is located approximately 1000 meters from the stream although the underground drainage system goes very close to the buildings. The terrain at this location is flat, although there is detectable surface runoff along the path of the drain (long depression) during spring snow-melt. Main crops grown on this land are hay (or pasture) (25 percent), corn (23 percent) and mixed grains (22 percent). Flux for this area is 498.36 gmP/ha.

Although this flux is similar in size to the basin average, there is considerable evidence (solid matter and objectionable odours) that the sewage system from the farm buildings is interconnected with the municipal drainage system. Phosphorus concentrations as high as 14 ppm tend to corroborate this fact, occurring in mid-autumn and the drain outflow has a high percentage of liquor from silo-drainage. As with operation No. 2, improvement should be possible by removing the interconnection in the systems and suggesting application of the liquor/ waste silage to the soil.

Operation No. 9

A drainage area of 56.9 hectares occupied by a 35 head dairy cattle setup is situated on a fairly new municipal drain/tiling system. Pasture land is close by the main barn but no closer to the surface water. Manure is stored in a bunker beside the barn and applied year-round to the fields close by. The buildings, pastures and fields under application are 300-350 m. from surface water channels. The topography of the area is flat and land use is hay and pasture (34 percent) mixed grains (24 percent) and corn (22 percent). Flux for operation No. 9, is 335.91 gmP/ha. annually. This is what we expect from an efficiently tiled operation in the AG-3 area, with livestock and storage a sufficient distance from the surface water channels, no slope to the terrain and a sound tiling system with no direct sewage hook-up. The flux of the area is considerably lower than the basin average and the operation itself appears to have little effect on the water quality.

Operation No. 10

This farm is monitored by one station above and one below, data calculated by difference. A 48 milker dairy herd occupies most of the 142.0 hectares studied here. The farm buildings sit on a gradual slope approximately 100 m. from the watercourse; manure is stored in an open pile behind the barn (no closer to the river) and is spread year-round to the fields on the side of the buildings distant from the river (also over a small rise). The land has a slight slope, the farm buildings sitting atop a low "ridge", the river on one side and the cultivated fields on the other. Crops associated with this operation are corn (33 percent), mixed grain (31 percent) and hay/pasture (18 percent). The creek flows through the middle of the pasture for the entire length of the operation. Total annual flux is 1244.28 gm P/ha.

Although storage may be an issue, winter application of manure is not, due to a slight slope away from the watercourse at this point. The problem with this operation is the direct access cattle have to the surface water from spring to late fall, resulting in high nutrient and bacteria levels during this period. Isolating the cattle from direct contact with the river(by-pass)pond should improve water quality in this area.

Operation No. 11

A 230 head beef feedlot is the main occupant of this 167.7 hectare study location. The municipal drain from this area is sampled through a manhole; the underground drain continues below this point. The farm is located 1700 meters **above**the sampling point and the tiling system approaches fairly close to the feedlot. Manure is stored in a bunker beside the farm buildings and applied year-round to the surrounding fields although still no closer than 1200 m. from the sampling point. The farm is located on the rim of the watershed and there is a slight gradient to the land which is cultivated in corn (54 percent), hay (21 percent) and mixed grains (11 percent). Some surface flow does occur during the spring snow-melt period. Flux of phosphorus from this area is 442.75 gm./ha./yr. This figure is slightly higher than other tile drain systems although very similar to the basin average. It is possible that somewhere near the hamlet of Woodham that one or more residential sewage systems wash into the municipal drain.

Operation No. 12

A swine raising operation of 300 feeder hogs situated on 128.5 hectares at the edge of the drainage basin. The sampling location is 20 m. below the outlet of the drainage tile headers. The tile systems go from the outlet point towards the farm buildings 1000 m. distant. Manure is stored in liquid form in a large metal vat (covered) and not applied during the winter period. There is a slight gradient to the land and during spring snow-melt, surface runoff does occur. Mixed grain (64 percent) and soybeans (34 percent) are the only crops grown. Annual flux is 488.42 gmP/ha.

Flux figures for this area are slightly high for a tile drainage system but comparable to the basin flux figure. No particular reason is evident for the figure and no remedial measure can be suggested.

Operation No. 13

Although associated with a swine raising operation, the area studied here is considered a cash crop non-livestock control as no livestock/ animal confinement occurs on the drainage area monitored. A residence/ barn are situated on the land but have been unused the past couple of years. The sampling station occurs where a tile drainage header pipe discharges into the river channel. No manure is stored or applied to this land where soybeans (34 percent), barley (23 percent) and fall wheat (19 percent) are grown. This 58.7 hectare area produces a yearly flux of 148.71 gm P/ha.

This station monitors a very old clay tile drainage system still functioning well; however, during spring runoff/snow-melt some sediment does enter the system (as well as some surface runoff) and most of the phosphorus flux occurs at this time. Little or no remedial action can or need be taken.

Operation No. 14

This "operation" monitors no single livestock activity. The data collected for Operation 14, represents data for the entire AG-3 subbasin, collected and analysed at the same location as the QME.station

02FF102. Area of the drainage basin is 5680 hectares producing an average 477.94 grams of phosphorus per hectare annually.

Operation No. 15

This is a cash crop proposition; no livestock, buildings or human habitation has occurred here for several years. The area measures 14.9 hectares and is monitored at the outlet of a tile header draining the field under study which has grown corn for the last five years. The area is characterized by a fair-sized hillock. During spring runoff the outlet and lower areas are submerged as the river overflows. Flux for the area is 4.38 gm.P/ha./yr.

Operation No. 16

A small (35 head) beef feeder (400-1000 lb. gain) operation has been instituted (1975) on a previous cash crop setup. The feedlot and open manure pile are located 380 meters from the river. Manure is spread year round on the surrounding fields >200 m. from surface water although floodplain extends to \sim 70 m. of this point and some manure may be spread on the floodplain during winter. No tiling is in existence on this section of land measuring 108.4 hectares. There is virtually no slope to the terrain where soybeans (36 percent) fall wheat (29 percent) and mixed grains (25 percent) are the major crops. Annual flux for operation 16 is 973.66 gm.P/ha. Station is monitored by difference between upstream and downstream stations.

We had expected a flux figure at or below that calculated for the basin and there does not seem to be justification for a higher figure except in the fact that a considerable amount of the area monitored is in the floodplain and is submerged at breakup; the washing of tilled soil in the floodplain may account for the oversized flux estimates. There doesn't seem to be much in the way of remedial measures that can be applied if this is indeed the case.

Operation No. 17

This operation has been a cash crop setup since 1968, an area of 118.1 hectares monitored by two stations above and below the operation. There is no livestock, no manure pile and no winter application. Farm buildings sit on a slight grade approximately 120 meters from the stream. Crops grown for market include corn (47 percent) soybeans (25 percent) and barley (15 percent). Flux is 581.01 gm.P/ha./yr.

The only accountable cause of the large flux figure is the slope of terrain in this area. Fields are cropped to within 1 m. of the channel and precipitation may be causing some sheet erosion. Perhaps a larger grass buffer zone would be the solution here.

Operation No. 18

The difference in two stations (above and below) is used to provide data on this swine raising area which supports 300 weiners and 42 farrowing sows and boars on an area of 69.5 hectares. The animals are raised indoors and the manure produced is stored in an open pile between barn and river. Manure is spread on fields behind and beside the buildings year-round. Buildings and pile are 100 m. from stream, manure spread to within 10 m. on a gradually sloped field. Crops grown are mixed grain (64 percent) and soybeans (34 percent). Flux for this setup is 2313. gm.P/ha./yr.

Extremely high flux may be due to bad management/practice in storing and spreading too close to stream; however, the hamlet of Winchelsea also appears in this area close to the creek and some septic tank systems may be (and probably are) failing and the contents entering the watercourse. Remedial measures for the agricultural operation includes proper containment of waste, relocation of winter spreading (if spreading is necessary at all) and reassessment of residential pollution point/diffuse sources.

Operation No. 20

This study is a combination of four individual swine operations side by side along a concession with a drainage ditch flowing through one barnyard after another until it merges with the creek itself. This area is monitored by a station 10 m. above the confluence. These four farms have a combined 2400 individual swine covering 222.6 hectares of land. The ditch flows through part of each barnyard, half of which are open pig lots (the other two indoor pens). Indoors, 1600 feeder hogs produce liquid manure which is stored in sealed vats; outdoors, 700 feeder hogs and 116 sows/boars have barnyard access and the manure (solid-liquid) is stored in piles and spread year round in nearby fields (within 100 m. of ditch). The area is cropped in corn (51 percent) hay/ pasture (20 percent) and mixed grains (13 percent).

Figure for flux for this operation is higher than the basin average but much lower than would be expected considering the potential for nutrient/ bacterial contamination of water. Main solution would be to reroute the drainage ditch away from the barnyards as far as possible. Lower than expected figure may be due to either the amount of non-livestock cropland draining in and/or confinement of individuals indoors.

5.0 DATA ANALYSIS AND INTERPRETATION

5.1 Hydrographic Analysis

The stage of flow at each station was observed on each sampling date except for tile drains at which flow rates were determined using a volumetric cylinder and stop-watch. Using stage-discharge relationships developed for each station, the volumetric flow rate was determined. This gives observations on stream flow at approximately bi-weekly intervals. Under an assumption that the flow observed on a sampling date is representative of the flow rate for approximately a two week period, it is possible to calculate the annual and seasonal stream flow at each station. Such an assumption is reasonable during periods of constant low flow, but not during other periods when flow can vary by an order of magnitude over a two week period. Since a continuous daily flow record is available at the mouth station, various hydrological models were explored to relate flow at the sampling stations to flow at the mouth station, so as to estimate the flow pattern at each station in between sampling dates.

Two types of models were considered. The first type relates rainfall to runoff by considering water budgets on the various hydrological reservoirs (e.g., surface water, soil, moisture, ground water). In this class are models of varying complexity including, the Stanford Watershed Model (see Linsley, Kohler, Paulhus,), HYMO (being modified in an allied PLUARG study by Dr. H.R. Whiteley, University of Guelph, Ontario, to include snow-melt), and STORM. These models are deterministic, quite complex and attempt to model phenomena whose time scale is of the order of an hour. The second type of model seeks statistical relationships between various hydrological parameters and the observed flow at a given station. Such models are simple, empirical and describe time-scales of a longer duration than the first

type.

The first type of model was rejected for this study. Its data requirements are large (e.g., soil moisture content over time as required). It generally does not consider snow-melt conditions. It is used primarily for flood-flow and flood-routing calculations, necessitating the adoption of some base level to describe groundwater flow. It demands large amounts of computer calculations.

Relationships (lines of regression) were sought between the flow rate at a sampling station and the flow rate at the main station on the same sampling date for each station. Calculations of time of travel for the AG-3 watershed indicate a value of the order of 0.5 days for a wave. Hence, when flow is high at the upper station, it will be correspondingly high at the mouth station. During flood events, the rise and fall of the hydrograph at an upper station will preceed that of the lower station by an amount due to the time of travel of a flood wave, local rainfall variations, and different soil conditions. Some refinement could be introduced in these regression relationships if the time of travel from sampling station to main station was included. Since an estimate of the average daily flow rate is desired, such a refinement was not attempted (the strength of the regressions of flow at various upstream stations on flow at the main station shown below, indicate that such a refinement is not needed).

Two regressions were tested:

- 1) Log (flow at station) vs. Log (flow at main station)
- 2) (flow at station) vs. (flow at main station).

A few typical results are shown for the log-log model in table 13. For all stations, analysis (t - test, 95% level of confidence) indicated that m' is not significantly different from 1. That is, the linear model relating flow at station to flow at main station on the same day of sampling is the appropriate model. The regression model of flow for each station indicates the strength of the relationship. For all tile stations, the strength of the relationship. For all tile stations, the strength of the relationship. For all faster than that for stream stations; hence, larger errors are made in observing that tile flow rate which corresponds to similar behaviour at the main station. In fact, since the tiles do not flow for many periods while water flows past the main station, the regressions for tile stations mathematically result in flow estimates which, while finite, are infinitesimally small during these periods.

A daily flow record for a station is generated using the daily flow record of the mouth station and the appropriate correlation. To check the regression models, three checks were made. Firstly, the sum of the annual average runoff from the north (N1), middle (M1) and south (S1) branches is 91% of that of the mouth station; since this sum flows from 92% of the area of the waterbasin, the runoff budget from each branch is consistent with that measured for the whole basin. Secondly, the strength of the correlation between flow at each station and main station suggests that the runoff estimates at each station are excellent, except for a few tile drains. Thirdly, a plot of the slope of the Qi-Qmsn relationship as a function of drainage area of a station shows a consistently increasing though non-linear relationship; such a relationship is expected because of changing area/per length ratios of the different stations. It is concluded that this flow model is sufficient for purposes of this investigation.

5.2 Determination of Nutrient Fluxes

Fuhs (1972) observed no general relationship between materials as nitrates and flow rate but a positive relationship between erodable materials (e.g., particulate phosphorus) and flow rate - higher flow rates cause erosion of more particulate material than at lower flow rates. The U.S. Army Corps of Engineers (1975) observed similar behaviour between total phosphorus and flow rate for several major U.S. watersheds influent to Lake Erie (e.g., the Maumee, etc.). Similar relationships were sought in this work.

A plot of total phosphorus versus associated flow rate for a typical station (Stn S5) is shown in Figure 4 . It indicates that, above a certain flow rate, a definite relationship exists but below this flow rate, no significant relationship exists. The high variation of concentration at low flows is due to random disturbance of the channel bottom during summer - fall periods. No similar relationship is observed for nitrate. To further analyze this relationship, a chemograph was determined for N1, M2, S2, S4, S7, S9 and the main station (MSN). Samples for total phosphorus and nitrates were taken at 2 - 4 hr. intervals during the fall of the hydrograph at those stations during April 25 to April 28. Figure 3 . shows trends of concentration and flow with time for station S5. These trends are typical for all stations, including tile drains. For all stations, the total phosphorus concentrations show a generally consistent decrease as the flow rate decreases. No such relationship is observed for nitrate. Preliminary plots of mass export of total phosphorus (e.g., gm/day) against the associated flow were made for a few stations (see Figure 6 for a typical graph). These plots show a much stronger relationship between mass flow (export) and discharge than between total phosphorus concentration and discharge since despite relatively high concentrations at low flows (see Figure 4), the mass export at low flow rates is small.

> Regressions of mass export as a function of flow were sought for each station. Since there is some variation of flow at each station as a function of corresponding flow at the mouth station, regression models were determined relating mass export at each station as a function of flow rate at the main station. The relationships and the predicted export of phosphorus for each station are shown in Table 15. The annual export was calculated using the daily flow hydrograph at the mouth station and the appropriate station flux - main station discharge

relationship. From these values, the mass export for total phosphorus for each operation is calculated and indicated on Table 4 with a summary describing farming management practices.

For total nitrogen, no flow sensitive relationships are observed, hence, fluxes are calculated by using an average seasonal concentration and the associated flow volume for that period. Estimates of export of nitrate for each station are given in Table 3 and for each operation are given in Table 7 . Analysis for all forms of nitrogen (nitrate, nitrite, ammonia and total kjeldahl nitrogen) were carried out on all surveys at three stations (S1 a downstream station, S4 a midstream station and S9 a headwater station) and on all stations during four samplings (Feb.17, Feb.20, Mar.22, Apr.11, 1976). For the two year period, ammonia and nitrite are two orders of magnitude smaller than nitrate while kjeldahl nitrogen is one-half to one order of magnitude smaller than nitrate. (Kjeldahl nitrogen is respectively 3%, 13% and 13% of total nitrogen for S9, S4 and S1 on an annual basis). During the 1976 spring runoff, nitrite and ammonia are two orders of magnitude and kjeldahl nitrogen is one order of magnitude smaller than nitrate (kjeldahl nitrogen ranges from 3 to 5% of total nitrogen). Including kjeldahl nitrogen, estimates of total nitrogen export are given in Table 10.

28

5.3 SEASONAL EFFECTS

i

5.3.1 Hydrograph

Hydrographic variations occur with the seasons. Each season has unique features associated with precipitation, temperature and the water table. Four seasons were chosen based on the hydrographic record of the continuous flow monitoring station at the mouth of AG-3. These hydrological stations fitted closely into 3 calendar month periods and hence equilength seasons were defined as follows for the 2 year study:

i)	summer	- June 1 to August 31 (184 days)
ii)	fall -	September 1 to November 30 (182 days)
ii)	winter	- December 1 to February 28/29 (181 days)
iv)	spring	- March 1 to May 31 (184 days)

This seasonal breakdown reflects the summer base flow period with occasional rainfall, the autumn period with rising discharge due to fall thundershowers, rainfall and the occasional early snowfall/melt, the baseflow winter freeze-up with sporadic mid-winter snowmelts and the break-up, snowmelt and rainshowers of spring that dominates the annual hydrograph.

5.3.2 Phosphorus

The seasonal fluxes of phosphorus outlined in Table 7 also demonstrate the effects noted in section 5.3.1 with the spring seasonal flux being the predominant factor in the export of Phosphorus from the basin, export is higher in either spring or winter than summer and fall combined. The dependency of phosphorus concentration upon flow rate augment the effect of season upon transport.

For the mouth station, spring, summer, fall and winter account for 55.9%, 9.3%, 6.7% and 28.1% respectively of the annual basin export. In general, this pattern is mirrored by all other stations with the tile drains showing the most variance (N5, N6, N7, S3). The tremendous spring flux of phosphorus

is directly related to the water cycle features of extremely high water, flooding, ground saturation and snowmelt accompanied by rainfall.

Table 9 shows the domination of the spring runoff period where a single day of break-up (March 13/77) has an almost 20 fold increase of any other single day event of any other season.

The seasonal export of phosphorus from each of the main branches is shown in Table 8. Again we can see that the largest branch (north) supplies the largest Phosphorus export during each season as well as over the whole year. The same relative amounts also are apparent for the south and middle branches.

5.3.3 Nitrogen

Seasonal nitrogen flux was determined by calculating a mean seasonal nitrate nitrogen concentration, applying a total seasonal discharge via a linear relationship to produce a mass seasonal export of nitrate nitrogen. A mean seasonal TKN export was added based on the ratios calculated in Table 10 on the data in Table 1 to produce an export figure for total nitrogen.

Seasonal nitrogen fluxes were calculated for each operation under study and these data appear in Table 7. This table demonstrates the same general patterns as those outlined for phosphorus in section 5.3.2. There is however, for nitrogen, a greater degree of scatter and randomness in the export and flux figures produced and so interpretation of these results must remain as generalizations. Nitrogen fluxes for winter and spring periods appear to be at about the same level for most operations and at a value an order of magnitude larger than nitrogen fluxes for the summer and fall periods. (again these two seasons have generally the same size fluxes). Export of nitrogen from each operation is basically of the order of 50X the phosphorus export season by season.

With relation to individual operations, the same operations with high P export (No's. 2, 3, 10, 18) also have a large value for N export season by season, and probably the same reasons (as outlined in section 4.4) apply.

The enlarged values of nitrogen export for the control operations tend to show that due to widespread inorganic fertilizer application (usually high N content) no direct statement can be made with respect to the effect of livestock upon nitrogen export.

5.4 Correlation With Livestock

The seventeen operations under study fall under four basic categories: beef feedlots, dairy farms, swine producers and cash crop operations; these are summarized in tables 5a and 5b.

Phosphorus fluxes from the agricultural studies have a base varying from 4 to 580 gm./ha./yr.; a figure of 332 gm./ha./yr. was determined as the background flux from agricultural operations where no livestock were involved. This figure is compatible with the 350 gm./ha./yr. determined by Dr. M. Miller from an independent study. If we consider this figure as a flux integral with agriculture and livestock contributions are additional to this figure, they are shown in column 4 of table 5b. Although exact figures are difficult to explain, some conclusions can be drawn with respect to the relationship between flux figures and livestock.

Generally, the presence of livestock creates an additional flux to that caused by crop activity alone. The type of operation does not seem to affect the input of nutrients; however, the management of a livestock set-up has a far greater effect on the input of nutrients and bacteria to surface water. Several problems attributable to livestock have been detected.

Firstly, the accessibility of livestock waste to surface water is an important factor. Several of the livestock facilities are remote from surface water and the areas drained by extensive underground tiling systems (No. 9, 8, 11) or verged by grass buffer zones (No. 1, 5) or forested areas (No. 12). Fluxes from these sections reflect this minimal livestock contribution. The proximity to watercourses of feedlots (No. 3) pastures (No. 10) and barnyards (No. 20, 4) is reflected in higher flux estimates.

Secondly, the application of manure, the incorporation of crop residues and the fall tillage to floodplains which get inundated at spring runoff creates a large flux of nutrient (with sediment) into the surface water (No. 3, 16).

The breakdown of all or some septic systems in even a small residential community may mask the effect of agricultural operations (No. 18).

The access of livestock directly to the watercourse causes an increase in flux noticeable on long-term and drastic on short-term. Some farms have

the stream flowing through the middle of their main pasture (No. 10), others have watercourses flowing directly through or within 10m. of barnyards (No. 20).

Some operations, although appearing well managed on the surface have building sewage systems (No. 2) or silage draining systems (No. 8) tied to field drain systems creating extremely high nutrient concentrations in the drain water at select times of the year (cleaning periods).

Winter manure spreading close to a stream also increases the flux from agricultural land (No. 3, 4, 16, 2) during winter snow-melt and spring high water periods especially if this area is below flood level (No. 3, 16).

Livestock density does not seem to be a large factor unless involved with bad management at the same time. A combination of these two increases the nutrient runoff extensively (No. 2) often creating a small drainage area that contributes a much greater flux than a much larger, well-run operation.

5.5 Interpretation of Bacteriology

A summary of geometric means for each station is shown in Table 16 for total coliforms, fecal coliforms and fecal streptococci. Proposed swimming standard for total coliforms (1000/100 m) are well exceeded except for 5 stations (N2, N6, N7, N10, M1). Swimming standards for fecal coliforms (100/100m) and for fecal streptococci (20/100m) are also exceeded; fecal streptococci counts are generally lower on the middle branch than on the other two branches. Total coliforms result not only from the intestinal tracts of warm blooded animals (animal and human), but also are ubiquitous in soil. Hence, these data reflect the typical concentrations expected from an intensively farmed area with small to medium sized herds. Fecal coliforms originate from both human and animal sources (livestock, woodchucks etc.,) while fecal streptococci are normally deemed to be attributable to livestock and, to a lesser extent, man. Hence, in the past, a ratio of fecal coliforms/fecal streptococci of greater than 4 has been used as an indicator of human contamination while a ratio of less than 0.7 has been used as an indicator of animal contamination. For AG-3, the ratio is generally 1 to 2; but this ratio is difficult to interpret in this case. Near sources of contamination, the ratio is normally high; one needs to sample somewhere downstream of a source in order to use the ratio. In fact, questions about sampling location now preclude confidence in using such a ratio for interpretation.

