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ABSTRACT 
 

Protein disulfide isomerase (PDI) is crucial in the redox of disulfide bonds, where 

it catalyzes reductase, oxidase, and isomerase activity. The active site motif for PDI is 

CXXC, which is found in the a and a’ domain. PDI is mainly localized to the 

endoplasmic reticulum, where it plays a key role in the folding of new proteins through 

proper disulfide formation. 

 With new studies about the regulation of protein activity by lysine acetylation, 

our group wished investigate this post-translational modification on PDI. Flanking each 

active site motif of PDI is a lysine residue. These active site-flanking lysine residues were 

mutated individually and together to observe if any catalytic change occurred. Mutation 

of the lysine residue to glutamine, alanine, or glutamic acid resulted in a decrease in 

activity, indicating the importance of the lysine residue for optimal PDI activity. 

Acetylation of PDI was performed by acetic anhydride, where through mass 

spectrometry, PDI was observed to be partially acetylated. The catalytic efficiency of the 

acetylated wt-PDI was observed to decrease in comparison to un-acetylated PDI. 

Indicating that acetylation of PDI may be a possible regulator of PDI redox activity. 

[Master’s Thesis or Major Paper 150 words max] 

[PhD Dissertation 350 words max] 
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1! Introduction 

1.1! Protein folding and the importance of disulfide bonds  

 The unique functions carried out by proteins come in part due to their three-

dimensional (3D) structure (Dill & MacCallum, 2012). Much scientific research has and 

still is being performed to understand how a one-dimensional chain of amino acids can 

quickly fold into the native protein structure (Dill & MacCallum, 2012). One of the 

hypotheses that try to explain the ability of an amino acid chain to quickly fold into the 

native state without stopping at any of the multiple stable conformations is the folding 

funnel hypothesis. This hypothesis states that the native structure of the protein has such 

a low free energy that it becomes unlikely that the protein will stay in a non-native stable 

conformation for long (Onuchic & Wolynes, 2004).  

 Predicting the mechanism of protein folding becomes more complex when 

considering the formation of a disulfide bonds within a protein (Narayan, 2012). A 

disulfide bond is a covalent bond between the thiol groups of two cysteines and plays an 

important role in protein folding and the stability of the native structure (Mamathambika 

& Bardwell, 2008). Disulfide bonds have also been shown to play functional roles at 

either the active site of proteins or at allosteric sites where they regulate enzyme activity 

(Mamathambika & Bardwell, 2008). Some of the major factors that affect disulfide bond 

formation are the concentration of thiolates, the accessibility of the thiols, the proximity 

of the thiols, and the reactivity of the thiols based on the microenvironment 

(Mamathambika & Bardwell, 2008). Incorrect disulfide bond formation can cause 

improper protein folding leading to protein aggregation followed by degradation 

(Mamathambika & Bardwell, 2008). This is the reason that proteins such as protein 
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disulfide isomerase are so important; they help with the formation, reduction, and/or 

isomerization of disulfide bonds (Mamathambika & Bardwell, 2008). 

1.2! Protein disulfide isomerase (PDI) 

1.2.1! Overview 

The first reported observable activity of protein disulfide isomerase (PDI: EC 

5.3.4.1) occurred in 1963 by Anfinsen’s group. They observed the re-oxidation of RNase 

by rat liver microsomes fraction and from soluble nonprotein factors (Goldberger, 

Epstein, & Anfinsen, 1963). By 1964, Anfinsen’s group was able to further purify the 

microsomes fraction to just a protein sample, where they correctly hypothesized that this 

protein may be able to facilitate the conversion of disulfide bonds on multiple proteins 

(Goldberger, Epstein, & Anfinsen, 1964). PDI was observed to reduce and isomerize 

disulfide bonds as well as oxidize thiols (Figure 1)(Holmgren, 1968). The active site 

sequence of rat PDI was later determined to be WCGHCK a similar sequence found in 

the thioredoxin family (Edman, Ellis, Blacher, Roth, & Rutter, 1985). It was later 

determined that PDI contains four thioredoxin-like domains and is now categorized as 

being a part of the thioredoxin superfamily (Alanen et al., 2003; Freedman et al., 1998). 

PDI is also the model protein for the PDI family, which contains 20 different isoforms 

(Kozlov, Maattanen, Thomas, & Gehring, 2010).  

In 1994, it was discovered that PDI possess chaperone activity in addition to the 

aforementioned thiol redox activity (Cai, Wang, & Tsou, 1994). It was later determined 

that this chaperone activity worked independently of the redox status of active site   
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Figure 1. The 3 main redox reaction catalyzed by PDI: oxidation of thiols, reduction of 
disulfide, and isomerization of disulfide. 
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thiols (McLaughlin & Bulleid, 1998). The three catalytic activities of PDI, thiol redox, 

disulfide exchange, and chaperone are central to endoplasmic reticulum (ER) function, 

where PDI is highly expressed (Maattanen, Gehring, Bergeron, & Thomas, 2010). 

Although PDI has a C-terminal KDEL ER retention sequence, significant amounts of this 

protein were shown to escape the ER and were detected in the nucleus, cytosol, cell 

surface, and extracellularly (Edman et al., 1985; Koch, 1987; Yoshimori et al., 1990). It 

is important to state that PDI is expressed in almost all mammalian tissues, playing 

important role in redox and chaperone activity (Marcus, Shaffer, Farrar, & Green, 1996; 

Noiva, 1999). 

1.2.2! Structural importance of PDI and the interplay with catalytic activity 

 All members of the PDI family contain at least one thioredoxin-like domain 

structure characterized as a βαβαβαββα fold (Kemmink, Darby, Dijkstra, Nilges, & 

Creighton, 1997). PDI is comprised of 5 domains abb’a’c where abb’a’ are thioredoxin-

like domains and c is an acidic domain (Figure 2)(Freedman et al., 1998; Koivunen et al., 

1999). In the c domain there is an ER retention sequence KDEL at the C-terminal 

(Edman et al., 1985). The a and a’ domains contain the thiol redox catalytic motif 

CXXC, whereas the b and b’ domains do not contain this motif (Freedman et al., 1998). 

There is a small chain of amino acids between the b’ and a’ domains known as the x-

linker, which is believed to provide some flexibility to the protein (C. Wang et al., 2013). 

The N-terminal cysteine in the catalytic motif (CXXC) is observed to have a pKa of 4.8 

whereas the C-terminal cysteine (CXXC) pKa is reported to be 10 (Karala, Lappi, & 

Ruddock, 2010; Nelson & Creighton, 1994). The low pKa of the N-terminal cysteine will  
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Figure 2. Crystal Structure of Reduced and Oxidized PDI. (A) Reduced crystal structure 
of human PDI (PDB ID: 4EKZ). (B) Oxidized crystal structure of human PDI (PDB ID: 
4EL1). (C) Schematic of PDI domains present in the crystal structure, as well as the two 
active site CXXC motifs. (Crystal structures created using Swiss PDBViewer). Image 
taken from Khan, H. A., & Mutus, B. (2014). Frontiers in chemistry, 2. 
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result in a higher percentage of the more reactive thiolate to form. This supports the 

reasoning that the N-terminal cysteine reacts with the substrate first to form a mixed 

disulfides (Walker & Gilbert, 1997). The high pKa of the C-terminal cysteine keeps the 

majority as a thiol allowing for this cysteine to help with the release of the substrate 

(Walker & Gilbert, 1997). This process is suggested to greatly help PDI from being 

trapped in a mixed disulfide bond with a substrate (Walker & Gilbert, 1997). It is 

hypothesized that PDI performs a “scanning and escape” mechanism, where after 

forming a mixed disulfide PDI will scan for other thiols that are thermodynamically 

stable to react with the substrate (Walker & Gilbert, 1997). If no thiol is available the C-

terminal will help PDI “escape” from being trapped in a mixed disulfide with the 

substrate (Walker & Gilbert, 1997). Interestingly, both the a and a’ domains contain a 

lysine on the C-terminal end of the catalytic motif (CXXCK)(Edman et al., 1985). 

 The redox-inactive b and b’ domain has been identified to exhibit chaperone 

activity (Denisov et al., 2009). Through NMR, the structure and amino acid residues of 

the b’ domain were observed to interact with unfolded RNase A, an oft used enzyme to 

assay the chaperone activity of PDI. The b’ domain contains a large multivalent 

hydrophobic surface allowing for a structurally promiscuous binding site (Denisov et al., 

2009). In addition, computational analysis indicates that the bb’ domains contain 4 

cavities allowing for the possible binding of a variety of ligands (Fu, Wang, & Zhu, 

2011). Recently human PDI was found to dimerize in vivo through the binding of bb’ (Ali 

Khan & Mutus, 2014; Bastos-Aristizabal, Kozlov, & Gehring, 2014). 

 Recently was observed that the chaperone activity of PDI is regulated by its redox 

status. The crystal structure of the four thioredoxin-like domains of PDI in both the 
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reduced and oxidized forms were obtained (C. Wang et al., 2012). The oxidized form of 

PDI, the active site of a and a’ are 40.3 Å apart and the thioredoxin domains abb’a’ were 

all in the same plane (Figure 2B)(C. Wang et al., 2012). Whereas in the reduced state of 

PDI the active sites are 27.6 Å (Figure 2A), and only abb’ are in the same plane where a’ 

is twisted 45º, illustrating that the oxidized state has a more open conformation allowing 

for the entry of chaperone substrates and the reduced state has a closed conformation 

inhibiting their entry (C. Wang et al., 2013). This further illustrates long range 

conformational changes induced by redox status of the active sites and further suggests 

redox regulation of chaperone activity (Ali Khan & Mutus, 2014). 

