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Abstract 

 

Secure hash algorithms (SHAs) are important components of cryptographic 

applications. SHA performance on central processing units (CPUs) is slow, therefore, 

acceleration must be done using hardware such as Field Programmable Gate Arrays 

(FPGAs). Considerable work has been done in academia using FPGAs to accelerate 

SHAs. These designs were implemented using Hardware Description Language (HDL) 

based design methodologies, which are tedious and time consuming. High Level 

Synthesis (HLS) enables designers to synthesize optimized FPGA hardware from 

algorithm specifications in programming languages such as C/C++. This substantially 

reduces the design cost and time.   In this thesis, the Altera SDK for OpenCL (AOCL) 

HLS tool was used to synthesize the SHAs on FPGAs and to explore the design space of 

the algorithms. The results were evaluated against the previous HDL based designs. 

Synthesized FPGA hardware    performance was comparable to the HDL based designs 

despite the simpler and faster design process. 
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Chapter 1 Introduction 

In today’s world, electronic communication has become a necessity in both work and 

personal lives, especially since the advent of the Internet. There are online 

communication applications focusing on everything from commerce to the military that 

must be secure to ensure privacy is achieved.  

Cryptography deals with securing electronic communication. A major part of 

cryptography is hash functions. They take an input message of any length and produce an 

output of a fixed length. Hash functions can only be used one way, meaning an input 

message cannot be derived from an output. Furthermore, the design of these functions 

cause a drastic change in the output when an input is even slightly changed. Applications 

of hash functions include file integrity, password verification, file identification, 

pseudorandom number generation, as well as key derivation [1], [2]. 

Due to the algorithms used in their computation, hash functions have poor speed 

performance on general purpose processors, such as central processing units (CPUs) in 

computers [3]. In order to achieve high speed and secure communication, hash functions 

must be accelerated using application specific processors. These processors can be 

implemented in dedicated hardware, such as application specific integrated circuits 

(ASICs), or they can be designed with reconfigurable hardware, with field programmable 

gate arrays (FPGAs). ASICs require the longest design time, but provide the best in 

performance and power efficiency. The development cost can only be overcome with the 

production of a high volume of circuits. If the time to market must be short, or the 

volume needed is too small, ASIC design can be unacceptable for a certain application. 
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FPGAs can be reconfigured to implement any hardware design. This makes them useful 

in prototyping of systems, or even in final products when the cost of using ASICs is too 

high. Another advantage of FPGAs is that their reprogrammable hardware can be 

changed to suit different applications at runtime.  

Traditional FPGA design is done using hardware description languages (HDLs). This 

process is very tedious and time consuming compared to software development 

programming languages. HDL programming in FPGA designs can be compared to using 

assembly code for CPU programs. The ability to specify hardware designs in a high level 

and abstract way is needed to substantially expand the user base for FPGA technologies. 

The process of designing FPGA hardware using high level languages (HLLs) is called 

high level synthesis (HLS). This takes abstract designs and synthesizes them down to an 

HDL model. Existing tools can then compile it into FPGA hardware. HLS allows 

programmers that do not have the strong background needed in hardware design to easily 

utilize FPGAs in their applications. There have been many attempts to produce HLS 

tools, such as Xilinx Vivado, University of Toronto’s LegUp, and the Altera Software 

Development Kit (SDK) for OpenCL (AOCL) [4]–[6]. These tools take different 

approaches to implementing HLS designs. The Altera SDK for OpenCL uses a 

heterogeneous computing approach to HLS.  

Heterogeneous computing systems contain additional computational hardware 

besides CPUs. These systems are used for demanding applications that have poor 

performance on CPUs. The most popular heterogeneous computing components are 

graphical processing units (GPUs), also known as video cards. They are used to enable 

very fast rendering of graphics that will be displayed to the user and allow for greater 



3 

 

complexity in user interfaces. A separate GPU is a necessity to play modern games on 

computers due to the amount of computation needed to simulate the physics and image 

aspects of the display. The clock frequency of a GPU is much slower than that of the 

CPU, but it contains multiple computational units that can all work in parallel, allowing a 

much higher throughput than a CPU. GPUs can be used for more than just graphics. By 

taking control of the processing power of the hardware, it is possible to use them in high 

throughput and parallel computational tasks. To allow programs to utilize GPUs and 

other hardware, the Open Computing Language (OpenCL) was developed [7]. This has 

become a popular standard for heterogeneous computing using CPUs, GPUs, digital 

signal processors (DSPs), and even FPGAs. 

The AOCL uses the heterogeneous computing standard to allow programs to take 

advantage and utilize FGPA hardware installed in a computer. Rather than just 

converting high level designs to FPGA implementation, it focuses on utilizing FPGA 

hardware to accelerate computationally intensive parts of programs.  

1.1 Thesis Goals  

Cryptographic hash functions have many applications on computers and servers, 

but their speed performance is poor on CPU hardware. In a heterogeneous computing 

system with reconfigurable FPGA hardware available, the computation of the hash 

functions can be accelerated to increase speed performance of these applications. 

1.1.1  General Objectives 

 Develop an understanding of the OpenCL programming ecosystem and its 

relationship to HLS for FPGAs 
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 Explore the Secure Hash Algorithms (SHAs) defined by the National Institute of 

Standards and Technology (NIST). 

 Develop C++ implementations of the SHAs to run on CPU. 

 Use the AOCL to accelerate the OpenCL versions of the SHAs (functionally 

equivalent to C++ implementations) using an FPGA. 

 Evaluate the speedup of the HLS model compared to CPU speed and other FPGA 

implementations in published literature. 

 Test the viability of the Altera SDK for OpenCL platform in the acceleration with 

this common and computationally intensive task. 

1.2 Thesis Outline 

The goal of this thesis is to accelerate the secure cryptographic functions specified 

in the secure hash standard using the AOCL HLS tool for FPGAs. In Chapter 2, 

background information is presented on FPGAs, HLS, heterogeneous computing, 

OpenCL, SHAs, as well as a review of relevant work in literature. Chapter 3 presents the 

synthesis and evaluation of the SHAs. This includes a detailed description of the design 

process and final outcomes. Chapter 3 also includes the experimental results and 

discussion comparing them to previous related research work. Finally, in Chapter 4, the 

thesis concludes with a summary and discussion of possible future work in this area. 
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Chapter 2 Background and Related Work 

There has been much research done in the area of accelerating cryptographic hash 

functions using FPGAs. This chapter focuses on the giving an overview of FPGAs, as 

well as HLS. It then goes on to describe heterogeneous computing systems, OpenCL, and 

the AOCL CAD tool that is used in this work. The secure hash standard and its functions 

are outlined in detail. The chapter ends with a literature review of published research 

using FPGAs to accelerate the functions of the secure hash standard. 

2.1 Field Programmable Gate Arrays 

FPGAs are prefabricated chips that contain reconfigurable hardware.  They can be 

programmed and reprogrammed to implement different applications. FPGAs consist of 

memory blocks, input-output (IO) blocks, logic elements (LEs), as well as embedded 

hardware such as DSP blocks. All of these elements are attached with programmable 

interconnects [8]. Configuring these interconnects and LEs will implement a hardware 

design. Each LE is composed of a look-up table and a flip-flop. The architecture is shown 

in Figure 2.1. The function of the 4-input look-up table (4-LUT) is to implement any 

binary function of 4 inputs. For more complex functions, such as multiplication or 

division, the integrated DSP blocks are used to reduce the number of LEs needed, and 

increase speed of computation.   
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Figure 2.1:  Logic Element Architecture  [9] 

 

Traditional FPGA design is done with hardware description languages (HDLs), 

such as Verilog or VHDL. Using mature computer aided design (CAD) tools, very fast 

and efficient FPGA hardware is generated from the HDL specifications.  

2.2 High Level Synthesis 

Design using HDLs for FPGAs is a tedious and time consuming process. The 

complexity of the programming limits the utilization of FPGA technology to developers 

with a good understanding of hardware design. The time needed to complete HDL 

designs is much longer than comparable applications in software.  This is due to the high 

level and abstract specification possible in software development. To advance adoption 

and utilization, FPGA design needs to become as simple as software development. The 

process of high level synthesis (HLS) aims to allow FPGA models be specified in high 

level software languages such as C or C++. The way that HLS CAD tools work is to take 

algorithms written in high level languages (HLLs) and generate optimized HDL models 

that can then be synthesized to FPGA hardware using existing tools. These HLS tools   

allow people without the complex hardware design knowledge to use FPGAs in their 
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applications. HLS tools can also speed up FPGA design to similar timeframes as software 

development.  

Some currently available HLS tools include Xilinx Vivado, University of Toronto’s 

Legup, and the Altera SDK for OpenCL [4]–[6]. These tools take different approaches in 

imagining the future of HLS. Vivado and Legup both take an algorithm that is specified 

in a HLL and create a functionally equivalent HDL model. The Altera SDK for OpenCL 

targets the acceleration of computationally intensive programs by utilizing an FPGA 

board installed in a computer. The FPGA is used to offload high intensive calculation 

from the CPU.  

2.3 Heterogeneous Computing 

Traditional computing systems contain only one type of processor, the CPU. 

When applications exist that have inherently poor performance on CPUs, there is no way 

to accelerate them on the available hardware. To increase computation speed, specialized 

hardware is added to the system. These systems that contain multiple types of processors 

are referred to as heterogeneous computing systems [10]. These specialized processors 

can be multicore CPUs, GPUs, DSPs, FPGAs, or other devices. The most common, 

GPUs, were designed to process complex graphics for displays, however, their hardware 

can be exploited to do other computational tasks. The different architecture of the GPU 

allows for high throughput parallel processing. Other types of heterogeneous components 

can run certain applications faster or more efficiently.   
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2.3.1   Open Computing Language 

The most challenging aspect of using heterogeneous computing systems is 

creating programs that can take advantage of the installed hardware. Open computing 

language (OpenCL) was developed to be the standard programming language for 

heterogeneous systems [7]. Having one language that can accommodate all types of 

added devices allows for maximum portability of programs.  

OpenCL was first developed by Apple Inc. in 2008, but has since been taken over 

by the Khronos Group [7]. This is a group of companies that work together to create 

royalty-free open standards for various computational applications. Some other popular 

standards they are responsible for maintaining, besides OpenCL, are OpenGL, WebGL, 

and Vulkan [11]. With multiple companies working together on the application program 

interface (API) of the OpenCL standard, compatibility between vendors is guaranteed. 

That doesn’t mean that all the hardware is identical, but each implementation must 

provide the specified characteristics to be OpenCL certified.  

The OpenCL model operates with two required components. The first is the host 

processor that is used to execute standard sequential program code. This host processor is 

usually the CPU in a workstation or server. The second component is the OpenCL device, 

which is used to run the parallel component of the code. There can be multiple OpenCL 

devices in a single system used together to achieve the highest possible throughput. The 

program code is broken into two parts as well, the host program and the OpenCL kernel. 

The host program, unsurprisingly, runs on the host processor, and is used to initialize the 

OpenCL device and data. The OpenCL kernel is the code that runs on the OpenCL 
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device. Multiple instances of the kernel can be executed simultaneously depending on the 

capabilities of the OpenCL device targeted.  

2.3.1.1  Host Program 

The host program is no different from any other traditional CPU program. The 

OpenCL API is used to find, setup, and initialize the OpenCL devices. The API exists for 

C and C++ programming languages. The host program is needed to organize and send the 

proper data to the OpenCL implementation. The API includes many functions that make 

the application very portable between different systems. An example of this is the 

querying functions that are available. The host program can scan for installed OpenCL 

compatible hardware. Then, it can be programmed to use any configuration of hardware 

available. This allows the creation of OpenCL applications that can adapt to any system 

with the best possible results. For this to be practical, the kernel code must be compiled at 

runtime, which means a compiler must be included in the OpenCL software development 

kit (SDK) for that device. The kernel code can be compiled pre-runtime as well, but that 

limits the OpenCL devices that the program can utilize.  

Another aspect of the host program is initialization and setup of the kernel. The 

OpenCL kernel can be thought of as a regular function in programming. The kernel has 

arguments that need to be set and it must be launched by the host. When an argument to a 

kernel contains a large amount of data it is best to use an OpenCL buffer object. The API 

contains functions for creating, reading, and writing to buffers.  

Kernels can be launched in multiple instances. Each instance is defined as a work-

item. These work-items can be organized into multiple work-groups, and can be 

identified in one, two, or three dimensions, called the N-Dimensional Range (NDRange). 
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The NDRange is specified depending on the application to make indexing more intuitive. 

The work-group size is then specified in each dimension. The number of work-groups 

will be determined by the total number of work-items and the work-group size. Proper 

organization of work-items can significantly improve performance of certain algorithms. 

Figure 2.2 shows the organization of the work-items and work-groups with an NDRange 

set to 2. This visualization can be expanded into 1 or 3 dimensions to understand the 

effect of setting the NDRange. 

 

Figure 2.2: Organization of OpenCL Work-Groups and Work-Items with NDRange of 2 [7] 

 

Some OpenCL API commands are executed by adding them to a created 

command queue, which is another type of OpenCL object. A command queue exists for 

each OpenCL device and executes the appropriate commands in a sequential fashion. The 

commands that are executed from the queue include reading or writing from OpenCL 

buffers, and launching the kernel. These operations can be blocking or non-blocking. 

Blocking operations force the host program to stall until the command has finished 
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execution. This is needed to ensure data integrity when reading/writing to buffers. 

Without blocking the host could change the data in the middle of processing the memory 

transfer. Non-blocking commands allow the host program to continue. Then the CPU is 

able to keep executing commands while the OpenCL device executes the kernel. 

The host program can be compiled with any standard C or C++ compiler. There is 

no requirement to the compilation, other than linking to the appropriate OpenCL SDK 

libraries for the used devices.  

2.3.1.2 OpenCL Kernel 

The OpenCL kernel is the second component of an OpenCL application. This is 

the code that runs on the OpenCL device. Its execution is invoked by the host program. 

The kernel is written in a language that is a subset of the C-99 programming language 

[7]. The kernel function is of type void and does not return any value. In order to send 

data back to the host, an OpenCL buffer must be used that is given as an argument to the 

function. Other arguments can exist of single variables, just like other programming 

functions.  

There are four memory types available in OpenCL implementations. The first is 

global memory. This is usually the RAM attached to the OpenCL device. It can be 

accessed by both the host program and the kernel. This is where the OpenCL buffers exist 

and it is used to transfer data between the host program and the kernel. It has the slowest 

access time of all the OpenCL memories. The second type of memory is constant 

memory. This is a subset of global memory that is only writable from the host. The kernel 

can only read this memory. It is used to transfer constant variables from the host to the 

kernel. The next type of memory is local memory. It is only accessible to the kernel. It is 
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embedded in the OpenCL device and has very fast access time compared to that of global 

memory. Work-items in the same work-group access the same block of local memory but 

work-items in different work-groups cannot. This limitation keeps the memory access 

very fast and can impact the organization of the work-groups. The size of the local 

memory is also very small compared to global memory. The last type of memory is 

private memory which is independent for each work-item. The use of private memory is 

to hold the internal variables of the work-item. These memory types may be implemented 

differently in separate OpenCL devices, but they must have those characteristics. Proper 

utilization of the memory architectures available in OpenCL is the key to achieving good 

performance.  

The OpenCL API has many functions built in that the kernel can execute such as 

math and print functions. A very important set of functions are the work-item functions. 

They are used to get the identifier of the current work-item in the work-group or globally. 

They can also be used to determine the NDRange, the number of work-groups, or number 

of work-items. These functions are important as they permit an easy way to specify 

which portion of a data set that specific work-item will operate on. It also allows for the 

creation of dynamic kernels that can adjust automatically for a different number or size of 

work-groups, without the need of redesign. 

The kernel can be compiled in two different ways. The first is at runtime with the 

compiler built into the SDK for the target OpenCL device. This provides the greatest 

portability of the code, and allows the most systems to be supported. However, different 

types of OpenCL devices can be optimized in different ways to achieve the best 

performance. If a certain OpenCL device is the known target of the application, the 



13 

 

proper optimization can be done and the kernel can be compiled before runtime. This 

makes the application restricted to certain systems, but with increased performance. It 

also takes away the need to compile at runtime, making it run slightly faster. This is also 

the only practical solution for some OpenCL devices as compilation can take much 

longer than the acceptable amount of time to complete at runtime, such as FPGAs that 

can take hours to days to compile complex kernels. 

2.3.1.3 OpenCL Extensions 

Devices must conform to the OpenCL standard to achieve the certification. It is 

still possible for certain devices to provide more functionality than specified in OpenCL. 

This is done through OpenCL extensions, which extend the functionality of the API for a 

certain device. It can be used to provide higher performance that what is offered in the 

standard, or enable features that are just not possible on different architectures.  

2.3.2 The Altera SDK for OpenCL 

The AOCL is a HLS tool that focuses on combining reconfigurable hardware and 

heterogeneous computing by integrating FPGA peripherals into computers. It uses the 

OpenCL standard to target FPGA accelerator cards as the OpenCL device, with custom 

hardware that is optimized for each application. 

2.3.2.1 Host Program 

The host program of an OpenCL application that targets Altera FPGAs is very 

similar to other OpenCL devices. The one caveat is that the kernel must be constructed in 

the host from the compiled binary image and not the OpenCL kernel source code. It 

cannot be compiled at runtime like other OpenCL devices. Other than that limitation, all 

that needs to be done is to link the host program to the OpenCL libraries included in the 



14 

 

SDK. Once that is completed, the program can be compiled by any C or C++ compiler 

and then executed. 

2.3.2.2 Kernel 

As stated previously, the major difference when using the AOCL compared to 

other OpenCL devices is that compilation of the kernel is not possible at runtime. In order 

to execute a kernel, it must be first compiled into the FPGA binary for the specific FPGA 

installed on the system. The reason this needs to be done before runtime is that it can take 

multiple hours to compile the kernel as FPGA synthesis is a slow process. The AOCL is 

compliant with version 1.0 of the standard, but the current version is 2.1 [6], [12]. This 

means that only the features and functions available in the 1.0 specification are available 

to use. Some components, like the print function, which was added in 1.2, have been 

added into the AOCL [13]. 

2.3.2.3 Extensions 

As earlier described, it is possible for vendors to add more functionality to their 

OpenCL SDKs than that specified in the standard. These additions are called extensions. 

Due to the reconfigurable nature of FPGAs, some features have been added that are not 

possible to do on other OpenCL device architectures. One of these extensions is channels, 

which allows two concurrently running kernels to exchange data directly, without the 

need of global memory. This creates a first-in first-out (FIFO) buffer in the hardware that 

is responsible for data transfer. In other architectures, like a GPU, something like this is 

not possible with its static hardware. Depending on the application, this could be a huge 

performance boost when using FPGA. Other extensions are available that can allow 
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direct input-output (IO) to the FPGA itself. Not needing to access data through RAM can 

allow for much faster operation. 