For assessing this data, most confidence is placed in using the fecal coliform data because at results from 24-26 samples over two years; less confidence is placed in the fecal streptococci data because it results from 7 - 10 data sets. The total coliform data is used only as confirmation, due to the coliform sources from soil.

Station N5 has the highest concentrations of pathogenic indicators (an order of magnitude greater than the other stations). It is a tile which drains a barnyard after some soil seepage between the cattle manure areas and the tile. There is probably some diminuation of bacteria during seepage through the soil, but it is minimal. The export of phosphorus is also quite high, indicating that the nutrients are due to the farmyard. For a mass balance, stations N4 plus N5 join to flow 50 feet downstream into station N3. The flow data indicate that the effect of high bacteria concentrations in the tile, N5, is not found immediately downstream, due to dilution by the main stream.

Other stations which have somewhat high bacteria concentrations are N9, S5, S6 and S7. Station N9 has beef cattle grazing in adjacent fields with access to the streams. Station S6 is a ditch draining

several farmyards (i.e., the farmyard bacteria are diminished and diluted due to overland flow), station S7 drains through pasture land grazed by cattle. Station S5 receives the flow from both S6 and S7. Nutrient concentrations are periodically high at these four stations, but neither the bacteria data nor nutrient data are consistently high to absolutely confirm that the nutrient concentrations are due to livestock management practices. In fact areal phosphorus export from S5, S6 and S7 is the same as export from the whole basin, while the bacterial levels are higher than for the basin.

Station N9 is above a small hamlet, while station N8 is below the hamlet. The bacterial concentrations below the hamlet do not differ significantly from all other station data; hence, no contamination from septic tank seepage is discernable.

Stations N2, N6, N7 and M1 all have low bacterial concentrations. N2 is a ditch draining essentially cereal and row crops for a beef farm (operation no. 1). Cattle access and manure application to areas adjoining the ditch is low. The low bacterial concentrations result from good farm management. Station N6 is a tile drain in a field used exclusively for corn. The low bacterial concentrations represent the absence of livestock and manure applications. Station N7 is a tile drain from an area without any livestock. All stations in the middle branch have relatively low fecal streptococci concentrations. This is attributed to the observation that the entire middle branch has a lower density of livestock than the other branches. There is no consistent correlation between phosphorus export and bacterial concentration. Only N2 and N6 have low phosphorus export rates.

In summary, there is no consistent data relating bacterial contamination to the presence or absence of tile drains. For tiles draining fields not accessable to cattle, lower than normal bacterial concentrations are found. For tiles which directly drain barnyard areas, a significantly higher level is observed. Some surface locations which drain fields in which cattle pasture or have access to the stream have somewhat higher levels of bacteria; but, these levels are not substantially higher than ambient concentrations found in the whole basin. Accordingly, while AG-3 has some bacterial contamination, it is our conclusion that no substantial improvement in bacterial concentrations would result from change in management practices, except for the tile draining the farmyard (station N5, operation No.2). Further, it is our hypothesis that no large idfferences between operations are found because of the medium to small scale of feedlot operations.

5.6 Mass Balance on Branches

The annual average runoff from the north middle and south branches is 0.40, 0.11 and 0.42 m³/sec respectively during the study period while that of the whole basin is 1.02 m^3 /sec. At the point of measurement, the annual average of the three branches is 91 percent of the mouth station while the three branch stations account for 92 percent of the total area of AG-3.

The annual average export of phosphorus from the basin is 2700 kg/yr for P while that from the individual branches is 1200, 400 and 1000 kg/ yr for the north, middle and south branches respectively. These stations account for 96 percent of the total export from the area which compares quite favourably with the area represented by these stations.

The annual average export of nitrogen from the basin is 159,000 kg/yr while it is 72,700, 13,600 and 65,000 kg/yr from the north, middle and south branches respectively. These stations account for 95 percent of the total export from the area.

The export from each branch station is compared with the export from the basin for phosphorus and nitrogen for one day during an event in each season (summer, fall, winter and spring). Generally the sum of the three branches is either randomly less than or randomly greater than the basin export- no seasonal effect is apparent. This variation, which is small (±10%), is a measure of error of the mass export estimates on a given sampling day.

5.7 Form of Nutrients in Transport

Investigations into the form in which the nutrients phosphorus and nitrogen were being transported were carried out throughout the period of study in AG-3. Three stations were selected on the south branch, which is the most regular with respect to flow, most diverse with respect to agricultural practices and relatively free from non-agricultural sources. These three stations are: S1 the mouth station of the south branch which monitors 1933 hectares of wholly agricultural mixed farming, S4 a stream station approximately halfway along the south branch with a drainage area of 1638 hectares and S9 a tile drain station where municipal subsurface systems drain 168 hectares of farming area. Over a period of 2 years 24 samples were collected at each of these stations and analysed for total phosphorus dissolved phosphorus, ortho-phosphorus, nitrate, nitrite, ammonia and total kjeldahl nitrogen. Analyses for these parameters is shown in table 1. The occasional sample is omitted due to unavailability. Breakdown of the analyses is shown in Table 10. Concentrations shown are the mean of the individual concentrations; ratios and deviations are the average of individual ratios for each collection.

5.7.1 Phosphorus

The average concentrations of total phosphorus are calculated as .084, .133, .082 for S1,S4 and S9 respectively. The higher value for S4 is probably due to intensive livestock activity above this point which levels out by S1. For surface water locations (S1 and S4) the fraction of phosphorus that is dissolved varies between 60 and 80 percent and the fraction that is reactive is 63 percent in both cases. That is, for the surface water stations, the greatest part of the phosphorus is dissolved and that part is almost wholly reactive.

For the tile drain station (S9), approximately the same concentration of phosphorus is in transit but in this case it is wholly dissolved and reactive (99 percent). (The .80 ratio for dissolved P probably reflects adhesion of dissolved P to the filter as dissolved $P \ge$ ortho P.)

5.7.2 Nitrogen

The three stations S1, S4 and S9 reflect the same levels of nitrogen as most other stations in the AG-3 sub-basin; these estimates are given in Table 10. The surface water stations S1 and S4 show an average concentration of 6.53 and 6.73 ppm of Nitrogen respectively; of this total, approximately 85 percent is in the nitrate form, 13 percent analysed as kjeldahl nitrogen and the remaining 2 percent was split between nitrite and ammonia forms. For the study period, nitrate N is one order of magnitude larger than TKN and two orders of magnitude larger than either nitrite N or ammonia N. For the tile drain station S9, 9.42 ppm of nitrogen was estimated as the average concentration; of this amount, 8.88 ppm or 94 percent is in nitrate form, 5 percent is organic, and amonia N and nitrite N appear in trace quantities.

transferrer om sino be dettigented to mier anality som building dettange af the second of the second to be dettigented to mier and the this states in fact beat the second of the seco

the chemical providers of automatical forms in a till the provider in a sparse system is shown and the station of the laste of automatical forms in a station the 1.20 sections of the station for a stational of the station of automatical solution and the station of the station of the stational of the station of a station of the section of the station of the station of the station of the station of the section of the station of the station of the station of the station of the section of the station of the station of the station of the station of the section of the station of the station

rens are extended in the AC-1 oph-heats set

5.8 Subsurface Drainage Systems

The Little Ausable Sub-basin (AG-3), characteristic of the entire Ausable Watershed, is intensively tile drained. Both clay and plastic tile systems feed into corrugated steel header pipes and drain the relatively flat clay fields by percolation to the tile bed and outflow to the surface channels. Tile drainage systems are extensive in the AG-3 sub-basin set in rows ~15m. apart joined by a header and often tied into a longer municipal drain. These subsurface drainage systems allow rapid drying of the fields during the saturation periods and it is generally accepted that over a period of time they carry approximately 20 percent of the water draining that area.

The project 20 investigations were carried out on 26 stations, of which 8 are tile drains or involved with tile drains. These stations are listed in Table 2 designated with * along with flux data for these points.

Flux of phosphorus from these systems ranges from very low (N6) to very high (N5) and there are several reasons for this variation. A well-installed, efficient tile drainage system should be beneficial to a cultivated area in improving the infiltration of water down through the soil and reducing the surface sheet erosion to open-channels. However, tile drainage systems can also be detrimental to water quality when building drainage systems are linked with the field drains and the tile system in fact becomes a flow-through system for sewage, (as exhibited continuously by N5). Problems also arise when silage leachate is introduced to the drains during the siling down period in mid-autumn (station S3 Table 1 - H).

The chemical breakdown of nutrient forms in a tile drainage system is shown by station S9 in Table 10. This table demonstrates that 80 percent of the total phosphorus is both dissolved and reactive and that almost all percent of the nitrogen is in the nitrate form; almost half the normal amount of organic and nitrite nitrogen is present and extremely small concentrations of nitrogen in the ammonia form.

Tile drains are considered by hydrologists to yield approximately 20 percent of the total surface outflow from an area. BEAK did not conduct any studies to confirm or reject this figure. The nitrate flux is approximately the same for tile drains as for surface drains. The phosphorus flux from tile drains is generally lower than from surface stations except for one tile station which drains a barnyard (N5). Except for N5, tiles yield 0.28 Kg/ha/yr while the surface operations yield 0.71 Kg/ha/yr.

6.0 RELATIONSHIP OF PROJECT RESULTS TO PLUARG OBJECTIVES

The objective of this study has been the evaluation of the nutrient and bacterial losses from livestock activities upon the surface water in the Little Ausable River (AG-3) Sub-basin.

The flux of the nutrients phosphorus and nitrogen both annually and seasonally has been determined for the various livestock and control operations under study. Variations in flux estimates are indicated along with probable cause for variation and possible mitigating measures.

These fluxes have been broken down to determine the seasonal fluxes and seasonal baseline fluxes of phosphorus and nitrogen. Also, the nutrient export related to seasonal event has been calculated and discussed.

Studies performed on three stations, two surface water and one tile drain location, have been performed to permit the determination of nutrient forms in transport. These data have been calculated and presented in this study.

The influx of pathogenic indicators to surface water has been investigated throughout the study and the results discussed with respect to the relationship with livestock operations. Because of the small to medium scale of feedlots in AG-3 there appears to be little difference between these operations in the bacteriological data.

This study has addressed itself to the effect of drained vs. undrained fields on nutrient and bacteria flux. For tiles draining fields not accessible to livestock, lower than normal exports were found; for tiles draining barnyard areas, significantly higher than normal levels were noted.

This study has addressed the question: from what sources and from what causes are pollutants contributed to surface waters? Information gathered permits conclusions concerning contributions from different types of livestock sources (dairy, beef, swine and cash crop) and contributions due to management practices of manure storage and distance of barnyard from the surface stream for farm sizes typical of southwestern Ontario.

This study permits conclusions concerning the extent of pollutant contributions and unit loadings by season from agricultural land use and typical clay soils to surface waters; conclusions concerning pollutant

t

contributions are not possible for forest or urban land uses, for such land use practices as differentiating between crops such as corn or cereal grains, or for pollutant contributions to ground water.

This study does not specifically attempt to assess the degree to which pollutants are transported from sources to boundary waters but some statements have been made in the report concerning transport of nutrients in headwater areas.

REFERENCES

- Fuhs, G.W. 1972 The Chemistry of Streams Tributary to Lake George, New York Environmental Health Report No. 1., New York State Department of Health
- U.S. Army Corps of Engineers, Buffalo District, 1975 Lake Erie Wastewater Management Study, Preliminary Feasibility Report Vol. 1, 172pp.
- Linsley, Kohler, Paulhus, Hydrology for Engineers, McGraw Hill

This submission was

Prepared by:

IAO 101

Dr. W. J. Snodgrass Project Advisor

P. R. Odom Environmental Scientist

Approved by:

S. L. Hodd Manager of Environmental Engineering

TABLES

2

T+3328C

GLOSSARY OF CHEMICAL PARAMETER UNITS USED IN TABLES 1

pH - standard pH units

Specific Conductance - units are micromhos centimeter⁻¹ at 298K Total Hardness - unit are mg/l as CaCO₃ Total Alkalinity - units are mg/l as CaCO₃ Total Phosphate - units are mg/l phosphorus Ortho Phosphate - units are mg/l phosphorus Dissolved Phosphate - units are mg/l phosphorus Nitrate Nitrogen - units are mg/l nitrogen Nitrite Nitrogen - units are mg/l nitrogen Ammonia Nitrogen - units are mg/l nitrogen Kjeldahl Nitrogen - units are mg/l nitrogen Total Coliforms - units are colonies per 100 ml Fecal Coliforms - units are colonies per 100 ml -M San Station Record

Station	Discharge cfs	pН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/&	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 m2	Fecal Coliforms #/100 m2
MSN	11.3	7.7	565	210	150	.017	6.2	. 098	450	+ 100
N1	1.1	7.6	550	200	150	.014	6.2	.120	1000	
N2	0.11	7.3	530	270	220	.013	3.2		1900	150 San
N3	10.0	-	-	270	220	.013	3.2	.052	30	
N4	- 9.9	-	199 1 90696	250219	220100		6.6.6	000	Distance	. 220 200
N5	<.01	6.9	750	360	340	.510	1.3	140	11000	051
NG	-	-	-	500	540	.510	1.3	.140	11000	
N7	<.01	7.2	615	210	140	.030	11.3	.002	70	+ - LPO
N8	0.4	8.1	580	210	170	.020	5.1	.200	720	19100
N9	0.3	7.7	600	240	200	.058	5.1	.200	TNTC *	1.1.1.1.100
N10	<.01	6.9	700	270	170	.021	15.7	.002	380	1 300
N11	.18	7.3	585	210	170	.042	9.8	.022	800	- 0
M1	0.19	8.0	520	200	160	.016	2.8	.044	800	30'000
M2	0.17	7.6	590	190	160	.012	4.1	.080	4100	
M3	.14	8.1	580	200	160	.009	5.3	.074	3400	780
M4	.12	8.0	590	180	130	.009	9.2	.074	1400	
M5	.09	7.1	600	210	150	.116	9.2	.160	00	+ 2 0
S1	8.9	8.4	485	190	120			100	200	
S2	8.1	8.2	515	240	130 170	.016	6.6	.190	200 580	
\$3	<.01	7.1	650	220	150	.019	6.1		540	-
S4	3.4	8.3	525	230	150	.024	11.8	.006	560	WY
\$5	1.9	8.1	605	200	170			.160		LUNA TOTING
S 6		-	-	200	170	.173	7.3	.160	9900	H LOCE
S7	1.5	8.1	595	210	150	.088	6.5	.130	5600	
58	0.8	7.8	625	200	170	.000	7.3	.110	440	
59	0.39	7.5	690	240	150	.017	13.6	.010	1030	-
	0.2	7.0		1		.041	13.0	.010	1030	and the second second
lep (-)	21	1 1 h	8" 14 +31X 131		-	-	-	-	- 1	-

Table 1-A: Analytical Results - Little Ausable Sub-drainage Basins Survey A, 23 June 1975

* See Station Record

Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/L	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 m2	Fecal Coliform #/100 m2
MSN	6.2	7.8	475	270	370	.044	6.9	.102	10,000 +	10,000 +
N1	0.8	7.55	535	300	410	.006	7.3	.092	10,000 +	0
N2	0.07	7.8	480	240	390	.006	4.3	.032	50	40
N3	0.7	7.8	515	270	420	.028	4.5	.070	2,000	780
N4	0.7	-	-	-	-		-	000 - 11	- 00	- 1
N5	<.01	8.3	1065	290	1240	.170	1.3	.014	TNTC	10,000 +
NG	0.1971810	-	99.1	-	-	-		-	-	-
N7	<.01	7.65	785	340	490	.012	12.5	.002	400	0
N8	0.4	7.8	440	230	360	.078	8.5	.068	TNTC	1,300
N9	0.2	7.9	490	260	370	.019	10.0	.100	TNTC	11,700
NIO	<.01	7.6	530	290	420	.014	9.5	.080	TNTC	13,100
N11	.11	8.05	615	340	490	.013	14.0	.054	10,000 +	760
M1	0.10	8.0	510	290	500	.041	0.7	.016	180	50
M2	0.09	7.9	560	310	530	.020	2.3	. 082	10,000 +	300
M3	0.06	7.75	520	210	490	.014	0.8	.022	4,000	330
M4	0.04	7.8	475	270	370	.014	8.1	.070	5,400	940
M5	0.03	7.75	610	350	480	.033	11.5	.014	10,000 +	4,800
S1	4.5	8.1	440	220	310	.006	2.8	.080	TNTC	490
52	4.0	7.95	430	230	330	.022	3.1	.082	10,000 +	2,700
53	<.01	8.3	645	380	540	.125	9.0	.004	4,500	420
54	1.8	7.85	460	260	350	.049	5.0	.058	TNTC	3,000
\$5	1.2	8.05	470	250	360	.089	9.0	.054	TNTC	4,500
56	<.01	7.8	445	280	480	.019	1.0	.080	TNTC	4,200
57	0.9	8.05	470	260	360	.091	14.5	.064	10,000 +	10,000
58	0.6	8.0	535	290	390	.080	9.0	.034	10,000 +	1,300
\$9	0.28	7.5	635	330	460	.026	11.0	.004	0	130
ep (-)	and weth real	12.44	-62.61 84	_			-	-		-

Table 1-B: Analytical Results - Little Ausable Sub-drainage Basins Survey B, 14 July 1975

		And the second	and the second second							
Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/%	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 m2
MSN	2.0	7.95	460	250	190	.047	1.4	. 052	1,600	920
N1	0.3	7.7	560	300	230	. 028	4.0	.076	1,000	40
N2	.04	7.6	490	280	220	.009	2.9	.006	610	160
N3	.2	-	-	-	-	.028	-			-
N4	.2	7.9	460	250	220	.029	0.6	.020	880	220
N5	-	-	-		=	-	-		-	-
NG	-1002	-	1880	- 210	_550	2008	-			-100
N7	- 193	-	1000	-	_	- 1	- 6	-	-	- 70
N8	.07	8.05	590	320	270	.038	2.0	.026	2,100	130
N9	.03	7.8	570	330	280	.040	2.8	.116	4,800	1,540
N10	-	-	-	-	-	.040	-	-	-	-
N11	.02	7.85	610	320	270	.041	8.0	.020	490	180
M1		-	1990	-100		2000	_	2004	5,600	-100
M2	.03	8.15	550	330	280	.057	2.2	.026	6,100	1,060
M3	-	-	-	- 7	-	-	-	-	-	-
M4	-	-	-	-		-	-	-	-	-
M5	-075	-	-920	-999	- 600		-	-	17 5-500	3,710
\$1 \$2	0.34 0.29	8.65 8.5 ⁵	330 350	180 200	130 250	.034	0.8	.010	3,300	3,400 260
\$3	-000	-	2100			1020	0.000		-	
S4	0.23	8.7	360	190	150	.054	0.5	.014	410	60
\$5	0.15	8.4	480	240	210	.100	0.6	.030	350	200
S6	- 2005		1	-389.73		-	-	-	12	-
S7	0.14	8.0	490	250	200	.733	1.0	.044	990	90
S8	0.08	7.85	670	320	250	.083	4.1	.078	19,100	6,100
\$9	<.01	7.1	900	380	300	.038	9.7	.004	12,100	180
ep (N4)	0.2	7.9	460	250	220	.028	• 0.7	.020	-	-

Table 1-C: Analytical Results - Little Ausable Sub-drainage Basins Survey C, 28 July 1975

	and the second sec	the second second								1.5.8.942
Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/%	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 m&	Fecal Coliforms #/100 ml
MSN	0.8	7.65	460	230	170	.056	0.8	.042	5,400	1,070
N1 N2 N3	0.3 0.03 0.2	7.4 ⁵ 7.3 7.7	580 520 460	290 250 230	210 220 190	.027 .014 .076	2.8 3.2 0.7	.126 .010 .014	2,300 5,200 2,900	460 1,180 430
N4 N5	0.2	-		-	-	-	-	=	1	-
N6 N7 N8 N9	<.01 .03 .01	7.6 ⁵ 7.6 ⁵ 7.6 ⁵	- 1530 550 560	400 260 260	420 220 250	.000 .100 .001	2.6 0.7 0.7	.004 .018 .100	5,600 4,100 16,800	100 170 7,700
N10 N11	<.01	7.3	660	290	290	.024	5.7	.026	7,600	280
M1 M2 M3 M4 M5	<.01 - -	7.9	680	340	220	.008	3.1	. 020	11,100	1,790
\$1 \$2 \$3 \$4	0.3 0.2 -	8.0 8.0 7.6	330 360 - 370	170 190 - 160	130 130 	.031 .037 .000	0.2 0.4 0.2	.008 .010 .008	5,600 4,600 2,200	1,430 610 - 310
\$5 \$6 \$7	-	7.45	680 680	280	220	2.300	0.5	.030	10000	3900
\$8 \$9	<.01	7.9 ⁵ 7.3 ⁵	680 1670	260 500	200 330	.003	1.1 5.9	.010 .004	4,700 20,000 +	2,300 200
ep (MSN)	0.8	7.65	450	240	160	.049	0.8	.042	-	-

Table 1-D: Analytical Results - Little Ausable Sub-drainage Basins Survey D, 11 August 1975

