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ABSTRACT 

 In this thesis we investigate an alternate source of vehicular information for 

collision avoidance systems and driver assistance applications, which is more 

accurate, reliable in all conditions and has minimum time lag. We have designed 

and developed an architecture, which enables us to read, analyze, decode and store 

the real-time vehicular data from the vehicle’s electric sensors. We have designed 

two algorithms for decoding the raw data read from the vehicle’s Controller Area 

Network (CAN) [7] bus, to which various electric components of the vehicle are 

connected to communicate the real-time data. 

 We have shown that the vehicular speed which is a very important 

parameter in the calculation of ‘Time to Collision (TTC)’ by collision avoidance 

algorithms [22] is more accurate, reliable and has higher polling rate, when 

calculated from the vehicle’s CAN bus as compare to the other source of 

information i.e. GPS [6].  
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CHAPTER-1 

INTRODUCTION 

1.1 Overview 

 Vehicular safety technology has developed rapidly in the last two decades. 

Modern vehicles can protect occupants much better in the event of a crash, due to the 

advanced structural design techniques complemented by more stringent road standards, 

and some mandatory standard crash avoidance technologies. All these advances have 

made motor vehicles safer than they have ever been. However, there are still a significant 

number of annual crashes that could potentially be eliminated through expanded use of 

more advanced crash avoidance technologies. It has been estimated by National Highway 

Traffic Safety Administration (NHTSA) [5] that there are more than five million annual 

vehicle crashes with property damage, injuries and fatalities. So, if deployment of 

technology can help to avoid these crashes, the damage due to crashes never occurs.  

 Some of the most advanced collision avoidance technologies present on the 

vehicles today include cameras, on-board sensors and radar applications. These 

technologies may warn the drivers of impending collision thus helping them to take 

corrective actions. While these current technologies are highly beneficial, the Vehicle to 

Vehicle (V2V) communications [4] represent an additional step in helping to warn 

drivers of the impending collision threats. V2V communications use on-board dedicated 

short-range radio communication (DSRC) [8] [9] devices to transmit messages about a 

vehicle’s location information, speed, heading, brake status, and other information to 

other vehicles. Information is received in the form of messages, with capabilities of range 
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and line of sight, which can be more than twice of that of the current systems. This longer 

detection distance and ability to see around corners or through other vehicles helps V2V-

equipped vehicles perceive some threats sooner than sensors, cameras, or radar can, and 

warn their drivers accordingly. V2V can be combined with other driver assistance 

applications to act as a complete system that cover the scenarios which are not covered 

by V2V alone, such as lane or road departure warning. A complete system could also 

augment system accuracy, potentially leading to improved warning timing and reducing 

the number of false warnings [5].  

1.2 Motivation   

 According to the statistics published by NHTSA, a total number of 99,176 

fatalities was reported in the United States, due to the vehicle traffic crashes during the 

period of 2012-2014, with the year 2012 having the maximum number of fatalities at 

33,782 [47]. According to another data record published by NHTSA, more than 10 

million motor vehicle accidents were reported every year in the US and economic cost of 

traffic crashes up till year 2010, was estimated to USD 242 billion [48] [49]. According 

to the ‘2013 National Statistics’ given by NHTSA, total number of 30,057 fatalities and 

1,591,000 injuries was reported due to road accidents in the US. These vehicle traffic 

crashes had also resulted in a property damage of USD 4,066,000 [49]. According to the 

‘Canadian Motor Vehicle Traffic Statistics 2012’, total number of 123,963 vehicular 

collisions was reported and the related fatalities and serious injuries reported was 2077 

and 10,655 respectively [50]. 
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 Researchers and technology experts from around the world are working to 

develop new ways to minimize the losses occurring due to traffic collisions. Various 

technologies such as Airbag System, and Anti-lock Braking System have been 

incorporated and mandated by vehicle manufacturers and traffic regulatory bodies over 

the period of time, which have proved highly beneficial to reduce the number of vehicle 

crashes and related losses. To add more sophistication, a lot of work is being carried on 

the improvement and development of collision avoidance algorithms. These algorithms 

incorporated with V2V communications are considered as very useful technologies to be 

incorporated in the next generation of vehicles. The accuracy of these algorithms depends 

on the availability of real time, reliable and accurate source of input parameters e.g. 

positioning information, speed and brake status.  In this thesis, we focus on techniques 

for accurate and timely collection of various vehicular parameters (e.g. speed, engine 

rpm, brake status etc.), which can aid in the development of better collision avoidance 

algorithms and driver assistance applications.  

1.3 Problem Statement 

 Currently, most of the collision avoidance algorithms rely on GPS [6] for the real-

time situation parameters of the vehicles. For example, the collision warning system 

presented in [22] and [23], calculates ‘Time to Collision (TTC)’ between two vehicles 

using GPS information (e.g. longitude, latitude, speed, heading, altitude and acceleration) 

exchanged using V2V communications. Another system presented in [32], uses vehicular 

ad-hoc network (VANET) router, a GPS system, inertial sensors for measuring the speed, 

acceleration, and yaw rate and a long-range radar (LRR) to predict the future path of the 
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vehicle. Since these systems work in real time conditions, so the input parameters need to 

be accurate, reliable in all conditions and have minimum time lag.  

 The data obtained from GPS signals is significantly less accurate during bad 

weather conditions, in urban downtown areas and tunnels, either because of the signal 

distortion, or no GPS signals are received in these conditions. Also, the polling rate of 

current GPS receivers is low with intervals up to 200 milliseconds, which may not be 

adequate for real-time systems like collision avoidance systems. Similarly, a system 

based on camera would have high maintenance costs and also may give less accurate 

warnings during bad weather conditions and at night. Furthermore, current source of 

information like GPS provides access to only a limited number of vehicular parameters 

like speed and acceleration. This has led to the development of collision avoidance 

algorithms with limited scope and accuracy. All these factors have resulted in inaccurate 

calculation of TTC [22], which resulted in wrong or no warnings of the impending 

collisions. So, there is a need to improve the source of vehicular information which 

should be more accurate, reliable in all conditions and has higher polling rate. Also, a 

number of additional important vehicular parameters like steering angle, brake status, 

yaw rate, turn indicator status etc. should be extracted, which could lead to the 

development of more sophisticated collision avoidance algorithms. 

1.4 Solution Outline 

 We have found that there is a scope to get the information e.g. speed, acceleration 

and brake status directly from the vehicle instead of present sources e.g. GPS, while 

positioning information like longitude, latitude, altitude and heading still must be taken 
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from GPS. Extracting data directly from vehicle’s sensors would result in more accurate 

and real-time data with very less time lag. In modern vehicles, all the electric devices of 

the vehicle are connected to each other by a bus network called Controller Area Network 

(CAN) [7]. The vehicle’s electric devices communicate with each other through CAN 

protocol, which helps the devices to access the most recent information from various 

components. Each message has a unique CAN ID present in the header which helps the 

devices to recognize different messages. 

 The CAN bus can be accessed using the OBD-II port [19] present in the vehicle. 

We have designed and developed a software application named CAN-Ethernet which 

uses an Ethernet dongle to connect to the OBD-II port of the vehicle. The CAN Ethernet 

software reads, analyzes, decodes and stores the CAN data read from the CAN bus in 

real-time. The software runs as a server application to act as a source of CAN data and 

enables up to five different client connections at the same time. Can-Ethernet software 

takes, as input, a DBC file [44], which defines the CAN IDs and other information 

helpful in decoding the CAN messages. We have designed two algorithms, one for little 

endian [51] and other for big endian byte order [51], that decode the CAN messages read 

from the CAN Bus. After decoding, the information is populated in data structures that 

store the real time value of each sensor parameter and also written to the log files. We are 

able to extract a number of vehicular parameters like speed, engine rpm, brake status, 

steering angle, yaw rate, accelerator pedal position, headlight status, wiper status, 

ambient temperature and ambient pressure. All these parameters information can prove 

very useful in developing and improving collision avoidance systems and driver 

assistance applications.               
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1.5 Thesis Organization 

 The remainder of our thesis is organized as follows. Chapter 2 gives the brief 

description about the Intelligent Transportation Systems (ITS) including V2V and V2I 

technologies. A brief introduction about CAN Bus protocol and some existing collision 

avoidance technologies is also provided in this chapter. Chapter 3 presents our proposed 

CAN-Ethernet application software architecture. Chapter 4 discusses and analyzes our 

test results. Chapter 5 concludes our work and identifies some possible directions for the 

future work. 
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CHAPTER-2 

REVIEW OF LITERATURE 

2.1 Introduction to Intelligent Transportation Systems 

 “Intelligent transportation systems (ITS) are advanced applications which, 

without embodying intelligence as such, aim to provide innovative services relating to 

different modes of transport and traffic management and enable various users to be better 

informed and make safer, more coordinated, and 'smarter' use of transport networks” [1]. 