2.3.2.4 FPGA Accelerator Cards  

The FPGA targets of the AOCL are attached to accelerator cards. These cards are 

peripheral component interconnect express (PCIe) devices that can be installed on most 

modern computer motherboards. They can be bought off the shelf from manufacturers 

such as Nallatech, Terasic, and BittWare [14]–[16], or they can designed and built from 

scratch. Board support packages (BSPs) are available from each vendor for each board. 

This is required to map the AOCL to the hardware architecture of the board. There is also 

a blank BSP available to easily create a package for custom made boards. The main 

components of the FPGA accelerator cards are an Altera Statix V or Arria 10 FPGA, 

double date rate 3 (DDR3) RAM, interfacing hardware, and cooling components. Some 

of the cards can also include high speed network interfaces, or other communication ports 

to direct IO directly into the accelerator. Nallatech has just released an accelerator card 

featuring dual Arria 10 FPGAs, opening multi-FPGA possibilities on a single peripheral 

[17]. Other cards differ slightly by the exact FPGA chip installed, having varying 

amounts of speed and area available. 

The other target device of the AOCL is a system on chip (SoC) platform [18]. 

This system uses an Altera Cyclone V SoC which contains an FPGA and ARM host 

processor inside a single chip. The ARM processor can execute the host program to 

execute OpenCL kernels on the FPGA portion of the chip. This opens the HLS aspect of 

the AOCL to the word of embedded applications, which is more traditional application of 

FPGAs. 
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In this thesis, the accelerator card that was used is the Terasic DE5-Net FPGA Developer 

board. It contains an Altera Stratix V GX FPGA, containing 622,000 LEs, and 4 GB of 

1066 MHz DDR3 RAM.  

2.3.2.5 The Tools 

In order to program using the AOCL, there are three main software components 

needed. The first is the AOCL itself. Next is the BSP for the accelerator card. The last 

piece of software needed is the Quartus II CAD tool, which is Altera’s tool for FPGA 

synthesis. Typically used for HDL design, it is very mature and efficient in the generation 

of FPGA hardware from HDL models. The AOCL contains two important programs. The 

first is the Altera Offline Compiler (AOC) which is responsible for compiling the kernel. 

The main function of AOC is to synthesize the OpenCL kernel to an intermediate Verilog 

form. It then calls Quartus II to compile that intermediate Verilog model into FPGA 

hardware. The second program included in the AOCL is the AOCL utility command, 

which is used to install the BSP, link the AOCL to the host program, as well as 

programming the FPGA device. The combination of these tools provides an intuitive and 

smooth HLS solution using the OpenCL standard. 
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Figure 2.3: Altera SDK for OpenCL Programming Flowchart 
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2.4 The Secure Hash Standard 

The secure hash standard specifies three families of secure cryptographic hash 

functions [19], [20]. The purpose of these functions is to take an input of any arbitrary 

length and provide a fixed size output, called the digest. The operation of the hash 

functions only work in one direction meaning there is no way to generate the input back 

from the output. They are also designed in such a way that even a small change in the 

input should produce a drastic change in the output. These secure hash algorithms 

(SHAs) have many cryptographic applications, such as file integrity, password storage, 

file identification, pseudorandom number generation, and key derivation [1], [2]. 

File integrity is a very important aspect of digital communication. When 

transferring a file from one system to another, it is necessary to ensure that the file has 

not been changed or corrupted in any way. When the transfer median is the Internet, it 

becomes even more important as attackers can try to modify or spoof files to execute 

malicious programs. If firmware files become corrupted in transfer and are then 

programmed to device, the hardware can fault and become unrepairable. Using SHAs, the 

file can be examined on both ends of communication and if the outputs match, then the 

file integrity has been kept and it is identical to the original. If the output is different, than 

some problem has occurred, such as modification, corruption, or spoofing, and the file 

can be retransferred before execution.  

Another important application of SHAs is password storage. When dealing with 

password authentication, the ability to safely store that information is vital, as users tend 

to use the same passwords for multiple applications. If a system is compromised and the 

passwords are stored as plaintext, then the attacker has access to the users other 
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applications as well. SHAs can be used to securely store password information. When a 

password is created or changed, it will first be concatenated with another string, called 

the salt. Then the salt and password will be set as the input of a secure hash function. The 

output generated can then safely be stored. When the user needs to be authenticated, the 

same process is done. If the hash matches the stored value, then the password was 

correct. The purpose of the salt is added security to augment the output hash from other 

applications using the same SHA and password. Since the input cannot be derived from 

the stored hash, when the system is compromised there is no way to get the users 

plaintext password. Furthermore, the salt can then be changed and the user can still safely 

use the old password again.  

SHAs can also be useful for file identification. Files are usually identified by their 

name, but names can be easily changed. A SHA can produce a fixed size identifier of any 

size input. Using the SHA output of a file to identify it means that the file is identified by 

its data only. If the name is changed, the SHA will be the same as the actual data of the 

file that has not changed. A SHA digest is like a fingerprint of a file. This system is 

commonly used in peer-to-peer file sharing applications. If a user changes the name, the 

application can still understand which file it is. If the file is modified, then the digest will 

change and appropriate measures can be taken to prevent the sharing of that file. This 

also provides protection against attackers masquerading malicious files as desired files.  

Pseudorandom number generation can be accomplished through the use of SHAs. 

Taking a sequential series of numbers and computing the SHA digest of each will 

produce a pseudorandom number sequence. Truncating the hash to a certain number of 

bits can limit the size of the numbers that can be generated.  



20 

 

In public key cryptography there exists two keys needed for secure communication 

[21]. The first key is called the public key, which is known. The second key is the private 

key, which is unknown. The relationship between these keys defines asymmetric 

encryption. When a public key is used to encrypt data, only the private key is able to 

decrypt it. The reverse is also true, as public key is the only way to decrypt private key 

encrypted data. There are many advantages to the public key cryptography scheme, such 

as inherent authentication. Data is known to come from a certain source if the public key 

is able to decrypt it, as the private key was used to encrypt it. In symmetric key 

cryptography, there is only a single key that is used for both encryption and decryption. 

For both symmetric and asymmetric cryptography, some applications require the 

derivation of the public or shared keys. An example application of this is WPA and 

WPA2 security for wireless networks [22]. The key is derived by using a password-based 

key derivation function, which uses a SHA along with the password and wireless network 

name to generate the key. In a public key setting, using key derivation to generate the 

public key adds another layer of security to the system. 

2.4.1 SHA-1 

The SHA-1 variant is the first family of hash functions specified by NIST in the 

secure hash standard [19]. It was introduced in 1995 as a replacement for SHA-0, which 

had security flaws. The family only contains a single function that is used to produce a 

160-bit digest. The input message must be less than 264 bits in length. The SHA-1 family 

has been deprecated [23], meaning that it is not to be used in new secure applications, 

however there are many legacy systems still rely on this 20 year old standard, keeping it 

relevant.  
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The algorithm of SHA-1 based on the Merkle–Damgård construction [24]. It takes 

an input message, M, which has a length, l, that is less than 264 bits. The algorithm 

operates with a word size of 32-bits. This means that all numbers are represented using 

32-bits, and that any addition operations will be complete modulo 232, as there is no 

storage for carry bits. The basic operation takes place on 512-bit blocks of the message, 

with eighty rounds of hashing done per block. This will repeat until all the blocks of the 

original message have been hashed. 

The computation of SHA-1 function requires the following: 

 Eighty 32-bit words, known has the message schedule, represented as W0 through 

W79. Each word will be used in a single round of hashing. 

 Five 32-bit working variables, a, b, c, d, and e. Another temporary 32-bit variable, 

T, is also needed. They will be used to hold intermediate values of the hash during 

the computation. 

 Sixteen 32-bit words to represent the 512-bit message block. They are denoted as 

𝑀0
(𝑖)

 through 𝑀15
(𝑖)

 where i is used to represent the number of the current message 

block. 

 Five 32-bit words used to represent the 160-bit digest. In between message blocks 

they will hold the intermediate hash value. Similar to the message block, it is 

represented as 𝐻0
(𝑖)

 through 𝐻4
(𝑖)

, where i is the current message block. 
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2.4.1.1 Initialization  

Before hashing can begin, the initialization of the intermediate hashing variables 

must be completed. This is setting the initial values for 𝐻0
(0)

 through 𝐻4
(0)

 to the ones 

specified in the standard.  The hexadecimal values can be found in Table 2.1. 

Table 2.1: SHA-1 Initial Hash Values 

𝐻0
(0) = 67452301 

𝐻1
(0) =  efcdab89

𝐻2
(0) = 98badcfe 

𝐻3
(0) =  10325476

𝐻4
(0) =  c3d2e1f0

 

 

2.4.1.2 Message Padding 

Another important step to be done before hashing occurs is padding the message. 

It has already been stated that the hash calculation takes place on a single 512-bit block of 

the message. For this to work out properly in the final block, the message must be padded 

to a length that is even multiple of 512-bits. The padding scheme is shown in Figure 2.4. 

The original message first has a single ‘1’ bit appended to it, then many ‘0’ bits, followed 

by the 64-bit binary representation of the message length, l. The number of ‘0’ bits 

needed can be found by solving the following equation for k. 

𝑙 + 1 + 𝑘 = 448mod512 

Once determined, the single ‘1’ bit, the k ‘0’ bits, and the 64-bit value of l, all 

appended to the original message will result in a new input that is a multiple of the 512-

bit block size. 
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Figure 2.4: Representation of SHA-1 Padding Rule 

 

2.4.1.3 Step 1. – Message Schedule 

The first step of the SHA-1 function is to determine the message schedule. The 

message schedule consists of eighty words, one that will be used in each round of 

hashing. The first sixteen are directly input from the current message block. The next 

sixty-four values are a function of previous message schedule values. This function 

incorporates a bitwise rotate left (ROTL) by 1 bit and exclusive-ors (XORs). The formula 

is shown in Table 2.2. 

Table 2.2: SHA-1 Step 1 - Message Schedule 

𝑊𝑡 = {
𝑀𝑡
(𝑖)

𝑅𝑂𝑇𝐿1(𝑊𝑡−3⊕𝑊𝑡−8⊕𝑊𝑡−14⊕𝑊𝑡−16)

           0 ≤ 𝑡 ≤ 15

           16 ≤ 𝑡 ≤ 79
 

 

2.4.1.4 Step 2. – Update Working Variables 

The second step of the algorithm is to simply update the working variables. They 

are updated to the value of the intermediate hash from the previous message block. In the 

case of the first message block, the values that were set in the initialization stage will be 

used. The details of this step is given in Table 2.3. 
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Table 2.3: SHA-1 Step 2 - Update Working Variables 

𝑎 =  𝐻0
(𝑖−1)

𝑏 =  𝐻1
(𝑖−1)

𝑐 =  𝐻2
(𝑖−1)

𝑑 =  𝐻3
(𝑖−1)

𝑒 =  𝐻4
(𝑖−1)

 

 

2.4.1.5 Step 3. – Rounds of Hashing 

The third step of SHA-1 is where all the computation actually occurs. In this step 

the eighty rounds of hashing are completed. The formula is given in Table 2.4. The 

process starts by setting the temporary variable T to the modular addition of five 

components. The first is a ROTL by 5 bits of the working variable a. The next is a round 

dependent function of the variables b, c, and d. Depending on the current round, the 

function will be either a choose, parity, or majority of the three variables. The third 

operand of the addition is the working variable e, followed by a round constant K which 

is a round dependent constant specified in the standard. The last component is the 

message schedule of the round. The other parts of each round shift the working variables 

by 1 word with the exception of c, which gets the variable b ROTL by 30 bits. Finally, 

each round is concluded by setting variable a to the value stored in temporary variable T. 

The process is completed until all rounds of hashing are done. 
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Table 2.4: SHA-1 Step 3 - Rounds of Hashing 

for 𝑡 = 0 to 79 by 1
{

𝑇 = 𝑅𝑂𝑇𝐿5(𝑎) + 𝑓𝑡(𝑏, 𝑐, 𝑑) + 𝑒 + 𝐾
𝑡 +𝑊𝑡

𝑒 = 𝑑
𝑑 = 𝑐

𝑐 = 𝑅𝑂𝑇𝐿30(𝑏)
𝑏 = 𝑎
𝑎 = 𝑇
}

 

𝑓𝑡(𝑥, 𝑦, 𝑧) =

{
 

 
𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (𝑥 ∧ 𝑧)                         0 ≤ 𝑡 ≤ 19
𝑃𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦, 𝑧) = 𝑥 ⊕ 𝑦⊕ 𝑧                       20 ≤ 𝑡 ≤ 39
𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (𝑥 ∧ 𝑧) ⊕ (𝑦 ∧ 𝑧) 40 ≤ 𝑡 ≤ 59
𝑃𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦, 𝑧) = 𝑥 ⊕ 𝑦⊕ 𝑧 50 ≤ 𝑡 ≤ 79

 

𝐾𝑡 = {

5a827999                         0 ≤ 𝑡 ≤ 19
6ed9eba1                       20 ≤ 𝑡 ≤ 39
8f1bbcdc                       40 ≤ 𝑡 ≤ 59
ca62c1d6                       60 ≤ 𝑡 ≤ 79

 

 

2.4.1.6 Step 4. – Update Intermediate Hash 

The last step of the SHA-1 algorithm is to update the intermediate hash. This is 

done by performing modular addition between the previous message block’s intermediate 

hash and the five working variables of the current message block, as shown in Table 2.5. 

If another message block has yet to be hashed, the entire process from step 1 to 4 will be 

repeated. If the last message block has been hashed, then the 160-bit digest is available 

by concatenating the five 32-bit hash variables together. 
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Table 2.5: SHA-1 Step 4 - Update Intermediate Hash 

𝐻0
(𝑖) =  𝑎 + 𝐻0

(𝑖−1)

𝐻1
(𝑖) = 𝑏 + 𝐻1

(𝑖−1)

𝐻2
(𝑖) = 𝑐 + 𝐻2

(𝑖−1)

𝐻3
(𝑖) =  𝑑 + 𝐻3

(𝑖−1)

𝐻4
(𝑖)
= 𝑒 + 𝐻4

(𝑖−1)

 

 

2.4.2 SHA-2 

SHA-2 is the second family of hash functions defined by NIST in the secure hash 

standard, and was published in 2001 [19]. The SHA-2 family contains six functions that 

provide differing digest sizes and security. The overall function process is very similar to 

that of SHA-1, and is also based on the Merkle–Damgård construction [24]. The 

characteristics of the different functions are shown in Table 2.6. The number in the 

algorithm name specifies the digest length. These six functions are made of only two 

different algorithms with slight modifications in initialization, and truncation of the 

output. SHA-224 and SHA-256 follow the exact same process, except the initial hash 

values that are set. The 256-bit output digest is simply truncated to the first 224-bits to 

achieve SHA-224. The other functions are the same as the SHA-512 variant, with similar 

changes made in initial values and truncation of the output. 

Table 2.6: Characteristics of SHA-2 Functions 

Function Message Size  Block Size  Word Size  Digest Size 

SHA-224 <264 bits 512 bits 32 bits 224 bits 

SHA-256 <264 bits 512 bits 32 bits 256 bits 

SHA-384 <2128 bits 1024 bits 64 bits 384 bits 

SHA-512 <2128 bits 1024 bits 64 bits 512 bits 

SHA-512/224 <2128 bits 1024 bits 64 bits 224 bits 

SHA-512/256 <2128 bits 1024 bits 64 bits 256 bits 
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2.4.2.1 SHA-256  

SHA-256 will produce a 256-bit output digest from any input message with a 

length smaller than 264 bits. It has a word size of 32-bits and a block size of 512-bits. The 

number of hashing rounds in this algorithm is sixty-four per message block. This 

algorithm is identical to SHA-224 with slight changes that are detailed in the appropriate 

locations. 

The following components are required for SHA-256: 

 Sixty-four 32-bit words for the message schedule, denoted as W0 through W63. 

One word is needed for each round of hashing. 

 Eight 32-bit working variables, a, b, c, d, e, f, g, and h. Two temporary variables, 

T1 and T2, are also needed. These will hold intermediate values during each round 

of the hash computation. 

 Sixteen 32-bit words to hold the 512-bit message block. They are defined as 𝑀0
(𝑖)

 

through 𝑀15
(𝑖)

, using i is to represent the number of the current message block. 

 Eight 32-bit variables to represent the 256-bit intermediate and final hash values, 

𝐻0
(𝑖)

 through 𝐻7
(𝑖)

, where i is the current message block. 

2.4.2.1.1 Initialization  

Before the hash calculation can begin, initialization of the intermediate hashing 

variables must be completed. This is setting the initial values for 𝐻0
(0)

 through 𝐻7
(0)

 to the 

ones specified in the standard. The values that are set depend on the function used. If 

implementing SHA-224, this is the first change to the algorithm. The hexadecimal values 

for both functions can be found in Table 2.7. 
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Table 2.7: SHA-256 Initial Hash Values 

SHA-256 SHA-224 

𝐻0
(0) = 6a09e667 

𝐻1
(0) =  bb67ae85

𝐻2
(0) = 3c6ef372 

𝐻3
(0) =  a54ff53a

𝐻4
(0) =  510e527f

𝐻5
(0) =  9b05688c

𝐻6
(0) = 1f83d9ab

𝐻7
(0)
=  5be0cd19

 

𝐻0
(0) = c1059ed8 

𝐻1
(0) =  367cd507

𝐻2
(0) = 3070dd17 

𝐻3
(0) =  f70e5939

𝐻4
(0) =  ffc00b31

𝐻5
(0) =  68581511

𝐻6
(0) = 64f98fa7

𝐻7
(0)
=  befa4fa4

 

 

2.4.2.1.2 Message Padding 

The block size and word size of the SHA-256 algorithm are the same as SHA-1. 

The padding scheme is also identical to the previous hash family. This means that the 

entire message padding process is equivalent to that of SHA-1. See section 2.4.1.2 for the 

detailed description. 

