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ABSTRACT 

Neural responses to sensory stimuli often differ between sexes and can be 

regulated by endocrine activity.  This thesis examines the effects of sex, reproductive 

condition, female plasma 17β-estradiol level, and saccule hair cell density on auditory 

function in the round goby (Neogobius melanostomus).  Relative to males, females had 

greater auditory sensitivity in the upper range of their hearing (300-600 Hz) and a higher 

density of hair cells.  Female 17β-estradiol was associated with changes in auditory 

filtering properties at low frequencies (100-200 Hz).  Additionally, I examined 

associations between gonadosomatic index, reproductive hormones, and stage of gonadal 

development in the round goby.  Gonadasomatic indices provided limited resolution on 

reproductive condition in males and females; these categories encompassed individuals in 

varied endocrine and gonadal conditions.  The results demonstrate auditory sexual 

dimorphism, elucidate the physiological mechanisms regulating auditory function, and 

present a framework for future studies on the reproductive cycle in the round goby. 
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CHAPTER I: INTRODUCTION 

Introduction Part A 

Role of sensory systems in signal evolution and sexual selection 

In animal communication, signal characteristics and receiver sensory traits are 

expected to coevolve (Endler, 1992).  In the context of courtship signalling, the evolution 

of male signals should be limited by the properties of the receiver’s sensory system; 

similarly, sensory systems that are effective in receiving male signals should be favoured 

(Guilford and Dawkins, 1991, Endler, 1992, Ryan 1998).  When acoustic communication 

is favoured by natural selection, “matched filters” - where sensory traits match 

characteristics of the signal - are predicted to evolve (Endler, 1992, Henry and Lucas, 

2008).  However, sensory systems also evolve outside of the communication contexts 

(e.g. predator avoidance, foraging), resulting in a mismatch between signaller and 

receiver properties (Ryan et al., 1990, Bailey and Romer, 1991, Kostarakos et al., 2008).  

Thus, it is critical to examine sensory function to understand the limits on the evolution 

of communication systems.  

Acoustic communication is a central feature of reproductive behaviour in many 

taxa (Wells 1977, Bass and McKibben, 2003).  The auditory system plays a central role 

in reproductive outcomes because it determines how efficiently acoustic signals are 

detected and encoded.  Chapter 2 of this thesis focuses on how two aspects of receiver 

condition - sex and reproductive state - may influence auditory function within a species.   
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Condition dependent responses in receivers 

Receiver sex 

Sex differences in auditory sensitivity could also evolve when males and females 

differ in the effective range used for auditory reception (Gall et al., 2011).  This scenario 

could occur in territorial species where females arrive briefly on the breeding grounds to 

mate with males, relying heavily on acoustic cues for navigation.  An example of this 

occurs in spring peepers (Hyla crucifer), in which females have lower auditory thresholds 

than males at frequencies corresponding to male advertisement vocalizations 

(Wilczyinski et al., 1984).  This sensitivity difference gives females a signal detection 

range that is approximately 6 times greater than males (Brenowitz et al., 1984).  

Interestingly, males position themselves such that the sound levels of acoustic signals are 

near auditory threshold as it reaches neighbouring males (Brenowitz et al., 1984).   This 

sex difference in hearing ability apparently facilitates male spacing, while still 

maintaining sufficient cohesion to attract females to the breeding grounds (Brenowitz et 

al., 1984).  Sex differences in auditory function have been observed in various taxa, 

including humans (McFadden, 1998), birds (Gall et al., 2011), frogs (Wilczyinski et al., 

1984, Miranda and Wilczinski, 2009), and insects (Bailey and Romer, 1991).   

Males and females often both respond to the same sexual signals (Berglund et al., 

1996), but the optimal responses may differ between sexes (e.g. phonotaxis and mate 

choice in females vs. agonistic displays in males).  Sex differences in auditory function 

may evolve when the sexes differ in the relative costs of misidentification of 

heterospecific signals (Searcy and Brenowitz, 1988).  Female attraction to heterospecific 

courtship signals (an acoustic identification error) should come at a high cost due to the 
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wasted hybrid mating (Searcy and Brenowitz, 1988, Bernal et al., 2009).  Females that 

are more selective in responding to acoustic signals should experience higher 

reproductive success than indiscriminate females.  In contrast, the cost of 

misidentification could be lower in males; it is the cost associated with displaying to 

another male when there is no threat.  Thus, in some mating systems, females may be 

more selective than males in their discrimination of acoustic signals, which is supported 

by behavioural studies (Searcy and Brenowitz, 1988, Bernal et al., 2007).  Greater 

auditory selectivity in females could result from sex differences in auditory filtering 

properties in the auditory periphery or midbrain.  

 

Receiver reproductive state 

Acoustic signal output often increases during the breeding period in vertebrates 

(Wells, 1977, Tramontin et al., 2000, Kasumyan, 2009), and behavioural responses to 

acoustic signals similarly vary seasonally and/or with reproductive status.  For example, 

in the tungara frog, Physalaemus pustulosus, the probability of female approach toward 

male vocalizations is greater when in an amplexed stage (Lynch et al., 2005).  Similar 

reproductive state-dependent phonotaxis results have been found in the plainfin 

midshipman fish, Porichthys notatus, where gravid females exhibit a greater probability 

of phonotaxic responses to acoustic signals than spent females (Bass and McKibben, 

2003).   

Seasonal and reproductive state-dependent responses to acoustic signals could be 

regulated by gonadal hormones.  Gonadal hormones are thought to be effective 

mechanisms for permitting or triggering mating behaviour in ‘associated’ mating 
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systems, where mating behaviours occur in close temporal association with gonadal 

hormone elevation and gonad development (Crews, 1984, Crews and Moore, 1986, 

Nelson et al., 1990).  Gonadal hormones have been found to influence reproductive 

behaviours across taxa (Remage-Healey and Bass, 2006, Munakata and Kobayashi, 2010, 

Lynch and Wilczyinski, 2011), and to modulate phonotaxis preferences (Lynch et al., 

2006, Gordon and Gerhardt 2009).  Moreover, hormone elevations often occur at a time 

when animals are performing phonotaxis and other acoustic discrimination tasks 

(Sisneros et al., 2004, Gordon and Gerhardt, 2009).  Thus, behavioural responses to 

acoustic signals hormones may be under endocrine control.  