In general, ITS is an application  of  advanced technologies which includes computers, 

sensors, communications, and various electronic devices to make commutation  safer, 

quicker, energy efficient and environment friendly.  

 The growing congestion and safety problems in transportation networks along 

with infrastructural, environmental and land constraints have resulted in the demand of 

adequate and efficient use of the existing resources. The application of ITS is critical in 

solving such problems. Various sophisticated applications are already in use and are 

being developed to improve transportation around the world. For example, computers and 

communication systems are being integrated to provide link between vehicles, travelers 

and infrastructures to address the modern problems of traffic collisions and congestion to 

save precious lives and energy. 

 National ITS architectures for several countries were designed and planned, 

including the research area and transportation service. The American national ITS 

Architectures is shown in Figure 2.1. 
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Figure 2.1: National ITS Architectures of America [2] [3] 

 A basic framework for developing an integrated transportation systems provided 

by ITS architecture is shown in Figure 2.2.   

     

Figure 2.2: Framework for integrated transportation system [3] 



 

9 

 

2.2 Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) 

Communication 

 In V2I, the infrastructure plays a coordination role by gathering situation 

awareness information on traffic and road conditions and then suggesting or imposing 

certain behavior conditions on the vehicles. In other scenarios, vital information about 

traffic signals or pedestrian movement is transmitted to the vehicles thereby alerting the 

drivers to react in a timely fashion. In a more sophisticated scenario, the velocities and 

accelerations of vehicles and inter-vehicle distances would be suggested by the 

infrastructure on the basis of traffic conditions, with the goal of optimizing overall 

emissions, fuel consumption, and traffic velocities. The information can be broadcast to 

the vehicles or can be relayed to other vehicles by using multi-hop networking of the 

V2V. 

 

Figure 2.3: V2I controlled traffic situations [4]   
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 The figure 2.3 shows two different traffic situations [4]. In the left panel, traffic 

density is low and the central infrastructure based controller acts to improve fuel 

efficiency and reduce emissions of individual vehicles, smoothing accelerations and 

decelerations; in the right panel, due to greater congestion, the infrastructure control is 

primarily concerned with depleting queues at intersections with an eye toward global fuel 

economy and emissions reduction.   

 V2V is a decentralized system as compared to V2I, which aims at organizing the 

interaction among vehicles and possibly developing collaborations among them [4]. In 

this system, vehicles periodically exchange information to make decisions for the future 

behavioral actions. In a general V2V scenario, when two or more vehicles come within a 

communication range, they connect automatically and make an ad-hoc network to share 

their position, direction, speed, acceleration, braking and various other parameters’ data. 

The vehicles get their own parameters’ data from various sources like Global Positioning 

Data (GPS) [6], Controller Area Network (CAN) [7], and Road Side Equipments (RSEs) 

[5].  The devices placed on the vehicles to receive, process and transmit the data are 

called On-Board Units (OBUs) [5]. These OBUs act as routers which enable the multi-

hop transmission of the data to more distant vehicles and road side stations.  

 Figure 2.4 shows a visual representation of a V2V communication network. 
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Figure 2.4: Visual Representation of V2V Communication [5] 

 The wireless communication is based on IEEE 802.11a, also known as Dedicated 

Short Range Communications (DSRC). A frequency spectrum of 5.9-GHz range has been 

allocated to support the development of safety applications based on V2I and V2V 

communication systems [5] [8]. 

 

2.2.1 Dedicated Short Range Communications Protocol 

 Dedicated Short-Range Communications (DSRC) is 75 MHz of spectrum at 5.9 

GHz allocated by the Federal Communications Commission (FCC) to “increase traveler 

safety, reduce fuel consumption and pollution, and continue to advance the nation’s 

economy [8].” It is developed to dedicatedly support V2V and V2I communications 

using a variant of IEEE 802.11a technology. DSRC would support safety-critical 
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communications like collision warnings, as well as other valuable ITS applications such 

as Electronic Toll Collection (ETC), digital map update, etc. The versatility of DSRC 

greatly enhances the likelihood of its deployment by various industries and adaptation by 

the consumers. 

 The 2004 FCC ruling [9] specifies DSRC will have six service channels and one 

control channel. The control channel is to be regularly monitored by all vehicles. Safety 

messages, whether originated by vehicles or roadside transmitters, are to have priority 

over non-public safety communications. Therefore all safety messages are to be sent in 

the control channel. In the meantime, a licensed roadside unit could use the control 

channel to inform approaching vehicles of its services (often non-safety applications) and 

conduct the actual application in one of the service channels. For example, a roadside unit 

could announce a local digital map update in the control channel and transfer this data to 

interested vehicles in a service channel.  

 Table I illustrates the sort of DSRC data traffic characteristics being used in the 

standards deliberations [10] [11] [12]. The FCC has recognized safety messages and 

“safety of life” messages. Safety of life is to have the highest priority. The non-safety 

data transfers have the lowest priority. The non-safety communications happen for file 

transfers (e.g., infotainment) or transactions (e.g. toll collection). Transactions may 

require the exchange of two or three messages within a short time window (e.g. 20 ms). 
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Table I 
Typical DSRC data traffic requirements 

Applications Packet 

Size(bytes)/

Bandwidth 

Allowable 

Latency 

(ms) 

Network 

Traffic 

Type 

Message 

Range 

(m) 

Priority 

Intersection Collision 

Warning/Avoidance 

~100 ~100 Event 300 Safety of 

Life 

Cooperative Collision 

Warning 

~100/ 

~10 Kbps 

~100 Periodic 50 - 300 Safety of 

Life 

Work Zone Warning ~100/ 

~1 Kbps 

~1000 Periodic 300 Safety 

Transit Vehicle 

Signal Priority 

~100 ~1000 Event 300 – 

1000 

Safety 

Toll Collection ~100 ~50 Event 15 Non-Safety 

Service 

Announcements 

~100/ 

2 Kbps 

~500 Periodic 0 - 90 Non-Safety 

Movie Download (2 

hours of MPEG 1): 

10 min download 

time 

> 20 

Mbps 

N/A N/A 0 - 90 Non-Safety 

 

2.2.2 V2V Devices 

 Various types of V2V devices are available which are either placed inside the 

vehicle during manufacturing or can be installed as an aftermarket product in the vehicle. 
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All these types support different types of V2V and V2I safety applications. These devices 

can be categorized as follows. 

2.2.2.1 Original Equipment Manufacturer (OEMs) 

 An OEM device is an electronic device integrated into a vehicle during vehicle 

manufacturing. A V2V system is integrated into these devices which is connected to the 

proprietary CAN busses [7] and can provide highly accurate information running in these 

busses. This vehicle information along with the data collected from the GPS receivers is 

used to generate Basic Safety Messages (BSMs) [5]. The integrated system both 

broadcasts and receives BSMs and also has a processor that can process the contents of 

the received messages to provide advisories and warnings to the driver of the vehicle in 

which it is installed. Because the device is fully integrated into the vehicle at the time of 

manufacture, vehicles with Integrated Safety Systems could potentially provide haptic 

warnings to alert the driver (such as tightening the seat belt or vibrating the driver’s seat) 

in addition to audio and visual warnings provided by the aftermarket safety devices. The 

equipments required for an integrated OEM V2V system would consist of a general 

purpose processor, associated memory, a radio transmitter and transceiver, antennas, 

interfaces to the vehicle’s CAN bus, and a GPS receiver. These types of integrated 

devices can be collaborated with other vehicle-resident collision avoidance systems to 

exploit the functionality of both types of systems. 

