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ABSTRACT 

 

 The numerical assessment of dental tissues is essential when selecting a 

relevant treatment protocol in the field of dentistry. This will have significant 

ramifications on the restoration quality of dental tissues. 

 The aim of the research study presented in this thesis was to validate 

applicability and obtain non-invasively, quantitative data for hard and soft tissue 

thickness in dental applications. An ultrasonic system was developed and 

assembled for the purpose of these experiments. Numerous laboratory trials were 

conducted to validate system performance against traditional and destructive 

methods of assessment. 

 Ultrasonic measurements were found to yield similar values to those 

obtained from invasive methods. Results obtained in these experiments have 

validated potentials of ultrasound as a supplementary diagnostic tool for dental 

healthcare. 
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CHAPTER 1.  

INTRODUCTION 

 

 Ultrasound is a well known and established technique used in many various 

fields. The most common use of this technology is in the field of medical diagnostics and 

in the industry known as Non-Destructive Evaluation (NDE). There are many other 

popular applications including therapeutics in medicine, industrial cleaning, mixing, 

chemical process acceleration, and ultrasonic welding. In addition, more general 

utilizations exist such as distance detection and layer thickness measurements. The main 

difference between all mentioned applications is the characteristic parameters of the 

propagated waves through the medium of interest, mainly power and frequency. These 

two features govern the applicability of ultrasound regarding whether the system is for 

diagnosis, therapy or other uses. 

 In the medical field, ultrasound technology can be distinguished by two main 

applications as mentioned before: therapeutical and diagnostic. Both are highly 

specialized and differ significantly in requirements for safety and system performance. In 

therapy, higher intensity waves can interact with the tissue to generate therapeutic heat or 

damage (for instance lithotripsy). In imaging however, ultrasound has achieved renowned 

success as a result of its portability and generally low cost in comparison to other 

available modalities. At the same time it has attained a comparably high resolution as 

well as a lack of bioeffects. 

 Ultrasound has been used intensively and has obtained its popularity mostly in 

obstetrics and gynecology due to its harmlessness. Currently, this technology has become 

very popular in many fields of medicine. 

 The main idea about ultrasound for the purpose of diagnosis involves a system 

which consists of both hardware and software. The hardware is usually represented by a 

computer module connected to a digitizer with a pulser/receiver circuit and signal 

conditioning. An electronic pulse controlled from the computer drives the transducer 

which generates ultrasonic short-time waves (pulse-echo mode). The waves penetrate a 

targeted object and interact with its interfaces and volumetric structure. Reflected signals 
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are received by the same transducer, amplified, digitized and transferred to the computer 

for further analysis. Data can be presented in a variety of different modes such as the 

amplitude mode, also referred to as an A-scan. It is a representation of the amplitude of 

reflected echoes in the time domain. Conversely, a B-scan representation is a two-

dimensional image. The amplitude data from each A-scan is presented as a vector of gray 

scale pixels alongside positioning information of the transducer (usually linear translation 

or rotation by a stepper motor or multi-element array). Less popular in medical 

applications is the M-scan presentation (also known as a time-motion scan). It is a two-

dimensional presentation however there is no transducer displacement involved. These 

recorded A-scans are obtained from the same position as a function of time. There are 

numerous other presentations available in the ultrasound field, for instance C-scan in the 

scanning acoustic microscopy or Doppler presentation in fluid velocity measurements. 

 There is a niche for ultrasonic devices in highly specified, narrow-band 

applications. Requirements posed by mechanical parameters, geometry and accessibility 

of objects in most of these cases limit usage of traditional ultrasonic systems and 

generating an area where much study is required for new developments. All experimental 

work was conducted on specifically designed phantoms and porcine cadaver samples 

with cross-sectional views exposed for validation purposes. The measurement results 

were also compared to dental gold standard techniques commonly used in everyday 

practice. 
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1.1. Project Motivation and Background 

 The motivation for the research performed and described in this thesis is the 

demand for systems used for non-invasive diagnostics in dentistry. The enamel and 

gingival thickness cannot be assessed accurately using available modalities due to 

accessibility and resolution issues. Traditional dental non-invasive diagnostic methods 

include visual assessment based on the practitioner’s experience, non-direct 

measurements involving a correlation (for instance coronal size to gingival thickness 

ratio) and gauging with poorly scaled simplistic dental tools. The gap between 

requirements could be filled by utilizing ultrasound technology. The challenge in the 

system is to find the trade-off between ultrasonic parameters, depth of wave propagation 

and resolution to be capable of obtaining expected measurements.  

 It must also be mentioned, that currently, there is no dental ultrasonic diagnostic 

device available on the market. However, recent literature shows promising results and 

prototype developments for this application. 

1.2. Dental Anatomy 

 A typical human adult has 32 teeth, evenly divided in the maxilla and the 

mandible. Each tooth has a layered structure composed of hard enamel, a bone-like 

dentin, and a root canal containing nerves and blood vessels. All the teeth are surrounded 

and supported by a dental periodontium which consists of 3 main components: a gingiva 

(gums), a periodontal ligament and an alveolar bone [Fig. 1.1]. 
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Figure 1.1 The diagram presents a schematic cross-sectional view of a periodontium and a tooth. 

 In general, a tooth could be divided into a coronal and root piece (embedded in 

the bone). From the buccal and labial side, a gingival tissue covers the surface of the bone 

crest. There are 4 anatomical areas on the gingiva surface, starting from the gingival 

margin, and moving towards an apical direction: first is the free marginal gingiva, which 

creates a dental pocket (physiological depth should not exceed 3 mm). Next is the 

attached gingiva; it is a keratinized part of the soft periodontal tissue with increased 

resistance to possible external injuries as well it stabilizes the gingival margin [1]. The 

mucogingival junction (MJ) is an important navigational point in a periodontium. 

Distance between probed pocket depth and MJ is critical and it can represent 

mucogingival defects. The last element is the alveolar mucosa. It is a membrane located 

apically to MJ, covering the alveolar process and loosely attached to the bone. Figure 1.2 

presents the frontal view of a human periodontium with commonly used navigation 

points in periodontology. 
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Junction Gingival Margin 

 
Figure 1.2 The labial view of a human periodontium. Two white spots above #11 tooth (according to FDI World 
Dental Federation notation) are the proposed measurement points for gingival thickness assessment described in 

detail in the later chapters. 

1.2.1. Dental Tissues – Structure, Mechanical and Acoustical Properties 

 Hard dental tissues are composed from a combination of minerals, proteins and 

water where the soft parts of the human periodontium mostly consist of water. The 

enamel layer is considered the hardest tissue in the human organism and its thickness is 

not uniform over the tooth surface, it is broad at the masticatory surface and becomes 

narrow towards the apical direction. In most cases, it does not exceed 3 mm in thickness. 

Internally, enamel has a rod (prism) structure with a diameter of 4-6 µm. It is composed 

of various apatites: hydroxyapatite, carbonapatite and chlorapatite which are the major 

prism units [Fig. 1.3]. Inorganic compounds constitute the majority of the enamel mass 

while the rest is water and proteins. The matrix supports maximum stress from the 

enamel surface up to the dentin-enamel junction (DEJ) [2]. 
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Figure 1.3 The enamel is composed of organized hydroxyapatite crystalities (a, b, d) that are arranged into 
micrometer-sized prisms (c, e). (a) Atomic force microscope (b) (c) scanning electron microscope images of the 
enamel surface. (d) Transmission electron microscope image. (e) Image of a cross-section of the enamel [3]. 

 The basic inorganic material of dentin is known to be potassium phosphate 

(around 70 % of its volume). Similar to the enamel, dentin also contains water and 

proteins. Dentin has a tubular structure which runs continuously from the DEJ to the pulp 

chamber in the root. The number of micro tubes ranges from 30000 to 75000 per 1 mm2 

[4], [5]. 

 An important part of the human periodontium is the cementum which acts as a 

natural protective layer over a dentin. It consists of mineralized connective tissues 

resembling bone and acts as an anchor to gingival and periodontal fibers. Opposite to 

cementum, the periodontal ligament has neural and vascular components. The main 

function of that connective tissue is to join the cementum and alveolar bone. It is also a 

shock–absorber with various resistance mechanisms providing protection from light as 

well as greater forces. The last of the crucial elements of periodontium is the alveolar 

bone. The alveolus (tooth housing) is composed of a thin plate of cortical bone. The rim 

on the top of the bone is called an alveolar crest (the bone edge). In normal conditions, 

the distance between the crest and cement-enamel junction should be around 1 to 2 mm 
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and it is a determinant of biological width (distance from gingival margin to alveolar 

crest) [6]. Mechanical and acoustical properties of chosen components of a human dental 

periodontium and teeth are listed below [Tab. 1.1].  However, it should be noted that the 

evidence of anisotropy and inhomogeneity were reported in the literature as well as effect 

of acoustic dispersion [7], [8]. Moreover, the influence of wear, age, tooth types, storage 

and measurement conditions on mechanical properties have been analyzed in the present 

study [9], [10], [11]. 

 
Table 1.1 Averaged mechanical and acoustical properties (rough estimation with max error of 20 %) of chosen 

hard and soft dental tissues [7]- [12]. 

Tissue Elastic 

Modulus 

[𝑮𝑷𝒂] 

Poisson’s 

Ratio 

Density 

[𝒌𝒈 𝒎𝟑⁄ ] 

𝑽𝑳 

[𝒎 𝒔⁄ ] 

Acoustic 

Impedance 

[𝑴𝑹𝒂𝒚𝒍] 

Enamel 130 0.33 2970 6250 18.8 

Dentine 14.7 0.31 2140 3800 7.6 

Bone 

(cortical) 

14.7 0.30 1300 3700 4.8 

Cementum N/A 0.31 2030 3200 6.5 

Gingiva 

(keratinized) 

20 MPa N/A 1060 1540 1.6 

1.2.2. History of Ultrasonography in Dentistry 

Historically, diagnostic ultrasound technology for dental applications was first attempted 

in the 1960s. Preliminary research was focused on applying a pulse-echo mode for the 

examination of the internal tooth structure [13], [14]. At the beginning of the 1970s, the 

first ultrasonic measurements were applied also to the soft tissue of the human 

periodontium. Early soft tissue studies lead to more advanced research, which continued 

into the mid 1980s, and was conducted by scientists in the United States, Germany and 

Japan [15], [16], [17]. Also another thread of ultrasonic technology in dentistry was 

emerging at that time - Scanning Acoustic Microscopy (SAM). With high frequency (HF) 

signals and focused transducers, this method offered the best characterization capabilities. 

Unfortunately, this technology was not applied in vivo due to setup complexity and initial 

sample preparation requirements [18], [19]. Tooth material properties, anisotropy and 
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inhomogeneity of different structure layers were the main objectives of studies at that 

time. 