2.4.2.1.3 Step 1. – Message Schedule 

Once again, deriving the message schedule is the first step of the algorithm. In 

SHA-256, this consists of sixty-four words. The first sixteen are directly input from the 

message block. The next forty-eight are calculated using a function of four previous 

message schedule words. This function incorporates modular addition and two other 

functions, denoted as σ0 and σ1. Each of these functions include bitwise rotate rights 

(ROTRs), bitwise right shifts (SHR), and XORs. The number of shift and rotate bits differ 

between the functions. The step outline is shown in Table 2.8. 
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Table 2.8: SHA-256 Step 1- Messasge Schedule 

𝑊𝑡 = {
 𝑀𝑡

(𝑖)

𝜎1
{256}(𝑊𝑡−2) +𝑊𝑡−7 + 𝜎0

{256}(𝑊𝑡−15) +𝑊𝑡−16

0 ≤ 𝑡 ≤ 15
16 ≤ 𝑡 ≤ 63

 

𝜎0
{256}(𝑥) = 𝑅𝑂𝑇𝑅7(𝑥)⊕ 𝑅𝑂𝑇𝑅18(𝑥)⊕ 𝑆𝐻𝑅3(𝑥)

𝜎1
{256}(𝑥) = 𝑅𝑂𝑇𝑅17(𝑥)⊕ 𝑅𝑂𝑇𝑅19(𝑥)⊕ 𝑆𝐻𝑅10(𝑥)

 

  

2.4.2.1.4 Step 2. – Update Working Variables 

Step two of SHA-256 is updating the working variables. They are set to the value 

of the intermediate hash from the previous message block. In the case of the first message 

block, the values that were set in the initialization stage will be used. Again, these values 

will differ between the SHA-256 and SHA-224 functions. The step is detailed in Table 

2.9. 

Table 2.9: SHA-256 Step 2 - Update Working Variables 

𝑎 =  𝐻0
(𝑖−1)

𝑏 =  𝐻1
(𝑖−1)

𝑐 =  𝐻2
(𝑖−1)

𝑑 =  𝐻3
(𝑖−1)

𝑒 =  𝐻4
(𝑖−1)

𝑓 =  𝐻5
(𝑖−1)

𝑔 = 𝐻6
(𝑖−1)

ℎ =  𝐻7
(𝑖−1)
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2.4.2.1.5 Step 3. – Rounds of Hashing 

The third step in the algorithm is the sixty-four rounds of hashing. This step 

contains the majority of computation required to calculate a message digest. The first step 

is calculating the two temporary variables, T1 and T2. The value of T1 is a modular 

addition of variable h, the message schedule for that round, Wt, and the round constant, 

Kt. There is also two operands to the sum that are the result of different functions, one 

being a choose function with inputs e, f, and g, while the other is the function ∑1 with 

input e. ∑1 returns the result of XORing together three ROTRs of the input. The rotate 

factors are 6-bits, 11-bits, and 25-bits, respectively. To calculate T2, it is the sum of a 

majority function with the inputs a, b, and c, and ∑0 with the input a. ∑0 is the same as ∑1 

but with rotate factors of 2-bits, 13-bits, and 22-bits instead. The rest of the round shifts 

the working variables by one word, with the exception of variable e, which gets the 

addition of d and T1, and variable a, which gets the value of summing T1 and T2. This step 

repeats until all sixty-four rounds are completed. 
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Table 2.10: SHA-256 Step 3 - Rounds of Hashing 

for 𝑡 = 0 to 63 by 1
{

𝑇1 = ℎ +∑ (𝑒) + 𝐶ℎ(𝑒, 𝑓, 𝑔) +  𝐾𝑡
{256} +𝑊𝑡

{256}

1

𝑇2 =∑ (𝑎) +𝑀𝑎𝑗(𝑎, 𝑏, 𝑐)
{256}

0

ℎ = 𝑔
𝑔 = 𝑓
𝑓 = 𝑒

𝑒 = 𝑑 + 𝑇1
𝑑 = 𝑐
𝑐 = 𝑏
𝑏 = 𝑎

𝑎 = 𝑇1 + 𝑇2
}

 

𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (𝑥 ∧ 𝑧) 

𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (𝑥 ∧ 𝑧) ⊕ (𝑦 ∧ 𝑧) 

∑ (𝑥)
{256}

0
= 𝑅𝑂𝑇𝑅2(𝑥)⊕ 𝑅𝑂𝑇𝑅13(𝑥)⊕ 𝑅𝑂𝑇𝑅22(𝑥)

∑ (𝑥)
{256}

1
= 𝑅𝑂𝑇𝑅6(𝑥)⊕ 𝑅𝑂𝑇𝑅11(𝑥)⊕ 𝑅𝑂𝑇𝑅25(𝑥)

 

Values for  𝐾𝑡
{256}

 can be found in the secure has 

standard documentation [19]. 

 

2.4.2.1.6 Step 4. – Update Intermediate Hash 

Finally, the intermediate hash variables are updated to the sum of their previous 

value and the corresponding working variable, as shown in Table 2.11. The entire 

algorithm is repeated until all the message blocks have been processed. Once that has 
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happened, the 256-bit output is given by concatenating all eight intermediate hash 

variables together. If the function is SHA-224, that 256-bit digest is truncated to 224-bits. 

Table 2.11: SHA-256 Step 4 - Update Intermediate Hash 

𝐻0
(𝑖) =  𝑎 + 𝐻0

(𝑖−1)

𝐻1
(𝑖) = 𝑏 + 𝐻1

(𝑖−1)

𝐻2
(𝑖) = 𝑐 + 𝐻2

(𝑖−1)

𝐻3
(𝑖) =  𝑑 + 𝐻3

(𝑖−1)

𝐻4
(𝑖) = 𝑒 + 𝐻4

(𝑖−1)

𝐻5
(𝑖) = 𝑓 + 𝐻5

(𝑖−1)

𝐻6
(𝑖) = 𝑔 + 𝐻6

(𝑖−1)

𝐻7
(𝑖)
= ℎ + 𝐻7

(𝑖−1)

 

 

2.4.2.2 SHA-512  

The SHA-512 function produces a 512-bit digest of the input message. In this 

case the size of the file must be less than 2128 bits. The algorithm uses a word size of 64 

bits with a block size of 1024 bits. SHA-512 computes eighty rounds of hashing on each 

message block. Other functions of the SHA-2 family use the same algorithm as SHA-

512, with slight modifications. These functions are SHA-384, SHA-512/224, and SHA-

512/256. The changes needed to implement these functions are descripted where 

required. 

The computation of the SHA-512 function needs the following components: 

 Eighty 64-bit words for the message schedule, one for each round of hashing, 

represented as W0 through W79. 
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 Eight 64-bit working variables, a, b, c, d, e, f, g, and h. Two temporary variables, 

T1 and T2, are also needed. They will be used to hold intermediate values during 

each round of the hash computation. 

 Sixteen 64-bit words to hold the 1024-bit message block. They are denoted as 

𝑀0
(𝑖)

 through 𝑀15
(𝑖)

, using i is to represent the number of the current message block. 

 Eight 64-bit variables to represent the 512-bit intermediate and final hash values, 

𝐻0
(𝑖)

 through 𝐻7
(𝑖)

, where i is the current message block. 

2.4.2.2.1 Initialization  

In a similar fashion to SHA-256, the intermediate hash variables must be 

initialized to values specified in the standard before the computation can begin. These 

values are different for each variant that follows the same algorithm. There are defined 

values for SHA-512, SHA-384, SHA-512/224, as well as SHA-512/256. The values in 

hexadecimal form for 𝐻0
(0)

 through 𝐻7
(0)

 are shown in Table 2.12. 
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Table 2.12: SHA-512 Initial Hash Values 

SHA-512 SHA-384 

𝐻0
(0) = 6a09e667f3bcc908

𝐻1
(0) =  bb67ae8584caa73b

𝐻2
(0) = 3c6ef372fe94f82b

𝐻3
(0) =  a54ff53a5f1d36f1

𝐻4
(0) =  510e527fade682d1

𝐻5
(0) =  9b05688c2b3e6c1f

𝐻6
(0) = 1f83d9abfb41bd6b

𝐻7
(0)
=  5be0cd19137e2179

 

𝐻0
(0) = cbbb9d5dc1059ed8

𝐻1
(0) =  629a292a367cd507

𝐻2
(0) = 9159015a3070dd17

𝐻3
(0) =  152fecd8f70e5939

𝐻4
(0) =  67332667ffc00b31

𝐻5
(0) =  8eb44a8768581511

𝐻6
(0) = db0c2e0d64f98fa7

𝐻7
(0)
=  47b5481dbefa4fa4

 

SHA-512/224 SHA-512/256 

𝐻0
(0) = 8c3d37c819544da2

𝐻1
(0) =  73e1996689dcd4d6

𝐻2
(0) = 1dfab7ae32ff9c82

𝐻3
(0) =  679dd514582f9fcf

𝐻4
(0) =  0f6d2b697bd44da8

𝐻5
(0) =  77e36f7304c48942

𝐻6
(0) = 3f9d85a86a1d36c8

𝐻7
(0)
=  1112e6ad91d692a1

 

𝐻0
(0) = 22312194fc2bf72c

𝐻1
(0) =  9f555fa3c84c64c2

𝐻2
(0) = 2393b86b6f53b151

𝐻3
(0) =  963877195940eabd

𝐻4
(0) =  96283ee2a88effe3

𝐻5
(0) =  be5e1e2553863992

𝐻6
(0) = 2b0199fc2c85b8aa

𝐻7
(0)
=  0eb72ddc81c52ca2

 

 

2.4.2.2.2 Message Padding 

The padding scheme for SHA-512 is similar to the one used in SHA-1 and SHA-

256, however, the word size and block size have changed. This means that the process of 

padding the message is a bit different than the other algorithms. The message must know 

be an even multiple of 1024-bits before hashing can occur. Again, a single ‘1’ bit is 

appended to the message followed by a number of ‘0’ bits. Then the binary representation 
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of the message length, l, using 128-bits is concatenated to the end. The number of ‘0’ bits 

needed can be determine by solving the equation for the value of k. 

𝑙 + 1 + 𝑘 = 896mod1024 

 

The message with a single ‘1’ bit, k number of ‘0’ bits, and the 128-bit binary 

representation of l, will produced a padded message with a total length that is an even 

multiple of 1024-bits. 

 

Figure 2.5: Representation of SHA-512 Padding Rule 

 

2.4.2.2.3 Step 1. – Message Schedule 

The message schedule derivation is the first step the SHA-512 algorithm. The 

message schedule in this function consists of eighty words that correlate to the eighty 

rounds of hashing. The first sixteen words of the message schedule come from the 1024-

bit message block. The rest are then a function of previous words that consists of modular 

addition and two other functions, denoted as σ0 and σ1. Each of these functions include 

ROTRs, SHRs, and XORs. The number of shift and rotate bits differ between the 

functions. The step outline is shown in Table 2.13. 
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Table 2.13: SHA-512 Step 1- Message Schedule  

𝑊𝑡 = {
 𝑀𝑡

(𝑖)

𝜎1
{512}(𝑊𝑡−2) +𝑊𝑡−7 + 𝜎0

{512}(𝑊𝑡−15) +𝑊𝑡−16

0 ≤ 𝑡 ≤ 15
16 ≤ 𝑡 ≤ 79

 

𝜎0
{512}(𝑥) = 𝑅𝑂𝑇𝑅1(𝑥)⊕ 𝑅𝑂𝑇𝑅8(𝑥)⊕ 𝑆𝐻𝑅7(𝑥)

𝜎1
{512}(𝑥) = 𝑅𝑂𝑇𝑅19(𝑥)⊕ 𝑅𝑂𝑇𝑅61(𝑥)⊕ 𝑆𝐻𝑅6(𝑥)

 

 

2.4.2.2.4 Step 2. – Update Working Variables 

The second step of SHA-512 is to update the working variables to the value of the 

intermediate hash of the last message block, or the initial values set in the case of the first 

message block. These initial values are different for each function, and shown in Table 

2.12. The process of this step is identical to step 2 of SHA-256, with the exception of 

using 64-bit words instead of 32-bit. It is outlined in Table 2.9. 

2.4.2.2.5 Step 3. – Rounds of Hashing 

Step three contains the eighty rounds of hashing for each message block. Like the 

previously described SHA functions, this is the where the bulk of the computation is 

completed. The process is very similar to step three of SHA-256, described in section 

2.4.2.1.5, with a few small differences aside from the word and block sizes. The first 

difference is that the number of rounds has increased from sixty-four in SHA-256 to 

eighty in SHA-512. The round constants, Kt, which can be found in the standard [19], 

also differ between the algorithms. The last difference involves the functions of ∑0 and 

∑1. The rotate factors for both functions have been modified. For ∑0, the three rotate 

factors are now 28-bits, 34-bits, and 39-bits. In ∑1, the rotate factors have become 14-
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bits, 18-bits, and 41-bits. Taking these changes into account, the process is the same as 

SHA-256. The progression of this step is given in Table 2.14. 

Table 2.14: SHA-512 Step 3 - Rounds of Hashing 

for 𝑡 = 0 to 79 by 1
{

𝑇1 = ℎ +∑ (𝑒) + 𝐶ℎ(𝑒, 𝑓, 𝑔) +  𝐾𝑡
{512} +𝑊𝑡

{512}

1

𝑇2 =∑ (𝑎) +𝑀𝑎𝑗(𝑎, 𝑏, 𝑐)
{512}

0

ℎ = 𝑔
𝑔 = 𝑓
𝑓 = 𝑒

𝑒 = 𝑑 + 𝑇1
𝑑 = 𝑐
𝑐 = 𝑏
𝑏 = 𝑎

𝑎 = 𝑇1 + 𝑇2
}

 

𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (𝑥 ∧ 𝑧) 

𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (𝑥 ∧ 𝑧) ⊕ (𝑦 ∧ 𝑧) 

∑ (𝑥)
{512}

0
= 𝑅𝑂𝑇𝑅28(𝑥)⊕ 𝑅𝑂𝑇𝑅34(𝑥)⊕ 𝑅𝑂𝑇𝑅39(𝑥)

∑ (𝑥)
{512}

1
= 𝑅𝑂𝑇𝑅14(𝑥)⊕ 𝑅𝑂𝑇𝑅18(𝑥)⊕ 𝑅𝑂𝑇𝑅41(𝑥)

 

Values for  𝐾𝑡
{512}

 can be found in the secure has 

standard documentation [19]. 

 

2.4.2.2.6 Step 4. – Update Intermediate Hash 

The last step to be done on each message block of SHA-512 is updating the 

intermediate hash variables. This process is also identical, save for the word size, to that 
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of SHA-256, and shown in Table 2.11. Once all the message blocks are hashed, the 512-

bit digest is available. For the other SHA-2 functions that are implemented with this 

algorithm, the digest can then be truncated to the proper length. 

2.4.3 SHA-3 

The third family of SHAs standardized by NIST is SHA-3 [20]. It was finalized 

into a published standard in August 2015. The goal of this family is not to replace SHA-

2, but supplement it with alternative algorithms. When choosing the algorithm to use in 

the standard, NIST held a contest for various functions. The winner of that contest was 

the Keccak family of sponge functions which has now been used to implement the SHA-

3 algorithm [25]. The Keccak sponge function has a much different structure compared to 

the Merkle–Damgård construction of SHA-1 and SHA-2. 

SHA-3 contains six hashing functions. Four of these have fixed size output 

digests that are the same size as the SHA-2 functions. The other two functions are 

extendable-output functions (XOFs) that allow for any arbitrary digest length. The name 

of the XOFs specify the maximum security bits available to the function, rather than the 

digest length like the other algorithms. All the functions use the same process with 

differing block sizes. There is no input message size limit to any of the SHA-3 functions. 

During computation, twenty-four rounds of hashing are completed on each message 

block. The word size is 64-bits, while the block size is a function of the state size and the 

number of security bits. The characteristics of all SHA-3 functions are given in Table 

2.15.   
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Table 2.15: Characteristics of SHA-3 Functions 

Function Digest Size Block Size  Security 

SHA3-224 224 bits 1152 bits 112 bits 

SHA3-256 256 bits 1088 bits 128 bits 

SHA3-384 384 bits 832 bits 192 bits 

SHA3-512 512 bits 576 bits 256 bits 

SHAKE128 d bits 1088 bits min(d/2, 128) bits 

SHAKE256 d bits 576 bits min(d/2, 256) bits  

 

A sponge function is simply a hashing function that can take any arbitrary length 

input function and produce an arbitrary length output [26]. The function operates on a 

state of bits in two phases. The first phase is the absorbing phase where a message block 

is XORed into the state, and a particular hashing function is executed. When all the 

message blocks have been absorbed, then the second phase can be done. This is the 

squeezing phase in which the appropriate number of bits are returned from the state, 

producing the output. This process is visualized in Figure 2.6. Keccak uses this sponge 

function architecture with the hashing function of Keccak-f in the SHA-3 standard. 

 

Figure 2.6: Sponge Function Construction [26] 
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The SHA-3 algorithm operates with a state size of 1600 bits, configured into a 

three dimensional array. The dimensions of this array are 5-bits, by 5-bits, by 64-bits. The 

state, and its components can be visualized as shown in Figure 2.7. Different operations 

of the algorithm focus on different structures of the state, whether it be a plane, slice, 

column, etc. The coordinate convention of the state is specified in the x, y, and z planes. 

Both x and y have a range from 0 to 4, while z has a range of 0 to 63. A visualization of 

the indexing is shown in Figure 2.8.  

 

Figure 2.7: SHA-3 State and Its Components [25] 
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Figure 2.8: Coordinate Convention of State. Adapted from [20] 

 

The Keccak sponge function consists of three main components. The first is the 

hashing function that will be performed on the state. The next component is the padding 

rule, to ensure that the input will contain an even number of message blocks, each with a 

length equal to the block size of the algorithm. The third component of the sponge 

function is the block size, and denoted as r. There are also two inputs needed, the 

message to be hashed, N, and the digest size, d. The sponge function will first pad the 

input message using the padding rule so that the length is an even multiple of the block 

size. Then the message block is XORed into the state. The hashing function is then 

operated on the state. This repeats for each message block until the entire message has 

been processed. Then the digest can be extracted from the state. If the amount of data in 

the state is smaller than the requested digest size, then the hash function is operated on 

the state again. This step is repeated until there is enough data to construct the digest.  

Z = SPONGE[𝑓, pad, 𝑟](N, d) 
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The padding rule used in SHA-3 is pad10*1. This padding rule works by 

appending a single ‘1’ bit to the message, followed by an appropriate number of ‘0’ bits. 

Then the final ‘1’ bit is attached to the end. The number of ‘0’ bits can be determined 

using the formula below, solving for k, to produce a final message that is a multiple of the 

block size.  

 

 

 

Figure 2.9: Representation of SHA-3 Padding Rule 

 

The hashing function that is used in SHA-3 is Keccak-f with a state size of 1600 

bits. It contains twenty-four hashing rounds each with five step mappings. Each step 

mapping provides a different operation on the state. The formula is given below of the 

Keccak-f function. A description of each of the step mappings can be found starting at 

section 2.4.3.1. 

Keccak-𝑓[1600](𝐴) =  

for 𝑅𝑂𝑈𝑁𝐷 from 0 to 23: 

{ 

𝐴 =  ι (χ (π (ρ(θ(A)))) , ir) 

}  

𝑘 + 2 = 𝑟 − 𝑙mod(r) 
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The final representation of the Keccak sponge function that is used in the SHA-3 

standard is given as below. Each function in the standard is implemented by setting the 

component c to the proper value, as shown in Table 2.16. In the four fixed length digest 

functions there are two bit ‘01’ appended to the message before it is input to the Keccak 

function. In the XOFs, it is four bits, ‘1111’. This is used to differentiate the digest 

between the functions if the XOF was set to the same length as the fixed length functions. 