2.2.2.2 Aftermarket Devices   

 Automotive aftermarket devices can be defined as any device with one or more 

functions in the areas of safety, comfort, performance or convenience, which are added to 
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the vehicle after its original assembly. A V2V communication aftermarket device 

generally provides warnings and/or advisories to the driver similar to those provided by 

OEM installed V2V devices. These devices, however, may not be as fully integrated into 

the vehicle as an OEM device, and the level of connection to the vehicle can vary based 

on the type of aftermarket device itself. For example, an independent V2V aftermarket 

safety device could only connect to a power source, and otherwise would operate 

independently from the systems in the vehicle. Aftermarket V2V devices can be added to 

a vehicle at a vehicle dealership, as well as by authorized dealers or installers of 

automotive equipment. Some aftermarket V2V devices (e.g., cell phones with apps) are 

portable and can be standalone units carried by the operator or the passenger. 

 Table II [5] shows the details of all types of aftermarket devices that are employed 

in the vehicles.       

Table II  
Aftermarket Safety Device Types 

 

Device type Definition Method of 
Installation 

Functionality 

 
 
 
Vehicle Awareness 
Device 

Device is able to be 
connected to the 
vehicle for power 
source. Device 
provides Basic 
Safety Message for 
surrounding 
vehicles.  
 

Device would need 
to be installed by a 
certified installer on 
vehicles not 
equipped with V2V 
technology to 
ensure correct 
antenna placement 
and security.  
 

 
Transmits BSM  
 

 
 
 
Aftermarket Safety 
Devices 
(i.e., Self-contained)  

Device is connected 
to the vehicle for 
power source, 
Device transmits 
BSM and receives 
BSMs to support 

This device only 
receives power from 
the vehicle; 
however, a certified 
installer would need 
to ensure correct 

 
V2V Safety 
applications  
Receives and 
Transmits BSM  
Driver-Vehicle 
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safety applications 
for the driver of the 
vehicle in which it 
is installed.  
 

antenna placement 
and security.  
 

Interface  
 

 
 
 
 
 
Retrofit Safety 
Devices 
 

Device is connected 
to the vehicle’s data 
bus that provides 
BSM and safety 
applications for the 
driver of the vehicle 
in which it is 
installed.  
 

This device needs to 
be connected to the 
vehicle’s data bus, 
therefore would 
require an installer 
that can access this 
for the particular 
make of vehicle. 
Also, a certified 
installer would need 
to ensure correct 
antenna placement 
and security.  
 

 
V2V Safety 
applications  
Receives and 
Transmits BSM  
Driver Vehicle 
Interface  
Integration into the 
vehicle data bus  
 

 

2.2.2.3 Infrastructure Based Devices 

 Infrastructure based devices can be defined as devices that are co-located along 

with road side equipments that allow vehicles to receive information from the 

infrastructure. The road side equipments can be road signs, traffic signals etc. General 

applications that run on these devices are related to signal phasing and timing (SPaT), 

curve and curve speed warnings, traffic advisories etc.  

2.2.3 V2V Safety Applications 

V2V technology communicates via DSRC (radio signals) which offer 360 degree 

coverage. This communication allows vehicles equipped with V2V devices to track each 

other at times when they can be completely unaware of each other’s presence. DSRC 

protocol has an operational range of up to 300 meters that facilitate identification of 

intersecting paths that potentially result in a crash if no vehicle takes necessary action. In 
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addition, V2V systems are not affected by weather conditions, light, or conditions of road 

as in the case of other systems dependent on cameras or Light Detection and Ranging 

(LIDAR) [13].      

In figure 2.5 various safety applications and scenarios they can address are shown.  

 

Figure 2.5: Examples of Crash Scenarios and Vehicle-to-Vehicle Applications [5]    

2.3 Controller Area Network (CAN) Bus 

 There are many electronic devices in today’s in-vehicle e.g. anti-lock braking 

system (ABS) and automatic stability control (ASC), and the number of these devices 

incorporated is increasing gradually. These devices need to communicate with each other. 

As a point-to-point communication would increase the wiring that would lead to increase 

in the vehicular weight, so the bus network is used for the multi point communication. 
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Controller Area Network or CAN bus designed and developed by Robert Bosch GmBh 

[7] is international standardized and defined in the ISO 11898-1 [16]. As a network 

specification for electric control system of vehicle, CAN has the capacity of real time 

control. The efficient use of these electronic devices through bus network has helped to 

reduce the oil consumption and air pollution, improve the ability, safety and comfort of 

the vehicle and make drive easy. Some of the electronic devices that are used are engine 

timer, auto tracker (AT) and accelerator paddle controller, anti-lock braking system 

(ABS), automatic stability control (ASC), intelligent air bag, air conditioning and sound 

device [14]. 

 The Controller Area Network (CAN) is a serial communications protocol which 

efficiently supports distributed real-time control with a very high level of security [7]. 

CAN is one of the most popular in-vehicle networks. It simplifies the cable in vehicle, so 

the weight of the vehicle is reduced and easy to maintain and repair [15].   

 In figure 2.6 a general structure of the CAN network is shown. Many electronic 

devices are connected to CAN network and communicate with each other. The 

microcontroller in each electronic device communicate to CAN controller and CAN 

controller connects CAN bus via CAN driver. CAN network is composed of 2 lines and 

communicates by using difference of voltage level [7] [15].  
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          Figure 2.6: Structure of CAN Network [15] 

 The various advantages of CAN protocol are discussed as follows [14] [17] [18]. 

• Latency Time: This is defined as the time a transmitting node is ready to send 

information up until the time the transmission has been completed. CAN has the 

short latency time that is essential in the real-time control applications. 

• Electromagnetic Compatibility (EMC) and Electromagnetic Interference (EMI): 

The performance is not affected by radiated emissions and susceptibility.  

• Error Handling and Fault recovery: Less than one undetected error rate in the 

lifetime of the vehicle is considered reasonable. The ability to handle and recover 

quickly from faults was considered as an important factor for the CAN protocol. 

• Data Consistency: Ensure the consistency of data across the network, particularly 

when sharing sensor information after eliminating duplications. 

• Flexibility: Since vehicle configuration requirements may be different according 

to model variants and model years, it is necessary for ECU's to be interconnected 
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at different locations in the vehicle free from the need to redesign or re-qualify the 

system or sub-system.  

• Expandability: It is possible for existing systems to be upgraded or added to over 

time without modification of the original system if the additional ECU's are 

listening nodes. 

• Broadcasting: Support a multi-master broadcast communications system. In other 

words, every connected control unit has the same right to access the network. 

•  The protocol can take up to 2032 identifiers and support up to 1Mbps over 40 

meters of twisted pair cable. 

• Contention based with no data loss. Simultaneous transmissions are resolved via 

non-destructive bitwise arbitration. 

2.3.1 CAN Frame Structure Format 

 The CAN protocol supports two message frame formats, the only essential 

difference being in the length of the identifier. The “CAN base frame” supports a length 

of 11 bits for the identifier, and the “CAN extended frame” supports a length of 29 bits 

for the identifier [16]. 

 Figure 2.7 below shows a structure of the CAN data frame [15] [16]. A “CAN 

base frame” message begins with the start bit called "Start Of Frame (SOF)", this is 

followed by the “Identifier" which is used to specify the “CAN ID” of the sensor and the 

"Remote Transmission Request (RTR)" bit used to distinguish between the data frame 

and the data request frame called remote frame. If the message is used as a remote frame, 

the DLC contains the number of requested data bytes. The following field contains the 



 

 

"Identifier Extension (IDE)" bit t

extended frame, as well as the "Data Length Code (DLC)" used to indicate the number of 

following data bytes in the "Data field". The "Data field" that follows is able to hold up to 

8 data byte. The integrity of the frame is guaranteed by the following "Cyc

Check (CRC)" sum. The "Ack
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entifier Extension (IDE)" bit to distinguish between the CAN base frame and the CAN 

extended frame, as well as the "Data Length Code (DLC)" used to indicate the number of 

following data bytes in the "Data field". The "Data field" that follows is able to hold up to 

8 data byte. The integrity of the frame is guaranteed by the following "Cyc

Check (CRC)" sum. The "Acknowledge (ACK) field" compromises the ACK slot and the 

ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as a 

dominant bit by those receivers, which have at this time received the d

message is indicated by "End of Frame (EOF)". The "Intermission Frame 

Space (IFS)" is the minimum number of bits separating consecutive messages.

