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Abstract

Prostate Cancer is one of the most common types of cancer among Canadian men. Next

generation sequencing that uses RNA-Seq can be valuable in studying cancer, since it pro-

vides large amounts of data as a source for information about biomarkers. For these rea-

sons, we have chosen RNA-Seq data for prostate cancer progression in our study. In this

research, we propose a new method for finding transcripts that can be used as genomic fea-

tures. In this regard, we have gathered a very large amount of transcripts. There are a large

number of transcripts that are not quite relevant, and we filter them by applying a feature

selection algorithm. The results are then processed through a machine learning technique

for classification such as the support vector machine which is used to classify different

stages of prostate cancer. Finally, we have identified potential transcripts associated with

prostate cancer progression. Ideally, these transcripts can be used for improving diagnosis,

treatment, and drug development.
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Chapter 1

Introduction

A cell, the basic unit of life, is capable of independent reproduction [24]. There are two

kinds of cells: eukaryotic and prokaryotic. In eukaryotic organisms, every cell has a nu-

cleus, while the prokaryotic cell is a unicellular microorganism without a nucleus [24]. The

human body has eukaryotic cells, each with a nucleus at its centre and a cell membrane

for protection [24]. The chromosomes are distributed in the nucleus. Every human cell

has 23 pairs of chromosomes, and each chromosome contains many different genes [1].

Deoxyribonucleic acid (DNA) is used to build and maintain the cell and also carries hered-

itary information within the chromosomes. DNA is composed of nucleotides: adenine (A),

guanine (G), cytosine (C), and thymine (T) [46].

Cells undergo several ways to transform DNA into proteins. Generally, there are two

main steps to convert coding regions of DNA into proteins [24]. In the first step, DNA

transcribes to ribonucleic acid (RNA), while in the second step, RNA translates into proteins

(see Figure 1.1) [9; 20; 24]. The outcome of transcription is the precursor messenger RNA

(pre-mRNA), which undergoes RNA splicing or processing, a process in which exons are

retained and introns are removed [24]. The splicing of pre-mRNA occurs in several different

1
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ways. The most common way is that an intron is excluded and an exon is included, which

leads to the formation of a different mRNA strand. This process is known as alternative

splicing [24].

Figure 1.1 illustrates alternative splicing of a gene. DNA contains exons and introns,

also called coding and non-coding regions, respectively. DNA transcribes to RNA, which

further translates to proteins. It can be observed from the figure that exon 1, exon 2, and

exon 4 are retained to form protein 1; exon 1, exon 3, and exon 4 make protein 2. On

the other hand, introns are removed to form the mature mRNA transcript. The study of an

entire group of transcripts or RNA for the diagnosis of precise disease conditions is known

as transcriptomics [45].

Figure 1.1: Alternative splicing of the gene: DNA translates to RNA; RNA undergoes

splicing and forms mature mRNA; mRNA further translates to a protein.
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1.1 Prostate Cancer Progression

Prostate cancer is caused by the abnormal and uncontrolled growth of the prostate gland

[40]. According to Statistics Canada, one in five Canadian men will be diagnosed with

prostate cancer during their lifetimes, and one in four will die from prostate cancer [39].

An estimated 196,900 patients are anticipated to be diagnosed with cancer in 2015 [39].

Approximately 50% of these cases will be lung, breast, colorectal, or prostate cancer [39].

Lung cancer accounts for the majority of the cases, followed by colorectal and prostate

cancers [39]. Canadian males are primarily affected by prostate cancer; approximately

24,000 patients are anticipated to be diagnosed with cancer in 2015 [39]. As in other types

of cancer, there is a need to conduct research on prostate cancer. In addition, investigating

prostate cancer at the molecular level can help determine the structure of tumour initiation,

as well as its progression. Prostate cancer is very unlikely to progress; less than one third

of the patients will progress to advanced stages. This kind of investigation aids both the

diagnosis and treatment of the disease at the earliest possible stage.

The American Cancer Society has categorized prostate cancer into four different stages,

each of which is further divided into sub-stages [38; 40]. Table 1.1 provides some informa-

tion about each stage and sub-stage of prostate cancer. Prostate cancer can be discoverable

in the initial stage (T1c) [38]. In the second stage (T2), it spreads to the prostate gland [38].

Stage T2 is divided into three sub-stages (T2a, T2b, and T2c). Cancer grows at a moderate

rate in sub-stages T2a and T2b, whereas growth occurs at a higher rate in stage T2c [38].

At stage T3, the cancer spreads to neighboring tissues. This stage is further divided

into two sub-stages, T3a and T3b [38]. Both sub-stages are essential in prostate cancer

progression, as the cancer spreads to the seminal vesicles in sub-stage T3b [38]. In the

final stage, T4, the cancer extends to other organs [38]. Cancer, which starts in one organ,
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invading another organ is known as metastasis [38]. It begins to grow cancer cells in the

new location, thereby damaging the functioning of that organ [38]. Most cancer patients

die when they reach the metastatic stage [38]. Estimating the progression helps in detecting

and diagnosing cancer, and providing a patient with an appropriate treatment.

Table 1.1: Stages in progression of prostate cancer according to the American Cancer So-
ciety [38].

Prostate cancer stage Description
T1c The tumour is not detectable via imaging techniques. Can-

cer is detected using a needle biopsy performed due to an
elevated serum prostate-specific antigen (PSA).

T2 The tumour is palpable, but confined to the prostate.
T2a The tumour is in half, or less than half, of one of the prostate

glands two lobes.
T2b The tumour is in more than half of one lobe, but is not in

both lobes
T2c The tumour is in both lobes but confined within the prostatic

capsule.
T3 The tumour has started spreading out of the prostate tissue.
T3a The tumour has spread through the prostatic capsule on one

or both sides, but has not spread to the seminal vesicles.
T3b The tumour has invaded one or both of the seminal vesicles.
T4 The tumour has spread to other organs.

1.2 RNA-Seq

RNA-Seq is an emerging technology that uses next generation sequencing (NGS) tech-

niques. It helps biologists and clinicians understand the complexity of diseases at the molec-

ular level [11; 45]. It also provides precise information for analysis of alternative splic-

ing events, gene fusions, transcriptions, and post-transcription stages. Recent advances in
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RNA-Seq and NGS have made sequencing costs drop drastically, which has led researchers

to create many RNA-Seq data sets on prostate cancer [45]. We chose RNA-Seq data sets in

our studies for all these reasons, as discussed in more detail in Chapter 3.

1.3 Thesis Motivation

Various studies have found that aberrant splicing of the pre-mRNA yields different kinds of

cancers [49]. The discovery of biomarkers is the central step in diagnosis and handling of

any kind of disease, especially for cancer. Mayer et al. observed that a differential splice

variant, the RON isoform, was upregulated in ovarian cancer [26]. Ren et al. used next

generation sequencing technology and discovered that long non-coding RNAs, gene fusions

and aberrant splicing influence cell growth [33]. Long et al. worked on 106 malignant

samples using RNA-Seq data and extracted 24 genes, of which five genes (BTG2, IGFBP3,

SIRT1, MXI1, and FDPS) correlate with prostate cancer [25].

In recent years, researchers have been working to find biomarkers for different types

of cancer. They have focused mainly on the genetic level and have found differentially

expressed genes. Some researchers have also studied prostate cancer and its progression.

However, investigating the transcriptome activity of a cell or organism is more interesting

than studying it at the gene level, due to the precise information the activity provides on the

disease condition. We examined these kinds of patterns involved in prostate cancer and its

progression.
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1.4 Main Problem

Researchers face the challenging issue of finding biomarkers for prostate cancer; it is dif-

ficult to find them with current approaches [25]. Previous researchers focus on matched

normal versus malignant using genes as biomarkers to find differentially expressed genes

associated with prostate cancer. We are given data sets of RNA-Seq reads that belong to

different samples each associated with particular stage; these samples come from patients

or cell lines. We aim to identify differentially expressed transcripts that are associated with

different stages of prostate cancer. Ideally, these transcripts can be used for improving

diagnosis, treatment and drug development.

To deal with this problem, we applied powerful feature selection and classification algo-

rithms to find discriminative transcripts that are related to prostate cancer and its different

stages.

1.5 Contributions

In this work, we introduce a novel model that integrates emerging RNA-Seq technology

with machine learning approaches to find the vital discriminative transcripts for the different

stages of prostate cancer.

The main contributions are:

• Developing an integrative model that uses feature selection to choose a subgroup

of transcripts and classification techniques to find the most relevant transcripts for

different stages of prostate cancer.

• Identifying novel transcripts as potential biomarkers for prostate cancer progression.
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1.6 Thesis Organization

This thesis consists of seven chapters, starting with an introduction, which provides an

overview of the main topics. A literature review is presented in Chapter 2. An overview

of RNA-Seq data, workflow, and analysis comprise Chapter 3. In Chapter 4, machine

learning techniques for feature selection and classification are discussed. The methods and

results are discussed in Chapters 5 and 6, respectively. Finally, Chapter 7 presents the thesis

conclusions and the future work derived from this thesis.