 More recent studies, due to advances in computing power and ultrasound 

technology, have expanded scientists’ interest to pathological assessments. Caries 

detection, erosion monitoring and dental pocket depth measurements were one of the 

important objectives of studies performed in vitro and in vivo. Moreover, towards the end 

of the 1990s and during the 2000s, research work was expanded to numerous computer 

simulations for better understanding of wave propagation in complex dental structures. 

The knowledge acquired in this way was applied to the dental ultrasonic transducer and 

device developments. 

 

1.2.3. Recent Advances of Ultrasound in Dentistry 

 Recent literature from the past decade pertaining to ultrasound technology in 

dentistry has been studied. Publications for this literature review were distinguished by 

four groups of applications [Tab. 1.2]. 
Table 1.2 The recent literature for dental ultrasound – a review. 

Application Literature 

Enamel thickness measurements (hard 

tissue) 

Low [20], Hua [21], Bozkurt [22], Huysmans 

[23], Louwerse [24], Slak [25] 

Gingival thickness measurements (soft 

tissue) 

Aydin [26], Muller [27], Bednarz [28], 

Bednarz [29], Slak [in press] 

General ultrasonic dental imaging 

Harput [30], Dos Santos [31], Tsiolis [32], 

Salmon [33], Chifor [34], Hughes [35], 

Culjat [36], Hughes [37] 

General dental research using ultrasound 
Maev [10], John [38], [39], Denisova [40], 

[11], Harput [30], Zheng [41], Bakulin [42], 

 

 Starting from the experimental work involving hard dental tissues, most of the 

studies’ focus was on enamel and dentin properties as well as thicknesses. Some of the 

authors have presented experiments testing possible uses of ultrasound to monitor dental 

erosion [23], and concluded that it is feasible without initial enamel preparation. 

However, tests showed that enamel thickness changes of less than 0.3 mm cannot be 
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detected reliably [24]. A commercially available 15 MHz transducer was used in these 

studies. 

 Subsequently, abrasive changes in enamel layer, either natural or mechanically 

applied, were studied [22], [25]. Authors concluded that a nondestructive ultrasonic 

technique is promising and a system with an 11 MHz transducer provides reliable 

measurements [22]. Similar results, but obtained with a significantly higher frequency 

was presented by Maev et al. [25]. The authors stated that a hand-held probe developed 

for their experiments can be effectively used for enamel thickness measurements before 

and after the grinding process. In 2009, a study was published where Computed 

Tomography (CT) images were used as a reference measurement to those obtained by 

ultrasonic system [21]. A multi-element linear array transducer with 13 MHz central 

frequency was used with image processing algorithms to generate enhanced B-scan 

images. Again, the quality of ultrasonic dental assessments was proven experimentally. 

 Furthermore, similar experimental trials were performed in periodontal 

applications for assessing soft tissues. In most cases, researchers were focused on 

masticatory mucosa thickness measurements in different localizations as well as 

ultrasonic system developments and improvements [26], [27], [28], [29]. 

 New advancements using a variety of commercial systems with a B-scan 

presentation were broadly discussed in the literature [31], [32], [33], [34]. A critical 

drawback to this approach is the limited quality and resolution of images presented, 

which make it difficult for interpretation. 

 

1.3. Other Modalities Currently Used in Dental Imaging and Diagnostics 

 In general, dental imaging and diagnostic systems are well established and 

commonly used in daily practice. The majority of them utilize electromagnetic radiation 

as a physical principle for obtaining images. As part of the scope of this thesis 

radiography and CT are discussed in detail as commonly used systems. As an example of 

alternative technology for imaging in dentistry, Optical Coherent Tomography (OCT) 

was chosen for further discussion [48]. 
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1.3.1. X-Ray Imaging - Radiography 

 The first dental X-ray image was obtained in the U.S. in 1896, just a year after 

W. Roentgen had discovered “mysterious” radiation [43]. In the dental X-ray system, 

similar to the traditional body apparatus, the electromagnetic beam is directed onto the 

tissues of interest. During the propagation its portion interacts with the tissues and results 

in different intensities due to attenuation. The remaining beam is recorded on an X-ray 

film localized behind the object. In dentistry, film or a digital detector is usually inserted 

in the patient’s oral cavity. This technology provides additional information about the 

bone contour (alveolar crest position in between two teeth), internal anatomy and 

associated pathologies [44]. 

 A significant limitation of this technique is that it creates projections of 3-

dimentional objects on 2-dimentional films, which makes such images difficult to 

interpret. In addition, highly attenuating dental materials, metal crowns, and even enamel 

layer limit visibility of the features localized behind restoration or inside the crown. An 

additional drawback is the ionization of the radiation used in the system. The general 

radiation exposure principle ALARA (As Low As Reasonably Achievable) should be 

applied. Furthermore, since the 20th century, two significant advances have been made on 

dental radiology: panoramic imaging and tomography. 

1.3.2. Cone-Beam Computed Tomography (CBCT)  

 The technology of X-ray computed tomography is fairly new in medical 

diagnostics. The first commercially available unit was created at the beginning of the 

1970s. Over the years, the system’s technology was improved and successive generations 

were released to the market. Generally in these systems the targeted area is exposed to a 

fan-shaped or flat sliced radiation beam as the unit makes multiple revolutions around the 

patient to acquire data for further reconstruction. Conversely, in the CBCT unit, the X-ray 

is divergent creating a cone-shaped beam which requires just a single scan. Therefore, 

this method is lower in absorbed dose and exposure time than traditional CT units. 

Moreover, the CBCT system can generate 3-dimensional data of the craniofacial region 

and allow reconstructing cross-sectional views [Fig. 1.3] [45]. 
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Figure 1.4 A CBCT cross-sectional image with hard palate, soft tissue thickness measurement results. Image 

contrast was exaggerated, which partially allows imaging of soft tissues (Courtesy of Dr. Bednarz). 

1.3.3. Optical Coherent Tomography (OCT) 

 The OCT system was initially described in 1991 and in experimental dental 

imaging had been initiated by 1998. The OCT unit is an interferometer-based optical 

system with a low coherence length broadband light source. The system demonstrates 

excellent axial and lateral resolution for dental imaging and detection of pathological 

changes, although the penetration depth is limited. This is one of the factors preventing 

popularization of dental OCT. Another factor is the insufficient scanning range (usually a 

few millimeters). New systems with improved light sources and probes are still under 

development to overcome these and other limitations [46]. 

1.4. Requirements and Specifications for Dental Ultrasonic System 

 The main idea behind the experimental research design for this study was to 

mimic actual conditions in the dental environment. This assumption generated a list of 

requirements for the experimental setup. It helped to set criteria for the wave beam 

parameters, the unit and the probe design as well as the time constraints for acquiring 

data, performing calculations and managing obtained information. 

 An important requirement was the enhancement of a system’s resolution due to 

the high velocities of sound in hard dental tissues and relatively small anatomical objects 

of interest. As a result, it has been decided to use a single element transducer with a 
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spherically shaped emitting surface to increase lateral resolution, in comparison to 

traditional flat elements. Moreover, to enhance the axial resolution, a 50 MHz central 

frequency was proposed. This frequency range was chosen based on literature study, 

initial calculations and laboratory trials. There are other beam parameters that require 

optimization to achieve legitimate results and they will be discussed in later chapters, 

mainly: aperture, localization of the focal point and depth-of-field. 

Regarding the design of the system, the main requirement of the system’s probe was to 

create it with the size and shape such that the probe will be similar to currently used 

dental handpieces, for instance a dental rotor or turbine. Reasons for these specifications 

are to allow access to all potential measurement areas for both teeth and gingiva, 

especially on the buccal and lingual side. 

 Lastly, further requirements for the hardware (system’s unit) were mostly related 

to the size, portability and the communication interface. Due to the embedded micro 

computer and the integrated ultrasonic board, the system’s unit was comparable in size to 

currently available computer tablets. A resistive touch-screen, foot controller and beeping 

signals were proposed to limit cross infections and simplified communication with the 

device. Also, an intuitive interface with automatic signal detection algorithms is also 

required to keep measurement times short.  

 Overall, the system should be compact, easy to operate, fast to boot-up and 

inexpensive (at this level of development, the system is not equipped with scanning 

elements or multi-element arrays to obtain images, due to an effort to reduce cost). The 

aim of this project was to experimentally prove whether HF ultrasound technology is 

applicable in clinical dentistry and at the same time develop a prototype of an ultrasonic 

system for dental assessments as a complementary tool to other widely used dental 

diagnostic modalities. 

 

1.5. Summary 

 This introduction provided a general outline to ultrasound in the medical field 

along with a description of ultrasonic systems and a set of system requirements for the 

potential application in dentistry. The proposed research is mostly motivated by the 
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demand for non-invasive diagnostic devices as well as a lack of specialized measurement 

tools for dental application. 

 The system proposed can perform measurements, which could allow practitioners 

to choose better protocols and predict ultimate surgical outcomes with higher accuracy. 

The HF ultrasound diagnostic technology then seems to be a perfect solution in modern 

dentistry, especially in the area of esthetic procedures, mucogingival surgery and 

implantology. 

 The most popular dental diagnostic modalities were briefly described in this 

chapter and the short summary below [Tab. 1.3] presents the main advantages and 

disadvantages of the systems including current techniques, uncommonly used techniques 

and ones still under development. 

 
Table 1.3 Comparison of different imaging modalities applied to the field of dentistry. 

Diagnostic Methods Advantages Disadvantages 

Traditional X-ray 
Low cost 

Broad measurements 

3D object projected on 2D image 

Limited resolution 

Hidden objects 

CBCT 3D image reconstruction 
No real time image 

Source of ionizing radiation 

OCT 
High resolution 

3D image reconstruction possible 

Limited depth penetration 

Expensive system 

Ultrasound 

Real-time image 

Low cost 

Non-invasive 

Trade-off between resolution and 

depth propagation 

 

Digital Camera/ Microscopy Low cost Only surface information 

Laser fluorescence 

spectroscopy 
Real – time detection 

No image 

Lack of consistency 

Traditional Periodontal Probe Low cost 

Inaccurate, subjective, no image, 

not consistent, low resolution, 

invasive 

 

 

 For over a decade, the development of an ultrasonic technique to measure oral 

tissue thickness has been underway. Ultrasound technology has the potential to offer a 
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painless, accurate and quicker method of obtaining results compared to traditional 

methods. However, until recent years, a lack of technological progress with regards to 

both electronics and HF transducers had limited its ability to achieve reliable 

measurements. Moreover, the majority of research performed with ultrasound has used 

devices originally designed for applications other than dentistry [47], [48], [49]. 
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CHAPTER 2.  

PHYSICS OF ULTRASOUND PROPAGATION 

 

 

 

 

 

  Ultrasound is indentified to be a mechanical disturbance propagating as a wave at 

a frequency above the level of audibility. A propagating medium is required, which must 

offer inertia (related to medium density) and elasticity. 