A structure of CAN fram e [16]  

In the “CAN extended frame” the length of the identifier used is 29 bit. The 29 bit 

identifier is made up of the 11-bit base identifier and 18 bit extension. The distinction 

between CAN base frame format and CAN extended frame format is made by using the 

IDE bit, which is transmitted as dominant in case of an 11-bit frame, and transmitted as 

recessive in case of a 29-bit frame. The two frame formats coexist on the bus at the same 

time and “CAN base frame” always has the higher priority over the “CAN extended 

frame” in case of collision for the bus access.  

There are four different types of frames transmitted in the CAN protocol [7].

A data frame carries data from a transmitter to the receivers.

o distinguish between the CAN base frame and the CAN 

extended frame, as well as the "Data Length Code (DLC)" used to indicate the number of 

following data bytes in the "Data field". The "Data field" that follows is able to hold up to 

8 data byte. The integrity of the frame is guaranteed by the following "Cyclic Redundant 

nowledge (ACK) field" compromises the ACK slot and the 

ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as a 

dominant bit by those receivers, which have at this time received the data correctly. The 

f Frame (EOF)". The "Intermission Frame 

Space (IFS)" is the minimum number of bits separating consecutive messages.  

 

length of the identifier used is 29 bit. The 29 bit 

t base identifier and 18 bit extension. The distinction 

between CAN base frame format and CAN extended frame format is made by using the 

bit frame, and transmitted as 

The two frame formats coexist on the bus at the same 

time and “CAN base frame” always has the higher priority over the “CAN extended 

There are four different types of frames transmitted in the CAN protocol [7]. 

A data frame carries data from a transmitter to the receivers. 
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2. A remote frame is transmitted by a bus unit to request the transmission of the data 

frame with the same identifier. The "Remote Transmission Request (RTR)" bit is 

used to distinguish between the data frame and the remote frame. 

3. An error frame is transmitted by any unit on detecting a bus error. 

4. An overload frame is used to provide for an extra delay between the preceding 

and the succeeding data or remote frames. 

2.3.2 CAN Bus Data Extraction 

 There has not been any published material found explaining the ways for 

extracting and decoding the data from the CAN bus. CAN bus monitoring requires a 

CAN USB/Ethernet/WiFi device that could be connected to the vehicle’s OBD-II [19] 

port. A CAN application running on a computer is connected to this device and CAN 

frames are sent and received by this application through the CAN device. 

 In [20], the CAN bus monitoring is done using an USB-CAN device (Figure 2.8) 

and logging the read raw data in text format. The work is limited to passively monitor the 

CAN bus using device USB-CAN device without intending to decode the raw values. 

The hardware of USB-CAN smart card consists of power module, peripheral electric 

circuit, USB interface module and CAN interface module [21].  
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Figure 2.8: USB-CAN smart card [20] 

 
 The number of data bytes in the CAN frame received from the bus varies 

according to the CAN ID from where the bytes are received. The CAN device also has 

the capabilities of filtering and masking the CAN IDs. This helps to get the CAN frames 

from only selected CAN IDs which in turn helps to manage the huge of volume of data 

coming out. In figure 2.9 below, a sample window of the collected CAN frames is shown.     

 

Figure 2.9: CAN frames display window [20] 
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2.4 Collision Avoidance Systems 

 A collision avoidance system is a vehicular safety system designed to avoid 

crashes or reduce their severity. The main idea of the design of these systems is to detect 

other vehicles in the collision range and then send warnings (audio or visuals) to increase 

driver’s reaction time or act automatically (like braking or steering) to avoid an imminent 

crash. Various kind of detection mechanisms like all weather radar, camera, V2V and 

V2I communications are currently used so as to take the precautionary actions before an 

accident. Few of the most common new technologies are forward collision warning, 

autobrake, lane departure warning, lane departure prevention, adaptive headlights and 

blind spot warning.      

2.4.1 Global Positioning System Data Based Systems 

 These types of systems use V2V and V2I communications to periodically 

exchange their GPS [6] location and movement information. Every vehicle has its own 

GPS receiver through which they get this information at a predefined polling rate. 

Vehicles exchange this information in the form of basic safety messages (BSMs) [5]. 

These messages are periodically transmitted and received by every vehicle using the 

DSRC protocol [8] [9]. The various parameters that are included in these messages are 

longitude, latitude, heading, altitude, speed, brake status and acceleration. Every vehicle 

processes the information received from these messages along with their own current 

information to decide whether there is an impending collision. 

 Fig. 2.10 illustrates how two vehicles A and B deploy the protocol of periodic 

information exchange to avoid collision [22] [23]. The two inner circles are collision 



 

25 

 

zones of vehicles of A and B and the outer circle is communication cluster of A. 

Periodically vehicle A receives B’s coordinates and it checks if their collision zones 

intersect. To do so, A makes use of the distance between the two vehicles (computed by 

the coordinates sent by B) and the collision zone radius (sent by B through the 

information packet). If the two vehicle’s collision zones intersect, then vehicle A 

computes the next information message from vehicle B, so as to formulate vehicle B’s 

motion profile and compare it with its own motion profile. After computing that two 

vehicles are on collision course and will intersect at a point then vehicle A calculates the 

time to collision (TTC) and communicates the same to vehicle B [22] [23].         

 

Figure 2.10: Graphical illustration of two vehicles A and B and their collision path 
[22] 
  



 

26 

 

 In [24], [25] and [26] the positive impacts of V2V communication to avoid the 

rear end collisions are discussed. In figure 2.11, a graphical illustration of rear end chain 

collision is depicted. If vehicle A makes a sudden stop then seeing the brake lights of 

vehicle A, vehicle N3 will apply emergency brakes and may be able to stop in time. But 

because of the line of sight limitation of brake light, it is likely that driver of vehicle N6 

will not know of the sudden braking of vehicle A unless vehicle N6 brakes.  This leads to 

the shortening of the reaction time for the driver of N6 and which can lead to a rear end 

collision of N6 with N3. But if the braking status of vehicle A is communicated through 

V2V communications then all the vehicles at its rear would be able some extra time to 

react appropriately. Also, if the vehicles are equipped with automatic braking systems, 

then vehicles at rear would be forced to stop before any impending collision. Similarly, 

the vehicles in the adjoining lanes would not be allowed to change the lanes at that 

moment through the lane change warnings.          

 
Figure 2.11: Graphical illustration of rear-end collision [24] 

 

2.4.2 Other Novel Techniques 

 As most of the collision avoidance systems rely heavily on the GPS [6] data for 

the vehicle’s position and movement detection, these systems suffer from the limitations 

of GPS. This has been well known that GPS signals provide significant less accurate 



 

27 

 

information in bad weather conditions, subways, tunnels and city downtowns, so other 

novel techniques are being used for vehicle detection in the systems design. 

 In [27] a new method for detecting front vehicles in urban traffic was proposed. In 

this method a camera is installed on the front windshield of the vehicle. An IPT matrix 

which describes the relation between the image coordinate and the real world coordinate 

under the assumption that vehicles are on flat road was computed. After that vehicle 

candidates are extracted using AdaBoost [28]. The selected candidates were verified by 

existence of vertical and horizontal edges for more accurate detection results. The 

detected vehicle regions were corrected by shadow [29] and edges [30]. In [31] this 

proposed vehicle detection technique was further enhanced by adding features of rear-

lights of vehicles and road characteristics. The accuracy of this technique was proved to 

be more than 90% when all the features were used together and even proved to be 

efficient during the rainy days.  

 In [32] a novel path prediction technique for the remote vehicle was proposed. In 

this method, every vehicle was equipped with a vehicular ad-hoc network (VANET) 

router, a GPS system and inertial sensors for measuring the speed, acceleration, and yaw 

rate. There was an unscented Kalman filter (UKF) [33] [34] [35] present for filtering all 

these values before they are broadcast to the network. Also, there was a long-range radar 

(LRR) mounted on the front bumper of the vehicle. Every vehicle transmits its filtered 

GPS and sensor information to the other vehicle and the receiving vehicle performs the 

data fusion of the information received from the LRR sensor and the VANET. Then path 

prediction algorithm based on dynamic motion models for predicting the future path of 

vehicles was called. Four motion models - Constant Velocity (CV), Constant 



 

28 

 

Acceleration (CA), Constant Turn Rate (CTR) and, CTRA (CTR + CA) were available.  

A Dempster-Shafer (DS) reasoning system [36], [37] was developed, with the task of 

finding the most suitable motion model at every processing cycle. The information 

sources of this system were the values of yaw rate, acceleration, and the road curvature 

extracted from the digital maps. According to these inputs, the output of the system will 

be the most probable motion model at the current processing cycle and its corresponding 

belief and plausibility values. Figure 2.12 shows the different motion models selected at 

different vehicular movements using DS reasoning system.  

