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ABSTRACT

NTRU (Nth degree Truncated polynomial Ring Units) is probably the only post

quantum public key cryptosystem suitable for practical implementation. Recently,

several NTRU based systems have also been shown having property of homomorphic

encryption with important application in cloud computing security.

In this thesis, several efficient algorithms and architectures for NTRUEcrypt sys-

tem and for NTRU based homomorphic encryption system are proposed. For NTRU-

Encrypt system, a new LFSR (linear feedback shift register) based architecture is

firstly presented. A novel design of the modular arithmetic unit is proposed to re-

duce the critical path delay. The FPGA implementation results have shown that the

proposed design outperforms all the existing works in terms of area-delay product.

Secondly, a new architecture using extended LFSR is proposed for NTRUEncrypt

system. It takes advantage of small polynomials with many zero coefficients, and

thus significantly reduces the latency of the computation with modest increase of

the complexity. Thirdly, a systolic array architecture is proposed for NTRUEncrypt.

There is only one type of PE (process element) in the array and the PE was designed

with optimized arithmetic. The systolic array yields all the output in N clock cycles.

Two new architectures are proposed for computation of NTRU based fully ho-

momorphic encryption system. One architecture uses LFSR with a novel design of

the modular multiplication unit, and the other proposed architecture is systolic array

based which uses two types of PEs.
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1 INTRODUCTION

1.1 Motivation

The rapid development of internet and technology have provided vast areas of new

opportunities and potential sources of efficiency for individuals and organizations

of all sizes. Cybersecurity, which refers to the technologies and processes designed

to protect computers, networks and data from unauthorized access, vulnerabilities

and attacks, becomes a critical issue for people. Cryptography provides the core

technology for cybersecurity. There are two types of cryptographic systems available,

symmetrical key system and asymmetrical key system.

Asymmetrical key system (also called public key system) is a class of cryptographic

algorithms which requires two separate keys: a public key to encrypt messages and

a private key to decrypt messages. Asymmetrical key systems, unlike symmetric key

systems, do not require a secure communication channel for the initial exchange of one

(or more) secret keys between the parties and thus they can provide very important

and unique security services such as key distribution and digital signature.

RSA and elliptic curve cryptosystem (ECC) are two currently popular public

key systems in modern cryptography. All these asymmetrical key systems are based

on some hard mathematical problems. In another word, breaking an asymmetrical

system is mathematically equivalent to solving a certain hard problem. For instance,

integer factorization and elliptic curve discrete logarithm are the underlying hard

problems for RSA and elliptic curve cryptosystems, respectively. These cryptography

systems are considered to be secure today since no efficient algorithm exists to solve

their underlying hard problems.

However, this situation will change with emerging of quantum computing tech-

nology. Quantum computers are very different from electronics based computers and

they make use of quantum-mechanical phenomena. Quantum computers are highly

1



efficient in solving many hard mathematical problems. For example, Shor [4] find

efficient quantum algorithm for solving integer factorization and discrete logarithm,

which indicates that both RSA and elliptic curve cryptosystems will not be secure

anymore with availability of quantum computers. Therefore there is a need for cryp-

tographic technologies that are still secure in the age of quantum computers. Studies

of these cryptographic technologies are referred as post-quantum cryptography [5].

The current research in the area of post-quantum cryptography is mainly focused

on four approaches. These approaches and some typical cryptography systems are

listed as follows:

• Code-based cryptography

– McEliece encryption [6] and Niederreiter signature [7]

• Hash-based cryptography

– Lamport signature [8] and Merkle signature [9]

• Multivariate cryptography

– Rainbow signature scheme [10]

• Lattice-based cryptography

– Learning with Errors [11] and NTRU [12]

Among the four post-quantum cryptography sub-areas, lattice based cryptography

relies on the worst-case hardness of lattice problems, it can provide strong security

guarantees, efficient implementations and great simplicity. One well known example

of lattice based systems is NTRU, which is probably the most practical system among

all the existing post-quantum cryptosystems.

NTRU was firstly developed by Hoffstein, Pipher and Silverman from Brown Uni-

versity in 1996 [12]. It includes two well known schemes. NTRUEncrypt is used for

2



encryption and NTRUSign is used for digital signature. NTRU has been adopted by

IEEE P1363.1 standards under the specifications for lattice-based public-key cryp-

tography since 2009 [1]. In 2009, D. Stehlé, et al. introduced a revised NTRUEncrypt

scheme [13] which is a provably secure variant NTRUEncrypt. The revised scheme is

likely to be less efficient than NTRUEncrypt, but it can provide higher security since

it is established under lattice problem in its worst case.

Recently, with the development of cloud computing, there is a requirement on

security that allows computations to be carried out on encryption data, while pre-

serving the privacy of the message. This encryption scheme is called homomorphic

encryption(HE). Homomorphic encryption can be divided into two types, partially

homomorphic encryption which allows only addition or multiplication operation and

fully homomorphic encryption(FHE) which supports arbitrary computation on ci-

phertexts. The first FHE is proposed by Craig Gentry [14] [15] [16]. It is based on

the worst-case problems over ideal lattices. Several optimizations and implementa-

tion were proposed in [17] [18] [19] [20] and [21]. But the large size of ciphertext and

the efficiency bottleneck limit the develop of FHE. More efficient new schemes were

developed. See for example [22] [23] [24] and [25]. Most of these schemes are based

on the hardness of the learning with errors (LWE) problem [11] which is as hard to

solve as several worst-case lattice problems. However, in 2012, López-Alt et al. [26]

found some fully homomorphic properties in the revised NTRUEncrypt scheme and

proposed a fully homomorphic scheme based on NTRU system. The scheme is ap-

pears to be efficient. More recently, a modify scheme is proposed to make the security

of this NTRU based FHE depends only on standard lattice assumptions [27]. Sev-

eral implementations on these NTRU based FHE were proposed in [28] [29] and [30].

Because of these new found properties, NTRU system attract the public attention

again.
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1.2 Our Contribution

In this thesis, we propose some efficient hardware architectures for both original

NTRUEncrypt system and revised NTRUEncrypt system which can be extended to

FHE. More specifically we

• proposed an linear feedback shift register (LFSR) architecture to implement

both encryption and decryption of NTRUEncrypt system.

• proposed an extended LFSR architecture which take advantage of large number

of zero coefficients of the input. A parameter selection optimization for hardware

is also introduced.

• presented a systolic array architecture for efficient implementation of NTRU-

Encrypt.

• propose two new architectures with one LFSR based and the other systolic

array based for implementation of NTRU based fully homomorphic encryption

system.

1.3 Dissertation Organization

An organization of the rest of this thesis is as follows. Chapter 2 presents some

mathematical background and gives a brief introduction of NTRUEncrypt algorithm

and revised NTRUEncrypt algorithm. A brief overview of previous works is shown

in Chapter 3. Chapter 4 presents a new hardware architecture based on LFSR for

NTRUEncrypt with FPGA implementation result. Comparison between our work

and previous works is also given. Chapter 5 describes an extend LFSR structure

improve to efficient of our design. An FPGA implementation result will be also

presented. Chapter 6 proposed a new hardware architecture based on systolic array.

Chapter 7 gives a brief overview of NTRU based fully homomorphic encryption system

4



and presents two architectures to implement the polynomial multiplication for FHE

with NTRU based systems. Finally, the last chapter concludes the paper and discusses

about the future work.

5



2 MATHEMATICAL PRIMITIVES

This chapter introduces relevant mathematical background related to the NTRU and

NTRU based systems that include definition of lattices as well as the hard problems

in lattice that has a significant place in cryptography, and the definition of truncated

polynomial ring and its operations. The encryption and decryption algorithms of

NTRU system and revised NTRU system will also be covered in this chapter.

2.1 Lattices

Lattices have been extensively studied recently by cryptographers for quite some time,

in both the field of cryptanalysis and a source of hard problems to build encryption

schemes. We begin with some definitions and brief discussion of lattices.

2.1.1 Definitions

Let the real vector space be denoted by Rn. A lattice L is a discrete subset of Rn.

Every lattice in Rn can be generated from a basis for the vector space by forming all

linear combinations with integer coefficients.

Let v1, v2, . . . , vn be linearly independent vectors in Rn. Then the vectors v1, v2, . . . , vn

can be viewed as basis of lattice L. The set of lattice L can be expressed as an integer

linear combination of basis vectors as follows:

L = {a1v1 + a2v2 + ....+ anvn|ai ∈ Z}

6
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Fig. 2.1: A Two-dimensional Lattice

A lattice has many bases. Two possible bases, {v1, v2} and {v′1, v′2}, for a two

dimensional lattice are shown in Fig.2.1. A lattice is integral if it is contained in

n-dimensional integer vector space Zn and it is called rational if it is contained in Qn,

where Q denote the set of rational numbers [1]. Zn is a simple example of a lattice

in Rn.

