University of Windsor Scholarship at UWindsor

International Joint Commission (IJC) Digital Archive

International Joint Commission

1977-09-01

Agricultural Watershed Studies in the Canadian Great Lakes Drainage Basin: Precipitation Quantity and Quality: Final Report Task Group C (Canadian Section), Activity 1, Project 6

International Reference Group on Great Lakes Pollution from Land Use Activities

University of Windsor. Industrial Research Institute

M. Sanderson

Follow this and additional works at: https://scholar.uwindsor.ca/ijcarchive

Recommended Citation

International Reference Group on Great Lakes Pollution from Land Use Activities, University of Windsor. Industrial Research Institute, & Sanderson, M. (1977). Agricultural Watershed Studies in the Canadian Great Lakes Drainage Basin: Precipitation Quantity and Quality: Final Report Task Group C (Canadian Section), Activity 1, Project 6. *International Joint Commission (IJC) Digital Archive*. https://scholar.uwindsor.ca/ijcarchive/129

This Report is brought to you for free and open access by the International Joint Commission at Scholarship at UWindsor. It has been accepted for inclusion in International Joint Commission (IJC) Digital Archive by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

INTERNATIONAL REFERENCE GROUP ON GREAT LAKES POLLUTION GLC 22222 368 FROM LAND USE ACTIVITIES

INTERNATIONAL JOINT COMMISSION

77-051

AGRICULTURAL WATERSHED STUDIES IN THE CANADIAN GREAT LAKES DRAINAGE BASIN

00129

PRECIPITATION - QUANTITY AND QUALITY

IRI 9-30

FINAL REPORT

AGRICULTURAL WATERSHED STUDIES GREAT LAKES DRAINAGE BASIN

CANADA

TASK GROUP C (CANADIAN SECTION) ACTIVITY I

PROJECT 6

PRECIPITATION QUANTITY AND QUALITY

Project Leader: M. Sanderson

September 1977

THE INDUSTRIAL RESEARCH INSTITUTE OF THE UNIVERSITY OF WINDSOR

WINDSOR, ONTARIO, CANADA N9B 3P4

ACKNOWLEDGEMENTS

The study discussed in this document was carried out as part of the efforts of the Pollution From Land Use Activities Reference Group, an organization of the International Joint Commission established under the Canada-U.S. Great Lakes Water Quality Agreement of 1972. Funding for the study has been provided by Agriculture Canada and the Ontario Ministry of Agriculture and Food. Findings and conclusions are those of the author and do not necessarily reflect the views of the Reference Group or its recommendations to the Commission.

The author wishes to acknowledge the assistance of Professor P. D. LaValle, University of Windsor, who did the statistical analysis of the data and the vital contribution of the precipitation gauge observers listed below:

Susan deGroot	Curtis Kimball
James Early	Ian MacLeod
Carol James	Donelda McGillivray
Gene Jaynes	Brian Pym
Walter Karpinski	Donna Schneider

and the precipitation chemistry analysts:

Clement Leung Robert Osborne Douglas Smith

i

ACKNOWLEDGEMENTS

CONTENTS and and a content of a Page 1.0 PRECIPITATION QUANTITY 1 1.1 The Objective 1.2 The Precipitation Gauge 1.3 Accuracy of Gauge Catch 1.4 Exposure and Sources of Error 4 1.5 Representativeness of Sample 4 1.6 Installation and Data Sample 5 1.7 Monthly Precipitation Amounts 5 2.0 PRECIPITATION QUALITY 20 2.1 Sources of Pollutants in Precipitation 20 2,2 The Samplers 20 2,3 Analytical Procedure 22 2.4 Concentrations 24 3.0 SURFACE LOADINGS 25 3.1 Surface Loadings and Precipitation Amounts 25 3.2 Surface Loadings - grams per hectare per day 29 4.0 STATISTICAL PROPERTIES OF SURFACE LOADING DATA 30 4.1 Introduction 30 4.2 Normality Tests 30 4.3 Time Series Studies 31 4,4 Analysis of Variance Tests 33

ii

CONTENTS (cont.)

Page

5.0	DISCUSSION OF SURFACE LOADINGS	65
5.1	Sulphate Sulphate Sulphate Superior Sup	65
5.2	Nitrogen	65
5.3	Sulphite	67
5.4	Calcium	67
5.5	Sodium	68
5.6	Chloride	68
5.7	Potassium	68
5,8	Magnesium	69
5,9	Phosphate Company and the Phosphate Company and the Phosphate	69
5.10	Heavy Metals	70
5.11	P.C.B.s Test to value ponoli ent no tasi alatitra	71
6.0	CONCLUSIONS (Decemp) STOL-2001 apartment bedressed	72
	LITERATURE CITED AND AND AND AND AND AND AND AND AND AN	75
	APPENDICES	76
		18

TABLES	
the the standard	

		Page
81	Monthly Precipitation Amounts for PLUARG Stations (mm.)	7
2	Precipitation Amounts and Intensities AG 1 AG 3 AG 4 AG 5 AG 6 AG 7 AG 10 AG 11 AG 13 AG 14	10 11 12 13 14 15 16 17 18 19
3	Precipitation Amounts for Collection Periods at 6 PLUARG Stations (mm.)	26
4	The Relationship Between Surface Loading and Precipitation Amounts	27
5	Bartlett's Test on the Homogeneity of Variance of Precipitation Chemistry Parameters	63
6	Watershed Mean Loadings 1975-1977 (g/ha/d)	66

FIGURES

1	Belfort Recording Rain Gauge	3
2	PLUARG Precipitation Gauge Locations	9
3	(a) Bulk Precipitation Sampler	21
	(b) Misco Type Precipitation Sampler	21
4	Relationship between Surface Loading of Sulphite and Precipitation	28
5	Electroconductivity - AG 1	34
6	" AG 3	35
7	" AG 4	36
8	" AG 5	37
9	" AG 10	38
10	" AG 13	39
11	Sulphate - AG 1, AG 3, AG 4	40
12	" AG 5, AG 10, AG 13	41
13	Sulphite - AG 1	42
14	" AG 3, AG 4	43
15	" AG 5	44
16	" AG 13	45
17	Phosphate - AG 1, AG 3, AG 4, AG 5	46
18	" AG 10, AG 13	47
19	Chloride - AG 4, AG 5	48
20	" AG 10, AG 13	49
21	Calcium - AG 1, AG 3	50
22	" AG 4, AG 5	51
23	" AG 10	52
24	" AG 13	53
25	Sodium - AG 1, AG 3, AG 4	54
26	" AG 5, AG 10, AG 13	55
27	Potassium - AG 1, AG 3	56
28	" AG 4, AG 5	57

V

FIGURES (cont.)

			Page
F	Potassium - AG 10, AG 13 Magnesium - AG 1, AG 3 " AG 4, AG 5 " AG 10, AG 13		58 59 60 61
			25

APPENDICES

						Page
Append	ix I	Concentrations of	Chemicals In	Precip	itation	76
Table	I	Conductivity				77
	II	Suspended Solids				78
	III	Sulphate				79
	IV	Sulphite				80
	V	Nitrogen				81
	VI	Phosphate				82
	VII	Chloride				83
	VIII	Calcium				84
	IX	Sodium				85
	Х	Potassium				86
	XI	Magnesium				87
	XII	Heavy Metals				88
	XIII	P.C.B.s				89
Append	dix II	Surface Loadings	for each Coll	ection	Period	90
Table	I	Sulphate				91
	II	Sulphite				92
	III	Nitrogen				93
	IV	Phosphate				94
	V	Chloride				95
	VI	Calcium				96
	VII	Sodium				97
	VIII	Potassium				98
	IX	Magnesium				99
	X	Heavy Metals				100
	XI	P.C.B.s				100a

APPENDICES (cont.)

				P	age
Append	lix III	Surface Loadings of	Parameters (g/ha/d)		101
Table	I	Sulphate			102
	II	Sulphite			103
	III	Nitrogen			104
	IV	Phosphate			105
	٧	Chloride			106
	VI	Calcium			107
	VII	Sodium			108
	VIII	Potassium			109
	IX	Magnesium			110
	Х	Heavy Metals			111
	XI	P.C.B.s			112
			20.0.9		110
Append	dix IV	Kolmogorov-Smirnov	One Sample Test for	Normailty	113
Append Table	dix IV I	Kolmogorov-Smirnov Conductivity	One Sample Test for	Normailty	113 114
Append Table	dix IV I II	Kolmogorov-Smirnov Conductivity Sulphate	One Sample Test for	Normailty	113 114 115
Append Table	dix IV I II III	Kolmogorov-Smirnov Conductivity Sulphate Sulphite	One Sample Test for	Normailty	113 114 115 116
Append Table	dix IV I II III IV	Kolmogorov-Smirnov Conductivity Sulphate Sulphite Nitrogen	One Sample Test for	Normailty	113 114 115 116 117
Append Table	dix IV I II III IV V	Kolmogorov-Smirnov Conductivity Sulphate Sulphite Nitrogen Phosphate	One Sample Test for	Normailty	113 114 115 116 117 118
Append Table	dix IV I II III IV V VI	Kolmogorov-Smirnov Conductivity Sulphate Sulphite Nitrogen Phosphate Chloride	One Sample Test for	Normailty	113 114 115 116 117 118 119
Append Table	dix IV I II III IV V VI VII	Kolmogorov-Smirnov Conductivity Sulphate Sulphite Nitrogen Phosphate Chloride Calcium	One Sample Test for	Normailty	113 114 115 116 117 118 119 120
Append Table	dix IV I II III IV V VI VII VIII VIII	Kolmogorov-Smirnov Conductivity Sulphate Sulphite Nitrogen Phosphate Chloride Calcium Sodium	One Sample Test for	Normailty	113 114 115 116 117 118 119 120 121
Append Table	dix IV I II III IV V VI VII VIII IX	Kolmogorov-Smirnov Conductivity Sulphate Sulphite Nitrogen Phosphate Chloride Calcium Sodium Potassium	One Sample Test for	Normailty	113 114 115 116 117 118 119 120 121 122 123
Append Table	dix IV I II III IV V VI VII VII IX X	Kolmogorov-Smirnov Conductivity Sulphate Sulphite Nitrogen Phosphate Chloride Calcium Sodium Potassium Magnesium	One Sample Test for	Normailty	113 114 115 116 117 118 119 120 121 122 123

APPENDICES (cont.)

		3, 4, 5, 6, 7, 10, 11, 13, 14,	Page
Append	ix V	Time Series Tests	124
Table	I	Conductivity	125
	II	Sulphate Sulphate	126
	III	Sulphite	127
	IV	Phosphate	128
	V	Chloride	129
	VI	Calcium	130
IVPhosphateVChlorideVICalciumVIISodiumVIIIPotassiumIXMagnesium		Sodium	131
	VIII	Potassium	132
	IX	Magnesium	133
Append	ix VI	Analysis of Variance Tests	134
Table	I	Conductivity	135
	II	Sulphate	135
	III	Sulphite	135
	IV	Nitrogen	135
	V	Phosphate	135
	VI	Chloride	135
	VII	Calcium	136
	VIII	Sodium	136
	IX	Potassium	136
	Х	Magnesium	137
	XI	P.C.B.s	137

APPENDICES CONT.

	Sulphats .		

1.0 PRECIPITATION QUANTITY

1.1 Objective

The objective of this part of the research was to provide accurate hourly values of precipitation during the course of the PLUARG study on the ten watersheds AG 1, 3, 4, 5, 6, 7, 10, 11, 13, 14.

1.2 The Precipitation Gauge

For the PLUARG project, as for many hydrological and engineering studies it is of vital importance to measure the precipitation reaching the ground from the atmosphere as accurately as possible. Under present technological conditions such measurement involves the use of some catching device or gauge, which catches and measures a sample of the precipitation. The questions which have always plagued the researcher are (1) Does the precipitation caught in the gauge represent accurately the amount of water reaching the ground? and (2) How many "samples" per unit area are needed for an accurate areal estimation of precipitation?

There are many types of precipitation gauges, official and unofficial, for rain and snowfall. Orifice diameters vary from 10 cm. (Canada) to over 34 cm. (Sweden) and the height at which the gauge is exposed from 30 cm. to more than 2 m. above the ground. Since the "catch" of a gauge varies with orifice size and height above ground, data from different types of gauges are not strictly comparable. It should also be noted that the Canadian standard gauge does not measure snowfall, and that the standard method of measuring snowfall in Canada is by measuring the depth of new-fallen snow with a ruler and converting to water equivalent by dividing by ten. Since the water content of the snow is not measured, this method leads to error in estimating precipitation from snow. For the PLUARG project, the Belfort weighing type gauge was chosen (Fig. 1). It has the advantage of recording both rain and snow with a sensitivity of .5 mm. It requires no electricity, is simple to operate and relatively inexpensive.

1.3 Accuracy of Gauge Catch

There have been many studies done of the accuracy of the catch of various gauges compared to the amount of water reaching the ground. The general agreement is that the higher the orifice of the gauge above the ground, the less precipitation it catches. The gauge itself obstructs the air movement and the vertical component of the air trajectory immediately above the gauge may be large with respect to the settling speed of the rain drops or snow particles, and thus some of the precipitation is prevented from entering the orifice. In addition, turbulent eddies induced by the wind in the gauge mouth may reduce the catch and the increased horizontal wind speed at the height of the higher gauge may result in the transport of small droplets across the opening, which would, in the case of a gauge closer to the ground, fall into the gauge.

In a five year comparison of the Belfort gauge with the Canadian standard gauge in Windsor, the author found the Belfort to record 96% of the rainfall received in the standard gauge. A comparison was not done between the Belfort snowfall catch and standard Canadian snow measurement techniques because of the large errors inherent in the ruler measurement of snow. A survey of the literature on the accuracy of precipitation gauge catch indicates that in the Soviet Union, where extensive research has been done, the annual average precipitation is corrected (increased) over that measured by 10-20% in some areas, to 40-50% in Arctic Siberia (Larsen and Peck 1974). Canada's Atmospheric Environment Service does not yet "correct" measured precipitation values and

the present report also gives only measured precipitation data.

1.4 Exposure and Sources of Error

In the Atmospheric Environment Service handbook "Precipitation" it is stated that the gauge "must be remote from each object by a distance at least equal to the height of the object. For example, the gauge must be located at least 50 ft. away from a tree which is 50 ft. high. If possible and convenient, it should be at least 200 ft. from the tree." This is to prevent a "rainshadow" effect, when the tree or building actually prevents the rain drops from falling into the gauge. However, as Bruce and Clark point out (1966), "assuming that the gauge is not located under a tree, the real problem in precipitation gauging is the effect of wind". For that reason, the gauge should not be located in an overly-exposed site.

The locations of the gauges in the ten PLUARG watersheds were carefully chosen: (1) to fulfill the requirement of distance, in most cases four times the height of the nearest building or tree; (2) not overly exposed to the wind; (3) to avoid areas where snow drifting would occur; (4) away from areas where heavy equipment would be in use, to avoid damage to the gauge; and (5) to be relatively convenient for the observer.

1.5 Representativeness of Sample

The next question to be answered is - will one gauge in each watershed give an accurate representation of the precipitation falling on the watershed? The areas of the watersheds vary from 1800 hectares (Canagagique) to 6600 hectares (Shelter Valley). Obviously, one sample of the precipitation will not represent with 100% accuracy the precipitation falling on the watershed. Especially in the summer, in areas with frequent thunderstorms, there will be areal differences in the amounts of precipitation. What is more meaningful is the error which one is willing to accept with various gauge densities. Several valuable studies have been done on this aspect. An intensive study in Japan (Larsen and Peck 1974) concluded that a rain gauge density of 1 gauge per 360 ha. gave a 3% error in storm rainfall measurement; 1 gauge per 4100 ha. a 5% error; 1 gauge per 4900 ha. a 6% error; and 1 gauge per 6000 ha. an 8% error. Thus, even in the largest watershed (Shelter Valley) the average error for storm rainfall would be about 8%. If one is concerned only with monthly precipitation amounts, the error, of course, will be even smaller.

1.6 Installation and Data Sample

The installation of the Belfort gauges at the ten watersheds, AG 1, 3, 4, 5, 6, 7, 10, 11, 13, and 14 was completed by May 15, 1975 (Fig. 2). The gauges were located as nearly as possible in the centre of the watersheds. The observer's duties were to change the charts three times weekly and send these to the University of Windsor. He also saw that the pen and clock mechanism were working properly and that the precipitation collector was emptied when necessary. Oil was added to the water surface in warm weather to prevent evaporation, and antifreeze in cool weather to prevent freezing. Clocks were operated on standard time throughout the year.

The charts were read at the University of Windsor and a computer program gave hourly and daily values of precipitation (in mm.). The first month of complete records was June, 1975. Monthly computer print outs were sent from June, 1975, to June, 1977, to some twelve research groups who requested the information.

1.7 Monthly Precipitation Amounts

Total monthly precipitation for each station for the period June, 1975, to June, 1977, is given in Table 1. For comparison, the thirty year average monthly precipitation for the closest official climatological station is also shown. (The stations are: Leamington for AG 1 and 13; Centralia - AG 3; Shand Dam - AG 4; Woodstock - AG 5; Clifford - AG 6; Smithfield - AG 7; Caledonia - AG 10; Brampton - AG 11; and Southampton - AG 14.)

For the first year of the PLUARG record, June, 1975, to May, 1976, precipitation was above average for most stations: AG 1, 4, 5, 6, 7, 10, 13 and 14. AG 3 had slightly below average precipitation and AG 11 had average precipitation amounts. For the second year of record, June, 1976, to May, 1977, precipitation was everywhere below average for the gauged watersheds in Southern Ontario. Most stations recorded approximately 80% of the average precipitation (Table 1).