1.2.3! PDI localization/protein interactions/physiological role 

As stated above, PDI contains an ER retention sequence at the C-terminal (Edman 

et al., 1985).  PDI is highly expressed in the ER, where its concentration is estimated to 

be in the millimolar range (L. Wang, Wang, & Wang, 2015). This high concentration 

allows PDI to function as a catalyst for oxidative protein folding through its redox 

activity. As well as function as a chaperone at stoichiometric concentrations on nascent 

polypeptides as well as on improper folded proteins (L. Wang et al., 2015). As PDI 

performs its redox activity within the ER, it is suggested that an oxidized a domain 

catalyzes the oxidation of the reduced substrates and in the process becomes reduced 

(Walker & Gilbert, 1997). The a domain is then subsequently oxidized by the a’ domain 

back to a disulfide through intramolecular reactions (Araki et al., 2013). The re-oxidation 

of the a’ domain is catalyzed by the protein endoplasmic reticulum oxidoreductin-1 

(Ero1) in the process reducing O2 to produce H2O2 (Figure 3) (Ali Khan & Mutus, 2014; 

Araki & Nagata, 2011). It is also worth noting that glutathione and glutathione disulfide  
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Figure 3. The hypothesized regeneration of PDI by Ero1. The a domain of PDI oxidizes 
the substrate. The now reduced a domain is re-oxidized by the a’ domain. The now 
reduced a’ domain is re-oxidized by Ero1. The thiols of Ero1 are oxidized by O2.  
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(GSH/GSSG) can also oxidize and reduce the a and a’ domain (Ali Khan & Mutus, 

2014). As a chaperone PDI as been observed to refold proteins such as glyceraldehyde-3-

phosphate dehydrogenase, rhodanese, citrate synthase, and alcohol dehydrogenase 

(Wilkinson & Gilbert, 2004). It has also been observed that PDI can act as an anti-

chaperone, where it can cause substrate protein-aggregation resulting in precipitation 

(Wilkinson & Gilbert, 2004). 

As previously stated, PDI is shown to be secreted to the cell surface of multiple 

cell types (Turano, Coppari, Altieri, & Ferraro, 2002). Many studies have shown that cell 

surface PDI plays a role in platelet activation (Ali Khan & Mutus, 2014; Turano et al., 

2002). Thiols on the surface of platelets play a critical role in intergrin-mediated platelet 

adhesion, where PDI is required for the reduction and reshuffling of disulfide bonds 

(Turano et al., 2002). Overall, PDI has been observed to play multiple roles in blood clot 

formation (Ali Khan & Mutus, 2014; Cho, 2013; Flaumenhaft, 2013). Cell surface PDI 

has also shown to play a role in nitric oxide signalling (Ali Khan & Mutus, 2014; 

Ramachandran, Root, Jiang, Hogg, & Mutus, 2001). Cell surface PDI was observed to 

release NO from S-nitrosylated glutathione (GSNO), one of the main nitric oxide carriers 

in tissues (Root, Sliskovic, & Mutus, 2004). PDI would denitrosylate GSNO when NO 

levels were low, however during high levels of NO, PDI would act as a carrier either 

through the formation of SNO-PDI (Ali Khan & Mutus, 2014; Sliskovic, Raturi, & 

Mutus, 2005). 

Within liver cells, PDI is observed to be present in high quantities in the cytosol 

(Turano et al., 2002). PDI is proposed work as an insulin degrading enzyme, where it 

degrades insulin through the reduction of its disulfide bonds (Turano et al., 2002). In the 
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nucleus, PDI is observed to affect the activity of transcription factor E2A. As well PDI 

has been observed to interact with estrogen receptors to help with DNA binding (Turano 

et al., 2002). 

1.2.4! Catalytic activity assays for PDI 

 Since PDI has multiple functions, there are many diverse assays to detect these 

activities. Each assay will only detect one of the four functions of PDI. Majority of the 

assays for the PDI isomerase activity, deal with gain-of-function of an inactive protein 

that contains incorrectly formed disulfide bonds (Watanabe, Laurindo, & Fernandes, 

2014).  The two main proteins used for isomerase activity assays are scrambled RNase 

and riboflavin-binding protein (Watanabe et al., 2014). With scrambled RNase, the 

addition of PDI will result in refolding to the native structure of RNase (Watanabe et al., 

2014). As RNase refolds, it will start to hydrolyze cyclic cytidine monophosphate, which 

can be detected by absorbance (El Hindy et al., 2013; Lyles & Gilbert, 1991; Watanabe et 

al., 2014).  

Oxidation assays can be performed similar to isomerase assays where gain-of-

function is observed. Another possible assay to detect oxidative folding is to trap 

intermediates of oxidative folding by PDI using thiol alkylating agents, followed by mass 

spectrometry (Watanabe et al., 2014). For chaperone activity, again gain-of-function 

assays can be used, ensuring that proteins-substrates do not have disulfides in native 

conformation i.e. glyceraldehyde-3-phosphate dehydrogenase (Cai et al., 1994; Watanabe 

et al., 2014). 

 The most common reduction assay is the reduction of insulin by PDI resulting in 

the precipitation of insulin (Watanabe et al., 2014). The turbidity of the solution can be 
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monitored to determine reductase activity of PDI (Holmgren, 1979; Watanabe et al., 

2014). However, for this assay the lag time for precipitation to start and the rate of 

precipitation must be taken into account (Watanabe et al., 2014). Another reductase assay 

produced by our research group, uses GSSG where eosin-isothiocyanate, a fluorescent 

molecule, is covalently bonded to the two amine groups, it is known as dieosin 

glutathione disulfide (Di-E-GSSG) (Figure 4)(Raturi & Mutus, 2007). Di-E-GSSG is not 

fluorescent due to the close proximity of the eosin moieties resulting in self-quenching. 

When PDI is present the disulfide bond is reduced resulting in two eosin glutathione 

(EGSH) molecules, which are fluorescent (Raturi & Mutus, 2007). The reduction of Di-

E-GSSG to EGSH results in a ~70 fold increase in fluorescence. This assay requires low 

amounts of dithiothreitol (DTT), a thiol reducing agent, to re-reduce the PDI active site 

thiols. DTT at the concentrattions employed (~50 µM) agent does not reduce Di-E-GSSG 

(Raturi & Mutus, 2007). This assay only requires nanomolar amounts of PDI, which 

makes this the most sensitive assay for PDI reductase activity to date. 

1.3! Acetyltransferases 

 The transfer of an acetyl moiety from acetyl-CoA to the ε-amino group of a lysine 

was first observed in 1960 on histones (Marmorstein, 2001). This reversible post-

translational modification results in the neutralization of the lysine as well as impairs 

hydrogen bonding and creates a bulkier side chain (Figure 5) (Dormeyer, Ott, & 

Schnolzer, 2005; Lee & Workman, 2007; Patel, Pathak, & Mujtaba, 2011). The enzymes 

that catalyze this reaction are termed acetyltransferase. At first this modification was 

thought to occur only on histones, however recently, non-histone proteins were observed 

to be acetylated (Pehar & Puglielli, 2013). It was believed that protein acetylation could  



 12 

  

Figure 4. Fluorogenic Di-E-GSSG reductase assay. A) Structure of Di-E-GSSG. B) 
Reduction mechanism of Di-E-GSSG by PDI to produce the fluorescent EGSH. C) 
Fluorescent graph of reductase assay, where DTT demonstrates little increase in 
fluorescence. With the addition of PDI, fluorescence increases. 
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Figure 5.  Lysine acetylation by acetyltransfersase and acetyl-CoA. 
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only occur in the nucleus and cytosol since that was the only area where it was observed. 

However recently protein acetylation was observed in the mitochondria, and more 

recently in the ER (Pehar & Puglielli, 2013).  

There are three main families of acetyltransferases; MYST, p300/CBP, and Gcn5-

related N-acetyltransferase (GNAT)(Spange, Wagner, Heinzel, & Kramer, 2009). The 

MYST protein family is named after four members of the family; MOZ, Ybf2, Sas2, and 

Tip60 (Marmorstein, 2001). This protein family has sequence similarities at the acetyl-

CoA binding motif with the GNAT family (Aka, Kim, & Yang, 2011). The p300/CBP do 

not have this acetyl-CoA binding motif and do not share sequence similarities with 

GNAT family or MYST family (Aka et al., 2011). The protein p300 appears to have a 

very broad substrate acetyltransferase. The GNAT family is the largest acetyltransferase 

family, containing proteins such as p300/CBP-associated factor (PCAF) and general 

control nonrepressed 5 (Gcn5)(Aka et al., 2011). This family all posses four conserved 

sequence motif known as C, D, A, and B (Pehar & Puglielli, 2013). 

The only two acetyltransferases observed in the ER belong to the GNAT family 

of acetyltransferases. These two proteins known as ATase1 (also known as N-

acetyltransferase 8B) and ATase2 (also known as N-acetyltransferase 8) are also 

members of the camello family (Pehar & Puglielli, 2013). These protein are differentially 

expressed in a variety of cells. Interestingly in vitro experiments show that ATase 1 

undergoes auto-acetylation, whereas ATase2 does not auto-acetylate (Pehar & Puglielli, 

2013). It is important to remember that acetylation requires acetyl-CoA, which therefore 

means that acetyl-CoA must be transported into the ER. Experiments have revealed that 

there is a carrier-mediated transporter of acetyl-CoA on the ER membrane, where CoA 
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moiety is the detection signal (Pehar & Puglielli, 2013). There have only been two 

observed acetyltransferases in the ER, however it is likely that there are other ER-based 

acetyltransferases (Pehar & Puglielli, 2013). Recently, a proteomic study was conducted 

to discover all ER acetylated proteins (Pehar, Lehnus, Karst, & Puglielli, 2012).  Over 

100 proteins were identified to be ER acetylated proteins, by confirmation through mass 

spectrometry (Pehar et al., 2012). PDI was one of these proteins signifying that 

acetylation may regulate PDI activity. It was observed that lysine at the a’ domain 

(K401) was observed to be acetylated. This sparked our interest, as a possible post-

translational modification to regulate PDI activity. 