All the Annual State

			and a second	ten and the test of the test	Contraction of the second s	THE OF TRANSLED BUT PROPERTY CAN BE AND	Realization of Design Party and Part	To Man De and the De Cardon Street Providence		The second s
Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/%	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mL
				510	S10		Con the Constant of Constant o	1328	2.200	100
MSN	62	7.5	540	280	230	.214	4.0	1.06	TNTC	TNTC
N1	30	7.55	660	360	290	.412	0.6	.004	THITC	THTO
N2	0.07	6.8	470	250	200	.036	3.60		TNTC	TNTC
N3	13	7.15	630	320	250	.294	1.99	.012	1,170	60
N4	13	7.1	670	400	270	.140		.600	TNTC	TNTC
N5	<.01	6.9	940	420	260		2.02	.540	20,000 +	300
NG	<.01	7.3	800	420		.589	15.23	.570	14,000	9,300
N7	.02	7.3	710		430	.019	0.28	.000	2,600	120
N8	4.3	7.75	670	330	270	.037	4.92	.000	8,900	70
N9	2.5	7.9	650	340	250	.216	9.82	.142	13,400	3,700
N10	<.01	7.25	630	330	260	118	_8.16	.084	9,700	2,100
N11	.07	7.45	640	340	250	.052	12.86	.004	17,400	890
MIT	.07	1.4-	640	350	280	.052	10.26	.036	14,900	470
M1	8.05	7.6	520	280	200	.111	0.75	022	20.000.	1 2/0
M2	5.33	7.65	530	290	210	.092	8.75	.022	20,000 +	1,260 840
M3	4.40	7.55	540	280	220	.085	9.39	.026	15,700	
M4	3.33	7.5	520	290	220		9.22	.020	18,200	1,840
M5	2.52	7.45	550	290	220	.095	10.52	.026	TNTC	910
			550	290	220	.047	10.26	.008	17,100	3,000
S1	15	7.6	490	240	190	.080	8.44	.056	TNTC	7,200
S2	13	7.6	490	260	200	.118	9.39	.056	1,100	1,240
\$3	.05	7.3	750	380	280	.105	9.22	.000	11,700	6,600
S4	12.3	7.65	490	260	200	.131	9.22	.058	TNTC	
\$5	11.2	7.55	500	260	200					6,000
S6	.05	7.4	690	350	240	.105	9.22	.056	14,200	3,900
S7	11	7.4	500	260	190	.615	. 5.77	.186	TNTC	11,400
\$8	9.6	7.45	510	270		.080	9.56	.050	TNTC	4,700
59	3.5	7.15	520	290	190	.111	10.08	.042	20,000 +	4,100
-			520	290	220	.098	8.37	.044	TNTC	6,300
ep (S9)	3.5	7.1	550	290	220	.020	8.35	.044		

Table 1-E: Analytical Results - Little Ausable Sub-drainage Basins Survey E, 25 August 1975

Table 1-6: Analyzical Results - Litche Second Coloridation

Station	Discharge cfs	pН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/L	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mL
		58			- Chr.		2138	- and	- Light	2 1000
MSN	4.5	7.9	540	320	250	.053	3.2	.078	5,400	200
N1	2.0	7.55	600	360	290	.073	3.1	.118	8,000	300
N2	.05	7.1	440	290	230	.017	4.6	.018	1,100	0
N3	0.8	7.6	620	360	320	.097	0.7	.206	9,600	200
N4	0.8	-	-	-	-		10-67		-	-
N5	<.01	7.9	870	240	350	1.4	0.8	.088	TNTC	79,000
NG	1 10-	-	-	-	-	-	9494	-	-	-
N7	<.01	8.0	700	420	310	.013	5.4	.000	900	0
N8	0.4	7.9	620	360	310	.110	2.0	.004	2,700	0
N9	0.2	7.6	600	350	310	.033	3.6	.010	1,800	200
	<.01		600	380	310	.070	5.1	.000	800	100
N10	.04	7.3	610	370	310	.060	9.1	.006	900	100
N11	.04	7.7	610	370	310	.000			500	0.1001.
M1	0.35	8.0	550	340	290	.037	2.7	.000	2,100	0
M2	0.29	7.75	570	340	290	.043	4.1	.002	4,000	0
M3	0.23	7.85	40	330	280	.053	4.5	.006	1,900	300
M4	0.12	7.9	520	320	260	.023	7.3	.086	1,200	100
M5	0.12	8.2	550	360	290	.020	8.7	.004	1,600	0
115	0.09	0.2	220	300	250		3780			
S1	1.7	8.0	520	310	250	.017	4.7	.044	1,200	100
S2	1.0	7.8	530	320	260	.033	5.4	.034	3,400	100
S3	<.01	8.0	700	410	340	.33	6.5	.000	1,100	0
s4	0.7	7.85	530	310	240	.047	5.1	.028	5,200	100
\$5	0.6	7.8	610	350	280	.050	4.9	.044	21,000	900
s6	0.0	1.0	010	-	-	-	_	_	11100	-
		7.9	600	350	290	.107	5.4	.042	9,600	3,100
\$7 \$8	0.5		610	350	300	.057	6.3	.016	4,600	0
	0.3	8.0			310	.057	10.6	.000	4,000	0
\$9	0.04	7.7	670	390	510	.057				
lep (S2)	1.0	8.0	540	320	270	.013	• 47	.034	2,700	300

Table 1-F: Analytical Results - Little Ausable Sub-drainage Basins Survey F, 8 September 1975

Inble 1-5: Analystant bases

Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/l	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mL
No. Star	10-26	1912	angene .	0560	04.62	and the second secon	Conf. Ship the shift build a set of bearing state			
MSN	29.2	7.9	570	360	300	.072	7.2	.150	200	150
N1	16	7.6	580	380	300	.065	7.4	.290	300	40
N2	0.07	7.2	470	300	240	.016	4.4	.046	5,400	140
N3	11	7.9	600	370	300	.108	5.1	.330		-
N4	11	7.8	590	370	310	.124	4.9	.350		
N5	<.01	7.3	730	440	370	.167	12.3	.360	3,400	260
NG	<.01	7.4	600	390	320	.085	12.5		51,000	6,000
N7	.05	7.4	600	370	300	.005	6.4	.000		104.60
N8	8.1	7.9	600	360	300	.036		.002	2,300	-
N9	6.5	7.9	590	370	300	.042	8.9	.008	-	70
N10	.03	7.1	600	380			8.8		5,900	900
N11	.32	7.5	590		300	.049	11.0	.002	1,900	240
	• 52	1.5	590	370	300	.052	7.9	.016	4,600	60
M1	4.25	7.7	560	360	290	.033	5.8	.004	1,900	90
M2	2.67	7.8	550	350	290	.039		.004	1,100	100
M3	2.0	7.8	560	350	290	.036	5.8	.004		240
M4	1.1	7.9	550	360	290		6.6		2,700	
M5	0.38	7.7	550	350	280	.016	8.5	.006	700	120
			550	330	200	.033	7.8	.006	4,800	110
S1	6.4	7.9	580	360	300	.023	8.2	.022	300	230
S2	5.7	7.9	590	370	300	.026	8.4	.022	2,100	250
S3	0.04	7.4	650	430	320	.065	10.6	.004	5,100	1,160
S4	4.5	7.9	600	370	300	.052	8.6	.024	1,300	90
\$5	3.9	7.8	600	380	300	.052	9.7	.024	1,500	90
56	0.05	7.8	630	390	310	.242	7.1	. 320	1,400	270
S7	3.3	7.9	590	370	300	.095	9.0	.012	1,200	110
\$8	2.1	7.5	590	360	300	.039	10.1	.008	3,700	110
S9	0.18	7.5	610	390	310	.039	10.1	.016	700	10
- Station -				550	510	.039	10.0	.010.	100	10
ep (N2)	0.07	7.3	460	290	240	.023	4.5	.046		

Table 1-G: Analytical Results - Little Ausable Sub-drainage Basins Survey G, 22 September 1975

Table 1-He Analyzical Regults - Litele Anachie

Subsection of the

Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/2	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 m2	Fecal Coliforms #/100 ml
MSN	3.8	7.7	530	320	260	.069	2.1	.040	300	0
	5.0	1.1	550	520	200	.009	2.1	.040	300	0
N1	2.2	7.55	540	380	300	.141	1.9	.034	300	20
N2	.05	7.1	450	290	220	.023	6.5	.016	100	30
N3	1.4	7.5	600	390	320	.346	0	.002	3,000	30
N4	1.4	7.55	600	380	320	.346	0	.002	2,900	440
N5	<.01	7.5	880	450	430	2.32	8.7	.188	TNTC	TNTC
NG	5 6-	-		-	-	-	-	-		
N7	<.01	7.6	610	370	290	.003	7.1	0	600	0
N8	0.4	7.7	620	370	280	.294	4.5	.080	100	0
N9	0.2	7.75	600	370	280	.036	7.3	.052	500	60
N10	<.01	7.35	580	380	330	.039	9.2	0	1,300	30
N11	.09	7.7	550	380	300	.042	11.5	.004	300	20
M1	0.37	7.8	500	310	260	.016	3.0	0	1,200	0
M2	0.30	7.7	490	350	270	.029	3.3	.002	1,100	50
M3	0.25	7.75	520	340	280	.029	4.5	.004	1,200	20
M4	0.18	7.9	480	340	270	.007	6.20	.050	3,200	210
M5	0.11	7.7	520	310	260	.020	8.5	.026	3,800	290
S1	0.52	7.9	490	310	250	.026	3.0	.096	1,900	50
S2	0.46	7.75	490	320	250	.073	4.1	.150	13,400	0
53	<.01	7.4	680	460	400	2.09	0.5	0	TNTC	160
\$4	0.41	7.95	520	330	260	.121	5.2	.076	200	20
\$5	0.36	7.9	540	350	270	.124	5.2	.064	800	60
S6		-	-	-		-	-	-	11100-00	1100-MD
\$7	0.34	7.8	520	310	280	.114	5.4	.054	6,900	790
58	0.30	7.75	650	350	270	.026	7.2	.012	800	220
59	0.042	7.6	580	370	290	.039	12.5	0	2,900	30
ep (M5)	0.11	7.7	560	350	260	.020	8.2	.026		

Table 1-H: Analytical Results - Little Ausable Sub-drainage Basins Survey H, 6 October 1975

Table 1-6: Amelytical Results - Little Susable Sub-drafosge Basing

Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/2	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mL
MSN	2.3	7.8	510	340	290	.297	0.7	.064	TNTC	1,520
N1	1.0	7.7	530	370	300	.271	1.3	.042	5,800	640
N2	0.04	7.3	410	280	220	.049	2.7	.014	2,900	240
N3	0.8	7.6	540	340	330	2.08	1.6	.014	6,400	1,140
N4	0.8	7.65	540	340	330	1.87	1.6	.016		-
N5										
NG NG	<.01	7.9	790	310	380	2.97	2.3	.146	TNTC	TNTC
NO N7		8.05	-	-	-	-	-		490	410
N8	<.01		620	380	300	.017	4.3	.002		59
	0.2	7.8	510	340	280	.046	2.7	.010	6,100	
N9	0.1	7.9	490	320	270	.043	2.2	.044	5,000	2,000 +
N10	<.01	7.7	550	380	310	.073	4.8	.004	320	55
N11	.03	8.1	540	370	300	.033	6.6	.004	4,300	300
M1	0.20	8.0	500	340	280	.033	1.3	.004	690	67
M2	0.17	7.85	500	340	270	.065	1.6	.008	1,780	1,090
M3	0.15	7.9	500	330	280	.049	1.5	.008	6.200	217
M4	0.10	7.85	430	290	240	.033	3.5	.062	4,600	690
M5	0.06	7.9	480	330	260	.135	4.8	.100	12,900	224
S1	0.6	8.2	420	300	220	.020	0.9	.026	590	42
S2	0.4	8.2	41:0	290	230	.020	1.3	.048	1,270	46
\$3	<.01	7.05	1,020	650	300	14.3	0	0	TNTC	7,400
S4	0.32	8.25	470	310	240	.083	1.3	. 022	3,200	39
\$5	0.30	8.05	540	340	280	.540	1.6	. 122	15,700	10,200
56	<.01	7.5	770	270	310	.825	1.7	.3	164,000	20,000 +
\$7	0.25	7.7	530	340	280	.215	2.1	.066	13,700	TNTC
\$8	0.19	7.8	540	340	280	.033	2.6	.012	8,000	1,120
59	0.04	8.25	570	350	280	.168	6.7	.020	TNTC	20,000 +
Rep (N2)	0.04	7.35	410	280	220	.033	3.7	.012	-	-

Table 1-1: Analytical Results - Little Ausable Sub-drainage Basins Survey 1, 20 October 1975

-

Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/L	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 mL	Fecal Coliform #/100 mL
MSN	7.5	7.7	530	340	240	.016	8.7	.026	2,300	50
			520	350	270	.020	9.9	.016	1,400	0
N1	3.7	7.6	520	280	230	.033	5.4	.020	3,700	0
N2	0.05	7.2	460		270	.033	8.4	.050	2,100	10
N3	3.1	7.9	530	350		.055	-			
N4	3.1	-	-		5				10,000	2,000
N5	<.01	7.7	780	430	370	.588	15.1	.330		10
N6	<.01	7.8	540	360	290	.000	10.8	.0	1,100	0
N7 ·	.05	7.9	570	360	280	.000	9.1	.0		20
N8	0.7	8.0	550	350	290	.023	8.5	.018	600	
N9	0.3	8.05	540	350	290	.036	9.6	.030	3,600	970
N10	0.07	7.4	530	350	290	.026	6.8	0	5,000	0
N11	0.17	7.55	550	360	300	.023	10.8	.004	300	50
MI	0.90	7.95	540	350	280	.059	6.1	.004	0	0
M2	0.64	8.1	530	360	290	.023	5.9	.008	1,900	100
M3	0.51	8.1	530	350	290	.016	7.1	.026	4,300	100
M4	0.45	8.0	520	390	290	.121	5.4	.038	2,000	10
M5	0.18	7.85	520	330	260	.013	8.2	.034	4,000	200
S1	1.8	8.2	560	340	280	.013	8.9 .	.022	2,200	0
S2	1.0	8.05	540	350	270	.016	8.7	.044	2,000	10
	0.04	7.5	630	400	320	.330	2.6	.810	17,000	0
\$3 \$4	0.92	8.05	550	340	260	.023	9.4	.026	5,600	100
					270	.026	9.7	.032	1,800	50
\$5	0.86	8.0	560	350		. 154	10.3	.130	29,000	360
56	0.05	7.8	580	360	270	.101	9.2	.026	1,600	110
S7 .	0.77	7.95	570	370	290		9.4	.024	800	0
\$8	0.50	7.8	560	360	280	.000	13.9	.0024	2,800	390
59	0.07	7.7	620	370	280	.016	13.9	.002	2,000	590
ep (M4)	0.45	8.0	520	350	290	.046	• 7.0	.040	-	-

Table 1-K: Analytical Results - Little Ausable Sub-drainage Basins Survey K, 17 November 1975

Station	Discharge cfs	pН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/%	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mL
E.e.	1.1.1.2.2.5						territytes good an or a start of the	1010	18 900	510
MSN	53.0	7.8	480	340	250	.049	7.8	.040	51,000	2,800
N1.	30.0	7.8	470	350	250	.046	9.1	.038	4,200	8,400
N2	0.18	7.2	430	300	240	.033	5.6	.032	16,000	20
N3	24.0	7.95	530	340	240	.056	9.5	.036	11,300	3,100
N4	24.0	-	-	-	-	-	-	- 02	-	
N5	<.01	7.3	610	410	330	.206	10.7	.120	35,000	13,800
NG	<.01	7.7	480	370	300	.000	5.9	.002	900	10
N7	0.64	7.7	470	330	240	.023	6.7	.002	76,000	20
N8	10.4	8.05	520	340	260	.056	8.6	.032	6,100	210
N9	7.5	8.1	530	340	250	.042	8.6	.020	9,700	1,100
N10	0.74	7.35	460	340	270	.026	7.8	.006	10,200	100
N11	0.99	7.4	470	340	260	.039	7.8	.014	7,900	180
M1	7.28	8.0	460	340	260	.077	5.9	.016	88,000	80
M2	4.80	7.95	460	330	260	.042	5.9	.016	64,000	230
M3	2.61	7.95	460	340	260	.042	5.9	.014	38,000	190
M4	2.20	7.5	450	340	250	.042	6.8	.016	8,600	20
M5	1.25	7.8	450	330	250	.033	5.9	.016	58,000	20
S1	10.1	8.0	500	360	270	.065	6.8	.026	8,900	3,500
S2	9.3	8.0	500	370	270	.049	6.8	.026	8,600	4,600
\$3	0.53	7.6	530	400	310	.075	6.3	.022	2,600	1,500
S4	7.6	8.1	570	360	270	.072	7.7	.026	45,000	4,700
\$5	6.5	8.1	540	370	270	.147	7.7	.024	49,000	4,000
S6	0.53	8.1	600	3.80	280	.092	8.7	.036	8,500	600
S7	6.0	7.85	520	360	270	.108	6.8	.022	50,000	3,900
S 8	4.3	7.75	500	360	270	.052	6.8	.020	4,300	4,400
\$9	1.06	7.8	500	370	270	.023	7.8	.018	8,700	370
ep (M2)	4.80	8.0	510	340	250	.046	6.4	.016	-	-

Table 1-L: Analytical Results - Little Ausable Sub-drainage Basins Survey L, 1 December 1975

Sabia for Anti-Market Longerta - Alerta

Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/%	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 mL	Fecal Coliforms #/100 mL
MSN	213	7.25	390	250	170	.222	9.7	.016	200,000 +	9,000
N1	137	7.4	420	280	180	.232	10.8	.030	83,000	15,200
N2	1.8	7.3	510	300	200	.033	12.9	.013	7,400	300
N3	106	7.35	440	260	170	.284	9.6	.027	64,000	12,400
N4	102	-	_	_	-	-	-	-	-	-
N5	3.150									
NG	0.04	7.4	510	350	UNDER W	.062	10.0	.007	16,700	290
N7	1.31	7.15	360	240	130	.137	9.3	.007	14,700	1,600
N8	42	7.35	430	260	160	.206	10.6	.004	22,000	13,700
N9	28	7.35	390	260	160	.190	9.7	.008	28,000	4,700
N10	1.24	7.35	390	250	260	.255	11.2	.016	108,000	16,700
N11	3.46	7.3	380	250	160	.654	8.9	.012	112,000	8,400
M1	14.7	7.35	340	240	150	.222	7.4	.005	175,000	120
M2	10.0	7.65	340	230	150	.297	7.4	.009	20,000 +	7,700
M3	7.9	7.7	350	230	140	.275	7.9	.007	20,000 +	7,700
M4	5.1	7.65	340	260	150	.219	9.5	.005	20,000 +	9,900
M5	4.1	7.1	370	230	140	.196	7.6	.007	12,800	4,900
S1	34	7.6	380	240	160	.288	11.0	.015	20,000 +	5,000
S2	31	7.55	390	270	160	.229	9.6	.013	20,000 +	6,000
\$3	1.49	1.3			UNDER					0,000
54	25	7.3	370	240	150	.280	9.0	.014	15,600	270
\$5	22	7.4	380	250	150	.209	10.3	.012	187,000	840
56	5.0	7.35	480	270	160	.281	12.4	.030	200,000 +	2,400
S7	14.6	7.5	370	250	150	.176	9.3	.012	173,000	2,000
\$8	13.7	7.45	370	240	150	.173	10.8	,012	204,000	3,800
\$9	9.6	7.45	400	260	160	.147	11.0	.009	140,000	8,400
p (N6)	0.04	7.2	570	340	240	.069	• 9.5	.007	-	

Table 1-M: Analytical Results - Little Ausable Sub-drainagé Basins Survey M, 15 December 1975

Charling and the second strength of the secon	Sector and the sector of the s		Third of Food modes are after the down or fine or spec							
Station	Discharge cfs	pН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/%	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 mL	Fecal Coliforms #/100 mL
						A CONTRACTOR	and the second	The sector state and a sector sector and a sector sector		
MSN	8.0	8.1	500	340	250	. 058	10.6	. 024	300	40
N1	2.8	7.55	520	340	250	.301	12 /	001		
N2	0.14	7.7	460	290	220		13.4	. 026	1,200	0
N3	2.3	8.05	520	320	250	.297	9.1	.054	300	10
N4	2.1	-	-	520		.045	11.1	.034	1,300	120
N5				1.	-	-		-	-	-
NG	<.01	7.95	F20	2/2		IN SNOWBANK				
N7	.05	8.0	520	360	260	.009	14.4		200	0
			510	330	240	.055	11.8	-	100	0
N8	0.9	8.15	530	340	260	.0	10.4	.033	200	20
N9	0.6	8.1	520	330	260	.0	9.6	.023	7,900	2,300
N10	0.08	7.65	480	340	280	.020	6.1	.002	100	2,500
N11	0.15	8.2	500	340	270	.019	11.3	.006	600	20
M1	0.88	8.05	470	320	260	.035	7.5	.015	1 000	
M2	0.62	8.3	510	340	260	.031	7.0	.015	1,000	30
M3	0.51	8.3	520	340	270	.028	7.8	.014	600	60
M4	0.40	8.4	480	320	260	.025			1,400	40
M5	0.17	8.05	510	350	260	.469	8.7	.014	1,500	0
	,	0.0	510	550	200	.409	9.8	.020	2,600	20
S1	2.5	8.3	510	340	260	.068	10.3	.025	1,100	30
S2	1.9	8.0	520	350	270	.057	10.3	.027	8,700	130
S3	0.05	7.7_	600	390	290	.279	13.4	2020	1,000	200
S4	1.6	8.15	530	350	270	.301	9.9	.027	1,500	40
\$5	1.2	8.15	500	350	270	.172	10.3	.027		
S6					FROZEN		10.5	.027	5,900	220
S7	1.0	8.15	510	330	270	.103	9.2	024	100	
\$8	0.6	7.85	510	340	270			.024	600	60
S 9	.08	7.95	560	370		.029	9.9	.025	600	10
				370	270	.050	13.7	.012	1,700	90
ep (S7)	1.0	8.1	540	310	270	.096 •	10.3	.026	-	-

Table 1-N: Analytical Results - Little Ausable Sub-drainage Basins Survey N, 29 December 1975

and the second s

Station	Discharge cfs	рH	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/%	Total Phosphate ppm	Nitrate N ppm	Nîtrîte N ppm	Total Coliforms #/100 mL	Fecal Coliforms #/100 m2
	175 6		100		<u> </u>		100	a service and	1,550	
MSN	123e	6.65	500	280	210	.107	6.6	. 035	4,200	510
N1 N2	68.6	6.6 6.7 ⁵	470	300 250	210 150	.037	7.5 14.3	.042	700 600	80 0
N3	-	-	-	-		- 1	-	-	-	-
N4	54.7	6.8	410	280	210	.056	5.3	.044	300	20
N5		-		-			-	-	-	1
N6 N7 N8 N9	1.59 23.7 17.1	- 6.8 6.9 ⁵ 6.8	- 460 360 360	260 240 220	- 160 160 170	.065 .041 .061	- 7.2 6.9 7.6	.008 .010 .016	300 500 1,800	100 160 210
N10 N11	6.36	6.65	390	240	170	.095	9.7	.016	3,400	1,800
M1	0.2	_	201	_	-	1082	_	-	_	-
M2	2	-	_	_	-	-	-	-		-
M3		-	-			0122000-2007	-	- 10	-	-
M4	4.6e	6.65	350	240	280	.106	6.6	.019	700	110
M5	-	-	235		-		-	-	105	17
						_		and the second	1 4992	
S1		6.4	400	250	190	.114	5.3	.020	2,500	2,300
\$2 \$3	20.0	6.65	540	290	210	.171	9.1	.020	16,000	13,000
s4	18.9e	6.7	420	250	190	.124	5.3	.024	1.700	650
\$5	17.2e	6.7	410	240	180	.110	6.6	.024	600	520
56	-	-	-	-		-	-	-	-	-
\$7	16.9e	6.65		250	180	.097	6.6	. 024	3,100	470
\$8	_	-	abac - ac	- 101	101-	1962-	-	-		-
S9	6.0	6.8	470	250	170	.130	7.8	.017.	1,600	340
Rep (MSN)	123e	6.8	410	280	210	.073	6.6	.030	-	-