The precipitation charts for each station were also analyzed to provide information on the number of days with precipitation, heavy precipitation days and maximum precipitation in three hours, two hours and one hour. These data are of interest to researchers concerned with specific runoff events and are shown in Table 2 for each of the ten stations.

ane Na appression and and freeze in cool protion to prevent freezing. Clack were an exception standard alor includes the year of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of Windson and a complete prevent of the University of th

			Monthly Precipitation Amounts for PLUARG Stations (mm.)										
21975	J	F	M N	A	M	J	J	A	S	0	N	D	Year
AG 1			24		in a chunchar an a para.	a fa fa an					/		
1975 1976 1977	48 21	64 41	1 17 70	68 138	57 41	141 94 82	30 88	211 14	67 87	31 57	52 18	77 17	963 686
30 yr average	57	51	65	79	79	86	79	70	60	59	63	65	813
AG 3 1975 1976 1977 30 yr	56 39 94	52 33 74	92 53 74	85 68 79	69 20 84	100 82 93 87	65 142 80	163 61 80	68 79 73	12 50 76	60 53 88	71 39	893 719 996
average						64	33	.80	11	39	00	26	550
AG 4 1975 1976 1977 30 yr average	90 55 69	67 73 61	143 69 72	83 52 69	71 23 84	113 111 - 72	89 84 82	179 35 76	73 107 75	44 65 79	65 29 82	80 40 77	1097 743 898
AG 5 1975 1976 1977 30 yr average	55 27 64	43 45 54	124 50 64	69 54 70	72 13 74	108 52 65 84	66 210 80	170 155 77	52 87 66	22 76 74	56 48 69	76 27 70	913 844 846
AG 6 1975 1976 1977	63 55	56 41	107 60	69 33	73 30	83 85 63	64 90	213 50	85 98	50 57	64 38	84 37	1011
30 yr average	64	57	55	64	71	74	72	70	74	71	86	81	839

TABLE 1

	J	23 11 20 F	M	A	М	TABLE 1 J	(cont,) J	A	S	0	N	D	Year
AG 7 1975 1976 1977 30 yr average	78 36 73	64 38 73	130 90 72	79 78 80	89 24 83	88 101 64	57 52 72	52 46 80	97 68 74	40 68 81	79 35 87	87 30 85	940 666 924
AG 10 1975 1976 1977 30 yr average	49 43 60	53 39 57	134 89 67	82 72 69	94 41 71	96 95 80 56	74 69 75	180 31 80	71 74 68	51 55 62	60 12 61	65 31 55	1009 651 781
AG 11 1975 1976 1977 30 yr average	41 20 56	68 32 54	99 72 62	64 52 76	83 19 76	64 73 - 60	39 108 75	86 36 80	44 71 63	39 62 70	47 7 67	56 25 58	730 576 797
AG 13 1975 1976 1977 30 yr averag	58 20 57 e	80 46 51	121 76 65	60 135 79	52 36 79	106 95 106 86	41 87 79	232 16 70	66 93 60	30 56 59	44 32 63	74 20 65	963 712 813
AG 14 1975 1976 1977 30 yr averag	122 143 99	53 30 66	108 40 61	30 46 67	58 34 69	85 144 60 62	47 70 64	193 26 73	78 108 83	31 75 77	81 85 85	71 45 103	957 896 909

TABLE

Figure 2

-	AT	1.	-	0
	Δŀ	31	F	1
	r u	ノレ	-	6

				1	PRECI	PITAT	ION A	MOUNTS	S AND IN	TENSI	TIES (AM	OUNTS I	N MM)									
	1075							1976	AG 1								-		-	1977		_
Year	1975	1	٨	5	0	N	D		F	M	A	M	J	J	A	S	0	N	D	J	F	М
Month	J	J	A	3	Ŭ				CA	117	69	57	94	88	14	87	57	18	17	21_	41	70
Total Precip. (mm)	141	30	211	67	31	52	11	48	64	117	00	57	51									
No. of Days with Measurable Precip.	8	7	14	10	8	13	14	10	10	13	10	12	9	11	3	10	9	4	5	7	8	9
No. of Heavy* Precip. Days	2	0	3	1	.0	0	0	0	1	0	1	1	1	· 1	0	1	1	0	0	0	0	(
Heavy Precip. ≥ 25 mm Amount	31	*	33	31					25 (16)		28	25 (6)	30 (24)	38 (10)		25 (26)	26 (6)					
Date Amount Date	(15) 60 (24)		(3) 68 (29)	(11)					and a		16	00										
Amount Date			35 (30)																			
Max. Precip. in 3 Hrs. Amount Date	30 (15)		19 (3)	15 (11)					.17 (16)		19 (24)	9 (6)	14 (24)	38 (10)		7 (26)	9 (6)					
Amount Date	58 (24)		33 (29)																			
Amount Date			13 (30)																			
Max. Precip. in 2 Hrs. Amount Date	27 (15)		18 (3)	13 (11)	60				16 (16)		17 (24)	6 (ố)	12 (24)	27 (10)		5 (26)	8 (ō)					
Amount Date	46 (24)		28 (29)														:					
Amount Date			10 (30)																			
Max. Precip. inl Hr. Amount Date	19 (15)		17 (3)	11 (11)				11 (16))	11 (24)	3 (6)	8 (24)	23 (10)		3 (26)	5 (6))				
Amount Date	29 (24)		25 (29)																			
Amount Date			(30)					•														

* Days with precipitation \ge 25 mm

** Bracketed figures are dates -- [(15) = 15th day)]

** Bracketed figures are dates -- [(15) = 15th day)]

TABLE 2 (cont.)

PRECIPITATION AMOUNTS AND INTENSITIES (AMOUNTS IN MM)

			· ···· · ··· ·						AG-3													
Year	1975	;						197	6											1977		
Month	J	J	A	S.	0	N	D	J	F	М	A	M	J	J	A	S	0	N	D	J	F	M
Total Precip. (mm)	100	65	153	68	12	60	71	56	52	92	85	73	82]42	69	79	50	53	39	39	33	53
No. of Days with Measurable Precip.	12	6	10	10	3	10	14	12	11	17	.10	8	6	10	7	11	10	10	16	12	9	9
No. of Heavy* Precip. Days	1	0	3	0	0	0	0	0	.0	0	1	1	1	2	1	1	0	0	0	0	0	0
Heavy Precip. ≥ 25 mm																						
Amount Date	27 (22)*	*	35 (3)								41 (25)	28 (6)	36 (30)	38 (14)	30 (14)	34 (17)						
Amount Date			27 (13)											50 (20)					•			
Amount Date			42 (24)																			
Max. Precip. in 3 Hrs.																						
Amount Date	25 (22)		20 (3)								14 (25)	(6)	13 (30)	32 (14)	(²³ (14)	18 (17)						
Amount Date			13 (13)											38 (20)								
Amount Date			24 (24)								(10)											
Max. Precip.in 2 Hrs.																						
Amount Date	17 (22)		15 (3)								10 (25)	4 (6)	12 (30)	32 (14)	23 (14)	14 (17)	~					
Amount Date			12 (13)											33 (20)								
Amount Date			23 (24)																			
Max. Precip. in 1 Hr.							55															
Amount Date	15 (22)		9 (3)								(25)	(6)	11 (30)	29 (14)	22 (14)	9 (17)						
Amount Date	1915		10 (13)											22 (20)								
Amount Date			13 (24)																			

* Days with precipitation ≥ 25 mm ** Bracketed figures are dates [(22) = 22nd day]

	TABL	E 2	(cont.)
--	------	-----	---------

* Bracketed figures are dates [[22] = 22nd da

					PRECI	PITAT	ION A	MOUNTS	AG-4	INTENS	LTIES (A	MOUNIS	IN MM)									
Year	197	5						1976												1977		
Month	J	J	A	S	0	N	D	J	F	M	A	М	J	J	А	S	0	N .	D	J	F	M
Total Precip. (mm)	113	89	179	73	44	65	22	90	67	143	81	73	111	84	35	107	65	29	40	55	73	69
No. of Days with Measurable Precip.	12	7	9	13	8	14	5	23	15	18	9	10	7	10	9	13	12	8	15	18	14	12
No. of Heavy* Precip. Days	2	1	1	0	0	0	0	0	0	1	1	0	2	2	0	0	0	0	0	0	0	0
Heavy Precip.≥ 25 mm																						
Amount Date	28 (15)	35 **(19)	93 (24)							37 (1)	26 (15)		31 (13)	27 (20)								
Amount Date	35 (19)												52 (30)	27 (29)								
Max. Precip. in 3 Hrs													Carls.									
Amount Date	28 (15)	(19)	(64 (24)							-*	** 17 (15)		26 (13)	20 (20)								
Amount Date	31 (19)												30 (30)	15 (29)								
Max. Precip.in 2 Hrs																						
Amount Date	22 (15)	20 (19)	51 (24)							-	16 (15)		23 (13)	19 (20)								
Amount Date	27 (19)												18 (30)	11 (29)								
Max. Precip.in 1 Hr																						
Amount Date	12 (15)	20 (19)	(32 (24)							-	9 (15)		18 (13)	12 (20)								
Amount Date	19 (19)												14 (30)	8 (29)								
* Days with precipita	ation >	25 mm																				
** Bracketed figures a	are date	es	[(15) =	15th c	lay]																	

*** Data from Elora Station (- no intensities available)

TABLE 2 (cont.)

PRECIPITATION AMOUNTS AND INTENSITIES (AMOUNTS IN MM) $$\rm AG{-}5$$

Year	1975							1	976												1977		
Month	J	J	A	S	0	N	1	D	J	F	М	A	М	J	J	A	S	0	N	D	J	F	M
Total Precip. (mm)	108	66	170	52	22	5	6 7	6 5	5 4	43	124	69	72	52	210	155	87	76	48	27	27	45	50
No. of Days with Measurable Precip.	8	5	12	8	7	1	2 1	4 1	16	9	14	11	9	5	11	8	9	12	10	10	14	7	10
No. of Heavy [*] Precip. Days	1	0	1	0	0		0	0	0	0	1	۱	1	0	4	2	0	0	0	0	0	0	0
Heavy Precip. ≥ 25 mm															40	40							
Amount Date	26 (3)**		47 (24)								26 (2)	(25)	(6)		(7)	(13)							
Amount Date															29 (14)	73 (14)							
Amount Date															61 (20)								
Amount Date									(51)						35 (29)								
Max. Precip. in 3 Hrs																							
Amount Date	25 (3)		35 (24)								10 (2)	9 (25)	(6)		49 (7)	40 (13)							
Amount Date															27 (14)	(14)							
Amount Date															55 (20)								
Amount Date															19 (29)								
Max. Precip. in 2 Hrs	22		22								8	7	6		47	36							
Date	(3)		(24)								(2)	(25)	(6)		(7)	(13)		1					
Amount Date															24 (14)	70 (14)							
Amount Date															50 (20)	8.			13.				
Amount Date															(29)								
Max. Precip.in 1 Hr																							
Amount Date	18 (3)		22 (24)								5 (2)	4 (25)	3 (6)		38 (7)	24 (13)							
Amount Date															20 (14)	37 (14)							
Amount Date															44 (20)								
Amount Date															11 (29)								
* Davs with precipita	tion > 2	5 mm																					

** Bracketed figures are dates -- [(3) = 3rd day]

* Bracketed Flaures are datas -- [[1] - Ind day

TABLE 2 (cont.)

				D	DECIDI	TATI		OUNTS	AND INT	FNST	TIFS (AM	OUNTS	IN MM	(50)									
				F	KECIFI	IAII	JN Arn	001115	AG-6	LIGI	1120 (14												
Year	1975							197	6												1977		
Month	.1	J	A	S	0	N	D		F	M	A	M	J	J	A	S	()	N	D	J	F	М
Total Precip. (mm)	72	64	213	85	50	64	84	63	56	107	60	82	85	90	50	98	5	1	38 ′	37	55	41	60
No. of Days with Measurable Precip.	9	7	10	12	6	11	15	14	12	16	8	11	9	10	8	12		9	13	15	20	11	10
No. of Heavy* Precip. Days	1	0	2	1	1	0	0	0	1	1	0	0	1	1	0	0	4	0	0	0	0	0	0
<u>Heavy Precip.≥25 mm</u> Amount Date	25 ** (19)		79 (24)	25 (11)	34 (13)				29 (21)	30 (2)			33 (30)	37 (29)									
Amount Date			44 (29)																				
Max. Precip. in 3 Hrs													12	17									
Amount Date	19 (19)		48 (24)	17 (11)	32 (13)				12 (21)	(2)			(30)	(29)									
Amount Date			33 (29)																				
Max. Precip. in 2 Hrs Amount Date	18 (19)		29 (24)	16 (17)	32 (13)				9 (21)	9. (2)	, ¹⁶		13 (30)	15 (29)									
Amount Date			(29)																				
Max. Precip.in 1 Hr Amount Date	12 (19)		20 (24) 25	13 (17)	21 (13)	1			5 (21)	5 (2)		11 (30)	10 (29)									
Date			(29)																				
* Days with precipita ** Bracketed figures a	tion 2 re date	25 mm es [(19) =	19th d	ay]																		

ECTPTIALION AMOUNTS AND INTENSITIES (AMOUNTS IN MM)

TABLE 2 (cont.)

"" Bracksted figures are dates -- [[10] = 10ch day

* Days with proclottation 2 25

								AG-7														
r	1975		15		j.			1976	. 19											1977		
th	J	J	A	S	0	N	D	J	F	M	Α	М	J	J	A	S	0	N	D	J	F	М
al Precip. (mm)	88	57	52	97	40	79	87	78	64	130	78	90	101	52	46	68	68	35	30	36	38	90
of Days with surable Precip.	12	6	8	9	8	10	12	_16	13	17	8	15	13	12	9	11	9	10	9	14	8	10
of Heavy [*] cip. Days	0	1	0	1	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1
vy Precip. ≥ 25 mm																						
unt e		31 ** (20)		39 (18)		26 (10)							31 (30)				31 (9)					32 (13
. Precip. in 3 Hrs																						
unt te		(31 (20)		16 (18)		13 (10)							24 (30)				14 (9)					(13
, Precip. in 2 Hrs				10		10							24				11					1
ie die die die die die die die die die d		(20)		(18)		(10)							(30)				(9)					(13
. Precip. in 1 Hr																						
unt e		25 (20)		7 (18)		7 (10)							17 (30)				6 (9)					(1:
ays with precipita	tion \geq	25 mm	20) =	20th da	w]																	
TACKATAN TINIPAS 3.	c uuco		201	Loon do	01																	
																0						
racketed tigures a																						
racketed Tigures a				15																		
racketed rigures a				n N N																		
racketed Tigures a				т 1 15 Ц 2	15 7																	
oracketed Tigures a				s T I2	0 15 15																	

Year	197	5						AG-10 197	0 6											1977		
Month	J	J	A	S	0	N	D	J	F	M	À	М	J	J	А	S	0	N	D	J	F	Μ
Total Precip. (mm)	96	74	180	71	51	60	65	49	53	134	82	94	95	69	31	74	55	12	31	43	39	89
No. of Days with Measurable Precip.	10	6	14	12	7	11	11	13	11	15	7	9	8	12	5	11	9	4	10	12	13	10
No. of Heavy * Precip. Days	0	0	3	1	0	0	0	0	0	0	1	- 1	1	0	Q	0	0	0	0	0	0	0
Heavy Precip.≥25 mm																						
Amount Date			46 (10)	* 25 (18)							39 (25)	34 (6)	30 (24)									
Amount Date			33 (24)																			
Amount Date			58 (29)																			
Max. Precip.in 3 Hrs				(18)									(3									
Amount			46 (10)	(18)							(25)	(6)	(24)									
Amount Date			21 (24)																			
Amount Date			33 (29)																			
Max. Precip.in 2 Hrs			46	7							7	9	23									
Date			(10)	(18)							(25)	(6)	(24)									
Date			(24)																			
Amount Date			31 (29)																			
Max, Precip.in 1 Hr																						
Amount			27	4							4	6	15									
Amount Date			13 (24)	(10)							(23)	(0)	(24)									
Amount Date			22 (29)																			

TABLE 2 (cont.) PRECIPITATION AMOUNTS AND INTENSITIES (AMOUNTS IN MM)

* Days with precipitation ≥ 25 mm ** Bracketed figures are dates -- [(10) = 10th day)]

PRECIPITATION AMOUNTS AND INTENSITIES (AMOUNTS IN MM)

Search	1.2							AG-	11									2/10-102				
Year	1975			E COLL				1976												1977		
Month	J	J	A	S	0	N	D	J	F	M	А	М	J	J	A	S	0	N	D	J	F	М
Total Precip. (mm)	64	39	86	44	39	47	56	41	68	99	64	83	73	108	36	71	62	7	25	20	32	72
No. of Days with Measurable Precip.	6	4	9	7	6	11	11	13	9	11	8	8	8	12	8	12	12	4	12	7	8	12
No. of Heavy * Precip. Days	1	0	1	0	0	0	0	0	1	1	1	1	0	1	0	1	0	0	0	0	0	0
Heavy Precip. ≥ 25 mm																						
Amount Date	31 (19)**		32 (24)						36 (21)	33 (2)	34 (25)	26 (6)		30 (29)		34 (18)						
Max. Precip in 3 Hrs																						
Amount Date	22 (19)		21 (24)						14 (21)	14 (2)	7 (25)	5 (6)		12 (29)		20 (18)						
Max. Precip in 2 Hrs																						
Amount Date	19 (19)		19 (24)						11 (21)	9 (2)	5 (25)	4 (6)		10 (29)		15 (18)						
Max. Precip. in 1 Hr																						
Amount Date	16 (19)		15 (24)						6 (21)	6 (2)	3 (25)	2 (6)		5 (29)		10 (18)						
* Days with precipitat	$ion \ge 2$	5 mm																				
* Bracketed figures ar	e dates	[(19) =	19th da	y]							•					10					
							•••••															
			-	-					0						100						10	

GCTLIDYLERW VHORMES WHO SINCEWELLIES (MADOWLS IN MEL)

TAB	LE	2.	(cont.)

				in F	PRECIPI	ITATIO	AMOUI	NTS AN AG-1	D INTEN	SITIE	IS (AMOL	INTS II	N MM)									
Year	1975							1976												1977		
Month	J	J	A	S	0	N	D	J	F	M	A	М	J	J	A	S	0	N	D	J	F	M
Total Precip. (mm)	106	41	232	66	30	44	74	58	80	2	60	52	95	87	16	93	56	32	20	20	46	76
No. of Days with Measurable Precip.	8	5	13	9	8	13	14	10	10	2	. 10	11	8	13	3	8	9	5	7	8	8	9
No. of Heavy [*] Precip. Days	2	0	2	1	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0
Heavy Precip. ≥ 25 mm	<u>n</u>												103									
Amount Date	30 (15)**		105 (29)	25 (11)					29 (16)		27 (24)		39 (24)	38 (10)		(26)						
Amount Date	25 (24)		45 (30)																		•	
Max. Precip, in 3 Hrs																0						
Amount Date	28 (15)		93 (29)	16 (11)					21 (16)		20 (24)		(24)	(10)	(\$8)	(26)						
Amount Date	24 (24)		13 (30)																			
Max. Precip. in 2 Hrs																						
Amount Date	25 (15)		79 (29)	14 (11)					20 (16)		19 (24)		16 (24)	38 (10)		7 (26)						
Amount Date	22 (24)		12 (30)																			
Max. Precip.in 1 Hr																						
Amount Date	17 (15)		47 (29)	(11)					19 (16)		15 (24)		8 (24)	19 (10)		(26)						
Amount Date	12 (24)		7 (30)																			

* Days with precipitation $\geq 25 \text{ mm}$ ** Bracketed figures are dates -- [(15) = 15th day)] - Dave with precipitantian a 25 mm bittation whomais who bittatites (whomais in 16)

TABLE 2 (cont.)