1.4! Research objectives 

 Very little research has been conducted on the regulation of PDI. The goal of this 

project is to determine whether reductase activity is affected by a PDI-acetylation and to 

identify the regulatory lysine residues in the enzyme. PDI acetylation will be investigated 

by an acetyltransferase (PCAF) as well as by chemical acetylation by acetic anhydride. 

The candidate lysine residues are those flanking the active site motif of PDI. Mutant 

variants of these two lysines will be produced to see their effects on the reductase activity 

of PDI. Mass spectrometry will be used in conjunction with activity assays to identify the 

sites of actelylation. 
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2! Materials 

2.1! Chemicals 

•! Tryptone, and yeast extract were purchased from Bio Basic Inc. 

•! Sodium phosphate dibasic, sodium phosphate monobasic, glycerol, sodium 

chloride, and sodium carbonate were purchased from ACP Chemicals Inc. 

•! Dithiothreitol was purchased from MP Biomedical. 

•! Bis-acrylamide solution, and Bio-Rad Protein Assay were purchased from Bio-

Rad. 

•! Tris hydrochloride, dimethyl sulfoxide (DMSO), sodium dodecyl sulphate, Tris 

base, potassium phosphate dibasic, potassium phosphate monobasic, kanamycin, 

bromophenol blue, ammonium persulfate, ammonium bicarbonate, and agarose 

were purchased from Fisher Scientific. 

•! Acetic anhydride, sodium butyrate, imidazole, boric acid, sodium acetate, sodium 

azide, Triton X100, bovine serum albumin, lysozyme, ethylenediaminetetraacitic 

acid (EDTA), isopropyl β-D-1-thiogalactopyranoside (IPTG), Coomassie Brilliant 

Blue R, deoxyribonuclease I from bovine pancreas (DNase I), trifluoroacetic acid, 

α- cyano-4-hydroxycinnamic acid, phenylmethanesulfonyl fluoride (PMSF), 

diethylenetriaminepentaacetic acid (DTPA), His SelectTM Nickel Affinity gel, 

Glutathione–Agarose, chloramphenicol, reduced glutathione, glutathione 

disulfide, 5,5'-dithiobis-(2-nitrobenzoic acid), Sephadex G-25, bicinchoninic acid, 

copper(II) sulfate pentahydrate, guanidine hydrochloride, nickel(II) sulphate, 

TEMED, and Phenol:Chloroform:Isoamyl alcohol25:24:1 were purchased from 

Sigma-Aldrich. 
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•! ZebaTM spin desalting columns was purchased from Thermo Scientific. 

•! Plasmid Mini Kit was purchased from Qiagen. 

•! Trypsin and Glu-C mass spec grade were purchased from Promega. 

•! Bacteriological agar was purchased from Quelab. 

•! PageRuler Plus Prestained Protein Ladder, GeneRuler 1 kb DNA Ladder, and 

Eosin-5-Isothiocyanate were purchased from Life Technologies. 

•! Magnesium chloride was purchased from BDH VWR analytical. 

•! Q5® Site-Directed Mutagenisis Kit, NEB 5-alpha competent cells, PvuII, AvaI, 

AvaII, NaeI, NotI, SmaI SacI, XmnI, and EcoRI were purchased from New 

England BioLabs. 

•! BL21 DE3 pLys competent cells was purchased from EMD Millipore. 

2.2! Plasmids and primers 

•! The pEt22b plasmid containing recombinant human PDI was created by Dana 

Seslija. 

•! The pGEX-2T plasmids containing GST-PCAF-HAT was kindly donated by Dr 

David LeBrun from Queens University. 

•! All primers were made by Intergrated DNA Technology: 

o! Reverse PDI a domain primer: 

5’AGGGGCCAGAGCCGCGCAGTGGCCACACCAAGG3’ 

o! PDI Lys-Ala a domain primer: 

5’AGGGGCCAGAGCCGCGCAGTGGCCACACCAAGG3’ 

o! PDI Lys-Gln a domain primer: 

5’AGGGGCCAGAGCCTGGCAGTGGCCACACCAAGG3’ 
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o! PDI Lys-Glu a domain primer: 

5’AGGGGCCAGAGCCTCGCAGTGGC3’ 

o! Reverse PDI a’ domain primer: 

5’CCATGGGGCATAGAATTCCACAAAGAC3’ 

o! PDI Lys-Ala a’ domain primer: 

5’TGTGGTCACTGCGCACAGTTGGCTCCC3’ 

o! PDI Lys-Gln a’ domain primer: 

5’TGTGGTCACTGCCAACAGTTGGCTCCC3’ 

o! PDI Lys-Glu a’ domain primer: 

5’TGTGGTCACTGCGAACAGTTGGCTC3’ 

o! Reverse PDI cysteine 295 primer: 

5’TCAGGCCAAAGAACTCTAGGATGCG3’ 

o! Forward PDI cysteine 295 to serine primer: 

5’AGAAGGAAGAGTCCCCGGCCGTGCG3’ 

o! Reverse PDI cysteine 326 primer: 

5’TCCTCTCTGCCGTGAGCTCCTCCGATTC3’ 

o! Forward PDI cysteine 326 to serine primer: 

5’TCACAGAGTTCTCCCACCGCTTCCTGGA3’ 

2.3! Equipment 

•! Bio-Rad; PowerPacTM High current power supply, electrophoresis chamber, Mini-

Sub® cell GT cell, T100TM Thermal Cycler, and Fraction Collector Model 2110. 

•! Fisher Scientific; Model 100 Sonic Dismembrator. 

•! Perkin Elmer; Wallac 1420 Victor 3 Fluorescent Plate Reader. 
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•! PGC Scientifics; Type 37900 Culture Incubator. 

•! Thermo Electron Corp; Orion Model 420A pH Meter, and Centrifuge Jouan 

BR4i. 

•! Alpha Innotech Corporation; AlphaImager® serial number 200018. 

•! Agilent Technologies; Agilent 8543 UV-VIS Spectrophotometer, and Varian 

Cary Eclipse Fluorescence Spectrophotometer. 

•! New Brunswick Scientific; C25 Incubator Shaker. 

•! EMD Millipore; 30kDa Amicon Ultra-15 Centrifugal Filter Units. 

•! Molecular Devices; SpectraMax® Plus 384 Absorbance plate reader. 

•! Labconco; Freeze dry system/Freezone 4.5. 

•! Beckman Coulter; Beckman J2-HS centrifuge. 

•! Applied Biosystems; Voyager-DE Pro Workstation mass spectrometry. 

•! Hettich Zentrifuge; EBA-12 centrifuge. 

•! Mettler Toledo; AJ100 analytical balance. 

•! Ohaus; Scout Pro balance.  
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3! Methods 

3.1! Plasmid bacterial transformation 

 The protocol used was obtained from Q5® Site-Directed Mutagenisis Kit 

Protocol from New England BioLabs with minor changes. BL21, NEB 5-alpha, or Gold 

competent cells were thawed on ice. Approximately 1-50ng of plasmid was then added to 

20µL of competent cells and was mixed by flicking. Competent cells were returned onto 

ice for 30 minutes. Competent cells were then heat shocked by incubating cells in 42˚C 

water bath for 30 seconds. Cells were returned to ice and incubated for 2 minutes. The 

SOC outgrowth medium was added to cells and then incubated in the C25 Incubator 

Shaker at 37˚C for 60 minutes at 220 rpm. After incubation 100µL of cells were plated on 

either LB agar plates (Gold and NEB 5-alpha) or 2xYT agar plates (BL21) and incubated 

overnight at 37˚C. After incubation colonies were picked and added to LB or 2xYT 

media. The culture was then incubated overnight where either mini-prep or protein 

purification was performed. 

3.2! Bacterial mini prep 

 The Qiagen Mini Prep protocol was used with some modifications to the protocol. 

After plasmid transformation, 1.5 mL of culture was centrifuged for 1 minute at       

12000 x g. The medium was then aspirated in order to obtain a dry pellet. The pellet was 

re-suspended with 100µL of Buffer P1(50mM glucose, 25 mM Tris HCl, 10mM EDTA) 

from the Qiagen Mini Kit. Qiagen Mini Kit Buffer P2 (0.2N NaOH, 1% SDS), 250µL 

was added and was mixed by inversion. This was followed by 150µL of Buffer P3(3M 

sodium acetate pH 5.2) from the Qiagen Mini Kit  was again mixed by inversion. The 

sample was then centrifuged at 12000 x g for 30 minutes at 4˚C. Phenol:chloroform, 
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400µL was added to the supernatant. The mixture was then vortexed and centrifuged at 

12000 x g for 1 minute at room temperature. The top aqueous phase was collected and 

800µL of ice cold 95% ethanol was added. The sample was then vortexed and centrifuged 

at 12000 x g for 10 minutes at 4˚C. The supernatant was decanted and 400µL of ice cold 

70% ethanol was added to the pellet, which was then centrifuged at 12000 x g for 1 

minute at room temperature. The supernatant was decanted and the pellet was air dried in 

an inverted position for 10 minutes, re-suspended in 30µL of TE buffer (10mM Tris, 

1mM EDTA pH 8) containing 20µg/mL of RNase A and incubated at 37˚C for 15 

minutes. At this point the plasmid was either used for further experiments or frozen at      

-80oC. 

3.3! Site-directed mutagenesis 

 The Q5® Site-Directed Mutagenesis Kit protocol was used with minor changes. 