KECCAK[c](N, d) = SPONGE[Keccak-𝑓[1600], pad10*1,1600 − c](N, d) 

 

Table 2.16: SHA-3 Function Definitions 

SHA-3 Function Keccak Sponge Function 

SHA3-224(M) KECCAK[448](M||01,224) 
SHA3-256(M) KECCAK[512](M||01,256) 
SHA3-384(M) KECCAK[768](M||01,384) 
SHA3-512(M) KECCAK[1024](M||01,512) 
SHAKE128(M, d) KECCAK[256](M||1111, d) 
SHAKE256(M, d) KECCAK[512](M||1111, 𝑑) 

 

2.4.3.1 Theta Step Mapping 

The first step mapping is θ. It XORs each bit in the state with the parity of the 

column ahead and the column behind it with respect to the x-plane. The process is shown 

in Table 2.17 where A is the state. The illustration of the operation is given in Figure 

2.10. 
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Table 2.17: SHA-3 Theta Step Mapping 

𝜃(𝐴): 
𝐶[𝑥, 𝑧] = 𝐴[𝑥, 0, 𝑧] ⊕ 𝐴[𝑥, 1, 𝑧] ⊕ 𝐴[𝑥, 2, 𝑧] ⊕ 𝐴[𝑥, 3, 𝑧]

⊕ 𝐴[𝑥, 4, 𝑧] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 (𝑥, 𝑧) 
𝐷[𝑥, 𝑧] = 𝐶[(𝑥 − 1)𝑚𝑜𝑑5, 𝑧] ⊕ 𝐶[(𝑥 + 1)𝑚𝑜𝑑5, (𝑧 − 1)𝑚𝑜𝑑64] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 (𝑥, 𝑧) 
𝐴′[𝑥, 𝑦, 𝑧] = 𝐴[𝑥, 𝑦, 𝑧]  ⊕ 𝐷[𝑥, 𝑧] 
𝑅𝑒𝑡𝑢𝑟𝑛 𝐴′ 

 

Figure 2.10: SHA-3 Theta Step Mapping [25] 

 

2.4.3.2 Rho Step Mapping 

The next step mapping is ρ. It rotates each lane by an offset that is dependent on 

the (x, y) coordinated of that lane. The formula used to calculate the offsets, as well as the 

calculated offsets for SHA-3 are given in Table 2.18. 
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Table 2.18: SHA-3 Rho Step Mapping and Calculated Offsets 

𝜌(𝐴): 
𝐿𝑒𝑡 (𝑥, 𝑦) = (1,0) 
𝐹𝑜𝑟 𝑡 𝑓𝑟𝑜𝑚 0 𝑡𝑜 23 
{ 
𝐴′[𝑥, 𝑦, 𝑧] = 𝐴[𝑥, 𝑦, (𝑧 − (𝑡 + 1)(𝑡 + 2)/2)𝑚𝑜𝑑 64]  
𝐿𝑒𝑡 (𝑥, 𝑦) = (𝑦, (2𝑥 + 3𝑦)𝑚𝑜𝑑5) 
} 
𝑅𝑒𝑡𝑢𝑟𝑛 𝐴′ 
Offset per lane in bits:  

Y\X 3 4 0 1 2 

2 25 39 3 10 43 

1 55 20 36 44 6 

0 28 27 0 1 62 

4 56 14 18 2 61 

3 21 72 41 45 15 

 

 

 

 

Figure 2.11: SHA-3 Rho Step Mapping [25] 

 

2.4.3.3 Pi Step Mapping 

The third step mapping is π. The effect of this step mapping is to rearrange the 

position of each lane in the state. Table 2.19 shows the π step mapping function, while 

Figure 2.12 gives a depiction of the operation on the state. 
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Table 2.19: SHA-3 Pi Step Mapping 

𝜋(𝐴): 
𝐴′[𝑥, 𝑦, 𝑧] = 𝐴[(𝑥 + 3𝑦)𝑚𝑜𝑑5, 𝑥, 𝑧] 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 (𝑥, 𝑦, 𝑧) 
𝑅𝑒𝑡𝑢𝑟𝑛 𝐴′ 

 

 

Figure 2.12: SHA-3 Pi Step Mapping [25] 

 

2.4.3.4 Chi Step Mapping 

The χ step mapping XORs each bit in the state with a non-linear function of the 

next two bits in its row, as given in Table 2.20.   

Table 2.20: SHA-3 Chi Step Mapping 

𝜒(𝐴): 

𝐴′[𝑥, 𝑦, 𝑧] = 𝐴[𝑥, 𝑦, 𝑧] ⊕ ((𝐴[(𝑥 + 1)𝑚𝑜𝑑5, 𝑦, 𝑧] ⊕ 1) ∧ 𝐴[(𝑥 + 2)𝑚𝑜𝑑5, 𝑦, 𝑧]) 

𝑅𝑒𝑡𝑢𝑟𝑛 𝐴′ 
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Figure 2.13: SHA-3 Chi Step Mapping [25] 

 

2.4.3.5 Iota Step Mapping 

The ι step mapping operation is round dependent, and requires the round index, ir, 

to be set as an argument to the function. The effect is to XOR only the first lane by a 

round constant. The process is give in Table 2.21, along with the values of the round 

constants in hexadecimal form. 

Table 2.21: SHA-3 Iota Step Mapping and Round Constant Values 

𝜄(𝐴, 𝑖𝑟): 
𝐴′[𝑥, 𝑦, 𝑧] = 𝐴[𝑥, 𝑦, 𝑧] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 (𝑥, 𝑦, 𝑧) 
𝐴′[0,0, 𝑧] = 𝐴′[0,0, 𝑧] ⊕ 𝑅𝐶[𝑖𝑟] 
𝑅𝑒𝑡𝑢𝑟𝑛 𝐴′ 
𝑅𝐶[24] = { 
0000000000000001, 0000000000008082, 800000000000808a, 
8000000080008000, 000000000000808b, 0000000080000001, 
8000000080008081, 8000000000008009, 000000000000008a, 
0000000000000088, 0000000080008009, 000000008000000a, 
000000008000808b, 800000000000008b, 8000000000008089, 
8000000000008003, 8000000000008002, 8000000000000080, 
000000000000800a, 800000008000000a, 8000000080008081, 
8000000000008080, 0000000080000001, 8000000080008008 
} 
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2.5 Related Work 

SHAs have poor speed performance on CPU architectures [3]. Due to this there has 

been much research done using hardware implementations, specifically FPGAs, to 

accelerate these algorithms. 

2.5.1 SHA-1 

In 2003, Sklavos et al. worked to implement the SHA-1 function on an FPGA 

[27]. The model was designed using VHDL and synthesized on a Xilinx 2V500FG456 

FPGA. The design implemented a pipelined structure of the algorithm. The throughput of 

the proposed design was compared to other work, including other FPGA implementations 

and CPU implementations coded in assembly. The result was a throughput of 1339 Mbps, 

which was a 140% speedup compared to previous FPGA results, and about 1125% 

speedup compared to the CPU result. This work also studied the efficiency of each 

design, providing a comparison of a performance per unit area of the designs. The 

proposed design was much more efficient than the CPU versions, but had only marginally 

better efficiency than the other FPGA designs. 

Kakarountas et al. improved the performance of the SHA-1 function even further 

in 2005 [28]. The model was implemented on a Xilinx V150BG352 FPGA using an HDL 

design methodology. A pipeline structure was used here to increase the speed. The 

critical path of the calculation was shortened which helped improve performance. This 

was done by including a pre-computational stage to the pipeline. That allowed the 

calculation of some of the variables to be done before the round that they are needed in, 

provided they are independent of other variables. This pre-computation stage is pipelined 

with the regular calculation stage, giving an overall shortened pipeline, and increasing 
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speed. The results obtained was a throughput of 2526 Mbps, a roughly 37% increase over 

comparable designs. The area needed was only slightly more than other designs as well. 

In another approach in 2006, Yiakoumis et al. produced a VHDL model of a key-

hashed message authenticate code (HMAC), which is a direct application of the SHA-1 

algorithm [29]. The design was synthesized on a Xilinx Virtix-II FPGA. The goal was to 

design a HMAC with a high throughput but a small size. In order to keep the size to a 

minimum, pipelining could not be used. Relying on a pre-computational stage, and 

replacing hardware adders with faster variants, a result throughput of 1024 Mbps was 

achieved. This result is about 17% faster than comparable HMAC designs. It was also the 

first SHA-1 implementation to reach 1 Gbps throughput without the use of pipelining. 

Lee et al. worked to implement an SHA-1 module in 2009 with a two-unfolded 

architecture [30]. In this technique there are two hashing cores that work in parallel. One 

handles the pre-computation, while the other handles the current hash cycle. There is no 

dependency between the two cores in a single step. Combining this technique with 

pipelining structures produced a very high throughput. The result speed that was achieved 

was 6040 Mbps on a Xilinx Virtex-II XC2V1000 FPGA. Comparable designs using 

similar techniques were 26% slower in their hash computation. The area was also 

decreased from similar designs as well. The proposed model was 32% smaller than 

previous work. 

2.5.2 SHA-2 

Sklavos et al. implemented SHA-256, SHA-384, and SHA-512 designs in 2003 

on a Xilinx V200PQ240 FPGA [31]. The model was specified in VHDL. The goal of the 

paper was to implement the SHA-2 standard and compare to the SHA-1, as it was a new 
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standard at the time. The results that achieved were 326 Mbps for SHA-256, 350 Mbps 

for SHA-384, and 480 Mbps for SHA-512. At this time, the performance was better than 

the related work in SHA-1 and other SHA-2 designs, while having a comparable area.  

In 2008, Khalil et al. worked on the design of the SHA-2 standard core in FPGA 

for the application of digital signatures on a SoC [32]. The design was implemented on an 

Altera Stratix EP1S40F780C5 FPGA using Verilog. The architecture of the design 

contained a message scheduler unit and an iteration processing unit. The algorithm was 

split into these processors to try to obtain the best possible speedup by running concurrent 

operations. The results of this work include a 464 Mbps throughput for a SHA-224/256 

core, and a 644 Mbps throughput for a SHA-384/512 core. This was a very modest 

improvement over the comparable work. 

Michail et al. produced a high throughput SHA-256 model in 2010 [33]. The 

VHDL design was synthesized on Xilinx Virtex, Virtex-II, and Virtex-E FPGA 

technologies. The architecture included a pre-computation unit and a pipelined structure. 

Other optimizations to the design were done to reduce the critical path of the design, such 

as replacing full adders with carry save adders to speed up the calculation. The results of 

the design were impressive, with 2077 Mbps on the Virtex FPGA, 3100 Mbps on the 

Virtex-II, and 2190 Mbps on the Virtex-E. The variations in throughput can be attributed 

to performance of the FPGAs themselves. The proposed design was faster than 

comparable designs by differing amounts for each FPGA. The Virtex and Virtex-II speed 

was at least doubled compared to the next fastest on their platforms, while the Virtex-E 

implementation only had a marginal speedup. The size of the designs were very similar to 

that of the related work. 
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A SHA-256 and SHA-512 design was made by Mestiri et al. in 2014 [34]. It was 

written in VHDL and synthesized on a Xilinx Virtex-5 XC5VFX70T FPGA. The module 

that was created can be used to calculate both the SHA-256 and SHA-512 digest that 

consists of a padding processor, a round computation processor, and a controller to 

implement the proper function. This design produced a throughput of 1617 Mbps for 

SHA-256 and 2252 Mbps for SHA-512. The required area of the design was reduced 

from comparable work, resulting in a very efficient implementation. 

2.5.3 SHA-3 

In 2010, Baldwin et al. implemented all of the second round candidates of the 

SHA-3 competition in FPGA hardware [35]. The goal was to characterize all the potential 

functions that could be used to implement the SHA-3 standard. Each function was 

modeled using VHDL and then synthesized on a Xilinx Virtex-5 FPGA. The four fixed 

length digest functions were implemented and compared. Keccak was among the top in 

performance with a throughput of 5915 Mbps on SHA3-224, 6232 Mbps on SHA3-256, 

8190 Mbps on SHA3-384, and 8518 Mbps on SHA3-512. The size of Keccak was the 

second smallest of the fourteen candidates, but was the highest in efficiency. 

Jungk and Apfelbeck took a similar approach to Baldwin et al. in 2011, this time 

implementing the SHA-3 competition finalists [36]. Using HDL design techniques, the 

target FPGA was the Xilinx Virtex-6. Of the five finalists, Keccak was second in terms of 

speed and efficiency, but took the most area of all the designs. The throughput that was 

achieved was 864 Mbps. This was only completed on the SHA-256 variant. 

The finalists of the SHA-3 competition were also implemented in FPGA by Song et 

al. in 2011 [37]. They used Verilog to design the modules, and then synthesized them on 
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a Xilinx Virtex-5 FPGA. The area of the Keccak functions were very similar to that of 

the other candidates. The throughput that was achieved on SHA3-256 was 14438 Mbps, 

and on SHA-512 the throughput was 7066 Mbps. A reconfigurable module to compute 

either variant was also implemented that gave a throughput of 13414 Mbps with a slight 

increase in area needed. 

2.6 Summary 

The background information of FPGAs, HLS, heterogeneous computing systems, 

OpenCL and the AOCL CAD tool was presented in this chapter. The cryptographic hash 

functions specified in the secure hash standard were also described in detail. Finally a 

literature review of published research using FPGAs to accelerate those functions was 

presented. There is much related work in this area, with a wide range of speed 

performance results. All of the designs that were reviewed used HDL based design 

methodologies. To our knowledge, there has been no published work using any HLS 

design tool to accelerate the SHA functions. This thesis evaluates the ability of the AOCL 

HLS CAD tool to accelerate this application. The next chapter will focus on the 

implementation, synthesis, and evaluation of the SHA FPGA accelerated program. 
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Chapter 3 Synthesis and Evaluation 

This chapter focuses on the implementation, synthesis, and evaluation of the FPGA 

accelerated SHA algorithms. The design of each function is described in detail before the 

experimental results are given. There is some design space exploration (DSE) of   

algorithms done to obtain the best possible synthesis results using AOCL. The results 

show the relationship between input message size and throughput, maximum throughput, 

and a comparison to the CPU application. Finally, the throughput and FPGA area 

utilization for each of the algorithms is compared to published literature to determine the 

competitiveness of the HLS approach to the HDL based design methodology. 

3.1 Overview 

When using the OpenCL model to accelerate a program, the process begins with 

implementing the application with traditional CPU programming. Once the process is 

functional, the program can be modified into an OpenCL model. Then, optimization can 

be done on the OpenCL model to achieve the best performance. This allows for a 

verification of the FPGA design as well as a comparison between the CPU and the FPGA 

implementations. 

Typical OpenCL programs have many independent calculations that can be 

completed in parallel. Running all these calculations simultaneously increases the 

performance of the application. The secure hash functions do not have this type of 

structure, since each iteration of the algorithm depends on the calculation of the step 

before it. There are also dependencies between variables in each iteration. With most 

OpenCL devices, the only way to accelerate the SHA functions would be using batch 
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parallelization, which would calculate numerous digests simultaneously. This is used in 

some brute force password cracking attacks. But with the reconfigurable hardware of 

FPGA, it is still possible to accelerate the calculation of a single digest.  

3.2 SHA-1 

The SHA-1 algorithm was the first to be implemented. The CPU model was first 

programmed in C++. It was made by following the description in the secure hash 

standard [19].  

3.2.1 Host Program 

Once the C++ program is functioning correctly, the OpenCL model can be 

implemented. The padding of the input message is still handled on the CPU, as the data 

must be properly organized before it sent to the kernel. There is not much time lost here 

by padding the message as the data is organized. The host program sets up the OpenCL 

model as described in section 2.3.1.1. In this application, two memory buffers to transfer 

data to and from the OpenCL device are needed. The first buffer is setup as read only by 

the kernel, and it contains the entirety of the input message. The second buffer is created 

to be able to transfer the digest calculated in the kernel to the host program. Along with 

these buffers, there is another argument to the kernel, the number of message blocks 

required to make up the entire input message. The host program can then launch the 

kernel to execute the digest calculation. The kernel is launched as a single work-item as 

the acceleration is a result of the hardware, not parallel kernel instances. Once the 

computation is complete, the output can be read back from the hash buffer.  
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3.2.2 Kernel 

In the kernel code, the main kernel function as well as custom functions are 

defined. The main kernel function is of type void as it returns no value. The custom 

functions that are needed in the SHA-1 algorithm include ROTL, choose, parity, and 

majority. There are also functions that returns the proper constant, and function for each 

round in hashing. All of these functions return a single 32-bit unsigned word and are 

presented in Figure 3.1. 

 

Figure 3.1: Custom Functions of the SHA-1 Kernel 

 

unsigned ROTL( int n, unsigned x){ 

    return ((x << n)) | ((x) >> (32-n)); 

} 

 

unsigned choose (unsigned x, unsigned y, unsigned z){ 

    return (((x&y)^((~x)&z))); 

} 

 

unsigned parity (unsigned x, unsigned y, unsigned z){ 

    return ((x^y^z)); 

} 

 

unsigned majority (unsigned x, unsigned y, unsigned z){ 

    return (((x&y)^(x&z)^(y&z))); 

} 

 

unsigned funct(unsigned x, unsigned y, unsigned z, int t){ 

    if ((0 <= t) && (t <= 19)){ 

        return choose(x,y,z); 

    } 

    else if (((20 <= t) && (t <=39)) || ((60 <= t) && (t <= 79))){ 

        return parity(x,y,z); 

    } 

    else { 

        return majority(x,y,z); 

    } 

} 

unsigned getK(int t){ 

    if ((0 <= t) && (t <= 19)){ 

        return 0x5a827999; 

    } 

    else if ((20 <= t) && (t <=39)){ 

        return 0x6ed9eba1; 

    } 

    else if ((40 <= t) && (t <=59)){ 

        return 0x8f1bbcdc; 

    } 

    else { 

        return 0xca62c1d6; 

    } 

} 
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In the main kernel function, the first step is to declare the variables that will be 

needed in the hash computation: the five intermediate hash variables, eighty message 

digest words, and the working and temporary variables. The intermediate hash is 

initialized to the value of the hash buffer, as the host program sets the initial values 

specified in the hash. The reason this is done, instead of hard coding it into the kernel, is 

to allow greater flexibility for non-standard applications that may use slightly modified 

versions of the SHA-1 algorithm. If these initial hash values need to be changed, the 

kernel does not need to be recompiled. It also has no effect on performance either way. 