1975 1976																1977					
13/0	J	A	S	0	N	D		F	M	A	M	J	J	A	Ş	0	N	D	J	F.	M
85	47	193	78	31	81	71	122	53	108	30	58	144	70	26	108	75	85	45	143	30	40
17	7	9	16	8	14	16	25	12	12	7	8	9	7	4	- 11	12	18	12	21	99	9
0	0	2	0	0	0	0	0	0	0	0	0	2	1	0	0	1	0	0	1	0	0
		32 ** (11)										30 (28)	34 (29)			30 (6)			25 (17)		
		77 (24)										53 (30)									
		32 (11)										17 (28)	15 (29)			10 (6)			5 (17)		
		56 (24)										24 (30)									
		32 (11) 41 (24)										12 (28) 21 (30)	12 (29)			8 (6)			4 (17)		
		17 (11)										10 (28)	8 (29)			5 (6)			(17)	GINTI	
	1975 J 85 17 0	1975 J J 85 47 17 7 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1975 J J A S 85 47 193 78 17 7 9 16 0 0 2 0 $32 ** (11) * (24) $	1975 J J A S 0 85 47 193 78 31 17 7 9 16 8 0 0 2 0 0 $32 * * (11)$ 77 (24) 32 $32 (11)$ 56 (24) $32 (11)$ 56 (24) $32 (11)$ 56 (24) $32 (11)$ 41 (24) 17 17 17	1975 J J A S 0 N 85 47 193 78 31 81 17 7 9 16 8 14 0 0 2 0 0 0 $32 \times (11)$ 77 (24) 32 (11) 56 (24) 32 (11) 41 (24) 17 17 17 17	1975 J J A S O N D 85 47 193 78 31 81 71 17 7 9 16 8 14 16 0 0 2 0 0 0 0 $32 **$ (11) 77 (24) 32 71 $32 (11)$ 56 (24) 32 71 71 $32 (11)$ $32 (11)$ $32 (11)$ $32 (11)$ $41 (24)$ 71 $31 (24)$ $31 (24)$ $32 (11)$ $31 (24)$ $31 (24)$ $31 (24)$ $31 (24)$ $31 (24)$ $31 (24)$ $31 (24)$ $31 (24)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $												

2.0 PRECIPITATION QUALITY

Precipitation chemistry studies are of importance in the PLUARG study for information on direct loadings to the lakes and also on chemical inputs to the agricultural soils in the PLUARG watersheds. The importance of the atmosphere as a source of nutrients or other material loading on the earth's surface has not received significant attention until recently. However, the World Meteorological Organization is now interested in the problem and a network of precipitation chemistry stations has been installed by the Atmospheric Environment Service in Canada (Whelpdale 1977).

2.1 Sources of Pollutants in Precipitation

The chemical elements found in precipitation enter the atmosphere by both natural and man-made processes. Probable sources of sulphate and sulphite are the combustion of fossil fuels and industrial processes. Phosphates in the atmosphere can come from fertilizers and soil dust. Industrial processes as well as soil dust are the probable sources of potassium, magnesium and chloride. Sodium and calcium may also come from soil dust. Road salting is a potential source of sodium and chloride in winter. P.C.B.s are pollutants, relatively recently identified in the environment, which are also related to industrial processes. Nitrogen comes from the soil, fertilizer and animal wastes.

2.2 The Samplers

Bulk precipitation samplers of a type originally obtained from the Canada Centre for Inland Waters (Shiomi and Kuntz 1973) were built by the University of Windsor (Fig. 3a). These were installed on the six intensive watersheds (AG 1, 3, 4, 5, 10 and 13) during the first two weeks of May, 1975.

The collecting orifice is 30 cm. in diameter with a non-metallic screen filter at its base and the glass collecting bottle is four litres in volume. The samples are collected at the end of each month. The amount of the sample, a of but interfet of precipitation, and in a

Misco Model 93 Precipitation Monitor

of course, varies with the amount of precipitation, and in some cases, the sample was insufficient to permit all of the analyses to be carried out.

In addition, in order to determine the relative amounts of wet and dry fallout, "precipitation only" samplers of the MISCO-type were acquired on loan from the Atmospheric Environment Service (Fig. 3b) and were installed in June, 1976, at AG 1 and 13. These samplers open only when precipitation occurs. However, there are several disadvantages to this type of gauge. The gauge orifice is small so that a very small sample is obtained during months when precipitation is low. Consequently, the sample rarely is sufficient to permit all the parameter tests. Also, there is a problem during the winter months with the malfunction of the gauge. It sometimes fails to open, especially with snow or freezing rain. Consequently, there are relatively few sample values for each parameter.

2.3 Analytical Procedures

The samples were collected monthly from the six sites and were analyzed at the University of Windsor for the following: specific conductivity, volatile suspended solids, total suspended solids, sulphate, sulphite, total nitrogen, total phosphate, chloride, calcium, sodium, potassium and magnesium. When there was a sufficient amount of sample, the precipitation was sent to Guelph, to the Ontario Ministry of Agriculture Food Pesticide Residue Laboratory for analysis for pesticides and P.C.B.s, or to the Ontario Ministry of the Environment laboratory in Rexdale for analysis for heavy metals.

A brief description of the analytical procedures used at the University of Windsor is given below. Specific conductance is measured at 25^oC using a Copenhagen radiometer type CDM2e and corrected according to the cell constant. For sulphate, the turbidimetric method used is based on the precipitation of the sulphate ion in a hydrochloric acide medium with barium chloride to form barium sulphate crystals of uniform size. Absorbance of the barium sulphate suspension is measured by spectrophotometer and the sulphate concentration is determined by comparison to a standard curve. For sulphite, the acidified sample is titrated with standardized potassium iodide-iodate titrant. Free iodine is released when the sulphite has been oxidized, resulting in the formation of a blue colour in the presence of starch indicator. For total suspended and volatile suspended solids, the sample is filtered through a pre-weighed glass fibre crucible (.45 microns) and oven-dried at 103°C for twenty-four hours. The crucible is dessicator cooled and weighed to determine total suspended solids. The crucible is then ignited at 550°C for thirty minutes, dessicator cooled and weighed to determine volatile suspended solids. For chloride, the acidified sample is titrated with standardized mercuric nitrate titrant to bring about the formation of soluble, slightly dissociated mercuric chloride.

As far as the nutrient parameters are concerned, the following is the procedure for total phosphate. After preliminary persulphate digestion, the principle involves the formation of molydophosphoric acid which is reduced to the intensely coloured complex, molybdenum blue, by stannous chloride. Absorption is measured by spectrophotometer and the concentration is determined by comparison to a standard curve. For total kjeldahl nitrogen, the sample is digested with potassium sulphate and sulphuric acid to convert the ammonia nitrogen of organic nutrients to ammonia bisulphate. The mercury ammonium complex in the digestate is decomposed by sodium thiosulphate and the ammonia is distilled from an alkaline medium and absorbed in boric acid. The ammonia is titrated with standard sulphuric acid titrant. For nitrate and nitrite, after filtering, the nitrates are reduced to nitrites with zinc. Colour development is achieved by the addition of naphthylamine hydrochloride and sodium acetate. The absorbance is determined by spectrophotometer and the nitrite concentration is determined by comparison to a standard curve.
For potassium, sodium, calcium and magnesium, the sample is aspirated into the air hydrogen tri-flame burner of the Jarrel Ash Atomic Absorption Spectrophotometer 82-500 using the appropriate hollow cathode lamp. The concentration is determined by comparison of the absorption reading to a standard curve prepared from certified atomic absorption standards.

2.4 Concentrations

The results of the analyses are given in Appendix I for the following (Tables I to XIII):

I	Conductivity	VIII	Calcium
II	Suspended Solids	IX	Sodium
III	Sulphate	Х	Potassium
IV	Sulphite	XI	Magnesium
٧	Nitrogen	XII	Heavy Metals
VI	Phosphate	XIII	P.C.B.s

VII Chloride

(Note: The dates of the collection periods 1-23, as listed in these tables, are shown in Table 3, p. 26.)

3.0 SURFACE LOADINGS

The concentrations of each parameter, shown in Appendix I, are of less importance to the researcher than the surface loadings, the amount of each element that reaches the earth's surface. To determine surface loadings, the amount of precipitation which occurred during each collection period at each station was determined. Table 3 shows the twenty-three collection periods with corresponding precipitation amounts for the six precipitation chemistry stations.

The surface loadings in kg/ha for each collection period are given in Appendix II for each of the parameters.

3.1 Surface Loadings and Precipitation Amounts

Since the number of days in each collection period differed, it is not possible to use the loading data in Appendix II (kilograms per hectare) to compare station loadings. However, the various loadings were compared with the amount of precipitation which occurred during the collection period to determine if precipitation does indeed "cleanse the air" of pollutants or if increasing amounts of precipitation resulted in increased surface loadings.

In a study of individual precipitation events and sulphate loadings in Windsor, Osborne (1976) used regression analysis and found that the amount of precipitation accounted for 80% of the variation in sulphate surface loadings. In the present study, surface loadings for each collection period were plotted against total precipitation during the collection period for each parameter and regression lines and correlation coefficients obtained. These are given for the chemical components in Table 4 in descending order of correlation coefficient.

An example of the scatter diagrams using the surface loadings of sulphite for various precipitation amounts is seen in Fig. 4. Sulphite loadings showed the highest correlation (0.81) with precipitation amounts. From the coefficient

		Precipitation A	mounts for Co	lection Per	riods at 6 l	PLUARG Stati	ons (mm)	
Co	ollection Period	No of days	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
1975	1. May (1) - June 23	variable	100	120	131	162	121	81
	2. June 23 - July 29	36	90	65	89	66	74	66
	3. July 29 - Sept 3	36	221	163	184	172	185	247
	4. Sept 3 - Oct 8	35	63	69	70	53	68	58
	5. Oct 8 - Nov 16	39	40	55	84	56	75	38
1976	6. Nov 16 - Dec 15	29	84	62	45	66	70	78
	7. Dec 15 - Jan 16	32	51	48	79	58	54	52
	8. Jan 16 - Feb 16	31	37	46	69	34	34	42
	9. Feb 16 - Mar 7	20	120	79	119	103	113	145
	10. Mar 7 - Apr 17	41	63	71	101	64	74	57
	11. Apr 17 - May 15	28	88	105	89	116	139	81
	12. May 15 - June 12*	28	28	30	31	16	29	23
	13. July 13 - Aug 8	27	33	128	74	158	68	42
	14. Aug 8 - Sept 9	32	15	67	53	152	32	14
	15. Sept 9 - Oct 1	22	86	79	88	87	97	93
1977	16. Oct 1 - Nov 3	33	57	50	65	76	55	56
	17. Nov 3 - Dec 4	31	20	60	37	53	17	36
	18. Dec 4 - Jan 3	30	15	35	37	23	27	16
	19. Jan 3 - Feb 5(10	2 33(38) ²	24	42	58	34	59	28
	20. Feb 5(10) - Mar 6	29(24)	54	37	86	49	40	35
	21. Mar 6 - Apr 2	27	64	36	49	39	72	81
	22. Apr 2 - May 1	29	128	65	51	53	71	122
	23. May 1 - June 11(12	42(43) ³	87	54	36	42	63	76

TABLE 3

* June 12 - July 13, no chemical analysis; all samples destroyed by accident.

(1) Start of period variable: AG 1 - May 27; AG 3 - May 15; AG 4 - May 7; AG 5 - May 6; AG 10 - May 15; AG 13 - May 27.

(2) Feb 5 for AG 1, 13. Feb 10 for AG 3, 4, 5, 10.

(3) June 11 for AG 1, 10, 13. June 12 for AG 3, 4, 5.

TABLE 4

Chemical Component	Coefficient r	Coefficient of Determination r ²	Regression line x = precipitation (mm.) y = rate of loading (kg/ha)
Sulphite	0.81	0.66	y = 0.09 + 0.016 x
Copper	0.77	0.59	y = .00072 + 0.00012 x
Chloride	0.62	0.38	y = -0.66 + 0.022 x
Posphate	0.55	0.32	y = -0.05 + 0.005 x
Sulphate	0.52	0.27	y = 1.91 + 0.044 x
Zinc	0.47	0.22	y = 0.046 + 0.002 x
Nitrogen	0.41	0.17	y = 1.25 + 0.024 x
Calcium	0.40	0.16	y = 0.35 + 0.007 x
Potassium	0.38	0.14	y = 0.19 + 0.006 x
Magnesium	0.36	0.13	y = 0.23 + 0.004 x
Lead	0.33	0.11	y = 0.0048 + 0.00004 x
Sodium	0.05	0.002	y = 1.31 + 0.004 x

The Relationship Between Surface Loading and Precipitation Amounts

of determination, 66% of the total variance in the rate of loading of sulphite was due to a linear association between precipitation and rate of loading. For every 1 mm. increase in precipitation during the collection period, the rate of loading increased 0.016 kg/ha. For copper, the total amount of precipitation explained 59% of the surface loadings, for chloride 32%, phosphate 38%, sulphate 27%, etc. All chemical components except sodium showed significant relationships between loadings and precipitation amounts at the .05 level of significance. This is contrary to the idea of "scavenging" which implies that as precipitation amounts increase, the rate of loading decreases. Rather, with most components, as the amount of precipitation increased, so did the loading rates.

3.2 <u>Surface Loadings in grams per hectare per day</u>

In order to compare the chemical loadings over time and geographically, all data were transformed into surface loadings expressed as grams per hectare per day. Monthly and annual loadings can thus be easily obtained. These data are shown in Appendix III Tables I-XI. It will be noted in the nitrogen table (Table III) that only eleven collection periods were reported. A great deal of trouble was encountered with the nitrogen analyses and with analyst errors in the method used. Consequently many data were discarded. The data in Appendix III, the loadings in grams per hectare per day, were then subjected to various statistical tests as seen in Section 4.

Polosi de Une data sets were normally distributed." The specific conductivit data were found to de log - Adrial (fable 1). The sulphate and sulphite deta were normal except AG + for sulphate and AG 13 for sulphite which here log and 'normal (fables if and 'if). 'X sinitar patient was observed for the chloride in bodats there's if were stored at a set of were normal (fable) of the chloride

4.0 STATISTICAL PROPERTIES OF SURFACE LOADING DATA (by P. D. LaValle)

4.1 Introduction

The purpose of this part of the investigation was to describe the basic statistical properties of the chemical data derived from the six intensive watersheds. An attempt was made to assess both the temporal and spatial variability of the precipitation chemistry samples taken over a two year period. Due to the relatively short period of sampling and the problem of occasional sample loss from the reporting watersheds, the temporal analysis was limited to the search for significant short term trends and possible periodicity. Spatial comparisons were made on a watershed basis.

4.2 Normality Tests

Since most detailed parametric statistical tests require that the sampling distributions of the data be distributed according to the Normal Probability Distribution, each set of chemical data was subjected to a test for normality. In this investigation, a modified Kolmogorov-Smirnov One sample test, especially designed to assess normality, was utilized following the procedure outlined by Lilliefors (1967). Where the null hypothesis that the sample distribution fits the normal curve is rejected, we tested the distribution for extreme values and also tested it against the null hypothesis that it may conform to a log - normal distribution. The results are summarized in Appendix IV Tables I -X. The data on P.C.B.s and heavy metals were not tested due to the small sample size.

Most of the data sets were normally distributed. The specific conductivity data were found to be log - normal (Table I). The sulphate and sulphite data were normal except AG 4 for sulphate and AG 13 for sulphite which were log normal (Tables II and III). A similar pattern was observed for the chloride data where all watersheds except AG 4 were normally distributed (Table VI) and AG 4 was normally distributed with the deletion of one extreme value.

The nitrogen samples were found to be normally distributed (Table IV). This may be due to the fact that the sample sizes were moderately small, but when the significance level was reduced to 0.20, all of the watershed samples still fit a normal distribution. This latter procedure is necessary to reduce the probability of a type II error, which is accepting the false null hypothesis that the data conform to a normal probability distribution keeping in mind that the significance level reflects the probability of making a type I error, which is rejecting a true null hypothesis.

With respect to the phosphate data (Table V) watersheds AG 3 and AG 4 were found to depart significantly from normality at the .05 level. When the data were subjected to a logarithmic transformation better fit to the normal curve was obtained implying that these data might best be described a log - normal.

As far as the metals were concerned, all of the sodium, potassium and magnesium sample sets (Tables VIII,IX and X) were normally distributed at the .05 level of significance. For calcium (Table VII) only one watershed sample, AG 10 departed significantly from normality at the .05 level. When the single high value was deleted from the sample, it was found to conform to normality.

The sample data were sufficiently close to normality to run analysis of variance comparisons between the sample watersheds on all the data save the phosphate and conductivity data, because the F-test is reasonably robust and not strongly affected by occasional departures from normality. However, it did seem wise to subject the phosphate and conductivity data to a log transformation before running any parametric tests on that data.

4.3 Time Series Studies

Since the data were obtained monthly over a two year period, some of the temporal variation that may exist between the watersheds may be associated with

long term trends and possible cyclical or seasonal effects. Unfortunately complete records were not available for all of the chemical parameters for all of the watersheds, so the analysis was limited to the fitting of least squares trend lines to each watershed sample time series for each parameter, and to the use of the "runs" test (Siegal 1954) which was designed to detect possible cyclical effects on a short term basis. It would have been more informative to subject the data to autocorrelation and autoregression analysis, but the presence of gaps in certain data sets renders this operation quite difficult. However, the least squares trend analysis coupled with the runs test may bring to light any systematic temporal patterns in the watershed chemical sample data, and the results of this analysis are summarized in Appendix V Tables I to IX and shown graphically in Figures 5-32. These graphs show for each watershed for each parameter the loadings (g/ha/d) for each sampling period. Trend lines are shown on each graph. A dotted line indicates that the slope of the trend line is not significantly different from zero. Statistically significant trend lines are shown by solid lines.

All the trend lines for electroconductivity are positive. This could be expected since this parameter measures the ion concentration and during the two year sampling period, precipitation decreased and, as could be expected, conductivity increased. The conductivity data for AG 4 showed a statistically significant trend line. It can be observed that this station had the greatest decrease in precipitation from the first to the second year.

It can be noted on the graphs that almost all of the trend lines show a decreasing loading of the parameter over time. Since it is unlikely that pollution in the air has decreased over the two year sampling period, this phenomenon can be explained by decreasing precipitation. As Section 3 showed more precipitation resulted in more surface loading and Table 4 indicated the

magnitude of the correlation coefficient linking loading and precipitation amount. It is noted that the parameters with trend lines horizontal or with slightly decreasing slope were those with the lowest correlation with precipitation amount (e.g. sodium).

Statistically significant trends were also detected for calcium in AG 3, potassium AG 1, and phosphate for AG 1, 4 and 10. The decreased loadings for phosphate more than the other parameters, could indicate a true decrease in the phosphates in the atmosphere.