 In this chapter, a theoretical introduction of acoustical wave propagation in fluids 

and solids is presented. The behavior of an ultrasonic wave traveling through material 

interfaces is shown (for example a fluid-solid interface). The equations for transmission 

and reflection coefficients are derived along with calculated angular dependence for an 

oblique incidence according to material properties involved in the experimental study 

(enamel and gingival tissues). Further, basic ultrasonic properties of tissues are discussed, 

mainly: absorption and wave scattering, which are known generally as a sound 

attenuation. 

 The concept presented for the physics of ultrasound propagation is necessary to 

understand waves generated by a transducer, and to evaluate its required parameters. 

Many of the physical principles were purposely abbreviated, due to objectives of this 

thesis; descriptions that are more detailed are available in textbooks and articles referred 

in this chapter. 
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2.1. Introduction  

 An audio spectrum, which represents a full frequency bandwidth, has various 

areas with common frequency ranges, which are applied in different fields of ultrasonic 

technology [Fig. 2.1]. 

 

f(Hz)
10k 100k 1M 10M 100M 1G20k

Guided Waves

Medical Imaging

Acoustic Microscopy

NDE
Cavitation

Acoustic Sensors

SAW

 
Figure 2.1 Common frequency ranges for various ultrasound applications. 

The standard human receptor response function covers frequencies in the range of around 

20 Hz to 20 kHz, where the band limits depend on health condition and age. The standard 

human bandwidth is a small portion of the audio full spectrum and characterizes all 

possible sounds heard. Ultrasound is defined as the audio spectrum above 20 kHz and it 

continues up to values of around 1 GHz and higher, where its conventionally called the 

hypersonic regime. Most of the medical applications are in the range of kilohertz for 

therapeutic, and megahertz for diagnostic purposes. The physics phenomena, for instance 

the diffraction and dispersion, occur for the entire acoustic spectrum, but their relative 

importance changes with frequency. 

 The two main features of ultrasonic waves which make this technology unique, 

extremely popular and useful is the speed of propagation and the ability to easily 

penetrate opaque materials [50]. 

2.1.1. Ultrasound Wave Propagation [50], [51] 

 Prior to studying propagation of ultrasound through interfaces, a basic 

introduction to wave propagation must be given. The discussion starts from simple 

assumptions and application of Gauss’ theorem on a 3-dimensional fluid volume object 
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and is followed by an introduction to a tensor-based derivation of a wave equation for 

solids in the Cartesian coordinate system using the concept of tensors (stress and strain). 

 

2.1.2. Wave Equation for a Fluid 

 The principle of conservation of momentum shows how an ideal compressible 

fluid, of an arbitrary volume 𝑉, can be described by the differential equation: 

 

 −𝛻�𝑝(�̅�, 𝑡) + 𝑓(̅�̅�, 𝑡) = 𝜌𝑎�(�̅�, 𝑡) 

 

(2.1) 

Where 𝑝(�̅�, 𝑡) is the pressure in any point �̅� and time 𝑡 in volume 𝑉, 𝑓�  and 𝑎� are the body 

force (force/unit volume) and acceleration of the fluid, respectively, and 𝜌 is the fluid 

density. After introducing the definition of acceleration, and the assumption of density 

being the same in the volume 𝑉, equation 2.1 turns to:  

 

 
−𝛻�𝑝 + 𝑓̅ = 𝜌0

𝜕2𝑢�
𝜕𝑡2

 

 

(2.2) 

The variable 𝑢� in this equation is the displacement vector (the equation is presented in an 

abbreviated form for simplicity, without showing dependency of the field variables). The 

pressure is then shown to be proportional to the divergence of the displacement (a 

constitutive equation): 

 

 𝑝 = −λ𝛻� ∙ 𝑢� 

 

(2.3) 

Where λ is the bulk modulus for a fluid (proportionality constant) which it is true for an 

ideal compressible fluid. 

 The dilatation term 𝛻� ∙ 𝑢� in equation 2.3 is the relative change in the elementary 

volume while the negative sign means that the volume decreases when positive pressure 

is applied. In terms of speed of sound in the fluid ( 𝑐 = �λ 𝜌0⁄ ) , and using the 
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dependences presented, we can obtain the three-dimensional inhomogeneous wave 

equation for pressure in the form: 

 

 
∇2𝑝 −

1
𝑐2
𝜕2𝑝
𝜕𝑡2

+ 𝑓 = 0 

 

(2.4) 

The equation could be rewritten, assuming a disturbance in the fluid varying in only one 

spatial dimension 𝑥, and neglecting the scalar body force term: 

 

 𝜕2𝑝
𝜕𝑥2

−
1
𝑐2
𝜕2𝑝
𝜕𝑡2

= 0 

 

(2.5) 

The general solution for the wave equation is in the form:  

 

 𝑝 = 𝑓 �𝑡 −
𝑥
𝑐
� + 𝑔 �𝑡 +

𝑥
𝑐
� 

 

(2.6) 

Where f and g are arbitrary functions and c is the speed of the wave in the fluid. After 

applying the Fourier transform and inverse Fourier transform, it can be shown that an 

arbitrary planar wave traveling in +𝑥 direction is a harmonic wave of the form: 

  

 𝑝 = 𝐴𝑒𝑖𝑘(𝑥−𝑐𝑡) 

 

(2.7) 

Where 𝑘 = 𝑤/𝑐 is called the wave number (𝑤 = 2𝜋𝑓). 

 

2.1.3. Wave Equation for a Solid 

 Similarly, as with the fluid, the principle of conservation of momentum and the 

Gauss integral transformation drives to obtain the so-called Cauchy equation - a 

differential equation which can be expressed in terms of Cartesian components with a 

particle displacement 𝑢: 
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 𝜕𝜎𝑖𝑗
𝜕𝑥𝑖

+ 𝑓 = 𝜌
𝜕2𝑢𝑗
𝜕𝑡2

 

 

(2.8) 

Where 𝜎𝑖𝑗 is the stress tensor of the second rank, 𝜌 is the density, 𝑓 stands for the body 

forces (such as gravity are negligible in the normal environments) and 𝑖, 𝑗 = 1, 2, 3 . 

Symmetry of the stress and strain tensor expressed using particle displacement is depicted 

by: 

 

 
𝜀𝑖𝑗 =  

1
2
�
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

� 

 

(2.9) 

In the above equation it was assumed that the displacement gradient was small (quadratic 

terms ignored). The stress-strain constitutive equation (generalized Hook’s law) can be 

shown in the form: 

 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗 

 

(2.10) 

Where 𝐶𝑖𝑗𝑘𝑙  is a fourth-order tensor of elastic constants (elastic stiffness tensor). In 

general, the statement is valid for the amplitudes of ultrasonic waves below the limit of 

linearity. Since both stress and strain tensors are symmetric, the symmetry is also 

reflected in the stiffness tensor which effects in reduction of independent constants from 

81 to 36 and hence Hook’s law could be presented with the simplified notation: 

 

 𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗  (2.11) 

 𝑖, 𝑗 = 1, … ,6 

 

(2.12) 

 For isotropic solids, additional axes of symmetry will result in further reductions. 

The stress-strain equation, in matrix form (so-called engineering notation) will take the 

form: 
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⎣
⎢
⎢
⎢
⎢
⎡

 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑐11 𝑐12 𝑐12
𝑐12 𝑐11 𝑐12
𝑐12 𝑐12 𝑐11

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑐44   0 0
 0   𝑐44 0
 0   0   𝑐44⎦

⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎡

 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6⎦
⎥
⎥
⎥
⎥
⎤

 (2.13) 

 𝑐44 =
1
2

(𝑐11 − 𝑐12) 

 

(2.14) 

Introducing Lamé constants λ = 𝑐11 − 2𝑐44 and 𝜇 = 𝑐44, the matrix representation can be 

rewritten in a more condensed form: 

 

 𝜎𝑖𝑗 = λ𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 (2.15) 

   

Where 𝜀𝑘𝑘 is the dilatation (change in volume per unit volume). When placing the 

constitutive equation [Eq. 2.3] into the equation of motion and neglecting body forces, it 

is possible to obtain Navier’s equations for the displacement, which has the final 

representation: 

 

 
𝜇
𝜕2𝑢𝑖
𝜕𝑥𝑗2

+ (λ + 𝜇)
𝜕2𝑢𝑗
𝜕𝑥𝑗𝑥𝑖

= 𝜌
𝜕2𝑢𝑖
𝜕𝑡2

 (2.16) 

   

An assumption was made about the solid body to be homogenous, which affects 

independency of Lamé constants according to the position. Equation 2.16 could be 

expressed in a vector notation: 

 

 
𝜇∇2𝑢� + (λ + 𝜇) ∇(∇ ∙ 𝑢�) = 𝜌

𝜕2𝑢�
𝜕𝑡2

 (2.17) 

   

The presented equation governs the behavior of wave propagation in an elastic solid. 

There are various ways of showing the equation and different methods for decoupling 

longitudinal and transverse modes involving Helmholtz identity. The decomposition 

process effects in separating into independent equations which are shown: 
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(λ + 2𝜇) ∇2𝑢�𝑙 = 𝜌

𝜕2𝑢�𝑙
𝜕𝑡2

 
 

(2.18) 

 
𝜇∇2𝑢�𝑠 = 𝜌

𝜕2𝑢�𝑠
𝜕𝑡2

 

 
(2.19) 

 
∇2𝑢�𝑙 =

1
𝑐𝑙2
𝜕2𝑢�𝑙
𝜕𝑡2

 

 
(2.20) 

 
∇2𝑢�𝑠 =

1
𝑐𝑠2
𝜕2𝑢�𝑠
𝜕𝑡2

 

 
(2.21) 

Where 𝑐𝑙 and 𝑐𝑠 stand for longitudinal and shear wave velocity, respectively: 

 

 
𝑐𝑙 = �(λ + 2𝜇) 𝜌⁄  

 
(2.22) 

 𝑐𝑠 = �𝜇 𝜌⁄  (2.23) 

2.2. Reflection and Refraction of Waves at Interfaces 

 Any operation performed using the ultrasound pulse-echo technique involves 

wave propagation through an interface between different materials. Due to the difference 

in acoustic properties, partial transmissions and reflections at the interface exist. There is 

a number of standard cases of this phenomena described in the literature [50]. For the 

scope of this thesis, the fluid-solid interface will be discussed in more detail. Some 

simplifications to the system were made; a plane wave was assumed to go through an 

interface between two semi-infinite media. 

2.2.1. Fluid – Solid Interface 

 For the simple case [Fig. 2.2], where the plane wave approaches the interface at a 

normal incidence, there is no mode conversion so a perfect interface is assumed. 

Applying boundary conditions for the pressure and the velocity, the transmission and 

reflection coefficients could be calculated and presented in the form: 
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 𝑇𝑝 =
𝑝𝑡
𝑝𝑖

=
2𝑍2

𝑍1 + 𝑍2
 

 

(2.24) 

 𝑅𝑝 =
𝑝𝑟
𝑝𝑖

=
𝑍2 − 𝑍1
𝑍1 + 𝑍2

 

 

(2.25) 

 𝑅𝑝 + 1 = 𝑇𝑝 (2.26) 

   

ip

rp
tp

X=0

Medium 1 Medium 2

 
Figure 2.2 The diagram of a normal incidence wave approaching an interface. 