The primers were designed to be end-to-end where the forward primer contained the 

mutation and the reverse primer resulted in the gain or loss of a restriction enzyme digest 

site. The PCR mix contained 6.25µL of the Q5 Hot Start High Fidelity 2x Master mix, 

0.625µL of the forward and reverse primer, 0.5µL of the template plasmid, and 4.5µL of 

nuclease-free water. Using the T100TM Thermal Cycler the cycling condition were set 

according to Q5® Site-Directed Mutagenisis Kit. The initial denaturation step occurs at 

98˚C for 30 seconds. The amplification cycle was repeated for 25 cycles of first a 10 

second denaturing step at 98˚C. This was followed by 30 seconds of annealing at a 

temperature between 50˚C and 72˚C depending on the primers used. The annealing 

temperatures were calculated by the addition of 3˚C to the melting temperature of the 

primer. The elongation step occurred next for 30 seconds at 72˚C. After the 25 cycles, a 
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final step of elongation occurred for 2 minutes at 72˚C. After PCR, 1µL of the PCR 

product was treated with 1µL of a kinase, ligase, DpnI mixture, 5µL of the reaction 

buffer, and 3µL of nuclease-free water. This mixture was mixed by pipetting and kept at 

room temperature for 5 minutes, where bacterial transformation followed. 

3.4! Protein purification 

3.4.1! His-Tagged PDI protein purification 

The protein purification of PDI followed the same protocol of Raturi et al. with 

some modifications (Raturi & Mutus, 2007). The expression of human PDI in pEt22b 

plasmid was transformed in E. coli BL21. Cells were grown in 2xYT (tryptone, yeast 

extract, and sodium chloride) with antibiotics (10µg/mL kanamycin A, 25µg/mL 

chloramphenicol) at 37°C until the OD600 reading was between 0.4 – 0.6. Expression of 

plasmid was induced with 1mM isopropyl β-D-1-thiogalactopyranoside and the cells 

were incubated for 4 hours. Centrifugation of the cells were centrifuged at 6000 rpm for 

30 minutes at 4°C and re-suspended in lysis buffer (1mM sodium chloride, 50mM Tris 

hydrochloride (pH 8), 100µg/mL lysozyme, 50µg/mL DNase I, 2mM PMSF, and 1% 

Triton X100) for 30 minutes on ice. The mixture was sonicated with a Fisher Scientific 

Model 100 Sonic Dismembrator at a power level of 4, for 8 pulses, 20 seconds in 

duration. The lysate was centrifuged at 10000 rpm at 4°C for 30 minutes. The supernatant 

was applied to the His Select® Nickel Affinity column that was equilibrated with wash 

buffer (10mM imidazole, 50mM sodium phosphate, 150mM sodium chloride pH 8). The 

column was washed with 3 column volumes of wash buffer. Elution buffer (250mM 

imidazole, 50mM sodium phosphate, 150mM sodium chloride pH 8) was then used to 

elute the protein of interest. The protein sample was reduced using 1M of DTT.  Buffer 
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exchange was then performed on the protein fractions with a 30kDa Amicon Ultra-15 

Centrifugal Filter Unit exchanging with 100mM phosphate buffer (100µM DTPA pH 

7.4). Protein concentration was determined using the BCA assay where bovine serum 

albumin was used as the standard. Protein purity was determined by a 10% SDS-PAGE 

and stained with Coomassie Brilliant Blue. 

3.4.2! GST-Tagged protein purification 

The expressions of GST-tagged proteins in the pGEX-2T plasmids were 

transformed into E. coli BL21. Cells were grown in 2xYT (tryptone, yeast extract, and 

sodium chloride) with antibiotics (10µg/mL ampicillin, and 25µg/mL chloramphenicol) 

at 37°C until the OD600 reading was between 0.4 – 0.6. Expression of plasmid was 

induced with 1mM isopropyl β-D-1-thiogalactopyranoside and the cells were incubated 

for 4 hours. The lysate was centrifuged at 10000 rpm for 30 min at 4°C. The cells were 

then re-suspended in lysis buffer (1mM sodium chloride, 50mM Tris hydrochloride (pH 

8), 100µg/mL lysozyme, 50µg/mL DNase I, 2mM PMSF, and 1% Triton X100) for 30 

minutes on ice. The cells were then sonicated with the tip of a Fisher Scientific Model 

100 Sonic Dismembrator at a level of 4, for 8 pulses, 20 seconds in duration. The lysate 

was centrifuged at 10000 rpm for 30 min at 4°C. The supernatant was applied to a 

glutathione-agarose column, followed by 4 column washes of the resin with PBS-T 

(10mM phosphate buffer, 150mM sodium chloride, 1% Triton X100, pH 7.4). The 

protein of interest was then eluted with elution buffer (10mM reduced glutathione, 50mM 

Tris-HCl, pH 9.5). Buffer exchange was then performed with a 30kDa Amicon Ultra-15 

Centrifugal Filter Units with 100mM phosphate buffer (100µM DTPA pH 7.4). Protein 

concentration was determined using the BCA assay where bovine serum albumin was 
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used as the standard. Protein purity was determined by 10% SDS-PAGE and stained with 

Coomassie Brilliant Blue. 

3.5! Di-Eosin-Glutathione Disulfide (Di-E-GSSG) synthesis 

 Di-E-GSSG was synthesized as per Raturi et al. with some minor modifications 

(Raturi & Mutus, 2007). In a 50mL conical tube, 20mg of glutathione disulfide was 

dissolved with 1mL of 100mM ammonium bicarbonate buffer (2mM EDTA, pH 9). A 

2.5 molar excess of eosin-5-isothiocyanate was weighed out in the dark and dissolved in 

2mL of DMSO. The solution of eosin-5-isothiocyanate was slowly added to the 50mL 

conical tube containing glutathione disulfide while it was being vortexed at a low setting. 

The solution was brought to a total volume of 10mL with 100mM ammonium 

bicarbonate buffer. The reaction was incubated at 4˚C overnight on a nutating mixer. The 

reaction was then quickly frozen by rotating the conical tube in a dewar of liquid 

nitrogen. The sample was then lyophilized overnight, where the remaining solid was 

dissolved with 1mL of milli-Q water. The 1mL of lyophilized sample was then applied to 

a sephadex G-25 column containing 50mL of resin, which was equilibrated with 10mM 

phosphate buffer (2mM EDTA, pH 7.4). Using a fraction collector, 180 fractions were 

collected each containing 1mL of eluate. Fractions are then tested to observe amount of 

fluorescent fold increase, by obtaining 20µL of the fraction and adding 1M of DTT in a 

96-well plate. The increase in fluorescence was monitored at a wavelength of 545nm with 

an excitation wavelength of 525nm. Fractions that showed a >30 fold or increase in 

fluorescence were pooled. The concentration of the Di-E-GSSG was obtained from the 

extinction coefficient of eosin (176000M-1·cm-1 at 525nm. Di-E-GSSG solution was then 

divided into small aliquots and stored at -80˚C. 
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3.6! Quantification of Eosin Reduced Glutathione (EGSH) 

 Known concentration of Di-E-GSSG were reduced with 5M DTT and incubated 

for 30 minutes at room temperature to produce 2 EGSH. The fluorescence of the samples 

was measured at 545nm (ex 525nm) and a standard curve of fluorescence vs. [EGSH] 

was generated. This standard curve was used to quantify the concentration of EGSH that 

was produced from the PDI-mediated reduction of Di-E-GSSG. 

3.7! Determination of PDI concentration through burst kinetics 

 The concentration of PDI and the lysine variants were determined through burst 

kinetics. The experiment consisted of 10µL of enzyme that was reacted with 800nM of 

Di-E-GSSG in 100mM phosphate buffer (pH 7.4, 100µM DTPA) for 10 minutes. The 

reaction was excited at 525nm and the fluorescence was monitored at 545nm. The linear 

regression was obtained after the burst phase, where the y-intercept corresponds to the 

amount of enzyme. Using the EGSH standard curve the concentration of enzyme was 

determined.  

3.8! PDI kinetic assay 

 The protocol for PDI reductase activity assay was obtained from Raturi et al. with 

some minor modifications (Raturi & Mutus, 2007). The buffer used for all kinetic activity 

assays was 100mM phosphate buffer containing 100µM DTPA at pH 7.4. The buffer was 

filtered using a 0.2µm filter, degassed and purged with argon gas. Using the Varian Cary 

Eclipse Fluorescence Spectrophotometer, 20µM of PDI or mutant PDI was added to 

varying concentration of Di-E-GSSG (5nM-6000nM) in the presence of 10µM DTT. The 

sample was excited with 525nm light and the fluorescence monitored at 545nm. For the 
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pH titrations of PDI, the concentration of Di-E-GSSG was kept at 400nM and the pH 

varied from 5.5 to 7.5.  All kinetic assays are performed in triplicates. 

3.9! PDI acetylation 

3.9.1! PDI Acetylation by acetyltransferase 

 The protocol for in vitro acetylation was taken from Ogryzko et al. with some 

changes(Ogryzko, Schiltz, Russanova, Howard, & Nakatani, 1996). The amount of the 

acetyltransferases, (PCAF) used for the acetylation of PDI was in a 2:1 molar ratio. 

Where 300pmol of PDI and 600pmol of acetyltransferase were dissolved in 500µL of 

acetylation buffer. The acetylation buffer consisted of 50mM Tris hydrochloride pH 8, 

50mM sodium chloride, 2.5mM magnesium chloride, 10mM sodium butyrate, 10% 

glycerol, 0.5mM PMSF, 0.5mM DTT, and 6nM of acetyl-CoA, where DTT and acetyl-

CoA are added fresh to the buffer before use. The reaction proceeded for 2 hours at 30˚C 

on a nutating or rotating mixer. PDI was then isolated by using the His Select® Nickel 

Affinity trial purification protocol found on the product information sheet. All eluate was 

kept to determine any loss of PDI by running the samples on a 10% SDS-PAGE. The 

isolated PDI was then buffer exchanged using ZebaTM spin desalting columns. The 

modified PDI sample was then frozen and kept for mass spectrometry. 