Once the trend lines were fit to the data, a runs test was applied to the positive and negative deviations from the trend line in order to detect possible cyclical effects (Hammond and McCullagh 1974). In this investigation, the runs tests were all negative indicating that the pattern of deviations from the various trend lines all did not depart significantly from a random pattern suggesting that the short term temporal variations of the precipitation chemical data behaved in a random fashion. However, a longer term study may yield quite different results, because the sample period in this investigation is too short to have much confidence in these results.

4.4 Analysis of Variance Tests

In order to assess the areal variability of watershed precipitation chemistry, an analysis of variance and Bartlett's test were run on each chemical parameter except heavy metals where sufficient data were not available. In the case of the phosphate data and the specific conductivity data, the analysis of variance was run on the logarithms of the data due to the normality problem. Prior to each analysis of variance, Bartlett's test was run to assess the equal variance requirement of analysis of variance. Basically the Bartlett's test is used to test the null hypothesis that the sample variances are equal (Lindquist 1956). The results of the Bartlett's test are summarized in

Figure 9

ure TT

43

AF soupt

90

80.

70-

60-

50-

40.

30.

20

10.

0-

1

3

5

g/ha/d

Figure 31

Figure 32

Table 5. Based on the results of the Bartlett's test the null hypothesis that the sample variances are equal was accepted for the data on sulphite, phosphate, chloride and sodium. For the other variables significant heteroschedacity of variance was observed at the 0.05 level. From these results it may be concluded that the areal variation of nitrogen, calcium, sulphate, magnesium, potassium concentrations and specific conductivity between the six sample watersheds may be associated with the fact that the variances differ significantly from watershed to watershed. With respect to the calcium data AG 3 and 10 seem to have substantially larger variances than the other stations, while in the comparison of the magnesium readings AG 10 seems to have much higher variance levels than the other watershed units. With respect to the specific conductivity comparisons watersheds AG 4 and 13 seem to have substantially higher variances than the others. For the data on potassium and sulphates the range of variances is significantly wide and exhibit a more continuous spread without the presence of one of two exceptionally high or low values.

Once the Bartlett's test was run the data were subjected to a simple one way analysis of variance in order to test the null hypothesis that the watershed mean values for the chemical data are equal or are not significantly different. These analyses were run on the raw data values for all of the chemical parameters except the phosphate and specific conductivity data where the analysis of variance was run on logarithmic transformations of the data. The results of these analysis of variance studies are summarized in Appendix VI Tables I-X. In essence the results of this investigation should indicate if any significant areal variation exists between the watershed units with respect to precipitation chemistry.

tracit inter the calcium and <u>TABLE 5</u> on mutches end early mutches and early and an early store the

Bartlett's Test on the Homogeneity of Variance of Precipitation Chemistry

Property	<u>Chi Square</u>
Specific Conductivity	11.67*
Sulphate	12,50*
Sulphite	3.71
Nitrogen	14.11*
Phosphate	1.34
Chloride	10.80
Calcium	46.52*
Sodium	7.68
Potassium	42.90*
Magnesium	55,51*

For degrees of freedom 5 (# of watersheds -1), chi-square critica] = 11.07 at the 5% level

* significant at 5% level

Based on the results of the analysis of variance tests, relatively few significant differences were observed. In fact, at the 0.05 level of significance, significant differences between watersheds were observed for only calcium and magnesium. Since the calcium and magnesium data were found to exhibit significant heteorogeneity of variance, only an approximate test can be made, but since the F-tests associated with analysis of variance are quite robust and relatively insensitive to moderate deviations from normality and heteroschedacity of variance according to Lindquist (1956), the results are still probably significant. While a longer period of record may yield significant variations in chloride, phosphate, sodium, potassium, sulphate, sulphite, P.C.B. and specific conductivity means, the results of this investigation suggest that these chemicals' properties do not significantly vary in the test watersheds.

Since significant differences in mean calcium and magnesium levels were detected in the analysis of variance studies, a more detailed study of these variations was made using a procedure outlined by Lindquist (1956). In essence a modified t-test program was used to assess the significance of mean calcium and mean magnesium levels' variations between each watershed in the sample on a pairwise basis. Examination of Table X, Appendix VI, and the mean loadings in Table 6 (p. 66) discloses the fact that the magnesium levels for watershed AG 10 are significantly higher than those for all of the other watersheds in the sample. Also no significant differences were noted among the other watersheds, which suggests that precipitation falling in watershed AG 10 tends to have significantly higher magnesium levels. Using a similar procedure, precipitation calcium levels tended to be significantly higher in watershed AG 10 as well. Watershed AG 3 tended to have significantly higher calcium levels than watersheds AG 4 and 13. Watershed AG 13 also had a significantly lower mean calcium concentration than watershed AG 5, and had the lowest overall mean calcium level.

5.0 DISCUSSION OF SURFACE LOADINGS

The mean loadings, in grams per hectare per day for each element, by watershed, are shown in Table 6 in descending order of magnitude. They are discussed below in that order.

5.1 Sulphate

The analysis of variance test showed no significant differences among the watersheds in Southern Ontario with regard to sulphate loadings. Mean daily loadings ranged from 144 g/ha/d for AG 13 to 187 g/ha/d for AG 4. Shiomi (1973) found the average value for the Lake Ontario basin during 1970-71 was 140 g/ha/d. The Acres study of the atmospheric loadings of the upper Great Lakes (1976) showed values of 100 g/ha/d for the northern part of Southern Ontario for 1972-73. The higher loadings obtained in the present study may indicate more sulphur dioxide in the air above Southern Ontario or higher precipitation than during the earlier study periods. It can be concluded that for 1975-77 surface loadings of sulphate in Southern Ontario average 160 g/ha/d or approximately 60,000 grams per hectare per year based on the bulk precipitation sample.

5.2 Nitrogen

Table 6 shows nitrogen to have the next highest mean loadings, from 92 g/ha/d for AG 13 to 115 g/ha/d for AG 10. Of all the chemicals tested, nitrogen provided the most problems with the analyses and with extreme high values. Data for several months were discarded because of problems with testing procedures, and occasional extreme high values suggested that contamination of the sample had occurred. Consequently, less confidence can be placed on the nitrogen data than any of the other parameters. The analysis of variance test

	r of magnitude	ending orde				
Parameter	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Sulphate	163.8	172.3	210.4	151.8	162.3	144.0
Nitrogen	93.9	108.0	110.9	105.6	115.1	91.5
Sulphite	41.6	42.9	47.0	41.6	42.6	42.9
Calcium	22.4	31.8	21.0	24.7	43.9	16.0
Sodium	28.0	17.5	25.3	20.3	22.1	23.4
Chloride	20.8	27.7	25.4	16.5	24.7	19.9
Potassium	15.3	27.8	23.5	18.3	15.0	28.3
Magnesium	15.7	11.2	11.7	13.1	36.6	11.9
Phosphate	7.5	10.1	8.2	7.9	9.9	12.6
Zinc ³	1.19	1.23	3.46 ²	.62	1.99	.77
Lead ³	.19	.20	.12	.15	.13	.18
Copper ³	.17	.07	.26	.23	.06	.16
Cadmium ³	.05	.03	.07	.03	.06	.02
P.C.B.s	.0016	.0026	.0021	.0013	.0017	.0023

Watershed - Mean Loadings 1975-1977 (g/ha/d)

TABLE 6

(1) Omitting 1 extreme high value.

(2) Omitting 1 extreme high value.

(3) For heavy metals, values shown only for metals with at least 3 samples

again showed no significant differences among watersheds. Mean daily loading of nitrogen is estimated at 104 g/ha/d or 38,000 g/ha/yr. Brezonik (1975) stated that nitrogen fluxes in rural barnyard locations in Wisconsin have been reported at 30 kg/ha/yr while rural non-barnyard as well as urban fluxes were 13 kg/ha/yr. He attributes this to ammonia absorption from the air.

5.3 Sulphite

Surface loadings of sulphite showed no significant differences among the six watersheds studied. The mean loading was 43 g/ha/d or 16,000 g/ha/yr over the watersheds of Southern Ontario.

5.4 Calcium

Calcium appears to rank next in order of importance as far as surface loadings are concerned. Mean values ranged from 16 g/ha/d in AG 13 to 44 g/ha/d for AG 10. The analysis of variance test indicated that significant differences did exist among the watershed loadings. Calcium levels in precipitation were significantly higher in AG 10 and AG 3 than in the other watersheds, with the exception of no difference between AG 3 and AG 5. Calcium loadings have been thought to be related to road salting but all of the gauges were at least 400 ft. from the nearest road. It is not known why AG 10 and AG 3 have higher calcium loadings. Averaging the six calcium loadings gives a value of 27 g/ha/d or 10,000 g/ha/yr loading value for Southern Ontario. These values are lower than Shiomi's Lake Ontario basin values. However, the inter-laboratory comparisons which were carried out during the course of the study indicate that our analyses for calcium may be giving concentrations which are too low. Fifteen samples from the "precipitation only" gauges were analyzed and the concentrations averaged 60% of the bulk sampler concentrations.

5.5 Sodium

Sodium loadings appear to be similar to calcium loadings in the PLUARG watersheds, mean values ranging from 17 g/ha/d to 28 k/ha/d. The analysis of variance tests showed no significant differences in sodium loadings among the six watersheds. The mean loading was 23 g/ha/d or 8,400 g/ha/yr. This value is lower than Shiomi's value for Lake Ontario stations (11 kg/ha/yr) and similar to Kramer's values for Northern Ontario (8 kg/ha/yr). Fifteen samples from the "precipitation only" samplers were analyzed and concentrations averaged 50% of the bulk sampler concentrations.

5.6 Chloride

The surface loadings of chloride ranged from 16 to 28 g/ha/d for the six PLUARG watersheds. The analysis of variance test showed no significant difference among the watersheds. The mean loading was 22.5 g/ha/d. Shiomi reported similar average loadings of 16-21 g/ha/d for the Lake Ontario basin. The corresponding annual loading is approximately 8,300 g/ha/yr in Southern Ontario. Five "precipitation only" samples were anlayzed and these averaged 65% of the concentrations in the bulk precipitation samples.

5.7 Potassium

Mean potassium loadings ranged from 15 to 28 g/ha/d over the six watersheds. No significant differences were found in the loadings. The mean value for Southern Ontario is thus 21 g/ha/d or 7,700 g/ha/yr. The fifteen "precipitation only" samples yielded great differences in the concentrations of potassium compared to those in the bulk precipitation samples, from 1% to 900%. Consequently, no conclusion can be drawn with regard to potassium in the "precipitation only" samples.

5.8 Magnesium

Surface loadings of magnesium ranged from 11 to 37 g/ha/d in the six watersheds and the analysis of variance tests showed significant differences among the watersheds. The magnesium levels in watershed AG 10 were significantly higher than all the other watersheds. There is no obvious reason for this difference. Perhaps some local industry in the St. Catherines area may be causing the higher magnesium levels in AG 10. If AG 10 values are omitted, the mean loadings of magnesium in Southern Ontario were 11 g/ha/d or 4,000 g/ha/yr. Fifteen "precipitation only" samples were analyzed and the concentrations averaged 40% of the bulk precipitation concentrations.

5.9 Phosphate

Phosphate loadings ranged from 8 to 13 g/ha/d in the six PLUARG watersheds. The analysis of variance tests showed no significant differences among the watersheds. The mean loading value of phosphate for Southern Ontario is 9 g/ha/d or 3,000 g/ha/yr. This is equivalent to 1,000 g/ha/yr of total phosphorus. Brezonik (1975) stated that the range of phosphorus loadings in a Wisconsin study was from 0.1 to 1.0 kg/ha/yr. Shiomi did not give surface loading values and stated that there was little relationship between sample location and phosphorus concentration. There were six analyses of "precipitation only" samples and since the relationship between these concentrations and those in bulk precipitation samples ranged from 4% to 200%, no conclusion can be drawn concerning surface loadings of phosphorus from "precipitation only" samples in Southern Ontario.

5.10 Heavy Metals

Four samples from each station were analyzed for zinc concentrations. Of the heavy metals, zinc showed the greatest surface loadings, ranging from .66 to 1.99 g/ha/d for the six PLUARG watersheds. Shiomi's average loading for Lake Ontario stations was 1.4 g/ha/d. There were too few samples to test for significant differences among the watersheds, but there seemed to be no urban rural pattern in the data. The highest loading was at AG 4 which is furthest from an industrial centre. Averaging the six means gives a value of 1.55 g/ha/d for the PLUARG stations, or 565 g/ha/yr.

Average loadings of lead from four bulk precipitation samples ranged from <.12 to .20 g/ha/d. The Acres study showed values of .2 to .4 g/ha/d for the upper lakes and .4 to 1.0 g/ha/d for Southern Ontario stations. Our values are lower than both of these, averaging .16 g/ha/d overall. This would correspond to an annual loading of 58 g/ha/yr in Southern Ontario.

Average loadings of copper ranged from <.07 to .26 g/ha/d from four bulk precipitation samples with an overall mean value of .16 g/ha/d. Shiomi's average loadings were .11 g/ha/d while the Acres study showed values .10 to .20 g/ha/d for Southern Ontario stations. The corresponding annual loading for copper is the same as that for lead - 58 g/ha/yr in Southern Ontario.

Average loadings of cadmium ranged from 0.02 g/ha/d to 0.07g/ha/d from the four sets of six samples tested. In half of the samples, cadmium was not detectable within the limits of the testing procedure. The corresponding average loading of cadmium is .04 g/h/d or approximately 15 g/ha/yr in Southern Ontario. Only two sets of nickel analyses were made. (Table XII Appendix I). Of the twelve samples, only five showed detectable concentrations of nickel, two at AG 1, two at AG 13 and one at AG 4. The presence of nickel at the two stations near learnington might be due to the presence of the automobile plants in Detroit-Windsor. For chromium, two sets of samples were also tested and only three had detectable concentrations; two at AG 1 and one at AG 4.

Eight "precipitation only" samples were analyzed for heavy metals, (two zinc, two lead, two copper and two cadmium). Strangely, all except one of these had higher concentrations than the bulk precipitation samples. No explanation can be offered for this result.

5.11 P.C.B.S sent and patrup methadionene shit bruch as all

Seven sets of bulk precipitation samples (27 in number) were analyzed for P.C.B.s. In only three cases were P.C.B.s not detectable by the pesticide laboratory. Average loadings ranged from .0013 at AG 5 to .0026 g/ha/d at AG 3, with an average value of .0020 g/ha/d or .73 g/ha/yr.

Five 'precipitation only" samples were anlayzed and these showed concentrations averaging 80% of those in the bulk samples. No comparable data on surface loadings of P.C.B.s have been found in the literature.

6.0 CONCLUSIONS

6.1 Precipitation Quantity

The precipitation quantity part of the study was undertaken to provide information for other PLUARG researchers and for the precipitation chemistry work.

Conclusion I

It was found that precipitation during the first year of research, June 1975-May 1976, was considerably above normal at most of the stations and precipitation during the period June 1976-May 1977 was considerably below normal. This fact plays a significant role in explaining the surface loadings in the second part of the study.

6.2 Precipitation Quality

Twenty-three sets of precipitation samples from the bulk precipitation samplers at the six intensive watersheds were analyzed for most of the following: conductivity, suspended solids, sulphate, sulphite, phosphate, chloride, calcium, sodium, potassium and magnesium. Because of problems with the method of analysis, only twelve sets of samples were tested for nitrogen. Of the heavy metals, tests for zinc, lead, copper and cadmium were carried out on four sets of samples, chromium two, nickel two and arsenic one. Seven sets of samples were analyzed for P.C.B.s. "Precipitation only" samplers from two watersheds were analyzed for all parameters as often as the amount of sample permitted. The number of samples tested ranged from two for sulphite to fourteen for the metals. The surface loadings for each parameter (with the exception of the heavy metals and P.C.B.s in which the sample sizes were too small) were subjected to statistical tests with the following results.

Conclusion II

Comparing surface loadings with precipitation amounts showed that in every case increased precipitation resulted in increased surface loadings. Correlation coefficients were significant for each parameter except sodium. This result added further proof to an earlier finding by Osborne (1976) that in individual rainstorms, precipitation amount explained 80% of the variation in surface loadings of sulphate.

Conclusion III

With a few exceptions, the parameters had normal distributions at each station. The few which did not conform to normality were found to have a log normal distribution.

Conclusion IV

The analysis of variance tests showed that with the exception of calcium and magnesium there was <u>no significant difference</u> in surface loadings at the six watersheds. For most parameters then, it is not possible to draw isoline maps of surface loadings in Southern Ontario, since all areas appear to have equally polluted precipitation.

Conclusion V

Although the period of analysis is perhaps too short, the statistical tests showed no seasonal variations in parameter loadings.

Conclusion VI

The trend lines fitted to the loading data showed downward trends with time for almost all parameters. In several cases the trend lines were statistically significant. Since it has been shown that surface loading is significantly related to precipitation amount, it is hypothesized that the decreasing trends are explained by decreased precipitation during the second year of the study. It would be unwise to assume decreased loadings to be a result of a decrease in air pollution.

Conclusion VII

Since one year of the study was one of above average precipitation and one year had below average precipitation, the mean loadings obtained in the present study probably approximate the mean precipitation situation. The loadings given below are those obtained from the bulk precipitation samples and expressed in grams per hectare per year. The parameters are arranged in descending order of magnitude.

Southern Ontario Surface Loadings kg/ha/year (based on 1975-77 chemical analysis and precipitation data)

Parameter	Loading (g/ha/yr)
Parameter	Loading (g/ha/yr)
Sulphate	60,000
Nitrogen	38,000
Sulphite	16,000
Calcium	10,000
Sodium	8,400
Chloride	8,300
Potassium	7,700
Magnesium	4,000
Phosphate	3,000
Zinc	565
Lead	58
Copper	58
Cadmium	15
P C B s	0 70
1.0.0.5	0.70

Literature Cited

- Acres Consulting Services. 1974. Atmospheric loadings of the Upper Great Lakes -Phase I. Canada Centre for Inland Waters.
- Brezonik, P. L. 1975. Nutrients and other biologically active substances in in atmospheric precipitation. Proc. First Specialty Symposium on Atmospheric contributions to the Chemistry of Lake Waters. International Association of Great Lakes Research. 166-186.
- Bruce, J. P. and R. H. Clark. 1966. Introduction to Hydrometeorology. Pergamon Press.
- Gambell, A. W. and D. W. Fisher. 1964. Occurence of sulfate and nitrate in rainfall. Jour. Geophys. Res., 4203-4211.
- Hammond, R. and P. S. McCullagh. 1974. Quantitative Techniques in Geography. Clarendon Press, Oxford.
- Larson, L. W. and E. L. Peck. 1974. Accuracy of precipitation measurements for hydrologic modelling. Water Res. 10, 857-863.
- Lilliefors, H. W. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Jour. Amer. Stat. Assoc. 62, 400.
- Lindquist, E. F. 1956. <u>Design of Experiments in Psychology and Education</u>. Houghton Mifflin, Boston.
- Osborne, R. W. 1976. An investigation of factors affecting total sulfate supply and sulfate concentrations in individual rainfalls at Windsor, Ont. Unpublished M.A. thesis. University of Windsor.
- Shiomi, M. T. and K. W. Kuntz. 1973. Great Lakes Precipitation Chemistry Part 1. Lake Ontario Basin. Proc. 16th Conference Great Lakes Research. 581-602.
- Siegal, S. 1954. <u>Non-parametric Statistics for the Behavioural Sciences</u>. McGraw Hill, New York.