Where 𝑍1 and 𝑍2 stand for, acoustic impedance in medium 1 and 2, respectively. In 

general, the characteristic acoustic impedance could be approximated to 𝑍𝑚 = 𝜌𝑚𝐶𝑚 

(𝜌𝑚- density, 𝑐𝑚- longitudinal velocity in specific medium 𝑚), for a spherical wave far 

from the source. A different set of coefficients must be calculated to identify how energy 

is partitioned between reflected and transmitted waves. For the case where the wave front 

is normal to the direction of the propagation, intensity is defined as: 

 
𝐼 =

𝑝2

2𝑍
 

(2.27) 

This effects the coefficients to be in the form: 

 𝑇𝐼 =
𝑍1
𝑍2

 𝑇𝑝2 (2.28) 

 𝑅𝐼 = 𝑅𝑝2 

 

(2.29) 

 𝑅𝐼 + 𝑇𝐼 = 1 

 

(2.30) 
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From this, it can be verified that the conservation of energy is satisfied. 

A more complicated case [Fig. 2.3] involves an oblique incidence wave, where a mode 

conversion occurs. In a solid medium, which supports shear stress, the longitudinal and 

shear waves will propagate affecting the transmission coefficient for each wave. The 

system boundary conditions (continuity of normal velocity and stress, and zero tangential 

stress due to neglected fluid viscosity) allow the solutions for the intensity coefficients to 

be expressed in the form: 

 
𝑇𝐼𝐿 =

𝜌2𝑡𝑎𝑛𝜃
𝜌1𝑡𝑎𝑛𝜃𝐿

 ��
𝜌1
𝜌2
�

2𝑍𝐿𝑐𝑜𝑠2𝜃𝑠
𝑍𝐿𝑐𝑜𝑠22𝜃𝑠 + 𝑍𝑆𝑠𝑖𝑛22𝜃𝑠 + 𝑍1 

�
2

 

 
(2.31) 

 
𝑇𝐼𝑆 =

𝜌2𝑡𝑎𝑛𝜃
𝜌1𝑡𝑎𝑛𝜃𝑠

 �− �
𝜌1
𝜌2
�

2𝑍𝑆𝑠𝑖𝑛2𝜃𝑠
𝑍𝐿𝑐𝑜𝑠22𝜃𝑠 + 𝑍𝑆𝑠𝑖𝑛22𝜃𝑠 + 𝑍1 

�
2

 

 
(2.32) 

 
𝑅𝐼 = �

𝑍𝐿𝑐𝑜𝑠22𝜃𝑠 + 𝑍𝑆𝑠𝑖𝑛22𝜃𝑠 − 𝑍1
𝑍𝐿𝑐𝑜𝑠22𝜃𝑠 + 𝑍𝑆𝑠𝑖𝑛22𝜃𝑠 + 𝑍1 

�
2

 

where 

(2.33) 

 𝑍1 =
𝜌1𝐶1
𝑐𝑜𝑠𝜃𝑖

, 𝑍𝐿 =
𝜌2𝐶2𝐿
𝑐𝑜𝑠𝜃𝐿

, 𝑍𝑠 =
𝜌2𝐶2𝑆
𝑐𝑜𝑠𝜃𝑆

 

 
(2.34) 
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Figure 2.3 The acoustic ray diagram shows a transmission and reflection at a liquid-solid interface with an 

oblique incidence. 

The set of equations [Eq. 2.31-2.34] was used to plot energy to incident angle 

dependences [Fig. 2.3] (the code is available in the Appendix A). The energy coefficients 

at the water/enamel and water/gingival interfaces were calculated based on mechanical 

properties provided in the first chapter, such as the speed of sound and density, and were 

plotted as a function of an incidence angle [50], [51]. 
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Figure 2.4 The energy level to incidence angle reflection and transmission coefficients for water/enamel 

interface. 

 
Figure 2.5 The energy level to incidence angle reflection and transmission coefficients for water/gingiva 

interface. 

 

2.3. Sound Attenuation 

The total ultrasonic energy lost during wave propagation in biological tissues is due to 

two processes: absorption and scattering. Absorption is the transformation of acoustical 
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energy to heat. The scattering effect occurs when the medium re-radiates acoustic waves 

with different properties than incident waves. The sum of these two processes responsible 

for the loss of energy is called the attenuation. As an example, scattering for soft tissues 

accounts for around 2 to 10 %, which means the attenuation effect is caused mainly by 

absorption. 

In general, attenuation reduces the ultrasonic wave pressure, and for a simplified case, 

when the plane wave travels through a flat tissue slab of thickness d, the relationship 

between initial pressure and final pressure amplitude of the wave could be presented in 

the form: 

 𝑝𝑑(𝑑,𝑓) = 𝑝0(𝑓)𝑒−𝛼(𝑓)𝑑 

 

(2.35) 

Where 𝑝𝑑 and 𝑝0 are the amplitudes of the wave at the distance d and 0, respectively. In 

case of the pulse-echo technique, and a perfectly reflecting surface, the attenuation 

coefficient could be written using a power function [ 𝛼(𝑓) = 𝛼0𝑓𝑛], to take into 

consideration a broadband pulse spectrum. Assuming a linearity of attenuation coefficient 

to the frequency (n=1), the attenuation coefficient could be expressed in the form: 

 𝛼0 =
1

2𝑑𝑓
ln
𝑝0
𝑝𝑑

  (2.36) 

   

The unit for the ratio value is given in Neper (Np), so units for 𝛼0 are 𝑁𝑝 (𝑐𝑚 𝑀𝐻𝑧)⁄ . 

However, the more conventional units for attenuation coefficient are 𝑑𝐵 (𝑐𝑚 𝑀𝐻𝑧)⁄ . The 

conversion ratio is 20 log10(𝑒) = 8.6859, so 𝛼0 has to be multiplied by this factor to get 

values in decibels [52], [53]. 

2.4. The Concept of Ultrasonic Transducer Radiation 

An ultrasonic transducer is used as a transmitter and a receiver in pulse-echo mode. In the 

immersion arrangement (water-coupled system, which is also the case of the 

experimental setup), it radiates a sound beam into a fluid. Then, the beam crosses a 

boundary between the coupling medium and the object to be diagnosed. 

In general, a few assumptions are made to simplify the transducer model and the 

calculations of the pressure distribution. Usually, a planar piston transducer is assumed 

(half-spaced, planar surface with zero velocity in z-direction, except over a finite region 
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of a given area). The pressure wave field of the transducer can be considered to arise 

from a superposition of the elementary point source (spherical waves) on the front face of 

the transducer. An explicit equation, describing the radiated pressure is called the 

Rayleigh-Sommerfeld integral (it specifies the field for a plane piston model). 

The transducer, proposed for the experimental work of this thesis, produces a non-planar 

wave front, by means of a spherically curved piezomaterial. In 1945, O’Neil developed a 

model, based on the Rayleigh-Sommerfeld theory involving radial velocity acting on a 

spherical surface of a given diameter, surrounded by an infinite plane baffle [54]. The 

integration over a planar surface is replaced by the integration over the spherical source 

region. It has been shown that the model is a good approximation especially at higher 

signal frequencies and not tightly focused elements [51] (radius of curvature is large 

compared to the wavelength [55]).  

There are many commercial and open-source software available, allowing simulations of 

acoustic fields (solving mentioned integrals with a set of necessary parameters). Usually, 

integrations are substituted by summations over a finite number of source points and the 

approximated field is calculated. A common way of presenting these results is a graph of 

pressure distributions along the acoustic axis and in the plane of the focal point. 

2.5. Summary 

In summary, a short introduction to ultrasonic wave propagation was given. The 

governing equations for a fluid and elastic solid medium were also derived. Energy 

reflections and transmissions for materials involved in the experimental study were 

calculated and plotted against an angle of incidence. Finally, the concept of tissue 

attenuation was discussed and a short introduction to the radiation theory was given in 

order to support the transducer’s design. 
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CHAPTER 3.  

THE ULTRASONIC DENTAL SYSTEM (UDS) 

 

 

 

 

 The UDS includes several interfaced standard medical apparatus blocks as well as 

complex ultrasonic elements [Fig. 3.1]. The two important components of the proposed 

system is the probe with a transducer and an ultrasonic PC board. 

Transducer Pulser/Receiver Digitizer Embedded 
Computer 

Power Supply Stepper Motor 
Controller Peristaltic Pump 

Ultrasonic Board Probe

Water Reservoir
 

Figure 3.1 Simplified schematic diagram of the ultrasonic dental system component blocks. 

The UDS is equipped with a water coupling delay line block operated by a peristaltic 

pump and controlled from the software. The overall device is managed from a computer 

built into the main unit. The operating system coordinates data transfer, inputs and 

outputs information and sets initial parameters. 

In this chapter, the theoretical characterization of each component is given along with the 

design and prototype details. The presented system was assembled, tested using 

ultrasonic phantoms and used in the research work conducted for the purpose of this 

thesis. 
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3.1. The Ultrasonic System Behavior. Pulse – Echo Mode 

 The pulse-echo mode is the most popular ultrasonic method used in the medical 

field. The main advantage of it is that it utilizes one transducer for sending and receiving 

purposes. This method was applied to obtain all ultrasonic measurements in the study 

presented in this thesis. 

 As an example, assume that the wave propagates through the water, which acts as 

the coupling medium, until it strikes an object (assume the object to be a 1 mm layer of 

polyurethane over a laboratory glass slide). Due to the mismatch of acoustic impedances 

at the interface, part of the pulse is reflected back to the transducer as an echo. The 

unreflected wave of the incident pulse continues to propagate through the object until it 

comes in contact with the next interface. At this second interface, another echo is created, 

which returns to the transducer and appears as the second peak in the A-scan. The time 

lapse between the two echoes returning to the transducer is deemed the time-of-flight 

(TOF). The TOF is measured by a specifically designed algorithm. By assuming the 

speed of sound to be constant in the material, the thickness of the simulated soft tissue 

could easily be calculated. 

 

 
Figure 3.2 Example of an A-scan obtained from a phantom. Peak (a) shows an echo from the metal cap of the 

probe tip. Peak (b) represents the first echo from the surface, while peak (c) represents the second echo from the 
underlying bone. 

 According to the above example, all the system components must be specified 

and characterized to fit the requirements. Before being able to display the A-scan on the 

computer screen, the analog signal converted from the mechanical waves must be 

digitized. 
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 The receiver block initially amplifies and adjusts the signal. The digitizer has a 

built-in analog-to-digital converter (ADC) and has additional circuits responsible for 

driving, buffering and transferring data to a computer. In the current systems, digital 

signal processors (DSP) and field-programmable gate array (FPGA) circuits are 

commonly used. A more detailed description about the acquisition process is provided 

later in the chapter. 