Hormones could affect responses to acoustic signals by altering how acoustic 

signals are received and processed in the auditory system (i.e. changing in sensitivity or 

coding properties).  There are a growing number of studies indicating that auditory 

function varies seasonally and/or with endocrine state (Sisneros et al., 2004, Goense and 

Feng, 2005, Bass and Zakon, 2005, Caras et al., 2010).  Several songbirds have higher 

auditory evoked potential (AEP) amplitudes in the spring relative to the fall, which 

parallels seasonal changes in vocal activity (Lucas et al., 2002, 2007).  Testosterone 

implants increase midbrain auditory threshold in green treefrogs, Hyla cinerea  (Miranda 

and Wilczyinski, 2009), and male northern leopard frogs, Rana pipiens, experience a shift 

in auditory frequency tuning in the late spring and summer, relative to winter (Goense 

and Feng, 2005).  In fish, gonadal steroids affect electroreception and audition tuning 

(Sisneros and Bass, 2003, Bass and Zakon, 2005).  Auditory function in human females 

varies across the menstrual cycle (Elkind-Hirsch et al., 1992, Walpurger et al., 2004).  

There is also evidence of direct hormonal on the peripheral auditory system; androgen 
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and/or estrogen receptors have been found in the peripheral auditory nerve afferents 

and/or inner ear in birds (Noirot et al. 2009), mammals (Stenberg et al., 1999), and fish 

(Forlano et al., 2005, 2010, Maruska and Fernald, 2010).   

 

Acoustic communication in fishes 

Many species of marine and freshwater fish use acoustic communication during 

behaviours related to territoriality, aggression, courtship, and mating (Zelick et al., 1999).  

In fish occupying shallow water environments (e.g. intertidal zones, lake and river 

shorelines), acoustic communication may be limited by physical properties of sound 

propagation. The ability for sound to propagate in shallow water depends on water depth 

and substrate type, among other factors (reviewed by Bass and Clark, 2003).  As depth 

decreases, the cutoff frequency above which sounds will propagate also increases (Bass 

and Clark, 2003).  Similarly, as the speed of sound in the substrate decreases, the cutoff 

frequency also increases (Bass and Clark, 2003). 

Additionally, most vocalizing species do not have auditory specializations to detect 

pressure waves, limiting hearing to detection of local water motions (Popper and Fay, 

2011).  The absence of pressure detection can limit the frequency range of hearing to 

below 500 Hz in many species (Ladich and Bass, 2003).  Thus, in contrast to much 

acoustic communication in the open ocean and on land, where sound may be used over 

large ranges (Forrest, 1993), acoustic communication in shallow water fishes is typically 

used for short range signalling (< 10 m, Bass and Clark, 2003).   

The most common context for sound production in fishes is during the spawning 

season (Zelick et al., 1999, Kasumyan, 2009).  Vocalizations are commonly produced by 
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males defending territories and serve to attract females or to mediate agonistic 

interactions with other males (Ladich 1997, Kasumyan, 2009).  Fish sounds are typically 

a collection of simple pulse sounds of short duration (<1 s) with little frequency 

modulation (Bass and McKibben, 2003, Ladich and Bass, 2003).  Most of the differences 

between closely related species occur in temporal parameters such as pulse duration and 

inter-pulse interval (Ladich 1997, McKibben and Bass, 2003).  Vocal production can 

influence mate choice (Myrberg et al., 1986, Verzijden et al., 2010) and determine 

reproductive success (Vasconcelos et al., 2012). 

 

Study species: Round goby 

In Chapter 2, I examined effects of sex, reproductive condition, and endocrine state 

on auditory reception in a vocal teleost fish, the round goby, Neogobius melanostomus.  

Like other freshwater gobies (Lugli et al., 1997; Bass and McKibben, 2003), male round 

gobies produce pulse sounds during reproductive periods, presumably for mate attraction 

and/or to ward off nest intruders (Rollo et al., 2007, Meunier et al., 2009).  Round gobies 

move to deeper waters in the winter (Sapota and Skora 2005, Pennuto et al., 2010).  In 

the spring males swim to the shallow breeding grounds, followed by females (Kotvun, 

1976).  Females spawn multiple batches through the breeding period (Charlebois et al., 

1997). 

Receiver sex could influence auditory function in the round goby because m 

ale and female round gobies may listen to male acoustic signals for different 

purposes (mate localization vs. competitive displays). In phonotaxis tests, both males and 

females show specificity for conspecific acoustic signals relative to heterospecific goby 
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calls (Rollo and Higgs, 2008).  However, females have a higher response rate than males 

(Rollo et al., 2007).  Sexual selection could favour females with greater auditory 

sensitivity due to the importance of nest localization in female reproductive success.  

While the behaviour of females between spawning batches is unknown, it has been 

suggested that females remain at breeding grounds for short periods to deposit eggs, then 

retreat to deeper waters, potentially to avoid predation (Kotvun, 1979, Young et al., 

2010).  If so, the effective range of acoustic reception could be greater in females than in 

males. 

Round gobies could also exhibit reproductive state-dependent changes in auditory 

function due to the seasonal nature of their vocalizations and reproductive behaviour.  

Their seasonal migration to shallow waters in the spring is similar to that observed by 

plainfin midshipman fish, a species which exhibits a seasonal shift in auditory sensitivity 

with the onset of the breeding season (Sisneros and Bass, 2003, Rohmann and Bass, 

2011).  Additionally, olfactory sensitivity to pheromones in the round goby is flexible 

depending on reproductive and endocrine condition.  In both males and females, olfactory 

sensitivity to purported pheromones is greater in reproductive fish than non-reproductive 

fish (Belanger, et al., 2004, Belanger et al., 2007), and is influenced by the level of 

circulating androgens (Murphy and Stacey, 2002).  Since male olfactory and acoustic 

cues may be sending similar messages - at least to females (Kasurak et al., 2012) - 

reproductive dependent changes in olfactory sensory physiology could be paralleled by 

changes in auditory processing.   
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Chapter 2 Objectives 

In Chapter 2, I first examined the effects of sex and reproductive condition on 

auditory processing in the round goby.  In addition, I related plasma 17β-estradiol to 

hearing measures in females.  I also examined the potential for sex and reproductive 

condition-based differences hair cell densities in the saccule, the main auditory end organ 

in fishes (Popper and Fay, 1999). 