Table 1-P: Analytical Results - Little Ausable Sub-drainage Basins Survey P, 26 January 1976

lable left Analytical Security -

Station	Discharge cfs	рН	Specific Conductance µmhos	Total Hardness mg/%	Total Alkalinity mg/l	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 mL	Fecal Coliforms #/100 ml
	·		2.5 330	002			1.	(205)		
MSN	204e	7.9	370	270	180	.173	8.9	.031	800	900
N1	76.0e	7.45	380	280	180	.160	10.6	.035	1,900	1,300
	1.3	8.1	500	310	190	.034	11.9	.010	200	0
N2	1.5	-	500	510		-	-		-	
N3	60.8e	7.8	390	260	180	.169	10.0	.031	1,000	800
N4	2.0 *	7.9	410	280	220	.111	5.6	.036	3,100	1,400
N5	2.0 ~	1.5	-	-	-	_	-	-	-	-
N6	2.5	7.85		260	160	.092	10.2	.017	1,700	800
N7		7.85		260	180	.194	10.0	.040	1,100	1,000
N8	26.3e	7.95		260	180	.218	9.6	.034	2,300	800
N9	19.0e	1.90	370	200	-	-	-	1000	2,000	-
N10	-	7.4	360	280	180	.114	9.4	.029	3,900	3,300
N11	12.0e	1.4	300	200	100		-			
			220	250	170	.117	6.8	.030	1,000	400
M1	17.4e	7.9	330	250	170	.186	7.3	.020	1,500	400
M2	11.8e	7.8	330	250	170	.167	7.1	.023	700	400
M3	9.4	7.8	330	250	170	.195	8.3	.017	700	100
M4	3.12	7.45		250	160	.130	8.3	.016	600	200
M5	2.15	7.9	330	270	100	.150	0.5			
		- 05		260	180	.169	8.9	.024	1,200	800
S1	82.0	7.85	380		180	.176	8.7	.020	1,300	1,300
S2	78.0	7.85		250	-	. 170	-	-	-	-
53		-	-	-	170	.114	8.9	.019	1,500	800
S4	60.3e	7.8	360	270	170	.208	9.2	.029	2,700	1,600
\$5	53.1e	7.8	370	270		.232	9.6	.032	3,600	1,900
S6	12.0e	7.7	370	250	170		8.3	.017	1,200	600
57	39.9e	7.6	370	260	180	.124	8.5	.019	600	700
S8	33.0e	7.6	370	260	170		9.4	.019	700	700
59	23.2e	7.5	370	270	170	.113	5.7	· · · · ·	,	,
Rep (54)	60.3e	7.7	5 390	250	170	.124	9.2	.022	-	-

Table 1-Q: Analytical Results - Little Ausable Sub-drainage Basins Survey Q, 17 February 1976

* Surface flow

Station	Discharge cfs	pН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/L	Total Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Total Coliforms #/100 ml	Fecal Coliform #/100 mL
MSN	154e	7.6	300	210	150	. 158	8.7	.032	400	100
N1	70.0e	7.5 7.4 ⁵	330 390	220 260	160 170	.140	10.1 11.3	.034	Ē	100 -
N2 N3	1.7	1.40	-	-	-	-	-	-		-
N4	56.0e 2.0 *	7.6 ⁵ 7.4	370 370	230 270	160 210	.125	8.7 5.0	.032	1,000 17,400	400 300
N5 N6	-	-	-	-	-	-	-	-	25,100	9,900
N7 N8	2.2 24.2	7.5 ⁵ 7.6 ⁵	290 370	200 230	120 160	.100	7.2 8.5	.013	1.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
N9 N10	17.5 3.5e	7.6 ⁵ 7,5	330 300	220 210	160 150	.133	8.3	.042 .029 .048	500	200 300
N11	9.0e	7.5	310	220	160	.100	7.0	.040	5,200	500
M1	15.2e	7.65	280	170	140	.134	7.4	.030	0	0
M2	10.3e	7.6	280	190	140	.155	5.5	.027	100	100
M3	8.21	7.55	280	200	140	.176	6.8	.024		-
M4 M5	3.30 2.28	7.5 ⁵ 7.6	310 280	200 200	140	.127	7.4	.025	800	1,300 -
	46.7	7.6	330	220	150	.140	7.4	.026	1,200	100
S1 S2	44.2	7.55	320	230	150	.135	7.0	.027	-	
\$3		-	Manura The	-	and we have	-	-	.028	200	200
54	33.0	7.7	330	210	150 150	.131	7.3	.028	500	200
\$5	19.5	7.6	320 360	220 230	160	.203	7.8	.030	700	500
56	8.0e 17.7	7.6	300	220	150	.349	7.7	. 024	-	100
\$7 \$8 \$9	14.6e 9.0e	7.6	310	210 220	150 160	.137	7.9 8.3	.027	0 400	100
ep (N7)	2.2	7.6	340	200	120	-094	9.5	.013	-	-

Table 1-R: Analytical Results - Little Ausable Sub-drainage Basins Survey R, 20 February 1976

* Surface Runoff

Table 1-S :Analytical SummarySample Collection S - Sample Date:22 March 1976

		umhos	Hardness mg/l	Alkalinity mg/l	Phosphate ppm	Ortho- Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Ammonia N ppm	Kjeldahl N ppm	Total Coliforms #/100 ml	Fecal Coliform #/100 mi
	7 7	200	220	170	101	040	0.00	0.07				20
	7.7	390	220	170	.101	.060	9.32	.006	<.02	<.05	300	20
	7.5	390	240	170	.098	.047	9.77	.007	<.02	.21	700	130
	7.15	410	220	160	.026	.025	7.69	.003	<.02	<.05	<100	<10
	7.65	400	220	170	.088	.063	8.56	.010	<.02	.21	200	40
	7.6	400	220	170	.092	2002	7.65	.010		<-03	-	-
	7.1	590	300	220	.088	.070	17.40	.036	.28	.43	15900	14000
	7.45	460	280	220	0	<.005	.11.85	.000	<.02	<.05	<100	<10
	7.6	380	220	160	.033	.017	7.41	.000	<.02	.07	200	20
	7.6	390	210	170	.114	.084	7.10	.021	.08	.07	.1200	120
	7.6	390	210	170	.101	.076	7.69	.018	.06	<.05	300	20
	7.45	320	210	160	.199	.130	4.91	.012	.19	.72	600	520
111	7.4	380	220	170	.078	.037	9.60	.012	.08	<.05	1300	730
11	7.6	340	200	160	.183	.140	5.16	.002	<.02	.57	100	<10
	7.55	330	190	160	.092	.077	5.02	.004	<.02	.36	100	30
	7.55	340	200	160	.105	.077	6.10	.003	<.02	.43	500	30
	7.45	350	200	160	.127	.077	6.48	.001	<.02	.43	<100	<10
	7.75	370	230	170	.092	.047	7.55	.006	.04	<.05	500	40
51	7.5	390	220	170	.085	.047 (.047)	6.83	.003	.10 (.02)	<.05 (<.05)	100	10
	7.4	390	230	180	.085	.053	8.07	.006	.03	<.05	100	20
	7.4	460	260	210	.082	.037	10.81	.003	.03	<.05	600	100
	7.6	410	230	170		.047 (.053)	7.69	.007	.03 (<.02)	.43 (.14)	300	140
\$5	7.55	390	230	170	.082	.037	7.34	.005	.06	.36	200	10
	7.55	400	220	170	.085	.053	8.28	.015	.03	<.05	100	10
	7.85	390	220	180	.085	.037	7.76	.004	.04	<.05	100	20
	7.55	390	220	170	.059	.037	7.69	.002	<.02	<.05	100.	40
	7.8	400	230	180		.043 (.047)	9.22	.001	<.02 (.03)	<.05 (<.05)	100	10
Rep (M ³)	7.6	350	200	160	.111	Silver Silver	5.96	.003	blin	bSa	61300 m	NORO N

 Table 1-T:
 Analytical Summary

 Sample Collection T - Sample Date:
 11 April 1976

Station	рH	Specific Conductance	Total Hardness	Total Alkalinity	Total Phosphate	Ortho- Phosphate	Nitrate N	Nitrite N	Ammonia N	Kjeldahl N	Total Coliforms	Fecal Coliform
Station	рн	µmhos	mg/2	mg/l	ppm	ppm	ppm	ppm	ppm	ppm	#/100 ml	#/100 mi
MON	0.05	150								**		
MSN	8.35	450	250	200	.025	<.005	7.69	.028	.14	.14	100	10
N1	8.2	470	270	200	.021	<.005	8.73	.025	<.02	70		
N2	8.0	480	260	200	.015	<.005	7.52	.017		.72	200	30
N3	8.5	450	250	200	.024	<.005	6.89	.030	<.02	.14	<100	<10
N4	8.5	460	260	200	-	<.005	7.66	.031	.08	.14	300	<10
N5	7.7	690	310	280	1.21	1.05	26.1		.04	<05	200	<10
N6	8.0	480	290	210	.000	<.005		.104	6.15	3.65	41000	6000
N7	8.0	500	270	200	.013		11.33	.000	.02	<.05	100	<10
N8	8.85	400	230	170		<.005	8.45	.000	.08	.21	<100	<10
N9	8.7	400	220	170	.076	.042	7.52	.023	.12	.43	200	20
N10	7.7	450	270		.022	<.005	7.34	.019	.04	.29	700	30
N11	8.0	420		230	.025	<.005	4.57	.000	<.02	.36	100	<10
MIT	0.0	420	240	200	.033	.017	7.69	.014	.17	.21	100	30
Ml	8.55	420	240	190	.017	<.005	4.78	.017	.04	.14	<100	-120
M2	8.6	390	230	180	.017	<.005	5.33	.014	<.02	.43	700	<10
M3	8.6	440	240	180	.012	<.005	4.85	.014	<.02	.43		<10
M4	8.3	420	240	190	.020	<.005	6.31	.021	<.02		500	<10
M5	8.2	450	260	210	.038	.025	7.35	.051	.04	.93	400	<10
						.025	1.55	.051	.04	.36	4900	130
S1	8.45	360	250	190	.023	<.005	7.17	.025	<.02	<.05	200	10
S2	8.3	450	260	200	.020	<.005	6.89	.026	<.02	<.05	300	10
S3	7.85	540	310	240	.079	.058	11.85	.031	<.02	.07	200	<10
S4	8.55	460	260	200	.117	.080	7.00	.031	<.02	.21	100	10
S5	8.6	450	260	200	.018	<.005	6.89	.032	.03			<10
S6	8.9	460	250	190	.082	.050	8.63	.024	<.02	.21	100	<10
S7	8.5	450	250	200	.020	<.005	6.41	.024		.57	300	10
S 8	8.4	440	240	190	.015	<.005	6.72	.028	<.02	.57	100	<10
S9	8.15	530	280	220	.022	.025	11.85		<.02	<.05	200	20
				220	• 022	.025	11.05	.008	<.02	.14	200	40
ер									1.282			
N3)	8.5	460	250	200	.026		7.60	.030		_		80

AN 10/2/2 10 2.61

The supervised and and and

 Table 1-U
 Analytical Summary

 Sample Collection U - Sample Date:
 3 May 1976

itation	pН	Specific Conductance µmhos	Total Hardness	Total Alkalinity	Total Phosphate	Ortho- Phosphate	Nitrate N	Nitrite N	Ammonia N	Kjeldahl N	Total Coliforms	Fecal Coliforn
Lation	рп	pmnos	mg/l	mg/l	ppm	ppm	ppm	ppm	ppm	ррш	#/100 mL	#/100 m£
MSN	8.3	560	280	220	.011	-	6.78	.024	-	-	18100	340
Nl	8.2	580	280	220	.004		7.20	.027	3.02	< <u>-</u> 02	4500	140
N2	7.9	600	280	220	.006	_	6.02	.030	-	1 - Total - To	80	7
N3	8.25	580	270	220	.022	_	6.19	.029	1.1.1	_	-	-
N4	8.2	590	280	220	.016	10 1 1 <u>1</u> 10 10 10 10 10 10 10 10 10 10 10 10 10	6.94	.032			11000	36
N5	7.75	790	330	240	.168		25.8	.776	1.2		15000	4700
N6	7.8	580	270	210	.000	1.1.2015	9.94	.000				
N7	7.85	580	270	210	.006						<10	1
N8	8.7	520				-	7.62	.004	17 July 19		800	4
N9	8.5	520	250	200	.055	5000	6.75	.033	2015		12900	106
NJO	7.65		260	210	.024	-	6.62	.015	-	-	7400	90
	a second s	520	260	230	.018	-	4.64	.004	-	-	490	110
N11	7.85	540	260	220	.032		8.04	.023			2600	230
M1 .	8.4	520	280	220	.015	-	4.22	.018	-	-	360	21
M2	8.35	480	260	220	.012	-	4.90	.030	-	-	3600	110
M3	8.35	550	260	220	.025	-	4.56	.015	-	-	2100	220
M4	8.15	540	260	210	.034	-	6.88	.015	-	-	400	21
M5	8.05	560	290	220	.058	-	7.50	.025	- 2	-	> 20000	> 2000
S1	8.3	580	280	220	.028	.025	5.78	.022	<.02	.29	10900	310
S2	8.2	560	280	230	.024	-	5.78	.019	-	-	14300	2060
S3	7.7	640	310	250	.104	-	9.53	.023		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4200	210
S4	8.35	590	280	220	.050	.050	5.31	.028	<.02	.14	5300	2320
S5	8.45	580	290	230	.028	-	5.35	.021	-	-	3700	1350
S6	8.45	630	300	230	.050	_	5.96	.025		_	4800	1090
S7	8.4	550	270	220	.019	_	5.08	.017	-		2200	910
S8	8.35	550	270	220	.014	1999 (1999)	5.36	.029	2	-		
S9	8.0	630	280	230	.035	.040	8.46	.010	.13	.07	1500 3700	780 130
										More and More	TINGS OF	
Rep	1000									MACTORNY B	CONTRACTOR.	1011105
(N1)	8.25	610	280	210	.004	-	6.98	.025	_	_		-

Table 1-V :	Analytical Summary	
	Sample Collection V - Sample Date: 17 May 1976	

Station	рH	Specific Conductance umhos	Total Hardness mg/l	Total Alkalinity mg/l	Total Phosphate ppm	Ortho- Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Ammonia N ppm	Kjeldahl N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mi
MSN	7.95	550	270	230	.043	-	6,83	,081	-		7400	2000
	7.0	540	270	220	.043		7.22	.097			8200	5700
N1	7.9	560				-	6.09	.072	_	_	<100	40
N2	7.55	570	280	220	.009			.072		_	2900	380
N3	7.85	560	280	230	.048	-	6.83		14 10 TO 14	_	2400	320
N4	7.9	580	280	230	.042		7.04	.089		2.6	40000	37000
N5	7.5	740	340	250	.354	.250	23.4 (20.2)	.245	1.5	2.0	1300	<10
N6	7.6	590	300	230	.011	-	9.74	.000			1000	10
N7	7.7	620	280	220	.018	-	7.57	.000	-	-		560
N8	8.0	600	280	240	.101	-	6.30	.074	-	-	3200	
N9	7.95	550	280	230	.052	-	6.78	.034	-	-	7000	880
N10	7.45	540	270	240	.085	_	3.87	.007	-	-	500	150
N11	7.75	550	270	230	.058	-	8.04	.014	-	-	7400	380
Ml	7.85	520	270	220	.065	_	4.83	.064		_	5000	200
	8.0	540	270	230	.055		5.00	.048	_	-	1400	200
M2				230	.046	_	5.17	.033	_	-	2700	330
M3	7.95	540	280				6.52	.029	_	_	2800	110
M4	8.2	520	270	230	.035	-	7.22	.074	-	_	59000	2700 -
M5	8.35	540	270	220	.080	-	1.22	.074				
S1	8.2	560	280	230	.031	<.005	6.26	.054	<.02	.07	57000	710
	8.1	570	290	240	.035	-	6.91	.057	-	-	8000	420
S2			330	250	.513	_	11.7	.035	-		2400	90
S3	7.5	650		240	.040	.015	6.22	.061	<.02	.14	3900	300
S4	8.05	550	280			.015	8.09	.064	-	_	5700	440
S5	8.05	600	310	250	.084		5.91	.066		_	10000.	300
S6	8.05	570	290	240	.042	5705		.061	_		2700	640
S7	8.2	560	290	240	.039	T25	6.22				400	170
· S8	8.05	570	290	240	.036	-	6.04	.056	<.02	<.05	7000	150
S9	8.0	630	290	240	.031	.035	9.87	.021	<.02	03	1000	190
			THE	SED	THE REAL		Provent in				- And And	- Contraction
Rep	0.15	590	290	240	.032		6.48	.049		101	100124	1000
(S1)	8.15	580	290	240	.052	grand and a			N. Strogger	Concentration of	CONTRACTOR OF	COLUMN STREET

the second a work here a present

Table 1-W: Analytical Summary Sample Collection W - Sample Date: 31 May 1976

		Total Hardness	Total Alkalinity	Total Phosphate	Ortho- Phosphate	Nitrate N	Nitrite N	Ammonia N	Kjeldahl N	Total Coliforms #/100 ml	Fecal Coliform #/100 m2
µmhos	umhos	mg/l	mg/l	ppm	ppm	ppm	ppm	ppm	ppm	w/100 mz	17100 mx
510	510	250	200	.027	.000	4.26	.067		<u> </u>	4500	840
520	520	260	190	.030	.009	4.44	.059	_	196 <u>-</u> 197	4200	2200
540		250	200	.020	.000	2.38	.074	110_(113)	_<103	25000	2800
470		230	190	.063	.028	3.58	.085	_		44000	7300
			190	.063	.020	3.66	.084	_		180 20200	100 7700
480		240	220	1.10	.980	11.44	.226		_	> 200000	42000
610		250				7.66	.033			4800	80
590		300	230	.085	.060		.033	182 (189)	100 M _ 07 10 - 0	>200000	1500
480		200	160	.069	.044	3.98	.111		1	98000	7200
490		240	190	.101	.050		.065		1	57000	6700
530		260	200	.036	.001	5.24		0-18 10-133	A DIANA DA	800	10
640		330	250	.041	.028	9.88	.002	-		112000	6100
530	530	240	190	.306		7.34	.058	-	-	112000	0100
480	480	260	200	.039	.010	2.34	.052			11700	3600
500		250	200	.101	.070	3.04	.053	-	-	90000	18400
480		240	200	.053	.011	3.94	.058	_	-	43000	>20000
450		210	170	.012	.003	4.96	.052	-	-	44000	17400
450		220	190	.016	.012	5.58	.047	-	-	33000	1100
	100	389.44	100 3	0.000		3.00	.079	.16	.69	31000	3900
460		220	180	.032	<.01		.068	-	-	45000	3600
460		230	180	.036	.000	2.88	.427		1	19000	7000
660		320	240	.426	.395	10.90		.14	1.22	8700	3900
490		230	190	.037	<.01	2.58	.066	•14	1.22	147000	19700
530		240	200	.811	.507	2.58	.247			>200000	>20000
540		230	190	1.54	1.19	0.50	.593	-		82000	>20000
500		250	200	.107	.080	2.88	.068	-	-	36000	4300
510		260	210	.054	.000	2.62	.054	-	-		
630	630	260	190	.290	.26 (.376)	9.26	.155	.08	.85	194000	16300
	210	\$20	101	031	0/1	6 10	111				
		150 Per	350 (kg) - 324() 710 - 529	100 (A)							

Table 1-X :	Analytical Summary
	Sample Collection X - Sample Date: 14 June 1976

tation	рH	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/l	Total Phosphate ppm	Ortho- Phosphate ppm	Nitrate N ppm	Nitrite N ppm	N Ammonia N ppm	Kjeldahl N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 ml
15	150	60			Contraction of the			Station of the		The second s		
MSN	8.2	470	230	190	.027	.004	1.88	.055		-	1500	100
Nl	7.8	520	260	200	.034	.002	2.42	.066	_	-	1600	300
N2	7.05	540	270	220	.221	.148	2.78	.049		-	1400	<100
N3	8.3	390	240	210	.042	.002	0.94	.031	-	-	13000	9100
N4	8.3	460	240	200	.036	.000	0.46	.030	-	-	. —	- 0.
N5	7.0	740	280	260	1.45	1.35	17.08	1.25	-	-	146000	2000
N6	12	2	_	_	-	-	_	_	-	-	-	
N7	7.5	690	330	250	.040	.079	7.68	.000	_	-	12000	100
N8	8.3	460	230	210	.055	.003	0.62	.111	-	-	4000	< 1000
N9	8.7	470	240	210	.029	.002	2.42	.043	-	-	3500	100
N10	7.35	710	330	290	.044	.043	9.12	.000	14 -	-	800	< 100
N11	7.95	550	280	230	.049	.026	6.16	.016	-	-	1000	<100
Ml	8.25	470	240	220	.059	.014	0.14	.007	_		6000	<100
M2	7.55	440	240	210	.056	.024	0.28	.011	-	-	7700	3000
M3	7.95	480	240	210	.030	.000	1.44	.030	-	-	5200	<100
M4	8.2	550	280	220	.165	.122	7.38	.323	-	-	2200	1400
M5	8.4	530	270	200	.062	.052	8.88	.141	-	-	4600	200
S1	8.7	350	170	140	.053	.013 (.000)	0.28	.049	0.19 (0.12)	0.74	800	300
S2	8.35	400	210	160	.036	.000	0.68	.079	-	-	6500	600
S3	7.35	720	350	260	.686	.628	14.76	.069	-	-	100	<1000
S4	8.65	400	210	170	.063	.012 (.005)	0.22	.029	.23 (.18)	0.76	1500	300
\$5	8.25	490	240	210	.117	.079	0.22	.046	-	-	3400	1000
S6	8.0	400	280	240	.265	.193	0.04	.015	-	-	6000	<1000
S7	8.05	500	240	220	.295	.258	0.22	.053	-	-	10200	7000
58	7.7	530	260	230	.038	.003	1.56	.041	-	-	3800	900
\$9	7.5	670	310	240	.037	.023 (.034)	10.32	.000	.14 (.12)	<.02	900	<1000
Rep	N.	Proc.	-					050			NEWR.	
(MSN)	8.2	480	230	190	.025	.002	1.74	.052			-	