3.9.2! PDI acetylation by acetic anhydride 

 Acetic anhydride was used for the chemical acetylation of lysines on PDI. 4µmol 

of PDI was reacted with either 8µmol or 40µmol of acetic anhydride. The reaction was 

incubated at 4˚C for 2 hours on a rotating mixer. After incubation the modified PDI was 
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then buffered exchanged using using ZebaTM spin desalting columns. The modified PDI 

sample was then frozen and kept for mass spectrometry or kinetic assays. 

3.10! Mass spectrometry analysis of PDI 

 PDI samples were digested using Glu-C for analysis on MALDI-TOF (Voyager-

DE Pro Workstation mass spectrometry) and LC-MS. A 10:1 protein to protease by mass 

ratio was maintained for all digests. PDI was digested overnight at room temperature. 

The samples were then cleaned following manufacture’s protocol, and spotted with a 1:1 

ratio of 10mg/mL of matrix solution (α-cyano-4-hydroxycinnamic acid in 60% 

acetonitrile, 0.1% trifluoroacetic acid). The digests were analyzed by matrix assisted laser 

desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Tandem mass 

spectrometry (MS/MS) was performed on active site parent ions and compared to 

sequence fragments predicted by Protein Prospector Software 

(http://prospector.ucsf.edu/). 

3.11! Computational analysis 

In collaboration with Dr. Gaulds Group, computational analysis was performed on 

PDI, the lysine variants and acetylated PDI. The enzymes structures were determined as 

well as the pKa of the cysteine residues at the active site were calculated. 

3.12! Statistical analysis 

 The kinetic analysis was performed by fitting the data to the Michaelis-Menten 

equation: 

! = #$%&× (
)$ + (  
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Excel was used to fit the data to solve for the enzyme kinetic parameters, KM, and VMax. 

To determine statistical significance, an unpaired student t-test was used, where P<0.05 

was taken as being statistically significant.  
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4! Results 

4.1! Reductase activity of PDI and PDI-Mutants, at physiological pH 

Only one study has been conducted on the importance of the lysine residues flanking the 

active site (K57 and K401)(Kimura et al., 2004). This study suggested that these lysine 

residues play an important role for optimal PDI activity. Recently, our laboratory 

investigated the potential role of these lysine residues in the regulation of PDI activity, 

specifically through acetylation. Initially site-directed mutagenesis was performed on the 

lysine residues to obtain 9 different variants of PDI. The lysine residues at the active sites 

(K57 and K401) were either mutated individually or together to an alanine, glutamine, or 

glutamic acid (summarized in Table 1). 

Before reductase assays were performed, the concentrations of enzymes were 

normalized through burst kinetics (Figure 6). The reaction consisted of Di-E-GSSG 

(800nM) and enzyme (10µL) in 100mM phosphate buffer (pH 7.4, 100µM DTPA). The 

increase of fluorescence was observed for 10 minutes, where the burst phase occurred in 

the first minute. The linear regression was obtained after the burst phase, where the y-

intercept indicated the concentration of enzyme.   

Steady-state kinetic parameters for the reductase activity of PDI and its lysine variants 

were determined by a fluorogenic assay using Di-E-GSSG as the substrate (50 nM – 4000 

nM). The experiments were conducted at pH 7.4. A low concentration of DTT (10µM) 

was added to the buffer to reduce the enzyme. The baseline for the experiments was taken 

as the rate of reduction of Di-E-GSSG by DTT. The concentration of EGSH was 

calculated from a standard plot. The data for PDI and its lysine variants were fitted to the 

Michaelis-Menten equation (Figure 7). The Michaelis-Menten kinetic parameters (KM   
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Protein  a Domain a’ Domain 

wt-PDI CGHCK CGHCK 

PDI K-Q aa’ CGHCQ CGHCQ 

PDI K-Q a CGHCQ CGHCK 

PDI K-Q a’ CGHCK CGHCQ 

PDI K-A aa’ CGHCA CGHCA 

PDI K-A a CGHCA CGHCK 

PDI K-A a’ CGHCK CGHCA 

PDI K-E aa’ CGHCE CGHCE 

PDI K-E a CGHCE CGHCK 

PDI K-E a’ CGHCK CGHCE 

Table 1. A summary of all site-directed mutations performed on PDI. All 
K-E mutations were performed by Cody Caba in completion of his 
Honours Thesis research project. 
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Figure 6. Burst kinetics for wt-PDI and mutants. For each experiment, 
10 µL of enzyme was reacted with 800 nM of Di-E-GSSG for 10 
minutes. The linear regression was taken after the burst phase, where the 
y-intercept indicated the concentration of enzyme.  All kinetics for K-E 
mutations  (H, I, and J) were performed by Cody Caba as a part of his 
Honours Thesis research project. 



 32 

  

A B C 

D E F 

G H I 

Figure 7. Initial rate vs. [Di-E-GSSG] plots for PDI and mutants. For each experiment 
the protein concentration was 20nM, and the initial rate was expressed as the amount of 
EGSH produced (nM/s). The assay was performed with 10µM of DTT in phosphate 
buffer (100mM phosphate pH 7.4, 0.1mM DTPA) and data was collected for 1 minute. 
The dashed lines represent the application of the best-fit kinetic parameters, obtained 
from the data, to the Michaelis-Menten equation. The error bars represent standard 
deviation, n=3. All kinetics for K-E mutations (G, H, and I) were performed by Cody 
Caba as a part of his Honours Thesis research project. 
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and VMax) and catalytic efficiency (kcat/KM) were calculated for each protein and 

presented in (Figure 8). The reductase assay indicated that any mutation at either or both 

lysine residues (K57 and K401) results in a significant decrease (p<0.05) of VMax (Figure 

8C). The majority of mutants had a decrease of approximately 50% of wild type VMax, 

where PDI K-E aa’ had the lowest percentage of wild type VMax at 17%. This indicates 

that a lysine residue provides maximum rate, and changing this residue to a negatively 

charged amino acid like glutamic acid will drastically decrease the rate of the enzyme. 

When comparing the KM of wt-PDI with all the glutamine mutants and PDI K-A a’ and 

aa’ there was no significant difference observed (p<0.05) (Figure 8A). Interestingly, the 

KM of PDI K-A a (333.04 ± 5.043 nM) was observed to be significantly lower (p<0.05) 

than wt-PDI (435.96 ± 15.298 nM). Due to the fact that the glutamic acid mutations 

would result in a reversal of charge from positive to negative it was not surprising that all 

glutamic acid mutants displayed a significantly higher (p<0.05) KM when compared to 

wild type. Interestingly, the catalytic efficiency for all lysine mutants was observed to be 

significantly lower (p<0.05) than wt-PDI (5.10 ± 0.210 × 105 M-1s-1)(Figure 8B). The 

mutant with the highest catalytic efficiency was PDI K-A a and PDI K-E aa’ had the 

lowest catalytic efficiency. This further supports the notion that lysine is important for 

optimal reductase activity. 

4.2! The effect of the active site lysine residues on the pH optima of the reductase 

activity of PDI 

To further study the influence of active site lysine residues on PDI activity, a pH 

titration was performed. This was to specifically determine whether the positive charge   
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Figure 8. Michaelis-Menten kinetic parameters and catalytic efficiency (kcat/KM)for wt-
PDI and mutants at pH 7.4. The kinetic parameters and catalytic efficiency were 
estimated by utilizing a fit of the initial rate data of EGSH production by wt-PDI and the 
Lys variants by using the Solver function in MS Excel. Results are expressed as the mean 
with standard deviation, n=3. Significant differences (p<0.05) are indicated by *. All K-E 
mutation kinetics were performed by Cody Caba as a part of his Honours Thesis research 
project.   
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on the lysine residue affected the pKa of active site cysteine residues. For these 

experiments, Di-E-GSSG was kept constant at 400nM, and the pH was varied between 

5.5 - 7.5. The initial rates at varying pH values were plotted for each set of amino acid 

mutant with wt-PDI (Figure 9). All of the lysine variants exhibited similar bell-shaped pH 

titration curves in comparison to wild type. It was observed that PDI reductase activity 

was most active at pH 6.5 and not physiological pH of 7.4 or the postulated pH of the 

ER,7.2(Wu et al., 2000). It was observed (Figure 9) that all proteins displayed bell-

shaped curve where at pH 5.5 and 7.5 the initial rates were at their lowest, between 

0.5nMs-1 to 1.5nMs-1. Interestingly, wt-PDI and the lysine to glutamine and alanine 

variants all displayed similar initial rates at pH 6. 

4.3! Reductase activity of wt-PDI and PDI mutants, at pH 6.5 

Since pH 6.5 exhibited the highest initial rate for wt-PDI and all lysine variants 

(Figure 9) the fluorogenic reductase activity assays were repeated at pH 6.5. At this pH of 

6.5, a higher percentage of lysine residues would be protonated resulting in a positive 

charge. Any possible acetylation of a lysine residue would neutralize the positive charge. 