Chapter 2

Literature Review

In this chapter, we review the literature that identifies the problems that researchers are

currently facing in finding biomarkers for prediction of prostate cancer. This chapter is

organized based on the biomarkers used by different scientists. Most of them have used

genes, whereas Tavakoli et al. used junctions, as biomarkers to study prostate cancer. Also,

Kim et al. studied methylation patterns to investigate prostate cancer.

2.1 Using Genes as Biomarkers

Recently, researchers have found it difficult to predict the progression of prostate cancer.

Long et al. worked with genes as biomarkers to estimate the disease development [25]. The

authors gathered tissue cores from 106 prostate cancer patients and extracted RNA-Seq data

[25]. Initially, the RNA was prepared using a formalin-fixed paraffin-embedded approach

and sent for sequencing, which employed the Illumina HiSeq technology to perform 50

base pairs paired-end sequencing [25]. The data set can be retrieved via GEO accession

number GSE54460 [25].

8
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Long et al. started their work by following part of the tuxedo suite approach, which

utilizes Tophat2 to align the reads from the patients to the reference human genome and

uses Cufflinks for transcriptome assembly [25]. They used the DESeq tool to find differ-

entially expressed genes [25]. Subsequently, a set of 24 genes were obtained; 16 were

previously associated with prostate cancer, and among them, five genes (BTG2, IGFBP3,

SIRT1, MXI1, and FDPS) are typically associated with prostate cancer [25].

Zhai et al. also worked on RNA-Seq data to find differentially expressed genes that

are related to prostate cancer [47]. They found protein-coding genes and lincRNAs that

are differentially expressed between matched normal and malignant patients [47]. Zhai et

al. experimented on 10 matched prostate samples, which were taken from the European

Nucleotide Archive with accession number SRP002628 [47]. They performed an analysis

that is similar to that of Long et al., except that hierarchical clustering was used for finding

differentially expressed genes [47].

Zhai et al. claims that 10 genes and a lincRNA were differentially expressed [47]. The

authors claim that the lincRNA that is present in the Cullin-associated and neddulation-

dissociated 1 (CAND1) gene expressed high and low between malignant and matched nor-

mal samples, respectively [47].

Ren et al. studied prostate cancer in the Chinese population and revealed that long

non-coding RNAs influence the prognosis [33]. The authors stated that the non-destructive

nature of the prostate cell has no effect [33]. On the other hand, rapidly-advancing cell

growth will lead to metastasis, resulting in the death of the patient [33].

The authors generated RNA-Seq data on the 14 matched prostate samples [33]. The

RNA was gathered from samples, and oligo(DT) primers were used to separate poly(A)

mRNA [33]. In our research, we have used four data sets, namely Kannan’s, Kim’s, Ren’s
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and Long’s data sets (discussed in Chapter 5). Ren’s data set used random hexamer primers,

while the other data sets used oligo (DT) primers. The selection of primers is very impor-

tant, since data set extraction depends on the primer used [37]. The two primers have their

own advantages and disadvantages. The choice of primers depends on the mRNA extracted

[37]. If the mRNA contains polyA at the end, usually oligo (DT) is preferable, while if

the mRNA is too long, it is difficult to cover the whole mRNA strand [37; 8]. In this case,

random primers are the best choice, since they are able to extract small pieces of mRNA

[8]. Afterwards, they were divided into fragments, and Illumina HiSeq 2000 was employed

to sequence the reads [33]. Ren et al. aligned these reads by applying the SOAP2 aligner,

and then performed supervised clustering to obtain differentially expressed genes and non-

coding RNAs [33].

Ren et al. studied 183 genes that surprisingly mutated to prostate cancer and three

gene fusions [33]. They found two new gene fusions, CTAGE5-KHDRBS3 and USP9Y-

TTTY15, which are highly linked to prostate cancer, and another gene fusion, TMPRSS2-

ERG, which is quite common in prostate cancer [33].

2.2 Using Splice Junctions and Transcripts as Biomarkers

Tavokoli et al. worked on the problem of finding biomarkers for prostate cancer. They

proposed splice junctions as biomarkers [41]. The authors started their experiment with

Kannan’s data set [5], which has 10 matched samples [41]. The RNA-Seq data was gener-

ated using the Illumina Genome Analyzer II platform [41].

Tavokoli et al. aligned the data set to the reference genome (GRCh37) with the PAS-

Sion tool [41], which outputs splice junctions with cut-off score. They filtered the splice

junctions, which were dubious by a 2D peak-finding algorithm [41]. In that algorithm,
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a new scoring scheme was proposed for each junction; afterwards, they applied machine

learning algorithms to these junctions [41]. Finally, when a support vector machine was

used along the junctions, they achieved 100% classification accuracy [41]. They found 10

splice junctions that are highly correlated with prostate cancer [41].

2.3 Using Methylation Regions as Biomarkers

Kim et al. worked on differentially expressed methylated regions that are linked to prostate

cancer [15]. The authors produced a data set with four matched normal and seven malignant

samples by MethylPlex next generation sequencing technology [15].

The RNA-Seq library was prepared with LNCap and PrEC cells for malignant and

matched normal samples, respectively. Kim et al. employed hidden Markov model (HMM)

analysis on the data generated [15]. The reads were produced from enhanced portions that

include all the genes and accession number [15]. To determine the expression level of the

genes, they mapped the reads to the reference genome using the ELAND tool [15].

Kim et al. performed a gene set enrichment analysis (GSEA) to examine the genes

that are differentially-methylated regions [15]. GSEA validates and reports differentially

expressed genes, provided that two conditions are applied. Lastly, they found 2,481 methy-

lated regions that are expressed differentially, and WFDC2 was found to be a novel tumor-

methylated region associated with prostate cancer [15].

2.4 Conclusion

The literature review suggests that researchers have recently depended on RNA-Seq data

sets. Most of them utilized a tuxedo suite approach to extract genes for predicting can-
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cer. Therefore, we have followed a similar tuxedo suite approach in this work. Previous

researchers focus on matched normal versus malignant, while we focus on progression of

prostate cancer. Other works mostly focus on genes as biomarkers and depend on statistical

tests to find differentially expressed genes. However, we focus on transcripts as biomarkers

and use machine learning techniques to identify differentially expressed transcripts.



Chapter 3

Transcriptomics Studies Using RNA-Seq

Analyzing a transcriptome involves determining splice junctions, mRNA, non-coding RNAs,

and post transcriptional alterations of transcripts present in a cell for some specific experi-

mental conditions. The study of transcriptomes is called transcriptomics [45].

There are several methodologies available to study transcriptomes [45]. Each technol-

ogy has its own benefits and drawbacks. Hybridized models, such as microarrays, are ap-

plied to analyze gene expression [45]. They provide reliable output and are cost-effective.

On the other hand, they have disadvantages, such as weak stability of the signals and low

dynamic range of nucleotides [45]. Sanger sequencing was developed to overcome these

limitations of microarrays [45]. Sanger sequencing resulted in an extremely expensive and

very low throughput method, which created a need to develop new approaches [45]. Tag-

based approaches create high-end products [45]. However, they generate short reads that

cannot be accurately mapped to the genome. RNA-Seq technology was then developed as

a high-throughput methodology to quantify transcripts [45].

13
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3.1 RNA-Seq Technology

Wang et al. proposed RNA-Seq, an emerging technology that utilizes next generation se-

quencing techniques to investigate RNAs [45]. Figure 3.1 shows the workflow of an RNA-

Seq technology experiment. Initially, a library is constructed by extracting the RNA from

the underlying samples. Then, the RNA molecules are reverse transcribed to the corre-

sponding complementary DNA (cDNA) fragments. These fragments are defragmented

using RNA or cDNA fragmentation by adding adapters to both ends. Subsequently, the

resulting fragments are amplified in order to obtain the actual short reads; these reads are

then mapped to the reference genome [45].

Small RNA fragments can be sequenced directly. In contrast, mRNA fragments are

usually very large, and hence they are split into shorter fragments before sequencing [6; 45].

To reverse transcribe the RNA, a primer such as an oligo (DT) is attached to the fragments

and converted to cDNA [6]. Adapters are attached to the 5’ and 3’ ends of cDNA. Next, the

fragments are amplified by a polymerase chain reaction (PCR) procedure [6].

RNA-Seq provides short reads, which can produce highly-informative evidence about

the transcripts, and has a particularly superior dynamic range compared to previous ap-

proaches, producing more than 9,000-fold range sequences [45]. RNA-Seq has enhanced

sequence coverage, and has an amazing resolution at a single nucleotide. As such, RNA-

Seq is utilized to discover alternatively spliced RNA, novel isoforms, gene fusions, spliced

junctions, and novel microRNA, among others [45].
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Figure 3.1: Work-flow of an RNA-Seq technology experiment.

3.2 Challenges in RNA-Seq Studies

RNA-Seq technology incorporates multiple steps for library preparation, and manipulation

at each step makes complicated for measuring the transcript expression [45]. Initially, the

entire RNA content of a cell is gathered, which then will undergo sequencing. Previous

surveys indicate that the ribosomal RNA content is high and constitutes more than 80% of

the whole RNA [45]. This leads to a decrease in resource usage, along with a reduction in

sequencing coverage [45]. Therefore, ribosomal RNA is removed by applying an enzymatic

degradation or hybridization-based depletion approach [5; 6].