Steals Collection V - Sphole

alter and a short or that should be

 Table 1-Y:
 Analytical Summary

 Sample Collection Y - Sample Date;
 13 September 1976

itation	рH	Specific Conductance µmhos	Total Hardness mg/2	Total Alkalinity mg/l	Total Phosphate ppm	Ortho- Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Ammonia N ppm	Kjeldahl N	Total Coliforms #/100 ml	Fecal Coliforms	Fecal Strep
							PP	Ppm		ppm	#/100 mk	#/100 mi	#/100 m
MSN	7.8	520	250	200	.052	.007	1.71	.038	5.37	217	4900	2700	500
Nl	7.5	600	290	230	030	.008	3.53	.060				10.000	
N2	7.3	530	270	220	.069	.049	2.73			-	2800	900	<100
N3	7.7	520	270	230	.050	.049		.067	-	-	2500	100	100
N4	7.7	520	270	230	.050		0.41	.018		-	3000	1800	400
N5			-	-		.017	0.41	.018	-	-	3000	1800	400
N6	-	_	_		- 30	1021 - 20023	-	-	-	-	- 10	- 30	
N7	_	_0		-0	- 10	- 00	-	-	-	-		-00	
N8	7.6	530		-	-	-		-	-	6470	-000		
N9	7.8	570	260	270	.058	.026	0.44	.023	_	-	6000	700	100
NIO			280	270	.068	.020	0.20	.003	-	-	4700	2200	300
		-	-	-	-	-	-	0_024	-	-	-	-	-
N11	7.7	660	340	290	.032	.021	6.26	.000	-		5100	400	200
Ml	7.75	580	280	270	.042	.008	0.21	.000			1000		30
M2	7.5	600	300	270	.075	.040	0.73	.000	_	-	1200	100	400
M3	7.6	590	280	260	.045	.001	0.20	.005		-	2000	200	400
M4	7.7	350	190	180	.054	.054	0.44	.003	-		1600	200	300
M5	8.45	480	250	200	.040	.000			-	-	4500	1300	<100
				200	.040	.000	1.86	.064		-	8000	300	200
Sl	8.4	370	200	150	.011	.000 (<.001)	0.33	.036	0.00		100000		
S2	7.8	420	200	170	.049	.000	1.18		0.23	0.63	2700	300	200
S3	8.2	810	390	340	1.76	1.85		.031	-	-	1800	800	600
S4	8.15	450	200	170		.012 (.033)	3.73	.000	-	-	3100	500	500
S5 ·	8.4	530	260	220	.77	.012 (.033)	0.20	.000	0.48	1.41	2100	400	100
S6	7.7	720	340	310	.151		0.23	.004	-	-	1700	300	400
S7	7.7	530	250	220	.076	.295	0.35	.048	-	-	4600	1000	300
58	7.75	620	280	280		.100	0.18	.005	-	-	3500	2800	<100
S9	7.8	990	360	330	.036	.069	0.26	.000	-	-	5000	4100	200
55	1.0	990	200	330	.069	.137 (0.13)	2.89	.001	0.17	0.52	57000	8000	100
		200	590		and the second								
Rep (N3)	7.65	520	260	220	.057	.022	0.35	.018		and the second s	The second	- Contraction	and the second

 Table 1-Z:
 Analytical Summary

 Sample Collection Z - Sample Date;
 4 October 1976

Station	۲c	Specific Conductance uthos	Total Hardness Eg/2	Total Alkalinity mg/2	Total Phosphate ppm	Ortho- Phosphate ppm	Nitrate N	Nitrite N ppm	Ammonia N ppm	Kjeldahl N ppm	Total Coliforms #/100 ml	Fecal Coliforns \$/100 mi	Fecal Strep. #/100 ms
MSN	8.25	580	280	230	.035	.009	1.669	0.016	-	-	1300	630	490
NI	8.0	600	300	240	.027	.015	3.759	0.019	_		0100		420
S2	7.65	530	270	220	.022	.005	2.496	0.032	_		2100	810	
7.3	8.2	610	290	260	.027	.007	0.861	0.019			100	110	20
X4	8.2	610	280	250	.016	.007	0.974	0.019	-	-	-	100	-
X5	7.9	620	210	250	2.22	.812			and a		2000	490	210
X6	-	_	_	250	-		2.271	1.048	-	-	870000	TNTC	1600
N7	8.1	800	370	320	.025	-		-	-	-		100 100	
118	8.2	690	310	300		.025	2.327	-	-		300	<10	740
2.9	8.25	690	350		.031	.020	1.030	0.007	-	-	3500	560	130
N10	7.8	670		300	.030	.012	1.650	0.016	-	-	11200	2200	230
NII	8.05		330	310	.071	.052	2.233	0.002	-	-	900	180	60
WIT	0.05	700	350	300	.039	.032	5.936	0.002	-	-	5100	5800	240
MI	8.15	620	300	280	.048	.032	0.504	0.002		_	400	30	20
<u>×2</u>	8.0	620	320	270	.076	.055	0.692	0.002		1			30
M3	8.1	630	320	280	.075	.055	0.767	0.035	-	1	2100	20.	70
M4	8.4	520	260	210	-104	.021	0.974	0.065			3400	170	<10
¥5	8.75	600	300	250	.086	.067	4.188		100-		300	60	-
			500	200	.000	.007	4.100	0.078	-	-	1200	40	10
S1	8.25	610	300	250	.019	.006 (<.01)	0.955	0.021	0.29	0.49	2600	770	130
S2	8.25	610	300	250	.035	.023	1.237	0.026	-	-	3700	400	210
\$3	7.65	780	390	320	.780	.697	2.835	0.006	-	_	800	70	300
S4	8.4	610	290	250	.080	.061 (.005)	1.086	0.021	0.29	0.56	3100	750	590
\$5	8.45	690	340	290	.300	.264	1.143	0.012	-	-	4900	840	330
S6	8.3	710	350	300	.101	.080	2.496	0.020			15000	430	220
57	8.35	690	330	280	.016	-	0.992	0.011			3800	1600	120
SS	8.2	700	290	290	.023	.008	1.331	0.006	19 1 - 18 C	10 T	1700	390	120
59	8.1	800	370	310	.043	.041 (0.040)	4.244	-	0.21	0.27	2200	570	80
			Sector Sector	500		.041 (0.040)	4.244	008	0.21	0.27	2200	370	00
200	1000									1	ASTRO DR	EVING ST	
Rap (MSN)	8.25	570	280	230	.032	.009	1.632	0.017	Tenners a	MATCHINE M.	COLLINE	Colsionas	

Tablel-AA : Analytical

Analytical Summary Sample Collection AA - Sample Date: 25 October 1976

tation	DH	Specific Conductance withos	Total Hardness mg/2	Total Alkalinity	Total Phosphat	•	Nitrate N	Nitrite N	Ammonia N	Kjeldahl N	Total Coliforms	Fecal Coliforms	Fecal Strep.
	9.4	P=1:05	Eg/2	mg/l	ppm	ppm	ppm	ppm	ppm	ppm	#/100 mL	#/100 m2	#/100 m
MSN	8,1	700	280	230	.029	.022	4.470	.015	Fas	e 30	1300	280	140
Nl	8.1	700	280	230	.022	.004	4.710	.017			22000		2000
N2	7.5	580	280	230	.279	.267	4.950	.017	-	-	1100	130	110
N3	8.15	660	300	240	.022	.018	4.930		-	-	1700	10	30
N4	8.2	660	290	240	.022	.017		.013		-	1400	-	
N5	7.7	740	260	310	2.091		4.810	.011	5-ora	0182	=10/20	-	-20
N6	7.9	820	380	310		1.001	6.610	.533	-	-	TNTC	1200	TNTC
N7	7.7	810	340		.009		13.210	.000	-	-	400	-0,00	- 72
XS	8.25	710		280	.007	-	3.410	.000	-	T-07	2500	-	- 35
N9	8.2		320	270	.055	.054	4.970	.017	-	-	3800	720	180
		700	320	280	.018	.015	5.810	.010	-	-	8200	870	630
N10	8.1	710	340	300	.088	.064	1.330	.002	-	-	67000	-	-000-
X11	7.9	720	340	290	.154	.077	7.810	.033	-	-	28000	1840	>2000
MI	8.15	. 670	310	260	.029	.014	2.210	000			00000	BOO	
M2	8.0	670	330	280	.022	.014	3.170	.000	-	-	300	10	-128
M3	8.0	700	330	290	.030	.017	2.870	.000	-	-	3500		70
M4	8.4	670	300	250	.024	.001	4.610	.008	-	-	5400	-	170
M5	8.15	670	300	250	.024	.029		.057	-	-	43000	100	30
200			500	250	.055	.029	4.830	.026	-		6300	2-0	70
SI	8.1	730	330	290	.032	.029 (.038)	4.810	.019	0.12	0.49	8400	190	180
S2	8.1	730	330	280	.027	.015	4.830	.019	-	-	76000		
S3	8.2	770	380	320	.439	.363	3.710	.004	_	2	5000	-10	320
S4	8.3	710	310	240	038	.032 (.044)	5.610	.016	0.29	0.46	1100	-	-
S5	8.15	740	320 -	260	.079	.076	5.610	.018	-			130	260
S6	8.2	740	390	300	.161	.167	6.410	.038	_		2000	-	-
S7	8.1	750	310	250	.056	.048	5.510	.014	_	_	3100	50	470
S8	8.15	740	300	250	.017	.007	5.010	.012	_		1300	1030	230
59	8.0	780	340	280		049 (.057)(.057)	6.410	.003	0.07	0.15	300 2600	60 100	120
						2002		-013			2000	100	
Rep	0.05						1210		about the second	2000	ELIDO PE	1000	-
(M2)	8.05	660	310	260	.023	.017	2.250	.000			- Cartesosan	GOLITOXIN	201.63

Simple Collection 25 - Smulle Date: 25 Sovember 1416

Table 1-3B:	Analytical Summary	
	Sample Collection BB - Sample Date:	29 November 1976

Station	DH	Specific Conductance withos	Total Hardness mg/2	Total Alkalinity mg/l	Total Phosphate		Nitrate N	Nitrite N	Ammonia N	Kjeldahl N	· Total Coliforas	Fecal Coliforms	Fecal Strep.
				Lig/ &	ppm	ppm	ppm	ppm	ppm	ppm	\$/100 ml	₽/100 mi	#/100 mt
MSN	7.8	620	310	230	.082	.055	9.02	.019	-	-	146000	160	410
NI	7.75	630	330	230	066	0.00							410
N2	7.75	700	330	240	.066	.039	9.33	.018	-		35000	480	90
X3	7.8	620	310		.022	.018	9.75	.010	-	-	8600	20	10
X4	7.8	620	280	230	.084	.046	7.86	.018	-	-	-	-	-
X5	7.6	870	400	230	.080	.045	8.60	.015		_	37000		
N6	7.7	770		320	.400	.263	12.49	.315	1012	0.0		200	140
\$7	7.75		390	270	.009	.009	14.17	.000	_		144000	21000	2000
23		650	310	220	.043	.025	7.97	.007		-	9400	40	<10
	7.8	630	320	240	.100	.054	7.76	.015			3000	840	<10
N9	7.8	630	310	240	.072	.037	8.81		-	-	11400	1300	330
X10	7.6	620	320	250	.001	-		.014	-	-	12200	2200	320
NII	7.75	660	310	230	.067		5.80	.001	-	-	6200	1800	350
				-30	.007	.041	9.12	.005	-	-	16700	120	100
MI	7.8	590	290	220	000								
X2	7.8	570	290		.092	.067	6.12	.023	-	-	157000	120	180
<u>*3</u>	7.8	580	300	220	.097	.066	6.41	.026	-	-	2000	800	260
<u><u>N4</u></u>	7.8	590	300	220	.106	.072	6.20	.026	-	-	72000	600	270
M5	7.9	570		220	.077	.040	7.86	.021	-	-	9300	420	220
	1.5	570	290	220	.059	.037	6.92	.007	-	-	12400	230	<10
S1	70	620									12400	230	<10
	7.8	630	310	230	.079	.056 (.042)	7.76	.018	0.04	0.61	39000	010	
52	7.75	630	320	240	.090	.049	8.28	.018	-		. 38000	210	550
53	7.65	680	350	270	.072	.047	8.07	.002	-	-	14700	500	610
S4	7.8	620	310	240		.060 (.057)	8.28			-	16400	1900	970
S5	7.8	630	320	230	.080	.051	7.86	.016	0.017	0.63	67000	160	350
56	7.7	630	310	220	.103	.003		.019	-	-	27000	140	540
S7	7.95	630	310	240	.065		8.91	.021	-	-	8600	130	1400
S 3	7.7	620	310	240	.061	.041	8.07	.012	-	-	7400	900	290
59	7.95	660	330	240		.045	7.23	.012	-	12	35000	60	390
			330	240	.047	.040 (.032)	8.49	.005	.02	0.23	14200	110	110
Rep.	27.45			and the second									The second
(\$2)	7.75	620	310	240	.285	.162	7.65	.017	and the second	alergier a	Collar State	Coliforna	Second.

 Table 1-CC:
 Analytical Summary

 Sample Collection CC - Sample Date:
 20 December 1976

ation	рH	Specific Conductance ymhos	Total Hardness mg/l	Total Alkalinity mg/l	Total Phosphate ppm	Ortho- Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Ammonia N ppm	Kjeldahl N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mi	Fecal Strep #/100 m
					Y Thur bak	E Puotoisate	e de la territe d	A STREET	A Service of the Serv				
MSN	7.7	690	320	250	.060	.050	6.042	.027	- 225	- 2000	13200	1260	11300
Nl	7.65	650	320	250	.059	.041	6.154	.029		2.81	7900	1970	290
N2	7.5	630	300	230	.064	.033	7.940	.068		1 <u>.</u>	900	80	10
N3		33 2930	- 12		_	-	-	-	1	-	900	- 00	-
N4	7.8	630	300	250	.079	.056	6.221	.027	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	11400		
N5	-	- 540		_	-	-	-	.027	-			7400	370
N6	7.55	780	400	290	.000	.000	14.76	.000	-		-	186	Sections
\$7	7.7	650	320	230	.029	.013	5.797	.000		-	1800	<10	<10
N8	7.7	650	310	240	.130	.086	5.373	.000	-	-	-	<10	<10
N9	7.8	650	310	240	.055	.088			-	-	9800	2400	3700
N10	7.6	630	340	270	.046	.049	5.998	.017	-	-	5700	1900	340
X11	7.7	690	340	250	.085	.066	3.855 8.498	.001		-	5800	240	180
			540	250	.005	.000	0.490	.012	-	-	9700	2700	1100
Ml	7.6	650	320	250	.052	.038	3.833	.022	_	_	900	10	20
M2	7.8	630	300	240	.056	.057	3.833	.017	-	-	7300	50	. 320
M3	7.75	630	300	250	.076	.064	3.922	.015	-		11000	470	340
M4	7.9	600	280	220	.084	.069	6.333	.013	_	_	14200	8400	260
M5		-	-	5-0-0	101 12 200	2014	-	-	2	_	. 14200	-	200
ZTG													
Sl	7.8	680	310	250		.078 (.060)	5.373	.023	0.76	1.63	39000	1280	18200
S2	7.7	740	320	260	.186	.115	5.596	.033	-	-	43000	2000	19700
S3	-		-	-	-	-	-	_	-	-	_	_	-
S4	7.7	660	330	270		.150 (.105)	5.150	.036	1.15	2.12	7600	1900	18600
S5	7.7	650	310	250	.151	.093	5.261	.015	-	-	9000	2100	10900
S6	-	-	-	=	-		-	-	_	-	_	-	-
S7	7.7	660	310	260	.132	.082	5.150	.025	-	-	9500	1640	1470
58	-	-	-	-	-	-	-	-	-	-	_	-	-
59	7.75	710	320	240	.111	.101 (.080)	7.270	.017	<.02	0.43	31000	1100	1500
		1			- min	- 007							
Rep. (N4)	7.8	580	320	250	.084	.054	6.132	.023					

 Table 1-DD:
 Analytical Summary

 Sample Collection DD - Sample Date:
 18 February 1977

tation	рĦ	Specific Conductance v=hos	Total Hardness mg/2	Total Alkalinity mg/l	Total Phosphate	Ortho- Phosphate	Nitrate N	Nitrite N	Ammonia N	Kjeldahl N	Total Coliforms	Fecal Coliforms	Fecal Strep.
S. Contraction				<u></u>	ppm	ppm	ppm	ppm	ppm	ppm	#/100 ml	#/100 m2	#/100 m
Ven	7 /	000											
MSN	7.6	800	320	270	.090	.061	3.65	.037	-	-	3100	250	370
N1 N2	7.6	700	330	260	.072	,034	4.73	.059	_05	0143	23000	260	360
N3	7.6	770	370	-	-	-	-	-	-	-		-	-
N4	7.55	780		310	.109	.047	6.89	.090	-	_			_
N5	-		350	310	.109	.046	5.74	.091	-	_	2400	80	
N6	-	07	-		- 21		-	_	_	_	-		330
N7	7.45	-	-	-	-31	13201202020	-	2	1212	12 13	<u>I</u>	1200	-
		670	310	260	.231	,098	4,85	.073	-	-	6100	1700	-
N8	7.4	770	340	290	.235	.102	5.62	.091	_	Ξ		1700	1100
X9	-	170	-	-	1220	1018 _ 10903	_	-		1263	6600	800	720
N10	-	-	-	-	_	_	_	_	-		-	-	-
N11	7.75	710	340	280	.055	.047	9.20	.025		-	-	-	-
					ORG		3.20	.025	-	=	1500	100	<10
Ml		-	-	-	_	-	1.4.2.643						
M2	-	-	-	-	_	_	E State	Ξ	-	-		-	-
M3	-	-	-	-		210	100		-	-		-	-
M4	-	-	-	-	_	_	-	-	-	-	-	-	-
M5	7.8	670	320	270	.048	.015	4.22	-		-	-	-	-
				270	.040	.015	4.22	.007	-	-	2900	140	10
S1	-	_	-	-	_	_							
52	7.4	1480	680	600	.245		-	-	-	-	-	-	-
S3	-	-	-	-		.222	13.76	.086	-	-	6000	140	250
S4	7.4	780	340	290	-	-	-	-	-	-	-	-	-
\$5	-	-	540	290	.263	.114	5.43	.059	- 007 00	-	11000	780	2400
S6	-	<u> </u>	Ξ	<u> </u>	-	-	-	-	-	-	-	-	-
S7	_	<u> </u>	_	-	- 49	-	-	-	-	-		-	_
58	7.4	730			-	-	-	-	-	-	-	-	-
59	-		330	290	.116	.051	3.14	.034	-	-	1100	160	100
33	STORES.	-	-	- 0	-130	-	-	-	-	-13	_	-	-
		10-10-10-10-10-10-10-10-10-10-10-10-10-1											
Rep.	7.4	1/50	700										
(S2)	1.4	1450	720	600	.231	.208	13.05	.085	-	100		1120.05	NATED I

the second contraction of a fagole

Table 1 EE: Analytical Summary Sample Collection EE - Sample Date: 7 March 1977

ation	рH	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/l	Total Phosphate ppm	Ortho- Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Ammonia N ppm	Kjeldahl N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mt	Fecal Strep. #/100 m
MSN	7.3	510	240	190	.150	,107	6,51	.041	0.22	0.81	3800	-	230
N1	7.35	490	240	180	.513	.213	8,32	,018		1.2	7400	-	630
N2	-	-	-	-	The second second	1000			0-1-	- 1	20002	-	-
N3	7.5	540	270	200	.119	.076	8.01	.034	0116-	-	200017	-	-
N4	7.5	540	270	210	.126	.072	8.22	.035			5800	-	530
N5	-	-		-	-	-	-	-		1 -1	50004	-	-
N6	-	-	_	-	-	-	-	-	- 10	-	155007	-	-
N7	7.3	600	290	210	.034	.025	9.10	.033	-		7200	600	<10
N8	7.5	600	290	220	.205	.107	7.70	.030	011-		18600	7000	490
N9	7.5	610	290	220	.137	.084	8.38	.020	0.0-	- 1	4200	-	580
N10	- 1	1		-	-		-			-	8204	-	120-
N11	7.25	620	300	220	.054	.044	12.88	.020	0.0-		10000	4000	60
Ml	-	51-			_	-	_	-	-	-	-	-	-
M2	7.2	530	250	190	.134	.096	7.50	.023		1-	40000	15000	70
M3	7.2	530	260	200	.121	.094	6.87	.018	-	-	6800	9000	140
M4	7.2	570	280	220	.147	.122	8.32	.021		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	37000	-	250
M5	7.3	540	260	200	.099	.069	8.48	.020	-	1445	7800	1000	30
115		540	200	200									
S1	-	532	_		_	-	_	_	-		_	-	_
S2	7.15		260	200	.205	.151	7.03	.038	0.34	0.90	6000	6000	830
53	-	-	-	-	-	-	-	-	-		- 10.02	_	350_
S4	7.25		260	190	.188	.122	6.98	.039	0.39	1.22	6000	-	830
\$5	-	-	-		_	-	-	-	-	-	-	-	
S6	-		_	_	_	_	-	-	-	-	100-	_	-
S7	7.2	540	250	190	.212	.140	7.86	.041	-	-	6400	-	470
S8	7.2	540	250	190	.196	.143	8.84	.035	-	-	2200	-	340
59	-	-	_	_		_	_	-	_	-	-	_	-
Rep.	Contra Co										A DEC	Tess.	
(MSN)	7.4	500	260	190	.153	.113	8.12	.044		_	-	-	-