2.1.2 Ideal Lattice

Ideal lattice has important applications place in cryptography. It is a new class of

lattice that includes cyclic lattices as a special case. In general terms, ideal lattices

are lattices corresponding to ideals in rings of the form Z[x]/〈f〉 for some irreducible

polynomial f(x) of degree n [31]. Cyclic lattices are a special case of ideal lattices

where f(x) = xn − 1 [32].
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2.1.3 Hard Problem in Lattices

Shortest vector problem(SVP) and closest vector problem (CVP) are two fundamental

hard problems in lattices. The general CVP is known to be NP-hard1 and the SVP

is NP-hard under a randomized reduction hypothesis.

The CVP is to find a lattice point closest to the given target point with respect to a

lattice basis. It is the underlying hard problem for NTRUEncrypt system. Encryption

is a matter of selecting a target point. Decryption is a matter of mapping the target

point back to the closest lattice point.

2.2 Truncated Polynomial Ring with Modular Arithmetic

Ntru system is based on the hardness of problems for lattices that can be represented

as ideals in the ring R = Z[x]/(xn− 1). That means the basic NTRU operations take

place in the ring of convolution polynomials R = Z[x]/(xn − 1), where n is prime.

That is why it is called NTRU, short for Nth Degree Truncated Polynomial Ring Unit.

The set of degree n− 1 truncated polynomial can be denoted by R = Z[x]/(xn − 1),

where Z[x] is the set of polynomials with integer coefficients and taken modulo xn−1.

A polynomial a(x) ∈ R can be expressed as

a(x) = an−1x
n−1 + ....+ a0 = {an−1, an−2, ...., a0} (1)

Let b(x) = bn−1xn−1 + .... + b0 be another truncated polynomial in R. Addi-

tion operation a(x) + b(x) can be performed by simply adding their corresponding

coefficients.

a(x) + b(x) = (an−1 + bn−1)x
n−1 + (an−2 + bn−2)x

n−2....+ (a0 + b0) (2)

Multiplication is a little complex. The product of two polynomials is given by

1Class of problems which are at least as hard as the hardest problems in NP.
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a(x)× b(x) = cn−1x
n−1 + ....+ c1x+ c0 (3)

where

ck =
∑

i,j=0,1,...,n−1
i+j=k mod n

aibj, k = 0, 1, ..., n− 1 (4)

Note that NTRU works in the truncated polynomial ring modulo q, means every

coefficients in the polynomial should modulo q. It is denoted by Rq = Zq[x]/(xn− 1).

2.3 NTRUEncrypt Public Key Cryptosystem

In this chapter, we give a brief overview of NTRUEncrypt, including parameter se-

lection, key generation, encryption and decryption operation.

2.3.1 Parameter Selection

Integers n, p and q should be chosen to set up the NTRUEncrypt. n is a prime number

to define the degree of truncated polynomial. q and p need to be relatively prime and

q should be considerably larger than p. Integers df ,dg and dr should be selected to

determine three sets of n−1 degree polynomials Lf , Lg and Lr. We will use L(d1, d2)

to describe these sets, which means the polynomials in L has d1 coefficients equal to

1, d2 coefficients equal to −1 and the rest coefficients equal to 0. We set

Lf = L(df , df − 1), Lg = L(dg, dg), Lr = L(dr, dr)

A parameter set generation algorithm is presented in [3] and shown in Algorithm

2.1. It described a machine which takes as input a desired security level k and outputs

a parameter set that gives k bits of security. The function hybridSecurityEstimate(n, df )

in Algorithm 2.1 is used to estimate the minimum security over all attack strategies

9



on that parameter set. The chance of a decryption failure is given by the function

decryptionFailureProb(n, df ).

Algorithm 2.1 Parameter Generation Function for NTRUEncrypt [3]

Input: Security Level, k
Output: Parameter Set (n, df )

1: i← 1 {The variable i is used to index the set of acceptable primes P}
2: i∗ ← 0 {This will become the first index which can achieve the required security}
3: repeat
4: n← Pi
5: df ← [n/3] {We will try each df from [n/3] down to 1}
6: repeat
7: k1 ← hybridSecurityEstimate(n,df )
8: k2 ← log2(decryptionFailureProb(n,df ))
9: if (k1 ≥ k and k2 < −k) then

10: (i∗,d∗f )← (i, df ) {Record the first acceptable index i and the value of df}
11: end if
12: df ← df − 1
13: until i∗ > 0 or df < 1
14: i← i+ 1
15: until i∗ > 0
16: c∗ ← cost(Pi∗ , d∗f )
17: while an increase in N can potentially lower the cost do
18: n← Pi
19: df ← d∗f {Note that when n increases the cost must be worse for all df ≥ d∗f ,and

that the decryption failure probability is decreased both by an increase in n
and a decrease in df}

20: repeat
21: k1 ← hybridSecurityEstimate(n,df )
22: c← cost(n, df )
23: if (k1 ≥ k and c < c∗) then
24: (c∗,i∗,d∗f ) ← (c, i, df ) {Record the the improvement in cost and the corre-

sponding i, df}
25: end if
26: df ← df − 1
27: until df < 0
28: i← i+ 1
29: end while
30: return (Pi∗ ,d∗f )

Some parameter sets are listed in Table 2.1 provide by [3]. There are three parame-

ter sets for each security levels using three different cost metrics, including optimized
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size costsize = n · log2q, optimized trade-off costtrade−off = cost2size × costspeed and

optimized speed costspeed = n · df .

Table 2.1: Recommended Parameters for NTRUEncrypt [1]

Security
Level

Parameter set n p q df dg dr

112
ees401ep1 401 3 2048 113 133 113
ees541ep1 541 3 2048 49 180 49
ees659ep1 659 3 2048 38 219 38

128
ees449ep1 449 3 2048 134 149 134
ees613ep1 613 3 2048 55 204 55
ees761ep1 761 3 2048 42 253 42

192
ees677ep1 677 3 2048 157 225 157
ees887ep1 887 3 2048 81 295 81
ees1087ep1 1087 3 2048 63 362 63

256
ees1087ep2 1087 3 2048 120 367 120
ees1171ep1 1171 3 2048 106 390 106
ees1499ep1 1499 3 2048 79 499 79

The parameter q is usually in the form of 2n for its computational advantages. As

q and p need to be relatively prime, 3 is the smallest number usually selected as the

value of p. n is the parameter determining the security level of the system.

2.3.2 Key Generation

The key generation for NTRUEncrypt is given below:

Step 1: Randomly choose a polynomial f(x) from set Lf that is invertible in Rq and

Rp.

Step 2: Randomly choose a polynomial g(x) from set Lg.

Step 3: Calculate fq(x) and fp(x) which are the inverse of polynomial f(x) mod q

and f(x)mod p.

Step 4: Compute h(x) = p · fq(x)× g(x) mod q.
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h(x) is the public key, while the pair (f(x), fp(x)) is the corresponding private

key of the system.

2.3.3 Encryption

Step 1: Encode message to ternary polynomial m(x).

Step 2: Randomly choose a polynomials r(x) from set Lr.

Step 3: Encrypt message e(x) = h(x)× r(x) +m(x) mod q

2.3.4 Decryption

Step 1: Compute a(x) = f(x)× e(x) mod q.

Step 2: Shift coefficients of a to the range (−q
2
,
q

2
)

Step 3: Compute m(x) = fp(x)× a(x) mod p

2.3.5 Why the Decryption of NTRUEncrypt Works

f(x) = a(x) = f(x)× e(x) mod q

= f(x)× [r(x)× pfq(x)× g(x) +m(x)] mod q

= p× r(x)× g(x) + f(x)×m(x) mod q

= fp(x)× [p× r(x)× g(x) + f(x)×m(x)] mod q

= m(x)

(5)

2.3.6 Discussions on NTRUEncrypt Optimization

Invertibility of f : If f(x) = 1 + p · f ′(x), f(x) is always invertible modulo p,

f(x)× fp(x) = 1 mod p, so the step in decryption m(x) = fp(x)× a(x) mod p can

be skipped.
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Taking p to be a polynomial: We may take p to be a small polynomial so that

it will be more natural to use binary polynomials.

Low Hamming Weight Product: There is an algorithm which can factorize the

polynomial into two polynomials, like f(x) = f1(x)× f2(x) (df < df1 · df2). f(x) can

be further rewritten as f(x) = 1 + p · (f1(x)× f2(x) + f3(x)) which can also avoid the

short lattice vector attacks.

2.4 Revised NTRUEncrypt Public Key Cryptosystem

In [13], D.Stehlé, et al. introduced a revised NTRUEncrypt scheme which is a prov-

ably secure variant. Some modifications are made to the original NTRUEncrypt

scheme in order to make it hard to solve a well established lattice problem in its

worst case.