The initial rates of EGSH production from Di-E-GSSG (25nM – 1000nM) were fitted to 

the Michaelis-Menten equation for wt-PDI and the lysine variants (Figure 10). The 

Michaelis-Menten kinetic parameters (KM and VMax) and catalytic efficiency (kcat/KM) 

were also calculated for each enzyme and presented in Figure 11. It was observed that 

almost all lysine variants displayed a reduction in VMax, where only PDI K-Q aa’ did not 

display a significant reduction (p<0.05)(Figure 11C). This further supports the notion that 

lysine is critical for optimal activity. The lysine variants displayed greater variability in   
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Figure 9. pH Titration curves of PDI and mutants. The concentration of wt-PDI was kept 
constant at 20nM and Di-E-GSSG was kept constant at 400nM. The change in pH 
occurred through the addition of NaOH. The rate was expressed as the amount of EGSH 
produced (nM/s). Results are expressed as the mean with standard deviation, n=3. All 
kinetics for K-E mutations (C) were performed by Cody Caba as a part of his Honours 
Thesis research project. 
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Figure 10. Initial rate vs. [Di-E-GSSG] plots for wt-PDI and mutants. For each 
experiment the protein concentration was 20nM, and the initial rate was expressed as the 
amount of EGSH produced (nM/s). The assay was performed with 10µM of DTT in 
phosphate buffer (100mM phosphate pH 6.5, 0.1mM DTPA) and data was collected for 1 
minute. The dashed lines represent the application of the best-fit kinetic parameters, 
obtained from the data, to the Michaelis-Menten equation. The error bars represent 
standard deviation, n=3. All kinetics for K-E mutations  (G, H, and I) were performed by 
Cody Caba as a part of his Honours Thesis research project. 
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Figure 11. Michaelis-Menten kinetic parameters and catalytic efficiency (kcat/KM)for wt-
PDI and mutants. The kinetic parameters and catalytic efficiency were estimated from a 
fit of the initial rate data of EGSH production at pH 6.5 by wt-PDI and the Lys variants 
by using the Solver function in MS Excel. Results are expressed as the mean with 
standard deviation, n=3. Significant differences (p<0.05) are indicated by *. All K-E 
mutation kinetics were performed by Cody Caba as a part of his Honours Thesis research 
project.   
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KM when compared to wt-PDI (119.63 ± 18.662 nM) (Figure 11A). Interestingly, PDI K-

Q aa’ (191.82 ± 31.416 nM) showed a significant increase (p<0.05) in KM. Also, as 

shown at pH 7.4, all lysine to glutamic acid variants exhibited significant increases 

(p<0.05) in KM. This suggests that these lysine variants lower the binding affinity of the 

substrate to the protein. Interestingly, PDI K-A a’ (89.73 ± 12.866nM) exhibited a 

significant reduction (p<0.05) in KM when compared to wt-PDI. Therefore, an alanine at 

the C-terminal end of the CXXC motif in the a’ improves substrate binding. The catalytic 

efficiency of PDI was calculated to be 2.78 ± 0.506 × 106 M-1s-1 (Figure 11B), which was 

higher than previously reported for PDI reductase activity(Raturi & Mutus, 2007). Only 

PDI K-Q aa’, PDI K-E aa’, PDI K-E a, and PDI K-E a’ exhibited significantly lower 

(p<0.05) catalytic efficiency when compared to wt-PDI. This suggests these lysine 

variants reduce the protein’s reductase activity, which further supports lysine as an 

integral residue for PDI activity.  

4.4! Computational structural and pKa analysis of active site cysteine residues 

  In collaboration with Dr. Gauld’s Group, computational calculations were 

performed to estimate the pKa values for the active site cysteine residues (Li, Robertson, 

& Jensen, 2005) as a function of the lysine mutations. Computational analysis was 

performed on wt-PDI, the lysine variants, and on acetylated lysine residues (Table 2).  

The N-terminal cysteine residues in PDI displayed a lower pKa (C53 – 4.45, C397 – 

4.66), whereas the C-terminal cysteine residues had a higher pKa (C56 – 8.67, C400 – 

9.81). These results were comparable to previously reported values for the pKa of the 

cysteine residues (Karala et al., 2010; Nelson & Creighton, 1994). Interestingly, the 

acetylated a domain cysteine residues showed similar pKa values to those of PDI K-E aa’   
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Protein C53 pKa C56 pKa C397 pKa C400 pKa 

PDI  4.45  8.67  4.66  9.81 

PDI K-Q aa’  4.96  8.52  4.06  8.16 

PDI K-A aa’  4.39  12.98  4.83  12.58 

PDI K-E aa’  5.43  10.43  4.78  8.29 

PDI Acetylated 

(K57 and K401) 
 5.6  9.14  4.79  12.01 

Table 2. Computationally estimated pKa’s of active site cysteines in the a and a’ 
domain. Wanlei Wei of Dr. Gauld’s group performed the computational analysis 
of all the proteins (Li et al., 2005). 
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in the a domain. Whereas, the acetylated a’ domain cysteine residues showed similar pKa 

values to those of PDI K-A aa’ in the a’ domain. Through computational analysis, the 

structure of the a’ domain active site was elucidated (Figure 12). The acetylated a’ 

domain active site was also determined through dynamic simulations for comparison 

(Figure 13). It is noticeable from the acetylated active site that the lysine residue is 

shifted towards the backbone of the enzyme, whereas the un-acetylated lysine is pointed 

away from the active site cysteines. Also, it is noticeable that in the acetylated protein the 

cysteine residue (C400) is further away from the glutamic acid residue (E391). 

4.5! Identification of acetylated active site lysine residues through mass 

spectrometry 

 The two active sites of PDI have similar sequences, which might be difficult to 

differentiate between the two using mass spectrometry. However, a previous study that 

used Glu-C as the protease for digestion was successful in identifying the two active sites 

(Kozarova et al., 2007). Therefore, a similar protocol was used, where PDI was 

proteolyzed by a 10:1 ratio of PDI to Glu-C. Digestion was performed overnight at room 

temperature. The double His-tagged PDI (60kDa) digests were desalted then analyzed by 

MALDI-TOF, and MS/MS was performed on active site parent ions for further 

confirmation (Figure 14). The expected mass-to-charge ratio (m/z) for the active site 

fragments was 1692.8 (a domain) and 2462.2 (a’ domain) as predicted by Protein 

Prospector software. Surprisingly, fragment peaks appeared at m/z 1689.9 and 2459.6 and 

not at the predicted m/z (Figure 14A). However, through MS/MS these fragment were 

verified to be the active sites of PDI (Figure 14B and C). 
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Figure 12. Computational dynamics simulation of wt-PDI a’ domain active site. 
Distances are provided in Angstroms. The atoms are represented by colours (yellow: 
sulfur, red: oxygen, blue: nitrogen, light grey: hydrogen, and dark grey: carbon). 
Wanlei Wei of Dr. Gauld’s group performed the computational analysis of all the 
proteins. 
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Figure 13. Computational dynamics simulation of acetylated wt-PDI a’ domain 
active site. Distances are provided in Angstroms. The atoms are represented by 
colours (yellow: sulfur, red: oxygen, blue: nitrogen, light grey: hydrogen, and dark 
grey: carbon). Wanlei Wei of Dr. Gauld’s group performed the computational 
analysis of all the proteins. 
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Figure 14. Mass fingerprint analysis of PDI Glu-C peptides. PDI digestion was 
performed overnight at room temperature using a 10:1 ratio of PDI to Glu-C. A) The 
mass fingerprint of PDI, where m/z 1689 and 2459 corresponds to the active sites of 
PDI. B) The MS/MS of the m/z 1689 parent ion corresponding to the a domain of PDI. 
C) The MS/MS of the m/z 2459 parent ion corresponding to the a’ domain of PDI. 
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An acetyltransferase (PCAF) was used to perform acetylation on PDI. PDI was 

reacted with PCAF and acetyl-CoA in a 1:2:20 ratio. After the reaction was incubated at 

32˚C for 2 hours, PDI was isolated using the His Select® Nickel Affinity column. PDI 

was then digested with Glu-C and analyzed on the MALDI-TOF. The active site 

fragment peaks were observed at m/z 1690 and 2460 (Figure 15). However, no acetylated 

fragment peaks were observed, which would appear at m/z 1734 and 2504. 

Next, acetylation was performed chemically by acetic anhydride. PDI was reacted 

with acetic anhydride in a 1:10 ratio, for 2 hours at 37˚C. PDI was desalted to remove 

excess acetic anhydride and digested with Glu-C. The fragments were analyzed on the 

MALDI-TOF. The active site fragment peaks were again observed at m/z 1691 and 2459 

(Figure 16A). An acetylation peak was observed as well at m/z 2502, which is a 42Da 

increase of the 2459 peak indicative of acetylation. This peak was further analyzed and 

confirmed through MS/MS to be the acetylated a’ domain (Figure 16B). The MS/MS 

suggests that lysine 401 has been acetylated by the presence of the b10 ion. This indicates 

that the a’ domain active site lysine of PDI appears to be partially acetylated due to the 

presence of both un-acetylated and acetylated peptides.  

4.6! Reductase activity of un-acetylated and acetylated PDI and PDI K-Q aa’  

 Chemical acetylation of PDI and PDI K-Q aa’ was performed using acetic 

anhydride. Acetylation was performed for 2 hours at 37˚C, where after incubation the 

protein was desalted. The fluorogenic reductase assay Di-E-GSSG (25nM-1000nM) was 

performed at pH 6.4 in phosphate buffer. The initial rates of EGSH production were fitted 

to the Michaelis-Menten equation for both un-acetylated and acetylated protein (Figure 

17). The Michaelis-Menten kinetic parameters (KM and VMax) and catalytic efficiency   
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Figure 15. Mass fingerprint analysis of PDI reacted with acetyltransferase (PCAF). PDI 
was incubated with PCAF and acetyl-CoA for 2 hours at 32˚C. PDI was the digested with 
Glu-C overnight at room temperature. Only the un-acetylated peptide fragments are 
observed in the mass fingerprint. 
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Figure 16. Mass fingerprint analysis of PDI reacted with acetic anhydride. PDI was 
incubated with acetic anhydride for 2 hours at 37˚C. PDI was the digested with Glu-C 
overnight at room temperature. A) Un-acetylated peptide fragments are observed in the 
mass fingerprint. The a’ active site domain is observed to be acetylated with a m/z 
2502. B) The MS/MS of the m/z 2502 parent ion, which corresponds to the acetylated 
active site a’ domain. 
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Figure 17. Initial rate vs. [Di-E-GSSG] plots for un-acetylated and acetylated wt-PDI and 
PDI K-Q aa’. For each experiment the protein concentration was 20nM, and the initial 
rate was expressed as the amount of EGSH produced (nM/s). The assay was performed 
with 10µM of DTT in phosphate buffer (100mM phosphate pH 6.5, 0.1mM DTPA) and 
data was collected for 1 minute. The dashed lines represent the application of the best-fit 
kinetic parameters, obtained from the data, to the Michaelis-Menten equation. The error 
bars represent standard deviation, n=3.  
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 (kcat/KM) were calculated and presented in (Figure 18). Interestingly, the VMax of 

acetylated PDI and PDI K-Q aa’ both significantly increased (p<0.05) indicating that 

acetylation may increase the turnover rate (Figure 18C). However, for KM only the 

acetylation of wt-PDI resulted in a significant increase (p<0.05) (Figure 18A). Whereas, 

acetylated compared to un-acetylated PDI K-Q aa’ produced no significant change in KM. 