This step is depicted in Figure 3.2. 

 

Figure 3.2: Declaration of Variables in the SHA-1 Kernel 

 

Once the declaration and initialization is completed, the algorithm steps can 

begin. The kernel needs to operate on a single message block. The number of message 

blocks is known as an argument to the kernel. A simple loop ranging from 0 to the block 

number implements the hashing of the entire message. The four steps of the SHA-1 

function are written inside of that loop. Calculating the message schedule in the first step 

consists of two different loops. The first loop sets the first sixteen words of the message 

schedule. Each word is the concatenation of four characters of the message block. The 

__kernel void sha1(__global unsigned char *restrict messBlock, 

__global unsigned *restrict hash, int blockNum) 

{ 

 unsigned H[5]; 

 unsigned W[80]; 

 unsigned a, b, c, d, e, T; 

 #pragma unroll 

 for (int i = 0; i < 5; i++){ 

  H[i]=hash[i]; 

 } 

 ..... 

} 
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index of the characters from the message is a function of the current message block and 

the number of the message schedule. This is the only place in the kernel where the 

message buffer input is read. The second loop needed to determine the message schedule 

calculates the seventeenth to eightieth words, which is a function of four previous 

message schedule words. The derivation of the message schedule is presented in Figure 

3.3. 

 

Figure 3.3: Message Schedule Derivation in the SHA-1 Kernel 

 

The second step of the algorithm simply updates the working variables to the 

values in the intermediate hash. It is a simple step with no calculation needed. Next 

comes the eighty rounds of hashing of step three. As shown in Figure 3.4, this step is 

implemented in a single loop with a range of 0 to eighty, and makes use of the custom 

functions defined outside of the main kernel function. The bulk of the calculation of the 

algorithm is computed in this loop.  

#pragma unroll 2 

for (int l = 0; l < blockNum; l++){ 

   #pragma unroll 

   for (int t = 0; t < 16; t++){ 

        W[t] = (((unsigned) messBlock[(l*64)+(t*4)])<<24)                    

 |(((unsigned) messBlock[(l*64)+(t*4+1)])<<16)     

 |(((unsigned) messBlock[(l*64)+(t*4 + 2)])<<8)   

 |(((unsigned) messBlock[(l*64)+(t*4 + 3)])); 

    } 

   #pragma unroll 

   for (int t = 16; t < 80; t++){ 

 W[t] = ROTL(1,(W[t-3]^W[t-8]^W[t-14]^W[t-16])); 

    } 

 ... 

} 
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Figure 3.4: Steps 2 and 3 of the SHA-1 Kernel 

 

Finally the intermediate hash variables are incremented by the value of the 

working variables in the four step. These steps all repeat for a number of times equal to 

the block number. Once the last message block has been hashed, the hash buffer can be 

updated with the final values of the intermediate hash variables, where the host will be 

able to read the value. The code that implements this is presented in Figure 3.5. 

 

Figure 3.5: Step 4 and Processing Final Hash Variables of SHA-1 Kernel 

 

 The full kernel code for the SHA-1 algorithm can be found in Appendix A: SHA-

1 Kernel Code. 

a = H[0]; 

b = H[1]; 

c = H[2]; 

d = H[3]; 

e = H[4]; 

 

#pragma unroll 

for (int t = 0; t < 80; t++){ 

 T = (ROTL(5, a)+ funct(b,c,d,t) e + getK(t) + W[t]); 

 e = d; 

    d = c; 

    c = ROTL(30, b); 

    b = a; 

    a = T; 

} 
 

 ... 

 H[0] += a; 

 H[1] += b; 

 H[2] += c; 

 H[3] += d; 

 H[4] += e; 

} 

 

#pragma unroll 

for (int i = 0; i <5; i++){ 

 hash[i] = H[i]; 

} 
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3.2.2.1 Optimization 

The implemented OpenCL design needed to be optimized to increase 

performance, as the results were quite poor without optimization. There are two main 

options when it comes to attempting to optimize the design. The first is implementation 

of pipeline structures in the design. In the AOCL, pipelining is inferred by the compiler 

wherever possible. The other optimization technique for this algorithm is operation 

reordering [3]. This involves rearranging some calculations to try to reduce the 

dependencies between variables.  

For pipelining to be inferred on loops, the #pragma unroll directive must be used 

on compatible loops in the program. This unrolls the loop fully, if the loop bounds are 

known at compile time. If the loop bounds are not known at this time, or if the loop 

should not be fully unrolled, then the unrolling factor can be specified by the 

programmer. Using #pragma unroll <N> will attempt to unroll that loop N times. The 

unrolled loop will then be pipelined as much as possible after taking variable 

dependencies into account.  

To optimize SHA-1, both methods were attempted. In the case of operation 

reordering, there was no change in performance with any attempt to pre-compute any 

portions of the algorithm. The reason that there was no effect is that the critical path of 

calculation, which is calculating temporary variable T, is not reduced by the operation 

reordering. The delay of calculating that variable is more than the amount of time 

required to compute the other variables even in the same round, as the FPGA structure 

allows for calculations to be completed in parallel. This means that the effect of 
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completing some operations in the previous round does not reduce the computation time 

of the current round.  

Being able to unroll the loops present in the SHA-1 algorithm to allow pipelining 

structures to be used was very effective in increasing the performance, even though there 

are data dependencies between stages in the pipeline. The effects of inferring pipelines to 

different portions of the kernel function are discussed in section 3.2.3. 

3.2.3 Results 

The SHA-1 kernel without any optimization gives very poor performance. The 

throughput that was measured was even less than the equivalent C++ program. The lack 

of any pipelining in the implementation prevents any of the speedup that is possible when 

utilizing the FPGA hardware. To determine the best possible pipelining of the algorithm, 

many different kernels were created, compiled, and tested to determine the effect of 

unrolling certain loops of the kernel code. In the end, fourteen kernels with varying 

degrees of pipelined hardware were designed. Each kernel was tested on nine different 

test files that ranged in size from 1Mb to over 1200Mb. The throughput of each test was 

calculated for both the FPGA accelerated OpenCL model, and a equivalent C++ 

sequential program. Those results were then averaged for each kernel to provide a 

representative speed for each design. The results can be found in Figure 3.6 with an 

explanation of each kernel located in Table 3.1. As can be seen, the first three kernels 

have a very low throughput. The effect of pipelining the reading of the hash buffer in 

kernel B or the first loop of the message schedule step in kernel C does not provide any 

speedup at all. In kernel D, however, the throughput jumps up about 600%. This kernel 

provides pipelining structures to the second loop of the message schedule derivation, 
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where there is some computation being done. A bit more speed is added in kernel E by 

fully unrolling both loops of the message schedule calculations. Throughput is then more 

than doubled by pipelining the eighty rounds of hashing in kernel F. There is only one 

other loop in the kernel to target and that is the outer loop that increments through the 

message blocks. This loop does not have bounds that are known at compile time, so it is 

not possible to unroll it fully. It is still possible to specify the unroll factor to implement 

some pipelining structures. The kernel G has an unroll factor of 2 on that outer loop. 

Kernels H through M have unroll factors from 3 to 8, respectively. It is shown that G 

does increase throughput, but as the unroll factor increases after that, it yields unexpected 

results. The throughput fluctuates, never reaching the same level as in G. The area, 

however, still increases steadily when increasing the unrolling factor. This creates less 

efficient hardware as there is no performance gain from the increase in hardware. The 

longer pipelines are harder to fill and cannot make use of the hardware.  

The efficiency of each kernel was also profiled in terms of throughput divided by 

percentage resource utilization (PRU) in target FPGA. As shown in Figure 3.7, the kernel 

that is most efficient is kernel F, meaning that it is utilizing the generated hardware most 

effectively. Kernel G, which had the highest overall performance, is actually using its 

generated hardware in a less efficient manner. This means that the area cost of unrolling 

the message block loop from kernel F to kernel G was a higher percentage than the 

performance gain between the two. As that unroll factor is further increased, the 

efficiency of the hardware is decreased. This is expected as the more pipelining that is 

done utilizes more hardware without the increase in performance to accompany it. 
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Since the goal is to achieve the highest throughput in the design, kernel G was 

chosen as the proposed design. This kernel was compiled in 3 hours using the AOC and 

AOCL utility command for the Terasic DE5-Net FPGA accelerator board. 

Table 3.1: SHA-1 Kernel Comparison 

Kernel FPGA Throughput Speedup FPGA Utilization 

A 174.4829 0.838276 21.54% 

B 152.3886 0.711982 27.42% 

C 167.0678 0.798211 21.18% 

D 1147.8380 5.483753 24.05% 

E 1283.7360 6.101327 21.83% 

F 2762.9570 13.4015 24.72% 

G 3016.5530 14.40144 31.70% 

H 2865.0930 13.92289 39.96% 

I 2996.4340 14.14296 45.94% 

J 2480.7400 12.18132 55.29% 

K 2599.8980 12.48147 61.34% 

L 2589.8260 12.43014 67.98% 

M 2929.6360 14.06274 74.50% 
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Figure 3.6: SHA-1 Test Kernel Throughput 
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Figure 3.7: SHA-1 Test Kernel Throughput divided by PRU of Target FPGA 

The speed of the SHA-1 implementation is dependent on the size of the input 

message. There are two main reasons for this relationship. The first is that there is an 

overhead time to launching a kernel. For small messages this can be a large portion of the 

overall time. The second reason for poor performance on small inputs is the fact the 

majority of the speedups come from pipelining the design. When there is a small amount 

of data, the pipelines cannot be fully utilized, reducing the speedup possible. To 

determine the relationship between the throughput and message size, 372 different input 

messages were used to test the design. The size of the messages ranged from 10B to 

640MB. To ensure an accurate representation of the speed, the digest of each input was 

calculated six times and the average was taken. The standard deviation between the six 

values was not significant. The results of this are shown in Figure 3.8. Messages that are 

smaller than 103 bytes give slower performance on FPGA than on CPU. Once the size 
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increases beyond that, there is a steady increase in performance until the message reaches 

107 bytes, where the speed then plateaus at 3033 Mbps. The CPU implementation has a 

peak speed of 217 Mbps. The FPGA accelerates the CPU time by a factor of 14 for this 

algorithm at that size of input. 
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Figure 3.8: SHA-1 Throughput vs. Message Size 

 

The peak throughput of the proposed design is 3033 Mbps. As discussed in 

section 2.5.1, there has been much work done in academia implementing the SHA-1 in 

reconfigurable hardware. Table 3.2 compares this design to the related work. The HLS 

OpenCL model is faster than three of the four other designs. The fastest design, which 

was implemented by Lee et al. is roughly twice the speed that was achieved in this thesis 
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[30]. Reasons for such a discrepancy in the two designs could be partially due to the 

throughput calculation. The OpenCL model was measured by recording the time that it 

took each kernel to run, and dividing the message size by that time. In the related works, 

the throughput is a function of the number of cycles needed to complete the hash and the 

clock speed that the system can operate at. They are not showing experimentally 

determined results, just the theoretical maximum throughput that can be achieved by the 

hardware. This cannot be evaluated on this design, as the HLS create very complex 

hardware designs that cannot be traced easily. This work also includes the time needed to 

read and write to the global memory of the system, as well as the time needed to launch 

the kernel. All of these factors can affect the measured speed of the FPGA hardware. The 

performance that was achieved is quite comparable to the other designs, and depending 

on the final application, this speed is quite impressive. Especially factoring in the 

decreased design cost and time compared to HDL based design methods. 

The area of the proposed design was also compared to that of related work. Due to 

the differences in area conventions between Altera and Xilinx FPGAs, the area must first 

be normalized. The area of the Xilinx designs that use slices have been normalized to the 

LEs of the Altera FPGAs using published formulae [38]. These equations were derived 

from whitepapers published by both Altera and Xilinx [39], [40]. The area of the HLS 

model is much greater than the HDL designs of published work. This is because the 

interface hardware that is automatically built into the kernel to communicate with the 

RAM and PCIe protocol. The HDL based designs do not incorporate this interface 

hardware into their area calculations, but it would be needed in actual applications.  
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Table 3.2: SHA-1 Performance Comparison to Related Work 

Design Throughput Area Normalized 

Area 

Target 

Sklavos et al. [27] 1339 Mbps 2245 CLBs - Xilinx 

2V500FG456 

Kakarountas et al. 

[28] 

2526 Mbps 950 

CLBs/1164 

Dffs 

- Xilinx V150BG352 

Yiakoumis et al. 

[29] 

1024 Mbps 854 slices 1058 LE Xilinx Virtix-II 

Lee et al. [30] 6040 Mbps 2894 

Slices 

3586 LE Xilinx Virtex-II 

XC2V1000 

This Work 3033 Mbps 48030 LE 48030 LE Altera Stratix V 

 

3.3 SHA-2 

There are six functions available in the SHA-2 family of the secure hash standard 

[19]. As mentioned in section 2.4.2, there are only two separate algorithms. Because of 

this, only the SHA-256 and SHA-512 functions were implemented. The performance of 

the other functions will be identical to these algorithms.  Similarly to SHA-1, both of 

these functions were first implemented on the CPU based on their description in the 

standard.  

3.3.1 SHA-256 

The SHA-256 variant was implemented first. There are many similar aspects of 

SHA-1 and SHA-256 such as the padding, word size, and block size. It can also be used 

to implement the SHA-224 function by using different initialization values and truncating 

the final output digest to 224-bits. 

3.3.1.1 Host Program 

Due to the similarities between SHA-1 and SHA-256, the host programs of the 

two are very similar. Like in all OpenCL applications, the host must define the OpenCL 



67 

 

device, kernel, command queue, and memory objects that were discussed in detail in 

section 2.3.1.1. The host program sets the three arguments to the SHA-256 kernel, the 

message buffer, the hash buffer, and the number of message blocks. The creation of the 

buffers are identical to that in the SHA-1. The host implements the padding of the input 

message before executing the kernel as a single work-item on the FPGA accelerator card 

to calculate the hash. 

3.3.1.2 Kernel 

This time, there are eight custom functions defined in the kernel apart from the 

main kernel function. The eight custom functions all return an unsigned 32-bit word, and 

implement the following functions; ROTR, SHR, choose, majority, ∑0, ∑1, σ0, and σ1. All 

of these are described in section 2.4.2.1 and the code is shown in Figure 3.9.  

 

Figure 3.9: Custom Functions of the SHA-256 Kernel 

 

unsigned ROTR( int n, unsigned x){ 

 return ((x >> n)) | ((x) << (32-n)); 

} 

unsigned SHR( int n, unsigned x){ 

 return ((x >> n)); 

} 

unsigned choose (unsigned x, unsigned y, unsigned z){ 

 return (((x&y)^((~x)&z))); 

} 

unsigned majority (unsigned x, unsigned y, unsigned z){ 

 return (((x&y)^(x&z)^(y&z))); 

} 

unsigned SIGMA0(unsigned x){ 

 return ((ROTR(2, x)^ROTR(13, x)^ROTR(22,x))); 

} 

unsigned SIGMA1(unsigned x){ 

 return ((ROTR(6, x)^ROTR(11, x)^ROTR(25,x))); 

} 

unsigned sig0(unsigned x){ 

 return ((ROTR(7, x)^ROTR(18, x)^SHR(3,x))); 

} 

unsigned sig1(unsigned x){ 

 return ((ROTR(17, x)^ROTR(19, x)^SHR(10,x))); 

} 
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In the main kernel function, the first step is to define the variables needed in the 

calculation. These consist of sixty-four 32-bit words for the message schedule, eight 32-

bit words to make up the 256-bit intermediate hash, the eight working variables, and the 

two temporary variables. This kernel also needs sixty-four constants that are defined here, 

as well as another sixty-four characters to cache the message block.  The intermediate 

hash is set to the initial values specified in the host program. This way, the kernel can be 

used for the SHA-256 and the SHA-224 algorithms by setting the proper initialization 

values specified in section 2.4.2.1.1. The OpenCL implementation of this step is 

presented in Figure 3.10. 

 

Figure 3.10: Variable Declaration and Initialization of the SHA-256 Kernel 

 

__kernel void sha256(__global const unsigned char *restrict 

messBlock, __global unsigned *restrict hash, int blockNum) {  

 unsigned char messCache[64];  

 unsigned H[8];  

 unsigned W[64];  

 unsigned a, b, c, d, e, f, g, h, T1, T2;  

 const unsigned K[64] = {  

0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 

0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 

0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,  

0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 

0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 

0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 

0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 

0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 

0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 

0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 

0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 

0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 

0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 

0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 

0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 

0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 

  }; 

 

#pragma unroll 

for (int i = 0; i < 8; i++){ 

  H[i]=hash[i]; 

 } 
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Just like in the SHA-1 kernel, the hash operation is done by looping through the 

message blocks from 0 to the block number argument specified to the kernel function. 

The first thing that is done on each message block is to cache the 512-bit block, or sixty-

four 8-bit characters of the message into the local memory of the FPGA device. Then, the 

four steps that makeup the algorithm are processed. The message schedule is calculated 

using two loops, one for the first sixteen words, and another for the rest. Instead of using 

the message block to determine the first set of message schedule words, the cached 

characters are used. The seventeenth to sixty-fourth words of the message schedule are 

determined using four previous message schedule words, and the two custom functions, 

σ0, and σ1. This is depicted in Figure 3.11. Compared to the SHA-1 algorithm, the SHA-

256 message schedule requires much more complex calculations.  

 

Figure 3.11: Message Block Caching and Message Schedule Derivation of the SHA-256 Kernel 

 

The next step, shown in Figure 3.12, is updating of the working variables is a 

simple assignment operation of the eight words to the intermediate hash variables. In the 

third step of the SHA-256 kernel, the sixty-four rounds of hashing are completed by 

#pragma unroll 2 

for (int l = 0; l < blockNum; l++){ 

 int offset = l*64; 

#pragma unroll 

 for (int z = 0; z < 64; z++){ 

  messCache[z] = messBlock[z + offset]; 

 } 

#pragma unroll 

 for (int t = 0; t < 16; t++){ 

  int t4 = t*4; 

  W[t] = (((unsigned) messCache[(t4)]) << 24) 

     | (((unsigned) messCache[(t4 + 1)]) << 16) 

     | (((unsigned) messCache[(t4 + 2)]) << 8) 

     | (((unsigned) messCache[(t4 + 3)])); 

 } 

#pragma unroll 

 for (int t = 16; t < 64; t++){ 

  W[t] = (sig1(W[t-2])+W[t-7]+sig0(W[t-15])+W[t-16]); 

 } 
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using a loop with bounds of 0 to 64.  The two temporary variables are dependent on the 

choose, majority, ∑0, and ∑1 custom functions, the defined constants, the message 

schedule, and the working variables.  