 

 

Introduction Part B 

Reproductive development in fishes 

Teleost fishes exhibit a diversity of reproductive strategies (Wallace and Selman, 

1981, Godwin, 2010), which is paralleled by diversity in hormonal mechanisms of gonad 

maturation and mating behaviour (Kime, 1993, Munakata and Kobayashi, 2010).  Due to 

the potential influence of endocrine and reproductive state on sensory processing and 

mating behaviour, examining gonadal hormone levels in relation to gonad maturation and 

mating behaviour is a key step in understanding a species’ behavioural endocrinology and 

neuroendocrinology.  Despite the diverse reproductive strategies in fish, many endocrine 

functions in gonad development are conserved across species (Kime, 1993, Devlin and 

Nagahama, 2002).  The ‘classic’ models of endocrine control of gonadal development in 

male and female fishes are described in the following paragraphs. 
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Reproductive maturation in females is initiated by the release of gonadotropins 

from the pituitary, which stimulates steroid production in the gonads (Peter and Crim, 

1979, Nelson et al., 1990).  The steroid 17β-estradiol (E2) plays a critical role in gonad 

development by stimulating the liver to produce vitellogenin (Vtg), a glycolipoprotein 

yolk precursor (Tyler and Sumpter, 1996, Patino and Sullivan, 2002).  Vitellogenin is 

sequestered by the oocytes, resulting in a large increase in egg size.  In many female fish 

studied to date, plasma E2 and testosterone (T) are elevated during vitellogenesis and 

decline in final maturation (Matsuyama et al., 1991, Kime, 1993).  In final maturation 

and ovulation, steroid production shifts from C19 steroids (androgens, estrogens) to C21 

maturation inducing steroids (progestogens) such as 17,20 β-dihydroxy-4-pregnen-3-one 

(17,20 β-P) (Malison et al., 1994, Munakata and Kobayashi, 2010).     

In male fishes, sperm develop in cysts in seminiferous lobules and accumulate in 

the lumen before collecting in the sperm duct (Grier, 1981).  The androgen 11-

ketotestosterone (11KT) is considered the primary androgen in many teleosts examined 

to date (Kime 1993, Borg, 1994, Nagahama, 1994), although there is species variation 

(Munakata and Kobayashi, 2010).  Plasma 11KT has been shown to stimulate 

spermatogenesis (Miura et al., 1991, Nagahama, 1994), and to decline slightly during 

spermiation, as steroid production changes to 17,20 β-P (Scott et al., 2010, Schulz et al., 

2010).   

 

Evaluating developmental and endocrine correlates of the gonadosomatic index 

Gonadosomatic index (GSI) is a commonly used measure of reproductive 

development in fishes (Tomkins and Simmons, 2002).  It measures gonad mass relative 
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to body mass and can be expressed with the following formula: gonad mass/body mass × 

100% (Schreck and Moyle, 1990).  In order for GSI to accurately reflect a stage of 

reproductive development, the increase in gonad mass must correspond to advancement 

in gamete developmental state; GSI is of little use in distinguishing between stages which 

contribute minimally to total gonad mass.  In mature testes, most of the cell mass may be 

attributed to an accumulation of spermatozoa (Billard, 1986), and in female ovaries, the 

main increase in ovary volume can be attributed on an increase in egg size during the 

vitellogenic phase (Tyler and Sumpter, 1996).  Thus, GSI may be used to classify 

whether fish have reached a spawning capable stage, as indicated by the completion of 

spermatogenesis or vitellogenesis (Brown-Peterson et al., 2011).   

However, patterns of gonad development differ across species and between sexes; 

therefore, the association between gonad mass and histological stage must be examined 

on a species-specific basis if GSI is to be used as a proxy for gamete developmental 

stage.  In fish that spawn once in a season, the relationships between gonad 

developmental stage, endocrine state, and GSI may fluctuate in close association because 

developmental stages occur in sequence and without repetition of earlier stages.  

However, in multiple spawning fish, gonad mass may be uncoupled from gonad stage 

and hormonal condition due to the overlap between mature oocytes and earlier stages of 

development (Rinchard et al., 1997).  In such cases, certain aspects of endocrine state 

(such as E2 level), may not fluctuate directly with gonad mass because vitellogenesis 

may be occurring continuously (Rinchard et al., 1996, Rinchard et al., 1997).   
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Chapter 3 Objectives 

In Chapter 3, I examine the covariation between gonad developmental stage, 

plasma gonadal hormone levels (11KT, T in males, T and E2 in females), and 

gonadosomatic index (GSI) values.  I also describe seasonal changes in GSI and hormone 

levels in spawning capable fish.   The anticipated significance of Chapter 3 was to 

provide basic knowledge for future studies on the reproductive biology of the round 

goby.  From an applied perspective, understanding the patterns and parameters which 

determining reproductive activity is a critical research need for management of round 

goby invasion in the Great Lakes watershed.  The results could be used to address the 

utility of commonly used cutoffs of 1% and 8%, which are now used to classify 

‘reproductive’ vs. ‘non-reproductive’ round goby (Gammon et al., 2005, Bowley et al., 

2010, Young et al., 2010).  There are currently limited data on steroid hormone levels in 

the round goby in relation to gonadal stage, although hormone levels in different male 

reproductive groups have recently been reported (Bowley et al., 2010).   



 

12 

 

Literature Cited 

Bailey, W. J. and Römer, H. (1991). Sexual differences in auditory sensitivity: 

mismatch of hearing threshold and call frequency in a tettigoniid (orthoptera, 

tettigoniidae: Zaprochilinae). Journal of Comparative Physiology A 169, 349-353. 

Bass, A. H. and Clark, C. W. (2003). The Physical Acoustics of Underwater Sound 

Communication. In Acoustic Communication (ed. Simmons, A. M., Fay, R. R., and 

Popper, A. N.), pp. 15-64. New York: Springer-Verlag. 

Bass, A. H. and McKibben, J. R. (2003). Neural mechanisms and behaviors for acoustic 

communication in teleost fish. Progress in Neurobiology 69, 1-26. 

Bass, A. H. and Zakon, H. H. (2005). Sonic and electric fish: At the crossroads of 

neuroethology and behavioral neuroendocrinology. Hormones and Behavior 48, 

360-372. 

Belanger, A. J., Arbuckle, W. J., Corkum, L. D., Gammon, D. B., Li, W., Scott, A. 