1. R = Z[x]/(xn + 1) instead of R = Z[x]/(xn − 1).

2. n choose as a power of 2, q is a prime integer and p select as 2.

3. A small error s(x) is added during the encryption, e(x) = h(x)×r(x)+p ·e(x)+

m(x) mod q.

In the follow sections, we give a brief overview of this revised NTRUEncrypt

scheme, including parameter selection, key generation, encryption and decryption

operation.

2.4.1 Parameter Selection

In [2], D.Cabarcas et al. showed how to select parameters that provide an expected

security level. Other than n, p and q, σ and ψ should be also chosen to set up the

revised NTRUEncrypt scheme. Some example sets of parameter value is shown in

Table 2.2.
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Step 1: Select n to be a power of two.

Step 2: Choose a prime q ∈ [d · n6 ln (n), 2d · n6 ln (n)], such that q ≡ 1 mod 2n and

d = 25830 guarantees correctness of the scheme.

Step 3: Set p = 2, so that the message can be encoded in binary form.

Step 4: Set σ = 2n
√

ln (8n · q) · q, it is the standard deviation for DZn,σ.

Step 5: Set ψ =
√

2n · π,it is the standard deviation for DZn,ψ.

Table 2.2: Parameters for Revised NTRUEncrypt [2]

Security Level n log q log σ ψ
38 1024 71.90 49.89 25.53
144 2048 77.28 53.63 36.11
338 4096 83.30 57.70 51.06

2.4.2 Key Generation

Step 1: Sample a polynomial f ′(x) from DZn,σ, and let f(x) = p · f ′(x) + 1 that is

invertible in Rq.

Step 2: Sample a polynomial g(x) from DZn,σ.

Step 3: Calculate h(x) = p · fq(x)× g(x) mod q.

h(x) is the public key, while the pair f(x) is the corresponding private key of the

system.

2.4.3 Encryption

Step 1: Encode message to binary polynomial m(x).

Step 2: Sample polynomials r(x) and s(x) from DZn,ψ.

Step 3: Encrypt message e(x) = h(x)× r(x) + p · s(x) +m(x) mod q.
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2.4.4 Decryption

Step 1: Compute a(x) = f(x)× e(x) mod q.

Step 2: Compute m(x) = a(x) mod p.
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3 A REVIEW OF EXISTING WORK

NTRUEncrypt mostly has been implemented in software. A limited amount of liter-

ature has been published to provide hardware implementation of NTRUEncrypt sys-

tems. The existing NTRUEncrypt architcure can be grouped into two types. Some of

them tried to reduce power consumption [33] [34] and some of them tried to improve

efficiency [35] [36] [37]. Our work will mainly focus on providing an efficient hardware

implementation, and we will review some existing works on efficient implementation

of NTRUEncrypt system first.

The earliest published research that implemented NTRU system in hardware was

in 2001 [35]. D. Bailey and five others implemented NTRUEncrypt in constrained

devices using embedded system and FPGA technique. They designed a system to

realize NTRU encrypt engine and applied it on Xilinx’s Virtex 1000EFG860 FPGA.

The parameters he used for NTRUEncrypt was (N, p, q) = (251, x + 2, 128). The

advantage of using these parameters is that the operands r(x) and m(x) are binary

polynomials which can simplify NTRU’s encryption procedure in hardware. While

some extra steps are need in decryption which is difficult to implement in hardware.

But his design showed that NTRU cryptosystem was exremely beneficial for hardware

implementation due to its low complexity and parallel nature.

O’Rourke presented an algorithm of NTRU polynomial multiplication and a cor-

responding flexible architecture in her thesis [36]. The polynomial multiplier can be

applied in the NTRU’s key creation, encryption and decryption procedures. The de-

sign takes the advantage of the parallel nature of the partial product array. Since a

partial product can be processed by a processing unit independently, arbitrary num-

ber of processing unit can be used to make the design scalable. The high flexibility

of their work is the critical contribution to the study of this field.

A.Kamal and A.Youssef proposed a high-speed FPGA implementation of NTRU-

Encrypt in [37]. They took advantage of “small” polynomial which include large
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number of zero elements in the polynomial. In order to skip the zero coefficient in

the polynomial, an n-bit shifter is design by using multiplexors to implement a small

number of shifts. They also use statistical properties of the distance between the

non-zero elements to find a proper n to offer different area-speed trade off.
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4 PROPOSED LFSR ARCHITECTURE TO IM-

PLEMENT NTRUENCRYPT

In this chapter, we will introduce an architecture to implement NTRUEcncrypt al-

gorithm with FPGA implementation and our work and the previous work. Since

the generation of public key and private key can be precomputed, we will only focus

on speeding up the encryption and decryption process in hardware implementation.

Truncated polynomial multiplication is probably the most time consuming operation

during encryption and decryption. The efficiency of the system is determined by the

speed of the truncated polynomial multiplication.

4.1 Linear Feedback Shift Register

An LFSR is a shift register whose feedback value is a linear function of its previous

state. It has well known applications in pseudo-random numbers, cyclic redundancy

check and cryptography. An LFSR shown in Fig.4.1 is determined with its charac-

teristic polynomial f(x), which is in the form of

f(x) = xn + fn−1xn−1 + ....+ f1x+ 1 (6)

Note in Fig.4.1 that a ⊕ refers to an adder, a ⊗ refers to a multiplier and a �

stands for a register. Assume that the registers are loaded with the coefficients of

polynomial A(x) = (a0, a1, ..., an−1). A shift-to-right operation of LFSR is equivalent

to performing A(x)×x mod f(x), where x is the root of its characteristic polynomial

f(x).
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b

f1 f2 fn−1

bba0 a1 an−1

Fig. 4.1: Linear Feedback Shift Register

4.2 Proposed Truncated Polynomial Ring Multiplier

Since the polynomial in truncated polynomial ring requires to take modulo xn − 1,

LFSR can be used under truncated polynomial ring.

Let the content of registers e0, e1, ..., en−1 at clock cycle j be denoted as e
(j)
0 , e

(j)
1 , ..., e

(j)
n−1,

respectively. The step to perform truncated polynomial ring multiplication in hard-

ware is presented in Algorithm 4.1.

Algorithm 4.1 Multiplication in Truncated Polynomial Ring

Input: h = h0, ..., hn−1, r = r0, ..., rn−1
Output: e = e0, ..., en−1

1: e(0) = 0
2: for j = 1 to n do
3: for i = 0 to n− 1 do
4: e

(j)
i = e

(j−1)
i+1 mod n + hi+1 mod n × rj−1 mod q

5: end for
6: end for
7: return e = e(n)

We made some modifications to LFSR. An architecture diagram of the proposed

multiplier in truncated polynomial ring is shown in Fig.4.2. It includes n multipliers,

n adders and n registers. Each register can store [log2q] bits. The operations in

NTRUEncrypt are incorporate with modular arithmetic. Since q is in the form of 2n,

modulo q can be easily achieved by truncated the result to n bits. All the operations

can be performed without carry.
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h1

b

hn−1 hn−2 h0

bb

rn−1, rn−2, ..., r1, r0

en−1 en−2 e0

Fig. 4.2: Proposed Truncated Polynomial Ring Multiplier

Coefficients of operand h(x) = (h0, h1, ..., hn−1) input to each multiplier in parallel,

while coefficients of operand r(x) = (r0, r1, ..., rn−1) input to all the multipliers in a

serial fashion. The registers e(x) = (e0, e1, ..., en−1) are initially loaded with 0. The

registers will store the product h(x)× r(x) mod (xn − 1) after n clock cycles.

4.3 Proposed Encryption Architecture

4.3.1 Proposed Modular Arithmetic Unit

During each clock cycle, multiplication is probably the most time consuming operation

in our proposed architecture . As r(x) is always chosen as a ternary polynomial, rj

always has value from {−1, 0, 1}. This operation can actually be evaluated without

any multiplications. Furthermore, if rj = −1, subtraction operation ei = ei+1 − hi+1

mod q (q = 2n) can be evaluated by

ei = ei+1 + hi+1 + 1 (7)

As a result, these operations can be simply calculated with only addition operation

incorporate with modular arithmetic. A proposed Modular Arithmetic Unit (MAU)

is designed to optimize our design (Fig.4.3).
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Table 4.1: Operations Supported with the Modular Arithmetic Unit

Input r (r(1)r(0)) Output s
01 e+ h

11 e+ h+ 1
00 e

m

m

m

22

mm

m

r

e

s

h

r

e

h

s

Fig. 4.3: Modular Arithmetic Unit

The modulus of MAU is q. The input h, e and output s are encoded in ternary

with m = [log2q] bits. The input r, encoded in two bits r(1)r(0), acts as the control

input. The step to perform operation in hardware is presented in Algorithm 4.2. The

corresponding MAU architecture, which is responsible for performing the operation

in Table 4.1, is shown in Fig.4.4.