Whelpdale, D. W. 1977. Preliminary report of the intensive sulfate study. August 1976. Atmospheric Environment Service, Fisheries and Environment, Toronto.

CONCENTRATIONS OF CHEMICALS IN PRECIPITATION

Brezonth, F.L. 1977 "Buckleht, and other biologically active substances in in atmosuments prescriptization, Proc. Thet Smectalty Symposium on Attornaments contributions to the Greatstry of Take Waters, International Respondents of Great Lakes Research, Tes-186

(Note: dates for collection periods 1-23 listed in these tables are shown in Table 3, p. 26.)

			A	PPENDIX I				
				TABLE I				
Specific Conductivity	(Micro MHo)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4	28.7 39.4 26.5 39.0	65.9 57.4 56.8 44.1	30.6 38.4 23.3 27.2	40.0 52.7 25.7 32.5	59.8 86.8 52.6 42.9	24.0 45.1 28.7 69.6		
5 6 7 8 9	49.0 42.5 32.0 112.9 32.2	45.4 46.8 41.6 55.5	30.4 24.4 42.1 28.4	44.7 72.7 41.1 72.0 25.4	43.3 76.5 43.5 -	85.8 45.9 27.7 31.5 27.8		
10 11 12 13 14	47.0 35.3 95.7 46.2 83.3	54.8 41.3 114.9 66.8 50.8	146.8 36.3 41.3 29.8 71.6	43.0 41.3 98.8 27.7 39.0	52.8 34.3 72.6 55.5 152.3	46.0 60.5 276.1 244.5 96.3	105.4	36.4
15 16 17 18 19	30.6 26.0 45.4 62.2 167.0	56.3 38.1 33.1 141.5 117.0	13.8 111.0	22.7 57.6 28.4 64.7 64.0	53.4 42.8 148.6 97.6 115.0	41.5 26.0 44.5 70.8 88.0	31.6 - 68.3 ⁽¹⁾	37.6 - 39.7 40.3
20 21 22 23	92.8 32.5 20.0 69.0	60.2 36.8 50.0 136.9	60.2 195.0 73.1	96.9 16.8 25.0	113.2 48.8 23.0 63.8	47.9 19.1 29.8	86.7 22.0 32.9	23.6

(1) 2 month sample

* Precipitation-only sample

- No sample

			TAE	<u>BLE II</u>				
Volatile Suspended Sol	ids (mg/1)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2	1.5 1.0		3.5 2.5	3.0 2.0	6.5 1.0	2.0 1.5 2.5		
3 4 7	9.2	1.8 1.8	2.0	4.0 0 25.4	0.6	9.8		
9 11 15	34 1.2	36	25 .2	2 .3	8.2	1.6 33 1.5	.5	.4
Total Suspended Solic	ls (Mg/1)							
Collection Period								
1 2 3 4	4.0 3.0 6.0 6.5	4.0 3.0	15.0 5.5 3.0 2.5	11.0 6.0 7.0 0	17.5 6.0 5.0 4.8	8.5 6.5 4.5		
7 9 9 9 9 10 100 11	15.5 0 53	5.4 - 51	10.3 1.0 27	38.9 1.2 5	2.6 13	11.2 2.3 50		
15	1.5	-	0.3	0.4	0.5	2.4	.8	.9

* Precipitation-only sample

- No sample

TABLE III

0 292616

Sulphate (mg/1)

AG. 13*															5.0		ı	1				1.0	ı	
AG 1*								٦							5.5	1	ı	ı			13.4	1	2.5	3.0
AG 13	4.7	7.7	4.5	8.3	13.0	5.6	5.0	4.5	5.0	1.1	7.5	24.5	17.0	29.0	6.7	5.0	1	7.5	11.5		0.0	1.8	1	3.0
AG 10	9.0	10.0	4.0	2.4	1	6.6	5.6	I	T	8.7	5.0	11.0	7.0	16.5	6.0	6.3	1	10.0	17.0	0	10.0	3.0	4.2	3.0
AG 5	3.3	5.5	4.6	4.2	7.6	8.1	.0.9	10.5	4.2	5.0	7.5	21.5	6.0	6.0	5.0	5.0	4.0	7.5	8.5	C	0.0	4.0	5.5	-
AG 4	6.0	6.2	5.5	5.8	5.0	1	7.8	9.0	8.0	25.9	8.5	5.9	6.7	0.0	4.2	t	ı	13.5	102	0	0.2	1	27.5	5.0
AG 3	7.3	7.5	6.4	7.3	6.5	5.0	6.6	9.5	1	8.7	8.0	13.5	10.5	9.0	8.4	5.5	5.1	20.3	19.0		0.0	4.0	6.2	6.8
AG 1	9.3	6.2	5.1	3.5	8.5	5.0	4.5	16.0	3.5	5.8	7.5	14.5	8.0	8.5	4.2	5.0	6.3	7.5	24.5	OVE	0.4	3.0	17.0	4.5
Collection Period	1	2	m	4	Q	9	7	Ø	6.	10	11	12	13	14	15	16	17	18	19	20	01	17	22	23

* Precipitation-only sample

- No sample

79

		AG 13*		0.0	3.0
		AG 1*		0.8	4.3
		AG 13 2.0 2.0 2.0	2.9 3.0 1.58 1.58 1.4	1.4 2.6 0.2 0.8 1.7 2.3	2.3
		AG 10 1.9 2.0	2.5 2.5 1.8 1.8	2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25	2.1
APPENDIX I	TABLE IV	AG 5 1.8 1.8	2.5 2.5 1.65 1.50 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	1.3 1.7 0.2 2.5 1.8 2.5	1.8 3.6
		AG 4 1.9 2.5	2.0	1.55 1.66 1.00 2.3 2.3	2.0 3.2
		AG 3 2.0 2.1 2.2	2.8 2.5 1.5 1.4	1.0 2.2 8 2 8	2.1
		AG 1 2.0 1.0	2.0 2.6 1.5 1.8	222 0011.2 2.60 .744	1.9
	Sulphite (mg/1)	Collection Period 1 2 3	100000 100000	11 12 13 15 17 17 17 17 18	20 21 22

- No sample

* Precipitation-only sample

No 2 sup 9

TABLE V

Nitrogen (mg/l) - The total of kjeldahl, $NO_3 + NO_2$

AG 13*		8		
AG 1*			1.1	
AG 13 2.1	5.4 2.8	- 0.8 0.6 2.3	5.2 6.0	
AG 10 5.8	14.3 1.8 7.1	1.8 3.3 4.7	6.8 1.7 3.0	
AG 5 6.2	5.8 3.4	2.8	9.7 3.7 -	
AG 4 4.2	4.9 1.4 2.2	2.7 - 1.6 8.4	1.6	
AG 3 11.5	3.1 0.3 1.9	- 5.8 4.7	6.3 3.2 9.7	
AG 1	3.2 2.6 2.3	2.4 3.4	4.3 2. 4	sample
Collection Period	N W 4	0 0 0 0 0	10 11 23	 * Precipitation-only - No sample

TABLE VI

Total	Phos	phate (mg/1)
-------	------	---------	-------

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1	.75	.88	.24	. 48	.72	.29		
2	.58	.34	.40	1.10	1.40	1.02		
3	.39	.54	.40	.50	.90	.90		
4	.55	.54	.11	.22	.48	.95		
5	.62	.16	.02	.36	.12	1.44		
6	.08	.27	-212	.15	.26	.04		
7	.07	.04	.04	.25	.08	.10		
8	-13	.04	.14	.80	-6.8	.02		
9	.08	7	.06	.02	7.1	.02		
10	.77	.55	.50	.72	.13	.92		
11	.16	.80	.11	.89	.05	1.40		
12	.95	1.96	.30	.99	.80	1.73		
13	.02	.12	.03	.04	.07	2.00	.07	.03
14	.18	.29	.61	.08	1.06	1.54		
15	.18	.04	.06	.18	.32	.43	.07	.02
15	.10		1919	.13	.11	.13		
17	.09	.07	245	.04	.17	.15		
21	.06	.08	20	- 0	.01	.04	-	ND
23	.22	.60	.20	-	.04	.14	.02	
LJ ALION		1833	MENT					

mitrogen (mg/1) - The total of kjeldahl, NO. + NO.

* Precipitation-only sample

THEFE

- No sample

10 290016

Precipitation-only sample

APPENDIX I

TABLE VII

1) 2 month sample

53								
Chloride (mg/1)								
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4	.53 .56 4.84 2.69	1.60 .96 4.31 2.20	.26 .51 2.69 1.07	.53 1.01 3.77 2.20	1.07 1.37 1.61 .50	.26 .76 1.61 2.16		
5 6 7 8 9	1.07 .53 .26 4.84 .10	1.07 .53 .53 1.61	.10 ND 1.07 .10	.96 1.07 .53 1.61 .10	1.07 1.07 .53 - .10	1.61 .53 .26 1.61 .10		
10 11 12 13 14	.53 .54 ND 2.15 2.05	.53 1.62 3.93 1.08 .32	4.84 .32 .38 .43 .43	ND .75 1.78 .92 .22	.53 .27 2.37 .97 4.20	ND . 49 7.33 2.48	1.40	0.32
15 16 17 19 20	.81 1.19 1.35 - -	.92 .66 .54 2.40 1.00	.54 - 1.30	.59 1.19 .70 - .40	1.29 .81 2.70	.81 .54 2.96 4.70 1.10	.65 - -	.43
21 22 23	ND .53 2.49	.50 1.15 5.49	- .62 1.99	VC_5	ND .89 0.49	ND -	ND - -	013 13+ -36

* Precipitation-only sample

- No sample

MO 530016

APPENDIX I

recipitation-only sample

TABLE VIII

Calcium (mg/1)								
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4	.08 .79 .37 .42	1.25 1.48 2.90 2.00	.57 .98 .49 .37	.09 .64 .49 .44	.57 .58 2.20 1.35	ND .39 .25 .39		
5 6 7 8 9	1.58 1.05 .92 3.20 .16	2.50 1.22 .50 .92	.80 - .50 .75 .32	1.12 1.29 2.55 2.00 .10	2.25 1.15 .62 -	1.35 .63 .71 .88 .10		
10 11 12 13 14	2.15 1.40 1.75 1.60 3.35	2.00 1.08 1.00 .84 2.25	1.70 1.30 .87 1.31 2.10	1.60 .74 .76 1.05 1.55	1.80 2.20 2.65 3.50 3.50	1.60 .83 1.00 .84 2.25	1.25 3.00	1.15 1.55
15 16 17 18 19	1.38 1.40 1.73 2.10 5.30	1.90 2.85 0.59 0.95 0.95	0.50 - 2.00 2.90	0.75 1.55 1.05 2.40 2.10	3.35 2.40 3.00 1.40 1.95	1.55 1.30 1.93 1.90 2.60	0.75 0.54 1.25 ⁽¹⁾	0.66 0.42 0.63 0.72
20 21 22 23	1,57 .58 .36 1.05	0.60 .35 .12 0.36	0.50 .18 0.50	0.39 .28 .34	1,68 1.10 .48 1.60	1,05 .26 0,16	2,05 - 14 0,38	.17 -

TABLE VI

(1) 2 month sample

* Precipitation-only sample

No sample

-

84

- No sample								
			AF	PENDIX I				
				TABLE IX				
<u>Sodium (mg/1</u>)			1.2					
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
IG								
1 2 3 4	.56 .53 .25 .29	1.10 1.33 .52 .29	.84 .53 .25 .10	.59 1.12 .29 .37	1.22 .62 .40 .37	.32 .98 .54 .76		
5 6 7 8 9	.50 11.00 .76 20.00 1.21	.15 12.80 .58 1.30	.15 - .71 1.40 .96	.50 32.50 1.12 2.10 .82	.08 25.00 .52 -	.36 16.80 .55 1.30 .54		
10 11 12 13 14	1.551.055.902.8035.50	1.55 .59 2.05 .80 8.10	22.50 .98 1.55 1.70 6.50	1.25 1.10 3.40 2.15 5.50	1.50 .36 2.58 1.25 17.00	1.45 .83 6.20 3.80 7.40	1.75 14.50	0.88 8.75
15 16 17 18 19	1.20 0.57 1.23 2.45 9.40	0.10 0.75 0.61 1.55 1.35	0.32 - 2.03 3.15	0.94 1.30 0.64 1.15 1.72	1.28 0.66 2.15 1.35 1.90	1.00 0.61 1.86 2.30 4.00	0.34 0.20 3.00 ⁽¹⁾	0.16 0.20 0.72 1.00
20 21 22 23	2.65 .52 .33 1.46	.80 .45 .36 1.46	.74 53 0.97	.80 .21 .70	1.25 .54 .56 .84	1.38 .39 0.46	2.70 .30 .32	.36

(1) 2 month sample

* Precipitation-only sample

- No sample

Biduns King-noireiteiteite

TIV S MONEN 290016

APPENDIX I

			<u>T/</u>	ABLE X				
Potassium (mg/l)								
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4	1.25 1.08 .36 1.10	1.90 .44 .90 .78	.61 .34 .51 .30	.72 1.80 .51 .33	1.25 1.62 .45 .71	.50 1.35 1.35 4.30		0.16 0.20 1.00
5 6 7 8 9	1.80 .44 .39 2.45 .28	.24 .75 .39 .78	.13 - .28 .60 .20	.44 1.51 .91 3.40 .23	.50 .72 .81 -	5.20 1.45 .28 .34 .23		
10 11 12 13 14	.42 .26 3.00 .43 .72	.68 .80 2.70 2.55 .63	4.02 .50 .49 .16 .63	.50 .80 3.80 .34 1.20	.75 .30 .70 .90 .90	.62 1.00 9.40 7.60 2.60	0.22 .24	0.24
15 16 17 18 19	.32 .55 .48 .41 1.05	.50 .34 .26 .54 .50	.16 - .59 3.15	.20 2.50 .43 .34 .24	.36 .26 2.35 .90 .62	.40 .24 .76 .48 .44	.30 .24 3.20 ⁽¹⁾	.16 .08 .36 .18
20 21 22 23	.90 .36 .37 1.2	.30 .36 .71 8.3	.62 .38 1.2	.28 .22 .25	.36 .28 .12 0.34	.36 .18 	1.03 .31 0.42	- .26 -

(1) 2 month sample

TERIE

* Precipitation-only sample

- NO Sampre								
				< 001				
				APPENDIX I				
				TABLEXT				
				THOLE MI				
Magnesium (mg/1)								
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1	.12	.38	.51	.29	.64	.06		
2 3	. 55	.52	.63	.45	.5/	.26		
4	.66	. 41	.41	.43	.87	.80		
5	.50	.83	.34	.44	2.05	1.45		
6	.33	.22	-	.59	1.26	.63		
8	4.90	.00	.36	1.55	2.10	.62		
9	.34	200	.32	.16		.19		
10	.41	.16	.05	.13	1.70	.30		
11	.56	.58	.67	.35	2.35	.58		
13	.75	.51	.45	.36	2.55	1.85	.50	.42
14	1.20	. 43	.88	.57	2.45	1.05	1.00	.26
15	.42	.32	.14	.21	1.55	.46	.16	.10
16 17	.50	.40	1 7020	1.30	1.55	. 48	.15	.12
18	1.18	.57	.82	.80	1.04	1.19	,50	.24
19	1.85	.50	1.82	. 58	1.41	1.80		
20	2.21	.52	.19	.25	2.75	1.05	1.50	
21	.42	.19	- 29	.09	1.25	.22	15	.12
23	1,1	1.6	0.76	VC-2	1.9	0.24	0.34	VG- 134

* Precipitation-only sample

- No sample

A	P	P	F	N	D	T	X	1
n	1	1	1.	11	υ		Λ	

NO SAMPIE

TABLE XII

Heavy Metals (mg/l)

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
Nickel								
10 13	.003 .300	<.002 <.002	.007 <.002	<.002 <.002	<.002 <.002	.002		
Zinc								
10 12 13 21	.096 .063 .030 .096	.076 .044 .025 .068	.760 .340 .110	.041 .130 .160 .040	.160 .072 .092 .072	.057 .045 .062 .032	.190	.071
Lead								
10 12 13 21	.027 .036 <.002 <.002	.016 .025 .004 .004	.009 .002 .004	.008 .010 .007 <.002	<.002 .016 .014 <.002	.018 .032 .010 <.002	.025	.008
Cadmium								
10 12 13 21	<.001 <.001 <.01 .002	<.001 <.001 <.001 .003	.007 .002 .001	<.001 .001 .001 .002	<.001 .001 <.001 .007	<.001 .002 <.001 .001	.031	.060
Copper	Re	285		192	2.122			
10 12 13 21	.016 .007 .030	.008 .009 .009	.017 .003 .012	.002 .004 .014	.002 .005 .006	.011 .007 .028	024	< 001
Chromium	<.001	<.001	1.2		1.001	4.001	.024	
10 13	.003	<.002 <.002	.002 <.002	<.002 <.002	<.002 <.002	<.002 <.002		
Arsenic								
10	.002	.001	.003	<,001	<.001	.007		

No sample

APPENDIX I

TABLE XIII

P.C.B.s (ppb)								
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1	0.06	0.04	0.05	0.01	0.02	0.03		
3	0.05	0.10	0.10	0.07	0.05	0.07		
6	0.02	0.10	0.03	4-1	0.08	0.09		
9	ND	4-37	0.01	ND	-	ND		
13	0.27					0.11	A - C	0.12
14	0.13					0.32	0.15	0.11
16	0.09					0.15	0.10	0.07
* Precipitation-only	v sample							
Na anna 1	, campre							
- No sample			14.00					

SURFACE LOADINGS FOR EACH COLLECTION PERIOD

(Note: dates for collection periods 1-23 listed in these tables are shown in Table 3, p. 26.)