 

Figure 3.12: Steps 2 and 3 of the SHA-256 Kernel 

 

The intermediate hash variables are lastly incremented by the values of working 

variables. The process will repeat for all the message blocks contained in the input 

message. Finally, the value of the hash buffer is updated to the calculated value to allow 

the host to read the digest from global memory. The code of this is presented in Figure 

3.13. 

a = H[0]; 

b = H[1]; 

c = H[2]; 

d = H[3]; 

e = H[4]; 

f = H[5]; 

g = H[6]; 

h = H[7]; 

#pragma unroll 

for (int t = 0; t < 64; t++){ 

 T1 = (h + SIGMA1(e) + choose(e,f,g) + K[t] + W[t]); 

 T2 = (SIGMA0(a) + majority(a,b,c)); 

 h = g; 

 g = f; 

 f = e; 

 e = (d + T1); 

 d = c; 

 c = b; 

 b = a; 

 a = (T1 + T2); 

} 
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Figure 3.13: Step 4 and Processing Final Hash Variables of SHA-256 Kernel 

 

 The full kernel code of the SHA-256 algorithm can be found in Appendix B: 

SHA-256 Kernel Code. 

3.3.1.2.1 Optimization 

The optimization of the SHA-256 kernel is done in a similar fashion to the SHA-1 

kernel as the algorithms, which are both made of the Merkle–Damgård construction, are 

quite similar. The methods of optimization used are detailed in section 3.2.2.1.  

In SHA-256 the critical path of the algorithm occurs when updating the working 

variable e, in the hashing rounds. Since variable e depends on temporary variable T1, 

which contains the most computation to determine in the entire function. This is the step 

that limits the ability to optimize the algorithm further. 

3.3.1.3 Results 

Using the knowledge of optimizing the SHA-1 kernel, and the similarity of the 

algorithms, it was simple to implement pipelining structures in the appropriate loops of 

the algorithm. All of the internal loops that implement the message caching, schedule 

derivation, and the rounds of hashing were unrolled to infer pipelines. The overall 

    ... 

    H[0] += a; 

    H[1] += b; 

    H[2] += c; 

    H[3] += d; 

    H[4] += e; 

    H[5] += f; 

    H[6] += g; 

    H[7] += h; 

} 

#pragma unroll 

for (int i = 0; i <8; i++){ 

    hash[i] = H[i]; 

} 
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message block loop was unrolled by a factor of two. The higher complexity of the 

calculations in the algorithm cause the stalling of this pipeline, and performance suffered 

if the loop was unrolled further than that. The kernel was compiled using the AOCL tools 

in 3 hours and 47 minutes. 

Using the same 372 test messages as the SHA-1 test, the relationship between the 

size of the message and the throughput of the design was measured. The test was 

completed six times on each message to give a good representation of the average speed. 

This relationship is represented in Figure 3.14. The pattern that is exhibited by the results 

has the identical shape as the previous algorithm. For messages smaller than 103 bytes, 

the CPU implementation is faster. As the message size increases, however, the 

throughput increases quickly as well. At a size between 106 and 107 bytes the throughput 

levels off at 1489 Mbps. The CPU program has a maximum throughput of 140 Mbps. 

This throughput is about a 10 fold increase over that of the CPU at this input size. 
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Figure 3.14: SHA-256 Throughput vs. Message Size 

 

The maximum throughput of the SHA-256 kernel was 1489 Mbps which is less 

than half of the throughput achieved in the SHA-1 case. The more complex calculation of 

the SHA-256 algorithm is to blame for this reduction in performance, but the security of 

the function is much higher. Comparing this work to other SHA-256 FPGA 

implementations in literature show that the performance achieved was on par with the top 

contenders. The details are given in Table 3.3. Of the seven other designs that were 

compared, only two have a higher throughput than the HLS OpenCL model. Michail et 

al. implemented their design on three different FPGAs, producing a range of results from 

2077 Mbps to 3100 Mbps [33]. This work was not far off of the low end of that range. 

Even closer in throughout was Mestiri et al. with a 1618 Mbps result [34]. This shows 
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that the acceleration by AOCL provided performance that is very similar to the top 

performing designs in literature. 

The area of the proposed SHA-256 model was compared to published designs 

using the same method described in section 3.2.3 to normalize the area of the Xilinx 

models. The AOCL design has an area much smaller than the capacity of the target 

FPGA, but it was observed that the area of this work was much larger than any HDL 

based designs. Again, this is mainly due to the incorporation of the host interface 

hardware needed in this method. For any application to fully utilize the circuitry given in 

the published literature, interfacing hardware would need to be designed to communicate 

with the FPGA hardware. This would drastically increase the area needed and the design 

time and cost, which are greatly reduced with this HLS tool. 

Table 3.3: SHA-256 Performance Comparison to Related Work 

Design Throughput Area Normalized 

Area 

Target 

Sklavos et al. [31] 326 Mbps 1060 

CLBs 

- Xilinx V200PQ240 

Ling Bai and Shuguo 

Li [41] 

327 Mbps 2633 LE 2633 LE Altera Cyclone III 

EP3C25U240C8 

Khalil et al. [32] 634 Mbps 4489 LE 4489 LE Altera Stratix 

EP1S10 

McEvoy et. al [42] 1009 Mbps 1373 

slices 

2510 LE Virtex II XC2V2000-

BF957  

Mohamed and Nadjia 

[43] 

1360 Mbps 1203 

slices 

2200 LE Virtex-5 

Michail et al. [33] 2077-3100 

Mbps 

1534-

1708 

slices 

2805-3123 LE Virtex, Virtex-II, 

Virtex-E 

Mestiri et al. [34] 1618 Mbps 387 

Slices 

708 LE Xilinx Virtex-5 

XC5VFX70T 

This Work 1489 Mbps 42486 

LE 

42486 LE Altera Stratix V 
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3.3.2 SHA-512 

The SHA-512 variant has a similar structure to that of SHA-256, but there are 

some very important differences. The major differences between this and the previous 

algorithms is that the word size is 64-bits and the block size is 1024-bits. The padding 

rule is also slightly changed to account for these different sizes. The SHA-512 function is 

also used to implement SHA-384, SHA-512/224, and SHA-512/256. 

3.3.2.1 Host Program 

The host program of the SHA-512 application declares and initializes all the 

OpenCL components needed that are described in section 2.3.1.1. The padding of the 

input message is handled by the host program. It is more complex in this algorithm as the 

padding rule needs a 128-bit representation of the messages length. The largest variable 

that is available is 64-bits long. This means that two words must be used to represent the 

length of the message. Other than the padding, the host program is very similar to the 

other algorithms. The two buffers needed to send data to the kernel are setup, adjusting 

for the proper length of the digest size. The initial hash values are also set in the host to 

provide the flexibility of implementing the other SHA-2 functions. 

3.3.2.2 Kernel 

The kernel of the SHA-512 follows an almost identical pattern to SHA-256 kernel 

in section 3.3.1.2. Again, there are eight custom functions defined outside the main kernel 

function, but this time, they all return an unsigned 64-bit word. The ROTR, SHR, choose, 

majority, ∑0, ∑1, σ0, and σ1 functions of SHA-512 are described in section 2.4.2.2, and 

somewhat differ in functionality to those in SHA-256. The OpenCL implementation code 

is presented in Figure 3.15. 
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Figure 3.15: Custom Functions of the SHA-512 Kernel 

 

In the actual kernel function, the variables declared are: eight 64-bit working and 

two 64-bit temporary variables, eight 64-bit words to implement the 512-bit intermediate 

hash, eighty 64-bit words for the message schedule, one hundred and twenty-eight 8-bit 

characters for message block caching, and eighty 64-bit defined constants, as shown in 

Figure 3.16. 

unsigned long ROTR( int n, unsigned long x){ 

 return ((x >> n)) | ((x) << (64-n)); 

} 

unsigned long SHR( int n, unsigned long x){ 

 return ((x >> n)); 

} 

unsigned long choose (unsigned long x, unsigned long y, unsigned long z){ 

 return (((x&y)^((~x)&z))); 

} 

unsigned long majority (unsigned long x, unsigned long y, unsigned long z){ 

 return (((x&y)^(x&z)^(y&z))); 

} 

unsigned long SIGMA0(unsigned long x){ 

 return ((ROTR(28, x)^ROTR(34, x)^ROTR(39,x))); 

} 

unsigned long SIGMA1(unsigned long x){ 

 return ((ROTR(14, x)^ROTR(18, x)^ROTR(41,x))); 

} 

unsigned long sig0(unsigned long x){ 

 return ((ROTR(1, x)^ROTR(8, x)^SHR(7,x))); 

} 

unsigned long sig1(unsigned long x){ 

 return ((ROTR(19, x)^ROTR(61, x)^SHR(6,x))); 

} 
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Figure 3.16: Variable Declaration and Initialization of the SHA-512 Kernel 

 

The current 1024-bit message block is first cached from the characters from the 

global memory buffer argument of the kernel. To compute the message schedule, again 

there are two loops. The first’s bounds are 0 to 16, and each schedule word is eight 

caching characters concatenated together. The second loop’s bounds are 16 to 80, using 

the functions σ0, and σ1, with four previous schedule word values. This message block 

caching and message schedule derivation is shown in Figure 3.17. 

__global unsigned long *restrict hash, int blockNum) {  

unsigned char messCache[128];  

unsigned long H[8];  

unsigned long W[80];  

unsigned long a, b, c, d, e, f, g, h, T1, T2;  

const unsigned long long K[80] = {  

0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,  

0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,  

0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,  

0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,  

0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,  

0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,  

0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,  

0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,  

0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,  

0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,  

0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,  

0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,  

0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,  

0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,  

0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,  

0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,  

0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,  

0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,  

0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,  

0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,  

0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,  

0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,  

0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,  

0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,  

0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,  

0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,  

0x5fcb6fab3ad6faec, 0x6c44198c4a475817 

}; 

#pragma unroll 

 for (int i = 0; i < 8; i++){ 

  H[i]=hash[i]; 

 } 
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Figure 3.17: Message Block Caching and Message Schedule Derivation of the SHA-512 Kernel 

 

Step two, presented in Figure 3.18, simply updates the working variables, similar 

to both the SHA-1 and SHA-2 functions. In the third step, there are eighty rounds of 

hashing computed in the loop instead of sixty-four in SHA-256. The calculations are the 

same, however, with the exception of the increased word size and the redefinition of the 

custom functions ∑0, and ∑1 for this algorithm.  

for (int l = 0; l < blockNum; l++){ 

 int offset = l*128; 

 #pragma unroll 

 for (int z = 0; z < 128; z++){ 

  messCache[z] = messBlock[z + offset]; 

 } 

 #pragma unroll 

 for (int t = 0; t < 16; t++){ 

  int t4 = t*8; 

  W[t] = (((unsigned long) messCache[(t4)]) << 56)  

     | (((unsigned long) messCache[(t4 + 1)]) << 48)  

     | (((unsigned long) messCache[(t4 + 2)]) << 40) 

     | (((unsigned long) messCache[(t4 + 3)]) << 32) 

     | (((unsigned long) messCache[(t4 + 4)]) << 24) 

     | (((unsigned long) messCache[(t4 + 5)]) << 16)  

     | (((unsigned long) messCache[(t4 + 6)]) << 8)  

     | (((unsigned long) messCache[(t4 + 7)])); 

 } 

 #pragma unroll 

 for (int t = 16; t < 80; t++){ 

  W[t] = (sig1(W[t-2])+W[t-7]+sig0(W[t-15])+W[t-16]); 

 } 
 ... 
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Figure 3.18: Steps 2 and 3 of the SHA-512 Kernel 

 

The intermediate hash is updated, and the entire process is repeated for each 

message block. Lastly, the OpenCL buffer for the hash is updated to be able to have the 

host program access it, as shown in Figure 3.19. 

 

Figure 3.19: Step 4 and Processing Final Hash Variables of SHA-512 Kernel 

 

The full kernel code for the SHA-512 algorithm can be found in Appendix C: 

SHA-512 Kernel Code. 

a = H[0]; 

b = H[1]; 

c = H[2]; 

d = H[3]; 

e = H[4]; 

f = H[5]; 

g = H[6]; 

h = H[7]; 

#pragma unroll 

for (int t = 0; t < 80; t++){ 

 T1 = (h + SIGMA1(e) + choose(e,f,g) + K[t] + W[t]); 

 T2 = (SIGMA0(a) + majority(a,b,c)); 

 h = g; 

 g = f; 

 f = e; 

 e = (d + T1); 

 d = c; 

 c = b; 

 b = a; 

 a = (T1 + T2); 

} 

 

    ... 

    H[0] += a; 

    H[1] += b; 

    H[2] += c; 

    H[3] += d; 

    H[4] += e; 

    H[5] += f; 

    H[6] += g; 

    H[7] += h; 

} 

#pragma unroll 

for (int i = 0; i <8; i++){ 

    hash[i] = H[i]; 

} 
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3.3.2.2.1 Optimization 

Refer to section 3.3.1.2.1 as the optimization of SHA-512 is identical to that of 

SHA-256. 

3.3.2.3 Results 

Like the SHA-256 kernel, all of the inner loops were fully unrolled to create the 

pipelines for those portions of the algorithm. The outer loop, which cycles through 

message blocks was not unrolled at all, due to the performance penalty of stalling the 

long pipeline. This kernel was compiled in 4 hours and 40 minutes using the AOCL. 

Again, the algorithm was tested using 372 input messages to determine the 

relationship between the message size and throughput of the proposed design. The test 

was completed six times for every input message and the average throughput was taken. 

Figure 3.20 shows the results of this test. A message with the length of 103 bytes can be 

calculated on a CPU or the FPGA in the same time. Smaller messages than that are 

completed faster on the CPU. Messages bigger than 103 bytes have a steady increase in 

throughput with increasing size. When the message size reaches between 106 and 107, the 

increase in throughput stops and the performance of the FPGA implementation plateaus 

at 1692 Mbps. The throughput of the CPU design also levels off around this spot to be 

208 Mbps, giving the FPGA accelerated program an 8 fold speedup. 
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Figure 3.20: SHA-512 Throughput vs. Message Size 

 

When comparing the proposed SHA-512 HLS OpenCL model to the HDL based 

FPGA designs in published literature, five other designs were considered. Of the five, 

only one had a higher throughput, which was 2253 Mbps and was achieved by Mestiri et 

al. [34]. The next closest to this work was McEvoy et al. with a throughput of 1466 Mbps 

[42]. The other designs had even lower performance than that. In terms of competing 

with HDL based designs, the OpenCL HLS implementation proposed in this work can 

provide just as fast results. 

In terms of area, the comparison of the SHA-512 to that of the published HDL 

based designs is similar to SHA-1 and SHA-256. The area of the Xilinx designs were 
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normalized to Altera LEs using the method described in section 3.2.3. Once again, the 

proposed HLS model had a huge area compared to any of the other designs. The FPGA 

hardware needed to interface with the host PC is the main contributor to the large area. 

The ability to have that interfacing logic automatically generated saves a huge amount of 

design time and cost.  

Table 3.4: SHA-512 Performance Comparison to Related Work 

Design Throughput Area Normalized 

Area 

Target 

Sklavos et al. [31] 480 Mbps 2237 

CLBs 

- Xilinx V200PQ240 

Mestiri et al. [34] 2253 Mbps 874 slices 1598 LE Xilinx Virtex-5 

(XC5VFX70T) 

McEvoy et al. [42] 1466 Mbps 4107 

slices 

7508 LE Virtex II 

(XC2V2000-

BF957) 

Khalil et al. [32] 644 Mbps 4957 LE 4957 LE Altera Stratix 

EP1S10 

He et al. [44] 1216 Mbps 1151 

slices 

2104 LE Xilinx 

XC5VLX220 

This Work 1692 Mbps 114771 

LE 

114771 LE Altera Stratix V 

 

3.4 SHA-3 

The SHA-3 algorithm was the last of the secure hash functions to be implemented. 

Like the other SHAs, the first step was to create a working model on the CPU. Using the 

SHA-3 specification documentation, the CPU program was designed using C++ [20].  

3.4.1 Host Program 

After a working CPU program was completed, designing the OpenCL host 

program is the first step in the creating the FPGA accelerated version. The OpenCL 

device, kernel, command queue, and buffers are all declared. The kernel arguments must 
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also be set by the host program. In this algorithm, there are three arguments to set. The 

first is the memory buffer to transfer the input message to the kernel. The second 

argument is the memory buffer that will hold the state of the Keccak function. The last 

argument is the number of message blocks. In SHA-3 the message block size is 

dependent on the digest size as described in section 2.4.3. Due to this, the number of 

message blocks required change depending on the function implemented. The host 

program implements the padding of the message as well, before it is written to the 

memory buffer. The kernel is then executed as a single work-item, and the final state is 

available in the state memory buffer. The digest is then read from the state. 

3.4.2 Kernel 

In the kernel file, there are only two custom functions and the main kernel 

function. The first custom function is ROTL and it returns an unsigned 64-bit word. The 

other is a function to return an integer that is the modulus 5 of the input argument. There 

is a modulus operator available in OpenCL, however it uses division. This application is 

not using the modulus function on very large numbers, so a simple iterative subtraction 

implementation of the modulus function is faster and will use less FPGA resources. The 

code for these functions are presented in Figure 3.21. 

 

Figure 3.21: Custom Functions of the SHA-3 Kernel 

 

unsigned long ROTL(  unsigned long x, int n){ 

 return ((x << n)) | ((x) >> (64-n)); 

} 

 

int mod5(int x){ 

 while (x > 4){ 

  x -= 5; 

 } 

 return x; 

} 
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The main function of the kernel first defines the message block size for the 

function. Each of the SHA-3 variants needs a separate kernel as the block size must be 

hard coded into the function to be able to optimize the design properly. The kernel then 

declares two arrays A and B, which are each twenty-five 64-bit words in size. These are 

to hold the state and a temporary version of the state respectively. The reason that the 

state is implemented as a one-dimensional array is to help indexing and optimizing of 

certain steps of the algorithm. The kernel also declares two small five word arrays to hold 

coefficients calculated in the function. The state array is initialized to contain all zeros. 

The twenty-four constants needed for the ι step mapping are defined here as well. The 

declaration and initialization is presented in Figure 3.22. 

 

Figure 3.22: Declaration and Initialization of the Variables of the SHA-3 Kernel 

 

The SHA-3 kernel then uses a loop to cycle through each message block. Inside 

of this loop, the first step is to copy the message block into the state. Each word of the 

state is set to itself XORed by the concatenation of eight 8-bit characters of the message 

__kernel void sha3(__global const unsigned char *restrict PM, __global 

unsigned long *restrict hash, int blockNum) 

{ 

 

int blockSize = 144; //for SHA3-224. Replace with 136 for SHA3-256,             

    104 for SHA3-384, and 72 for SHA3-512. 