P., Zielinski, B. S. (2004). Behavioural and electrophysiological responses by 

reproductive female Neogobius melanostomus to odours released by conspecific 

males. Journal of Fish Biology, 65, 933 -946. 

Belanger, R. M., Corkum, L. D. and Zielinski, B. S. (2007). Differential behavioral 

responses by reproductive and non-reproductive male round gobies (Neogobius 

melanostomus) to the putative pheromone estrone. Comparative Biochemistry and 

Physiology A 147, 77-83. 

Berglund, A., Bisazza, A., and Pilastro, A., (1996). Armaments and ornaments: an 

evolutionary explanation of traits of dual utility Biological Journal of the Linnean 

Society,  58, 385-399. 

Bernal, X. E., Stanley Rand, A. and Ryan, M. J. (2007). Sex differences in response to 

nonconspecific advertisement calls: receiver permissiveness in male and female 

túngara frogs. Animal Behaviour 73, 955-964. 

Bernal, X. E., Rand, A. S. and Ryan, M. J. (2009). Task Differences Confound Sex 

Differences in Receiver Permissiveness in Túngara Frogs. Proceedings of the Royal 

Society B 276, 1323-1329. 

Billard, R. (1986). Spermatogenesis and spermatology of some teleost fish species. 

Reproduction, nutrition, développement 26, 877-920. 

Borg, B. (1994). Androgens in teleost fishes. Comparative Biochemistry and Physiology 

Part C 109, 219-245. 

Bowley, L. A., Alam, F., Marentette, J. R., Balshine, S. and Wilson, J. Y. (2010). 

Characterization of vitellogenin gene expression in round goby (Neogobius 

melanostomus) using a quantitative polymerase chain reaction assay. 

Environmental Toxicology and Chemistry 29, 2751-2760. 

Brenowitz, E. A., Wilczynski, W. and Zakon, H. H. (1984). Acoustic communication 

in spring peepers. Journal of Comparative Physiology A: Neuroethology, Sensory, 

Neural, and Behavioral Physiology 155, 585-592. 

Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J. and 

Lowerre-Barbieri, S. K. (2011). A Standardized Terminology for Describing 

Reproductive Development in Fishes. Marine and Coastal Fisheries 3, 52-70. 



 

13 

Crews, D. (1984). Gamete production, sex hormone secretion, and mating behavior 

uncoupled. Hormones and Behavior 18, 22-28. 

Crews, D. and Moore, M. C. (1986). Evolution of Mechanisms Controlling Mating 

Behavior. Science 231, 121-125. 

Devlin, R. H. and Nagahama, Y. (2002) Sex determination and sex differentiation in 

fish: an overview of genetic, physiological, and environmental influences. 

Aquaculture 208, 191-364. 

Elkind-Hirsch, K., Stoner, W., Stach, B. and Jerger, J. (1992). Estrogen influences 

auditory brainstem responses during the normal menstrual cycle. Hearing Research 

60, 143-148. 

Endler, J. A. (1992). Signals, Signal Conditions, and the Direction of Evolution. The 

American Naturalist 139, S125-S153. 

Forlano, P. M., Deitcher, D. L. and Bass, A. H. (2005). Distribution of estrogen 

receptor alpha mRNA in the brain and inner ear of a vocal fish with comparisons to 

sites of aromatase expression. The Journal of Comparative Neurology 483, 91-113. 

Forlano, P. M., Marchaterre, M., Deitcher, D. L. and Bass, A. H. (2010). Distribution 

of androgen receptor mRNA expression in vocal, auditory, and neuroendocrine 

circuits in a teleost fish. The Journal of Comparative Neurology 518, 493-512. 

Forrest, T. G. (1994). From Sender to Receiver: Propagation and Environmental Effects 

on Acoustic Signals. American Zooogist. 34, 644-654. 

Gall, M. D., Brierley, L. E. and Lucas, J. R. (2011). Species and sex effects on auditory 

processing in brown-headed cowbirds and red-winged blackbirds. Animal 

Behaviour 81, 973-982. 

Gammon, D. B., Li, W., Scott, A. P., Zielinski, B. S. and Corkum, L. D. (2005). 

Behavioural responses of female Neogobius melanostomus to odours of 

conspecifics. Journal of Fish Biology 67, 615-626. 

Godwin, J. (2010). Neuroendocrinology of sexual plasticity in teleost fishes. Frontiers in 

Neuroendocrinology 31, 203-216. 

Goense, J. B. and Feng, A. S. (2005). Seasonal changes in frequency tuning and 

temporal processing in single neurons in the frog auditory midbrain. Journal of 

Neurobiology 65, 22-36. 

Gordon, N. M. and Gerhardt, H. C. (2009). Hormonal modulation of phonotaxis and 

advertisement-call preferences in the gray treefrog (Hyla versicolor). Hormones 

and Behavior 55, 121-127. 

Grier, H. J. (1981). Cellular Organization of the Testis and Spermatogenesis in Fishes. 

American Zooogist. 21, 345-357. 

Guilford, T. and Dawkins, M. S. (1991). Receiver psychology and the evolution of 

animal signals. Animal Behaviour 42, 1-14. 

Henry, K. S. and Lucas, J. R. (2008). Coevolution of auditory sensitivity and temporal 

resolution with acoustic signal space in three songbirds. Animal Behaviour 76, 

1659-1671. 

Kasumyan, A. (2009). Acoustic signaling in fish. Journal of Ichthyology 49, 963-1020. 

Kasurak, A. V., Zielinski, B. S. and Higgs, D. M. (2012). Reproductive status 

influences multisensory integration responses in female round gobies, Neogobius 

melanostomus. Animal Behaviour. 83, 1179-1185. 



 

14 

Kime, D. E. (1993). “Classical” and “non-classical” reproductive steroids in fish. 

Reviews in Fish Biology and Fisheries 3, 160-180. 

Kostarakos, K., Hartbauer, M. and Römer, H. (2008). Matched Filters, Mate Choice 

and the Evolution of Sexually Selected Traits. PLoS ONE 3. 

Kotvun, I. F. (1979). Significance of the sex ratio in the spawning population of the 

round goby, Neogobius melanostomus, in relation to year-class strength in the Sea 

of Azov. Azov Fisheries Research Institute. 19, 161–163. 

Ladich, F. (1997). Agonistic behaviour and significance of sounds in vocalizing fish. 