TABLE I

- No samole

	Sul	phate	Loadings	(kg/ha)
--	-----	-------	----------	---------

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	9.34 5.63 11.28 2.21 3.40	8.81 4.88 10.44 5.04 3.58	7.86 5.52 10.12 4.06 4.20	5.45 3.63 7.91 2.23 4.25	10.90 7.41 7.41 1.67	3.78 5.09 11.13 4.82 4.95		
6 7 8 9 10	4.20 2.30 5.93 4.20 3.66	3.10 3.17 4.37 	6.17 6.22 9.53 26.19	5.35 3.48 3.57 4.38 3.20	4.63 3.03 - 6.44	4.37 2.60 1.89 7.26 4.05		0.84
11 12 13 14 15	6.61 4.06 2.64 1.28 3.62	8.41 4.05 13.45 6.04 6.64	7.57 1.83 4.96 4.78 3.70	8.71 3.44 9.49 9.13 4.35	6.96 3.19 4.76 5.29 5.83	6.08 5.64 7.15 4.06 6.24	4.73	4.65
16 17 18 19 20	2.85 1.26 1.13 5.89 8.00	2.75 3.06 5.28 7.99 3.56	4.32	3.80 2.12 1.73 2.89 2.45	3.47 2.80 10.04 7.21	2.80 1.20 3.22 2.38	7.24	
21 22 23	1.92 21.78 3.92	1.44 4.03 3.65	.14.03 1.95	1.56 2.92	2.16 2.98 1.89	1.46	3.20 2.61	0.81

* Precipitation-only sample

- No sample

TABLE II

Sulphite Loadings (kg	<u>/ha</u>)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	2.00 1.80 2.21 2.21 1.02	2.40 1.37 3.67 5.04 1.10	2.49 1.60 4.60 1.40 1.26	2.92 1.06 3.10 0.85 1.40	2.30 1.19 3.70 1.16 1.88	1.62 1.19 4.95 1.68 1.14		
6 7 8 9 10	1.89 0.77 2.10 0.88	1.55 0.72 1.04 - 0.99	1.21 1.79 1.52 1.25	1.65 0.58 0.51 1.65 0.83	1.40 0.95 - 1.04	1.95 0.91 0.63 2.76 0.80		
11 12 13 14 15	1.10 0.42 0.45 0.07 0.60	1.47 0.42 2.76 0.13 0.75	0.47 1.19 0.13 0.84	1.51 0.27 2.21 0.27 0.70	2.09 0.51 1.09 0.06 0.73	1.10 0.40 1.09 0.03 0.79	0.69	0.84
16 17 18 20 21 22	1.14 0.52 0.32 - 1.16 3.59	0.88 1.32 0.52 0.78 0.76 1.82	0.74 1.72 1.63	1.37 1.11 0.58 0.88 - 1.91	0.83 0.37 0.65 - 1.51 2.35	0.95 0.69 0.37 0.81 1.54	5.51	2.43
DELET CONTRACTOR								

* Precipitation-only sample

- No sample

TABLE III

Nitrogen Loadings (kg	g/ha)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	4.97 2.85 5.74 1.46	13.79 2.78 .49 1.30	5.51 4.37 2.58 1.53 2.30	10.05 3.82 4.65 1.79	7.01 10.60 3.36 4.93 1.37	2.10 3.56 6.95 2.50		
6 7	2.00	2.85 2.78	2.13	1.85	2.32	0.62		
8 9 10	2.26 2.64	2.16 4.48	1.11 9.98 -	0.84 2.06 6.10	- 5.04	0.25 3.36 3.00		
11 23	3.70 2.06	3.38 5.24	1.44 2.03	4.30	2.35 1.88	4.85	0-16	
					01015			
	0100 0100 9810							
	0:12							
* Precipitation-only	y sample							
- No sample								

TABLE IV

Phosphate Loadings (k	g/ha)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	0.75 0.52 0.86 0.35 0.25	1.06 0.22 0.88 0.37 0.09	0.31 0.36 0.74 0.08 0.02	0.79 0.73 0.86 0.12 0.20	0.87 1.04 1.67 0.33 0.09	0.24 0.67 2.23 0.55 0.55		
6 7 8 9 10	0.07 0.04 - 0.10 0.49	0.17 0.02 0.02 0.39	0.03 0.10 0.07 0.51	0.10 0.15 0.27 0.02 0.46	0.18 0.04 - 0.10	0.03 0.05 0.01 0.04 0.53		
11 12 13 14 15	0.14 0.27 0.01 0.03 0.16	0.84 0.59 0.15 0.19 0.03	0.10 0.09 0.02 0.32 0.05	1.03 0.16 0.06 0.12 0.16	0.07 0.23 0.05 0.34 0.31	1.14 0.40 0.84 0.22 0.40	0.02	0.01
16 17 21 23	0.08 0.02 0.04 0.19	0,04 0.03 0.32	0.08	0,10 0.02 -	0,06 0.03 0.01 0.03	0.07 0.05 0.03 0.11	0.02	

* Precipitation-only sample

- No sample

No sample

APPENDIX II

TABLE V

Chloride Loadings (kg	g/ha)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	0.53 0.51 10.71 1.70 0.43	1.92 0.62 7.03 1.52 0.59	0.34 0.45 4.95 0.75 0.08	0.88 0.67 6.49 1.17 0.54	1.30 1.02 2.98 0.34 0.80	0.21 0.50 3.98 1.25 0.61		0.12
6 7 8 9 10	0.45 0.13 1.79 0.12 0.33	0.33 0.26 0.74 0.38	ND 0.74 0.12 4.89	0.71 0.31 0.55 0.10 ND	0.75 0.29 0.11 0.39	0.41 0.14 0.68 0.15 0.01		
11 12 13 14 15	0.48 ND 0.71 0.31 0.70	1.70 1.18 1.38 0.22 0.73	0.29 0.12 0.32 0.23 0.48	0.87 0.29 1.46 0.34 0.51	0.38 0.69 0.66 1.35 1.25	0.40 1.69 - 0.35 0.75	0.46 0.56	0.13
16 17 19 20 21	0.68 0.27 - ND	0.33 0.32 1.01 0.37 0.18	1.12	0.91 0.37 0.20	0.45	0.30 1.07 1.32 0.39		
22 23	0.68 2.17	0.75 2.97	0.32 0.78	-	0.63	- 4-		

* Precipitation-only sample

- No sample
TABLE VI

Calcium Loadings (kg/ha)

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	0.08 0.71 0.82 0.27 0.63	1.50 0.96 4.73 1,38 1.38	0.75 0.87 0.90 0.26 0.67	0.14 0.42 0.84 0.23 0.63	0.69 0.43 4.07 0,92 1.69	ND 0.26 0.62 0.23 0.51		
6 7 8 9 10	0,88 0,47 1.19 0.19 1.36	0.76 0.24 0.42 1.42	0.40 0.52 0.38 1.72	0.85 1.48 0.68 0.10 1.03	0.81 0.34 1.33	0.49 0.37 0.37 0.15 0.91		
11 12 13 14 15	1.23 0.49 0.53 0.50 1.19	1.14 0.30 1.08 1.51 1.50	1.16 0.27 0.97 1.11 0.44	0.86 0.12 1.66 2.36 0.65	3.06 0.77 2.38 1.12 3.25	0.67 0.23 0.35 0.32 1.44	0.41 0.45 0.65	0.48 0.22 0.61
16 17 18 19 20	0.80 0.35 0.32 1.27 0.85	1.43 0.35 0.25 0.40 0.22	- 0.64 1.68 0.43	1.18 0.56 0.55 0.71 0.19	1.32 0.51 0.39 1.15 0.67	0.73 0.70 0.31 0.73 0.37	0.31 0.44 1.11	0.24 0.23 0.12
21 22 23	0,37 0.46 0.91	0.13 0.08 0.19	- 0.09 0.20	0.14 0.18 -	0.79 0.36 1.01	0.21	- 0.19 0.34	0.14 _ _

mioride Loadings (Kg/)

* Precipitation-only sample

TABLE

No sample

TABLE VII

Sodium Loadings (kg/ha)

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3	0.56 0.48 0.56	1.32 0.87 0.85	1.10 0.47 0.46	0.97 0.74 0.50	1.48 0.46 0.74	0.26 0.65 1.34		
4 5	0.18 0.20	0.20 0.08	0.07	0.20 0.28	0.25	0.44		
6 7	9.25	7.94	- 0.56	21.47	17.52	13.12		
8 9	7.41 1.45	0.60	0.97	0.71 0.85	-	0.55		
10	0.98	1.10	22.75	0.80	1.11	0.83		
12 13	1.65	0.62	0.48	0.54	0.75	1.43	0.58	0.37
14 15	5.33	5.43 0.08	3.45 0.28	8.37 0.82	5.45	1.04 0.93	2.18 0.29	1.23 0.15
16 17	0.34	0.38	0 23	0.99	0.36	0.34	0.11	0.11
18 19 20	0.37	0.40 0.57	0.65	0.26	0.38	0.37	1.05	0.16
21	0.33	0.30	0.64	0.39	0.50	0.48	1.46	-
22 23	0.42	0.23	0.27	0.37	0.40	0.35	0.38	-
		NIL IN			and the second	Line is		

* Precipitation-only sample

TABLE VIII

Potassium Loadings (kg/ha)

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1	1 25	2 20	0.80	1 10	1 51	0 /1		
1	0.97	0.29	0.80	1 19	1 20	0.89		
4	0.80	1 47	0.94	0.88	0.83	3.34		
4	0.69	0.54	0.21	0.18	0.48	2.50		
5	0.72	0.13	0.11	0.25	0.38	1,98		
		0.00						
6	0.37	0.47	-	1.00	0.50	1.13		
. 7	0.20	0.19	0.22	0.53	0.44	0.15		
8	0,91	0.36	0,41	1.16	-	0.14		
9	0.34	4.08	0.24	0,24	7 24	0.33		
10	0.26	0.48	4.06	0.32	0.58	0.35		
13	0.92	1 03	1 10		0.40			
11	0.23	0.84	0.45	0.93	0.42	0.81		
12	0.84	0.81	0.15	0.61	0.20	2.10	0.07	0 10
13	0.14	3.21	1.15	0.04	0.01	0.36	0.07	0.10
14	0.11	0.42	0.33	0.18	0.25	0.30	0.05	0.15
15	0.20	0.40	0.14	0.10	0.55	0.37	0.20	0.10
16	0 31	0 17	2.90	1 90	0.14	0.13	0.14	0.04
17	0.10	1.53	_	0.23	0.40	0.27		0.13
18	0.06	0.14	0.19	0.08	0.25	0.08	1.12	0.03
19	0.25	0.21	1.83	0.08	0.37	0.12		
20	0.49	0.11	0.53	0.14	0.14	0.13	0.56	
21	0.23	0.13	(- H)	0.09	0.13	0.15		0.21
22	0.47	0.46	0.19	0.13	0.09	6.26	0,40	-
23	1.05	4.49	0.47		0.22	0,57	0,37	

* Precipitation-only sample

IABLE VI

			O COOS AF	PENDIX II				
Magnesium Loadings	(kg/ha)		1 200.0	ABLE IX				
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	0.13 0.50 1.02 0.42 0.20	0.46 0.34 0.98 0.28 0.46	0.67 0.56 1.16 0.30 0.29	0.47 0.30 0.71 0.22 0.25	0.78 0.42 1.61 0.59 1.54	0.05 0.17 1.11 0.46 0.55		<010008
6 7 8 9 10	0.28 0.38 1.81 0.41 0.26	0.14 0.32 0.35 - 0.11	0,30 0.25 0,38 0.05	0.39 0.70 0.53 0.17 0.08	0.88 1.14 1.26	0.49 0.32 0.20 0.28 0.17		
11 12 13 14 15	0.49 0.49 0.25 0.18 0.36	0.61 0.35 0.65 0.29 0.26	0.60 0.20 0.33 0.47 0.13	0.41 0.12 0.56 0.87 0.18	3.27 1.22 1.74 0.78 1.51	0.47 0.46 0.78 0.15 0.43	0.17 0.15 0.14	0:000 0.18 0.04 0.09
16 17 18 19 20	0.29 0.19 0.18 0.44 1.19	0.20 0.20 0.15 0.21 0.19	 0.26 1.06 0.16	0.99 0.24 0.18 0.20 0.12	0.85 0.38 0.29 0.83 1.10	0.27 0.30 0.19 0.50 0.37	0,09 0.18 0.81	0.07 0.17 0.04
21 22 23	0.27 0.29 0.96	0.07 0.21 0.86	0.15 0.30	0.04 0.16	0.90 0.36 1.20	0.18	0.19 0.30	0.10
* Precipitation-on	ly Me I							

- No sample

TABLE X

Heavy Metal Loading	s (kg/ha)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
Nickel								
10 13	0.0019 0.0991	<0.0014 <0.0026	0.0071 <0.0015	<0.0013 <0.0032	<0.0015 <0.0014	0.0011 0.0013		
Zinc								
10 12 13 21	0.061 0.018 0.010 0.062	0.054 0.013 0.032 0.025	0.768 0.106 0.081	0.026 0.021 0.253 0.016	0.119 0.021 0.063 0.052	0.033 0.010 0.026 0.026	0.122	0.058
Lead								
10 12 13	0.017 0.010	0.011 0.008 0.005	0.009 0.0001 0.003	0.005 0.002 0.011	<0.0015 0.005 0.010	0.010 0.007 0.004	0.17	
21	<0.0013	0.001	-	<0.0008	<0.0014	<0.0016	0.016	0.006
Cadmium								
10 12	<0.0006 <0.0003	<0.0007 <0.0003	0.007	<0.0006 0.0002	<0.0007 0.0003	<0.0007		
13 21	<0.0033 0.0013	<0.0013 0.0011	0.0007	0.0016	<0.0007	<0.0004	0.020	0.049
Copper								
10 12	0.010 0.002	0.006 0.003	0.017 0.001	0.0013 0.001	0.0015 0.0015 0.004	0.006 0.002 0.012		
21	<0.0006	<0.0004	-	<0.0004	<0.0007	<0.0008	0.015	<0.0008
Chromium								
10 13	0.002 0.020	<0.0014 <0.0026	0,002 <0.0015	<0.0013 <0.0032	<0.0015 <0.0014	<0.0011 <0.0008		
Arsenic								
10	0.001	0.0007	0.003	<0.0006	<0.0007	0.004		

* Precipitation-only sample - No sample

APPENDIX II

TABLE XI

P.C.B.s (kg/ha)

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1	.00006	.00005	.00007	.00002	.00002	.00002		
3	.00011	.00016	.00018	.00012	.00009	.00017		
6	.00002	.00006	.00001	-	.00006	.00007		
9	ND		.00001	ND		ND		
13	.00009					.00005		.00005
14	.00002					.00004	.00002	.00002
16	.00005					.00008	.00006	.00004

100a

- * Precipitation-only sample
- No sample

SURFACE LOADINGS OF PARAMETERS (g/ha/d)

(Note: Dates for collection periods 1-23 listed in these tables are shown in Table 3, p. 26.)

TABLE I

Sulphate Loadings (g/h	<u>a/d)</u>							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	333.6 156.4 313.3 63.1 87.2	314.6 135.6 290.0 144.0 91.8	163.8 153.3 281.1 116.0 107.7	113.5 100.8 219.7 63.7 109.0	389.3 205.1 205.8 47.7	135.0 141.4 309.2 137.7 126.9		
6 7 8 9 10	144.8 71.9 191.3 210.0 89.7	106.9 99.1 141.0 - 150.7	192.8 200.6 476.5 638.8	184.5 108.8 115.2 219.0 78.0	159.7 94.7 - 157.1	150.7 81.2 61.0 363.0 98.8		
11 12 13 14 15	236.1 145.0 97.8 40.0 164.6	300.4 144.6 498.2 188.7 301.8	270.4 65.4 183.7 149.4 168.2	311.1 122.9 351.4 285.3 197.7	248.6 113.9 176.3 165.3 265.0	217.1 201.4 264.8 126.9 283.6	215.0	211.4
16 17 18 19 20	86.4 40.6 38.9 178.5 279.9	83.3 98.7 182.1 210.3 148.3	- 149.0 71.7	115.2 68.4 59.7 76.1 102.1	105.2 96.6 264.2 300.4	84.8 41.4 166.2 82.1	249.7	
21 22 23	71.1 751.0 93.3	53.3 139.0 84.9	- 483.8 45.3	57.8 100.7 -	80.0 102.8 45.0	27.9	110.3 62.1	30.0

* Precipitation-only sample

- No sample

TABLE II

Sulphite Loadings (g/h	na/d)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 2 3 4 5	71.4 50.0 61.4 63.0 26.2	85.7 36.1 101.9 54.3 28.2	51.9 44.4 127.8 40.0 32.3	60.8 29.4 86.1 24.3 35.9	82.1 33.1 102.8 33.1 48.2	57.9 33.1 137.5 48.0 29.2		
6 7 8 9 10	65.2 24.1 105.0 21.5	53.4 22.5 33.6 24.2	43.1 39.0 89.5 37.1	56.9 18.1 16.4 82.5 20.2	48.3 29.7 25.4	67.2 28.4 20.3 138.0 19.5		
11 12 13 14 15	39.3 15.0 16.7 2.2 27.3	52.5 15.0 102.2 4.1 34.1	44.6 16.8 44.1 4.1 38.2	53.9 9.6 81.8 8.4 31.8	74.6 18.2 40.4 1.9 33.2	39.3 14.3 40.4 0.9 35.9	31.4	38.2
16 17 18 20 21 22	34.6 16.8 11.0 43.0 123.8	26.7 42.6 17.9 32.5 28.1 62.8	25.5 71.7 56.2	41.5 35.8 20.0 36.7 65.9	25.1 11.9 22.4 - 55.9 81.0	28.8 22.3 12.7 27.9 57.0	190.0	90.0

* Precipitation-only sample

- No sample

INGLE III

TABLE III

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13
1 2 3 4	177.5 79.2 159.4 41.7	344.8 77.2 13.6 37.1	114.8 121.4 71.7 43.7	209.4 106.1 129.2 51.1	175.3 294.4 93.3 140.9	75.0 98.9 193.1 71.4		
5 6 7 8	69.0 53.4 -	98.3 86.9 69.7	59.0 66.6 35.8	63.8 68.8 27.1	35.1 80.0 80.6	21.4 32.8 8.1		
9 10 11 23	113.0 64.4 132.1 49.1	109.3 120.7 121.9	499.0 - 51.4 47.2	103.0 148.3 153.6	122.9 83.9 44.8	168.0 73.2 173.2		
MEAN	93.9	103.0	110.9	105.6	115.1	91.5		
- No sample			51.9 44.94 127.6					

* Precipitation-only sample

- No sample

TABLE IV

Precipitation-only sample

Phosphate Loadings (g/ha/d)

Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	26.8 14.4 23.9 10.0 6.4	37.9 6.1 24.4 10.6 2.3	6.5 10.0 20.6 2.3 0,5	16.5 20.3 23.9 3.4 5.1	31.1 28.9 46.4 9.4 2.3	8.6 18.6 61.9 15.7		
6 7 8 9 10	2.4 1.2 5.0 11.9	5.9 0.6 0.6 9.5	0.9 3.2 3.5 12.4	3.4 4.7 1.0 11.2	6.2 1.2 - 2.4	1.0 1.6 0.3 2.0 12.9		
11 12 13 14 15	5.0 9.6 0.4 0.9 7.3	30.0 21.1 5.6 5.9 1.4	3.6 3.2 0.7 10.0 2.3	36.8 5.7 2.2 3.8 7.3	2.5 8.2 1.8 10.6 14.1	40.7 14.3 6.9 18.2	0.8	- 0.8
16 17	2.4 0.6	1.3	-	3.0 0.6	1.8 1.0	2.1 1.6		
21 23	1.5 4.5	1.1 7.4	1.9	10274	0.4 0.7	1.1 2.6	0.5	
21	13878							

* Precipitation-only sample

- No sample

TABLE V

<u>Chloride Loadings (g</u>	<u>/ha/d</u>)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	18.9 14.2 48.6 11.0	68.6 17.2 43.4 15.1	7.1 12.5 21.4 2.1	18.3 18.6 - 33.4 13.8	46,4 28.3 9.7 20.5	7.5 13.9 35.7 15.6		
6 7 8 9 10	15.5 4.1 57.7 6.0 8.0	11.4 8.1 23.9 9.3	0 23.9 6.0 119.3	24.5 9.7 17.7 5.0 0	25.9 9,1 - 5.5 9.5	14.1 4.4 21.9 7.5 0		
11 12 13 14 15	17,4 0 26,3 9.7 31.8	60.7 42.1 51.1 6.9 33.2	10.4 4.3 11.8 7.2 21.8	31,1 10,4 54,1 10,6 23,2	13.6 24.6 24.4 42.2 56.8	14.3 60.4 10.9 34.1	17.0 25.5	4.8 18,2
16 17	20.6 8.7	10.0 10.3	-	27.6 11.9	13.6	9.1 34.5		
19 20	10°2 53°2	26.6 15.4	46.7	8.3	41.8	40.0 13.4		
21 22 23	- 23.4 51.7	6.7 25.9 69.1	- 11.0 18.1	1.1.2	21.7	48 P F F F F F F F F F F F F F F F F F F		

(preuro roscinos (alusia)

* Precipitation-only sample

TABLE VI

ALSCIDICALION-OUCH 25

Calcium Loadings (g/ha/d)

AG 13*						17.8 6.7 28.2	7.0 7.3	1	5.2
AG 1*						15.2 14.0 29.0	9.2	38.3	- 6.6 8.1
AG 13	7.2	13.1	16.9 11.6 11.9	7.5 22.2	23.9 8.2	13.0 10.0 65.4	22.1 22.6 10.7	12.8	7.8 - 2.9
AG 10	24.6 11.9 113.1	26.343.3	27.9 10.6	32.4	109.3 27.5	88.2 35.0 147.7	40.0 16.4 13.4	27.9	29.3 12.4 24.1
AG 5	2.9 11.7 23.3	6.6	29.3 46.2 21.9	5.0 25.1	30.7	61.5 73.8 29.6	35.8 18.1 19.0	7.9	5.2
AG 4	15.6 24.2 25.0	7.4	- 12.5 16.8	19.0	41.4	35.9 34.7 20.0	22.1	17.9	3.1 4.7
AG 3	53.6 26.7 131.4	35.4	26.2 7.5 13.6	34.6	40.7	40.0 47.2 68.2	43.3 11.3 8.6	9.2	4.8 4.4
AG 1	2.9 19.7 22.8	7.7	30.3 14.7 38.4	9.5 33,2	43.9	19.6 15.6 54.1	24.2 11.3 11.0 38.5	29.3	13.7 15.9 21.7
Collection Period	- 0 6	040	9 ~ 8	9 01	11 12	13 14 15	16 17 18	20	21 22 23

* Precipitation-only sample

- No sample

107

]	TABLE VII				
Sodium Loadings (g/ha	<u>a/d</u>)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	20.0 13.3 15.6 5.1 5.1	47.1 24.2 23.6 5.7 2.0	22.9 13.1 12.8 2.0 3.3	20.2 20.6 13.9 5.7 7.2	52.9 12.8 20.6 7.1	9.3 18.0 37.2 12.6 3.6		
6 7 8 9 10	12.2 72.5 23.9	8.8 19.4 26.8	17.5 31.3 57.0	20.3 22.9 42.5 19.5	8.7 27.1	9.1 17.7 39.0 20.2		
11 12 13 14 15	32.9 58.9 34.1 - 46.8	22.1 22.1 38.2 3.6	31.1 17.1 46.7 12.7	45.7 19.3 	17.9 26.8 31.5 56.4	23.9 51.1 59.3 32.5 42.3	20.6 13.1	13.4 37.8 6.7
16 17 18 19 20	10.3 8.1 12.8 68.5 49.3	11.5 11.9 13.8 15.0 12.5	- 22.4 48.2 26.7	30.0 10.9 9.0 15.5 16.3	10.9 11.9 13.1 29.5 20.8	10.3 21.6 12.8 33.9 16.6	3.4 35.0 50.3	3.4 16.9 5.3 10.7
21 22 23	12.2 14.5 30.2	5.9 7.9 18.4	- 9.3 8.8	3.0 12.8	14.4 13.8 12.6	11.9	13.1	ve 15.

Calcium Loadings (g/ha/d)

- " Precipitation-only sample
- * Precipitation-only sample
- No sample

			<u>TA</u>	BLE VIII				
Potassium Loadings (g	<u>/ha/d</u>)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
1 2 3 4 5	44.6 26.9 22.2 19.7 18.5	81.4 8.1 40.8 15.4 3.3	16.7 8.3 26.1 6.0 2.8	24.8 33.1 24.4 5.1 6.4	53.9 33.3 23.1 13.7 9.7	14.6 24.7 92.8 71.4 50.8		
6 7 8 9 10	12.8 6.2 29.4 17.0 6.3	16.2 5.9 11.6 11.7	6.9 13.2 12.0 99.0	34.5 16.6 37.4 12.0 7.8	17.2 13.8 14.2	39.0 4.7 4.5 16.5 8.5		
11 12 13 14 15	8.2 30.0 5.2 3.4 12.7	30.0 28.9 121.1 13.1 18.2	16.1 5.4 45.6 10.3 6.4	33.2 21.8 20.0 57.2 8.2	15.0 7.1 22.6 9.1 15.9	28.9 77.1 118.5 11.2 16.8	2.6 1.1 12.0	3.7 <0.2 6.6
16 17 18 19 20	9.4 3.2 2.1 7.6 16.9	5.1 49.4 4.8 5.5 4.6	- 6.6 48.2 22.1	57.6 7.4 2.8 2.1 5.8	4.2 12.9 8.6 9.7 5.8	3.9 8.7 2.7 3.6 4.5	4.1 18.4 19.3	1.21 4.2 1.0
21 22 23	8.5 16.2 25.0	4.8 15.9 104.4	6.6 10.9	3.3 4.5 -	4.8 3.1 5.2	5.6 13.6	13.8 8.8	7.8

* Precipitation-only sample

- No sample

F
2
B
2
~
0
-
S
2
2
21
0
9
-
E
1
in
ail
E
5
m
5

llection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13 ⁴
	N G	16 1	14 0	0.0	0 27 0	а Г В		
- 01 0	13.9	9.4	15.6	8.3	11.7	4.7		
n 4	28.3 12.0	2.12	32.5C 8.6	6.3	16.9	13.1		
5.	5.1	11.8	7.4	6.4	39.5	14.1		
Y	0 7	4 8	1	13.4	30.3	16.9		
2	11.9	10.0	9.4	21.9	35.6	9.4		
. ∞	58.4	11.3	8.1	17.1	y L y R	6.4		
6	20.5		19.0	8.5	1	14.0		
10	6.3	2.7	1.2	1.9	30.7	4.2		
11	17.5	21.8	21.4	14.6	116.8	16.8		
12	17.5	12.5	7.1	4.3	43.6	16.4		
13	9.3	24.1	12.2	20.7	64.4	28.9	5.9	6.5
14	5.6	9.1	14.7	27.2	24.4	4.7	4.6	1.1
15	16.4	11.8	5.9	8.2	68,6	19.6	6.2	4.2
16	8.8	6.1		30.0	25.7	8.2	2.6	2.0
17	6.1	6.4	I	7.7	12.2	9.7	I	5.3
18	6.2	5.2	9.0	6.2	10.0	6.6	3.0	1.3
19	13.3	5.5	27.9	5.3	21.8	15.2		
20	41.0	7.9	6.7	5.0	45.8	12.8	27.9	1
21	10.0	2.6	101	1.5	33.3	6,7	ı	3.7
22	10.0	7.2	5.2	5.5	12.4	1	6.6	-C. 34
23	22.9	20.0	7.0	1	28.6	4.3	7.1	ı

110

ADDENDIY III

* Precipitation-only sample

TABLE X

Heavy Metal Loadings	<u>(g/ha/d</u>)							
Collection Period	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 1*	AG 13*
Nickel								
10	.04	<.03	.17	<0.03	<.03	.03		
Zinc	5.70	<.03	1.03	<.03	<.03	.05		
10 12 13	1.45 0.63 0.37	1.31 0.47	(18.90) 3.80 3.12	0.64	2.88	0.80		
21	2.30	.93	-	.59	1.93	.96	4.52	2.15
Lead								
10 12 13 21	.40 .36 <.03 <0.05	.27 .27 .20 .05	.22 .02 .11	.12 .06 .42 <0.03	<.03 .16 .37 <0.05	.25 .26 .16 0.06	0.59	0.22
Cadmium								
10 12 13 21	<.02 <.01 <.12 .05	<.02 <.01 <.05 .04	.17 .02 .03	<.02 .01 .06 .03	<.02 .01 <.02 .19	<.01 .02 <.02 .03	.74	1.81
Copper								
10 12 13 21	.24 .07 .37 <0.02	.14 .10 .04 <0.02	.41 .03 .34	.03 .02 .84 .02	.03 .05 .16 <0.03	.15 .06 .45 <0.03	0.56	<0.03
Chromium								
10 13 Arsenic	.05 .73	<.03 <.09	.05 <.06	<.03 <.11	<.03 <.05	<.03 <.03		
10	.03	.02	.07	<.02	<.02	.10		
* Precipitation-onl	y sample	- No	sample					

				.07	COS					
				A 90° s	APPENDIX III					
					TABLE XI					
CTANOTURE										
P.C.B. Loadings (g/h	a/d)									
Collection Period	AG 1		AG 3	AG 4	AG 5	AG 10	AG 13	3 AG 1 ³	* AG 13*	
Cobhet 1	.0022		.0013	.0023	.0006	.0005	.000	9		
3	.0031		.0045	.0051	.0033	.0026	.0048	8		
6	.0006		.0021	.0003		.0021	.002	4		
9	ND			.0006	ND		ND			
13	.0032						.001	9	.0019	
14	,0006						.001	2 ,000	7.0005	
16	.0016						.002	5 .001	7.0011	
* Precipitation-onl	y sample	19.12	1730							
Zinc 660										

KOLMOGOROV-SMIRNOV ONE SAMPLE TEST FOR NORMALITY

TABLE I

Kolmogorov-Smirnov Test for Normality of Conductivity

Theoretic	al Cumula	tive Proport	ion		Observed	Cumulative	Proportion	by Watershed	
(z value)				AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
	<-2z <-1z < 0 <+1z <+2z >+2z	.023 .159 .500 .841 .977 1,000		.000 .087 .696 .783 .913 1.000	.000 .000 .767 .857 .952 1.000	.000 .000 .705 .824 .941 1.000	.000 .091 .636 .818 .909 1.000	.000 .050 .600 .800 .900 1.000	.000 .045 .636 .909 .909 1.000
	Sample S Mean Standard D _{max}	ize Deviation		23 51.2 24.8 .196*	21 60.7 28.6 .262*	17 55.9 49.6 .205*	22 47.1 23.0 .136	20 70.8 36.9 0.100	22 69.2 66.0 .136
Theoretic	al Cumula	tive Proport	ion		Logarithmic	: Transform	ed Cumulativ	e Proportions	
(z value)				AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
	<-2z <-1z < 0 <+1z <+2z >+2z	.023 .159 .500 .841 .977 1,000		.000 .173 .521 .782 .913 1.000	.000 .143 .521 .854 .952 1.000	.000 .058 .588 .824 .941 1.000	.000 .227 .545 .727 .909 1.000	.050 .100 .600 .800 1.000 1.000	.000 .136 .545 .909 .909 1.000
	Mean Standard D _{max}	Deviation		1.667 0.190 .064	1.749 0.166 .021	1.632 0,304 .093	1.625 0.208 .117	1.797 0.216 .100	1.722 0.299 .068

* Significant at 0.05 level

TABLE II

Kolmogorov-Smirnov Test for Normality of Sulphate Concentrations

Theoretical Cumulative Proportions				Observed	Cumulative F	Proportions	by Station	
(z value)	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 7a	AG 4b
<-2z .023 <-1z .159 < 0 .500 <+1z .841 <+2z .977 >+2z 1.000 Sample Size Mean	.000 .000 .636 .909 .954 1.000 22 163.8	.000 .091 .636 .772 .954 1.000 22 172.3	.000 .053 .736 .789 .948 1.000	.000 .048 .619 .714 1.000 1.000 21 151.8	.000 .111 .555 .833 .945 1.000 18 162.3	.000 .091 .636 .864 .954 1.000 21 144.0	.000 .050 .600 .900 .900 1.000 20 186.6	.052 .210 .526 .842 .947 1.000 21 2.256
D max	.159	.136	.236*	.128	89.3	92,2 .136	121.5	0,243
					or an			

* Significant at 0.05 level

Observed Cumulative Proportions by Watershed

a AG 4 without extreme high value

b log of AG 4 measurements

LABLE III

APPENDIX IV

TABLE III

Kolmogorov-Smirnov Test for Normality of Sulphite Data

Theoretical Cumulativ Proportions	/e			Observed C	umulative Pr	roportions b	y Watershed	
(z value)	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 13a	AG 13b
<-2z .023	.000	.000	.000	.000	.000	.000	.000	.055
<-1z .159	.053	.100	.111	.105	.111	.050	.000	.055
< 0 .500	.631	.600	.667	.631	.611	.700	.736	.500
<+1z .841	.894	.850	.778	.842	.833	.850	.897	.977
<+2z .977	.947	.950	1.000	.947	.944	.900	1.000	1.000
>+2z 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Sample Size	19	20	18	19	18	20	19	20
Mean	41.6	42.9	47.0	41.6	42.6	42.9	42.1	1.4646
Standard Deviation	31.9	27.3	23.5	29.4	27.2	36.3	32.9	0.4729
D _{max}	.131	.100	.167	.131	.111	.200*	.236*	.104

Observed Cumularive Proportions by Station

a AG 13 less extreme value

b AG 13 after log transformation

* Significant at 0.05 level

		IA AI	PPENDIX IV				
			TABLE IV				
Kolmogorov-Smirnov Test	for Norma	lity of N	itrogen_Data	a0000			
Watershed	Theory	AG 1	AG 3	AG 4	AG 5	AG 10	AG 1
	<u></u>	167	.176	(cumulative	e proportions	() 532	176
p less than -2z	.023	.000	.000	.000	.000	.000	.00
- 2z < p < -z	.159	.111	.125	.000	.222	.000	.22
-z < p < 0	.500	.667	.500	.625	.444	.667	.55
0 < p < + z	,841	.888	.750	,875	.778	.889	.66
+ z < p < + 2z	.977	1,000	1.000	1,000	1.000	.889	1.00
p > + 2z	1,000	1.000	1.000	1.000	1.000	1.000	1.00
Mean (x)		86	91	62	95	108	9
Standard Deviation (s)		41	27	26	44	78	7
D		,167	.099	.159	.064	.167	.17
lija X							
icant at 0.05 level							

z x-x/s

*

Note: all D_{max} are also less than .223 the critical value for the 0.20 level of significance as well.

TABLE V

Kolmogorov-Smirnov Test for Normality of Phosphate Data

Theoretica	al Cumulative Proportions		Observed	Cumulative	Proportions b	by Watershed	
(z value)		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
	<-2z .023 <-1z .159 < 0 .500 < +1z .841 < +2z .977 > +2z 1.000	.000 .000 .667 .888 .888 1.000	.000 .000 .706 .823 1.000 1.000	.000 .000 .687 .812 .937 1.000	.000 .000 .733 .867 .933 1.000	.000 .000 .706 .823 .941 1.000	.000 .000 .588 .882 .941 1.000
	Sample Size Mean Standard Deviation D _{max}	18 7,46 7.71 .167	17 10.10 11.31 .206*	16 8,21 9.00 .187	15 7.90 9.62 .233*	17 9.94 13.24 .206*	17 12.55 16.45 .188
Theoretic	al Cumulative Proportions		Logarithmi	c Transform	ed Cumulative	Proportions	
(z value)	<-2z .023 <-1z .159 < 0 .500	AG 1 .000 .167 .388	AG 3 .000 .176 .352	AG 4 .000 .125 .625	AG 5 .067 .200 .667	AG 10 .000 .235 .529 823	AG 13 .058 .176 .471 .882
	<+1z .841 <+2z .977 >+2z 1.000	.875 1.000 1.000	1.000 1.000	1.000	1.000	1.000	1.000
	Mean Standard Deviation D _{max}	.614 .553 .112	.692 .597 .148	,697 ,491 ,125	.605 .517 .167	.675 .597 .076	.732 .661 .041

* Significant at 0.05 level

TABLE VI

Kolmogorov-Smirnov Test for Normality of Chloride Data

Theoretical Cumulati Proportions	ve			Observed C	umulative P	roportions l	by Watershed	<u>1</u>
(z value)	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 4a	AG 4b
<-2z .023 <-1z .159 < 0 .500 <+1z .841 <+2z .977 >+2z 1.000	.000 .055 .511 .833 .944 1.000	.000 .050 .600 .800 .950 1.000	.000 .000 .812 .937 .937 1.000	.000 .133 .667 .933 .933 1.000	.000 .250 .625 .750 .938 1.000	.000 .063 .625 .813 .938 1.000	.000 .133 .466 .866 .933 1.000	.050 .176 .471 .882 .941 1.000
Sample Size Mean Standard Deviation D _{max}	18 20.8 16.8 0.111	20 27.7 21.0 .100	16 25.4 28.1 .312*	15 16.5 13.5 .167	16 24.7 15.0 .125	16 19.9 15.6 .125	15 19.1 13.1 .047	16 1.2792 0.3719 .042
4452 323 4452 941 412 941 500 500 501 500 500 500 500 500 500 50		- 225 - 204 - 253 - 253 - 253 - 253				258 258 258 250 2613 260 2000		
a AG 4 less extreme	high value							
b AG 4 after log tr	ransformation							