To achieve higher coverage, deeper sequencing should be performed [45]. This pro-

cess drives the cost that is directly related to sequence coverage [45]. To obtain sufficient
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coverage, a large genome and a more sophisticated transcriptomics technology are required

[6; 45]. Obtaining such a coverage of a transcriptome has been burdensome until now,

because not all the transcripts are recognize [45]d.

Another challenge of RNA-Seq technology is the representation of gene and exon bound-

aries of the genome [45]. Finding introns and exons is the most difficult part of RNA-Seq

analysis [45]. Aligning the short reads to the reference genome becomes unmanageable for

the aligner tools due to the exon-intron boundaries; identifying the start and end of exons

and introns is extremely difficult [45]. Problems resulting from background noise make this

process very challenging [45].

3.3 Sequencing Technologies

There are several next generation sequencing technologies available in the marketplace.

They can be grouped into two types: single molecule-based and ensemble-based [5]. The

reads that are generated from these sequencing technologies are ready for use in experi-

ments.

There are two kinds of sequencing in RNA-Seq technology: single-end and paired-end

sequencing. In single-end sequencing, the cDNA fragments are sequenced from one end

[5]. This sequencing requires very limited DNA and produces high-quality reads [5]. The

drawback of this mode is that detecting novel isoforms is extremely difficult [5]. In paired-

end sequencing, the fragments are sequenced from both ends to extract the corresponding

reads [5]. This type of reads is very useful in finding novel splice variants, due to the

reorganization of insertions and deletions [5]. The disadvantage of paired-end sequencing

is very expensive compared to single-end sequencing [5].
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3.4 Read Alignment

The reads generated by RNA-Seq sequencing technology are aligned to the reference genome

to identify splice sites. There are many tools used for this purpose. They fall into two cate-

gories: unspliced and spliced aligners.

3.4.1 UnSpliced Aligners

An unspliced aligner maps continuous reads to the reference genome. There are several

open source unspliced aligner tools. Bowtie2 is the tool most commonly used by re-

searchers [19]. It is part of the tuxedo approach, being this the reason for which it is applied

in our work.

Bowtie2

Langmead et al. proposed Bowtie2, a fast aligner that employs full-text minute (FM) in-

dexing based on the Burrows-Wheeler transform technique [18]. Langmead et al. made

advancements in the computation of aligning the reads in Bowtie2. This tool divides the

alignment process into four steps. First, reads are divided into seeds with certain base pairs,

using FM indexing. These seeds are aligned to the reference genome; seeds that are not

aligned due to the presence of insertions and deletions are marked and ranked [19]. The

lowest base pair seeds achieve the highest rank, and vice versa. The seeds are then mapped

using single instruction multiple data (SIMD) programming until all the seeds are accessed

[19].
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3.4.2 Spliced Aligners

A spliced aligner aligns the spanned exons boundaries[14]. There are two types of spliced

aligner tools: reference-based and de novo-based. The reference-based tools work well

with known spliced junctions (i.e., providing the tool with annotated splice junctions) [14].

On the other hand, de novo tools align the spliced reads without prior knowledge of splice

variants of the reference genome [14].

A hybrid spliced aligner tool integrates annotation and de novo alignment. Tophat2 is

such an aligner, which can perform splice alignment with (and without) knowledge of splice

variants, to find novel protein isoforms [14]. We have already discussed in Chapter 2 that

tuxedo is the most common approach used by scientists to extract splice variants. Tophat2,

integrated with Bowtie2, is used in this research as part of the tuxedo approach

Tophat2

Kim et al. addressed a common problem: alignment of RNA-Seq data to the reference

genome to find novel spliced events, which helps in the detection of tumours or cancer

[14]. The authors state that other tools fail to perform accurate mapping if there are higher

expression levels or more insertions and deletions in the genes [14]. Kim et al. describe a

three-step approach for mapping. Initially, Tophat2 uses transcriptome mapping when the

annotation is provided; genome mapping is performed, and spliced mapping is done in the

last step [14]. This approach produces splice junctions and reads accepted by the reference

genome.
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3.5 Transcriptome Assembly

Transcriptome assembly involves assembling the reads that have the ability to form poten-

tial mRNA or transcripts [43]. The reads that are accepted by aligner tools to the reference

genome are ready for transcriptome assembly [43]. When transcriptome annotations are

provided, it is a reference-based assembly [43]. On the other hand, de novo assembly means

the tool does not use reference annotations [43]. Subsequently, transcripts’ abundance are

calculated in order to be compared within the same samples or with other samples [43].

Differences in the number of reads obtained from each sample or variations in the length of

the transcripts will change their abundance [43]. Therefore, a normalized value is needed

to compare a transcript with another. There are many ways of computing the normalized

value [43]. The usual means of calculating normalized values is fragment per kilo base of

transcripts per million reads (FPKM) [43]. The fragment refers to both ends of the cDNA,

which is considered one fragment. The per kilo base of transcripts normalizes the num-

ber of fragments dividing by the total number of transcripts present in the gene [43]. The

calculation per million reads makes the transcripts comparable to different samples [43].

Cufflinks, a reference-based assembler, is used in our research, because we aim to find

transcripts that are present in the genes and are already associated with prostate cancer pro-

gression [43]. Moreover, Cufflinks is also part of the tuxedo approach. There are other

tools for transcriptome assembly and quantification, including iReckon; we briefly discuss

Cufflinks and iReckon in this chapter.

Cufflinks

Cufflinks is a transcriptome assembler that also estimates the abundance of the transcripts.

It assembles transcripts by building an overlap graph for all the reads that are accepted by
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the reference genome. It identifies and filters the reads that are incompatible for assembly.

Reads that are compatible must receive at least one splice junction in common and are the

constituents of the graph being constructed [43].

Trapnell et al. implemented Dilworth’s theorem to cover the minimum path and con-

structed transcripts from the accepted reads [43]. Initially, reads are first marked for com-

patibility. The overlap graph is then constructed such that each transcript present in the

reference transcriptome is covered [43]. Transcript abundance is calculated as the FPKM

value [42]. This value is normalized to verify each transcript with another transcript in the

same gene or other samples [42]

iReckon

Mezlini et al. implemented iReckon, a tool for transcriptome assembly and abundance es-

timation for revealing protein isoforms [27]. iReckon is an implementation of the regular-

ized expectation-maximization (EM) algorithm for construction of transcriptome assembly

and estimating abundance. It discovers potentially novel isoforms by integrating the prior

knowledge of unspliced pre-mRNA and intron retention. Initially, potential isoforms are

identified. The accepted reads from the aligner tools are used to construct the splice graph.

These reads are then rearranged to form potential isoforms [27]. For each transcript, a nor-

malized abundance is calculated such that transcripts are comparable with other transcripts.

3.6 Web-Based RNA-Seq tool

There are many open source standalone tools available. Alternatively, recently-developed

web-based RNA-Seq tools are also used. Galaxy is the most commonly-used web-based

tool.
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Galaxy

Blankenberg et al. designed and implemented Galaxy, a web-based open source tool for

RNA-Seq analysis [4]. Galaxy offers a wide range of tools to perform analysis on RNA-

Seq data; most of the latest tools used for read alignment, and transcriptome assembly are

installed in Galaxy. The web interface allows users to store data sets and run the tools using

a workflow. Users’ data sets and results can be shared with other users in Galaxy. Galaxy

provides good visualization of the results, and provides source code and documentation so

that the software can be deployed in any server. The advantage of the Galaxy suite works

efficiently on small projects. However, Galaxy cannot accommodate large data sets, due to

memory and space limitations [4]. We have used Galaxy to run Cufflinks on our data sets.

3.7 Conclusion

In this chapter, we discussed about RNA-Seq technology and its challenges. We have also

described different tools that are work on RNA-Seq reads. In the next chapter, machine

learning techniques will be discussed that are used in our research.



Chapter 4

Machine Learning

Machine learning is a branch of artificial intelligence that provides various methods and al-

gorithms that are trained on inputs, and a model is extracted from them [44]. Subsequently,

that model is tested on a different set of inputs, and then the algorithm performance is mea-

sured [44]. Classification and feature selection are two applications of machine learning

[44].

4.1 Classification

The objective of classification is to find a discriminant function from the inputs [44]. There

are three kinds of learning for classification purposes: supervised, unsupervised, and semi-

supervised.

In supervised learning, labeled samples are passed to the classification algorithm, which

creates the predictive model. Figure 4.1 represents a two-class supervised classification

problem; patients are in the rows, while transcripts are in the columns. The last column

contains the class labels: malignant and matched normal samples. We are attempting to de-

22
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sign a model that can find a discriminating function between cancerous and non-cancerous

samples. In unsupervised learning, only the samples are given, without the class labels.

Semi-supervised learning uses supervised learning class label knowledge as well as an un-

supervised method for grouping similar data.

Table 4.1: Example of a two-class classification problem that involves two types of cancer,
matched normal and malignant.