Marine and Freshwater Behaviour and Physiology 29, 87-108. 

Ladich, F. and Bass, A. H. (2003). Underwater Sound Generation and Acoustic 

Reception in Fishes with Some Notes on Frogs. In Sensory Processing in Aquatic 

Environments (ed. Collin, S. P. and Marshall, N. J.), pp. 173-193. Springer New 

York. 

Lucas, J. R., Freeberg, T. M., Long, G. R. and Krishnan, A. (2002). Seasonal 

variation in avian auditory evoked responses to tones: a comparative analysis of 

Carolina chickadees, tufted titmice, and white-breasted nuthatches. Journal of 

Comparative Physiology A 193, 201-215. 

Lucas, J., Freeberg, T., Long, G. and Krishnan, A. (2007). Seasonal variation in avian 

auditory evoked responses to tones: a comparative analysis of Carolina chickadees, 

tufted titmice, and white-breasted nuthatches. Journal of Comparative Physiology 

A: Neuroethology, Sensory, Neural, and Behavioral Physiology 193, 201-215. 

Lugli, M., Torricelli, P., Pavan, G. and Mainardi, D. (1997). Sound production during 

courtship and spawning among freshwater gobiids (Pisces, Gobiidae). Marine and 

Freshwater Behaviour and Physiology 29, 109-126. 

Lynch, K. S., Stanely Rand, A., Ryan, M. J. and Wilczynski, W. (2005). Plasticity in 

female mate choice associated with changing reproductive states. Animal 

Behaviour 69, 689-699. 

Lynch, K. S., Crews, D., Ryan, M. J. and Wilczynski, W. (2006). Hormonal state 

influences aspects of female mate choice in the Túngara Frog (Physalaemus 

pustulosus). Hormones and Behavior 49, 450-457. 

Malison, J. A., Procarione, L. S., Barry, T. P., Kapuscinski, A. R. and Kayes, T. B. 
(1994). Endocrine and gonadal changes during the annual reproductive cycle of the 

freshwater teleost, Stizostedion vitreum. Fish Physiology and Biochemistry 13, 473-

484. 

Marentette, J. R., Gooderham, K. L., McMaster, M. E., Ng, T., Parrott, J. L., 

Wilson, J. Y., Wood, C. M. and Balshine, S. (2010). Signatures of contamination 

in invasive round gobies (Neogobius melanostomus): A double strike for ecosystem 

health? Ecotoxicology and Environmental Safety 73, 1755-1764. 

Matsuyama, M., Adachi, S., Nagahama, Y., Kitajima, C. and Matsuura, S. (1991). 

Annual reproductive cycle of the captive female Japanese sardine, Sardinops 

melanostictus: Relationship to ovarian development and serum levels of gonadal 

steroid hormones. Marine Biology 108, 21-29. 

Maruska, K. P. and Fernald, R. D. (2010). Steroid receptor expression in the fish inner 

ear varies with sex, social status, and reproductive state. BMC Neurosci 11, 58. 

McFadden, D. (1998). Sex differences in the auditory system. Developmental 

Neuropsychology 14, 261-298. 



 

15 

Meunier, B., Yavno, S., Ahmed, S. and Corkum, L. D. (2009). First Documentation of 

Spawning and Nest Guarding in the Laboratory by the Invasive Fish, the Round 

Goby (Neogobius melanostomus). Journal of Great Lakes Research 35, 608-612. 

Miranda, J. A. and Wilczynski, W. (2009). Sex differences and androgen influences on 

midbrain auditory thresholds in the green treefrog, Hyla cinerea. Hearing Research 

252, 79-88. 

Miura, T., Yamauchi, K., Takahashi, H. and Nagahama, Y. (1991). Hormonal 

induction of all stages of spermatogenesis in vitro in the male Japanese eel 

(Anguilla japonica). PNAS 88, 5774-5778. 

Munakata, A. and Kobayashi, M. (2010). Endocrine control of sexual behavior in 

teleost fish. General and Comparative Endocrinology 165, 456-468. 

Murphy, C. A. and Stacey, N. E. (2002). Methyl-Testosterone Induces Male-Typical 

Ventilatory Behavior in Response to Putative Steroidal Pheromones in Female 

Round Gobies (Neogobius melanostomus). Hormones and Behavior 42, 109-115. 

Myrberg Jr, A. A., Mohler, M. and Catala, J. D. (1986). Sound production by males of 

a coral reef fish (Pomacentrus partitus): its significance to females. Animal 

Behaviour 34, 913-923. 

Nagahama, Y. (1994). Endocrine regulation of gametogenesis in fish. International 

Journal of Developmental Biology 38, 217. 

Nelson, R. J., Badura, L. L. and Goldman, B. D. (1990). Mechanisms of seasonal 

cycles of behavior. Annual Review of Psychology 41, 81-108. 

Noirot, I. C., Adler, H. J., Cornil, C. A., Harada, N., Dooling, R. J., Balthazart, J. 

and Ball, G. F. (2009). Presence of aromatase and estrogen receptor alpha in the 

inner ear of zebra finches. Hearing Research 252, 49-55. 

Patiño, R. and Sullivan, C. (2002). Ovarian follicle growth, maturation, and ovulation in 

teleost fish. Fish Physiology and Biochemistry 26, 57-70. 

Pennuto, C. M., Krakowiak, P. J. and Janik, C. E. (2010). Seasonal abundance, diet, 

and energy consumption of round gobies (Neogobius melanostomus) in Lake Erie 

tributary streams. Ecology of Freshwater Fish 19, 206-215. 

Peter, R. E. and Crim, L. W. (1979). Reproductive Endocrinology of Fishes: Gonadal 

Cycles and Gonadotropin in Teleosts. Annual Review of Physiology 41, 323-335. 

Popper, A.N. and Fay, R.R., 1999. The auditory periphery in fishes. In: Fay, R.R., 

Popper, A.N. (Eds.), Comparative Hearing: Fish and Amphibians. Springer, New 

York, pp. 43-100. 

Popper, A. N. and Fay, R. R. (2011). Rethinking sound detection by fishes. Hearing 

Research 273, 25-36. 

Remage-Healey, L. and Bass, A. H. (2006). A rapid neuromodulatory role for steroid 

hormones in the control of reproductive behavior. Brain Research 1126, 27-35. 