* significant at 0.05 level

oserved Comulative Proportions by Watershed

IVEL AIT

YEBEMDIX IA

TABLE VII

Kolmogorov-Smirnov Test for Normality of Calcium Data

Theoretical Cumulativ Proportions	e			Observed	Cumulative	Proportions b	y Watershed	
(z value)	— AG 1	AG 3	AG 4	AG 5	AG 10	AG 13	AG 10a	AG 10b
<-2z .023 <-1z .159 < 0 .500 <+1z .841 <+2z .977 >+2z 1.000	.000 .136 .591 .818 .954 1.000	.000 .000 .523 .904 .952 1.000	.000 .210 .578 .736 1.000 1.000	.000 .200 .600 .850 .950 1.000	.000 .000 .800 .800 .950 1.000	.000 .048 .619 .952 .952 1.000	.000 .000 .578 .842 1.000 1.000	.000 .150 .650 .800 1.000 1.000
Sample Size Mean Standard Deviation	22 22.4 12.9 .091	21 31.8 29.3 .159	19 22.0 12.4 .105	20 24.7 18.7 .100	20 43.9 38.4 .300*	21 16.0 12.9 .119	19 38.2 30.6 .159	20 1.328 0.326 .150
liαχ								
* Significant at 0.0	5 level							
a AG 10 less extreme	value				NICO			
b AG 10 after log tr	ansformation							

TABLE VIII

Kolmogorov-Smirnov Test for Normality of Sodium Data

Theoretic	Theoretical Cumulative Proportions			Observed	Cumulative	Proportions	by Watershed	
(z value))		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
	<-2z <-1z < 0 <+1z <+2z >+2z	.023 .159 .500 .841 .977 1.000	.000 .105 .579 .842 .947 1.000	.000 .210 .526 .894 .947 1.000	.000 .125 .500 .813 .938 1.000	.000 .167 .611 .778 1.000 1.000	.000 .059 .647 .882 .882 1.000	.000 .048 .619 .809 .952 1.000
	Sample Si: Mean Standard I D _{max}	ze Deviation	19 28.0 21.6 .079	19 17.5 11.6 .051	16 25.5 14.8 .044	18 20.3 14.9 .111	17 22.1 14.3 .147	21 23.4 15.4 .119
All D _{max}	are not s	ignificant at 0.05 level	000 1 756 818 918 181 181 181					

Observed Cumulative Proportions by Materined

sulmogorov-Smirney Test for Sormality of Potassium Data

11

TABLE IX

WEBERDIX IA

TABLE IX

Kolmogorov-Smirnov Test for Normality of Potassium Data

	Observed	Cumulative	Proportions	by Watershed	
AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
.000 .181 .500 .818 .954 1.000	.000 .000 .667 .857 .904 1.000	.000 .000 .684 .894 .947 1.000	.000 .000 .600 .900 .900 1.000	.000 .000 .650 .900 .950 1.000	.000 .000 .681 .818 .954 1.000
22 15.3 10.9 .028	21 27.8 34.1 ,167	19 23.5 23.1 ,184	20 18.3 17.6 ,159	20 15.0 11.7 .159	22 28.3 33.1 .181
t at 0.05 leve	828. 1.005 1.005 1.005				
1000	-000				
	AG 1 .000 .181 .500 .818 .954 1.000 22 15.3 10.9 .028 t at 0.05 leve	AG 1 AG 3 .000 .000 .181 .000 .500 .667 .818 .857 .954 .904 1.000 1.000 22 21 15.3 27.8 10.9 34.1 .028 .167	Observed Cumulative AG 1 AG 3 AG 4 .000 .000 .000 .181 .000 .000 .500 .667 .684 .818 .857 .894 .954 .904 .947 1.000 1.000 1.000 22 21 19 15.3 27.8 23.5 10.9 34.1 23.1 .028 .167 .184	Observed Cumulative Proportions AG 1 AG 3 AG 4 AG 5 .000 .000 .000 .000 .181 .000 .000 .000 .500 .667 .684 .600 .818 .857 .894 .900 .954 .904 .947 .900 1.000 1.000 1.000 1.000 15.3 .27.8 .23.5 .18.3 .028 .167 .184 .159 t at 0.05 level	Observed Cumulative Proportions by Watershed AG 1 AG 3 AG 4 AG 5 AG 10 .000 .000 .000 .000 .000 .181 .000 .000 .000 .000 .500 .667 .684 .600 .650 .818 .857 .894 .900 .900 .954 .904 .947 .900 .950 1.000 1.000 1.000 1.000 1.000 .22 .21 .19 .20 .20 .5.3 .27.8 .23.5 .18.3 .15.0 .0.9 .4.1 .23.1 .17.6 .11.7 .028 .167 .184 .159 .159

SO INDUCTOV - SULFNOV IESE TOT NOTBELLEY OF SOCIUM DELE

APPENDIX 1V

TABLE X

Kolmogorov-Smirnov Test for Normality of Magnesium Data

Theoretica	al Cumula	tive Proportions	- Charles		Observed	Cumulative	Proportions	by Watershed	
(z value)				AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
	<-2z <-1z < 0 <+1z <+2z >+2z	.023 .159 .500 .841 .977 1.000		.000 .000 .636 .909 .954 1.000	.000 .095 .571 .809 .952 1.000	.000 .052 .631 .789 .947 1.000	.000 .050 .600 .800 1.000 1.000	.000 .100 .650 .850 .950 1.000	.000 .048 .476 .904 .904 1.000
	Sample S Mean Standard D _{max}	ize I Deviation		22 15.7 12.9 .159	21 11.2 7.0 .071	19 11.7 6.5 .131	20 13.1 10.0 ,109	20 36.6 24.6 .130	21 11.9 7.8 .111

None of the D_{max} are significant at 0.05 level

VEDENDIX IA

X JIBIL X

olundonov-Superior 1828 for Monthlight of Marchine Par

APPENDIX V TIME SERIES TESTS ** Yes = significant at 0.05 level

APPENDIX V

Significant at 0.05 leve

TABLE I

Least Squares Trend Line Statistics by Watershed for Specific Conductivity

Statistic		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	1.11	0.89	4.63	0.20	1.41	1.09
Standard Error Slope	S	0.82	0.95	1.06	0.79	1.24	2.26
Intercept	a	54.90	60.17	59.46	46.88	69.64	69.76
Correlation	r	0.21	0.20	0.58	0.06	0.26	0.11
t-test	tr	1.01	0.92	2.80*	0.25	1.13	0.48
t-test	tm	1.35	0.90	2.78*	0.25	1.13	0.48
Nesseebe	~III	21	19	15	20	18	20
Runs Test Significance		no	no	no	no	no	no

C. S. marker

$$t_{\rm m} = \frac{\rm m-0}{\rm S_{\rm m}} \qquad t_{\rm r} = \frac{\rm r\sqrt{N-2}}{\sqrt{1-r^2}}$$

Trend Equation Format $Y = a \pm mx$ x = time interval

* Significant at 0.05 level

TABLE II

Least Squares Trend Line Statistics by Watershed for Sulphate

<u>Statistic</u>		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	-6.5	-3.8	1.0	-5.7	-5,2	-5.1
Standard Error Slope	S	4.7	3.6	5.7	3.3	2.6	2.0
Intercept	a	130.3	172.9	187,8	150.5	141.9	162.6
Correlation	r	-0.49	-0.23	0.05	-0,36	-0.36	-0.40
t-test	t.	-2.46*	-1.10	0.23	-1.71	-1.72	-1.96
t-test	r t_	-1.39	-1.06	+0.18	-1.70	-61.78	-1.96
Nuceucebo	m	22	22	19	21	19	22
Runs Test Significance	** 2	no	no	no	no	no	no

55001561

 $t_{m} = \frac{m-0}{S_{m}} \qquad t_{r} = \frac{r\sqrt{N-2}}{\sqrt{1-r^{2}}}$

Trend Equation Format $Y = a \pm mx$ x = time interval

* Significant at 0,05 level

** Yes = signficant at 0.05 level

TABLE III

Least Squares Trend Line Statistics by Watershed for Sulphite

Statistic		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	-0.53	-1.42	1.01	-0.79	-2.28	-1.17
Standard Error Slope	Sm	1.13	0.95	0.95	1.15	0.97	1.32
Intercept	a	41.46	43.06	45,86	41.40	41.79	42.37
Correlation	r	-0.10	-0.33	0,25	-0.16	-0.32	-0.27
t-test	tr	-0,42	-1.48	1.07	-0,68	-1.70	-1.14
t-test	t	-0.46	-1.48	1.06	-0.68	-1.72	-1.20
N	111	19	20	18	19	18	20
Runs Test Significance**		no	no	no	no	*no	no

$$t_{m} = \frac{m-0}{S_{m}} \qquad t_{r} = \frac{r\sqrt{N-2}}{\sqrt{1-r^{2}}}$$

Trend Equation Format $Y - a \stackrel{+}{=} mx \qquad x = time interval$

- * Significant at 0.05 level
- ** Yes = significant at 0.05 level

127

** Yes - significant at 0.05 level

APPENDIX V

TABLE IV

Least Squares Trend Line Statistics by Watershed for Phosphate

Statistic		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	-0.90	-0.77	-1.10	-0.32	-1.41	-1.01
Standard Error Slope	Sm	0.23	0.46	0.37	0.49	0,45	0.69
Intercept	a	7.59	9.87	6.76	7.66	10.19	12.48
Correlation	r	-0.67	-0.39	-0.62	-0.18	-0.63	-0.36
t-test	tr	3.64*	-1.64	-3.00*	-0.66	-3.17*	-1.49
t-test	t _m	-3.62	-1.64	-2.98*	-0.64	-3.13*	-1.47
N		18	17	16	15	17	17
Runs Test Significance		no	no	no	no	no	no
$t_{m} = \frac{m-0}{S_{m}} \qquad t_{r} = \frac{r\sqrt{N-2}}{\sqrt{1-r^{2}}}$							

Trend Equation Format $Y = a \pm mx$ x = time interval

* Significant at 0.05 level

TABLE V

Least Squares Trend Line Statistics by Watershed for Chloride

Frend Equation Format $Y = a \pm mx$ x = time interval

Statistic		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	-0.43	-0.21	-0.30	0.53	-0.04	0.76
Standard Error Slope	Sm	0.61	0.73	1.08	0.64	0.59	0.63
Intercept	a	21.26	27.80	25.00	17.33	24.69	21.79
Correlation	r	-0.16	-0.07	-0.07	0.22	-0.02	0.28
t-test	tr	-0.66	-0.29	0.28	0.83	-0.07	1.10
t-test	t _m	-0.70	-0.29	-0.28	0.83	-0.07	1.10
Nrelation		18	20	16	15	16	16
Runs Test Significance**		no	no	no	no	no	no

$$t_{m} = \frac{m-0}{S_{m}}$$
 $t_{r} = \frac{r\sqrt{N-2}}{\sqrt{1-r^{2}}}$

Trend Equation Format $Y = a \pm mx$ x = time interval

- * Significant at 0.05 level
- ** Yes = significant at 0.05 level
** Yes = significant at 0.05 level

APPENDIX V

Significant at 0.05 level

TABLE VI

Least Squares Trend Line Statistics by Watershed for Calcium

Statistic		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	0.41	-2.09	0.46	-0.05	-0.32	0.23
Standard Error Slope	Sm	0.43	0.89	0.46	0.68	1.34	0.41
Intercept	a	22.49	32,12	22.52	24.70	44.06	15,86
Correlation	r	0.20	-0.47	0.23	-0.01	-0.05	0.11
t-test	tr	0,94	-2.35*	1,00	-0.07	-0,24	0.50
t-test	t _m	0.94	-2.34*	1.00	-0.07	-0.24	0.48
NCorrelation		22	21	19	20	20	21
Runs Test Significance**		no	no	no	no	no	no
+ = m-0 + -	r/N-2						
m S _m r	$\sqrt{1-r^2}$						

Trend Equation Format $Y = a \pm mx$ x = time interval

- * Significant at 0.05 level
- ** Yes = significant at 0.05 level

APPENDIX V

es vac a cinnificant as 0 AK law

Significant at 0.05 leve

TABLE VII

Least Squares Trend Line Statistics by Watershed for Sodium

Statistic		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	0.88	-0.53	0.23	-0.26	-0.14	0.16
Standard Error Slope	Sm	0.74	0.39	0.58	0.60	0.53	0.54
Intercept	a	27.69	17.67	25.75	20.18	22.80	23.30
Correlation	r	0.29	0,33	0,12	-0.12	-0.07	0.07
t-test	tr	0.29	-1.44	0.44	-0.49	-0.28	0.31
t-test	tm	1.19	-1.36	0.40	-0.43	-0.30	0.26
N	m	19	19	16	18	17	21
Runs Test Significance		no	no	no	no	no	no
$t_{m} = \frac{m-0}{S_{m}} \qquad t_{r} = \frac{r\sqrt{N}}{\sqrt{1-r}}$	$\frac{-2}{r^{2}}$						
Trend Equation Format	$Y = a \pm mx$	x = 1	time interva	al			
* Significant at 0.05	level						
<pre>** Yes = significant a</pre>	t 0.05 leve	1					

APPENDIX V

TABLE VIII

Least Squares Trend Line Statistics By Watershed for Potassium

Frend Equation Format: $Y = a \pm mx$ X = time interval

Statistic		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	-0.84	-0.27	-0.30	-0.31	-0.26	-1.94
Standard Error Slope	Sm	1.33	1.23	.84	.66	.40	1.05
Intercept	a	15.26	27.80	23.18	18.16	15.34	28.30
Correlation	r	-0.50	-0.04	-0.08	-0.11	-0.15	-0.38
t-test	tr	2.51*	-0.17	-0,33	-0.48	-0.64	-1.83
t-test	t	2.51*	-0.15	-0.33	-0.47	-0.64	-1.84
N		20	19	17	18	18	20
Runs Test Significance		no	no	no	no	no	no

$$t_{m} = \frac{m-0}{S_{m}} \qquad t_{r} = \frac{r\sqrt{N-2}}{\sqrt{1-r^{2}}}$$

Trend Equation Format $Y = a^{\pm} mx$ x = t

x = time interval

- * Significant at 0.05 level
- ** Yes = significant at 0.05 level

APPENDIX V

TABLE IX

Least Squares Trend Line Statistics by Watershed for Magnesium

Statistic		AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
Slope	m	0.08	-0.27	0.04	-0.59	0.02	-0.14
Standard Error Slope	Sm	0.44	0.24	0.25	0.35	0.86	0.27
Intercept	a	15,70	11.20	11,67	13.00	36.61	12.05
Correlation	r	0.04	-0,26	-0.04	-0.37	0.01	-0.12
t-test	tr	0.17	-1.15	0.17	-1,68	0.02	-0.57
t-test	t _m	0.18	-1,13	0,16	-1,68	0.02	-0.51
N		22	21	19	20	20	21
Runs Test Significance		no	no	no	no	no	no

 $t_{m} = \frac{m-0}{S_{m}} \qquad t_{r} = \frac{r\sqrt{N-2}}{\sqrt{1-r^{2}}}$

Trend Equation Format $Y = a \pm mx$ x = time interval

* Significant at 0.05 level

TESTS APPENDIX VI ANALYSIS OF VARIANCE off

134

APPENDIX VI

ANALYSIS OF VARIANCE BETWEEN WATERSHEDS

TABLE I - Specific Conductivity⁽¹⁾

<u>Source</u> Between Watersheds Within Watersheds	<u>Sum of Squares</u> 0.4794 0.5060	<u>df</u> 5 119	<u>Mean Square</u> 0.0959 0.0547	<u>F-Ratio</u> 1.75	
TABLE II- Sulphate					
Source	Sum of Squares	on <u>df</u>	Mean Square	F-Ratio	
Between Watersheds Within Watersheds	53385 1724483	5 118	10677 14614	0.73	
TABLE III - Sulphite					
Source	Sum of Squares	df	Mean Square	F-Ratio	
Between Watersheds Within Watersheds	366 95019	5 113	73 879	0.08	
TABLE IV - Nitrogen			25142	E Datia	
<u>Source</u> Between Watersheds Within Watersheds	<u>Sum of Squares</u>	<u>df</u> 5 46	<u>Mean Square</u> 1962 2806	0.70	
TABLE V - Phosphate (1	1)				
<u>Source</u> Between Watersheds Within Watersheds	<u>Sum of Squares</u> 0.1975 30.0904	<u>df</u> 5 89	<u>Mean Square</u> 0.0395 0.3381	<u>F-Ratio</u> 0.1168	
TABLE VI - Chloride					
<u>Source</u> Between Watersheds Within Watersheds	<u>Sum of Squares</u> 1461 34652	<u>df</u> 5 95	Mean Square 292 365	<u>F-Ratio</u> 0.80	

(1) Based on a logarithmic transformation

* Significant at 0.05 level

APPENDIX VI

ANALYSIS OF VARIANCE BETWEEN WATERSHEDS

TABLEVII - Calcium					
Source Between Watersheds Within Watersheds	<u>Sum of Squares</u> 9779 61429	<u>df</u> 5 117	Mean Square 1956 525	<u>F-Ratio</u> 3.72*	
Matrix of ε Tests for	or Individual Water	rshed Diff	erences		
AG 1 AG 1 - AG 3	AG 3 AG 4 2.34* 0.11 - 2.36*	AG 5 0.55 1.74	AG 10 5.33* 2.99*	AG 13 1.63 3.93*	
AG 4 AG 5 AG 10	Meen Square	-	4.67* -	2.14* 6.86*	
TABLE VIII - Sodium	Sum of Squares	df	Mean Square	F-Ratio	
Between Watersheds Within Watersheds	1286 25848	5 104	257 249	1.04	
TABLE IX - Potassium	1962				
<u>Source</u> Between Watersheds Within Watersheds	<u>Sum of Squares</u> 3842 66849	<u>df</u> 5 118	Mean Square 768 567	<u>F-Ratio</u> 1.36	
			. 0.1976 30.0934		

(1) Based on a logarithmic transformation

* Significant at 0.05 level

Significant at 0.05 level

APPENDIX VI

ANALYSIS OF VARIANCE BETWEEN WATERSHEDS

TABLE X - Magnesium

Source	Sum of Squares	df	Mean Square	F-Ratio
Between Watersheds	9821	5	1964	11.59*
Within Watersheds	19831	117	169	

Matrix of t-Tests for Individual Watershed Differences

	AG 1	AG 3	AG 4	AG 5	AG 10	AG 13
AG 1 AG 3 AG 4 AG 5 AG 10	-	1.13 -	0.97 0.13 -	0.63 0.49 0.34	5.21* 6.25* 5.97* 5.76*	0.97 0.17 0.03 0.32 6.08*

TABLE XI - PCBs

Source	Sum of Squares	df	Mean Square	F-Ratio
Between Watersheds Within Watersheds	,000002	5	.0000004	0.28