Algorithm 4.2 Proposed Modular Arithmetic Unit

Input: e : e(m−1), ..., e(1), e(0) h : h(m−1), ..., h(1), h(0) r : r(1), r(0)
Output: s : s(m−1), ..., s(1), s(0)

1: if r(0) = 0 then
2: (s(m−1), ..., s(1), s(0)) = (e(m−1), ..., e(1), e(0))
3: else {r(0) = 1}
4: (h(m−1), ..., h(1), h(0)) = (h(m−1) ⊕ r(1)), ..., (h(1) ⊕ r(1)), (h(0) ⊕ r(1));
5: (s(m−1), ..., s(1), s(0)) = (e(m−1), ..., e(1), e(0)) + (hm−1), ...h(1), h(0)) + r(1);
6: end if

*x(i) represtent ith bit of x;
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r(1)

h(0)h(1)h(m−2)h(m−1)

bbb

m

s(m−1)...s(0)

h(m−1)...h(0)e(m−1)...e(0)

mm

m

mm

bb
r(1)

r(0)
10 MUX

m-bit Adder*

b b b

Fig. 4.4: Proposed Modular Arithmetic Unit

4.3.2 Proposed Encryption Architecture

Operations in encryption:

e(x) = h(x)× r(x) +m(x) mod q (8)

Since the random polynomial r(x) has coefficients from {-1,0,1}, the proposed

truncated polynomial ring multiplier and modular arithmetic unit can support the

full operation during encryption. The addition of the message m(x) can be perform

by initial the registers e with coefficients of m(x). The architecture for encryption is

shown in Fig.4.5. which contains n registers and n MAUs.
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Algorithm 4.3 LFSR Based NTRUEncrypt (Encryption)

Input: m = m0, ...,mn−1, h = h0, ..., hn−1, r = r0, ..., rn−1
Output: e = e0, ..., en−1

1: e(0) = m
2: for j = 1 to n do
3: for i = 0 to n− 1 do
4: e

(j)
i = e

(j−1)
i+1 mod n + hi+1 mod n × rj−1 mod q

5: end for
6: end for
7: return e = e(b)

b b

h0

e0

hn−2

en−2

hn−1

rn−1, rn−2, ..., r1, r0

b
en−1

b

Fig. 4.5: LFSR Based NTRUEncrypt (Encryption)

The registers e = (en−1, ..., e1, e0) are initially loaded with m = (mn−1, ...,m1,m0)

in one clock cycle. After n clock cycles, the registers will store the encryption result

e = (en−1, ..., e1, e0). The content of registers at cycle j, j = 0, 1, ..., n, is given in

Table 4.2.
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4.4 Proposed Decryption Architecture

We made some adjustment to the algorithm step, so that the Truncated polynomial

ring multiplier can be used within decryption process in hardware. The operations

in decryption are listed as follows:

• a(x) = f(x)× e(x)× fp(x) mod q.

• Shift coefficients of a(x) to the range (−q
2
,
q

2
)

• b(x) = a(x) mod p

• m(x) = fp(x)× b(x) mod p.

Both the operand f(x) in the first and the operand b(x) in the last step has coef-

ficients from {-1,0,1}. As a result, the proposed truncated polynomial ring multiplier

and modular arithmetic unit can support most of the operations during decryption.

Besides, a design to shift coefficients of a(x) and a modulo a(x) by p is require to

complete the decryption operation. A proposed Modular Unit (MU) is designed per-

formance these operations.

4.4.1 Proposed Modular Unit

The coefficients are required to shift from (0, q − 1) to (−q
2
,
q

2
). In binary form, it

can be performed easily by inverting the digits and add one to the result.

Algorithm 4.4 Shift Coefficient Operation
Input: ai
Output: a′i

1: if ai >
q

2
then

2: a′i = −(ai + 1)
3: else
4: a′i = ai
5: end if
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Since p is usually chosen as 3 which is a Mersenne number, we can use the

Mersenne primes algorithm to calculate a(x) mod p. And we assume that the max-

imum operand is 1023.

Algorithm 4.5 Modulo 3 Operation
Input: a : a(n−1), ..., a(1), a(0) , p = 3
Output: m = a mod 3

1: split a into |a(n−1)a(n−2)|a(n−3)a(n−4)|...|a(3), a(2)|a(1), a(0)|
2: b = a(n−1)a(n−2) + a(n−3)a(n−4) + ...+ a(3)a(2) + a(1)a(0)
3: c = b(3)b(2) + b(1)b(0)
4: m = c(2) + c(1)c(0)

*x(i) represent ith bit of x;

Since the coefficients of a(x) are shifted to (−q
2
,
q

2
), modulo of a negative number

is also required during decryption. A look up table is used to perform both positive

and negative modulo operation and output the result in ternary form {-1,0,1}.

Table 4.3: Look Up Table for Modular Unit

m(2) m(1) m(0) s(1)s(0)
0 0 0 00
0 0 1 01
0 1 0 11
0 1 1 00
1 0 0 00
1 0 1 11
1 1 0 01
1 1 1 00

A circuit to perform both coefficients shift operation and modulo 3 operation is

shown in Fig.4.6. It consists of number of 2-bit full adders and number of 2-bit half

adders. The amount of the units can be varied according to the bit number of the

coefficient.
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Fig. 4.6: Proposed Modular Unit
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4.4.2 Proposed Decryption Architecture

The architecture for encryption is shown in Fig.4.7. which contains an n-bit truncated

polynomial ring multiplier and n modular unit.

b b

e0

a0

en−2

an−2

en−1

fn−1, fn−2, ..., f1, f0

b
an−1

b

MU MU MU
b b b b

bn−1 bn−2 b0

Fig. 4.7: LFSR Based NTRUEncrypt (Decryption)

The registers a = (an−1, ..., a1, a0) are initially loaded with 0. It require the circuit

to run twice to complete the decryption procedure. The first round can evaluate b(x)

with input f(x) and e(x). Then we can recover message by executing the circuit one

more time with input fp(x) and b(x).

4.5 Implementation of Proposed Encryption Architecture

The proposed encryption architecture has been implemented in FPGA. The following

tools were used for the implementation.

• Quartus II Web Edition Software

• ModelSim-Altera software

Cyclone IV EP4CE115F23C7 was chosen as the target device in provided imple-

mentation.
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4.5.1 Implementation Result

The post-synthesis simulation results are shown in Table 4.4 with parameter set

ees401ep1. The encryption speed is fast, in the range of microsecond while the area

consumption remains reasonable.

Table 4.4: Simulation Result for LFSR Based NTRUEncrypt (Encryption)

Resource Latency
#Logic Element 18, 049 #Clock Cycle 252

#Registers 3, 526 Max Frequency 143.0Mhz
Total Latency 1.76 µs

When different sets of parameters are applied to our proposed design, the result

is still satisfactory. The simulation result for different parameter sets are shown in

Table 4.5.

Table 4.5: Simulation Result with Different Parameter Sets

Security
Level

Parameter set #LE(S) #RE #CC FMax Latency(T)

112
ees401ep1 18,049 8,826 402 98.86 MHz 4.06 µs
ees541ep1 24,349 11,906 542 100.7 MHz 5.38 µs
ees659ep1 29,659 14,502 660 90.46 MHz 7.29 µs

128
ees449ep1 20,209 9,882 450 103.44 MHz 4.35 µs
ees613ep1 27,589 13,490 614 94.23 MHz 6.51 µs
ees761ep1 34,249 16,746 762 89.29 MHz 8.53 µs

192
ees677ep1 30,469 14,898 678 89.37 MHz 7.58 µs
ees887ep1 39,919 19,518 888 86.77 MHz 10.23 µs
ees1087ep1 48,919 23,918 1088 72.42 MHz 15.02 µs

256
ees1087ep2 48,919 23,918 1088 72.42 MHz 15.02 µs
ees1171ep1 52,699 25,766 1172 62.31 MHz 18.80 µs
ees1499ep1 67,460 32,982 1500 72.86 MHz 20.58 µs

4.5.2 Comparison

Our proposed design, along with some other existing works, is implemented using the

same version of FPGA technology with parameter set ees401ep1 and the results are

shown in Table 4.6.
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• #LE, number of logic elements used by the systems.

• #CC, number of clock cycles required by the systems.

• FMax, the maximum operating frequency of the system.

• Delay, the time requires to encrypt a polynomial.

• S×T, the area-delay product of the systems.

It can be seen from the table that the proposed one has clear advantage over most

works. For example, compared to [35], the proposed one has much higher maximum

frequency and utilizes much shorter time to perform encryption. In comparison of

[36], it has lower resource consumption and higher frequency compared to our design,

however it needs much more clock cycles. It is noted that the number of clock cycles

for [37] (= 113) is optimized for the condition that the maximum distance between

two none-zero coefficient is no more than 8. Nonetheless, the maximum frequency

of [37] is much lower than our design and the resources it needs are nearly 3 times

larger.