Rinchard, J. and Kestemont, P. (1996). Comparative study of reproductive biology in 

single‐ and multiple‐spawner cyprinid fish. I. Morphological and histological 

features. Journal of Fish Biology 49, 883-894. 

Rinchard, J., Kestemont, P., Heine, (1997). Comparative study of reproductive biology 

in single and multiple‐spawner cyprinid fish. II. Sex steroid and plasma protein 

phosphorus concentrations, Journal of Fish Biology 50, 169-180. 



 

16 

Rohmann, K. N. and Bass, A. H. (2011). Seasonal plasticity of auditory hair cell 

frequency sensitivity correlates with plasma steroid levels in vocal fish. Journal of 

Experimental Biology 214, 1931 -1942. 

Rollo, A. and Higgs, D. (2008). Differential acoustic response specificity and 

directionality in the round goby, Neogobius melanostomus. Animal Behaviour 75, 

1903-1912. 

Rollo, A., Andraso, G., Janssen, J. and Higgs, D. (2007). Attraction and localization of 

round goby (Neogobius melanostomus) to conspecific calls. Behaviour 144, 1-21. 

Ryan, M. J. (1998). Sexual Selection, Receiver Biases, and the Evolution of Sex 

Differences. Science 281, 1999-2003. 

Sapota, M. R. and Skora, K. E. (2005). Spread of alien (non-indigenous) fish species 

Neogobius melanostomus in the Gulf of Gdansk (south Baltic). Biological 

Invasions 7, 157-164. 

Schreck, C. B. and Moyle, P. B. (1990). Methods for fish biology. American Fisheries 

Society, Bethseda, Maryland, USA. 

Schulz, R. W., de França, L. R., Lareyre, J.J., LeGac, F., Chiarini-Garcia, H., 

Nobrega, R. H. and Miura, T. (2010). Spermatogenesis in fish. General and 

Comparative Endocrinology 165, 390-411. 

Scott, A. P., Sumpter, J. P., and Stacey, N. (2010). The role of the maturation‐inducing 

steroid, 17,20β‐dihydroxypregn‐4‐en‐3‐one, in male fishes: a review. Journal of 

Fish Biology 76, 183-224. 

Searcy, W. A. and Brenowitz, E. A. (1988). Sexual differences in species recognition of 

avian song. Nature 332, 152-154. 

Sisneros, J. A. and Bass, A. H. (2003). Seasonal Plasticity of Peripheral Auditory 

Frequency Sensitivity. Journal of Neuroscience 23, 1049-1058. 

Sisneros, J. A., Forlano, P. M., Knapp, R. and Bass, A. H. (2004). Seasonal variation 

of steroid hormone levels in an intertidal-nesting fish, the vocal plainfin 

midshipman. General and Comparative Endocrinology 136, 101-116. 

Stenberg, A. E., Wang, H., Sahlin, L. and Hultcrantz, M. (1999). Mapping of estrogen 

receptors α and β in the inner ear of mouse and rat. Hearing Research 136, 29-34. 

Tomkins, J. L. and Simmons, L. W. (2002). Measuring relative investment: a case 

study of testes investment in species with alternative male reproductive tactics. 

Animal Behaviour 63, 1009-1016. 

Tramontin, A. D. and Brenowitz, E. A. (2000). Seasonal plasticity in the adult brain. 

Trends in Neurosciences 23, 251-258. 

Tyler, C. R. and Sumpter, J. P. (1996). Oocyte growth and development in teleosts. 

Reviews in Fish Biology and Fisheries 6, 287-318. 

Vasconcelos, R. O., Carriço, R., Ramos, A., Modesto, T., Fonseca, P. J. and Amorim, 

M. C. P. (2012). Vocal Behavior Predicts Reproductive Success in a Teleost Fish. 

Behavioral Ecology 23, 375-383. 

Verzijden, M. N., Van Heusden, J., Bouton, N., Witte, F., Ten Cate, C. and 

Slabbekoorn, H. (2010). Sounds of Male Lake Victoria Cichlids Vary Within and 

Between Species and Affect Female Mate Preferences. Behavioral Ecology 21, 

548-555. 

Wallace, R. A. and Selman, K. (1981). Cellular and Dynamic Aspects of Oocyte 

Growth in Teleosts. Amer. Zool. 21, 325-343. 



 

17 

Walpurger, V., Pietrowsky, R., Kirschbaum, C. and Wolf, O. T. (2004). Effects of the 

menstrual cycle on auditory event-related potentials. Hormones and Behavior 46, 

600-606. 

Wells, K. D. (1977). The social behaviour of anuran amphibians. Animal Behaviour 25, 

666-693. 

Wilczynski, W., Zakon, H. H. and Brenowitz, E. A. (1984). Acoustic communication 

in spring peepers. Journal of Comparative Physiology A 155, 577-584. 

Young, J. A. M., Marentette, J. R., Gross, C., McDonald, J. I., Verma, A., Marsh-

Rollo, S. E., Macdonald, P. D. M., Earn, D. J. D. and Balshine, S. (2010). 

Demography and substrate affinity of the round goby (Neogobius melanostomus) in 

Hamilton Harbour. Journal of Great Lakes Research 36, 115-122. 

 



 

18 

 

CHAPTER II: CONDITION DEPENDENT AUDITORY FUNCTION IN THE 

ROUND GOBY, NEOGOBIUS MELANOSTOMUS 

Introduction 

In many animal communication systems, both the production of acoustic signals 

(e.g. Wells, 1977; Fine, 1978; Kasumyan, 2009) and responses to these signals (Lea et 

al., 2000; Lynch et al., 2005) vary seasonally in association with reproduction.  Signal 

production and sensory reception traits are likely to be evolutionarily coupled (Endler, 

1992).  Coupling between sender and receiver traits could also be applied on a temporal 

scale; when there is seasonal variation in signal production, there could also be potential 

for seasonal plasticity in auditory function.  Seasonal changes in auditory function could 

be adaptive due to the cost of maintaining sensory neurons (Nivens and Laughlin, 2008).  

In addition to such condition-dependent effects on audition, sexes typically attend to 

conspecific acoustic signals with different purpose (e.g. courtship vs. agonistic), which 

could be reflected by sex differences in auditory function due to differences in auditory 

tasks (Wilczyinski et al., 1984; Searcy and Brenowitz, 1998; Gall et al., 2011). 