 

 unsigned long A[25], B[25], C[5], D[5];  

 for (int i = 0; i < 25; i++){ 

  A[i]= 0x00; 

 } 

 unsigned long iota[24] = 

  { 

  0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 

  0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 

  0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 

  0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 

  0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 

  0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 

  0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 

  0x8000000000008080, 0x0000000080000001, 0x8000000080008008 

  }; 

 ... 
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block. After the message block has been absorbed by the state, the hashing rounds are 

implemented by loop with bounds 0 to 24. This step is depicted in Figure 3.23. 

 

Figure 3.23: Absorbing the Message Block into the State of SHA-3 Kernel 

 

The first step mapping, θ, is implemented in three loops, all with bounds 0 to 5. 

The first two loops are used to calculate coefficients that are determined using the state 

and the custom functions described above. The last loop of θ applies each of these 

coefficients by XORing them into the appropriate row of the state. The θ step mapping is 

shown in Figure 3.24. 

 

Figure 3.24: Theta Step Mapping of the SHA-3 Kernel 

for (int l = 0; l < blockNum; l++){ 

  

 int offset = blockSize*l; 

 #pragma unroll 

 for (int k = 0; k < blockSize/8; k++){ 

  A[k] ^= (((unsigned long) PM[(k*8) + offset]) 

      | (((unsigned long) PM[k*8 +1 + offset]) << 8)  

      | (((unsigned long) PM[k*8 +2 + offset]) << 16) 

      | (((unsigned long) PM[k*8 +3 + offset]) << 24) 

      | (((unsigned long) PM[k*8 +4 + offset]) << 32) 

      | (((unsigned long) PM[k*8 +5 + offset]) << 40)  

      | (((unsigned long) PM[k*8 +6 + offset]) << 48) 

      | (((unsigned long) PM[k*8 +7 + offset]) << 56)); 

   

 } 

 for (int roundNum = 0; roundNum < 24; roundNum++){ 

  ... 
 

#pragma unroll 

for (int i = 0; i < 5; i++){ 

 C[i] = A[i]^A[5+i]^A[10+i]^A[15+i]^A[20+i]; 

} 

#pragma unroll 

for (int i = 0; i < 5; i++){ 

 D[i] = C[mod5(i+4)] ^ ROTL(C[mod5(i+1)],1); 

} 

#pragma unroll 

for (int i = 0; i < 5; i++){ 

 A[i] ^= D[i]; 

 A[5+i] ^= D[i]; 

 A[10+i] ^= D[i]; 

 A[15+i] ^= D[i]; 

 A[20+i] ^= D[i]; 

} 
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The next two step mappings, ρ and π, are implemented together. Since ρ rotates 

each row, and π reorders them, the assignment of each rotated row to the proper 

coordinate of a temporary state is all that is need to achieve both of these steps. Figure 

3.25 presents the combined implementation of the ρ and π step mappings. 

 

Figure 3.25: Rho and Pi Step Mappings of the SHA-3 Kernel 

 

The χ step mapping sets each word in the state to the value of the corresponding 

word in the temporary state, XORed with a function of the next word of the state and the 

word after that. This step is implemented using a loop with bounds 0 to 25, but 

increments by 5 each iteration. The χ step mapping is shown in Figure 3.26. 

B[0] = A[0]; 

B[10] = ROTL(A[1] ,1); 

B[7] = ROTL(A[10] ,3); 

B[11] = ROTL(A[7] ,6); 

B[17] = ROTL(A[11] ,10); 

B[18] = ROTL(A[17] ,15); 

B[3] = ROTL(A[18] ,21); 

B[5] = ROTL(A[3] ,28); 

B[16] = ROTL(A[5] ,36); 

B[8] = ROTL(A[16] ,45); 

B[21] = ROTL(A[8] ,55); 

B[24] = ROTL(A[21] ,2); 

B[4] = ROTL(A[24] ,14); 

B[15] = ROTL(A[4] ,27); 

B[23] = ROTL(A[15] ,41); 

B[19] = ROTL(A[23] ,56); 

B[13] = ROTL(A[19] ,8); 

B[12] = ROTL(A[13] ,25); 

B[2] = ROTL(A[12] ,43); 

B[20] = ROTL(A[2] ,62); 

B[14] = ROTL(A[20] ,18); 

B[22] = ROTL(A[14] ,39); 

B[9] = ROTL(A[22] ,61); 

B[6] = ROTL(A[9] ,20); 

B[1] = ROTL(A[6] ,44); 
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Figure 3.26: Chi Step Mapping of the SHA-3 Kernel 

 

The last step mapping, ι, absorbs a constant into the first word of the state that is 

dependent on the current round number. These step mappings are all executed twenty-

four times for each message block. The final process of the kernel is to set the state 

memory buffer to the state calculated in the kernel. This way the host program can 

extract the digest from the state. The ι step mapping and last of the kernel code is shown 

in Figure 3.27. 

 

Figure 3.27: Iota Step Mapping and Final Processing of the State in the SHA-3 Kernel 

 

 The full kernel code of the SHA-3 algorithm can be found in Appendix D: SHA-3 

Kernel Code. 

3.4.2.1 Optimization 

The main optimization technique that can be performed on the SHA-3 kernel is to 

unroll the loops of the algorithm using the #pragma unroll directive to infer pipelining 

#pragma unroll 

for (int i = 0; i < 25; i+=5){ 

 A[i] = B[i] ^(~(B[(i+1)])  & B[(i+2)]); 

 A[i+1] = B[i+1] ^(~(B[(i+2)])  & B[(i+3)]); 

 A[i+2] = B[i+2] ^(~(B[(i+3)])  & B[(i+4)]); 

 A[i+3] = B[i+3] ^(~(B[(i+4)])  & B[(i)]); 

 A[i+4] = B[i+4] ^(~(B[(i)])  & B[(i+1)]); 

 

} 
 

 

  ... 

  A[0] ^= iota[roundNum]; 

 } 

} 

 

for (int i = 0; i < 25; i++){ 

  hash[i]= A[i]; 

 } 
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structures in the FPGA hardware. The block size was required to be hard coded into the 

algorithm, meaning separate kernels needed to be compiled for each SHA-3 function. The 

reason for that is that there is a loop in the kernel that have bounds dependent on the 

block size, and without knowing that size at compile time, it is not possible to fully unroll 

that loop to increase performance. The other key to optimization of this algorithm was to 

use a one-dimensional index on the state array rather than a two-dimensional one that 

would be easier to compare to the state representation in the standard documentation. The 

pipelining of the hardware is more difficult to implement on nested loops, which would 

be more plentiful in a two-dimensional indexing scheme. 

3.4.3 Results 

The SHA-3 algorithm is based on the Keccak sponge function, rather than the 

Merkle–Damgård construction like SHA-1 and SHA-2 [24], [25]. The effects of unrolling 

each loop of the kernel cannot be extrapolated from the previous algorithms, like was 

done in SHA-2. To determine the effects of pipelining different portions of the algorithm, 

six different kernels of the SHA3-224 variant were constructed and tested on a 70Mb 

input message. Each test was done in triplicate, and the average throughput was taken 

along with the speed of the CPU implementation. In kernel A, there is no unrolling done 

at all in the algorithm and the performance is very poor. The throughput is only about 

half of the CPU implementation. The next kernel, B, attempts to unroll the loop to absorb 

the message block into the state, along with the θ and χ step mapping loops. The ρ and π 

step mappings were implemented in loop in this kernel, which was not unrolled. The 

throughput marginally increase, but the speed was still slower than the CPU model. In 

kernel C, the ρ and π step mappings were rewritten without the use of a loop. Since there 
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are no data dependencies in the step, the hardware generated performs very well. The 

increase in throughput was approximately 400% over the previous kernel. The round loop 

was unable to be fully unrolled as the generated design was too big for the FPGA. In 

kernel D, the only thing that change was unrolling the round loop by a factor of 2. The 

throughput dropped slightly with this modification. Kernel E is similar to kernel C but the 

outer message block loop was unrolled by a factor of 2. The result was that the speed of 

the design dropped by 75%. The last kernel implemented does not have the block size 

hard coded into the function, but is set through a kernel argument. The same loops were 

unrolled as kernel C except for the loop that absorbs the message block into the state. It 

cannot be fully unrolled as the bounds are not known at compile time. The throughput of 

this kernel was only a third of kernel C. The results of this test are given in Figure 3.28.  

The efficiency of each of the kernels was determined by dividing the throughput 

by the PRU of the target FPGA. The results are shown in Figure 3.29. The relationship 

follows a very similar trend to the throughput of each kernel. Kernels A and B both use 

about the same area of the FPGA, and have similar throughputs. The area is about 7% 

less in both kernel C and D but the throughput is much higher. This shows that the 

hardware generated is much more efficient, and the effect of modifying the combined ρ 

and π step mapping was beneficial to speed and area of the design. In kernel E the effect 

of unrolling the message block loop by a factor of 2 greatly increased the area needed to 

contain the design while decreasing the throughput. In this kernel there is a high amount 

of hardware that is not being efficiently utilized due to data dependencies and stalling of 

the pipeline. The final kernel F, which implements a reprogrammable kernel for all the 
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functions, did not use much more area that kernel C but had poor performance, resulting 

in a low efficiency. 

The kernel that was chosen to be used as the proposed design was kernel C as it 

had the highest throughput. The AOCL tools managed to compile the kernel in 3 hours 

and 16 minutes. 

Table 3.5: SHA-3 Kernel Comparison 

Kernel FPGA Throughput Speedup FPGA Utilization 

A 87.68176 0.5314 35.17% 

B 105.0503 0.6356 34.41% 

C 4074.093 24.6697 28.57% 

D 3821.666 23.1434 28.90% 

E 1076.896 9.7829 47.21% 

F 1347.537 8.1710 29.69% 
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Figure 3.28: Comparison of SHA-3 Test Kernel Throughput 
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Figure 3.29: SHA-3 Test Kernel Throughput divided by PRU of Target FPGA 

 

Once the best kernel was determined, the relationship between the message size 

and throughput could be determined. The same 372 input messages, ranging in size from 

10B to 640MB, which were used in the SHA-1 and SHA-2 tests, were again used to 

characterize the kernel. The process of the algorithm is the same for each function in the 

SHA-3 standard, but the message block size does affect the performance. Because of this, 

separate kernels for SHA3-224, SHA3-256, SHA3-384, and SHA3-512 were compiled 

and tested. Each message was hashed six times with each of the functions to ensure a fair 

representation of the throughput. The behaviour of the functions all followed a similar 
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trend, only differing in the steady throughput of large messages. The CPU model 

performs better than any of the FPGA implementations as long as the size is below 102 to 

103 bytes. After that, the FPGA implementations have a higher throughput that increases 

with message size until about 107 bytes. The throughput of the implementation remains 

constant above that sized input. The SHA3-224 kernel is the fastest, reaching a 

throughput of 4075 Mbps. SHA3-256 is a bit slower, with 3960 Mbps. The SHA3-384 

variant only managed to achieve a peak throughput of 3045 Mbps, while SHA3-512 

maxed out at 2947 Mbps. These results are expected given the implementation of the 

algorithm used. The hardware used is the same for each SHA-3 function. The only 

difference in the calculation of each is the block size. As the digest size increases, the 

block size decreases, meaning that more message blocks are required to hash the same 

input between the functions. More message blocks lead to more iterations of the function 

and a slower time to compute the output. This characteristic of the implementation also 

affected the CPU model in the same way. The throughput of the SHA3-224 is the highest 

on CPU, and drops to less than half the throughput at SHA3-512. The throughput of the 

CPU design is 165 Mbps for SHA3-224, 156 Mbps for SHA3-256, 120 Mbps for SHA3-

384, and 84 Mbps for SHA3-512. The relationship between FPGA and CPU throughput 

is shown in Figure 3.34.  
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Figure 3.30: SHA3-224 Throughput vs. Message Size 
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Figure 3.31: SHA3-256 Throughput vs. Message Size 
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Figure 3.32: SHA3-384 Throughput vs. Message Size 
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Figure 3.33: SHA3-512 Throughput vs. Message Size 
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Figure 3.34: SHA-3 FPGA and CPU Throughput 
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Figure 3.35: Comparison of SHA-3 Kernel Speedup 
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Although there is not as much work done in FPGA implementation of the SHA-3 

as there was done to the SHA-1 and SHA-2 algorithms, the result of the proposed design 

was compared to the results in published literature. The HLS OpenCL model defined here 

did not have the same level of performance as comparable HDL base designs. Of the 

three designs compared, two were much faster. The only other authors to give speeds of 

the four fixed length digest functions was Baldwin et al. [35]. Looking at SHA3-224, the 

speed between their design and the proposed one are not drastically different. However as 

their designs increased in digest size, the performance also increase. This is the opposite 

relation of the AOCL accelerated algorithm as the performance decreased with an 

increase in digest size. The difference in speed is almost 3 fold between the two designs 

for SHA-512. The work done by Song et al. only implemented SHA3-256 and SHA3-512  

[37]. Their SHA3-256 design was twice the speed of their SHA3-512 implementation, 

but was also 3.6 fold faster than the proposed HLS design. Jungk and Apfelbeck 

implemented just SHA3-256 [36]. This design was much slower at 864 Mbps, which is 

about 21% the speed of the proposed design. The HLS OpenCL model results are not 

comparable with the HDL models that have been published thus far. More work into 

optimization of the kernel would need to be done before it is possible to compete with 

HDL based models of the SHA-3 standard. Although the speed is not competitive, the 

results are still impressive. The speed that was achieved by the AOCL implementation is 

quite high and the design time and cost is greatly reduced from HDL based design 

methodologies. 
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Table 3.6: SHA-3 Performance Comparison to Related Work 

Design Throughput Target 

SHA3-224 SHA3-256 SHA3-384 SHA3-512  

Baldwin et al. 

[35] 

5915 Mbps 6232 Mbps 8190 Mbps 8518 Mbps Xilinx 

Virtex-5 

Jungk and 

Apfelbeck [36] 

- 864 Mbps - - Xilinx 

Virtex-6 

Song et al. [37] - 14438 

Mbps 

- 7066 Mbps Xilinx 

Virtex-5 

This Work 4075 Mbps 3960 Mbps 3045 Mbps 2947 Mbps Altera 

Stratix V 

  

3.5 Comparison  

Each of the SHA functions were implemented and compared against their 

comparable equivalent from published literature but not to each other. There is significant 

difference in the throughput and area between the different secure hash functions. The 

reason for the variation between the functions is due to the structure of the algorithms 

themselves.  The throughput comparison can be found in Figure 3.36, while the area 

comparison of the functions is in Figure 3.37. 

The proposed SHA-1 design achieved a maximum throughput of 3033 Mbps. Since 

SHA-1 has be deprecated, this speed is only applicable to use in existing legacy 

applications. The SHA-256 throughput was a little less than half of the SHA-1 throughput 

at 1489 Mbps. The higher security of the algorithm and more complex operations that 

exist in the SHA-256 function compared to those in SHA-1 attribute to this reduction in 

speed. The results of the SHA-512 implementation were a bit higher than SHA-256, but 

still around half of SHA-1 at 1692 Mbps. The increased word size and block size of the 

SHA-512 function allows a higher throughput to be achieved compared to SHA-256. 

Both of the SHA-2 functions are still widely used in cryptographic applications. The 
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SHA-3 functions are meant to augment those in SHA-2 to provide substitute, rather than 

replacement functions, for similar applications. The throughput of the SHA3-224 

function was determined to be 4075 Mbps. The comparable SHA-2 family algorithm 

would be SHA-224, which would have the same throughput as SHA-256. The SHA3-256 

throughput achieved was 3960 Mbps. As discussed in section 3.4.3, the reason for the 

differences between the SHA-3 functions have to do with the block size of the 

algorithms. SHA3-384 had a maximum throughput of 3045 Mbps, while SHA3-512 

achieved 2947 Mbps. The SHA-2 comparable function to SHA3-384 is SHA-384 which 

is the same algorithm as SHA-512 with a different initialization and a truncated output. 

The SHA-3 family of functions outperformed each of their SHA-2 comparable functions. 

In an applications needing a 224-bit secure digest, the SHA-3 implementation proposed 

could offer a 2.73 fold improvement in throughout over the SHA-2 equivalent. As the 

digest size increases, that boost in performance is not as drastic, but still present. A 512-

bit digest can be calculated 1.74 times faster with the SHA-3 algorithm compared to the 

SHA-2 function. 
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Figure 3.36: Throughput Comparison of All SHAs 

  

The area of each SHA implementation was also compared. The SHA-1 design 

was implemented using 48030 LEs. That size was slightly reduced in SHA-256 to 42486 

LEs. The reason for the decrease is that SHA-256 has fewer hashing rounds that that of 

SHA-1. The hardware must be more complex in SHA-256, but not as much is needed to 

implement the algorithm. For SHA-512, the area of SHA-256 is almost tripled. This is 

due to the increased number of rounds and the increased word size, both of which require 

a lot more hardware resources to implement. Moving to SHA3-224, the area needed to 

implement the function dropped down to 27689 LEs. The operations in the SHA-3 are 

less complex than those in SHA-1 and SHA-2 leading to a vast reduction in the area 
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needed. Comparing to the equivalent SHA-2 function, the area needed for the design is 

only about 65% in the SHA-3 function. The area drops even further down for the other 

SHA-3 implementation, due to the smaller block size, less hardware is needed to copy the 

message block into the state. The size of the SHA3-512 is only 20135 LEs, which is 

about a third of the SHA-1 implementation with an almost equal throughput between the 

two. The difference compared to the SHA-512 function is a reduction in area by 5.7 

times. The SHA-3 functions can provide a much smaller design than their comparable 

SHA-2 functions. 

The reason for both the increase in throughput and reduction in area between the 

SHA-3 and SHA-2 functions is the design differences between the algorithms. The SHA-

2 functions have trouble being parallelized due to the many dependencies between the 

algorithm steps. The inability to run many computations simultaneously hurts the 

acceleration of the algorithm. The nature of the operations is much more complex in 

SHA-2. These operations take a long time to calculated, and combined with the 

dependencies, stall the pipelines used in acceleration. In SHA-3, there is much less 

dependencies between the steps of the algorithm and the operations are simpler. The 

pipelines can work much more efficiently, and do not require as much hardware as the 

SHA-2 ones. Due to these factors, the SHA-3 design is faster and takes up less area than 

the SHA-2 equivalent. 
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Figure 3.37: Area Comparison of All SHAs 

 

3.6 Summary 

This chapter gave a detailed description of each SHA algorithm implementation. 