Samples t1 t2 t3 Class
S1 1 0 1 Malignant
S2 0 0 0 Matched normal
S3 0 0 1 Matched normal
Sk 1 1 0 Malignant

In this thesis, we use supervised learning approaches. Each sample has a class label

that indicates whether or not that sample is matched normal or malignant, or at a particu-

lar stages of prostate cancer. The input vectors are the transcripts that are extracted from

the preprocessing stage, which is discussed in Chapter 5. In the literature, transcripts are

referred to as features, variables, or attributes.

There are many algorithms that have been designed to work on classification problems.

In this thesis, we use support vector machine (SVM), random forest (RF), Naı̈ve Bayes, and

decision tree algorithms, as they worked efficiently for our data sets.

4.1.1 Support Vector Machine

SVM is a classifier that is often used to solve biological problems, among others. It works

efficiently in finding the discriminant function, which is based on the support vectors. There

are two types of classification problems: linearly and non-linearly separable data. Figure
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4.1 shows an example of linearly separable data. The data is plotted with transcript 1 on the

x-axis and transcript 2 on the y-axis. The green-colored points represent matched normal

samples, whereas the red-colored points represent malignant samples. The black-colored

points represent the support vectors.

The goal of an SVM is to find a line that separates the two classes. We can find many

different lines. The SVM tackles this problem by relying on the samples that are the most

difficult to classify, known as support vectors [7]. Initially, the support vectors are identi-

fied, and a line is found, which has the maximum distance from the two classes, this model

is known as hard margin. In Figure 4.1, D2 has the maximum distance as compared to D1;

therefore, line L2 is obtained.

Figure 4.1: SVM for linearly separable data.

Consider when the data is non-linearly separable; a line cannot separate the two classes.
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Imagine that, if the data is mapped to a higher dimension, then the line may separate the

data. However, transforming from one dimension to higher dimensions is computationally

expensive. SVM solves this problem by using the kernel trick. If the data becomes linearly

separable, then the line is drawn with the help of the support vectors to separate the classes.

The three most popular kernel methods are: linear, polynomial, and radial basis function.

All of them are used in our research.

Despite using kernel trick sometimes the data is still non-linearly separable [7]. In this

case, SVM uses slack variables on the original data set, which relax the constraints and

penalize the misclassified variable with a cost parameter [7]. The cost parameter is directly

proportional to the slack variable, and acts as a trade-off between the training error rate in

the classification and the maximum width of the margin; this model is termed as soft margin

[7].

4.1.2 Decision Tree

A decision tree is a supervised learning algorithm based on Quinlan’s algorithm used for

classification [30]. The decision tree algorithm builds a tree with a root node and leaves

[30]. The root node is selected based on the information gain value. First, the entropies of

the classes are calculated, and then the entropy of each feature is calculated [30]. Informa-

tion gain is the difference between the entropy of the classes and features [30]. The highest

information gain attribute acts as a root node, and each node is constructed based on the

information gain value. The tree is allowed to grow in this manner [30]. Lastly, patterns are

induced by starting from the root, making a decision at each node, following one branch at

each step, ending with a leaf node that corresponds to a certain class. One of the advantages

of the decision tree is that it is very easy to understand [30].
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4.1.3 Random Forest

Liaw et al. proposed the random forest classifier, which is a model that combines multiple

decision tree predictors [22]. In this classifier, the data set is divided into training and

testing sets. The training set is further divided into two subsets: in the bag and out of the

bag. Two thirds of the training samples are in the bag [22]. They are sampled in such a

way that the number of training samples is equal to the number of samples in the bag. The

sampling is done with replacement, and also known as bootstrapping [22]. The remaining

one-third of the data corresponds to the set that is out of the bag (OOB) [22]. In the bag

samples are input to the decision trees, which learn the classification rules from the given

data used to predict out of bag samples [22].

Figure 4.2 shows how the random forest works, when out of bag samples are given to

them as input. Each decision tree in the random forest will predict the class independently,

based on the OOB data. Each tree votes to which class each sample belongs. The total vote

count is calculated, and the majority-voted class is assigned to that sample. In the figure,

decision tree 1 and decision tree 2 voted for the + class; therefore, class + is assigned to the

sample. The decision tree is grown to the fullest, and there is no need for pruning. Random

forest is really fast and usually achieves very good accuracy for large data sets. For these

reasons, random forest was selected as one of our classification algorithms.
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Figure 4.2: Random forest example.

4.1.4 Naı̈ve Bayes

Naı̈ve Bayes is a classification algorithm that uses Bayes’ theorem [34]. It performs clas-

sification based on prior probabilities and likelihoods. Initially, consider a two-class classi-

fication problem [34]. The prior probabilities and likelihoods of both classes are measured

with respect to the new input [34]. Finally, the posterior probabilities for the two classes are

calculated [34]. The class that has the highest posterior probability value is assigned to that

sample [34]. Naı̈ve Bayes classification performance is good when the data is high dimen-

sional; that is the reason for which Naı̈ve Bayes was selected as one of the classification

algorithms [34].

4.1.5 Multi-class Classification

In multi-class classification, there are more than two classes. The classification of stages of

prostate cancer is an example of a multi-class problem. There are many ways to solve this
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problem. Two common approaches are one-against-all and one-against-one [22].

In one-against-all, each classifier is trained and tested on one class versus the remaining

classes [22]. If the data set has r classes, then r classifiers are built in this approach. A class

is assigned to new samples by the classifier that outputs the highest confidence score [22].

All classifiers solve the one-against-all problem in this way [22].

In one-against-one, the classifier is developed for pair-wise classes [22]. Each classifier

classifies a new sample with the class [22]. The class that receives the maximum number of

votes is assigned to that sample [22]. We have adopted a special case of the one-against-one

approach for our classification problem. The model is discussed in Chapter 5.

4.2 Feature Selection

Feature selection is a way of selecting a subset of features from the given data. It is used

to identify and eliminate noisy and redundant features, thereby reducing the dimensionality

of the data. Moreover, feature selection makes classification algorithms operate faster and

more effectively. The goals of feature selection are to reduce the classifier’s complexity and

increase classification accuracy as much as possible.

Consider a pseudo example given in Table 4.2, when all the features (t1, t2, and t3) are

used by the classification algorithm; classification may not work efficiently. However, if

we remove t2 and t3, classification might work better as compared to using all features.

Alternatively, if those features are removed then classifier may not necessarily be more

accurate, due to existing interaction among features. Thus, features that have the capability

to discriminate both classes are preserved, while others are removed by feature selection

algorithms. There are two types of feature selection techniques: filter and wrapper methods.

In the filter approach, statistical methods are mostly used to score each feature and filter
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out irrelevant features. These methods work very fast and ignore any dependencies among

the features. Chi-squared is one of those methods that is used in this research.

Table 4.2: Example of a two-class classification problem that involves two types of cancer,
matched normal and malignant.

Samples t1 t2 t3 Class
S1 1 0 1 Malignant
S2 0 0 0 Matched normal
S3 0 0 1 Matched normal
Sk 1 1 0 Malignant

4.2.1 Chi-squared

Chi-squared is a statistical model that calculates a statistical score based on the χ2 distribu-

tion. Initially, features are assumed to be independent, and χ2 values are calculated for all

features [23]. The features are then ranked by their χ2 value in descending order. We have

used chi-squared feature selection in our method, because it operates very quickly and is

less computationally-intensive than other methods in filtering features.

In wrapper methods, all the features are mapped into the feature subset space, and the

classification algorithm is used to select a subset of features. The major advantage of wrap-

per methods is that more informative features are selected, because they consider interac-

tions among the features. On the other hand, the disadvantage is that it is very slow when

there are a large number of features. Using wrapper methods also incurs a higher risk of

over-fitting the data. mRMR is a wrapper method used in our model.
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4.2.2 mRMR

Minimum redundancy and maximum relevance (mRMR) is a feature selection method that

depends on mutual information values. The mRMR technique is implemented as a wrap-

per methods, and its main concept is maximum dependency [29]. It selects features in a

two-step process. Initially, mRMR selects the most relevant subset of features that have

maximum relevance for the target class, that is, mutual information [29]. Consider again

the example of Table 4.2 Suppose that we use of features t1 and t2 features results in clas-

sification accuracy of 100%. If we then remove t2 and the classification accuracy is 100%

with only the feature t1, then it is useless to include t2 feature. This approach minimizes

redundancy among the selected subset of features. This is the key benefit of mRMR as

compared to other feature selection algorithms. Since in the main problem addressed in

this thesis we are looking for meaningful transcripts associated with prostate cancer pro-

gression, mRMR is used as a feature selection method. In addition, we have to choose a

classification algorithm, since mRMR is a wrapper method. An SVM with a linear kernel

was used because it yielded good results compared to other classification algorithms, as

shown later in the experimental results.

4.3 k-Fold Cross-Validation

In this work, k-Fold cross-validation is used for classifier validation. This validation method

works as follows. Initially, the input data are divided into k equal subsets. The classifier is

then trained on k-1 subsets and tested on the remaining part. Figure 4.3 illustrates 10-Fold

cross-validation; we have used 10-Fold cross-validation in our this thesis. The data set is

divided into ten equal subsets. Nine subsets are given to the classifier for training, and one



CHAPTER 4. MACHINE LEARNING 31

part is used for testing the model. This process is iterated 10 times. Finally, the mean of the

desired performance measure is calculated to evaluate the classifier.