         Figure 2.12: Path prediction using DS reasoning system [32] 

 In this chapter we have discussed the role of ITS for safer and efficient use of 

transportation networks. The incorporation of various V2V devices into the vehicles can 

result in avoiding various road accidents thus saving precious lives and money. We have 

also discussed the CAN protocol and structure of CAN bus network. The passive 

monitoring CAN bus provides us the access to large number of in-vehicle electronic 
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device’s real time data which could be used in various V2V and V2I applications. 

Finally, we have discussed the various methods and techniques used for avoiding 

different collision scenarios and also predicting the future vehicular paths.    
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CHAPTER-3 

THESIS OBJECTIVE AND RESEARCH METHODOLOGY 

3.1 Introduction  

 Collision avoidance systems and driver assistance applications have been 

implemented using different methodologies e.g. V2V communications, sensors data 

processing, and image processing and depend on input parameters from various different 

sources e.g. GPS, on-board sensors, long range radars, and cameras. The idea behind 

using different techniques is to get a system which would have accuracy and reliability in 

all conditions. More accurate and reliable systems would not only help to avoid many 

road accidents, thus saving lives and money, but also help to keep the environment clean 

by burning less fuel. In our research work, we have made an attempt to get a real time 

and reliable source of information which would not suffer from the limitations of other 

sources of information discussed in section 2.4.   

 In this chapter, we present the details of our framework. We present an 

architecture of a system that enables us to collect various sensor’s data present in the 

vehicle itself. We have developed a software that could reside in the OBUs [5] and 

communicates with the vehicle’s CAN [7] bus. The application was developed on Ubuntu 

[38] platform using C and C++ as languages. Through this architecture we are able to 

collect all sensor’s data available in the CAN bus which includes speed, rpm, accelerator 

pedal position, brake status, headlights status, wipers status, left right indicator status, 

parking lights status etc. Since these parameters are collected in real time from the 

vehicle’s CAN bus, they are proved to be more accurate which would help to increase the 
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efficiency of the collision avoidance systems. In addition, the collection of additional 

parameters would help to develop or enhance the driver assistance applications like lane 

changing warning system. Also, these parameters are not affected by any changes in the 

conditions external to the vehicle.       

3.2 Synopsis of Problems and Limitations 

 We have studied various sources of information used for collision avoidance 

systems and driver assistance systems like GPS, LRR or front and rear cameras. Since 

these systems work under real time conditions, they have the requirement of real time 

data with minimum lag. We have found that all of these sources have their limitations 

that reduce their usefulness for developing systems reliable in all weather and road 

conditions. For example, a system based on only GPS data would not be reliable in bad 

weather conditions, urban downtown areas and tunnels because of the distorted or no 

GPS signals received in these conditions. In addition the GPS signals have low polling 

rate of up to 200 milliseconds, which should be improved for real time applications like 

collision avoidance systems. Similarly, a system based on cameras would suffer from 

inaccuracies during bad weather conditions and at night. In addition it would incur high 

maintenance costs. An inaccurate system would either give wrong warnings to the driver 

or would not give a warning for an impending collision. We have also found that all these 

sources of information provide limited access to the full set of parameters that can be 

used for these systems. Various vital vehicular parameters like steering angle, accelerator 

paddle position, brake status, headlights status, left right indicators etc which could 

further enhance the performance of these systems are not available from these sources of 

information. 
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3.3 Statement of Objectives  

 The primary objective of our research is to come up with an architecture of a 

system and a generic application, which would enable us to communicate with the 

vehicular CAN bus so as to read, decode and analyze the real time data from various 

vehicular electronic devices/sensors. This would help us to have a reliable and more 

accurate source of information for various collision avoidance systems and driver 

assistance systems. We have the goal to provide an alternative to existing sources of 

information like GPS because of their limitations in different conditions. For example, 

the parameter vehicular speed is required as an input by all of the collision avoidance 

algorithms, and is currently taken from GPS data. This parameter’s data can be taken 

directly from the vehicle’s CAN bus which would help to remove the lags from speed 

taken from the GPS signals. Use of CAN bus data also ensures the continuous feeding of 

the updated information due to the high polling rate of 5-7 ms.    

 In this thesis research, we propose a generic system, which can be adapted for any 

vehicle and also would able to act as a common source of vehicular information for any 

number of driver assistance applications. The proposed system should have the following 

capabilities: 

a) Ability to read and decode various vehicular parameters in real time and to test 

their accuracy.  

b) Ability to test the accuracy of vehicular speed against the speed given by the GPS 

signals at the same time. An accurate and more frequent source of information 
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would certainly help to improve the calculation of the TTC [22] by the collision 

avoidance algorithms.  

c) Ability to test the accuracy of brake status and the steering angle, which would be 

used in the rear end collision warning systems and lane changing warning systems 

respectively.  

d) Ability to read and decode additional parameters like engine rpm, accelerator 

pedal position, yaw rate, headlights, wipers status, engine ambient temperature 

and engine pressure which are currently not being used as inputs in the collision 

avoidance algorithms and driver assistance applications due to their non-

availability. The availability of these new parameters would help to improve the 

accuracy of the current systems and also would lead to the development of 

various other applications. 

3.4 Research Methodology  

 The flow diagram of the architecture of our research methodology is depicted in 

figure 3.1. In our research, we have developed an application software named ‘CAN-

Ethernet’ which resides in an OBU and makes a TCP [39] [40] connection with an 

Ethernet dongle that is connected to the CAN bus of the vehicle. The application software 

is designed to send specific commands to the Ethernet dongle, which are interpreted to 

the CAN specific format and used to requests raw data from the CAN bus. After 

receiving a legitimate command, electronic devices connected to the CAN bus respond 

by sending the requested data. The Ethernet dongle passes the received data to the CAN-

Ethernet application software which is waiting for the response. After receiving the raw 

data, application analyzes the received raw data at bit level, and decodes it to a human 
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readable form. The decoded data is then made available for collision avoidance 

algorithms and other applications residing in the same OBU. Also, it is made available to 

be transmitted to the other vehicles in the form of BSMs using DSRC antennas.  

 

  

Figure 3.1: System Architecture Flow Diagram 

  The data read from the CAN bus is huge in volume, with a maximum data rate up 

to 320 KB/sec, and a maximum latency of < 120 µs for high priority messages. Since a 

huge volume of data is available in the CAN bus, the CAN-Ethernet application software 

was designed to read, analyze, decode and store the data in parallel so as not to get 

crashed while running.          
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3.4.1 Architecture of the System 

 The architecture of our system is generic and is applicable for any modern vehicle 

which has its electronic devices connected to the CAN bus. A vehicle is fitted with the 

GPS antenna to receive the GPS signals for longitude, latitude, heading etc information. 

This GPS antenna is connected with an OBU which is responsible for the all the 

calculations from the raw data, transmission and receiving of DSRC packets. The OBU is 

also connected to the Ethernet dongle with a CAT 5e cable [41]. Our CAN-Ethernet 

application software makes a TCP connection with the Ethernet dongle using this cable. 

The Ethernet dongle is connected to the CAN bus using CAN to OBD-II cable and helps 

to communicate with the CAN bus to collect the vital real time vehicular parameter’s data 

like speed, steering angle, brake status etc.    

   

Figure 3.2: System Architecture 

In figure 3.2 the architecture of the system is shown, which incorporates: 

• CAN Bus: The vehicular bus to which all the electronic devices of a vehicle are 

connected to communicate with each other as discussed in section 2.3. 
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• Ethernet dongle: We have used an Ethernet dongle similar to the one discussed 

in section 2.3.2. The dongle has dimensions of 74 mm x 80 mm and operates on a 

5V DC power supply. It has one Ethernet port to connect with a LAN cable and 

one RS232 port to make a serial connection. It has one CAN port to connect with 

the vehicle’s CAN bus using CAN to OBD-II cable.    

• CAN to OBD-II Cable: The cable as shown figure 3.4 is used to provide CAN 

signals from the vehicle to the CAN dongle. It has a 16-pin OBD-II male 

connector and a 9-pin D-Sub socket female in accordance with CiA 102 [16].  