Table 1 FF:	Analytical	

IF

Sample Collection FF - Sample Date; 13 March 1977

Station	а рН	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/2	Total Phosphate ppm	Ortho- Phosphate ppm	Nitrate N ppm	Nitrite N	Ammonia N	Kjeldahl N	Total Coliforms	Fecal Coliforns	Fecal Strep.
MSN	7.5	230	110	00				ppm	ppm	ррш	#/100 ml	#/100 mi	#/100 m2
NI				80	.532	.122	2.74	.011	0.21	1.39	4000	-	630
NI N2	7.4	220	110	80	.605	.157	3.47	000					
	7.4	260	120	80	.184	.066		.008	0.07	1.87	10000	-	490
N3	7.4	230	110	80	.732	.155	3.83	.017	0.09	0.85	8000	-	60
N4	7.35	220	110	80	.775		3.36	.006	0.15	1.95	-2000	_	-
N5	-	-	_	-		.160	3.36	.005	0.15	1.96	20000	_	
N6	-	12 230	_ 0	200	-	-			-0100		-	0000	970
N7	7.4	250	110	70	-	-			-	-	_	-	-
N8	7.4	230	110		.110	.047	3.78	.019	0.09	0.92		-	- 200
N9	7.4	240		80	.503	.129	2.38	.022	0.11		17000	-	10
NIO	-	240	110	80	.406	.342	3.26	.025	0.12	1.02	41000		180
NII	7.4		-	-	-	-	-	-		1.06	21000	-	160
	1.4	230	110	80	.294	.093	3.42		-	-	-1660	-	-
Ml							3.42	.033	0.08	1.27	13000		120
	7.5	220	110	80	.434	.113	2 00		1				
M2	7.4	220	110	80	.458	.139	2.80	.010	0.11	1.40	21000	-	170
M3	7.4	220	110	80	.458		2.28	.012	0.06	1.31	14000	- 3	190
M4	7.4	220	110	80	.351	.116	2.02	.007	0.06	1.05	8500	-	150
M5	7.4	220	110	80		:111	2.18	.005	0.08	1.01	1900		
				00	.261	.105	3.36	.027	0.06	1.17	3000	I	210
SI	7.4	230	110	80							5000	-	-
S2	7.4	230	120		.337	.140	2.90	.031	0.18	1.25	15000		
* S3	7.4	260	120	90	.413	.124	2.49	.031	0.18		15000	-	310
S 4	7.4	240		90	.451	.236	2.38	.117	-	1.34	20000	-	210
\$5	7.4	230	110	80	.338	.111	2.69	.022		-	- 1996	-	-
S6	7.4		110	80	.321	.122	2.59	.029	0.16	1.26	20000	-	280
S7		250	120	90	.324	.176	3.36		0.15	1.09	20000	-	320
	7.4	240	110	80	.303	.108		.033	0.25	1.09	12000	-	610
S8	7.4	230	110	80	.260	.094	2.80	.023	0.16	1.08	18000	-	5100
S9	7.4	250	110	80	.178	.064	2.33	.029	0.09	1.04	24000	_	310
					.170	.004	3.83	.027	0.12	0.79	7000	-	90
Rep.		- Contraction of the Contract					and the second second	March 19 10 10					
(N1)	7.4	220	110	80	.636	.158	3.42	.008	-	-	-	1.0-01	-

* Surface runoff - not regular tile drain

tation	рH	Specific Conductance µmhos	Total Hardness mg/l	Total Alkalinity mg/l	Total Phosphate ppm	Ortho- Phosphate ppm	Nitrate N ppm	Nitrite N ppm	Ammonia N ppm	Kjeldahl N ppm	Total Coliforms #/100 ml	Fecal Coliforms #/100 mi	Fecal Strep. #/100 ml
ISN	6.45	590	280	210	.069	.052	6.692	.014			-		
11	6.4	550	270	200	050								
12	6.6	550	260	190	.058	.036	4.797	.012		-	1200010	- 50	_ 70
13	6.5	570	270		.159	.137	8.045	.010	-	-	_ 100 5	_10	2010
14	6.5	540	270	210	.055	.037	6.286	.015	-	-	2100 5	- 50	10.00
15	6.45	650		200	.059	.037	7.639	.016	_	_	a series of the		-
16	6.1	650	310	230	.292	.141	13.233	.145			Same and	-	-
7	6.1		290	220	.000	.000	14.590	.002	-		-		-
8	6.45	620	270	200	.014	.009	8.135	.003				-	-
9		540	280	210	.105	.070	7.233	.020				-	-
	6.55	540	270	200	.030	.026	7.053	.012	_				- 20
10	6.2	570	270	200	.040	.025	5.338	.003		-	-	-	-
11	6.35	520	270	190	.024	.031	6.917		-	-	-303	- 20	-010
						.031	0.91/	.008			S=00004	- 20.	-101
1	6.5	540	270	200	.033	.020	F 000						
2	6.7	540	270	200	.036	.020	5.203	.011	-	-	- 000	-10	_010
3	6.7	540	270	200	.046		4.211	.006		-	-100	-010	- 10
4 .	6.55	540	270	200	.040	.033	5.203	.007	-	-	-	-	_
5	6.4	550	280	210		.030	5.699	.008		-		- 000	
		1220	200	210	.012	.013	6.917	.005	-		- 200	- 10	
1	6.8	590	290	220									-
2	6.8	590	290		.081	.049	6.782	.013	-	_	-		
3	6.25	690	310	220	.060	.036	5.835	.012	-	_		- 20	- 20
	6.55	550	290	220	.109	.078	5.925	.007	- '	_		-30	-<10
5	6.5	570		220	.044	.031	6.466	.013	_	_		-410	-410
5	6.45		290	220	.074	.036	6.060	.016	_	22000	-1000 ·	-00	-130
7		570	270	210	.141	.083	5.880	.024	_		-		
3	6.6	570	300	220	.032	.023	5.203	.009			7 700	- 10	- 30
	6.5	570	290	220	.027	.027	5.880	.009	. In 1997	-	- 500	-170	-<10
9	6.6	620	280	210	.027	.028	7.955	.007	MIT LA CO.	81188	2 600	-«10	- 30
1000		230	sio in	custor in in							500	-	<10
ep. N6)	6.1	650	290	220	.001	.000	12.556	000	bha	Light Pro-	64120	61100 -24	L100 1
			A A A A A A A A A A A A A A A A A A A	a second contractor		.000	12.330	.000	N ARENTER N	Restant a	C- ITTORDE	C-TLOCM	-crab-

Analytical Summary Sample Collection GG - Sample Date; 24 March 1977

Tablel GG :

11 8 12 7 13 8 14 8 15 7 16 7 7 7 8 9 8 9 10 7 11 7	8.0 8.1 7.8 8.1 8.05 7.6 7.2 7.35	530 540 510 510 670	270 280 270	200 210	.022	.006			ppm	ppm	#/100 ml	#/100 mi	#/100 m
12 7 13 8 14 8 15 7 16 7 17 7 10 7 11 7	7.8 8.1 8.05 7.6 7.2	540 510 510	270	210			1.19	.019	-		200	<10	<10
3 8 4 8 5 7 6 7 7 7 8 8 9 8 10 7 11 7	8.1 8.05 7.6 7.2	510 510	270		.016	.003	5.88	.018					1
4 8 5 7 6 7 7 7 8 8 9 8 10 7 11 7	8.05 7.6 7.2	510		200	.158	.146	5.77	.018	-	-	600	<10	30
5 7 6 7 7 7 8 8 9 8 10 7 11 7	7.6		270	190	.019	.004	4.79	.017	0-07		200	<10	<10
6 7 7 7 8 8 9 8 10 7 11 7	7.2		260	190	.016	.004			0.00		100	10	30
6 7 7 7 8 8 9 8 10 7 11 7	7.2	0/0	330	260	.093.		5.66	.020	-	1.00	-	-	-
7 7 8 8 9 8 10 7 11 7		670	340	220		.069	11.32	.050		-	13000	210	170
8 8 9 8 10 7 11 7		680	320	230	-001	-	9.25		-	-	<100	<10	<10
9 8 10 7 11 7	8.2	450	240		.004	-	6.09	.004	-	-	100	<10	<10
10 7 11 7	8.0	470		170	.063	.020	4.90	.030	-	-	2000	30	20
11 7	7.25	550	250	170	.044	.010	6.04	.017	-	-	5200	90	30
	7.7	580	290	230	.033	.025	4.13	.007	-	-	.300	<10	40
1 8	1.1	580	290	220	.028	.023	9.96	.007	-		700	60	20
	8.1	440	220	160	.021	_	3.26	.012	0.32	102	<100	<10	<10
	8.6	440	240	160	.019	-	4.13	.010	_	-	400	<10	<10
	8.55	460	240	170	.024	_	4.03	.011	_		900	30	10
	8.15	470	260	190	.014	.004	5.17	.010		- I	200000+	60	
5 7	7.85	550	290	210	.002	-	6.58	.010	-		2900	10	<10 <10
1 8	8.4	540	270	200	.035	.006	5.01	010					
2 8	8.4	550	290	220	.055	.023	4.84	.019	-	-	2400	<10	20
3 7	7.4	660	340	270	.078			.022	-	-	4900	<10	<10
	8.1	520	260	190		.063	5.77	.009	-	-	600	20	40
	B.15	510	260	190	.036	.005	4.73	.024	-	-	3000	20	60
	8.4	510	270	190	.103	.066	5.11	.025	-	-	1800	40	170
Salu Sura Sura Sura Sura Sura Sura Sura Sur	8.15	510	260	190	.150	.082	6.69	.043	-	-	3700	20	1290
	3.2	500	260		.047	.023	4.62	.018	-		400	<10	<10
and the second se	7.5	640		190	.044	.005	4.52	.018		-	1000	20	10
		040	300	220	.030	.022	7.24	.012	0.07	-	500	20	10
	2.5	100	UBU	929			100 000 00 00 00 00 00 00 00 00 00 00 00		0.12				
ip. (5) 8.	3.25	510	260	190	.098	.064	4.30	.023		A CONTRACT OF	Cortegene	Star Transferrer	

Analytical Summary Sample Collection HH - Sample Date: 11 April 1977 Table 1 HH :

Station	Area (ha.)	Total Export (gm/yr)	Station Yield (gm/ha/yr)	Area % AG-3	Export % AG-3
MSN	5670	2709889.	478	100	100
NI	2410	1219158.	506	42.5	45.0
N2	93.4	5489.	59	1.7	0.2
N3	1758	866109.	493	31.0	32.0
N4	1749	844547.	483	30.9	31.2
N5 *	9.0	10150.	1128	0.2	0.4
N6 *	14.9	65.3	4.4	0.3	.002
N7 *	58.7	8729.	149	1.0	0.3
N8	480	694283.	1448	8.5	25.6
N9	410	533530.	1302	7.2	19.7
N10 *	56.9	19113.	336	1.0	0.7
N11 *	173	45982.	266	3.1	1.7
Ml	884	396342.	449	15.6	14.6
M2	775	290798.	375	13.7	10.7
M3	686	238857.	348	12.1	8.8
M4	320	150371.	470	5.7	5.5
M5 *	129	62762.	488	2.3	2.3
S1	1933	1003860.	519	34.1	37.0
S2	1819	883821.	486	32.1	32.6
S3 *	55.6	27709.	498	1.0	1.0
S4	1638	736819.	450	28.9	27.2
S5	1520	668202.	440	26.8	24.7
S6	223	159474.	716	3.9	5.9
S7	1291	402178.	312	22.8	14.8
S8	1150	225490.	196	20.3	8.3
S9 *	168	74249.	443	3.0	2.7
$MSN-\Sigma$ (M+N+	S) 443	90529.	204	7.8	3.3

Table 2 :

Phosphorus export data

* tile affected stations

Table 3: Nitrogen export data

Station	Area (ha.)	NO ³ N Export (Kg/yr)	Average Nitrate N Conc. ppm	Total N Export (Kg/yr)	Total N Flux Kg/ha/yr
MSN	5670.	286254	5.33	323467	56.95
N1	2410.	131679	6.23	148797	61.74
N2	93.4	4077	6.13	4607	49.33
N3	1758.	80111	5.01	90525	51.49
N4	1749.	77856	4.93	87977	50.30
N5	9.0	745	11.01	767	85.22
NG	14.9	273	10.53	281	18.86
N7	58.7	3929	7.01	4047	68.94
N8	480.	51351	5.86	58027	120.89
N9	410.	37851	6.29	42772	104.32
N10	56.9	2360	6,93	2431	47.72
N11	173.	10167	8,58	11489	66.41
M1	884.	24872	4.14	28105	31.79
M2	775.	20513	4.38	23180	29.91
M3	686.	16635	4.72	18798	27.40
M4	320.	14487	6.19	16370	51.16
M5	129.	10108	7.12	11422	88.54
S1	1933.	115040	5.24	129995	67,25
S2	1819.	104623	5.69	118224	64.99
S3	55.6	2578	2.54	2655	47.75
S4	1638.	77684	5.54	87783	53.59
S5	1520.	64799	5.74	73223	48.17
S6	223.	6913	5.80	7812	35.02
S7	1291.	53153	5.81	60063	46.52
S8	1150.	35525	5.99	40143	46.52 34.91
S9	168.	14994	8.95	15444	91.93
	1012			17444	91.95

28

				Distance Barn	2		M	anur	P	orage	"i ^{ty}
Operation	Туре	Area (ha.)	Phosphorus Flux gm/ha/yr	From Stream (m.)	tyl	pe sto	rag	anur tan ^o tan ^o	p ^e a ^p	ed li x	i ^m Y-yes N-no
do328						0.1	1	04		89	1.01-
1	B-100	93.4	58.77	250	S	В	D	F	Y	N	
2	B-200	9.0	1127.79	100	S	B	С	M	Y	Y	
3	B-220	114.6	1047.46	10	S	В	A	F	Y	Y	
4	S-120	89.2	582.30	20	S/L	P	B	F	Y	Y	
5	B-52	191.6	457.25	280	S	Р	D	F	Y	N	
6	C-0	173.2	266.49	830	N	N	N	G	N	N	
7 mass ba	lance	2409.7	505.94	N/A	N	N	N	N	N	N	
8	D-90	55.6	498.36	1000	S	P	D	F	Y	N	
9	D-78	56.9	335.91	350	S	В	D	F	Y	N	
LO SILLS	D-66	142.0	1244.28	100	S	P	С	G	Y	N	
ll maerde	B-230	167.7	442.75	1700	S	В	D	S	Y	N	
12	S-300	128.5	488.42	1000	L	v	D	G	N	N	
13	C-0	58.7	148.71	200	L	v	D	S	N	N	
4 mouth sta	ation	5680.	477.94	N/A	N	N	N	N	N	N	
15	C-0	14.9	4.38	no barn	N	N	N	М	N	N	
16	B-35	108.4	973.66	380	S	P	D	F	Y	N	
17	C-0	118.1	581.01	120	N	N	N	G	N	N	
8	S-342	69.5	2313.00	100	L/S	P	С	S	Y	Y	
20	S-2420	222.6	716.42	<10m	L/S	V/P	A	S	Y	Y	
Type:	1	Storag	e Type: S	torage:	(5.	10 C	star		.2	Slop	<u>e</u> :
B - beef ca S - swine D - dairy d		S - so L - li N - no	quid	- bunker (containme - pile (c	ent)	B		10m)m		lat (no evide slope) light (small

V - vatD - >100mmounds &(enclosed)N - not applic-depressions)

gradient $\sim 2\%$)

M - moderate

(gradient ~ 5%)

N - not applicable

Table 4: Pluarg Project 20 AG-3 Operation Fluxes

N - no storage able G - gradual (slight gradient ~ 2%) (numbers indicate # head) N- Fall Wheat) * A.U. * Animal Units

controls

C - non-livestock

91	Area		estock		Crop (% Area)		Drainage
Operation	(ha.)	No.	Density	Primary	Secondary	Tertiary	Туре
Beef							
No. 1	93.4	100	1.07	B-36	C-16	H-11	ditch
2	9.0	200	22.2	C-42	G-25	H-18	tile
3	114.6	220	1.92	C-67	B-17	H-8	stream
5	191.6	52	.27	Н-38	C-29	G-28	stream/tile
11	167.7	230	1.37	C-54	H-21	G-11	tile
16	108.4	35	0.32	S-36	W-29	G-25	stream
Average	114.1	139.5	1.22				
Dairy		1. 1					
No. 8	55.6	90	1.62	H-25	C-23	G-22	tile
9	56.9	78	1.37	H-34	G-24	C-22	tile
10	142.0	66	.46	C-33	G-31	H-18	stream
Average	84.8	78.0	.92				
Swine							
No. 4	89.2	128	1.43	W-26	G-24	B-18	stream
12	128.5	300	2.33	G-64	S-34	0-	tile
18	69.5	342	4.92	G-64	S-34	-35 _198	stream
20	222.6	2420	10.87	C-51	H-20	M-13	ditch
Average	127.4	797.5	6.26				8
Control							
No. 6	173.2	0	0	C-23	B-17	W-16	+11-
13	58.7	0	0	S-34	B-23		tile isort
15	14.9	0	0	S-34	C-20	W-19	tile
17	118.1	0	0	C-47	S-25	H-10	tile
Average	91.2	- >100m	0	0 47	3-23	B-15	stream
AG-3 Average		34.2	0.58	C-32	0.16	0.10	
ano beng		.*/farm		0-52	G-16	S-12	
Legend: Cro	G-	Corn Mixed (Hay/Pas		B- Ba	ll Wheat rley ybeans	* A.U.=	Animal Units (Reference 1

Table 5a: Summary of farm operations investigated

Operation	lo Mid 20010 Livestock	Annual Flux (gm P/ha)	Corrected Flux* gm P/ha/yr
Calculation	B1, B2, By Billerence	ana ana ang	Carl Carlos
Beef			
1 1	100(400-950 lb. gain) Beef Feeders	58.77	-
2	100(400-1100 lb. gain) Beef Feeders	-	-
	50(400-750 lb. gain) Beef Feeders	1127.79	795.72
	50(750-1100 lb. gain) Beef Feeders	Hosta Vi-LT	-
3	220(400-1100 lb. gain) Beef Feeders	1047.46	715.39
5	40(400-1100 lb. gain) Beef Feeders	457.25	125.18
	12/12 Beef Cow/Calf		
11	230(400-1100 lb. gain) Beef Feeders	442.75	110.68
16	35(400-1100 lb. gain) Beef Feeders	973.66	641.59
Dairy	12 million and the second		
8	40 Milkers	-	-
	40 Followers	498.36	166.29
The other	10(calf-1100 lb. gain) Beef Feeders	BARREN TANK	192 2
9	35 Milkers	-	-
	35 Followers	335.91	3.84
TTIA DICEL	8(400-750 lb. gain) Beef Feeders	Albert Etter	27 L
10	48 Milkers	-	-
	6 Followers	1244.28	912.21
	12(400-1100 lb. gain) Beef Feeders	manufic	
Swine			
4	120 Feeder Hogs	582.30	250.23
(44-64)	8 Farrowing Boars/Sows		
12	300 Feeder Hogs	488.42	156.35
18	300 Weiners	-	-
40	42 Farrowing Boars/Sows	2313.00	1980.93
20	2302 Feeder Hogs	Allenante - Asia -	A second and
	116 Farrowing Boars/Sows	716.42	384.35
	18 Cows	t sporages is	
	30 (400-1100 lb. gain) Beef Feeders		and the second

Table 5b: Pluarg Project 20 Livestock Operations

* Background of 332 gm./ha./yr deleted from each operation.

OPERATION	TYPE OF DRAINAGE	STATIONS	METHOD OF CALCULATION
1	Ditch	N2	Direct Measurement (M/M)
2	Tile Drain	N5	Direct M/M of Tile Outflow*
3 †	Stream	S1, S2	By Difference Calculation (S1-S2)
4	Stream	M2, M3	By Difference (M2-M3)
5 †	Stream	M4, M5	By Difference (M4-M5)
6	Tile/Ditch	N11	Direct M/M
7@	Stream	N1	Direct M/M
8	Tile Drain	S3	Direct M/M of Tile Outflow*
9	Tile Drain	N10	Direct M/M of Tile Outflow*
10	Stream	S7, S8	By Difference (S7-S8)
11	Tile Drain	S9	Direct M/M of Tile Outflow*
12	Tile/Ditch	M5	Direct M/M
13	Tile Drain	N7	Direct M/M of Tile Outflow*
14 @	Stream	MSN	Direct M/M (also ≃N1+M1+S1)
15	Tile Drain	NG	Direct M/M of Tile Outflow*
16	Stream	M1, M2	By Difference (M1-M2)
17	Stream	S4, S5	By Difference (S4-S5)
18	Stream	N8, N9	By Difference (N8-N9)
19	Stream	N3, N4	By Difference (N3-N4)
20	Ditch	S6	Direct M/M

Table 6 : Relationship between operations and stations

† operation also extensively tiled

@ large area operations involving many drainage types

* tile drain samples may not reflect total output flux of the area

Operatio		Sincher			xes gm/h	and the second s			dag (2)	1
	Sum P	ner N	Fa: P	11 N	Win	ter N	Spr: P	ing N	Ann P	nual N
<u>A9878</u> P	- 11	g (data) g	N N	<u>grank</u> g	K	<u>raimii8</u> g	N	<u>9 (14) (14)</u>	nd It lot	
Mass Ba	1.									
14	0.483	19.01	0.353	21.42	1.481	132.4	2.902	173.3	1.308	77.9
7	0.478	23.32	0.347	22.39	1.547	143.1	3.158	184.5	1.384	84.4
Beef										
1	0.093	16.24	0.079	18.01	0.188	133.9	0.282	133.4	0.160	67.4
2	1.049	41.06	0.764	27.04	3.431	87.9	7.076	398.7	3.078	116.5
3	0.174	35.43	0.061	34.57	2.602	436.7	8.598	448.9	2.866	140.0
5	0.343	27.12	0.246	7.81	1.315	70.8	3.092	67.9	1.252	35.3
11	0.441	61.15	0.323	40.56	1.370	153.3	2.707	244.0	1.211	125.7
16	0.729	12.24	0.526	10.14	2.779	168.1	6.603	86.2	2.665	75.5
Dairy										
8	0.630	42.89	0.491	12.52	1.597	97.0	2.734	152.7	1.364	65.3
9	0.271	43.98	0.197	16.51	0.978	70.1	2.234	92.1	0.919	58.4
10	1.935	79.19	1.555	52.12	4.155	289.6	5.951	371.4	3.404	191.9
Swine										
4	0.652	14.87	0.471	18.37	1.895	125.7	3.342	170.4	1.594	67.2
12	0.476	50.18	0.347	35.85	1.503	143.4	3.011	235.3	1.337	121.1
18	3.929	96.23	2.879	58.07	8.735	551.3	9.783	611.1	6.328	300.2
20	0.739	8.31	0.543	14.87	2.232	92.9	4.315	95.7	1.960	47.9
Control										
6	0.285	42.06	0.212	29.82	0.829	110.7	1.571	177.8	0.726	90.8
13	0.166	46.44	0.125	26.13	0.470	123.8	0.864	190.3	0.408	94.3
15	0.009	0.30	0.008	10.26	0.013	32.4	0.017	53.8	0.013	25.8
17	0.271	35.67	0.127	53.20	1.685	209.2	4.299	409.5	1.590	168.0

Table 7: Seasonal export of nutrients from operations

Summer:	June 1 - August 31 (1975,1976) (184 days)
Fall:	September 1 - November 30 (1975,1976) (182 days)
Winter:	December 1 - February 29 (1975 - 1977) (181 days)
Spring:	March 1 - May 31 (1976, 1977) (184 days)
Annual:	June 1 1975 - May 31, 1977 (731 days)

Station and	Spring		Summ	er	Aut	umn	Win	iter	Ann	rage
Location	P	N	P	N	Р	N	Р	N	P	N
Ml	17353	100								
(middle branch)	2.573	77	,337	13	.244	10	1.176	70	1.084	38.4
Nl										
(north branch)	7.609	445	1.151	56	.836	54	3.725	345	3.336	203.5
S1										
(south branch)	6.332	380	.922	48	.669	50	3.046	328	2.747	177.8
Sum of b ranches	16.514	902	2.410	117	1.749	114	7.947	743	7.167	419.8
MSN (mouth		J								
station)	16.469	983	2.735	108	2.003	121	8.406	751	7.414	442.5
% SUM MSN	100.3	91.8	88.1	108.3	87.3	94.2	94.5	98.9	96.5	
Summer -	Mean of Mean of ean of 18	184 days		2+232 0.629 0.470	(4,87 28,82 28,82	Annual	- Mean	of 181 c of 731 c + S1 =		SN

Table 8: Export of nutrients by branch (Kg/day) June 1975 - May 1977

NOTE: Export is calculated through the full two year period; although no sampling was done in May 1977, the flow record for May 1977 was used in the regression relationships already established to produce a full two year record.