 

3.2. An Ultrasonic Transducer – Characterization and Design Criteria 

 A typical ultrasonic transducer (a cross-sectional view) is shown [Fig 3.3]. 

Connector 

Housing 

Piezomaterial

Backing layer

Cabling

Electrodes

Quarter-
wave layer  

Figure 3.3 Cross-sectional view of a typical ultrasonic transducer. 

 A thin active piezoelectric material is covered from both sides with electrodes, 

which are connected to electrical wiring to transfer signals in and out of the transducer 

housing. The front face is usually protected by a so-called quarter wave plate. The back 

layer typically consists of an epoxy composite that acts as a highly attenuating material to 

prevent unwanted back reflections. Properties of the backing layer additionally control 

the shape and duration of the ultrasonic pulse. Several important technical parameters 

have to be specified during the transducer design: 

• Piezoelectric material, central frequency, bandwidth and polarization orientation 

• Housing dimensions, shape and connector type 
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• Focal distance (if focused) and the application environment 

For further discussion just P-wave (pressure) immersion transducers are taken into 

consideration with the initially focused radiation surface. 

3.2.1. Piezoelectric Materials  

 Over the decades, numerous research groups have been working on piezoelectric 

materials in order to improve their properties. In the early years, quartz was a common 

material carrying piezoelectric properties and it was initially used during World War I in 

sonar systems. Further developments have shown improvements in new materials such as 

barium titanate (BATiO3) and lead zirconate titanate (PZT) which became the ultrasound 

materials used later due to their higher performance. A major milestone was achieved 

with the development of polyvinylidene fluoride (PVDF). The polymer foil, as opposed 

to ceramic or crystal, is easy to work with and it is relatively inexpensive. An important 

drawback is that the PVDF polymer has a lower coupling coefficient which means that it 

has a lower conversion rate from electrical to mechanical energy and vice versa, 

however, it has low acoustic impedance in order to match mechanically with the coupling 

medium (water). 

 Overall, based on the parameters [Tab. 3.1], it was decided that PVDF transducer 

is suitable for the system. The reason for this choice is mainly the mechanical and 

electrical matching to the system requirements, a broadband spectrum which effects in 

increasing the axial resolution, and overall performance of such material [56], [57]. 
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 Table 3.1 Generalized piezoelectric material parameters1 [56], [57]. 

Material 𝒌𝒕 𝜺𝒔 𝜺𝟎�  𝝆 

�𝒌𝒈 𝒎𝟑� � 

c 
[𝒎 𝒔⁄ ] 

𝑸𝒎 𝑸𝑬 𝒁𝒂 
[𝐌𝐑𝐚𝐲𝐥] 

PZT 0.60 201 3300 3943 9.2 25 13.0 

PVDF 0.13 6.5 1.780 2150 12 4 3.87 

LiNb𝐎𝟑 
crystal 

0.49 28 4640 7340 10000 1000 34 

PbTi𝐎𝟑 
ceramic 

0.49 200 6900 5200 120 111 35.9 

 

3.2.2. Spherically Focused Ultrasonic Transducer – Concept of Spatial 

Resolution2 

 As mentioned in the first chapter, the dimensions and object accessibility set the 

initial requirements for the transducer, followed by the requirements for the whole probe 

design. In order to discuss these criteria, the concept of resolution has to be introduced 

along with necessary definitions [Fig. 3.4]. 

DOF

f

a

FWHM

 
Figure 3.4 The beam properties of a spherically focused piezoelectric transducer cross-sectional diagram view. 

The following are presented in figure 3.4: 

• a – aperture – dimension of the active area of the piezoelectric  
                                                           
1 𝑘𝑡 is the thickness mode electromechanical coupling coefficient; 𝜀

𝑠
𝜀0�  is the clamped dielectric constant; 

𝜌 is the density; c is the longitudinal wave velocity; 𝑄𝑚 and 𝑄𝐸 are the mechanical and electrical quality 
factors, respectively; and 𝑍𝑎 is the acoustic impedance. 
2 Transducer waveform and spectrum analysis is done according to test conditions and definitions of ASTM 
E1065 
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• f – focal length – distance from the lens to the focal point  

• FWHM – full width at half maximum – diameter of the focal area, the level is set 

to -6 dB of amplitude in the focal plane  

• DOF – depth of field – level set to -6 dB of the peak, on axis of the beam 

The spatial resolution for spherically focused transducers is distinguished by an axial and 

lateral resolution, both are fundamentally different from each other but have equal 

importance.  

 In principle, the length (waveform duration) of the pulse produced by the 

transducer is what determines the axial resolution. It is usually assumed to be in the range 

of -20 dB of the peak signal amplitude (typically it is several wavelengths). It could also 

be expressed as a point spread function (PSF), which determines the minimum distance 

between neighboring details (layer interfaces) that can still be presented on the A-scan as 

separate objects (individual layers). For this reason, in a pulse-echo immersion setup, 

layer thickness 𝑥 has to be larger than half of the pulse duration time multiplied by the 

velocity of sound. 

 The lateral (horizontal) resolution is characterized by the aperture and focal 

length. The F-number (also called, numerical aperture N.A.) of a focused transducer is 

defined as focal length (f) divided by transducer aperture (a). Finally, the FWHM is given 

by: 

 
𝐹𝑊𝐻𝑀 =

1.41𝜆
𝑁.𝐴.

 
(3.1) 

 

 

The axial and lateral resolution can both be improved by increasing the ultrasonic 

frequency. The drawback of that adjustment is that it limits penetration depth [50], [58]. 

The initial transducer trial tests were performed on a SAM setup with simple reflectors 

(glass slide with polyurethane layer on top). 

3.3. The UDS Probe 

 The probe in the proposed system was designed for possible future use in a dental 

office. For this reason, additional requirements have been added to the system related to 

the shape and size of the transducer. For convenience, it was decided to use a continuous 
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flow of water as a coupling medium for the prototype design. For the purpose of that 

design, a mini peristaltic pump was used with an electric motor and a controller. The 

appropriate software was designed along with the practitioners’ user interface to simplify 

the device operation. 

Initial pulse

Reflected pulses 
from both intrfaces 

Medium 1

Medium 2

d

Spherical 
Transducer

Coupling medium 
inlet

Liquid 
medium 

delay line 

Coaxial cable 

Figure 3.5 Schematic functional diagram of the UDS 
system probe. 

Figure 3.6 The transducer arrangement and the 
water flow in the delay line tip. 

 
Figure 3.7 The fabricated UDS probe with the tip cup (delay line for coupling fluid). 

 

 In the proposed prototype, the probe head with the transducer mounted inside was 

angled to allow better angular adjustments in all directions during measurements. The 

delay line cup is disposable and can be changed to avoid possible cross-infections. The 

probe handle was designed and assembled taking into consideration the size and shape of 

existing dental tools. 
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3.4. A PC Ultrasonic Board: Pulser – Receiver and Digitizer 

 For the laboratory setup, specifically designed ultrasonic pulse generators are 

commercially available (for instance: Utex UT 340, Mississauga, ON, Canada; 

Panametrics 5073PR, Waltham, MA, USA). Usually, they are used to build the basic 

ultrasonic module when combined with an oscilloscope. More advanced PC ultrasonic 

boards, with built-in pulser-receivers and digitizers both microprocessor-controlled are 

utilized in commercial systems. Varieties of such systems exist but typically they are 

custom-made and designed for specific developments and applications. There are 

multiple requirements for these boards to be properly fitted for a particular application, 

and to work with specific transducer types. 

 An ultrasonic board consists of a digital and analog end and is responsible for 

generating and acquiring electrical signals. The pulser part on the board puts very short 

electrical impulses (~0.1 µs) having amplitudes on the order of several dozens of volts 

(needs to be optimized to particular transducer) [Fig. 3.8]. The repetition frequency of 

these pulses is mainly specified by the geometry of a measurement setup and usually does 

not exceed several kilohertz. 

Signal amplitude

Repetition period 

Pulse 
duration Sampling 

period 

 

Figure 3.8 Characteristics of a typical electrical pulse generated in the ultrasonic pulse-echo system. 

 Pulses drive the ultrasonic transducer while, the electrical energy is converted into 

acoustical energy and then propagates as a beam of ultrasound. Scattered portions 

(echoes) of the initial beam are received by the same transducer in different moments of 

time and converted back to electrical signals. On the pulser end, an amplitude and 



 

36 
 

duration of the initial pulse are the basic parameters, and usually fixed to standard values 

for simplifying the board power management. 

 Next, a transmitter/receiver switch separates the high voltage associated with 

pulsing from sensitive initial amplifiers on the receiving side. In current systems, it is 

usually integrated in one package with a pulsing circuit (for example microchip Supertex 

HV7361). Afterwards, the signal is initially amplified, and filtered if necessary, to fit the 

input range of an ADC converter. The amplification is usually performed in a couple of 

steps by both constant and variable gain amplifiers. The commercial impact on 

ultrasound instruments is so prominent that major circuit manufacturers develop 

integrated chips with multiple gain stage amplifiers built specifically for ultrasound 

applications (an example is the mentioned Supertex chip). 

 Finally, the last step is for the signal to be digitized. The ultrasonic system itself 

sets the criteria for the ADC converter, primarily the sampling frequency and the vertical 

resolution. In principal, to avoid aliasing, the Nyquist theorem requires analog signals to 

be sampled with a frequency two or more times higher than resonant transducers’ 

frequency. In practice, for ultrasonic systems, a sampling rate 4-5x higher than the 

resonant frequency is acceptable [59]. The second parameter is the sampling resolution, 

which establishes the minimum voltage step size within a voltage range. Common values 

are 12-, 14- and 16- bits and usually it is traded with the amount of samples to be 

possibly acquired in a second. If the ADC converter has 2 𝑉𝑝𝑝 input range and 12-bits 

resolution, then the minimal step is equal to 0.49 mV. 

 In the older but still cost effective systems, an oversampling (also called, super-

sampling) protocol was proposed. Ultrasonic signals have the important feature of being 

repetitive, so that just a portion of information could be captured during one acquisition. 

A small time shift between each repetition of the signal can be applied to achieve super-

sampling. The drawback in this case is the time necessary to acquire a single A-scan. If 

this were not the issue, this method could lower requirements for ultrasonic systems 

along with their cost. 
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3.5. Software Development 

 The software development can be distinguished by its signal detection algorithm, 

hardware control, and user interface. The current stage of the prototype has an integrated 

coupling medium delivery block and ultrasonic board control. Both have available 

programming libraries and manuals for developers. 

 The interface was designed with the help of the feedback received from dental 

practitioners and implemented in the Microsoft Blend® interface creator. The functional 

code was programmed in C# with using .NET libraries in Microsoft Visual Studio® 

programming environment [Fig 3.9]. 
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Figure 3.9 Preliminary UDS interface screenshots. 