Table 4.6: Comparison of Proposed LFSR Architecture with Other Exist Works

For ees401ep1 parameter set
Work #LE(S) #CC FMax Latency(T) S × T
[35] 14,807 402 49.41 MHz 8.13 µs 274.4%
[36] 3,782 3,618 169.49 MHz 21.34 µs 110.1%
[37] 49,001 113 39.91 MHz 2.83 µs 189.2%

Proposed 18,049 402 98.86 MHz 4.06 µs 100.0%

The simulation results in Table 4.6 show that the proposed design outperforms all

the existing works in terms of area-delay product. The new architecture is expected

to be used for a system require both high speed with limit resource.
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5 PROPOSED EXTENDED LFSR ARCHITEC-

TURE TO IMPLEMENT NTRUENCRYPT

5.1 General Ideal

The proposed MAU in the last chapter shows that when the control input r, which

is encoded by r(1)r(0), equals to “00” or “10”, the delay required by MAU is Tmux.

When r(1)r(0) equals to “01” or “11”, required time equals to Tmux+Tadd+Txor. Thus,

the required time of each clock cycle varies and depends on the input r.

The coefficients of r(x) always have value from {−1, 0, 1}, which means the input

bits r(1)r(0) only have three states “11”, “00” and “01”. The state “10” is considered

as a redundant state for MAU.

Meanwhile, r(x) ∈ L(dr, dr) and dr is usually much smaller than n. It is required

to find out how many pairs of “0, 0” coefficients appear consecutively in r(x) to

calculate number of cycles the system can save.

The number of “1” and “−1” coefficients in r(x) is denoted by

n1 = n−1 = dr. (9)

So the number of “0” is

n0 = n− 2dr. (10)

The maximum number of “0, 0” pair happen when all of the “0” coefficient appear

consecutively. The number is calculated by

n00max = (n− 2dr)/2. (11)

The minimum number of “0, 0” pair happens when all the none-zero coefficients
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are assigned discontinuously, which is given by

n00min
=


0 n1 + n−1 ≥ n0

(n− 4dr)/2 n1 + n−1 < n0

(12)

The average number of “0, 0” pair in r(x) is

n00avg =

n00max∑
i=n00min

(
n1+n−1Pn1+n−1

n1Pn1 · n−1Pn−1

· n1+n−1+1Cn0−1 ·
i∑

j=0

n1+n−1+1Cj+1 · i−1Cj) (13)

For example, in the parameter set ees659ep1, the value of n is 659, while dr is equal

to 38. It could be calculated that the number of non-zero coefficients in polynomial

r(x) is 76, while the number of zero coefficients is 583. There are a large number

of zero coefficients contained in polynomial r(x) and many of these zero coefficients

appear consecutively. We can find at least 254 pairs of “0, 0” in r(x). And the average

number of “0, 0” pair can reach to 273.42. Table 5.3 shows the number of “0, 0” pairs

in the polynomial for other parameter sets.

Table 5.1: Number of “0, 0” Pair in Different Parameter Set

Security
Parameter set n #“0”

#“0, 0”
Level Avg Min Max

112
ees401ep1 401 176 52.99 0 88
ees541ep1 541 444 199.21 173 222
ees659ep1 659 584 273.42 254 292

128
ees449ep1 449 182 51.83 0 91
ees613ep1 613 504 226.48 197 252
ees761ep1 761 680 318.49 299 340

192
ees677ep1 677 364 126.51 25 182
ees887ep1 887 726 325.84 282 141
ees1087ep1 1087 962 450.70 418 481

256
ees1087ep2 1087 848 370.72 304 424
ees1171ep1 1171 960 431.54 374 480
ees1499ep1 1499 1342 633.68 592 671

A considerable reduction in the number of clock cycle can be achieved if a “0, 0”
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pair can be processed in one clock cycle. The proposed method is designed to reduce

the total processing time by deal with a “0, 0” pair within one clock cycle.

5.2 Extended Linear Feedback Shift Register

In order to handle two zero coefficients in one clock cycle, an extended LFSR is

required to perform shifts for both one and two positions. An extended LFSR was

proposed by Wu et al. [38].

Fig. 5.1: Extended Linear Feedback Shift Register

Fig.5.1 shows the structure for both x±1 and x±2 multiplication, which is called

extended LFSR. When the switches are at upper positions, the circuit are configured

to perform x±2 multiplication, which means the contents of the registers are shifted

two positions on their right side. When the switches are at lower positions, the circuit,

which works as a normal LFSR, is shifted one position in each clock cycle. This circuit

can be integrated in our design with minor modification.

5.3 Proposed Extended Modular Arithmetic Unit

Instead of switches, input bits r can be used to control the circuit switch between

one position shift and two positions shift. We extend MAU to support this operation

(Fig.5.2).
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Fig. 5.2: Extended Modular Arithmetic Unit

Table 5.2: Operations Supported with the Extended Modular Arithmetic Unit

Input r (r(1)r(0)) Output s
01 e+ h

11 e+ h+ 1
00 e
10 e′

As compared to previous circuit, an additional input e′ is added to MAU. It

outputs directly when input r is “10”. The truth table of this circuit is given in

table 5.2. As stated before, “10” was a redundant state in previous circuit. In

proposed circuit, this state is assigned to handle the operation for output e′. Four

states of proposed circuit and their output is shown. The details for performing these

operations in hardware is presented in Algorithm 5.1. The inputs of the algorithm is

e, e′, h, r and the output is s. Depending on the control signal r, different operations

are performed.
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Algorithm 5.1 Proposed Extended Modular Arithmetic Unit
Input:

e : e(m−1), ..., e(1), e(0);
e′ : e′(m−1), ..., e

′
(1), e

′
(0);

h : h(m−1), ..., h(1), h(0)
r : r(1), r(0);

Output: s : s(m−1), ..., s(1), s(0);
1: if r(0) = 0 then
2: if r(1) = 0 then
3: (s(m−1), ..., s(1), s(0)) = (e(m−1), ..., e(1), e(0))
4: else {r(1) = 1}
5: (s(m−1), ..., s(1), s(0)) = (e′(m−1), ..., e

′
(1), e

′
(0))

6: end if
7: else {r(0) = 1}
8: (h(m−1), ..., h(1), h(0)) = (hm−1 ⊕ r(1)), ..., (h(1) ⊕ r(1)), (h(0) ⊕ r(1));
9: (s(m−1), ..., s(1), s(0)) = (e(m−1), ..., e(1), e(0)) + (h(m−1), ...h(1), h(0)) + r(1);

10: end if
*x(i) represtent ith bit of x;

m-bit Adder*

MUX0 1
r(0)

r(1)
b b

m m

m

m m

e(m−1)...e(0) h(m−1)...h(0)

s(m−1)...s(0)

m

b b b

h(m−1)h(m−2) h(1) h(0)

r(1)MUX 01

m

e′(m−1)...e
′
(0)

r(1)

b b b

Fig. 5.3: Proposed Extended Modular Arithmetic Unit

The corresponding Extended Modular Arithmetic Unit (EMAU) is shown in Fig.5.3.

An additional multiplexer is applied in this modular arithmetic unit. The time com-

plexity becomes 2Tmux when r1r0 equals to “00” or “10”.
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5.4 Proposed NTRUEncrypt Architecture with Extended LFSR

As presented in previous chapter, operations in encryption is defined as:

e(x) = h(x)× r(x) +m(x) mod q (14)

Since the new design can process two consecutive zero coefficient at the same

time, minor modification on input r is required. When two “0” coefficient appear

consecutively in r(x), it should input “10” to the circuit instead of two “00”. n′ is

the coefficient number of r(x) after replace all the “0, 0” pairs with “10’. Algorithm

5.2 shows a typical algorithm to implement ecnryption with EMAU. A corresponding

structure is shown in Fig.5.4.

Algorithm 5.2 Extended Encryption in NTRUEncrypt
Input:

m = m0, ...,mn−1;
h = h0, ..., hn−1;
r = r0, ..., rn′−1;

Output: e = e0, ..., en−1;
1: e(0) = m
2: for j = 1 to n′ do
3: if rj−1 = 10 then
4: for i = 0 to n− 1 do
5: e

(j)
i = e

(j−1)
i+2 mod n

6: end for
7: else
8: for i = 0 to n− 1 do
9: e

(j)
i = e

(j−1)
i+1 mod n + hi+1 mod n × rj−1 mod q

10: end for
11: end if
12: end for
13: return e = e(n)
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Fig. 5.4: Extended LFSR Based NTRUEncrypt

The registers e = (en−1, ..., e1, e0) are initially loaded with m = (mn−1, ...,m1,m0)

in one clock cycle. The clock cycles required to encrypt a message depends on the

number of “0, 0” pairs in r(x). The average clock cycle required in encryption for

different parameter sets is shown in Table 5.3. It can be seen that number of clock

cycle #CC is reduced from original required clock cycle n. With a higher security

level, the required clock cycles also increased. More reduced clock cycle can be seen

on higher security level, which means proposed circuit shows more improvements on

more complex parameter set. The content of registers at cycle j, j = 0, 1, ..., n′, is

given in Table 5.4.