This indicates that the acetylation at the active site lysine results in a decrease in affinity 

to the substrate. Interestingly, acetylated wt-PDI was observed to significantly decrease 

(p<0.05) catalytic efficiency in comparison to un-acetylated (Figure 18B). Whereas, 

acetylated PDI K-Q aa’ was observed to significantly increase (p<0.05) catalytic 

efficiency in comparison to un-acetylated. This suggests that acetylation at the active 

lysine may inhibit the reductase activity, whereas acetylation at other lysine residues may 

increase the reductase activity. 
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Figure 18. Michaelis-Menten kinetic parameters and catalytic efficiency (kcat/KM)for wt-
PDI and mutants. The kinetic parameters and catalytic efficiency were estimated from a 
fit of the initial rate data of EGSH production at pH 6.5 by wt-PDI and the Lys variants 
by using the Solver function in MS Excel. Results are expressed as the mean with 
standard deviation, n=3. Significant differences (p<0.05) are indicated by *. 
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5! Discussion 

5.1! The importance of active site-flanking lysine residues in the reductase activity 

of PDI 

 Lysine residues play an important role to maintain protein structure and function, 

through hydrogen bonds or electrostatic interactions (Patel et al., 2011). The role of PDI 

active site-flanking lysines has not been well studied. In fact there is only one study to 

our knowledge, which has been conducted on the importance of this residue in PDI 

(Kimura et al., 2004). In the earlier study, the researchers mutated away the cysteine 

residues in the a’ domain and focused on the lysine in the a domain (Kimura et al., 2004). 

The lysine residue in the a domain was then mutated to glutamine and arginine, where a 

decrease in activity was observed (Kimura et al., 2004). The assay used in this study 

involved the reduction of insulin by PDI, which was monitored by spectrophotometry.  

However, this study or any other studies to our knowledge have not delved into how 

lysine residues affect the redox activity of PDI as well as how they may be used to 

regulate PDI activity.  

 In the current study, lysine residues (K57 and K401) were mutated individually or 

together to further investigate the role lysine plays at both the a and a’ domains. The 

lysine residues were mutated to glutamine, alanine, or glutamic acid (Table 1). Glutamine 

was chosen for the reason that it can form hydrogen bonds as well as it best mimics the 

bulky characteristics of lysine while it provides a neutral charge. Lysine was mutated to 

glutamic acid in order to observe the effects of PDI activity with a negative charge taking 

the place of the positively charged of lysine residue. A small neutral amino acid such as 

alanine was chosen to observe if flexibility at that site provides any change in activity of 
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PDI. These mutations will provide further understanding of the role of lysine at the active 

site of PDI. 

 The steady-state kinetic parameters observed at pH 7.4 provided vital information 

of how lysine may play a role in PDI reductase activity (Figure 8). The KM of most lysine 

variants showed very little change in comparison to wt-PDI (435.96 ± 15.298 nM). This 

indicates that these mutations did not affect the binding of substrate to the enzyme. In the 

case of the PDI K-A a domain, surprisingly displayed a significant decrease in KM 

(333.04 ± 5.043 nM).  This suggests that a more flexible amino acid at the a domain may 

improve the accessibility of the substrate to the active site. However, all the glutamic acid 

mutants demonstrated a significant increase in KM (Figure 8A). This may suggests that a 

negative charge near the active site inhibits the initial binding of the substrate to the 

active site. 

 It was observed that all lysine variants displayed a significant decrease in VMax 

(Figure 8C). This suggests that any neutral or negatively charged amino acid will hinder 

the turnover rate of the enzyme. Interestingly, as previously stated (Table 2), the pKa of 

the two cysteines in the active site are quite different. The N-terminal cysteine is 

observed to have a pKa around 4, which is hypothesized to form a thiolate and bind to the 

substrate (Karala et al., 2010). The C-terminal cysteine is observed to have a pKa around 

9, and it is hypothesized that the pKa of this cysteine will decrease in order to form a 

thiolate and release the substrate from the N-terminal cysteine (Nelson & Creighton, 

1994). From the VMax results, it is apparent that lysine plays a significant role in turnover 

rate, where we postulate that the positive charge on the lysine may help reduce the pKa of 

the C-terminal cysteine. The fact that all glutamic acid mutants demonstrated the lowest 
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VMax values support this theory that the positive charge on lysine may help to reduce the 

pKa of the C-terminal cysteine. The catalytic efficiency of the lysine variants were all 

significantly lower than wt-PDI (Figure 8B). This suggests that lysine is needed for 

optimal PDI activity. 

In order to observe the effect that the lysine variants have on the pKa of the 

cysteine residues, a pH titration was performed (Figure 9). Surprisingly, none of the 

lysine variants caused a shift in the pH titration curve. All enzymes created a bell-like 

curve, where PDI and all the lysine variants were most active at pH 6.5 (Figure 9). 

Therefore, the steady-state kinetics on PDI and the lysine variants were repeated 

at pH 6.5 (Figure 11). The kinetic parameters at pH 6.5 displayed some differences to the 

kinetic parameters observed at pH 7.4. PDI K-Q aa’ displayed a significant increase in 

KM, suggesting that Di-E-GSSG was inhibited from reaching the active site (Figure 11A). 

This could be due to the fact that glutamine residues at the lower pH form more hydrogen 

bonding and therefore results in a less accessible active site. Interestingly, at pH 7.4 PDI 

K-A a (Figure 8A) demonstrated a lower KM. However, at pH 6.5 it is PDI K-A a’ that 

exhibited a significant decrease in KM (Figure 11A). This could possibly suggests that a 

change in pH would change which domain is more active.  As previously observed at pH 

7.4, glutamic acid mutants exhibited a significantly higher KM than wt-PDI at pH 6.5 

(Figure 11A).  

Unexpectedly, PDI K-Q aa’ exhibited no significant change in VMax compared to 

wt-PDI (Figure 11C).  It is possible that the increase in hydrogen bonding at the lower pH 

resulted in a more rigid structure where the cysteine residues would more easily form 

thiolates. This would result in a turnover rate that is larger than expected. All other lysine 
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variants exhibited a significant decrease in VMax at pH 6.5 as previously seen at pH 7.4 

(Figure 8C and Figure 11C). PDI K-Q aa’ and all the glutamic acid mutants displayed a 

significantly lower catalytic efficiency compared to wt-PDI at pH 6.5 (Figure 11B). 

However, the other lysine variants did not appear to have a significantly lower catalytic 

efficiency compared to wt-PDI at pH 6.5 (Figure 11B). This could suggest that at a lower 

pH, the efficiency of the enzyme is not fully predicated on a lysine residue being at the 

active site. However it should be noted that wt-PDI (2.78 ± 0.506 × 106 M-1s-1) still 

exhibited the highest catalytic efficiency and is higher than previously reported for 

reductase activity (Raturi & Mutus, 2007).  

5.2! The possible regulation of PDI by lysine acetylation 

 Recently, more extensive studies have been conducted in regards to lysine 

acetylation; specifically on non-histone acetyltransferases (Marmorstein, 2004). Now, it 

is understood that acetylation may play a role on an increasing number of proteins 

throughout the cell (Pehar & Puglielli, 2013). In the recent proteomic study of all ER 

acetylated proteins, PDI was observed to be acetylated, indicating the possible role as a 

post-translation modification to regulate PDI activity (Pehar et al., 2012). It was observed 

that PDI contains 7 sites of acetylation on PDI (Table 3) (Pehar et al., 2012). 

Interestingly, the lysine residue flanking the active site at the a’ domain (K401) was 

acetylated (Table 3)(Pehar et al., 2012). This further confirmed that the active site-

flanking lysine residues may act as a possible regulator of PDI activity. 

Through computational analysis performed by Dr. Gauld’s group, the pKa’s of the  

cysteine residues at the active site were determined for the lysine variants as well as for 

acetylated lysine residues (K57 and K401) on PDI (Table 2). The calculations revealed   
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PDI Domain Sequence 

 b’ domain  IKPHLMSQELPEDWDKQPVK 

 a’ domain  NVFVEFYAPWCGHCKQLAPIWDKLGETYK 

 b’ domain  ILEFFGLKK 

 a’ domain  NFEDVAFDEKK 

 a’ domain  DHENIVIAKMDSTANEVEAVK 

Table 3. Sequences of acetylated peptides found in PDI through mass spectrometry. 
Lysine residues in red font indicate acetylated residue. Information taken from 
supplementary data of Pehar, M. et al. (2012). Journal of Biological Chemistry, 287(27).  
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 that a mutation or acetylation of those lysine residues would result in a change in pKa of 

the active site cysteine residues (Table 2). This suggested that the lysine plays an 

important role in maintaining the correct microenvironment for the cysteine residues. By 

changing the charge as well as creating a bulkier group on lysine resulted in a change in 

the microenvironment. It should be noted that acetylation of a lysine and glutamine, 

which both contain a carbonyl group, could be an acceptor for hydrogen bonding.  