 

Figure 3.3: CAN to OBD-II Cable 

• OBU:  We have used an OBU shown in figure 3.5 named LocoMate, marketed by 

Arada Systems, Windsor. This device is integrated with GPS, Bluetooth, and high 

power 802.11p radios.  
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Figure 3.4: OBU (LocoMate), Arada Systems, Windsor [42] 

• CAT 5e Cable: Cat 5e cable has four twisted pairs in a single cable jacket. It’s an 

unshielded twisted cable pair designed specifically for high signal integrity. It is 

commonly used for 100Mbit/s networks, but with IEEE 802.3ab defined standards 

can also support 1000BASE-T – gigabit Ethernet [41]. 

• GPS Antenna: The GPS antenna we have used shown in figure 3.7 draws about 

10 mA and gives an additional 28 dB of gain. It is magnetic so it sticks to the top 

of vehicle.    
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Figure 3.5: GPS Antenna [43] 

 The communication with CAN bus through Ethernet port of our dongle is shown 

in figure 3.8. The dongle we used, also supports RS232 line to make a serial connection 

with the CAN bus. However, the communication path we followed in our CAN-Ethernet 

application software is through Ethernet port which is highlighted in Gray and dotted 

boxes. The TCP connection is initialized using the IP address of the dongle, which is 

provided through our CAN-Ethernet application software. After the connection is 

successfully established, a formatted command packet for requesting the CAN data is 

sent to the CAN-Ethernet, which is interpreted by the Command Interpreter. The 

Command Interpreter validates the received packet, extracts the required data bytes and 

sends it to Protocol Converter. The Protocol Converter converts the received bytes to the 

CAN protocol format and sends it to the CAN bus through CAN S/W and CAN H/W data 
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buffers.  The CAN bus responds to the sent command with the sensor’s raw data, which 

are read by the Protocol Converter. The Protocol Converter converts the received bytes to 

the dongle’s packet format and sends it to the Command Interpreter through the RS232 

data buffer. The Command Interpreter adds the identifying bytes to the packet and sends 

it to the CAN Ethernet. Our CAN-Ethernet application software which was continuously 

waiting for the response packets, reads, validates and then decodes the received packets.    

         

   

Figure 3.6: CAN-Ethernet Gateway Flow Diagram 

3.4.2 Software Architecture 

 CAN-Ethernet application software is developed in C /C++ language on Ubuntu 

platform. The application takes three inputs as arguments: IP address of the dongle, 
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vehicle’s CAN DBC file [44] and Masks and Filters file. The DBC file, which is a 

proprietary format of Vector Informatik GmbH [44], is unique for every vehicle model. A 

DBC file contains all electronic devices data decoding information including the CAN ID 

assigned to those devices at the time of manufacturing, for a particular vehicle. In figure 

3.9, a screenshot of CAN DBC file is shown, which gives the information about the CAN 

ID and expected length of data frame for a vehicular sensor in the line starting with 

‘BO_’. The following lines starting with ‘SG_’ gives the information about all the signals 

expected in the received data frame. The information includes Start bit, Length, Byte 

order (Endianness), Value type (Signed or Unsigned), Scale, Offset, Range (minimum 

and maximum value) and Units.      

 

Figure 3.7: Screenshot of CAN DBC file [44] 

 In CAN-Ethernet application software, we parse DBC file information and store it 

in a data structure to be able to use it for decoding purposes. We also parse the third 

argument of our application which is Masks and Filters file. The masking and filtering 

information gives us the capability to request CAN data from only specific vehicle 
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sensors. For example, using masking and filtering we could request the data from only 

‘Vehicle Speed’ sensor by setting it to CAN ID = 533. The default mask and filter is set 

to value of ‘0’ to get data from all the vehicle sensors.  In figure 3.10 the complete flow 

diagram of our CAN-Ethernet application software is shown.     



 

42 

 

      

 

 



 

43 

 

A

B
Check

Endianness

Get start bit

and length

Get start bit

and length

Little Endian

Big Endian

Little Endian

decoder

Big Endian

decoder

Final Value =

Decoded

Value * Scale

+ Offset

Final Value =

Decoded

Value * Scale

+ Offset

Store Final

Value in

data

structure

Store Final

Value in

data

structure

End of loop End of loop

 

Figure 3.8: Software Architecture Flow Diagram 

 The final decoded value of the vehicle’s sensors is stored in a data structure which 

is continuously updated with the new values. This application runs as a server in the OBU 

and accepts client connections from the other applications requiring CAN information. 

Upon receiving a request our application dumps whole data structure to the client. This 

way, it is able to provide real time CAN information to collision avoidance applications 
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and other driver assistance applications running in the same OBU. In figure 3.11 and 

figure 3.12, a screenshot of raw data capture and a sensor’s decoded values is shown 

respectively.  

 
Figure 3.9: Screenshot of Raw data  

 
Figure 3.10: Screenshot of Sensor’s Decoded Values 
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3.4.3 Software UML Class Structure 

 The CAN-Ethernet application software is designed using object oriented 

approach and the feature of running the application software as a server is added using a 

separate thread, thus making it a multi-threaded system. There are eight core classes 

designed in the software architecture with additional interface specific classes as 

required. The UML class diagram in figure 3.13 shows the object architecture of the 

CAN-Ethernet application software. 

1) can_main class: The can_main is the main class of the software. It is responsible 

for the following activities: 

• Validating the three input parameters i.e Ethernet dongle’s IP address, 

vehicle specific DBC file and Filters file. 

• Initializing the log file based on the current date and timestamp.  

• Parsing the Filters file and storing the values in a data structure. 

• Initializing the thread of can_server class. 

• Initializing the dbc_parser  class to parse the input dbc file. 

• Initializing the can_utils class. 

 

 First the software initializes the can_main class and validates the three 

required input parameters. After validating, it checks for the existence of the log 

file with the current date and timestamp and creates a new file otherwise. It opens 

the Filters file provided as the argument and parses its contents to store in a data 

structure present in support_functions. It creates a new thread for can_server class 

which runs continuously in a separate thread. It opens an instant of dbc_parser 
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class passes the DBC file provided as argument to it for parsing. It passes the IP 

address of the dongle which is also provided as argument to the can_utils class 

instance.  

+main() : int

+Options() : void

+usage() : void

+show_signals() : void

-ip : unsigned char

-dbcfilename : char

-Filters : char

-*cTime::time_t

-bcan_sf : support_functions

-*dbc : dbc_parser

can_main

+*dbc_read_file() : dbc_parser

+dbc_write() : void

+struct dbc_t()

dbc_parser

IP Address, vehicle's dbc file

and Filters file must be

 present as input

1 *

+struct filter_list()

+support_functions()

+~support_functions()

+BinaryToInt() : int

+IntToBinary() : unsigned char

+WriteToSysLog() : void

support_functions

+struct CANData()

can_server 1*

+write_to_can() : int

-ip_address : unsigned char

-port : int

-can_sf : support_functions

-can_msg : char

-*sio : serial_io_tcpip

-*io : IO_Device

-*o : OBD2

can_utils

+reconnect() : void

+serial_io_tcpip()

+~serial_io_tcpip()

+flush() : void

+read() : int

+write() : int

-host : unsigned char

-port : int

serial_io_tcpip

+IO_Device()

+virtual ~IO_Device()

+slowdown() : void

+virtual flush() : void

+virtual send_recv() : void

-full_speed : bool

-last_msg : double

IO_Device

+determine_supported_pid() : void

+OBD2()

+get_filters() : bool

+get_pid()

-*io : IO_Device

OBD2

+reset_device() : void

+recv() : void

+IO_ELM327()

+~IO_ELM327()

+flush() : void

+getWLock() : void

+string_reverse() : unsigned char

+decode() : float

+can_decoder() : void

+send_recv() : void

-serial_io_tcptp : serial_io_tcpip

-dev_info : unsigned char

IO_ELM327

+sensor()

+virtual ~sensor()

+virtual get_pid() : unsigned char

+virtual get_len() : unsigned char

+get_value() : bool

-error_count : int

sensor

1

*

1

*

1

*

1*

1*

1*

1

*

1 *

1 *

1

*1

*

1

*

1

*

1

*

Figure 3.11: CAN-Ethernet Application Software UML Class Diagram 

 

 



 

47 

 

2) can_server class: The can_server class is designed to include the capability of 

behaving as server while running. The CAN-Ethernet application can currently 

handle up to five client connections simultaneously with capability of more with 

some modifications. The main roles and activities of this class are as follows: 

• Maintaining a data structure named CANData, with the current 

updated decoded values of all the vehicular sensors provided in the 

dbc file. 