Table 5.3: Average Clock Cycle for Different Parameter Sets

Security
Level

Parameter set n p q dr #CC

112
ees401ep1 401 3 2048 113 350
ees541ep1 541 3 2048 49 343
ees659ep1 659 3 2048 38 387

128
ees449ep1 449 3 2048 134 359
ees613ep1 613 3 2048 55 388
ees761ep1 761 3 2048 42 444

192
ees677ep1 677 3 2048 157 552
ees887ep1 887 3 2048 81 563
ees1087ep1 1087 3 2048 63 638

256
ees1087ep2 1087 3 2048 120 718
ees1171ep1 1171 3 2048 106 741
ees1499ep1 1499 3 2048 79 867
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5.5 Implementation of Proposed Encryption Architecture

The proposed architecture also has been implemented in FPGA for performance ver-

ification. The following tools were used for the implementation.

• Quartus II Web Edition Software

• ModelSim-Altera software

Cyclone IV EP4CE115F23C7 was chosen as the target device in provided imple-

mentation.

5.5.1 Implementation Results

The simulation results with various parameter sets are shown in Table 5.5. It can be

seen from the table that with the increasing of security level, the operation frequency

of the circuit gradually decreases in an acceptable range. More logic elements and

registers are also required.

Table 5.5: Simulation Result with different Parameter Set (Extended LFSR)

Security
Level

Parameter set #LE(S) #RE #CC FMax Latency(T)

112
ees401ep1 22,460 8,826 350 97.36 MHz 3.58 µs
ees541ep1 30,300 11,906 343 94.58 MHz 3.62 µs
ees659ep1 36,908 14,502 387 81.12 MHz 4.77 µs

128
ees449ep1 25,148 9,882 359 92.29 MHz 3.88 µs
ees613ep1 34,332 13,490 388 85.02 MHz 4.56 µs
ees761ep1 42,620 16,746 444 75.36 MHz 5.89 µs

192
ees677ep1 37,916 14,898 552 89.18 MHz 6.18 µs
ees887ep1 49,676 19,518 563 87.42 MHz 6.44 µs
ees1087ep1 60,876 23,918 638 73.71 MHz 8.65 µs

256
ees1087ep2 60,876 23,918 718 73.71 MHz 9.74 µs
ees1171ep1 65,581 25,766 741 84.07 MHz 8.81 µs
ees1499ep1 83,949 32,982 867 63.64 MHz 13.62 µs
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5.5.2 Comparison

Table 5.6: Comparison between LFSR Structure and Extended LFSR Structure

Security
Level

Parameter set
LFSR Extended LFSR

#LE(S) Latency(T) #LE(S) Latency(T)

112
ees401ep1 18,049 4.06 µs 22,460 (24.4%) 3.58 µs (11.8%)
ees541ep1 24,349 5.38 µs 30,300 (24.4%) 3.62 µs (32.7%)
ees659ep1 29,659 7.29 µs 36,908 (24.4%) 4.77 µs (34.5%)

128
ees449ep1 20,209 4.35 µs 25,148 (24.4%) 3.88 µs (10.8%)
ees613ep1 27,589 6.51 µs 34,332 (24.4%) 4.56 µs (29.9%)
ees761ep1 34,249 8.53 µs 42,620 (24.4%) 5.89 µs (30.9%)

192
ees677ep1 30,469 7.58 µs 37,916 (24.4%) 6.18 µs (18.4%)
ees887ep1 39,919 10.23 µs 49,676 (24.4%) 6.44 µs (37.0%)
ees1087ep1 48,919 15.02 µs 60,876 (24.4%) 8.65 µs (42.4%)

256
ees1087ep2 48,919 15.02 µs 60,876 (24.4%) 9.74 µs (35.1%)
ees1171ep1 52,699 18.80 µs 65,581 (24.4%) 8.81 µs (53.1%)
ees1499ep1 67,460 20.58 µs 83,949 (24.4%) 13.62 µs(33.8%)

A comparison between the previous LFSR structure and the extended LFSR structure

is listed in Table 5.6. The logic elements required by the extended LFSR structure

are 24.4% larger than the LFSR structure. Because of the reduction on clock cycle,

the extended LFSR structure can save at least 10.8% time with 128 security level and

ees449ep1 parameter set. The improvement can be up to 53.1% with 256 security

level and ees1171ep1 parameter set. The simulation results in Table 4.6 show that the

proposed design outperforms all the existing works in terms of area-delay product.

The extended architecture is expected to be used for a system with higher speed

requirement.

5.6 Discussion on Parameter Selection in Hardware Imple-

mentation

A parameter set generation algorithm (Section 2.3.1) is required to generate parameter

set according to different cost metrics. To obtain the best performance in hardware

efficiency, the cost metric should make some modifications. The original speed metric
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is derived from the convolution times for a parameter set costspeed = n · df . But for

hardware implementation in my previous work, a clock cycle is always required to

handle a zero-coefficient or a non-zero coefficient. So that at previous work, the value

of speed cost function of hardware is n2. For the proposed work in this chapter, as

stated before, consecutive “0” only requires one clock cycle. Thus, it can be derived

that the cost function becomes

costspeed = n · (n− n00), (15)

which is from the original cost function reduced by number of consecutive “0, 0”.

Referring to (12), the worst case of number of n00 is (n − 4dr)/2. Substituting the

value of n00 to (15), we get

costspeed =


n2 n1 + n−1 ≥ n0

n · (n/2 + 2df ) n1 + n−1 < n0

. (16)

Through this cost function, the speed optimization for our design can be performed.
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6 PROPOSED SYSTOLIC ARRAY ARCHITEC-

TURE TO IMPLEMENT NTRUENCRYPT

6.1 Systolic Array

A systolic system is a network of processors which rhythmically compute and pass

data through the system. It is first proposed by H.T. Kung and C.E. Leserson in

1979 [39]. Physiologists use the work ‘systole’ to refer to the rhythmically recurrent

contraction of the heart and arteries which pulses blood through the body. In a

systolic computing system, the function of a processor is analogous to that of the

heart. Every processor regularly pumps data in and out, each time performing some

short computation, so that a regular flow of data is kept up in the network. Systolic

architecture can result in cost-effective , high-performance special-purpose systems

for a wide range of problems.

Systolic systems consists of an array of processing elements (PE) processors are

called cells, each cell is connected to a small number of nearest neighbours in a mesh

like topology. Each cell performs a sequence of operations on data that flows between

them. Generally the operations will be the same in each cell, each cell performs an

operation or small number of operations on a data item and then passes it to its

neighbour. Systolic array is a computing network possessing include the following

property [40]:

• The design makes multiple use of each input data item

Because of this property , systolic systems can achieve high throughputs with

modest I/O bandwidths for outside communication.

• The design uses extensive concurrency

Concurrency can be obtained by pipelining the stages involved in the compu-

tation of each single result , by multiprocessing many results in parallel, or by
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both.

• There are only a few types of simple cells

To achieve performance goals, a systolic system is likely to use a large number

of cells which must be simple and of only a few types to curtail design and

implementation cost.

• Data and control flow are simple and regular

Pure systolic system totally avoid long-distance or irregular wires for data com-

munication.

Systolic arrays can be used to build many cost-effective, high-performance special-

purpose system, such as matrix multiplication, polynomial evaluation, convolution

and image processing.

6.2 Algorithm

As we mention in the previous chapter, operations in encryption is defined as:

e(x) = m(x) + h(x)× r(x) = en−1xn−1 + ....+ e1x+ e0

where

ek = mk +
∑

i,j=0,1,...,n−1
i+j=k mod n

hirj, k = 0, 1, ..., n− 1

Since all polynomials are taken modulo xn − 1, the degree exceed N-1 should be

truncated, which means the power xn should be replaced by 1, the power xn+1 should

be replaced by x, and so on. Also because of each partial product term is reduced

modulo q, there is no carry propagation across the column. In Fig.6.1, e(x), m(x),

h(x) and r(x) are represented as coefficient vectors. It shows the parallel nature of

encryption operations in NTRUEncrypt.
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hn−1 hn−2 hn−3 b b b h2 h1 h0

rn−1 rn−2 rn−3 b b b r2 r1 r0×

hn−1r0 hn−2r0 hn−3r0 b b b h2r0 h1r0 h0r0

hn−2r1 hn−3r1 hn−4r1 b b b h1r1 h0r1 hn−1r1

hn−3r2 hn−4r2 hn−5r2 b b b h0r2 hn−1r2 hn−2r2
b

b

b

b

b

b

b

b

b

b
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b

b

b

b

b

b

b

h2rn−3 h1rn−3 h0rn−3 h5rn−3 h4rn−3 h3rn−3

h1rn−2 h0rn−2 hn−1rn−2 h4rn−2 h3rn−2 h2rn−2

h0rn−1 hn−1rn−1 hn−2rn−1 h3rn−1 h2rn−1 h1rn−1+

b b b

b b b

b b b

en−1 en−2 en−3 b b b e2 e1 e0

mn−1 mn−2 mn−3 b b b m2 m1 m0

mn−1 mn−2 mn−3 b b b m2 m1 m0+

Fig. 6.1: Encryption Operation in Vertical Form

6.3 Proposed NTRUEncrypt Architecture with Systolic Ar-

ray

In Fig.6.1, you can see that beside the first row, every cell of the array is a multi-

plication operation. The coefficients ei can be calculated by accumulate the product

of each cell in each column and add mi. This parallel nature property makes this

algorithm ideally suitable for use in systolic array architecture.