Figure 4.3: Illustration of the k-Fold cross-validation process.

4.4 Performance Measures

Performance measures are required to compare the classifiers’ performance on the data sets.

Each classifier reports a confusion matrix, which helps in evaluating the performance of the

classifier. There are many performance measures that can be used to compare classifiers:

accuracy, F-measure, area under the curve (AUC), and the Matthews correlation coefficient

(MCC).

Figure 4.4 represents the formulas for calculating various performance measures. Con-

sider a classification problem in which there are two classes, positive and negative. In the

case of prostate cancer classification, the positives are malignant samples, and the nega-

tives are matched normal samples. In prostate cancer progression classification, the posi-

tives are the highest progressive stage, and the negatives are the lowest progressive stage.
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For instance, consider the classification of the T3a and T3b classes. The positives are T3b

samples, while the negatives are T3a samples.

Based on Figure 4.4, the actual classes are the labels associated with each original

sample, whereas the predicted classes are the classifier-predicted classes for the samples. A

true positive occurs when a positive sample is predicted as a positive sample, while a false

positive occurs when a negative sample is predicted as a positive sample. Similarly, a false

negative occurs when a positive sample is classified as a negative sample. Lastly, a true

negative occurs when a negative sample is classified as a negative sample.

Generally, accuracy is a good performance metric in the case of balanced data sets.

The higher the accuracy, the better the performance of the classifier is considered (see

Figure 4.4). Precision and recall refer to the positive samples. They focus on how well the

classifier classifies only the positive samples. Recall is also known as sensitivity or true

positive rate. The false positive rate is the difference between 1 and specificity. Precision is

the probability of a sample being positive and actually being predicted as positive. Precision

and recall are inversely proportional to each other. F-measure is the harmonic mean of both

precision and recall. The higher the harmonic mean, the better the classifier is considered.

As shown in the Figure 4.4, the Matthews correlation coefficient (MCC) is considered

to be a balanced performance measure to evaluate a classifier. Referring to the formula

in the figure, MCC deals with all positives and negatives from the confusion matrix. The

MCC value varies from -1 to +1. If the value is close to -1, then the classifier contradicts

the actual and predicted classes. If the value is +1, then the classifier is considered the best

classifier. If the value is 0, the classifier has performed a random prediction.
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Figure 4.4: Performance measures used to evaluate the efficiency of a classifier.

Finally, the receiver operating characteristic (ROC) is a graph that is used to measure

the performance of a classifier. In Figure 4.5, the false-positive rate is plotted on the x-axis,

while the true positive rate is plotted on the y-axis for different thresholds. If the classifier

is close to the northwest corner, that classifier is considered the best. If the classifier is

close to the southeast corner, that classifier is considered the worst. From the figure, curves

A, B, and C corresponds to the best, random, and worst classifiers, respectively. However,

a quantitative measure is better suited for comparing classifiers. Thus, the area under the

receiver (AUC) operating characteristic is calculated for this purpose. The classifier with

the highest AUC is said to be the best classifier.
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Figure 4.5: Receiver operating characteristic.

4.5 Conclusion

In this chapter, we discussed machine learning algorithms used for classification and feature

selection. We have also reviewed cross-validation and performance measures in order to

compare classifiers. In the next chapter, the method that we have developed is examined

via some computational experiments we performed.



Chapter 5

Methods

In this chapter, we discuss the methodology used to work on RNA-Seq data sets in order

to extract transcripts. These transcripts act as potential biomarkers for identifying prostate

cancer and estimating progression stages. Moreover, machine learning techniques, such

as classification and feature selection, were used on these transcripts to find those that are

differentially expressed.

5.1 Datasets

There are many RNA-Seq data sets available for prostate cancer and progression stages

[21]. We selected three data sets that deal with matched normal versus malignant prostate

cancer classification: Kim’s [15], Ren’s [33], and Kannan’s [13]. The data set from Long

et al. [23] was also used, which deals with classification of prostate cancer progression

stages with a large number of samples present in each stage. Ren’s data set used random

hexamer primers, while the other data sets used oligo (DT) primers. All these data sets

are in sequence read archive (SRA) file format and are publicly available from the national
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center for biotechnology information (NCBI) repository [32]. Details about the data sets are

shown in Table 5.1. The second column in the table represents the data set number used by

the NCBI repository [32]. Ren et al. researched prostate cancer in the Chinese population

using 14 matched prostate samples, whereas Kim et al. studied four matched normal and

seven malignant samples. Kannan et al. investigated ten matched prostate samples. Long’s

data set consists of 106 tumour samples.

Table 5.2 depicts the number of samples present in the various stages of prostate cancer

in Long’s data set. The first column in the table identifies the cancer stage, while the

second column specifies the number of patients per stage. The aligner tool that we use

accepts FASTQ/FASTA file formats. All the samples were converted from SRA to FASTQ

file format.

Table 5.1: Data sets used in our work.

Reference Data accession number Number of
samples

Study performed

Long et al. [25] GSE54460 106 malignant Identified differentially
expressed genes

Ren et al. [33] ERP000550 14 matched Identified gene fusions
and non-coding RNAs

Kim et al. [15] GSE29155 four matched
normal and
seven malig-
nant

Identified methylation
patterns

Kannan et al. [13] GSE22260 10 matched Identified alternative
splicing and gene
fusions
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Table 5.2: Long’s data set samples in different stages of prostate cancer

Prostate cancer stage Number of samples
T1c 14
T2 10
T2a 23
T2b 11
T2c 30
T3 2
T3a 6
T3b 8
T4 1

5.2 Data Preprocessing

All SRA file format samples were converted to FASTQ files and sent to the preprocessing

stage. Figure 5.1 shows a diagram for the preprocessing step performed on the data sets in

order to extract the transcripts. Tophat2 is used to align the reads. The inputs to Tophat2

are the FASTQ files from the patients and human genome (hg19) [17]. This tool outputs the

reads that are aligned to the reference genome, which are known as accepted reads. Cuf-

flinks is then used to perform transcriptome assembly. The inputs to this tool are accepted

reads and transcriptome annotation (RefSeq) [31]. Cufflinks outputs transcripts that are as-

sembled for which their abundance are calculated using FPKM values. This preprocessing

step is repeated for each sample.

For each data set, we constructed a table with transcripts the corresponding FPKM

values for each sample. Figure 5.2 shows a sample table, which contains the transcripts

and their FPKM values. We already know that each sample belongs to a matched normal

or malignant class, or to a different stage of prostate cancer. This is represented in the last

column as the class label.
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Figure 5.1: Preprocessing phase of our method: Tophat2 aligns the reads to the reference

genome, and Cufflinks assembles the transcriptome and estimates transcript abundance.



CHAPTER 5. METHODS 39

Figure 5.2: A sample input file for the classification algorithm. This file is the output of the

preprocessing phase.

5.3 Classification and Feature Selection

We have used Weka, a data mining tool that integrates feature selection and classification

algorithms [12]. Weka is an open-source Java tool developed by the University of Waikato

and is widely used for data mining in bioinformatics and other fields. Figure 5.3 shows

the pipeline of our proposed method. The preprocessing step produces a table that contains

transcripts and their FPKM values, as discussed in the previous section. In the figure,

there are two tables. The one on the left is for matched normal versus malignant tumour

classification, and the one on the right is for prostate cancer progression. These two tables

act as inputs to the feature selection algorithm, which will filter out noisy and redundant

transcripts.

The filtered transcripts are sent to the classification algorithms. The classifiers classify
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the samples based on the classification rules learned in the training phase. Finally, the

differentially expressed transcripts are obtained.

10-Fold cross-validation is performed on the classifiers to maintain their generalization

capability on the test set. Performance measures are used to evaluate the performance of

the classifiers on different data sets.

Figure 5.3: Pipeline of our method for matched normal versus malignant and prostate can-

cer progression classifications.
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5.3.1 Multi-class Problem

Since we deal with different stages of prostate cancer, we model the problem as a multi-

class classification problem. We have already discussed the multi-class problem in Chapter

4. For this research, we consider a special case of the one-against-one scheme.

All biological processes are continuous. Consider cancer progression, in which the can-

cer continuously grows at each stage. Moreover, we are interested in finding differentially

expressed transcripts between neighboring stages. In Long’s data set, we have resolved

the multi-class problem by comparing samples between neighboring stages, such as T1c

with T2, and T2 with T2a. Another challenge in Long’s data set is that there are very few

samples in some stages, such as T3 and T4. This may cause a classifier to suffer from the

problem of over-fitting, due to a large number of features. To avoid this, we have merged

T3 samples with the T3a stage into one class called T3a and T4 samples with the T3b stage

into a single class called T3b.

We are more concerned about finding differentially expressed transcripts from T2 to T3

stages, because they play a vital role in progression of prostate cancer. In the T3 stage,

the tumour growths rapidly and aggressively to eventually getting closer to the metastasis

stage. Therefore, in addition to considering neighboring stages, we have also added another

class as a result of merging all the samples from stages T3, T3a, T3b, and T4; we call this

class T34.