This was followed by comprehensive analysis of the performance of each accelerated 

hash function. The FPGA accelerated OpenCL program was shown to give dramatic 

speedup over the CPU in all cases. The performance comparison to published designs 

showed very competitive speeds with the HLS model compared to HDL based design 

methods, especially with the decreased design time and cost. The area is much larger than 

HDL based designs, mainly because HDL based designs do not include area cost for 

interfacing FPGA accelerator to the host computer.  
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The differences in performance and area between the SHA variants were also 

compared. The SHA-3 family which was developed to augment the SHA-2 family to 

provide alternative functions for similar applications. The SHA-3 functions were shown 

to have faster performance with a lower area than the equivalent SHA-2 functions on this 

platform. 
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Chapter 4 Conclusion and Future Work 

Secure hash functions are important for cryptographic applications. As digital 

communication speeds increase, the need to have fast performance of these algorithms   

is vitally important to maintain security. Through the use of the reprogrammable 

hardware of FPGAs, it is possible to accelerate these functions to speeds infeasible on 

CPU architectures. 

There has been much work done in the area of FPGA acceleration of the SHAs 

defined in the secure hash standard. All of these implementations use a HDL based 

design methodology. To our knowledge, HLS tools have not been used to design and 

synthesize these algorithms. In this thesis, the AOCL tool was used to create and 

synthesize the SHA-1, SHA-2, and SHA-3 algorithms using a HLS design approach. 

OpenCL models were optimized to the extent possible to get the best results. These HLS 

models were then compared to the related work done with HDL design techniques. The 

performance of each implementation was evaluated in great detail. The results obtained 

in the proposed designs had varying levels of competitiveness with published work. The 

SHA-1 and SHA-2 algorithms performed very comparably to their HDL designed 

counterparts. The SHA-3 algorithm models performance did not come as close to 

published results, albeit the performance was much better than the comparable algorithms 

of the SHA-2 family. In addition to throughput performance, the area of each 

implementation was also evaluated. The size of the HLS models are much larger than the 

equivalent HDL designs. This was due to the host interface hardware included in the 

AOCL design that was not needed in the HDL designs. Further evaluation of the 

proposed SHA models was performed including rapid design space exploration of the 
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implementations to optimize the results. This would be a very time consuming process 

for HDL based design. 

4.1 Future Work 

There is still much work that can be done in this area. The biggest focus would be 

on further acceleration of the SHA-3 algorithms. The difference in performance between 

the HLS and HDL designed models is significant. By studying the underlying functions 

further, it may be possible to create a new HLS model that can have comparable results to 

the related work. Another area to explore in this research is implementation of the AOCL 

design in accelerator cards containing the higher performing Arria 10 FPGA to determine 

the effect of utilizing a faster FPGA. The Cyclone V SoC platform is another platform 

that could be tested to analyze the potential of using this model in embedded systems. 

There are also other HLS tools that exist that could be used to implement these designs to 

compare the performance of the AOCL in this application. 

The design space of the SHAs were explored in this thesis, but much further 

evaluation can still be done to determine the effect of modifying all aspects of the kernel 

on throughput, area, or efficiency. With the HLS tools, this type of analysis is now 

possible, which was not able to be done practically using HDL design methods. 

The use of dedicated hardware can benefit power consumption as well as 

throughput. There is an opportunity here to study the difference in power consumption 

between the FPGA accelerated program and the CPU only application. Adding the 

savings in power to the improvements in compute time can further extend the benefits of 

using AOCL HLS CAD tool. 
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Appendix A: SHA-1 Kernel Code 

unsigned ROTL( int n, unsigned x){ 
    return ((x << n)) | ((x) >> (32-n)); 
} 
 
unsigned choose (unsigned x, unsigned y, unsigned z){ 
    return (((x&y)^((~x)&z))); 
} 
 
unsigned parity (unsigned x, unsigned y, unsigned z){ 
    return ((x^y^z)); 
} 
 
unsigned majority (unsigned x, unsigned y, unsigned z){ 
    return (((x&y)^(x&z)^(y&z))); 
} 
 
unsigned funct(unsigned x, unsigned y, unsigned z, int t){ 
    if ((0 <= t) && (t <= 19)){ 
        return choose(x,y,z); 
    } 
    else if (((20 <= t) && (t <=39)) || ((60 <= t) && (t <= 79))){ 
        return parity(x,y,z); 
    } 
    else { 
        return majority(x,y,z); 
    } 
} 
unsigned getK(int t){ 
    if ((0 <= t) && (t <= 19)){ 
        return 0x5a827999; 
    } 
    else if ((20 <= t) && (t <=39)){ 
        return 0x6ed9eba1; 
    } 
    else if ((40 <= t) && (t <=59)){ 
        return 0x8f1bbcdc; 
    } 
    else { 
        return 0xca62c1d6; 
    } 
} 
 
__kernel void sha1(__global unsigned char *restrict messBlock, __global unsigned *restrict hash, 
int blockNum) 
{ 
 unsigned H[5]; 
 unsigned W[80]; 
 unsigned a, b, c, d, e, T; 
 #pragma unroll 
 for (int i = 0; i < 5; i++){ 
  H[i]=hash[i]; 
 } 
 
 
 
#pragma unroll 2 
for (int l = 0; l < blockNum; l++){ 
  
   #pragma unroll 
   for (int t = 0; t < 16; t++){ 
        W[t] = (((unsigned) messBlock[(l*64) + (t * 4)]) << 24) 
             | (((unsigned) messBlock[(l*64) + (t * 4 + 1)]) << 16) 
             | (((unsigned) messBlock[(l*64) + (t * 4 + 2)]) << 8) 
             | (((unsigned) messBlock[(l*64) + (t * 4 + 3)])); 
    } 
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   #pragma unroll 
   for (int t = 16; t < 80; t++){ 
 W[t] = ROTL(1, (W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])); 
    } 
 
    //STEP 2. Initialize the working variables 
 
    a = H[0]; 
    b = H[1]; 
    c = H[2]; 
    d = H[3]; 
    e = H[4]; 
 
    //STEP 3. 80 Rounds of HASHING 
  
    #pragma unroll 
    for (int t = 0; t < 80; t++){ 
        T = (ROTL(5, a)+ funct(b,c,d,t) + e + getK(t) + W[t]); 
 e = d; 
        d = c; 
        c = ROTL(30, b); 
        b = a; 
        a = T; 
    } 
 
    //STEP 4. Update intermediate hashes 
 
    H[0] += a; 
    H[1] += b; 
    H[2] += c; 
    H[3] += d; 
    H[4] += e; 
 
    } 
 
    #pragma unroll 
    for (int i = 0; i <5; i++){ 
        hash[i] = H[i]; 
        } 
}  
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Appendix B: SHA-256 Kernel Code 

unsigned ROTR( int n, unsigned x){ 
 return ((x >> n)) | ((x) << (32-n)); 
} 
unsigned SHR( int n, unsigned x){ 
 return ((x >> n)); 
} 
unsigned choose (unsigned x, unsigned y, unsigned  
z){ 
 return (((x&y)^((~x)&z))); 
} 
unsigned majority (unsigned x, unsigned y, unsigned  
z){ 
 return (((x&y)^(x&z)^(y&z))); 
} 
unsigned SIGMA0(unsigned x){ 
 return ((ROTR(2, x)^ROTR(13, x)^ROTR(22,x))); 
} 
unsigned SIGMA1(unsigned x){ 
 return ((ROTR(6, x)^ROTR(11, x)^ROTR(25,x))); 
} 
unsigned sig0(unsigned x){ 
 return ((ROTR(7, x)^ROTR(18, x)^SHR(3,x))); 
} 
unsigned sig1(unsigned x){ 
 return ((ROTR(17, x)^ROTR(19, x)^SHR(10,x))); 
} 
__kernel void sha256(__global const unsigned char *restrict messBlock,  
__global unsigned *restrict hash, int blockNum)  
{  

unsigned char messCache[64];  
unsigned H[8], W[64], a, b, c, d, e, f, g, h, T1, T2;  
const unsigned long K[64] = {  

0x428a2f98, 0x71374491,0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 
0x923f82a4, 0xab1c5ed5,0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 
0x72be5d74, 0x80deb1fe,0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 
0x0fc19dc6, 0x240ca1cc,0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 
0x983e5152, 0xa831c66d,0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 
0x06ca6351, 0x14292967,0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 
0x650a7354, 0x766a0abb,0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 
0xc24b8b70, 0xc76c51a3,0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 
0x19a4c116, 0x1e376c08,0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 
0x5b9cca4f, 0x682e6ff3,0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 
0x90befffa, 0xa4506ceb,0xbef9a3f7, 0xc67178f2}; 
 

        H[0] = 0x6a09e667; 
        H[1] = 0xbb67ae85; 
        H[2] = 0x3c6ef372; 
        H[3] = 0xa54ff53a; 
        H[4] = 0x510e527f; 
        H[5] = 0x9b05688c; 
        H[6] = 0x1f83d9ab; 
        H[7] = 0x5be0cd19; 
 

for (int l = 0; l < blockNum; l++){ 
    int offset = l*64; 
     #pragma unroll 
    for (int z = 0; z < 64; z++){ 
   messCache[z] = messBlock[z + offset]; 
     } 
  
     #pragma unroll 
     for (int t = 0; t < 16; t++){ 
    int t4 = t*4; 

W[t] = (((unsigned) messCache[(t4)]) << 24) | (((unsigned) 
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messCache[(t4 + 1)]) << 16) | (((unsigned) messCache[(t4 + 2)]) << 8) 
|(((unsigned) messCache[(t4 + 3)])); 

     } 
#pragma unroll 

   for (int t = 16; t < 64; t++){ 
   W[t] = (sig1(W[t-2])+W[t-7]+sig0(W[t-15])+W[t-16]); 
      }  
     a = H[0]; 
  b = H[1]; 
  c = H[2]; 
  d = H[3]; 
  e = H[4]; 
  f = H[5]; 
  g = H[6]; 
  h = H[7]; 

#pragma unroll 
  for (int t = 0; t < 64; t++){ 
   T1 = (h + SIGMA1(e) + choose(e,f,g) + K[t] + W[t]); 
   T2 = (SIGMA0(a) + majority(a,b,c)); 
   h = g; 
   g = f; 
   f = e; 
   e = (d + T1); 
   d = c; 
   c = b; 
   b = a; 
   a = (T1 + T2); 
  } 

H[0] += a; 
H[1] += b; 
H[2] += c; 
H[3] += d; 
H[4] += e; 
H[5] += f; 
H[6] += g; 
H[7] += h; 

    } 
#pragma unroll 

   for (int i = 0; i <8; i++){ 
         hash[i] = H[i]; 
        } 
} 
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Appendix C: SHA-512 Kernel Code 

unsigned long ROTR( int n, unsigned long x){ 
 return ((x >> n)) | ((x) << (64-n)); 
} 
unsigned long SHR( int n, unsigned long x){ 
 return ((x >> n)); 
} 
unsigned long choose (unsigned long x, unsigned long y, unsigned long  
z){ 
 return (((x&y)^((~x)&z))); 
} 
unsigned long majority (unsigned long x, unsigned long y, unsigned long  
z){ 
 return (((x&y)^(x&z)^(y&z))); 
} 
unsigned long SIGMA0(unsigned long x){ 
 return ((ROTR(28, x)^ROTR(34, x)^ROTR(39,x))); 
} 
unsigned long SIGMA1(unsigned long x){ 
 return ((ROTR(14, x)^ROTR(18, x)^ROTR(41,x))); 
} 
unsigned long sig0(unsigned long x){ 
 return ((ROTR(1, x)^ROTR(8, x)^SHR(7,x))); 
} 
unsigned long sig1(unsigned long x){ 
 return ((ROTR(19, x)^ROTR(61, x)^SHR(6,x))); 
} 
__kernel void sha512(__global const unsigned char *restrict messBlock,  
__global unsigned long *restrict hash, int blockNum) 
{  

unsigned char messCache[128];  
unsigned long W[80], H[8], a, b, c, d, e, f, g, h, T1, T2;  
const unsigned long long K[80] = {  

0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 
0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 
0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,  
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694, 
0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,  
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 
0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70, 
0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,  
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b, 
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 
0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,  
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 
0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 
0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,  
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 
0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 
0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,  
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c, 
0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817}; 
 

H[0] = 0x6a09e667f3bcc908;  
H[1] = 0xbb67ae8584caa73b;  
H[2] = 0x3c6ef372fe94f82b;  
H[3] = 0xa54ff53a5f1d36f1;  
H[4] = 0x510e527fade682d1;  
H[5] = 0x9b05688c2b3e6c1f;  
H[6] = 0x1f83d9abfb41bd6b;  
H[7] = 0x5be0cd19137e2179; 
 
for (int l = 0; l < blockNum; l++){ 

     int offset = l*128; 
#pragma unroll 
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     for (int z = 0; z < 128; z++){ 
   messCache[z] = messBlock[z + offset]; 
     } 
  #pragma unroll 
     for (int t = 0; t < 16; t++){ 
   int t4 = t*8; 

W[t] = (((unsigned long) messCache[(t4)]) << 56) | (((unsigned long) 
messCache[(t4 + 1)]) << 48) | (((unsigned long) messCache[(t4 + 2)]) << 
40) | (((unsigned long) messCache[(t4 + 3)]) << 32) |  
(((unsigned long) messCache[(t4 + 4)]) << 24) | (((unsigned long) 
messCache[(t4 + 5)]) << 16) | (((unsigned long) messCache[(t4 + 6)]) << 
8) | (((unsigned long) messCache[(t4 + 7)])); 

} 
  #pragma unroll 
    for (int t = 16; t < 80; t++){ 
   W[t] = (sig1(W[t-2])+W[t-7]+sig0(W[t-15])+W[t-16]); 
      }     
   a = H[0];  

b = H[1];  
c = H[2];  
d = H[3];  
e = H[4];  
f = H[5];  
g = H[6];  
h = H[7]; 

      #pragma unroll 
  for (int t = 0; t < 80; t++){ 
   T1 = (h + SIGMA1(e) + choose(e,f,g) + K[t] + W[t]); 
   T2 = (SIGMA0(a) + majority(a,b,c)); 
   h = g;  

g = f;  
f = e;  
e = (d + T1);  
d = c;  
c = b;  
b = a; 

   a = (T1 + T2); 
  } 
          H[0] += a;  

H[1] += b;  
H[2] += c;  
H[3] += d;  
H[4] += e;  
H[5] += f;  
H[6] += g;  
H[7] += h; 

     } 
     #pragma unroll 
     for (int i = 0; i <8; i++){ 
        hash[i] = H[i]; 
       } 
 } 
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Appendix D: SHA-3 Kernel Code 

unsigned long ROTL(  unsigned long x, int n){ 
 return ((x << n)) | ((x) >> (64-n)); 
} 
 
int mod5(int x){ 
 while (x > 4){ 
  x -= 5; 
 } 
 return x; 
} 
 
 
__kernel void sha3(__global const unsigned char *restrict PM, __global unsigned long *restrict 
hash, int blockNum) 
{ 
 
 int blockSize = 144; //for SHA3-224. Replace with 136 for SHA3-256, 104 for SHA3-384, and 
72 for SHA3-512. 
 
 unsigned long A[25], B[25], C[5], D[5]; 
 

unsigned long iota[24] = 
   { 
   0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 
   0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 
   0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 
   0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 
   0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 
   0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 
   0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 
   0x8000000000008080, 0x0000000080000001, 0x8000000080008008 
   }; 
  
 for (int i = 0; i < 25; i++){ 
  A[i]= 0x00; 
 } 
 
 for (int l = 0; l < blockNum; l++){ 
   
  int offset = blockSize*l; 
  #pragma unroll 
  for (int k = 0; k < blockSize/8; k++){ 
   A[k] ^= (((unsigned long) PM[(k*8) + offset]) |  
   (((unsigned long) PM[k*8 +1 + offset]) << 8) |  
   (((unsigned long) PM[k*8 +2 + offset]) << 16) |  
   (((unsigned long) PM[k*8 +3 + offset]) << 24) |  
   (((unsigned long) PM[k*8 +4 + offset]) << 32) |  
   (((unsigned long) PM[k*8 +5 + offset]) << 40) |  
   (((unsigned long) PM[k*8 +6 + offset]) << 48) |  
   (((unsigned long) PM[k*8 +7 + offset]) << 56)); 
    
  } 
  //#pragma unroll 2   
  for (int roundNum = 0; roundNum < 24; roundNum++){ 
    
    
   //Theta  
   #pragma unroll 
   for (int i = 0; i < 5; i++){ 
    C[i] = A[i]^A[5+i]^A[10+i]^A[15+i]^A[20+i]; 
   } 
   #pragma unroll 
   for (int i = 0; i < 5; i++){ 
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    D[i] = C[mod5(i+4)] ^ ROTL(C[mod5(i+1)],1); 
   } 
   #pragma unroll 
   for (int i = 0; i < 5; i++){ 
    A[i] ^= D[i]; 
    A[5+i] ^= D[i]; 
    A[10+i] ^= D[i]; 
    A[15+i] ^= D[i]; 
    A[20+i] ^= D[i]; 
   } 
 
   //Rho Pi 
    
   B[0] = A[0]; 
   B[10] = ROTL(A[1] ,1); 
   B[7] = ROTL(A[10] ,3); 
   B[11] = ROTL(A[7] ,6); 
   B[17] = ROTL(A[11] ,10); 
   B[18] = ROTL(A[17] ,15); 
   B[3] = ROTL(A[18] ,21); 
   B[5] = ROTL(A[3] ,28); 
   B[16] = ROTL(A[5] ,36); 
   B[8] = ROTL(A[16] ,45); 
   B[21] = ROTL(A[8] ,55); 
   B[24] = ROTL(A[21] ,2); 
   B[4] = ROTL(A[24] ,14); 
   B[15] = ROTL(A[4] ,27); 
   B[23] = ROTL(A[15] ,41); 
   B[19] = ROTL(A[23] ,56); 
   B[13] = ROTL(A[19] ,8); 
   B[12] = ROTL(A[13] ,25); 
   B[2] = ROTL(A[12] ,43); 
   B[20] = ROTL(A[2] ,62); 
   B[14] = ROTL(A[20] ,18); 
   B[22] = ROTL(A[14] ,39); 
   B[9] = ROTL(A[22] ,61); 
   B[6] = ROTL(A[9] ,20); 
   B[1] = ROTL(A[6] ,44); 
 
    
   //Chi 
   #pragma unroll 
   for (int i = 0; i < 25; i+=5){ 
    A[i] = B[i] ^(~(B[(i+1)])  & B[(i+2)]); 
    A[i+1] = B[i+1] ^(~(B[(i+2)])  & B[(i+3)]); 
    A[i+2] = B[i+2] ^(~(B[(i+3)])  & B[(i+4)]); 
    A[i+3] = B[i+3] ^(~(B[(i+4)])  & B[(i)]); 
    A[i+4] = B[i+4] ^(~(B[(i)])  & B[(i+1)]); 
 
   } 
 
    
   //iota 
      
   A[0] ^= iota[roundNum]; 
    
  } 
   
 } 
 
 for (int i = 0; i < 25; i++){ 
  hash[i]= A[i]; 
 } 
  
} 
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