3.6. The Ultrasonic Dental System – Testing 

 At first, a prototype of a compact ultrasonic system was designed and built. This 

system consisted of an analog and digital circuit with a display screen and embedded 

computer. The hand-held probe was equipped with a 50 MHz ultrasonic transducer built 

into a pen-like housing. Spherically shaped PVDF piezoelectric film was used as the 

transducer material. The acoustic focal point formed allowed one to achieve optimal 

lateral resolution and accurate localization over the targeted tissue. Water was able to 

flow continuously through the probe from a built-in pump, eliminating the requirement 

for ultrasonic coupling gel. The entire system can be placed on a small tabletop in the 

practitioner’s office and requires only an external power source [Fig 3.10]. 
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Figure 3.10 The UDS prototype with the probe and the water pump module. 

 

3.6.1. Soft and Hard Tissue Phantom Testing 

 A phantom simulating oral soft tissue over an alveolar bone was constructed. The 

oral soft tissue was simulated by polyurethane layer since this material has similar 

ultrasonic properties [60]. The bone was made irregular and non-uniform, to simulate the 

texture of the alveolar process [61]. Ten locations were marked in a line along the 

polyurethane surface and each location was presumed to have a different thickness. 

Ultrasonic measurements were first obtained by localizing the probe tip over each 

location. Next, invasive measurements were taken at each location (described in details in 

later chapters). For these ultrasonic and invasive measurements, each location was 

measured ten times to build a statistical database. In addition to ultrasonic and invasive 

measurements, a cross-section along the line of points was made and direct 

measurements of thickness were obtained from images taken with an optical microscope 



 

40 
 

(Keyence VHX 2000E, Itasca, IL, USA). Deviation associated with the direct method 

was calculated based on multiple measurements obtained using computer software. 

 Measurements obtained from the ultrasonic method were close in value to those 

obtained from the invasive and optical microscope. In the majority of cases, however, 

ultrasonic measurements of thickness were slightly larger than invasive measurements. In 

the majority of trials, error was greater for the invasive method [Tab. 3.2, Fig. 3.11]. 

 
Figure 3.11 a) Average GT values for positions along the phantom, obtained from three methods (for legibility, 
error is presented in table 3.2) b) The microscopic cross-sectional image used for direct thickness assessment. 

Table 3.12 GT values (in mm) for phantom tissues are shown as averages for each position, along with standard 
error. Error associated with the direct method is not presented since error values were on the order of microns. 

Position 1 2 3 4 5 6 7 8 9 10 

Invasive 1.05  
± 0.04 

1.36 
± 0.06 

1.27 
± 0.02 

1.16 
± 0.02 

0.92 
± 0.01 

0.83 
± 0.04 

0.81 
± 0.03 

0.69 
± 0.04 

0.55 
± 0.02 

0.36 
± 0.02 

Ultrasonic 0.97 
± 0.01 

1.38 
± 0.01 

1.42 
± 0.01 

1.32 
± 0.02 

1.05 
± 0.01 

0.99 
± 0.01 

0.99 
± 0.01 

0.81 
± 0.01 

0.64 
± 0.01 

0.43 
± 0.02 

Direct, cross-
section 1.11 1.41 1.31 1.22 1.03 0.96 0.86 0.65 0.50 0.37 

 



 

41 
 

3.7. Summary 

 High-frequency ultrasound technology has the potential for detailed delineation of 

anatomical structures. Areas of interest pertaining to this case include organs (body parts) 

of small size, like eyes, skin, vascular structures or the proposed periodontium tissue and 

teeth. The requirement, and at the same time limitation of an ultrasonic system for all of 

these applications is the trade-off between depth of wave propagation and system 

resolution. 

 For this reason, for UDS, a focused transducer was built with the following 

parameters: 

• 50 MHz central frequency 

• 100 % bandwidth 

• 7 mm focal point distance 

• 12° half angular aperture 

 The transducer was designed and custom-made for the purpose of this study. For 

simplicity of fabrication based on available materials and facility equipment the probe 

was made out of polished aluminum and brass tubes. However, for the future prototype 

developments, a polymer will be taken into consideration. The UDS was designed and 

assembled as well as initially tested on phantoms mimicking soft and hard dental tissues. 
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CHAPTER 4.  

THE EXPERIMENTAL STUDY – HARD AND SOFT DENTAL 

TISSUE DIAGNOSTICS 

 

 

 

 

 This chapter presents the experimental study performed on soft and hard dental 

tissues using the UDS developed. An enamel and gingival thickness were also 

ultrasonically assessed. 

 In general, knowledge about exact thickness of these tissues allows practitioners 

to adopt the most suitable procedure and to better predict the quality of a final restoration. 

Both these applications are motivated by examples of real dental procedure requirements 

described in this chapter. 

 Laboratory experiments were performed on porcine cadavers slaughtered for 

consumption purposes. The setup arrangement was to resemble a dental office 

environment and portray its limitations. All results were validated through invasive and 

destructive measurements (where applicable). 
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4.1. Hard Tissue Experiment – Enamel Thickness (ET) Measurements 

4.1.1. Motivation and Background  

 Dental veneers are thin layers of plastic, composite or ceramic material bonded 

over a specifically prepared tooth surface [62]. According to the common placing 

procedure, most veneers require partial removal of the enamel layer from the front 

surface of the tooth before restoration [Fig. 4.1]. For a healthy tooth, it is recommended 

to remove at least 0.6 mm of the enamel [63]. It is also suggested that the thickness of the 

adhesive cement, which is used to fix the veneer onto the ground surface of the tooth, 

should not exceed 50 µm [64] (i.e. it does not affect the thickness of the enamel layer 

required to be removed before restoration). 

Pulp 
chamber 

Dentine

Enamel

Gingiva

Removed 
enamel layer 

Remaining enamel 
layer (object of 
invastiagtion)

d

 
Figure 4.1 The schematic diagram of an axial cross-section of an incisor: dashed line shows the enamel layer to 

be removed during the veneer placing procedure. Right: close-up view of the enamel to be measured. 

 It is well established that bonding to the enamel layer is much better than to 

dentin regardless of the dental adhesive system, thickness of the cement layer or veneer 

laminates [65], [66]. Therefore, it is extremely important to know the thickness of the 
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enamel layer remaining after grinding to ensure the quality of restoration [Fig. 4.2, Tab 

4.1]. 

 
Figure 4.2 Cross-sectional view of the enamel surface preparation for veneer placement procedure. 

 

Table 4.1 Comparison between enamel surface conditions for a veneer placement procedure. 

When dentin is exposed: When a thin enamel layer remains: 

· elevated postoperative tooth sensitivity 

· high odds of veneer debonding 

· possible pulpal damage 

· unpredictable changes in occlusion 

· superb strength and smoothness 

· no discoloration 

· excellent retention of veneers 

· long-term success 

 

 At this time, dentists do not have any non-invasive tools enabling enamel layer 

measurements in a chosen spot [35]. Dentists can rate oral health using special indexes 

[67], [68] and statistically estimate the enamel thickness, but without any numerical 

values and certainty of the estimation. The UDS system can help perform fast and 

reliable measurements without using harmful radiation as well as complex and expensive 

equipment. In recent publications related to ultrasonic enamel thickness measurements, 

the central frequency of the transducers used in evaluations were in the range of 10 to 

35 MHz [24], [35], [69], [70] which resulted in limited axial and lateral resolution. 

 The objective of this experiment was to investigate the ability of a high-frequency 

ultrasonic transducer-based, hand-held probe in UDS for thickness measurement of the 

enamel remaining after grinding of the tooth surface. 
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4.1.2. Materials and Methods 

 In the experiments conducted, porcine teeth samples were used. To avoid the 

influence of the environment on the experimental results, all specimens were kept in the 

same liquid (5 % thymol solution). The UDS system was used for the measurements of 

these samples. Additionally, an optical microscope was used for direct measurements of 

the enamel layer thickness in the exposed cross-sectional areas. 

 The measurement procedure can be explained as follows. The thickness of the 

enamel layer d can be calculated from the simple relationship: 𝑑 = ∆𝑡𝑐 2⁄  (where ∆t is 

round-trip time and c is the speed of sound in enamel). The first parameter, the round-trip 

time, was determined by measuring the time delay ∆t between the echoes from the 

surface of the sample and the DEJ interface. The second necessary parameter is the sound 

velocity c, which depends mainly on the mechanical properties of the medium. It was 

proven in literature that the dental enamel is anisotropic [4], [71], [72], [73], and its 

features depend on several factors (e.g. alignment of fiber-like apatite crystals, 

demineralization, the sample storage liquid, etc.). For this reason, multiple literature 

sources report different values of the velocity of sound in the dental enamel, which is 

usually assumed to be in the range of 5900 ±300 m/s. The differences in the observed 

sound velocity values can also be due to the fact that certain alignment corrections are 

necessary before the probe is positioned perpendicularly to the surface to get an 

appropriate waveform with recognizable signal from the EDJ [23]. 

 In the current investigation, the velocity of sound was measured using the 

following approach. At first, one of the tooth samples was cut down the long axis of the 

tooth to expose the cross-sectional area, allowing direct measurement of the enamel 

thickness with the optical microscope [Fig. 4.3]. 
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Figure 4.3 (a) Optical cross-sectional image presenting enamel layer (1), enamel-dentin interface (2), and marker 

cut (3); (b) close-up view of the measurement area (d - the enamel thickness). 

 Then the same cross-sectional area of the tooth sample was analyzed using the 

SAM [Fig. 4.4] and the round-trip time was determined. It is important to note that the 

suitable waveforms were selected by carefully adjusting the position of the sample and 

the results were recorded only if the operator deemed the wave to be satisfactory. 

Knowing the distance (i.e. the enamel layer thickness) and the round-trip time, it was 

possible to estimate the velocity of sound in particular samples to be 6200 ±120 m/s and 

this value was used in further calculations. The properties of the enamel were assumed to 

be homogenous and isotropic. Therefore, a constant value of the velocity of sound was 

used in calculations. This approach allowed, considering the time of flight and proper 
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localization of the ultrasonic beam path, the main uncertainties influencing the accuracy 

of further measurements. 
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Figure 4.4 (a) An acoustic microscope used in experimental work (Tessonics AM1103, Windsor, ON, Canada) 
(b) Illustration of the scanning technique. 

 Due to the fact that enamel layer is not uniform over the tooth surface, special 

markers were made to localize the position of the ultrasonic beam on the surface of the 

tooth samples. Two notches (along and across the tooth) were cut on the surface of each 

tooth by means of a special linear saw (Wire Saw WS-22, K.D. Unipress, Poland). The 

notches were 0.15 mm wide, enough to be clearly noticeable on the surface of each 

sample. A practicing dentist was asked to prepare samples to study the ability of the 

hand-held probe to measure the thickness of the remaining enamel layer after grinding 
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(the intention was to remove the thin enamel layer, in accordance with the veneer placing 

procedure [74]). The same grinding tools as in the dental veneer placing procedure were 

used for that purpose. The measurements were taken before and after grinding the 

samples. The observer attempted to position the probe tip for each of the measurements 

in the 2x2 mm area determined by the mentioned notches [Fig.4.5]. 