Summe August P	er (E) 25/75 N	Fall Novembe P	(BB) er 29/76 N				ng (FF) h 13/77 N
						8	2
3.26	263	2.77	190	4.35	273	78	77
27.02	42	5.04	714	20.12	1354	666	596
3.56	378	6.65	655	33.91	1962	313	373
33.83	683	14.46	1559	58.38	3589	1057	1047
		980 ⁻				1	
32.88	778	16.21	1787	65.19	3410	1207	986
2.74	108	2.00	122	8.41	751	16.47	983
	August P 3.26 27.02 3.56 33.83 32.88	August 25/75 N 3.26 263 27.02 42 3.56 378 33.83 683 32.88 778	August 25/75 Novembor P N 3.26 263 2.77 27.02 42 5.04 3.56 378 6.65 33.83 683 14.46 32.88 778 16.21	P N P N 3.26 263 2.77 190 27.02 42 5.04 714 3.56 378 6.65 655 33.83 683 14.46 1559 32.88 778 16.21 1787	August 25/75 PNovember 29/76 PFebrua P3.262632.771904.3527.02425.0471420.123.563786.6565533.9133.8368314.46155958.3832.8877816.21178765.19	August 25/75 November 29/76 February 13/76 3.26 263 2.77 190 4.35 273 27.02 42 5.04 714 20.12 1354 3.56 378 6.65 655 33.91 1962 33.83 683 14.46 1559 58.38 3589 32.88 778 16.21 1787 65.19 3410	August 25/75 November 29/76 February 13/76 Marci 3.26 263 2.77 190 4.35 273 78 27.02 42 5.04 714 20.12 1354 666 3.56 378 6.65 655 33.91 1962 313 33.83 683 14.46 1559 58.38 3589 1057 32.88 778 16.21 1787 65.19 3410 1207

Table 9:

45

55

83

83

50

Export of nutrients during seasonal events (Kg/day)

Events:

E - Severe thundershowers August 24/75 pptn 42 mm

BB - Rainshowers November 26-28/76 pptn 24 mm

Q - Light rainfall February 15-22/76 pptn 49 mm accompanying thaw FF - Spring breakup thaw accompanying rainfall pptn 14 mm

Table 10:	Form of	nutrients	in	transport
-----------	---------	-----------	----	-----------

Nutrient	Average concen- tration (ppm)	Ratio of o to total o mean ratio	S1 concentration concentration standard deviation	Average concen- tration (ppm)		S4 concentrat concentrat standard deviatio	ion	Average concen- tration (ppm)	Ratio of d	39 concentration concentration standard deviation
Phosphorus		p to the second		e,	2	8	52	9		
Total P.	.084	1.0	0	.133	1.0	0		.082	1.0	0
Dissolved P.	.054	.84	.63	.093	.62	.24		.061	.80	.28
Ortho P.	.047	.63	.72	,060	.63	.44		.063	.99	.51
<u>Nitrogen</u>				1381					N Selection	
Total N.		1.0	-	-	1.0	-		-	1.0	Ē
Nitrate N.	5.70	-		5.81	-	-		8.88	- 3	-
Nitrite N.	.03		-	.03		-		.02	ā g	T
Total Kjeldahl	N .69	.13	3	.75	.13	-		.46	.03	-
	N .11	-		.14	E - 1			.06		5

NOTE: Concentrations are the mean of the individual concentrations while ratios and deviations are the average of individual ratios for each collection period.

Table 11: AG-3 groundwater analyses

Sample	pН	Cond. µmhos	Total Hardness mg/l CaCO ₃	Total Alkalinity mg/l CaCO ₃	Total Phosphate ppm as P	Ortho Phosphate ppm as P	Nitrate N ppm as N	Nitrite N ppm as N	Ammonia N ppm as N	TKN ppm as 1
GW1	7.4	600	270	200	.213	0.20	1.5	0	<.02	<.05
GW2	7.55	510	250	240	.022	<.005	1.9	.001	<.02	.07
SW3	7.55	560	270	260	.010	<.005	9.4	0	<.02	.07
GW4	7.65	550	290	220	.022	<.005	6.6	0	<.02	0.5
GW5	8.2	300	110	160	.016	<.005	0.2	0	<.02	0.21
GW6	8.2	590	340	250	.048	.017	4.2	0	<.02	0.14
GW6b	8.1	580	320	280	.024	<.005	4.2	.059	<.02	0.43
GW7	8.15	320	170	130	.012	<.005	1.8	.012	<.02	0.36
6 ÷ 3		1	1781 2913	e-23 (389)	3,58, 377 3	1.10 1126	Trist The			5-2

Dénie 12: Lataile Annevelle Alver Budin - Chemokanph Study - Mass Arpont (an/hr)

Collection (N	1	M	2	S2		S4		S7		S9	
Time (hrs.)	ion #	MSN P	N	P	N	P	N	P	N	Р	N	Р	N	Р	N
				0.70	00/0			16 50	1814	13.99	1568	3.18	609	0.41	124
t	1	34.39	5278	8.72	2849	4.62	555	16.52	1170	15.87	1131	4.42	358	0.99	124
t + 2	2	34.49	5788	11.42	2145	4.07	437		1693	11.24	1318	3.89	327	1.37	112
t + 4	3	36.66	5430	5.93	2408	4.57	519	15.88	1295	14.04	1050	4.32	328	0.90	141
t + 6	4	36.61	5475	14.97	1732	4.71	415	16.15	1084	12.46	1308	2.97	375	0.65	136
t + 7	5	32.54	5543	22.27	2441	4.99	528	12.11	1064	12.40	827	4.07	386	0.89	112
t + 8	6	29.42	5656	9.74	2071	7.20	501	11.61		11.76	1199	2.81	346	0.71	92.5
t + 9	7	27.27	5817	6.33	1866	3.58	371	11.10	1124 1330	10.75	960	2.84	383	0.43	84.6
t + 11	8	25.20	5549	7.02	2178	3.59	494	11.42	1226	6.40	1113	2.44	329	0.47	105
t + 13	9	18.35	5241	6.97	2423	2.24	430	9.62		7.85	928	3.23	360	0.38	116
t + 15	10	17.13	4634	6.31	2043	2.23	348	7.84	854	9.43	946	2.50	323	0.35	59.9
t + 17	11	16.24	3661	5.70	2022	2.62	383	6.71	751	5.17	823	2.08	326	0.31	53.9
t + 19	12	16.22	3439	6.04	2116	2.75	481	12.80	1278	8.49	889	2.34	270	0.34	58.7
t + 22	13	24.97	3198	8.67	1820	2.54	379	8.35	978	4.10	737	2.18	251	0.26	57.2
t + 25	14	17.86	2865	7.40	1670	1.68	352	5.99	864	10.79	676	1.24	192	0.20	50.0
t + 28	15	27.48	110-	8.18	1510	2.20	305	8.92	691	3.40	1118	2.43	214	0.28	44.2
t + 31	16	23.22	-	6.48	1404	3.05	442	8.28	1074	4.23	653	0.85	278	0.16	27.8
t + 37	17	14.22	-	6.20	1536	1.95	367	5.46	688	4.23	544	0.49	196	0.11	30.7
t + 43	18	8.57	2521	3.12	1596	0.62	432	7.59	931	2.80	-	0.75	-	0.05	_
t + 49	19	7.43		2.94	5 m	0.50	1055	4.59	1002	2.80	_	0.49	-	0.06	-
t + 55	20	7.54	-	2.57	-	0.50	-	5.23	-	1.60	-	0.26	_	0.018	3 -
t + 61	21	6.12	220-	2.04	500 -	0.32	- 2	3.12	- 080		-	0.23	_	0.019	
t + 67	22	3.85	-	1.28		0.17		2.28	-	2.25		0.25		01015	

Table 12: Little Ausable River Basin - Chemograph Study - Mass Export (gm/hr)

Tebie II: AG-1 groundwater analyses

Table 13 : Log - log model

Station	Slope (m [*])	Intercept (b [*])	Determination Coefficient (r ²)
N1	1.023	43	.974
M1	1.066	-1.03	.952
M5	1.054	-1,64	.935
S1	0.931	-0.32	.975

regression equation employed:

log Qi = m' log Qmsn + b'

this table displays the relationship between only phospherys ensure it a station and the optresponding flow at the solu station where on the equation: Bengman, where I is the daily (7) and then is the daily flow at the main station.

Determent		Determination
Station	Slope (m)	Coefficients (r ²)
N1	, 393	.974
N2	.0114	.334
N3	.297	.960
N4	.294	.958
N5	.0010	.489
NG	.0064	S
N7	.0078	.644
N8	.163	.948
N9	,112	.937
N10	.0041	.691
N11	.0216	.775
M1	.112	.949
M2	.0819	.924
M3	.0655	.934
M4	.0436	.926
M5	.0264	.933
S1	.468	.969
S2	,342	.967
S3	.0052	.807
S4	.261	.966
S5	.210	.960
S6	.0204	.775
S7	.170	.943
S8	.110	.934
S9	.0273	.840

Table 14: Linear flow model Q = mQmsn

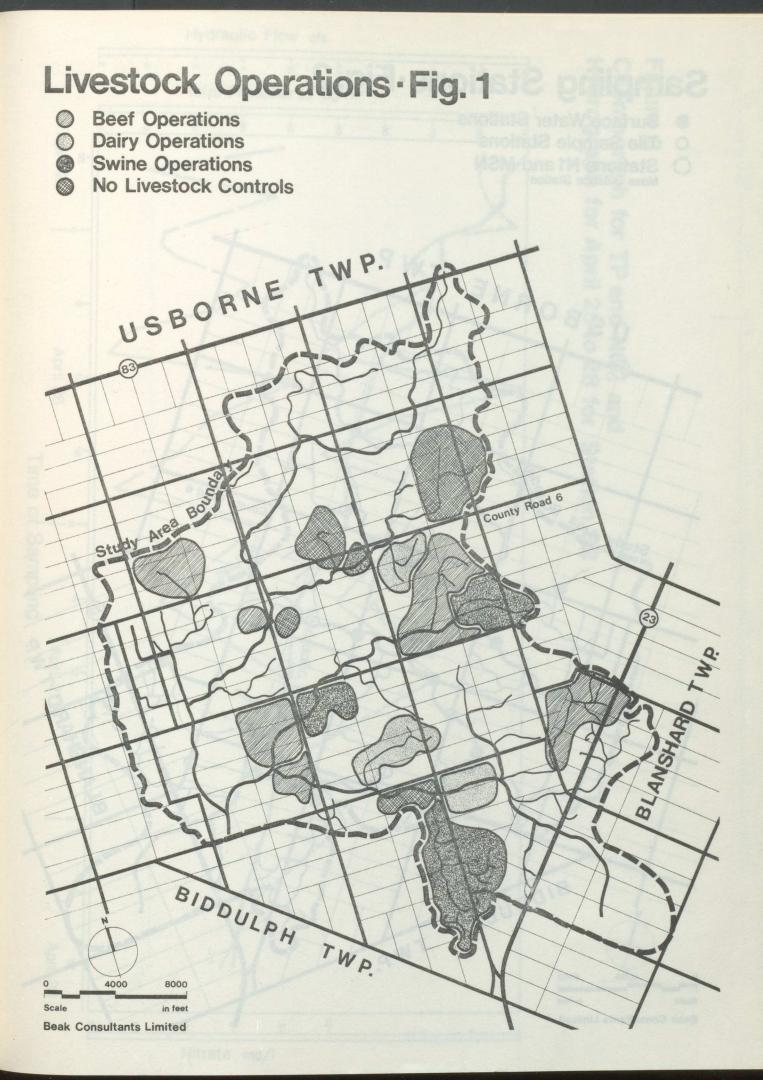
7.863 1.353 7.598 6.661 6.470 0.009 1.765 0.109 1.521 0.034	1.200 1.274 0.703 1.124 1.125 1.289 0.443 1.087 1.222	2710 1220 5.49 866 845 10.2 .065 8.73
7.598 6.661 6.470 0.009 1.765 0.109 1.521 0.034	0.703 1.124 1.125 1.289 0.443 1.087	5.49 866 845 10.2 .065
7.598 6.661 6.470 0.009 1.765 0.109 1.521 0.034	0.703 1.124 1.125 1.289 0.443 1.087	5.49 866 845 10.2 .065
6.661 6.470 0.009 1.765 0.109 1.521 0.034	1.124 1.125 1.289 0.443 1.087	866 845 10.2 .065
6.470 0.009 1.765 0.109 1.521 0.034	1.125 1.289 0.443 1.087	845 10.2 .065
0.009 1.765 0.109 1.521 0.034	1.289 0.443 1.087	10.2
1.765 0.109 1.521 0.034	0.443 1.087	.065
0.109 1.521 0.034	1.087	
1.521 0.034		8.73
0.034	1.222	
		694
0.002	1.491	534
0.325	1.454	19.1
0.325	1.131	46.0
0.094	1.391	396
0.134	1.341	
0.045	1.409	291
0.031	1,401	239
0.110	1.239	150
0.110	1.239	62.8
0.746	1.305	1000
3.004	1,188	884
1.918	0.950	27.7
		736
		668
		159
		402
21.112		206
		74.2
	7.528 15.160 0.611 21.112 0.517 0.180	15.1601.0390.6111.17921.1120.9730.5171.218

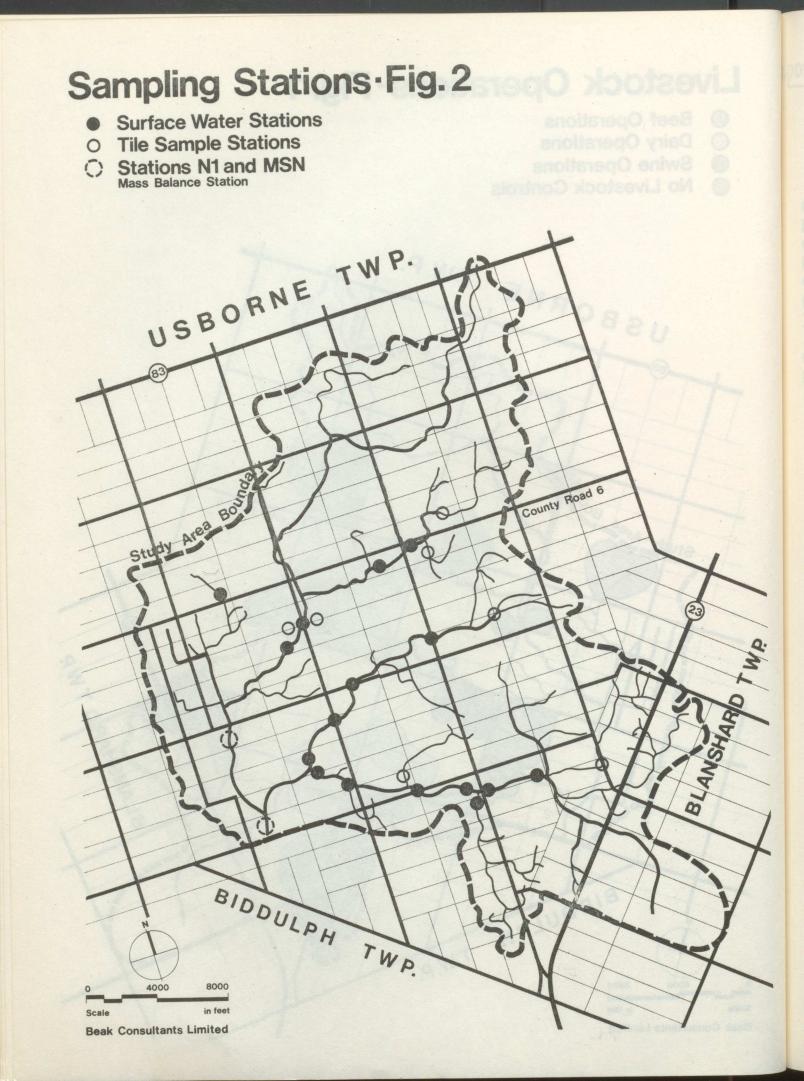
Table 15 : Flux - flow relationship

This table displays the relationship between daily phosphorus export at a station and the corresponding flow at the main station based on the equation: E=aQmsn^b, where E is the daily P] and Qmsn is the daily flow at the main station.

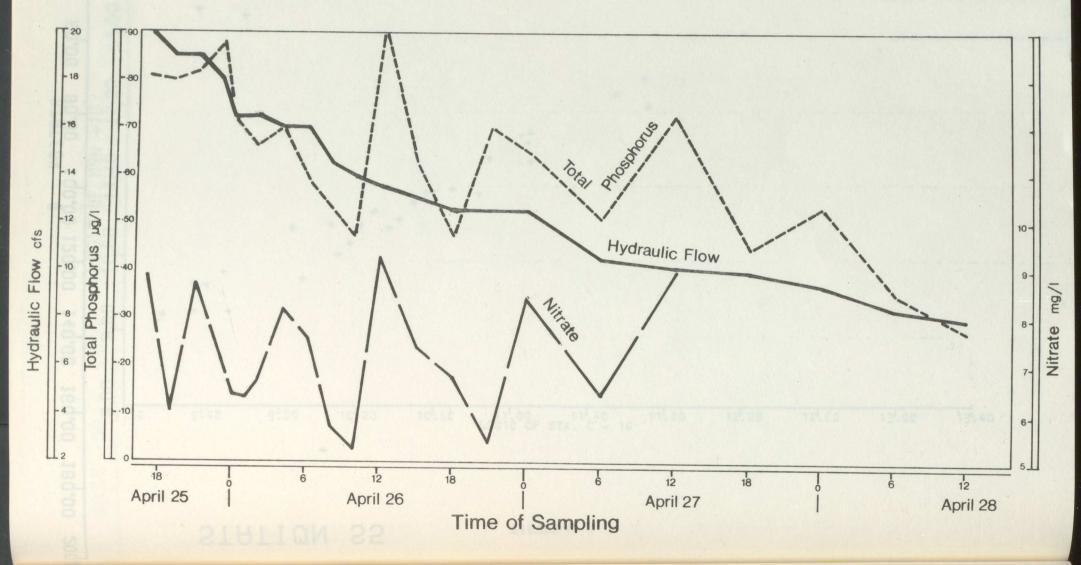
Station	Total Coliforms (No./100ml)	Fecal Coliforms (No./100mL)	Fecal Streptococci (No./100ml)	118
MSN	2500	340 340	260	
N1	3000	210	180	
N2	750	32 802.5	21	
N3	3300	410	-	
N4	3200	280	260	
N5	1800	8100	1130	
N6	290	9	5	
N7	1100	34 001.0	24	
N8	3300	240	250	
N9	5900	760	250	
N10	1400	100	110	
N11	3600	340	110	
M1	1000	34	58	
M2	3800	220	100	
M3	3300	240	92	
M4	3500	160	81	
M5	4100	210	19	
S1 -	3500	240	220	
S2	4700	380	280	
S3	3700	230	270	
S4	3200	270	410	
S5	4800	510	420	
S6	8000	530	570	
S7	4300	710	230	
S8	2500	250	140	
.\$9	3900	230	100	

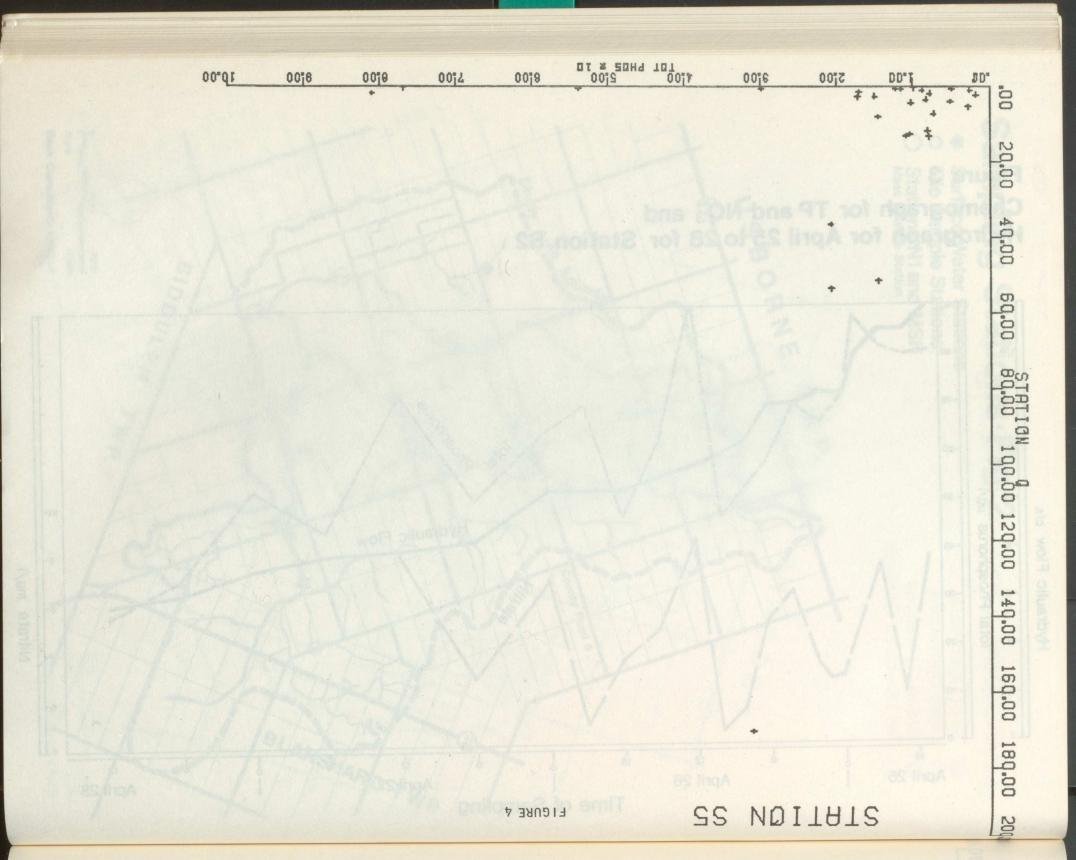
Table 16: Geometric means of bacterial data