Also because of each column is independent of the other, the same result can be

obtain if we only change the order of the elements of each column. We make some

modification to Fig.6.1 to make it perfect fit the systolic array architecture (Fig.6.2).
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hn−1r0 hn−2rn−1 h(n−1)/2r(n−1)/2+1b b b h(n−1)/2−1r(n−1)/2 h1r2 h0r1
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Fig. 6.2: Modified Encryption Operation in Vertical Form

Since n is an odd number (n > 2 and n is prime number), the order of columns is

reordered as en−1, en−3, ..., e0, en−2, ..., e3, e1. And the order of elements in each column

is moved circularly from top to bottom according to the new position of the column.

ci

ri

hiri

hi

ci+1 = ci + hiri

ri

ri

ci

ci+1 = ci + hiri

hi

b

hi

b

Fig. 6.3: Processing Element

A processing element is designed with a MAU, which proposed in chapter 4, shown

in Fig.6.3. ci,hi and ri are input of the PE. hi and ri are output directly, while the

other output is calculate through the MAU and output ci+1 which is the sum of ci

and product hiri. A � represents a m-bits (m is equal log2 q) latch. With the PE, a

systolic array architecture for encryption is designed and shown in Fig.6.4.

45



h
n
−
2

m
n
−
3

m
n
−
1

b
b

b

b
b

b

b
b

b

b
b

b

b b b

b b b

b b b

b b b

b
b

b

e n
−
1

e n
−
3

e 3
e 1

h
n
−
1

r n
−
1

r 0 r 1 r n
−
2

r n
−
1

h
0

m
1

m
3

h
1

r 2
r 1

h
n
−
1

h
2

h
1

b
b

b

1 n
-2

n
-1

1 n
-2

n
-1

b b b

b b b

e 0
e n

−
2

h
(n

−
1
)/

2
−
1

m
n
−
2

m
0

h
(n

−
1
)/

2
r (

n
−
1
)/

2
+
1
r (

n
−
1
)/

2

b
b

b

b
b

b

b
b

b

b
b

bb
b

bb
b

b

F
ig

.
6.

4:
S
y
st

ol
ic

A
rr

ay
B

as
ed

N
T

R
U

E
n
cr

y
p
t

46



The systolic array base architecture consist of n2 PE. Every PE is connected to its

neighbour PEs. The coefficients of h(x) are input from the top edge and right edge

of the systolic array and transmits diagonally from upper right to lower left while

the coefficient r(x) are input from the top edge and left edge of the systolic array

and transmits diagonally from upper left to lower right. The coefficients of m(x) are

initially input to the first row of the systolic array and vertically propagate the result

to the next PE below. The numbers beside � denote the amount of latches. It takes

n clock cycle to evaluate every coefficient of e(x).
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7 NTRU APPLICATION IN CLOUD SECURITY

7.1 Homomorphic Encryption

Homomorphic encryption is a hot topic in modern communication system. It is a per-

fect cloud computing security solution. The application scenario allows computations

to be carried out on ciphertext, while preserving the privacy of the message.

However, when faced with a large pool of users who wish to compute a function

on all their private inputs, FHE can not be applied easily since it can only process

data with one private key. A new primitive is created to deal with this issue, which

is called multikey fully homomorphic encryption. It is able to compute data which is

encrypted under multiple unrelated keys.

7.2 NTRU based Fully Homomorphic Encryption System

In 2012, López-Alt et al. [26] found some multikey homomorphic properties in the

revised NTRUEncrypt scheme. The properties are given as follows:

f1(x) · f2(x)[c1(x) + c2(x)] = 2eadd(x) + f1(x) · f2(x)[m1(x) +m2(x)] (17)

f1(x) · f2(x)[c1(x) + c2(x)] mod 2 = m1(x) +m2(x) (18)

f1(x) · f2(x)[c1(x)× c2(x)] = 2emult(x) + f1(x) · f2(x)[m1(x)×m2(x)] (19)

f1(x) · f2(x)[c1(x)× c2(x)] mod 2 = m1(x)×m2(x) (20)

Some adjustments were made to covert the scheme from the base NTRUEncypt
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to the On-the-fly multiparty computation step by step.

First, a relinearizaion technique is used to convert the base NTRUEncrypt scheme

to somewhat homomorphic encryption. Then it is converted to fully homographic

encryption by using modulus reduction and Gentrys bootstrapping theorem. Finally,

a protocol is designed to achieve the on-the-fly multiparty computation. On-the-Fly

multiparty computation fulfil these requirements:

• Each of the users encrypts their data and upload to the cloud.

• The cloud can perform computation on the data non-interactively, without any

further help from the users. The result is still encrypted.

• The users cooperate to retrieve the evaluated output with their own private key.

In the following chapter, a brief overview of this NTRU based fully homomorphic

system is given, which includes key generation, encryption, decryption and evaluation

operations.

7.2.1 Key Generation

• Choose decreasing sequence of primes q0 > q1 > ... > qd

• Private key: sample u(i)(x) and g(i)(x), set f (i)(x) = 2u(i)(x) + 1

• Public Key: h(i)(x) = 2g(i)(x)× f (i)(x)−1

• Evaluation Key: ζ
(i)
τ (x) = h(i)(x) × s(i)τ (x) + 2(i)eτ (x) + 2τf (i−1)(x), where i =

0, 1, ..., d and τ = 0, ..., [log2qi]

h(x) is the public key, while the pair f(x) is the corresponding private key of the

system, and there is an additional evaluation key ζ
(i)
τ (x).
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7.2.2 Encryption

• Encode message to binary polynomial m(x).

• Random samples s(x) and e(x)

• Encrypt message c(i)(x) = h(i)(x)× s(i)(x) + 2e(i)(x) +m(x) mod qi

7.2.3 Decryption

• Compute m(x) = c(i)(x)× f (i)(x) mod p

7.2.4 Evaluation

• c(i)1 (x) = Encrypt[m1(x)] and c
(i)
2 (x) = Encrypt[m2(x)]

• Addition: Encrypt[m1(x) +m2(x)] = c
(i)
1 (x) + c

(i)
2 (x)

• Multiplication: Encrypt[m1(x)×m2(x)] = [qiç
(i+1)(x)/qi−1]2

ç(i) = c
(i)
1 (x) + c

(i)
2 (x) and ç(i+1) =

∑
τ ζ

(i)
τ (x)ç(i−1)(x)

7.3 Proposed Architectures for NTRU based FHE Systems

Since the FHE scheme is based on the revised NTRUEncrypt scheme, it is possible to

extend our work to FHE, if we can implement the revised NTRUEncrypt scheme in

hardware. Some changes of the revised NTRUEncrypt that may impact the original

implementation in hardware are listed below:

• R = Z[x]/(xn + 1) is used instead of R = Z[x]/(xn − 1), which can be achieved

by change the sign of the coefficients.

• Because p = 2, the plaintext can be encoded in binary polynomial and the result

of modulo p operation can be easily calculated by picking the least significant

bit of the coefficient.
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• q is a prime integer instead of power of 2, a modulo arithmetic unit is required

to calculate modulo q.

• These small polynomials f(x) and r(x) are now sampled from some distribu-

tions. The coefficients of these polynomials are wide range numbers instead of

{−1, 0, 1}.

• Because a small polynomial s(x) is added during the encryption, which is pre-

sented by e(x) = h(x)× r(x) + p · s(x) +m(x) mod q, fully integer adders and

multipliers are required.