5.3.2 Feature Selection

Feature selection has been previously discussed in Chapter 4. We have used feature se-

lection because the preprocessing stage extracted 43,497 transcripts per sample. Applying

these features to the classification algorithms produces very poor performance, while being



CHAPTER 5. METHODS 42

an intractable problem. Due to irrelevant and noisy transcripts, the classification algorithms

performed very poorly. Thus, we have adopted to remove features that degrade classifica-

tion performance. We have used two feature selection techniques: chi-squared and mRMR.

Chi-squared is a filter method in which we have full control for selecting the number

of features we desire. We have selected the top 200 features, because the classifier’s per-

formance drastically decreased above 200 features. We send the selected features to the

classification algorithms in prioritized order, such as top 1, top (1,2), top (1,2,3), ..., and

top (1,2,3,..,200). The mRMR wrapper methods is also used to select the features. In this

method, we do not have any control on the number of features. The mRMR method uses

a classification algorithm to filter features. We experimented with different classification

algorithms. An SVM with a linear kernel worked the best on our data sets. Therefore, we

have used SVM with a linear kernel in the mRMR feature selection technique.

5.3.3 Classification

The selected transcripts are sent to the classification algorithms to perform classification.

The four classifiers discussed in Chapter 4 are applied: SVM (with linear, polynomial, and

radial basis function kernels), random forest, decision trees, and Naı̈ve Bayes.

SVM was selected due to better performance as compared to the other classifiers, espe-

cially on biological problems. Random forest is a very fast classifier, particularly on large

data sets. We have used 10 decision trees for random forest classifier. Decision trees also

work efficiently on similar data sets. Nevertheless, the Naı̈ve Bayes classifier produces

very good results on large data sets. All classifiers performed classification with default

parameters.

The transcripts filtered by feature selection techniques were added to the Weka tool.
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Then, the classification algorithms were selected accordingly and applied with default pa-

rameters. These algorithms identify differentially expressed transcripts, Weka provides

performance measures to evaluate the learning algorithms.

5.3.4 Performance Evaluation

We have used 10-Fold cross-validation. The positives in the two-class problem are malig-

nant samples, and the negatives are matched normal samples. In the case of progression,

which is modeled as a multi-class problem, the top stages are considered positives, while

the others as negatives. For example, in T3a and T3b classification, the positives are the T3b

samples, and the negatives are the T3a samples. This process is repeated for all other stages.

We selected two performance measures, accuracy and AUC, for comparison of classifiers

and analysis of results. This is discussed in detail in Chapter 6.

5.4 Biological Significance

Finally, differentially expressed transcripts were obtained from the matched normal versus

malignant classification and prostate cancer stage classification. We have found some bio-

logical knowledge about of these transcripts. The NCBI website [28] provides information

on the transcripts, such as location (locus) in the corresponding chromosome, genes, and

other biological information. The transcripts that are common among both matched normal

versus malignant or stages were selected for biological significance. A literature review

was performed on these selected transcripts for biological significance, any previously-

identified relationships to prostate cancer and other types of cancers.
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5.5 Comparison with other methods

We have compared our model with CuffDiff, which is a part of the Cufflinks package and a

differential-expression tool [3]. CuffDiff performs a statistical test based on Benjamini and

Hochberg multiple testing [3]. First, the p-value is determined and then the q-value, which

is a multiple test-corrected value calculated for each feature. More details about finding

the p-value and q-value can be found in [3]. If the p-value is greater than the q-value, that

feature is said to be significant or differentially expressed.

Figure 5.4 shows a workflow for the model we use for comparison. The assembled

transcripts from Cufflinks act as input to CuffMerge, which is also part of the Cufflinks

package. CuffMerge combines all the transcripts from different samples. We have used

CuffDiff with default parameters to find differentially expressed transcripts. The merged

transcripts from CuffMerge act as input to CuffDiff with matched normal versus malignant

or different stages. To compare the CuffDiff results with our model, these differentially

expressed transcripts act as input to the classification algorithms used in our model. Then,

performance measures were used to evaluate as discussed in Chapter 6.
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Figure 5.4: Workflow for the model we use for comparison.

5.6 Conclusion

To conclude this chapter we highlight that our method has been described in detail in this

chapter. We discussed the data sets used in our model, the preprocessing phase, and the

pipeline for the model used in our research. We have evaluated our method with perfor-

mance measures and compare it with existing methods. In the next chapter, the results are

provided and discussed in detail.



Chapter 6

Results and Discussion

In this chapter, the results are organized in matched normal versus malignant and prostate

cancer stage classifications. In each section, performance measures and biological signifi-

cance are discussed.

6.1 Matched Normal Versus Malignant Classification

The matched normal versus malignant classification was performed on three data sets. The

transcripts extracted from the preprocessing stage were processed by two feature selection

techniques. Subsequently, classification and feature selection algorithms were employed to

find differentially expressed transcripts.

6.1.1 Performance Measures

The two feature selection techniques, chi-squared and mRMR, were applied to the tran-

scripts. Several classification algorithms were used on the filtered transcripts: SVM (with

linear, and RBF kernels), random forest, decision trees, and Naı̈ve Bayes. Due to its poor
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performance, the polynomial kernel was omitted from our model. The accuracy and AUC

performance measures were visualized for each classifier.

mRMR Feature Selection

Applying mRMR feature selection to Kannan’s, Ren’s, and Kim’s data sets resulted in the

identification of 2, 1, and 5 transcripts, respectively. These transcripts were input to each

classifier, and performance measures for each classifier were recorded. Figures 6.1 and 6.2

show the performance measures, accuracy and AUC, respectively. In Figure 6.1, the x-axis

represents the three data sets, while the y-axis represents accuracy. In Figure 6.2, the x-axis

shows the three data sets, and the y-axis indicates the AUC values that are obtained. The

SVM with a linear kernel outperformed the other classifiers for the three data sets.

SVM with linear kernel performed good on the Kannan’s data set, because the kernel

trick of implicitly mapping of features to another dimension make them linearly separable.

On Ren’s data set, random forest and Naı̈ve Bayes classifier performance was comparable

to the SVM with a linear kernel. In Kim’s data set, all four classifiers achieved high accu-

racy and AUC values, because this data set has seven malignant and four matched normal

samples.

Chi-squared Feature Selection

Similarly, chi-squared feature selection was applied to the transcripts obtained from the

preprocessing stage. We have selected the top 200 transcripts, because the performance of

the classifiers decreased drastically above that number.

The SVM with a linear kernel is visualized for chi-squared feature selection, because

it performed the best among the four classifiers. Figure 6.3 illustrates the accuracy of the
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Figure 6.1: Accuracy of classifiers for matched normal versus malignant classification using
mRMR feature selection.

Figure 6.2: AUC of classifiers for matched normal versus malignant classification using
mRMR feature selection.
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SVM classifier with a linear kernel as a function of the number of features. Similarly, Figure

6.4 depicts the AUC for the SVM with linear kernel as a function of the number of features.

In both figures, blue, red, and green-coloured lines represent Kannan’s, Ren’s, and Kim’s

data sets, respectively.

The performance of the SVM with linear kernel fluctuated on Kannan’s data set until

65 features were used. Performance stabilizes at 110 features, indicating that the top 110

features provide the classifier good discriminative power. The classifier achieved 100% ac-

curacy and good AUC values on Ren’s data set when the number of features was greater

than 20. Performance using the top 20 features was unstable and made classification dif-

ficult to perform, due to noisy features. On Kim’s data set, all combinations of features

achieved 100% accuracy, because there are fewer samples: four matched normal and seven

malignant samples.

6.1.2 Biological Significance

Table 6.1 shows matched normal versus malignant differentially expressed transcripts. Kan-

nan’s, Kim’s, and Ren’s data sets have 4, 4, and 6 transcripts, respectively. We have

found three common transcripts (red-colored transcripts in Table 6.1), which were in-

vestigated about their biological relevance for prostate cancer. Transcripts NM 019024,

NM 001242889 and NR 024490 were present in the ”HEAT repeat containing 5B (HEATR5B),

Dopa Decarboxylase (DDC), and GABPB1 antisense RNA 1 (GABPB1-AS1)” genes, re-

spectively [28]. HEATR5B and DDC gene transcripts were common between Kannan’s

and Kim’s data sets. The GABPB1-AS1 gene transcript was common between Ren’s and

Kim’s data sets. Additional biological information regarding transcripts such as location

(locus) in the corresponding chromosome, genes can be found in appendix.
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Figure 6.3: Accuracy of SVM with linear kernel for matched normal versus malignant
classification using chi-squared feature selection.

Figure 6.4: AUC of SVM with linear kernel for matched normal versus malignant classifi-
cation using chi-squared feature selection.
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Figure 6.5 shows the average of transcript abundance for matched normal and malig-

nant. The bars represent mean FPKM values for three selected transcripts. The mean

FPKM values were calculated for both malignant and matched normal samples in the three

data sets. The mean value is considered because it is not biased by the number of samples.

We observe from the figure that NM 001242889 is differentially expressed in malignant

samples in comparison to matched normal samples. Avgeris et al. researched DDC and

found that it was over-expressed in cancer samples as compared to matched normal sam-

ples [2]. Similar patterns were observed in our work, which suggests that NM 001242889

present in DDC gene is a relevant biomarker for prostate cancer.