Interesting changes occurred in the molecular dynamic simulations of the un-

acetylated and acetylated wt-PDI (Figure 12 and Figure 13). From the un-acetylated wt-

PDI (Figure 12) it was evident that the lysine residue (K401) was positioned away from 

the active site of PDI. In the acetylated wt-PDI (Figure 13), the acetyl-lysine was shifted 

towards the backbone of the active site. This could be caused by a potential hydrogen 

bond between the carbonyl group of the acetyl moiety and the amino group of the 

backbone. Interestingly, the C-terminal cysteine residue was observed to be in very close 

proximity to a glutamic acid residue (E391). This could be the cause of the increase in 

pKa of the C-terminal cysteine (Table 2), since a negatively charged residue will 

influence the sulfur to be in a protonated state. In this reduced conformation of wt-PDI, 

likelihood of reactive thiolate formation at the C-terminal cysteine would be decreased. 

This further supports that substrate would bind to the N-terminal cysteine causing a 

conformational change, which would result in the lowering of the pKa of the C-terminal 

cysteine.  

In the acetylated wt-PDI it was observed that the C-terminal cysteine is further 

away from the glutamic acid residue by almost an Å of distance. This suggests that the 

cysteine residue (C400) would have a lower pKa due to the fact that the sulfur is further 
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away from a negative charge. However, though the computational analysis of the pKa’s 

(Table 2), it was observed that the a’ domain C-terminal cysteine (C400) had an increase 

in pKa. This was a surprising observation and suggests that further investigation is 

required to understand how the C-terminal cysteine residue possesses a high pKa while 

still maintaining reactivity. This also suggests that acetylation of the lysine residue 

(K401) would result in a decrease in turnover rate of PDI because of the high pKa of the 

C-terminal cysteine. 

To further understand the affects of lysine acetylation on PDI, in vitro acetylation 

was first performed by an acetyltransferase (PCAF). However, through mass 

spectrometry it was determined that PDI was not acetylated by this enzyme (Figure 15). 

PCAF is an acetyltransferase that is part of the GNAT family and is found primarily in 

the nucleus (Gupta, Samant, Smith, & Shroff, 2008). The use of PCAF as an 

acetyltransferase was based on the fact that it was accessible. It was assumed that the 

acetylation of PDI by this acetyltransferase was unlikely to occur.  

Since PCAF was not successful, a cruder acetylation process was performed using 

acetic anhydride. This procedure has the potential non-specific acetylation of lysine 

residues. When a 10:1 ratio of acetic anhydride to PDI was reacted, it was observed that 

PDI became acetylated through mass spectrometry (Figure 16). The a’ domain was 

confirmed to be acetylated through MS/MS of the m/z 2501 parent ion. The presence of a 

42Da increase in the b10 ion from the un-acetylated PDI in comparison to the acetylated 

PDI confirmed the presence of acetylation on the active site-flanking lysine residue 

(K401) (Figure 14C and Figure 16B). However, it should be noted that the a’ domain 

flanking lysine (K401) was not fully acetylated due to the presence of the m/z 2459 
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(Figure 16A). Therefore, through mass spectrometry analysis it was determined that PDI 

became partially acetylated by acetic anhydride and not by the acetyltransferase PCAF.  

 Steady-state kinetics were performed on un-acetelyated and acetylated wt-PDI 

and PDI K-Q aa’ at pH 6.5 (Figure 17). PDI K-Q aa’ was used in addition to wt-PDI 

because the amino acid glutamine more closely resembles lysine and the glutamine would 

not be acetylated by acetic anhydride. The VMax of the acetylated enzymes displayed 

significant increases in comparison to the un-acetylated enzymes (Figure 18C). The fact 

that acetylation of both wt-PDI and PDI K-Q aa’ caused an increase, suggests that 

acetylation of PDI at lysine residues that are not flanking the active site may assist in 

enzyme turnover rate. This is an surprising result since the pKa analysis suggested that 

acetylation at the active site-flanking lysine residue would result in an increase in pKa 

and in effect decrease the turnover rate of the enzyme. However, it appears that 

acetylation at other lysine residues overwhelms the predicted inhibitory effect that the 

acetylated lysine at the active site provides. 

Interestingly, the KM of acetylated wt-PDI (96.46 ± 8.236 nM) significantly 

increased in comparison to the un-acetylated wt-PDI (52.13 ± 7.221 nM) (Figure 18A). 

Whereas, there was no significant change in KM for acetylated PDI K-Q aa’ and 

unacetylated PDI K-Q aa’ (Figure 18A). This possibly suggested that acetylation at the 

active site-flanking lysine residues, specifically the a’ domain resulted in a decrease in 

substrate binding to the active site. The fact that acetylated PDI K-Q aa’ did not change 

significantly compared to un-acetylated PDI K-Q aa’, suggests that acetylation at other 

lysine residues did not affect substrate binding to the enzyme. 
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The catalytic efficiency of acetylated wt-PDI (1.41 ± 0.110 × 106 M-1s-1) was 

significantly reduced in comparison to un-acetylated wt-PDI (1.76 ± 0.163 × 106 M-1s-1) 

(Figure 18B). However, acetylated PDI K-Q aa’ (1.09 ± 0.048 × 106 M-1s-1) resulted in a 

significant increase in catalytic efficiency in comparison to un-acetylated PDI K-Q aa’ 

(7.61 ± 0.471 × 105 M-1s-1) (Figure 18B). Interestingly, acetylation at the flanking active 

site lysine residues may inhibit PDI activity through the inhibition of substrate binding 

and not through the inhibition of product release. However surprisingly, PDI activity 

surprisingly increased when acetylated at non-active site-flanking lysine residues, by 

promoting the turnover rate.  

 It should be noted that acetylation by acetic anhydride may not reproducibly 

acetylate the same lysine residue. This implies that these acetylation results should be 

evaluated cautiously when making any implications into how acetylation affects PDI. 

These acetylation experiments should be repeated to observe if reproducible. Also, since 

wt-PDI was only partially acetylated by acetic anhydride at lysine residue 401, it could be 

appropriate to repeat the experiments using an increased concentration of acetic 

anhydride to fully acetylate the enzyme at the active site lysine. To accurately draw 

conclusions about the role of acetylation on PDI, the reproducibility of this protocol must 

be confirmed.  
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6! Conclusion 

 The investigation into the role of PDI active site-flanking lysine residues suggests 

that these lysine residues assist in PDI redox activity. The rational behind this is that all 

lysine variants, with the exception of PDI K-Q aa’, resulted in a decrease in VMax. PDI K-

Q aa’ did not exhibit a significant decrease in VMax at pH 6.5, however it did exhibit this 

at pH 7.4 (Figure 8C and Figure 11C). Additionally, the catalytic efficiency of all lysine 

variants significantly decreased at pH 7.4(Figure 8C). At pH 6.5 all lysine variants had a 

decrease in catalytic efficiency, however only a few showed significant decrease (Figure 

11C). This suggests that active site-flanking lysine residues may play greater of a role in 

the release of product and possibly the regeneration of enzyme than in substrate binding. 

 Mutating the lysine residue to glutamic acid, resulted in a charge change for the 

residue from positive to negative. From the kinetic assays at both pH 7.4 and 6.5, it is 

observed that the change in charge greatly affects the redox activity of PDI (Figure 8 and 

Figure 11). The catalytic efficiency of the enzyme is greatly reduced by the presence of 

the negative charge incurred by the glutamic acid (Figure 8C and Figure 11C). This 

suggests a post-translation modification such as succinylation, which causes a change in 

charge to lysine would have a greater effect on PDI redox activity (Zhang et al., 2011). 

Further studies into succinylation of PDI should be conducted, due to the fact that this 

much larger and negatively charged modification would affect PDI redox activity greatly. 

 Conclusions drawn from the acetylation of PDI by acetic anhydride should be 

considered cautiously as previously stated. However, the kinetic assay possibly suggests 

that acetylation of the active site-flanking lysine residue could adversely affect substrate 

binding (Figure 18A). Although, acetylation at non-active site lysine residues may 
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actually result in an improvement of product release from the enzyme (Figure 18C). Due 

to the fact that there is a study demonstrating that acetylation occurs on PDI, additional 

research is required to further understand the consequences of this post-translational 

modification.  

 To further study the relationship of acetylation on PDI’s redox activity, one could 

possibly obtain acetyltransferases present in the ER to perform acetylation. Such 

acetyltransferases are ATase 1 and ATase 2, which belong to the GNAT superfamily 

(Pehar & Puglielli, 2013). Performing acetylation in vitro would be the simplest method 

to obtain improved valid results on the regulation of PDI by acetylation. To further study 

the effects of lysine acetylation, in vivo experiment should be conducted to obtain the 

most accurate lysine acetylation of PDI. In all these future experiments acetylated PDI 

should be isolated from un-acetylated PDI using antibodies for acetylation. These 

experiments would provide a more accurate account for how acetylation would regulate 

PDI activity. 

 The experiments performed in this study, highly suggest that lysine plays a 

critical role in PDI redox activity. The active site-flanking lysine residues play an 

important role for optimal substrate binding as well as for optimal turnover rate for the 

enzyme. The catalytic efficiency of wt-PDI discovered through our analysis was higher 

than previously reported (Raturi & Mutus, 2007). This study hints that acetylation may 

play a possible role in post-translational modification used by cells to regulate PDI 

activity. Further studies are required to fully understand how exactly acetylation may 

regulate PDI redox activity. However, in this report, it is suggested that acetylation may 

have activation and inhibitory effects on PDI redox activity. More investigation should be 
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performed on how different types of post-translational modifications regulate PDI 

activity, specifically on lysine residues. Notable post-translational modifications to 

investigate include methylation and succinylation.  
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