To implement the encryption step and decryption step, the multiplication between

two coefficients with arbitrary integer is the most time consuming operation. We

extend our previous work and design a LFSR based architecture and a systolic array

based architecture to implement the following operation used in NTRU based FHE.

c(x) = h(x)× r(x) (21)

7.3.1 LFSR based Architecture

The LFSR based architecture proposed in chapter four can be used. However, since

the polynomial ring is under R = Z[x]/(xn + 1), some changes need to be made to

adapt the structure. Moreover, the small polynomial, which is input serially to the

circuit, is no longer a polynomial with coefficients from {−1, 0, 1}, but a polynomial

with coefficients sampled from Gaussian distribution. Therefore, the proposed MAU

can not be used in this design, it is replaced with a multiplier and an adder. An

LFSR based architecture designed to implement multiplication in FHE, is shown in

algorithm 7.1 and Fig.7.1.
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Algorithm 7.1 Multiplication in Truncated Polynomial Ring for NTRU based FHE

Input: h = h0, ..., hn−1, r = rn−1, ..., r0
Output: c = c0, ..., cn−1

1: c(0) = 0
2: for j = n to 1 do
3: for i = 0 to n− 1 do
4: if i = 0 then
5: c

(j)
i+1 mod n = hi+1 mod n × rj−1 − c(j−1)i mod q

6: else
7: c

(j)
i+1 mod n = c

(j−1)
i + hi+1 mod n × rj−1 mod q

8: end if
9: end for

10: end for
11: return c = c(n)

h1

b

hn−1 hn−2 h0

b b c0c1cn−1

r0, r1, ..., rn−2, rn−1

Fig. 7.1: LFSR based Truncated Polynomial Ring Multiplier for NTRU based FHE

Some modifications are made based on the architecture proposed in chapter 4.

Firstly, the polynomial r(x) is input from its highest degree coefficient to lowest

degree coefficient. Secondly, the propagation direction is from right to left instead

of left to right. Lastly the first adder on the right is replaced by a subtractor. The

registers c(x) = (c0, c1, ..., cn−1) are initially loaded with 0. The registers will store

the product of h(x)× r(x) mod (xn + 1) after n clock cycles.

7.3.2 Systolic Array based Architecture

The systolic array based architecture proposed in chapter 6 can be also extended to

FHE. Because n is a power of 2 number, which must be an even number, the order
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of columns is reordered as cn−1, cn−3, ..., c1, cn−2, ..., c2, c1. And since the polynomial

ring is under R = Z[x]/(xn + 1), some of the elements are negative. It is shown in

Fig.7.2.

c1

hn−1r0 −hn−2rn−1 b b b h0r2 −hn−1r1
hn−2r1 hn−3r0 b b b −hn−1r3 −hn−2r2

hn−3r2 hn−4r1 b b b −hn−2r4 −hn−3r3
b

b

b

b

b

b

b

b

b

b

b

b

h2rn−3 h1rn−4 −h3rn−1 −h2rn−2

h1rn−2 h0rn−3 h2r0 −h1rn−1

h0rn−1 −hn−1rn−2 h1r1 h0r0
+

b b b

b b b

b b b

cn−1 cn−3 b b b cn−2 c2 c0

−hn/2−2rn/2+3

−hn/2+3rn/2−2

−hn/2+2rn/2−1

−hn/2+1rn/2

−hn/2rn/2+1

−hn/2−1rn/2+2

b

b

b

hn/2−4rn/2+2

hn/2+1rn/2−3

hn/2rn/2−2

hn/2−1rn/2−1

hn/2−2rn/2

hn/2−3rn/2+1

b b b

b b b

b b b

b b b

b b b

b b b

b

b

b

b b b

Fig. 7.2: Modified Truncated Polynomial Ring Multiplication for NTRU based FHE
in Vertical Form

Two types of processing element are required in the systolic array architecture.

One of which is used to deal with positive elements (Fig.7.3) consist of a multiplier

and an adder, the other one is used to process negative elements (Fig.7.4) which

include a multiplier and a subtractor. A � represents a m-bits (m is equal log2 q)

latch. With these two PEs, a systolic array architecture for multiplication in revised

NTRUEncrypt is designed and shown in Fig.7.5.

ci

ri

hiri

hi

ci+1 = ci + hiri

ri

ri

ci

ci+1 = ci + hiri

hi

hi

bb

Fig. 7.3: PE for Positive Elements
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ci

ri

hiri

hi

ci+1 = ci − hiri

ri

ri

ci

ci+1 = ci − hiri

hi

hi

bb

−

Fig. 7.4: PE for Negative Elements

The systolic array base architecture consist of n2 PEs which include n(n + 1)/2

positive PEs and n(n + 1)/2 negative PEs. Every PE is connected to its neighbour

PEs same as the previous proposed architecture, except the connection between the

n/2 and n/2 + 1 columns. The output hi of PEs of the n/2 + 1 column are connected

to the PEs of n/2 column in the manner shown in Fig.7.5. The coefficients of c(x)

are initially as 0 and input to the first row of the systolic array. It takes N clock cycle

to evaluate every coefficient of c(x).
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8 CONCLUSIONS AND POSSIBLE FUTURE WORK

In this thesis several new architectures for NTRUEncrypt and NTRU based homo-

morphic encryption have been proposed. FPGA implementations have also been

performed for the LFSR based architectures.

Firstly a new architecture using LFSR for NTRUEncrypt system is presented.

The new architecture takes advantage of LFSR structure for its compact circuitry

and high speed. Note that this architecture can be used for both encryption (Fig.4.5)

and decryption (Fig.4.5) in NTRUEncrypt system. Our FPGA implementation has

shown that the proposed design uses modest area and works at relatively high speed.

It outperforms all the existing works in comparison in term of area-delay product.

Further enhancement on the efficiency of the LFSR based architecture is proposed

by using extended LFSR architecture (Fig.5.4). It takes advantage of small polyno-

mials with large number of zero coefficients, and thus significantly reduces the clock

cycle required. The FPGA implementation result shows that the proposed design

uses slightly larger resource but has much faster speed.

A systolic array architecture is proposed for NTRUEncrypt (Fig.6.4). There is

only one type of PE in the array and the PE was designed with optimized arithmetic.

The systolic array yields all the output in N clock cycles.

Besides, new architectures are proposed for computation of NTRU based fully

homomorphic encryption system. LFSR is applied in one of the architecture with a

novel design of the modular multiplication unit (Fig.7.1), while the other proposed

architecture is systolic array with two types of PEs (Fig.7.5).

In the future, the research works presented in this thesis can be further extended

in the following aspects:

• The systolic array architecture for NTRUEncrypt and two new architectures for

NTRU based fully homomorphic encryption system will be implemented using
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FPGA.

• Since NTRU based fully homomorphic encryption requires large-valued param-

eters, further enhancement will focus on how to improve the efficiency of the

system.

• The next goal of our work is to apply these architectures to other steps of the

systems including key generation and evaluation part in FHE system.

• There are other lattice based cryptosystems which have similar property and

operation as NTRU system. We are expected to extended our work to these

systems.

57



REFERENCES

[1] W. G. of the C/MM Committee et al., “IEEE p1363.1 standard specification for

public-key cryptographic techniques based on hard problems over lattices,” no.

March, 2009.

[2] D. Cabarcas, P. Weiden, and J. Buchmann, “On the efficiency of provably secure

NTRU,” in Post-Quantum Cryptography. Springer, 2014, pp. 22–39.

[3] P. S. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, and W. Whyte, “Choos-

ing NTRUEncrypt parameters in light of combined lattice reduction and mitm

approaches,” in Applied cryptography and network security. Springer, 2009, pp.

437–455.

[4] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer,” SIAM journal on computing, vol. 26, no. 5,

pp. 1484–1509, 1997.

[5] D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-quantum cryptography.

Springer Science & Business Media, 2009.

[6] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory,”

DSN progress report, vol. 42, no. 44, pp. 114–116, 1978.

[7] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,”

Problems of Control and Information Theory, vol. 15, no. 2, pp. 159–166, 1986.

[8] L. Lamport, “Constructing digital signatures from a one-way function,” Techni-

cal Report CSL-98, SRI International Palo Alto, Tech. Rep., 1979.

[9] R. C. Merkle, “Secrecy, authentication, and public key systems.” Ph.D. disser-

tation, 1979.

58



[10] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial signature

scheme,” in Applied Cryptography and Network Security. Springer, 2005, pp.

164–175.

[11] O. Regev, “On lattices, learning with errors, random linear codes, and cryptog-

raphy,” Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[12] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key

cryptosystem,” in Algorithmic number theory. Springer, 1998, pp. 267–288.

[13] D. Stehlé and R. Steinfeld, “Making NTRU as secure as worst-case problems

over ideal lattices,” in Advances in Cryptology–EUROCRYPT 2011. Springer,

2011, pp. 27–47.

[14] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stan-

ford University, 2009.

[15] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.” in STOC,

vol. 9, 2009, pp. 169–178.

[16] C. Gentry, “Toward basing fully homomorphic encryption on worst-case hard-

ness,” in Advances in Cryptology–CRYPTO 2010. Springer, 2010, pp. 116–137.
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