6.2 Prostate Cancer Progression

Likewise, in prostate cancer progression, two feature selection techniques were employed

with different classifiers. Long’s data set was used to find differentially expressed tran-

scripts. As discussed in Chapter 5, the stages in prostate cancer corresponds to the class

labels. The feature vectors were input to the classifiers, and classification performance was

graphically visualized. Finally, some of the common transcripts were selected to determine

biological significance.

6.2.1 Performance Measures

Two feature selection techniques, chi-squared and mRMR, were used on the data sets fol-

lowed by the application of the classification algorithms. The performance measures ac-

curacy and AUC are discussed next for each pair-wise stage comparison in Long’s data

set.
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Table 6.1: Matched normal versus malignant differentially expressed transcripts.

Figure 6.5: Expression trend of matched normal versus malignant transcripts.
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mRMR Feature Selection

In the mRMR feature selection technique, there is no control of which features are selected

because it is a wrapper method. This technique resulted in the identification of 44 transcripts

for the set of all pair-wise stages. Table 6.2 shows the transcripts obtained for different

stages of prostate cancer. The pair-wise stages T1c-T2, T2-T2a, T2a-T2b, T2b-T2c, T2c-

T3a, T3a-T3b, and T2c-T34 have 6, 7, 6, 5, 5, 3, and 12 transcripts, respectively.

Figures 6.6 and 6.7 depict the performance of the transcripts selected by mRMR for

Long’s data set. The figures show the accuracy and AUC, respectively, for each classifier

on each category of prostate cancer stage. Both figures show that the performance of SVM

with a linear kernel is better than those of the other classifiers, especially in the case of

T1c-T2 and T3a-T3b. The features of this classifier help find a discriminative function

effectively. On the other hand, all other classifiers face noise with their features and are

unable to achieve comparable performance.

Chi-squared Feature Selection

In chi-squared feature selection, the top 200 features were selected because of the decrease

in classifier performance after that point. We have visualized the performance of the SVM

with a linear kernel, because it achieved the highest performance for all pairs of stages

compared to other classifiers.

Figures 6.8 and 6.9 show accuracy and AUC, respectively, of the transcripts when the

SVM with a linear kernel was applied to the selected features. The x-axis represents the

features, while the y-axis represents accuracy and AUC.

For all the pair-wise stages, the performance of the top 25 features is very poor. Af-

ter that point, the selected features interact with each other and significantly improve the



CHAPTER 6. RESULTS AND DISCUSSION 54

Figure 6.6: Accuracy of classifiers for pair-wise stage classification using mRMR feature
selection.

Figure 6.7: AUC of classifiers for pair-wise stage classification using mRMR feature selec-
tion.
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performance of the classifiers. In the T3a-T3b classification, performance is good until the

top 120 features are reached. Beyond that, performance decreases drastically to 95%, in-

stead of increasing. This indicates that feature selection does not always yield good results.

Accuracy and AUC remain stable for stage T2-T2a.

6.2.2 Biological Significance

The transcripts shown in the Table 6.2 were obtained by using feature selection tech-

niques. We have found NM 032023 was differentially expressed between T2a-T2b and

T2b-T2c pair-wise stages. In T2c-T34 classification, we observed four (red-colored tran-

scripts) transcripts that were already associated with different types of cancer. Therefore,

all the five transcripts were filtered for biological significance. Transcripts NM 032023,

NR 003004, NM 003940, NM 000959, and NM 017753 were present in the Ras associa-

tion (RalGDS/AF-6) domain family member 4 (RASSF4), small Cajal body-specific RNA

22 (SCARNA22), ubiquitin specific peptidase 13 (USP13), prostaglandin F receptor (FP)

(PTGFR), and lipid phosphate phosphatase-related protein type 1 (LPPR1) genes, respec-

tively.

Previous surveys suggest that the transcripts selected by our method are closely related

to different types of cancer. Eckfeld et al. investigated RASSF4, which is a tumour suppres-

sor in human cancer cells, and is found to be downregulated in lung cancer [10]. Ronchetti

et al. observed that SCARNA22 was over-expressed in cancer cells [36]. Researchers pre-

viously found that the absence of USP13 indicates malignancy in breast cancer. USP13

binds to preserve Phosphatase and tensin homolog (PTEN), which is a tumor suppressor

[48]. Romanuik et al. found that PTGFR was previously associated with different types

of cancer, particularly breast, ovarian, and renal cancers [35]. Langlois et al. investigated
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Figure 6.8: Accuracy of SVM with linear kernel for pair-wise stage classification using
Chi-squared feature selection.

Figure 6.9: AUC of SVM with linear kernel for pair-wise stage classification using Chi-
squared feature selection.
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LPPR1 and found that it promotes cancer cell growth to metastasis [16].

Figure 6.10 shows the expression trend of Long’s data set transcripts. The x-axis shows

the different stages of prostate cancer, while the y-axis shows the average FPKM values.

The mean of the FPKM values was used to remove any bias due to the imbalance in the

number of samples present in the different stages. We observe that transcript NR 003004

present in SCARNA22 gene is differentially expressed in the T3b stage. NM 003940

present in USP13 gene is differentially expressed in the T2c stage; that transcript behavior

was observed in breast cancer tumorigenesis [48]. These observations suggest the potential

of the biomarkers found in our study.

6.3 Comparison with CuffDiff

We have used CuffDiff, which is part of the Cufflinks package, for comparison with our

method. CuffDiff uses statistical approaches, while our method uses machine learning

techniques to extract differentially expressed transcripts. These transcripts act as input to

the classification algorithms, and the corresponding performance measures were calculated.

Figures 6.11 and 6.12 illustrate CuffDiff and our model selected transcripts’ accuracy

performance on different classifiers. The stages are plotted on the x-axis, while accuracy

values were plotted on the y-axis. It can be inferred from the figures that CuffDiff selected

transcripts accuracy values were below 90%. However, the accuracy values of our method

were above 95% for SVM with linear kernel. The features that CuffDiff selected were not

capable of performing adequate classification.

Figures 6.13 and 6.14 illustrate CuffDiff and our model selected transcripts’ AUC per-

formance on different classifiers. The stages are plotted on the x-axis. AUC values were

plotted on the y-axis. Both figures depict that AUC values of our method were above 0.9 for
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Table 6.2: Long’s data set differentially expressed transcripts across different stages.

Figure 6.10: Expression trend of Long’s data set transcripts.
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all the pair-wise stages with SVM (linear kernel). On the other hand, CuffDiff’s selected

transcripts performed poor classification as AUC values for most of the classifiers were

around 0.5. Therefore, this comparison suggests that our method obtained good results

when compared to CuffDiff’s selected transcripts.

6.4 Conclusion

In this chapter, we have briefly discussed the performance measures across different clas-

sifiers for the two feature selection techniques used. We have also compared the existing

CuffDiff tool with our method. We found that our method achieved higher performance

than CuffDiff. In the next chapter, conclusions and future work are discussed.
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Figure 6.11: Accuracy of classifiers for CuffDiff selected transcripts on Long’s data set.

Figure 6.12: Accuracy of classifiers for our method selected transcripts on Long’s data set.
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Figure 6.13: AUC of classifiers for CuffDiff selected transcripts on Long’s data set.

Figure 6.14: AUC of classifiers for our method selected transcripts on Long’s data set.
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Conclusions and Future Work

In our research, we are given data sets of RNA-Seq reads that belong to different samples,

each associated with a matched normal or malignant sample or a particular prostate cancer

stage. We have developed a new method that is used to identify differentially expressed

transcripts that are associated with matched normal versus malignant or different stages of

prostate cancer. Ideally, these transcripts can be used for improving diagnosis, treatment,

and drug development.

To solve the above problem, we extracted transcripts that act as potential biomarkers

from RNA-Seq reads, with the help of a tuxedo approach, and applied powerful feature

selection and classification algorithms to find discriminative transcripts that are related to

prostate cancer and its different stages.

Finally, we found the biological relevance of a few, selected transcripts. All these tran-

scripts tend to be very closely related to prostate cancer and other types of cancers, sug-

gesting them as potential biomarkers for further wet-lab studies. Our method outperformed

existing approaches (CuffDiff) for finding differentially expressed transcripts.

62
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7.1 Contributions

In this work, we introduce a novel model that integrates emerging RNA-Seq technology

with machine learning approaches to find relevant discriminative transcripts for the different

stages of prostate cancer.

The main contributions are:

• Developing an integrative model that uses feature selection to choose a subgroup of

transcripts and classification techniques to find the potential transcripts for different

stages of prostate cancer.

• Identifying novel transcripts as potential biomarkers for prostate cancer progression.

7.2 Future Work

The results achieved by our model are closely related to prostate cancer and are highly rec-

ommended for further biological experiments. Our method has a few limitations. Since

prostate cancer data sets were used, we are limiting our model to prostate cancer only. Our

model requires a large number of samples for each progression stage. We have used two

feature selection techniques and four classification algorithm due to the limited computa-

tional resources available. Due to fewer samples in the metastasis stage we could not work

on classification of metastasis and non-metastasis.