• Creating a connection queue and initializing the read file descriptors to 

handle the input from the clients. 

• Waiting for the client request and responds by dumping the pointer of 

the whole data structure CANData to the client. 

3) dbc_parser class: The main purpose of designing dbc_parser class is to get the 

useful information present in the dbc file, which is required for decoding the raw 

values read from the vehicle’s CAN bus. Following are the main activities of this 

class: 

• Reading the input dbc file and validates its authenticity. 

• Maintaining a data structures for storing the CAN id, sensor name and 

expected length of the data field from the CAN bus. 

• Maintaining a data structure for storing the signal information in a CAN 

id i.e. signal name, start bit, length, byte order (Endianness), value type 

(Signed or Unsigned), scale, offset, range (minimum and maximum value) 

and units. 

• Printing the parsed dbc file information. 
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4) can_utils class: The can_utils class is designed to handle the initialization of 

creating the connection to the Ethernet dongle and initializing the instances of the 

IO_Device class and OBD2 class. The roles performed by this class are as 

follows: 

• Responsible for sending the IP address and port number to the 

serial_io_tcpip class for creating a TCP connection with the Ethernet 

dongle interface. 

• Creating an instance of the IO_Device class and then creating new session 

of the IO_ELM327 using this instance since IO_Device class was 

inherited by the IO_ELM327 class. 

• Initializing an instance of OBD2 class and calling sensors class operations 

using this instance.  

5) serial_io_tcpip class: The serial_io_tcpip class is designed to handle all the 

communication with the CAN-Ethernet dongle. The main functions of this class 

are as follows: 

• Responsible for creating a connection with the Ethernet dongle and 

maintaining the created file descriptor and also, trying for reconnection if 

connection is not established successfully until time out. 

• Writing the command packet to the TCP session using the created file 

descriptor which is required to be sent to the CAN bus. 

• Reading the raw data from the TCP session using the created file 

descriptor from the CAN bus. 
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6) OBD2 class: The OBD2 class is designed to handle the formatting of the 

command packet required to be sent to the CAN bus. The Ethernet dongle, we 

used, has an interface in it, which accepts command packet in a specific format. It 

includes a static PID, length, mask0, mask1, filter0, filter1, filter2, filter3, filter4, 

filter5 and checksum. For example, to send a packet to the CAN bus so as to 

listen everything over it, we have to format the packet as 0x85, 0x08, 

0x00000000, 0x00000000, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x8D. The PID 

was set by the manufacturer of this Ethernet dongle so it shouldn’t be changed 

while the other fields of the packet can be changed according to the requirements. 

7) IO_ELM327 class: This class handles bulk of the work of the CAN-Ethernet 

application software. The member functions of this class communicate with the 

serial_io_tcpip class member functions to send and receive data byte by byte. 

Apart from this, it handles analyzing, decoding and recording of the data read 

from the CAN bus. The roles and responsibilities of this class are as follows: 

• Reading the formatted packet created in the OBD2 class and writing it to 

the CAN bus through serial_io_tcpip class. 

• Waiting for the response from the CAN bus and then reading the response 

byte by byte. 

• Analyzing the each byte read and differentiating it based on the specified 

response format. 

• Decoding the data bytes based on the information read from the data 

structures maintained by the dbc_parser. 
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• Populating the CANData data structure maintained by the can_server with 

the decoded vales of the sensor parameters. 

• Recording the decoded values in the created log files. 

 After writing the command packet on the TCP session, the recv() member 

function of the class waits for the CAN bus response. Since, the Ethernet dongle 

formatted the response packet before sending it over the TCP session, so the 

response packet is expected in a definite format. The first byte is always the 

response PID which was set by manufacturer to 0x85. The next byte expected is 

length of the data bytes, then the data bytes and in the end checksum byte. After 

verifying the checksum, the data bytes are separated from the received packet. In 

the data bytes, the first four bytes give the CAN id, which are decoded and 

matched with the CAN ids parsed from the dbc file. If a match is found, the byte 

order of the signals contained in the data bytes is determined. Two algorithms, 

one for decoding based on big endian byte order (Motorola) [51] shown in 

Appendix A and other for little endian byte order (Intel) [51] shown in Appendix 

B, are designed to decode the data bytes using the start bit and length information 

from parsed dbc file. Final value of the raw data is then calculated by applying the 

scale and offset information to the decoded value. These final calculated values 

are populated in the CANData data structure and logged into the log file. The 

CANData data structure always holds the latest values of the sensor parameters as 

the old values are continuously replaced with the new values.    

8) support_functions class: The support_functions class contains common 

functions that are used throughout the entire system. Specific functions that are 
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commonly used by all objects (for example, BinaryToInt, IntToBinary, 

WriteToSysLog etc…) are defined in here. Objects that wish to use the common 

function definitions simply just instantiate a support_fucntions object and use its 

capabilities. 

  

 In this chapter we have discussed the detailed architecture of the system we have 

used, describing the physical linking of the various modules of the system. We have 

shown and explained the various physical equipments we have used in our research work. 

We have also demonstrated the internal communication functionality of the Ethernet 

dongle, we have used. We have thoroughly explained the CAN-Ethernet application 

software we have developed. We have shown the detailed steps that we had taken to build 

this software to be generic and applicable for any vehicle. Finally, we have explained the 

algorithms we have designed to decode the raw data from the vehicle’s CAN bus and 

populate it in the data structure to be used by collision avoidance algorithms and driver 

assistance applications by making client-server connections.      
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CHAPTER-4 

RESULTS AND ANALYSIS 

 In this chapter, we discuss about our test setup, comparison of the results and 

analysis of the data from various vehicular sensors.  

4.1 Test Setup 

 We have done the testing of our software with the cooperation of Arada Systems, 

Windsor [42]. We got the access to a testing vehicle, provided by the US Department of 

Transportation for testing V2V and V2I related applications, through Arada Systems. The 

vehicle we used for our testing is Jeep Grand Cherokee (Year: 2007) and Arada Systems 

also helped us to obtain the dbc file of this vehicle model. We have used the Arada 

Systems’ OBU (Locomate) as discussed in section 3.4.1, for installing and running our 

software application CAN-Ethernet. This OBU is fixed in the provided vehicle and 

connected to the Ethernet dongle, which is connected to the OBD-II port of the vehicle’s 

CAN bus. The OBU is also connected to a GPS antenna and has the built-in capability of 

recording and processing the GPS signals. We have made the adjustments in our software 

application, so as to bring the capability of recording the CAN data and GPS data 

together into the data log files we are maintaining. We have driven the test vehicle at 

various different locations and times to record the CAN and GPS data together. We have 

covered parking lots, downtown areas and highways while testing, to check the behaviour 

of GPS signals at different locations and different speeds. To do the comparisons between 

GPS and CAN data, we parsed the fields collected in the log files into a worksheet 

through a custom script program written in Python [45].         
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4.2 Comparison of CAN Speed and GPS Speed 

 In this section, we have compared the CAN speed against GPS speed at different 

locations and the results show that there may be a significant discrepancy between the 

actual vehicle speed (based on CAN data) and the speed calculated from GPS signals. In 

the remainder of this chapter, we will refer to the speed based on CAN data as CAN speed 

and that calculated from GPS signals as GPS speed.  We have found that the error in GPS 

speed increases during the events of braking or acceleration of the vehicle.  