          
 

Cross-sectional 
surface analyzed with 

optical microscopy 

Dentine

Enamel

Tooth buccal surface area analyzed 
by using the ultrasound technique 

2x2 mm

 

Figure 4.5 A schematic diagram of the experimental surfaces. 

 The second part of the experimental work was to verify the “sensitivity” of the 

ultrasonic measurements to the consequent grinding of the enamel. At first, a separate 

sample was cut down the vertical notch and the thickness of the initial enamel layer was 

measured by the optical microscope from a cross-sectional view.  Next, the enamel 

thickness was determined in the 2x2 mm area by using the UDS. After each consecutive 

grinding of the tooth sample, the measurement process was repeated. 
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4.1.3. Results for ET Measurements  

 Average values of enamel thickness measurement are shown [Fig. 4.6]. 

 
Figure 4.6 Average values of the enamel layer thickness measurements obtained with the UDS, before and after 
the machining process compared to cross-sectional thickness measurements. 

 For sample #1, the results show that it was prepared correctly since the dentist 

removed approximately 0.5 mm of the material and the thickness of the remaining 

enamel layer was enough to “insulate” the veneer from the dentin. For the other two 

samples less enamel material was removed than was intended. To verify the results of 

ultrasonic measurements, after grinding, each of the three samples was cut down the long 

axis, so that the enamel layer could be measured by the optical microscope (“Real 

values” shown [Fig 4.6]). The results obtained with the optical microscope have 

significantly lower uncertainties since the enamel thickness was measured directly along 

the edge of the cross-section, exposing the EDJ. 

 The enamel thickness values before and after grinding are shown [Fig 4.7]. 
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Figure 4.7 The enamel thickness values: initial and after first and second grindings of the tooth surface. 

 It can be verified that the enamel thickness values received from the hand-held 

probe and the acoustic microscope are close. The average discrepancy was 5, 16 and 5 %, 

respectively. The difference between the enamel thicknesses obtained with the optical 

microscope (“Real value”) and the values measured by the hand-held probe were 10 % or 

less. Taking into account uncertainties, the results in both cases are practically 

independent of the level of grinding, hence supporting the possibility of applying the 

ultrasound technique in this specific enamel thickness measurement application. 

4.2. Soft Tissue Experiment – Gingival Thickness (GT) Measurements  

4.2.1. Motivation and Background 

 The importance of taking into account the differences in GT during surgical and 

non-surgical treatment planning has been widely recognized since thick and thin 

periodontal biotypes respond differently to inflammation, restorative trauma, and surgical 

insult [75]. However, methods currently used to discriminate thick from thin gingiva have 

limited reliability and accuracy [76]. During periodontal diagnosis, keratinized gingiva 

and unattached mucosa covering the periodontium are assesed. This knowledge allows 

the practitioner to adopt the most suitable procedure. One such instance is the gingival 
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recession coverage, whereby the tissue grafting must be performed [77], [78], [79]. In 

cases where GT is less than 0.7 mm in recipient sites, the translation method should be 

avoided. Preferably, a method using autogenous connective tissue grafting should be 

implemented [80]. On the other hand, GT greater than 1.1 mm has a greater chance for 

successful coverage, namely using the coronal positioned flap method [81]. In 

orthodontics, GT assessment prior to the application of orthodontic forces is important as 

such knowledge can prevent complications arising from gingival recession [82] [Fig. 

4.8]. Other instances include performing control guided bone and periodontal tissue 

regeneration using membranes and preparing surfaces for denture installation [83]. 
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Figure 4.8 An example of multiple advanced pathological changes in gingiva and bone (gingival and bone 
recession) occurred four years after orthodontic treatment due to incorrect teeth repositioning protocol 
(treatment was performed without properly diagnosed gingival thickness and position of the bone crest) 

(Courtesy of Dr. Bednarz). 

 Several methods are available for GT assessment. For the initial diagnoses, a ratio 

between the length and width of middle incisors is determined, as well as between 

keratinized gingiva and papilla width [84], [85]. Another technique which is similar to a 

visual assessment is the transparency method [84]. Although these methods provide 

valuable information, they do not involve direct measurements. More reliable GT 

assessment is provided by invasive and non-invasive techniques. A common invasive 

method involves transgingival probing of locally anesthetized tissue with a k-file 
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endodontic needle [47], [83], [86], [87]. Another invasive method is X-ray CT which 

does not require anesthesia [87]. 

 
Table 4.2 Thick vs. thin gingival tissue in surgery, tooth extraction and inflammation. 

 THICK THIN 

Inflammation 

Soft tissue: 

- cyanosis (lack of oxygen) 

- bleeding upon probing 

Hard tissue: 

- bone loss with pocket 

formation 

Soft tissue: 

- marginal redness 

- gingival recession 

Hard tissue: 

- rapid bone loss 

Surgery Healing predictable 
Difficult to predict whether 

tissue will heal 

Tooth extraction Minimal ridge degradation Ridge degradation 

 

4.2.2. Materials and Methods 

 A porcine jaw was used in the experimental work. The jaw was refrigerated 

immediately upon the animal’s death and experiments were performed within a twenty-

four hour period. An array of measurement locations was marked on the buccal gingival 

surface in the fourth quadrant: GT1 locations were those in the middle of keratinized 

gingiva and GT2 locations were those in the alveolar mucosa approximately 2 mm apical 

to the mucogingival junction [86]. Ultrasonic trials were performed ten times at each 

location and invasive trials were performed once at each location to mimic standard 

dental protocol [83]. The reading error between invasive data was the result of measuring 

the displacement of the rubber limiter with computer software ten times per 

measurement. 

 For invasive measurements, #25 k-file endodontic needles were used (Diadent 

Group Int., Burnaby, BC, Canada). The needle was inserted perpendicularly into the 

gingival surface at the marked location. The limiter remained at the gingival surface 

while the needle proceeded through the soft tissue until bone or cementum was hit. The 
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needle was then removed and the distance between the rubber limiter and the tip of the 

needle was measured. This was done by taking an up-close photograph of the displaced 

limiter adjacent to the thickness reference block (Albuquerque Industrial, Forest Hills, 

NY, USA) and using computer software to measure the limiter displacement. This 

distance was taken to be the thickness of the gingiva [88]. 

 

(a) (b)

(c) (d)

 
Figure 4.9 (a) Mandible with k-file; (b) Micro-camera; (c) Measurement points marked along gingiva with k-

file; (d) The close-up view of the k-file needle with the reference measurement block. 
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(a) (b)

 
Figure 4.10 The UDS system probe localized in the marked measurement spots: (a) Experimental trials for GT1 

and GT2 positions; (b) Vertical line ultrasonic measurements for bone crest detection. 

 Lastly, a vertical line measurement experiment was designed and performed to 

prove applicability of the system for the position detection of an alveolar crest in close 

proximity with teeth, and eventually implants. Especially from the labial side, it has a 

significant importance before, during and in the maintenance phase of treatment for 

determining bone loss and regeneration processes [89], [90], [91]. For instance, in 

implantology the lack of bone or a significant loss is one of the success rate criteria of the 

treatment [92]. The bone crest level and its thickness are factors that determine the 

possible formations of gingival recession in the future [89]. Dehiscence is defined as a 

bone loss of at least 4 mm in height in respect to interproximal crestal bone [Fig 4.11] 

[93]. 
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(a) (b)

 

Figure 4.11 (a) An example of bone pathological changes - dehiscence and fenestration (bone windowing); (b) 
Measurement points marked along gingiva for bone pathology detection on porcine cadaver sample. 

 

 

Figure 4.12 The cross-sectional view of a sample periodontium followed by a close-up view of the thickness 
measurement procedure and error estimation. 
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Figure 4.13 Direct assessment of GT was performed by obtaining a high-resolution, cross-sectional image of the 
periodontium along the line of points. For each of the twelve measurement locations, GT was directly measured 

at three groups per POI: (a) the group of five measurements coronal to the centre of the dot, (b) the group of 
five measurements at the centre of the dot, and (c) the group of five measurements apical to the centre of the dot. 

The # 20 k-file needle is also shown. 

 Prior to all the experiments, the speed of sound in a gingival sample was 

estimated. The SAM operating in B-scan mode was used to obtain TOF values. A sample 

of gingiva was excised from the buccal surface in the fourth quadrant. The sample was 

placed between two parallel, glass microscope slides while immersed in water at 20 °C. 

Twenty measurements of TOF were taken at equal intervals through both water and 

tissue. The speed of sound in water was assumed to be 1482.34 m/s at 20 °C [94]. By 

having obtained the TOF through water, the distance between the microscope glass slides 

could be calculated, which was assumed equivalent to the thickness of the gingiva 

sample. Finally, using this obtained value for thickness along with the measured TOF 

through tissue, the speed of sound through porcine gingival tissue was determined 

[Fig. 4.14]. The speed of sound in a single porcine gingival tissue sample was calculated 

to be 1564 ± 21 m/s. 
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Figure 4.14 (a) The B-scan showing (A) TOF through water and (B) TOF through gingival tissue, held in place 
between microscope slides (C1 and C2). Note the speckle appearing in the image of the tissue resulting from a 
non-uniform histology through the sample. Average TOF values through water and tissue were 1.32 µs and 

1.25 µs, respectively (b) A schematic representation of the experimental setup (c) The site on the buccal gingival 
surface of the fourth quadrant from which tissue was excised. 

 

4.2.3. Results for GT Measurements 

 Results show a decent overlap of values. GT1 locations were found to be thicker 

than GT2 locations as determined by both methods. Maximum error in thickness for all 

ultrasonic data was 10.3 % for the GT2 location in position II [Tab. 4.4, Fig. 4.15]. 

 

 
Figure 4.15 (a) GT1 and GT2 values from porcine cadaver; error for each datum is presented in table 4.4. (b) 

Eight measurement locations for porcine cadaver experiment. 

 



 

59 
 

Table 4.3 GT1 and GT2 results (in mm) for porcine cadaver. 
Values from the invasive method are presented with their 

associated reading error. 

Position I II III IV Method 
GT1 0.99 

± 0.01 
1.04 

± 0.01 
1.03 

± 0.01 
0.95 

± 0.01 
Invasive 

0.94 
± 0.01 

0.96 
± 0.09 

0.99 
± 0.03 

0.96 
± 0.03 

Ultrasonic 

GT2 0.77 
± 0.01 

0.79 
± 0.01 

0.77 
± 0.01 

0.59 
± 0.01 

Invasive 

0.77 
± 0.08 

0.85 
± 0.03 

0.77 
± 0.06 

0.52 
± 0.01 

Ultrasonic 

 

Also, results obtained in the vertical line experiment were satisfactory. Three 

measurement techniques were used and the results are presented in figure 4.16. As a 

reference the gingival margin was assumed. The main influence for the errors calculated 

in these experiments had the geometry and difficulties with angle adjustments. Still the 

results are in close proximity and the bone edge could be easily detected due to thickness 

values change (it is highlighted by the discontinuity in graphs [Fig. 4.16]). Overall, 

gingival thickness from coronal to apical direction was assessed. 