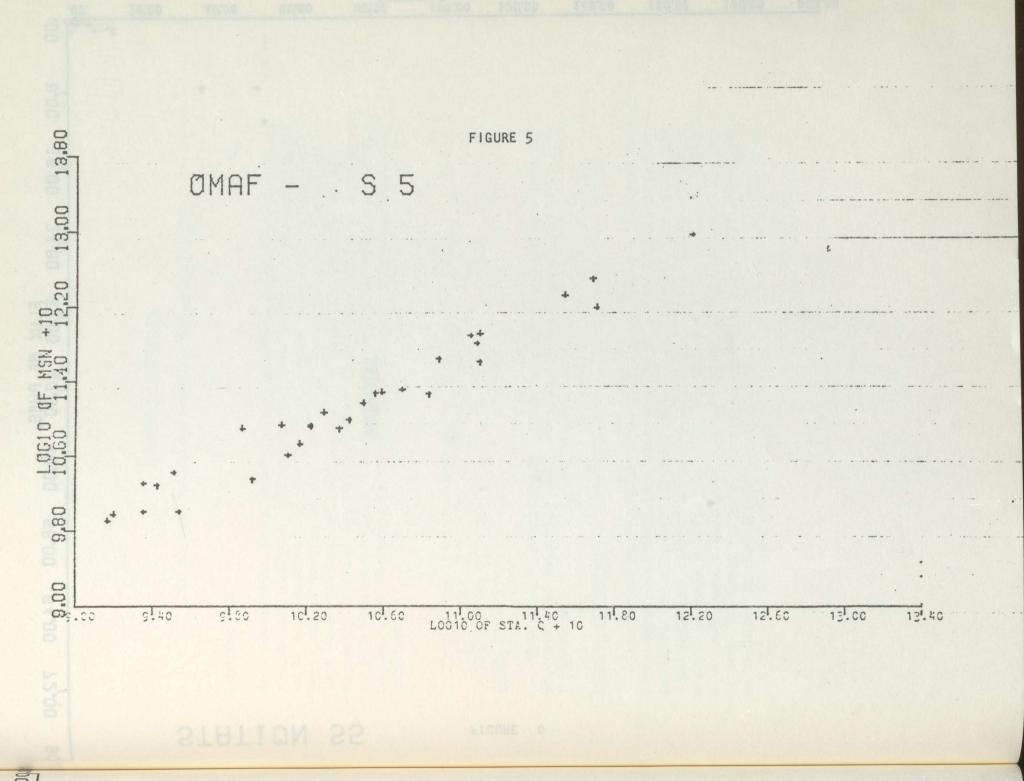

This table displays the relationship between daily phosphorus errors at a station and the oprrespending flow at the rain station haved on the equation: EmaQuan, where I is the daily [] and then is the an flow at the mark station.


Livestock Operations Fig. 1

Beef Operations
 Dairy Operations
 Swine Operations
 No Livestock Conta


FIGURES


-			



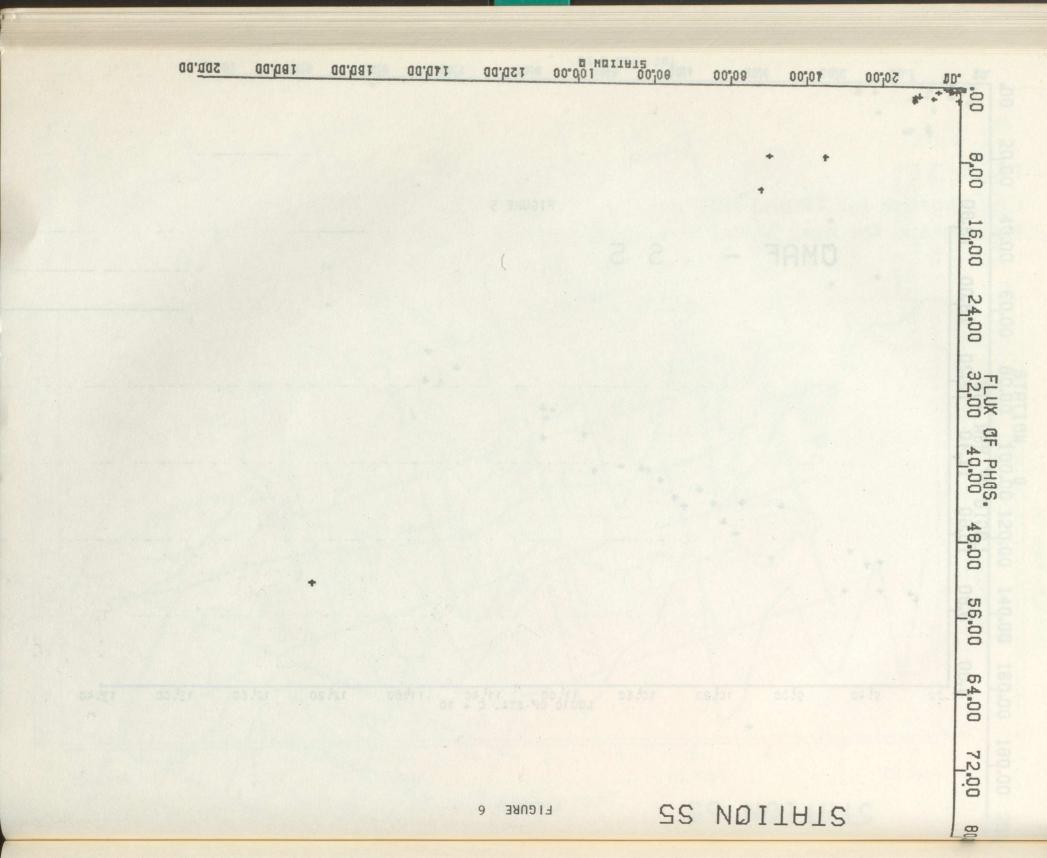
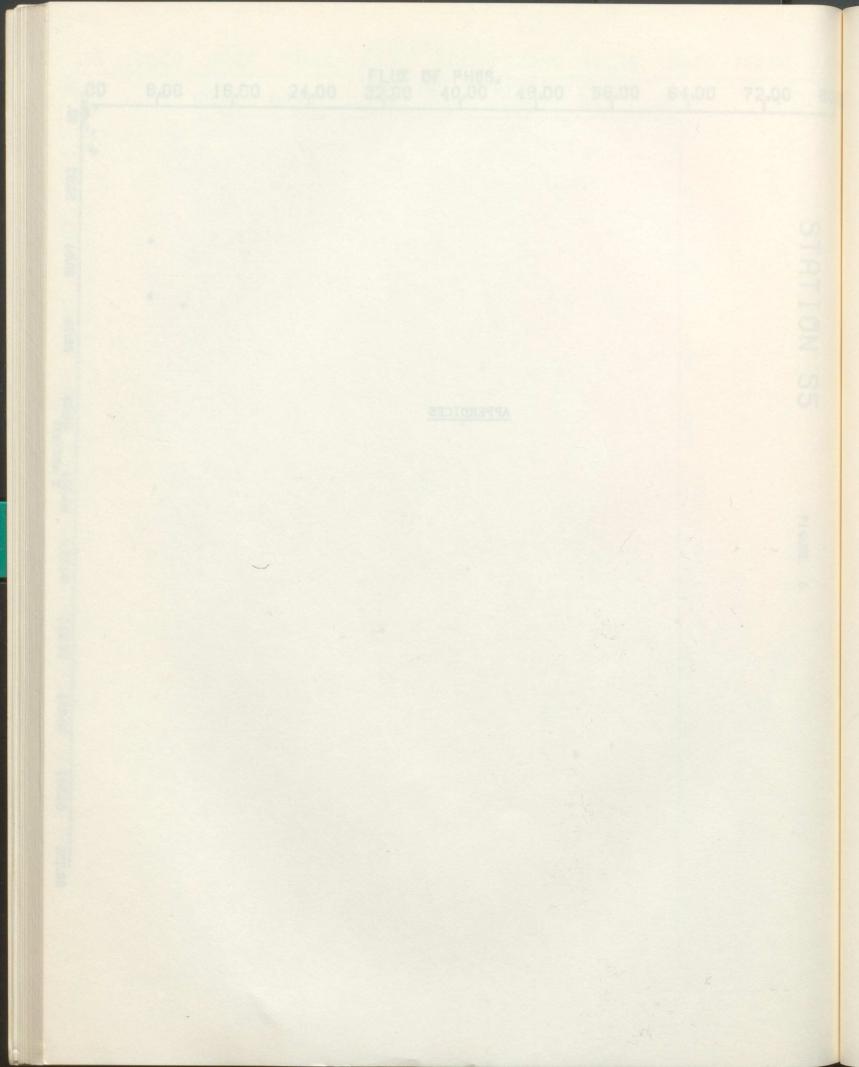


Figure 3 Chemograph for TP and NO₃ and Hydrograph for April 25 to 28 for Station S2

a standard and and a stand a stand

10 DC Cast In The Ageneral Curch Whitershad Semilar

TRIBORIE TION


APPENDICES

Scope

This method is applicable to the analysis of recenting waters and is capable of measuring total phosphale concentration down to it lease 2 pph as F:

Numbers of Machod

This technol in essentially the same as the given of travers between in oning puterssion persubplats diparticle considered as simplified as chieffer actypester colorisate? Finick Readers in terminified to the sequence of concentration step is technological as modification of respect volumes the finite step is technological as modification of velet and sequence attends bendereds and quare contents on another the second with color or subbidity istributions and the filtration to a uncluded if furbidity was been

METHODS OF ANALYSIS

To Be Used In The Agricultural Watershed Studies

INTRODUCTION

Beak Consultants is to determine a number of analytical parameters in conjunction with the Agricultural Watershed Studies. The analysis is to be conducted both in the field using Beak mobile laboratory facilities and in Toronto at the Beak chemistry laboratories. Realizing that mobile laboratory conditions may be somewhat limiting and the necessity for very low sensitivity and high accuracy and precision, certain modifications will be required in the standard analytical techniques. The following is a detailed description of the methods to be employed.

PHOSPHATE ANALYSIS

Scope

This method is applicable to the analysis of receiving waters and is capable of measuring total phosphate concentration down to at least 2 ppb as P.

Summary of Method

This method is essentially the same as that given in Standard Methods (1) using potassium persulphate digestion coupled with stannous chloride molybdate colorimetric finish. Because low sensitivity is essential a predigestion concentration step is included and a modification of reagent volumes added. Standards and spikes carried out using distilled water and samples gave good results. No particular problems were observed with color or turbidity interference but a filtration step can be included if turbidity does occur.

Procedure

- 1) All glassware is to be acid washed and rinsed several times with distilled water. Glassware blanks must be completely eliminated.
- Take 300 ml of sample or standard and put into 400 ml tall form beakers. Add 0.3 ml H₂SO₄ (50%) and evaporate on hotplates to about 50 ml.
- 3) Next add 5 ml K₂S₂O₈ (5%) and boil for about 90 minutes, keeping the volume about 30 ml.
- 4) Cool and neutralize(6N NaOH) to phenolphthalein pink. Reacidify (1N H₂SO₄) to just remove the color. Then make up to 50 ml final volume. At this point total dissolved solids should be about the same in all standards and samples for best subsequent color development and reproducibility.
- 5) Take a portion of the 50 ml solution and read the background at $\lambda = 690$ mµ. This will compensate for modest color and turbidity interference. Return the used portion to remake the 50 ml volume.
- 6) Color development is carried out as follows:

To the 50 ml aliquots add 2.0 ml molybdate reagent. After having added this to all samples being reacted, add exactly 5 drops of stannous chloride reducing reagent at one minute intervals to the solutions. Let the color develop and make the photometric color measurement after 10 minutes but before 12 minutes, employing the same specific interval for all determinations. The reason for the interrupted stannous chloride addition is to make the subsequent 10-12 minute interval limit for each determination much easier to achieve without rushing the readings. The wavelength setting is 690 mp

- 7) Subtract appropriate sample blanks.
- 8) Make appropriate plots and calculations.

NITRATE ANALYSIS

Scope

This method is applicable to the analysis of nitrate in receiving waters with a detection limit of 50 ppb.

Summary

This method is based upon the reaction of the nitrate ion with brucine sulphate in concentrated sulphuric acid solution at a temperature of about 100°C. This method has only limited modifications to that outlined in standard procedures (1,2,3). Color and turbidity interferences are removed by reading sample blanks prior to reaction with brucine, or after reaction but without brucine.

Procedure

- Add 10 ml of sulphuric acid solution to 10 ml aliquot of sample or standard in test tube. Mix well and cool for 5 minutes in cold water. Add 1 ml of brucine solution and mix well.
- 2) Place in boiling water for exactly 20 minutes. Make sure water is boiling at the start of this time. If the water is cooled considerably by addition of many test tubes, lower absorbance readings will be obtained. By increasing the length of boiling time this can be improved.
- 3) Remove the reacted tubes from the boiling water and place into cold water for 15 minutes. Make sure the water remains cold, then let stand in the rack for about 5 minutes exposed to room temperature so that equilibrium is established.
- Read the developed color at 410 mµ, subtract appropriate blanks, plot standards and perform required calculation.

Standards

Temperature and time are very important to the reproducibility of standards and samples. Since absolute control of temperature is not practical in different batch reactions, standards must be run with every batch processed. The standard curve plotted using these standards is to be used for determining the nitrate concentration in the samples carried through the reaction in the same bath.

BACTERIOLOGICAL ANALYSIS

Scope

The method of analysis is applicable to receiving waters.

Summary of Method

Total and fecal coliforms are determined by the membrane filter procedure (1,4). A known volume of sample is filtered through a 0.45 µm cellulose acetate filter that has been presterilized. The filters are incubated at 35°C (Total Coliforms) and 44.5°C (Fecal Coliforms) using appropriate nutrient media. Equipment and media are supplied by Millipore Ltd.

Procedure

1) All equipment used in the tests must be washed and sterilized. Filtration equipment is sterilized by placing in boiling water for at least 10 minutes. Volumetric flasks, graduate cylinders, pipettes and forceps are washed with chromic acid. Blanks are run to assure contamination free equipment.

2) Set up the filtration apparatus using glassware that is cool (after sterilization). Wash the filter with a small volume of buffer solution.

3) Shake the sample well and pour it into the funnel making sure that no suction is applied to the apparatus. Filter the sample and wash with buffer solution. If small sample volumes are necessary then place a small amount of buffer solution into the funnel prior to sample addition. This will aid in dispersing the sample on the filter uniformly.

4) Make all necessary dilutions with boiled distilled water.

5) Prepare the petri dishes by placing the absorbent pads on the bottom then adding the nutrient media. For total coliforms use the M-Endo Broth and for fecal coliforms use the MFC Broth. Take the respective ampoules, break them and saturate the pads. Place the filters from the filtartion step onto the pads and close the dishes. Incubate the total coliform dishes at $35 \pm .5^{\circ}$ C and the fecal coliform dishes at $44.5 \pm .2^{\circ}$ C for 24 hours.

Procedure (continued)

6) Each test is to be run in duplicate or triplicate with or without volume dilution.

7) Make appropriate counts and calculations. Report counts per 100 ml.

Nutrient Media

The nutrient media used for the above tests will be that supplied by Millipore Ltd., prepared in 2 ml ampoules. Tests will also be conducted using the dehydrated M-Endo and MFC broths as well as Les-Endo Agar for total coliforms to confirm potency of the preprepared media.

Additional Methods

The other parameters to be determined in this study will be analyzed using standard techniques (1,2,5,6)

A Have all necessary diluctors with poiled districted water

3) Prepare the petri dishes by placing the observant pade on the pointes the netter the nutriest while. For cost collibrate use the netter the NOT broth and for feest collibrate use the NOT broth and for feest collibrate use the NOT broth. Take the trace the trace the titlers from the filters the pair the pair the pair the dishes. Filters the trace the filters from the cost collibrate of the pair the pair the feest collibrate the trace the dishes.

REFERENCES

- 1) Standard Methods for the Examination of Water and Wastewater 13th. edition APHA 1971.
- Methods for Chemical Analysis of Water and Wastes (Manual of) U.S. E.P.A. 1974.
- Brucine Method for Determination of Nitrate in Ocean, Estuarine, and Fresh Waters, by D. Jenkins and L. L. Medsker Anal. Chem. Volume 36, No. 3 March 1964.
- Biological Analysis of Water and Wastewater Application Manual AM 302 Millipore Ltd. 1973.
- 5) Methods of Analysis of the Association of Official Analytical Chemists. 12th. Edition AOAC 1975.
- 6) Analytical Methods Manual Inland Waters Directorate Water Quality Branch 1974.

The quality control study was undertaken in order to evaluate the microbiologic data generated by SENK, N.O.F. Toronto and N.O.F. London. The sim was to compare recovery rated for Total Coliforms, Fecal Coliforms and Fecal Streptosect. Statistical analysis showed that sithough absolute anabers differed, the data generated by the three laboratories was comparable and na expretation of numbers to the data bata would produce similar conclusions as to water quality.

QUALITY CONTROL PROGRAM

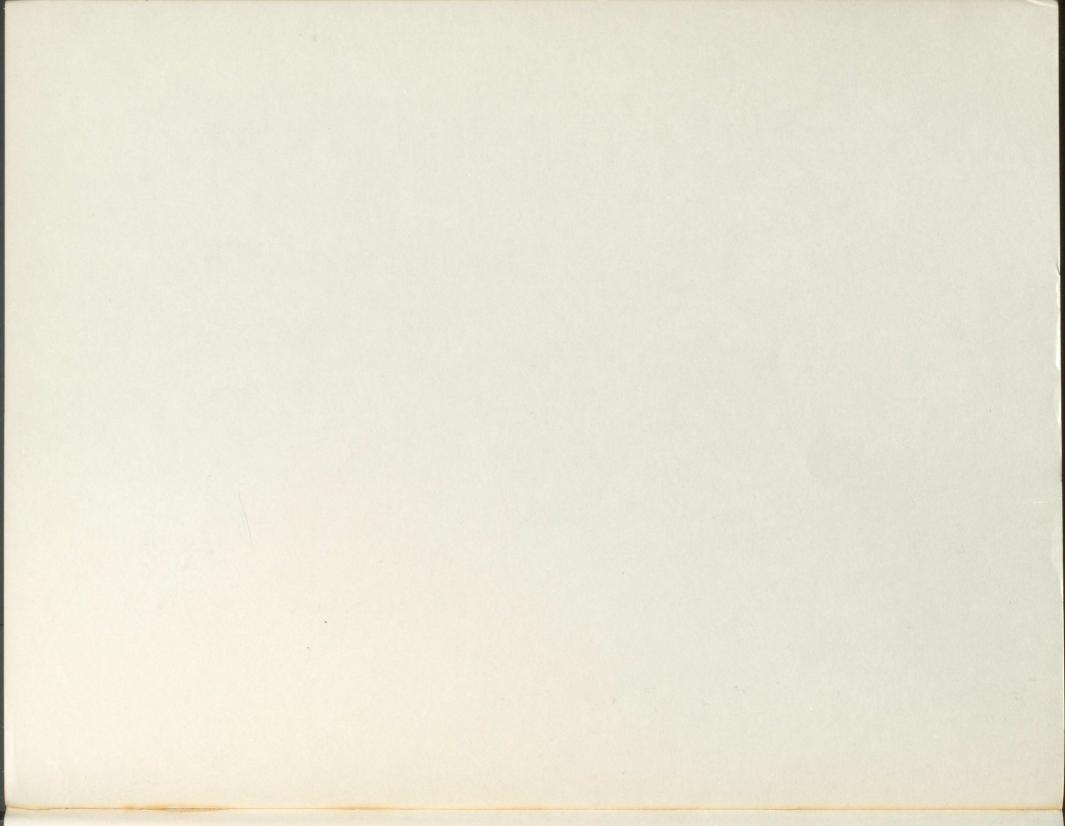
BEAK participated in several quality control programs througout the PLUARG study.

Interlab Duplicate Samples Program for Task C (Canadian) Analysts

Duplicate samples were collected regularly, one analyzed by BEAK the other by the Central Laboratory of the Ontario Ministry of the Environment, Toronto.

BEAK laboratory was found to be in good agreement with O.M.E. Toronto for all parameters except Total Kjeldahl Nitrogen and Ammonium where little data existed. These were not priority parameters for our laboratory and the difficulties were mainly associated with variable blanks.

Intercomparison Evaluation Minerals and Nutrients


BEAK participated in three studies from 1975 to 1977. Although generally results showed good precision and accuracy, certain parameters in each of the studies showed inconsistencies, though not severe. It was obvious that TKN, ammonia and nitrate values showed bias as a result of blank problems.

In-Lab Duplicate Analysis of Blind Replicates

BEAK carried out duplicate analyses on "blind" separately collected (not split) samples from 1975 to 1977. The data is useful in assessing the additional effect of field activities and sample type on precision.

Pluarg Microbiology Interlaboratory Comparison

The quality control study was undertaken in order to evaluate the microbiological data generated by BEAK, M.O.E. Toronto and M.O.E. London. The aim was to compare recovery rates for Total Coliforms, Fecal Coliforms and Fecal Streptococci. Statistical analysis showed that although absolute numbers differed, the data generated by the three laboratories was comparable and interpretation of numbers in the data base would produce similar conclusions as to water quality.