4.2.1 Test Results at a Parking Lot 

 The first test we conducted was at a parking lot in Troy, USA. This test was done 

on a clear sunny day, so we expected comparatively less interference from atmospheric 

conditions on GPS signals. In figure 4.1, the CAN speed and the GPS speed are plotted 

together on the left y-axis, with total number of records on the x-axis. We have found that 

there is a visible deviation of the GPS speed as compared to the more accurate CAN 

speed. Also, the deviation is much higher when the vehicle is either accelerating or 

braking as compare to when running at a constant speed. Due to the fact that the polling 

rate for CAN speed is much higher as compare to the GPS speed, the GPS receivers take 

some extra time to recognize the frequent changes in the speed.    
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Figure 4.1: Comparison CAN Speed and GPS Speed at a Parking Lot 

 We calculated the GPS error in speed by subtracting GPS speed from CAN speed 

at a given time and then plotted the calculated GPS error against the CAN speed as 

shown in figure 4.2. The CAN speed and GPS error are plotted on the left y-axis and 

right y-axis respectively, with total number of records on the x-axis. Left and right y-axis 

is used to clearly plot the negative values of the GPS error. We found that the GPS error 

has reached up to -7 km/h when the vehicle was braking and coming to stop from a speed 

of 20km/h. On other instances, the GPS error ranges from -5 km/h to 5 km/h on certain 

changes in speed at different times.    
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Figure 4.2: Comparison of CAN Speed and GPS Error at a Parking Lot  

4.3.2 Test Results at a City Road 

 The second test was conducted at Stephenson Highway, Troy, USA. This test was 

conducted on a day with overcast conditions and we have found similar trends in the 

deviation of the GPS speed from the CAN speed. The CAN speed and GPS speed are 

plotted on the left y-axis and right y-axis respectively, with total number of records on the 

x-axis. In figure 4.3, it can be seen that CAN speed curve is more consistent and visibly 

moves away from GPS speed curve during acceleration or braking events. The two 

curves minimize their gap during constant speed of the vehicle.     
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found that when the vehicle speed drops from around 60 km/h to 5 k

reaches to -14 km/h. Similarly, 

accelerates from 10 km/h to 65 km/h.

GPS error is always present even when the vehicle runs at constant speed.
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the calculated GPS error is plotted against CAN speed

found that when the vehicle speed drops from around 60 km/h to 5 k

. Similarly, GPS error reaches close to 8 km/h, when vehicle 

accelerates from 10 km/h to 65 km/h. We have also found that, some magnitude of the 

is always present even when the vehicle runs at constant speed.
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.6: Comparison of CAN Speed and GPS Error on a Highway

Results at Downtown 

The fourth test was conducted in downtown locations at Detroit, USA. In figure 

4.7, we have plotted the GPS speed and CAN speed recorded from the test. We have 

that there is a constant deviation of the GPS speed curve from the 

. Also, while testing we have found that the GPS signals were not consistent due to 

the multipath problem [46] of these signals.    
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when the speed came down from 35 km/h to 0 km/h. 
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4.3 Other Vehicular Sensor’s Data 

were also successfully able to get data from various other vehicular sensors 

like Engine RPM, Accelerator pedal position, Steering Angle, Brake Status, Headlights 

Status, Wipers Status and Yaw rate. All these parameters can play a very vital role for the 

future collision avoidance algorithms and driver assistance applications. As the data from 

these sensors is collected in real time from the vehicle’s CAN bus, the accuracy of the 
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braking information of the front vehicle can be directly transmitted to the rear vehicle, 

that will improve the reaction time of the driver in the rear vehicle and will help to avoid 

more collisions. Also, the brake status of the front vehicle can be sent directly to multiple 

vehicles through multi-hop communication, thus helping to avoid incidents like highway 

chain collisions. 

 In this chapter we have discussed the comparisons of CAN speed and GPS speed 

recorded simultaneously during different test drives. We have shown that there is always 

some difference between the speed recorded from GPS signals and the speed calculated 

from the CAN data. The difference is seen much more prominent and reaches near to 15 

km/h on certain occasions of vehicle’s acceleration or braking. We have also found that 

the speed calculated from CAN data is more consistent due to the high polling rate of 

data from the CAN bus which helps to record even the slight changes in the speed. In 

addition, we have also discussed about the number of other vital parameters we 

calculated that can help in improving existing collision avoidance algorithms and in 

developing new applications.        
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CHAPTER-5 

CONCLUSION & FUTURE WORK 

5.1 Conclusion 

 Due to the increase in the number of the vehicular collisions and loss of lives and 

property, a lot of work is being carried out towards the development of the collision 

avoidance and driver assistance applications. Researchers from all around the world are 

working to develop new techniques and systems, which could improve the existing 

algorithms and applications to provide a stable system to the vehicle manufacturers. In 

this thesis, we have developed a CAN-Ethernet application software, which will help to 

provide a better alternative to existing sources of vehicular information like GPS. We 

have shown that the vehicular speed calculated from data read from the CAN bus by our 

CAN-Ethernet application is more accurate and consistent as compare to the speed taken 

from the GPS signals. This is due to the higher polling rate of data available from the 

CAN bus and also due to directly accessing the vehicle’s speed sensor to obtain the 

relevant data. We have shown that the errors in the speed given by the GPS signals are 

higher during the events of the vehicle’s acceleration and braking. The improvement in 

the calculation of the vehicular speed, which is a vital input parameter in the collision 

avoidance algorithms, will certainly improve the calculation of the TTC [22]. As we 

know that most of the collisions occur either during hard braking of the vehicles or 

during sudden accelerations, a more accurate and consistent knowledge of the vehicle’s 

speed and, in turn, more accurately calculated TTC will help to generate timely warnings 

to the drivers and thereby help to improve their reaction times. 
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 In addition, we are also able to calculate information of various other vital 

parameters from the vehicle’s CAN bus like braking status, steering angle, engine RPM, 

accelerator pedal positions, yaw rate,  headlights status, wipers status, engine ambient 

temperature, engine pressure etc. The real time information of all these parameters will 

certainly help to improve and develop various collision algorithms and drivers assistance 

applications.    

5.2 Future Work 

 In our thesis work, we are able to extract information of various electronic sensors 

attached to the CAN bus. The information of some of the parameters was not available 

before, so they were not used in the collision algorithms and driver assistance 

applications. An important direction for future work would be to develop new collision 

avoidance algorithms which utilize these additional parameters’ information. Another 

work can be to get access to more CAN IDs of the vehicular sensors and to calculate and 

use the additional information.      
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APPENDICES 

Appendix A 

Big Endian Algorithm 

Input: Data bytes, RcvDataLen 

Output: FinalDecodedValue 

Receive CAN ID = Data byte shift by 4 bytes of total data bytes 

FOR ByteCounter = 4 to RcvDataLen 

BinaryValue = IntToBinaryString(Data[ByteCounter]) 

END FOR 

LenBinaryValue = BinaryValue.length() 

FOR  i = 0 to LenBinaryValue -8; i += 8 

Push Back in vector ByteStrings(substr of BinaryValue(i,8)) 

END FOR  

StartBitCount = 0 

FOR ByteNum = 0 to ByteStrings.size() 

Byte = ByteStrings[ByteNum] 

RevByte = string reverse(Byte) 

FOR  RevBitPos = 0 to not RevByte.size()  

IF (StartBitCount == datastructure -> signal -> bit_start) 

BitPos = 7 – RevBitPos 

BitPos = 8 * ByteNum + BitPos 

FinalString = SubString of BinaryValue (BitPos, datastructure -> signal -> length) 
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DecodedValue = BinaryToInt(FinalString) 

FinalValue = (DecodedValue * datastructure -> signal -> scale) + (datastructure -> signal 

-> offset) 

ELSE 

StartBitCount++ 

END IF 

END FOR 

END FOR    
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Appendix B 

Little Endian Algorithm 

Input: Data bytes, RcvDataLen 

Output: FinalDecodedValue 

Receive CAN ID = Data byte shift by 4 bytes of total data bytes 

FOR ByteCounter = 4 to RcvDataLen 

BinaryValue = IntToBinaryString(Data[ByteCounter]) 

END FOR 

LenBinaryValue = BinaryValue.length() 

FOR  i = 0 to LenBinaryValue -8; i += 8 

Push Back in vector ByteStrings(substr of BinaryValue(i,8)) 

END FOR  

StartBitCount = 0 

FOR ByteNum = 0 to ByteStrings.size() 

Byte = ByteStrings[ByteNum] 

RevByte = string reverse(Byte) 

FOR  RevBitPos = 0 to not RevByte.size()  

IF (StartBitCount == datastructure -> signal -> bit_start) 

BitPos = 7 – RevBitPos 

BitPos = 8 * ByteNum + BitPos 

BitPos = BitPos – (datastructure -> signal -> bit_len - 1) 

FinalString = SubString of BinaryValue (BitPos, datastructure -> signal -> length) 

DecodedValue = BinaryToInt(FinalString) 
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FinalValue = (DecodedValue * datastructure -> signal -> scale) + (datastructure -> signal 

-> offset) 

ELSE 

StartBitCount++ 

END IF 

END FOR 

END FOR    
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