Effects of season and reproductive condition on acoustic communication are 

reflected by changes in the neural circuitry involved in vocal production (Tramontin and 

Brenowitz, 2000; Bass and Zakon, 2005; Bass, 2008) and auditory processing (Bass and 

Zakon, 2005; Goense and Feng, 2005; Sisneros, 2009; Yoder and Vicario, 2012), which 

suggests that reproductive state influences the neural mechanisms associated with 

communication behaviours.  Reproductive hormones are likely drivers of the 

reproductive effects and sex differences in auditory processing due to their close 

fluctuation with gonadal recrudescence (Kime, 1993; Nagahama 1994), which is 
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temporally linked with mating in many vertebrates (Nelson et al., 1990; Crews, 1984). 

Moreover, reproductive hormones have been found to affect vertebrate auditory 

processing in the midbrain (Goense and Feng, 2005; Maney et al., 2006; Miranda and 

Wilczyinski, 2009) and the auditory periphery (Sisneros and Bass, 2003; Caras et al., 

2010).    

Many fish show annual patterns of reproductive activity and rely on acoustic 

communication for mating behaviours (Zelick et al., 1999; Bass and McKibben, 2003; 

Kasumyan, 2009).  Neuroendocrine studies in acoustic and weakly electric fish indicate 

that endocrine regulation of signal production and reception could be widespread in fish 

and in other vertebrates (Bass and Zakon, 2005).  In female plainfin midshipman fish, 

Porichthys notatus, estrogen and testosterone implantation results in increased phase 

locking (matching neural spike rate to stimulus cycle) precision at frequencies 

corresponding to harmonics of male vocalizations (Sisneros and Bass, 2003), and 

reproductive females have lower auditory thresholds than non-reproductive females 

caught outside the breeding season (Sisneros, 2009).   Similarly, GnRH modulates 

auditory processing during the reproductive period in the damselfish, Abudef abdominalis 

(Maruska and Tricas, 2011).  Acoustic communication in teleost fish is a compelling 

study system for examining the neuroendocrine control of reproduction. 

In the current study, I examine condition-dependent auditory plasticity in the round 

goby (Neogobius melanostomus).  Several aspects of the breeding biology of the round 

goby, a vocal benthic teleost, suggest that this species has potential for exhibiting sexual 

dimorphism and reproductive state-dependent flexibility in auditory function.  

Reproductive males defend nest territories in rocky crevices (Wickett and Corkum, 1998) 
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and produce low frequency  ‘pulse’ vocalizations (dominant energy ~180 Hz) during 

occupancy (Rollo et al., 2007), which may serve to facilitate female attraction and/or to 

deter intruders (Rollo et al., 2007; Rollo and Higgs, 2008; Meunier et al., 2009).  In 

playback experiments, females show a stronger propensity to approach acoustic stimuli 

than males (Rollo et al., 2007), suggesting an overall difference in acoustic behavioural 

responsiveness between the sexes.  Vocal behaviours have only been observed in male 

round gobies during the breeding season (Rollo et al., 2007), which follows the common 

observation of minimal or absent vocal communication during the winter in freshwater 

gobiids (Lugli et al., 1997; Kasumyan 2009).  Additionally, Kasurak et al. (2012) found 

that reproductive females respond more strongly than non-reproductive females to 

multisensory male olfactory-auditory signals, and olfactory function shows reproductive 

state-dependent flexibility, with stronger responses in gravid females than non-

reproductive females (Belanger et al. 2004; Gammon et al., 2005).     

Using auditory evoked potential audiometry (AEPs), I examined the effects of sex 

and reproductive condition on hearing ability in the round goby.  In addition, I related 

female hearing measures to plasma 17β-estradiol and tested whether hearing differences 

were related to hair cell density in the saccule, the primary auditory end organ in fish 

(Popper and Fay; 1999).  I measured auditory threshold, suprathreshold response 

amplitude, and latency of brain responses when presented with tones and a single ‘pulse’ 

round goby vocalization.  I predicted that females would have superior hearing ability 

(lower thresholds, higher response amplitudes, shorter latencies) relative to males, and 

that plasma 17β-estradiol level would correlate positively with enhanced auditory 

phenotypes in females.  Within males, I made no specific predictions about the effect of 
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reproductive condition on hearing ability because while heightened sensitivity to 

neighbouring male vocalizations could be advantageous for the assessment of 

neighbouring males, it could also conceivably be unfavourable in that it could increase 

the propensity to engage in costly agonistic behaviours.   

 

Methods 

Subjects 

Fish were collected by hook and line from the Detroit River shoreline in Windsor 

ON Canada between May and August 2010 and 2011.  Reproductive fish were tested 

within 5 days of capture except for 2 females, which became reproductive in the 

laboratory.  Non-reproductive fish were brought into the lab and tested at various dates 

over the course of the summer.  Fish kept in lab were fed fish flakes (Tetramin Inc, 

Blacksburg, VA, USA) and housed with conspecifics in mixed sex communal tanks on a 

16L: 8D photoperiod.  Masses and total lengths (TL) (mean ± s.e.m) of fish used in the 

study were as follows: non-reproductive females (NRF): mass = 5.96 ± 0.38 g, TL = 8.07 

± 0.19 cm; reproductive females (RF): mass = 6.81 ± 0.47 g, TL = 8.1 ± 0.16 cm; non-

reproductive males (NRM): mass = 16.16 ± 3.09 g, TL = 10.81± 0.51 cm; reproductive 

males (RM): mass = 23.11 ± 4.55 g, TL = 12.70 ± 0.93 cm.  Details on sample sizes are 

given in the following sections. 
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Assessment of reproductive condition 

Following hearing tests, fish were euthanized by clove oil overdose and 

reproductive condition was assessed using a gonadosomatic index (GSI): GSI = total 

gonad mass (testes + seminal vesicles) /total body mass * 100 (Schreck and Moyle, 

1990).  Masses were measured to the nearest 0.01 g (Scout Pro, SP202, Ohaus Corp., 

Pine Brook, NJ, USA).  Males were designated as reproductive when GSI exceeded 1% 

(Marentette and Corkum, 2008; Bowley et al. 2010) and females were considered 

reproductive if GSI exceeded 8% (Gammon et al., 2005; Bowley et al., 2010).  

Gonadosomatic index values in NRFs were (mean ± s.e.m.): 1.5% ± 0.35 and RFs were 

13.2% ± 0.94; in NRMs and RMs they were 0.17% ±.005 and 1.6% ± 0.12, respectively.  