The future work is as follows:

• The tuxedo suite approach is used for extracting the transcripts. However, different

combinations of RNA-Seq tools might yield even better results.
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• Different combinations of feature selection techniques, as well as classification algo-

rithms, may result in more potential transcripts.

• We could classify the samples based on metastasis and non-metastasis, which may

provide other biological significant transcripts.

• The transcripts obtained by our model can be used for wet laboratory experiments for

further biological analysis.

• Our model could also be extended to other types of cancers and their progression

stages.

• Gene ontology can be performed on the genes in which our potential transcripts are

present.



Appendix A

Documentation to run tools

A.1 SRA Conversion

The data set files are in SRA file format and Tophat2 accepts FASTQ file format, therefore,

we need to convert SRA to FASTQ format. We have downloaded SRA toolkit from NCBI

website. The following command is used to convert SRA to FASTQ file format.

• fastq-dump -A SRR057658 --split-3 SRR057658.sra

A.2 Mapping to Reference Genome using Tophat2

Tophat2 is used for aligning reads to the reference genome. To download and install

Tophat2 tool refer to https://ccb.jhu.edu/software/tophat/tutorial.shtml.

Bowtie index can be download from http://bowtie-bio.sourceforge.net/index.

shtml. The following command is used to run tophat2 tool

• $tophat2 -o Output -p 8 Bowtie Index SRR057658.fastq
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A.3 Transcriptome Assembly using Cufflinks

We have used the Galaxy suite for running Cufflinks for transcriptome assembly. Galaxy

can be accessed at http://usegalaxy.org. First one has to create an account. Then we

have to upload the accepted reads, and RefSeq transcript annotation to the Galaxy. We

executed Cufflinks for all the samples.

A.4 Differential Expression using CuffDiff

CuffDiff is used to find differential expression transcripts, it was installed on linux machine.

CuffDiff tool is part of Cufflinks package. The following command is used to run the

Cuffdiff tool.

• $ cuffdiff -o Output-p 8 --labels Cond A,Cond B Accepted reads

http://usegalaxy.org
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Supplementary Results

Table B.1: Biological significance of Long’s data set transcripts across T1c-T2 pair-wise
stage.

Transcript Chr Type Description Gene
NR 003669 16 ncRNA metallothionein 1I, pseu-

dogene (MT1IP), transcript
variant 1

MT1IP

NM 001160393 11 mRNA tRNA phosphotransferase 1
(TRPT1), transcript variant 6

TRPT1

NM 001161345 12 mRNA checkpoint with forkhead and
ring finger domains, E3 ubiq-
uitin protein ligase (CHFR),
transcript variant 2

CHFR

NM 052857 17 mRNA zinc finger protein 830 ZNF830
NR 003594 8 ncRNA RNA exonuclease 1 homolog

(S. cerevisiae)-like 2
REXO1L2P

NR 033240 14 lncRNA SLC25A21 antisense RNA 1
(SLC25A21-AS1)

SLC25A21
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Table B.2: Biological significance of Long’s data set transcripts across T2-T2a pair-wise
stage.

Transcript Chr Type Description Gene
NM 004860 17 mRNA fragile X mental retardation,

autosomal homolog 2
FXR2

NM 052850 19 mRNA growth arrest and DNA-
damage-inducible, gamma
interacting protein 1

GADD45GIP1

NM 001272095 16 mRNA syntaxin 4, transcript variant
1

STX4

NM 001261390 17 mRNA calcium binding and coiled-
coil domain 2, transcript vari-
ant 1

CALCOCO2

NM 153274 1 mRNA bestrophin 4 BEST4
NM 001252641 19 mRNA prefoldin-like chaperone,

transcript variant 3
URI1

NR 038352 5 ncRNA decapping mRNA 2, tran-
script variant 3

DCP2
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Table B.3: Biological significance of Long’s data set transcripts across T2a-T2b pair-wise
stage.

Transcript Chr Type Description Gene
NM 032023 10 mRNA Ras association

(RalGDS/AF-6) domain
family member 4

RASSF4

NM 080792 20 mRNA signal-regulatory protein al-
pha (SIRPA), transcript vari-
ant 3,

SIRPA

NM 000095 19 mRNA cartilage oligomeric matrix
protein

COMP

NM 003102 4 mRNA superoxide dismutase 3, ex-
tracellular

SOD3

NM 080797 20 mRNA death inducer-obliterator 1,
transcript variant 3

DIDO1

NM 002725 1 mRNA proline/arginine-rich end
leucine-rich repeat protein,
transcript variant 1

PRELP

Table B.4: Biological significance of Long’s data set transcripts across T2b-T2c pair-wise
stage.

Transcript Chr Type Description Gene
NM 001711 X mRNA Homo sapiens biglycan BGN
NM 032023 10 mRNA Ras association

(RalGDS/AF-6) domain
family member 4

RASSF4

NM 001014443 1 mRNA ubiquitin specific peptidase
21, transcript variant 3

USP21

NM 021724 17 mRNA nuclear receptor subfamily 1,
group D, member 1

NR1D1

NM 012098 9 mRNA angiopoietin-like 2 ANGPTL2
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Table B.5: Biological significance of Long’s data set transcripts across T2c-T3a pair-wise
stage.

Transcript Chr Type Description Gene
NM 001198979 1 mRNA small ArfGAP2 (SMAP2),

transcript variant 2
SMAP2

NM 001099285 2 mRNA prothymosin, alpha (PTMA),
transcript variant 1

TMSA

NM 001198899 1 mRNA YY1 associated protein 1
(YY1AP1), transcript variant
6

YY1AP1

NM 001130048 13 mRNA dedicator of cytokinesis 9
(DOCK9), transcript variant
2

DOCK9

NM 000899 12 mRNA KIT ligand (KITLG), tran-
script variant b

KITLG

Table B.6: Biological significance of Long’s data set transcripts across T3a-T3b pair-wise
stage.

Transcript Chr Type Description Gene
NR 034169 2 ncRNA family with sequence similar-

ity 133, member D
FAM133DP

NM 015380 22 mRNA SAMM50 sorting and assem-
bly machinery component

SAMM50

NR 046417 15 ncRNA olfactory receptor, family 4,
subfamily F, member 13,
pseudogene

OR4F13P
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Table B.7: Biological significance of Long’s data set transcripts across T2c-T34 pair-wise
stage.

Transcript Chr Type Description Gene
NM 001257413 17 mRNA IKAROS family zinc finger

3 (Aiolos) , transcript variant
12

IKZF3

NM 003940 3 mRNA ubiquitin specific peptidase
13 (isopeptidase T-3)

USP13

NM 001142274 2 mRNA cytoplasmic linker associated
protein 1, transcript variant 3

CLASP1

NM 001199165 17 mRNA centrosomal protein 112kDa,
transcript variant 3

CEP112

NM 052965 1 mRNA tRNA splicing endonuclease
subunit, transcript variant 1

TSEN15

NM 001195283 14 mRNA feline leukemia virus sub-
group C cellular receptor
family, member 2, transcript
variant 2

FLVCR2

NM 001023567 15 mRNA golgin A8 family, member B,
transcript variant 1

GOLGA8B

NM 001143766 10 mRNA zinc finger protein 438, tran-
script variant 1

ZNF438

NR 003004 4 snoRNA small Cajal body-specific
RNA 22

SCARNA22

NM 017753 9 mRNA lipid phosphate phosphatase-
related protein type 1, tran-
script variant 2

LPPR1

NM 000959 1 mRNA prostaglandin F receptor
(FP), transcript variant 1

PTGFR

NM 004772 5 mRNA neuronal regeneration related
protein, transcript variant 1

NREP
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Table B.8: Biological significance of matched normal versus malignant classification tran-
scripts.

Data
set

Transcript Chr Type Description Gene

Kannan
NM 019024 2 mRNA HEAT repeat contain-

ing 5B
HEATR5B

NM 001242889 7 mRNA dopa decarboxylase
(aromatic L-amino acid
decarboxylase)

DDC

NM 152228 1 mRNA taste receptor, type 1,
member 3

TAS1R3

NM 001204401 X mRNA X-linked inhibitor of
apoptosis, E3 ubiquitin
protein ligase

XIAP

Kim
NR 024490 15 lncRNA GABPB1 antisense

RNA 1
GABPB1-
AS1

NM 001242889 7 mRNA dopa decarboxylase
(aromatic L-amino acid
decarboxylase)

DDC

NM 019024 2 mRNA HEAT repeat contain-
ing 5B

HEATR5B

NM 032415 7 mRNA caspase recruitment do-
main family, member
11

CARD11

Ren

NR 024490 15 lncRNA GABPB1 antisense
RNA 1

GABPB1-
AS1

NM 001128826 9 mRNA neuronal calcium sen-
sor 1

NCS1

NM 000494 10 mRNA collagen, type XVII, al-
pha 1

COL17A1

NM 000700 9 mRNA annexin A1 ANXA1
NM 005567 17 mRNA lectin, galactoside-

binding, soluble, 3
binding protein

LGALS3BP

NM 000424 12 mRNA keratin 5, type II KRT5
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