 

 
Figure 4.16 The bone crest detection experiment results. 
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4.3. Summary 

The experimental results proved high potential of the ultrasonic technology to be used for 

intraoral measurements. In both experiments, tissue layers were successfully assessed and 

all ultrasonic results were compared to the ones obtained using the current gold-standard 

method or the cross-sectional direct measurement. Sources of possible difference 

exceeding the experimental error and variations associated with the experimental 

measurements will be discussed in the next chapter. 
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CHAPTER 5.  

DISCUSSION 

 

 

 

 Ultrasonic measurements of the initial thickness of the enamel and its remaining 

thicknesses after consecutive grindings were found to be easy to implement by applying 

the UDS developed. Since the echo signal depended on the probe tip angle relative to the 

enamel surface, the probe was always aligned perpendicularly to the enamel surface by 

selecting the highest amplitude of the EDJ echo signals. The calculated axial resolution of 

50 MHz transducer-based hand-held ultrasonic probe was 0.12 mm in the enamel. 

 Reproducibility (precision) and accuracy are important aspects of any 

measurement and diagnostic systems. For that reason, both were tested on the UDS using 

an ultrasonic calibration block (Albuquerque Industrial, Forest Hills, New York, USA). 

The signal shape (time spread) was analyzed for the device accuracy estimation as well as 

multiple thickness readings from the block were obtained for repeatability test. The 

outcome of those tests resulted in negligible values in comparison to accuracy and 

precision introduced by the variation in object properties. In the ultrasonic measurement 

of the enamel layer thickness remaining after grinding, reproducibility establishes the 

axial resolution (minimal thickness change that can be measured) of the method. 

However, to achieve this resolution in a dental diagnostic procedure, a few limiting 

factors have to be taken into account. Firstly, it is difficult to repeatedly place the hand-

held probe exactly in the same spot on the unmarked enamel surface of the sample. 

Secondly, there is a gradual increase in thickness of the enamel layer between the 

cervical and incisal margins of the tooth that can considerably distort the repeated 

measurements of the enamel thicknesses in case the probe is slightly displaced from the 

initial position. In addition, manipulation of the probe to achieve proper alignment 

relative to the enamel layer surface can result in slight displacement of the probe on the 

surface. Moreover, the accuracy of the hand-held probe in measuring actual enamel 
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thickness is highly dependent upon the longitudinal ultrasound velocity in enamel. This 

velocity shows some natural differences between teeth and can also depend on the age of 

the patient, probably due to changes in the density of the enamel. Another particular 

characteristic of the dental enamel is its anisotropy for sound propagation due to the 

specific arrangement of the hydroxyapatite crystalline rods. Such hydroxyapatite rods are 

found in rows along the tooth, and within each row, the long axis of the enamel rod is 

generally perpendicular to the underlying dentin, which usually results in different values 

of ultrasound velocity for longitudinal and transversal enamel sections. Therefore, the 

direct measurement of the velocity of sound in enamel remains the current technique of 

choice. As was shown in the present study, the longitudinal ultrasound velocity was 

calculated by determining the time delay between the echoes received from the surface of 

the sample and the enamel-dentin interface, and directly measuring the thickness of the 

enamel with the optical microscope from a cross-sectional view. The average velocity of 

6100 ± 120 m/s is on the high end of the range reported in previous publications [4], [10], 

[95]. This could be due to the fact that measurements were all carried out essentially 

parallel to the rod direction and, therefore, a relatively high ultrasound velocity was to be 

expected. The accuracy of the measurements conducted is also considerably dependent 

on the shape of the reflected signal. Thus, the focal distance should be adjusted to locate 

the focal spot in close proximity to the enamel-dentine interface. Another important 

component of the measurement accuracy is the technique by which the reference points 

defining the time delay between the reflected signals were determined. A signal 

processing algorithm was developed for this purpose. 

 Results obtained in the hard dental tissue thickness measurement experiment 

validated the application of ultrasound for this purpose. 

 

 In the second part of the experimental work the gingival biotype was the objective 

of the study. The speed of sound used, to determine GT is often assumed to be equal to 

that through soft tissue [33], and typically falls within the range of 1514 – 1540 m/s [4], 

[33], [47], [79], [96]. The value of 1564 ± 21 m/s obtained in this experiment lies slightly 

higher. This could be due to the keratinization of gingival tissue which makes it more 

rigid than many other soft tissues. Error in the value determined for speed of sound was 
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the result of anisotropy and heterogeneity throughout the tissue sample. Due to these 

phenomena TOF was not constant along the tissue, as was revealed by the speckle in the 

B-scan [Fig. 4.14]. For the speed of sound determination, averages of TOF across each 

medium were taken along with the standard deviation. 

 While assessing porcine GT, the invasive technique was implemented once at 

each location to mimic the in vivo standard diagnostic procedure [28], [83]. Error 

presented for this technique is reading error resulting from probing each location once 

and measuring displacement of the rubber limiter ten times with computer software. 

Conversely, error presented for the ultrasonic technique is generally greater in value since 

this error arose from taking ten separate measurements at each location (statistical 

calculation). It was found that average ultrasonic values were similar to invasive; GT1 

measurements were greater than GT2, which has been found by a previous group 

studying human periodontium [28] which is shown by anatomy. 

 A k-file endodontic tool was used rather than a needle to avoid bending the needle 

during transgingival probing, since this would have resulted in overestimation of GT. 

Deviation in the invasive method could have arisen from inconsistency of the angle to the 

gingival surface at which the k-file needle was poked, or from movement of the rubber 

limiter along the needle upon removal from the mouth. Conversely, the needle may have 

been too thick to reach the bone surface, which would have resulted in an 

underestimation of the true value. Efforts were made to minimize reading error associated 

with invasive measurements by measuring displacement of the rubber limiter along the 

needle with computer software, as opposed to measuring with calipers [79]. However, in 

many cases, assessing the depth to which the needle penetrated gingival tissue was 

difficult when the limiter did not sit perpendicularly to the needle. This could have 

occurred in locations where the gingival surface and the bone were unparallel, or if one 

half of the limiter adhered to the gingival surface upon removal of the needle from the 

tissue. In addition, liquid residue on the front side of the needle made measuring precise 

displacement a challenge [Fig. 5.1]. 
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Figure 5.1 The rubber limiter is shown adjacent to the thickness reference block (1.52 mm). Accurate GT 

assessment was made difficult when the limiter lay at an angle to the needle. Note the liquid residue at the tip of 
the needle, circled in red. 

 

 Specifically relating to the porcine cadaver experiment, GT1 was found to be 

greater in positions I, II and III by the invasive method than the ultrasonic method. It is 

possible that the second ultrasonic echo was received from the periosteum which covers 

the alveolar bone, while during invasive measurements the needle would have punctured 

through the periosteum and hit the bone. Deviation in the ultrasonic method arose from 

inconsistent positioning of the probe tip over a designated location during sequential 

trials. This experimental error yielded greater significance than the reading error 

associated with the ultrasonic technique. 

 The results of this experiment showed that ultrasound can yield accurate, 

quantitative data for the assessment of periodontal biotype. In addition to the discomfort, 

requirement for anesthesia, and risk of introducing infection, the measurement errors 

presented by the invasive technique of transgingival probing signify the need for a novel 

diagnostic approach. Further research will be done to optimize system performance. 

Future prospects include in vivo trials on human subjects, as well as the possible use of a 

multi-element ultrasonic transducer. 
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CHAPTER 6.  

SUMMARY 

 A general outline to ultrasound in the medical field with a description of 

ultrasonic systems and a set of system requirements for the potential application in 

dentistry was described. The most popular dental diagnostic modalities were briefly 

reviewed and compared with the suggested ultrasonic solution. The introductory chapter 

is followed by insights to ultrasonic wave propagation to provide necessary knowledge 

required for device development, especially the transducer design. Next, the technical 

blocks of the proposed dental diagnostic system were described in details along with 

necessary parameters. The dental system was designed and assembled, and initially tested 

on prepared dental phantoms. Finally, two sets of experimental trials on hard and soft 

porcine dental tissues were conducted. 

 The HF ultrasound technology has shown the potential for detailed delineation of 

anatomical dental structures. In both experiments, tissue layers were successfully 

assessed and all ultrasonic results were compared to the ones obtained using the current 

gold standard method or the cross-sectional direct measurement. 
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APPENDICES  

Appendix A 
 
%BartoszSlak@IDIR  
  
clear all 
clc 
density1=1000; 
density2=2970; 
velocity_1=1480; 
velocity_L2=5900; 
velocity_S2=3200; 
teta_L=0; 
  
for i=1:6000 
    if real(teta_L)<85 
        teta_in=i/100; 
        teta_L=(asind((velocity_L2*(sind(teta_in)))/velocity_1)); 
        teta_S=((asind((velocity_S2*(sind(teta_in)))/velocity_1))); 
        Z_L=(density2*velocity_L2)/(cosd(teta_L)); 
        Z_S=(density2*velocity_S2)/(cosd(teta_S)); 
        Z_1=(density1*velocity_1)/(cosd(teta_in)); 
        down=((Z_L*((cosd(2*teta_S))^2))+(Z_S*(sind(2*teta_S))^2)+Z_1); 
        down1=((Z_L*((cosd(2*teta_S))^2))+(Z_S*(sind(2*teta_S))^2)-
Z_1); 
        up=2*Z_L*cosd(2*teta_S); 
        up_shear=2*Z_S*sind(2*teta_S); 
        front=(density2*tand(teta_in))/(density1*tand(teta_L)); 
        front_shear=(density2*tand(teta_in))/(density1*tand(teta_S)); 
        
trans_long(i)=(front*(abs((density1/density2)*(up/down)))^2)*100; 
        reflection(i)=((abs(down1/down))^2)*100; 
        trans_shear(i)=(front_shear*(abs((-
density1/density2)*(up_shear/down)))^2)*100; 
  
    end     
end  
  
 figure() 
 plot((1:(length(trans_long)))/100,trans_long) 
 hold on 
 plot((1:(length(trans_shear)))/100,trans_shear,'red') 
 plot((1:(length(reflection)))/100,reflection,'black') 
 axis([0 14.5 0 100]) 
  h = legend('T_L','T_S','R',3); 
set(h,'Interpreter','none') 
 title('Water/Enamel angular depnedences on coeff') 
 xlabel('Incidence angle [deg]') 
 ylabel('Energy [%]') 
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