Fish were also sampled for hormone analysis as described below. 

 

Audiometry testing 

Auditory stimuli were presented through an underwater speaker (UW-30, Lubell 

Labs Inc. Columbus, OH, USA) suspended near one end of a PVC cylindrical tank 

(length = 1.17 m, diameter = 260 mm), which was placed within a sound reducing 

chamber (Vocalbooth.com, Inc., Bend, OR, USA).  Fish were restrained in paper towel 

without anesthesia on a platform stationed 0.76m away from the speaker at a water depth 

of 10-12 cm.  Sound levels were calibrated before each test day using the maximum cycle 

RMS value output from an oscilloscope (TDS1002, Tektronix, Inc. Beaverton, OR, USA) 

connected to a hydrophone (calibration  sensitivity – 208.9 dB re 1 V μPa
−1

, Reson Inc.; 

www.reson.com).   
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While pure tone stimuli are useful for evaluating relative sensitivities across 

frequency ranges, responses to natural calls may elicit different responses than tones (e.g. 

Maruska and Tricas, 2009; Belanger et al., 2010), and relationships between hearing 

ability and sex or endocrine status can show stimulus specificity (e.g. Miranda and 

Wilczyinski, 2009; Maruska and Tricas, 2011).  Thus, in addition to tones, all fish were 

presented with a single 96.7 ms pulse (Fig. 1A, B) male vocalization.  The stimulus was 

extracted from a geophone recording of a pulse train from a male round goby defending a 

nest in the field (Rollo et al., 2007).  The pulse stimulus was gated with a 5 ms cosine 

window and presented at a rate of 4 sec
-1

.  Tone pips were 10 ms in duration and were 

presented at 100, 200, 300, 400, 500, and 600 Hz.  A previous study on round goby 

hearing revealed that the upper limit of this species’ hearing range is approximately 600 

Hz (Belanger et al., 2010).  The tones were gated with 2 ms Hanning windows and 

presented at a rate of 8 sec-
1
. Stimuli were generated using SigGen (v. 4.4) software and 

AEPs were collected using BioSig (v. 4.4) software (Tucker Davis Technologies, 

Alachua, FL, USA).    

A single stainless steel recording electrode (Rochester Electromedical Inc., Tampa, 

FL, USA) was inserted under the skin in line with the opercular ridge, and a reference 

electrode was placed in the snout region (after Belanger et al., 2010).   A third grounding 

electrode was placed into a clay mold which held the fish onto the platform.  All stimuli 

were presented in opposing phases (90º and 270º, 1000 presentations in each phase) with 

sets of responses from opposing phases averaged to reduce stimulus artifact.  Stimuli 

were initially presented at suprathreshold sound levels and then lowered in 5 dB 

decrements until responses were no longer observed.  During acquisition, responses were 
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high-pass filtered at 10 Hz, low-pass filtered at 10 kHz, and notch filtered at 60 Hz to 

remove electrical noise.   

Particle acceleration was measured inside the testing tank for all stimuli presented 

using a triaxial accelerometer (Model 4524, 10 mV ms
-2

, Akoustik Engineering Ltd., 

Windsor, ON, Canada) connected to a conditioning amplifier (Deltatron conditioning 

amp, model # 2693-A-051. Brüel & Kjær Inc; http://www.bksv.com).  Accelerometer 

readings were taken while the device rested on the testing platform in an attempt to 

mimic stimulation as it would occur at the fish ear.  These recordings were taken in 

another laboratory in an identical tank due to equipment limitations.  Acceleration in x, y 

and z directions were combined into a single measure using the following equation: 

A = √           (1) 

Acceleration values were plotted against pressure output from the speaker, and 

extrapolations from the linear portion of the curve (all R
2
 values were greater than 0.99) 

were used to obtain acceleration estimates below the noise floor.    

 

Hearing measurements 

Threshold, suprathreshold amplitude, and suprathreshold latency were measured 

offline (Fig. 1C).  Threshold was assessed visually as the first obvious waveform 

deflection from background.  Visual methods for threshold assessment have yielded 

similar results to statistical threshold assessments (Mann et al., 2001; Brittan-Powell et 

al., 2002, Mooney et al, 2010).  Response amplitude and onset latency were measured at 

10 dB above threshold to standardize sensation level between animals.  Peak-to-peak (pk-

pk) amplitude was measured as the difference between the maximum and minimum 

http://www.bksv.com/
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voltage collected over the entire recording window, and latency was measured as the time 

to the trough in the first negative peak of the AEP waveform (Higgs et al., 2003).  

Additionally, root mean square (RMS) amplitude was also calculated for pulse responses.  

This measure was calculated over the 50-150 ms period within the response after 

performing a 40 Hz high-pass filter with 20dB rolloff per octave.  

Sample sizes in hearing analyses varied slightly depending on audiometric 

measurement and stimulus (tones vs. pulse).  Six fish were not presented with the pulse 

stimulus, and 3 responses to pulses were excluded (2 NRF, 1 NRM) due to significant 

amounts of electrical noise in the recordings. Additionally, 4 fish (1 NRF, 2 RF, 1 NRM) 

were excluded from pulse RMS amplitude analyses because the recording window was 

smaller than the usual 220 ms, cutting off a portion of the response.  In these responses, 

threshold, latency, and pk-pk amplitude could still be measured accurately.  Tone 

amplitude was not measured in 3 fish (3 RF) because the recording window was too short 

to capture the entire response at 100 and 200 Hz. Sample sizes for tone amplitude and 

latency responses were lower than for tone thresholds in 6 cases because: (1) at certain 

frequencies auditory threshold approached the speaker’s maximum capacity, preventing 

acquisition of clean suprathreshold responses, and (2) some fish died near the end of 

recording, and threshold but not responses at 10 dB above threshold were available.    

Despite these differences, the sample sizes in each group were relatively constant 

across all analyses.  The sample sizes for all threshold, pk-pk amplitude, and latency 

analyses for the pulse stimulus were as follows: 14 NRF, 13 RF, 16 NRM, and 11 RM; 

sample sizes for the pulse RMS amplitude were: 13 NRF, 11RF, 15 NRM, 11RM.  

Sample sizes for the tone threshold analyses (see below) were: 13 NRF, 13 RF, 16 NRM, 
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and 14 RM; sample sizes for the tone amplitude and latency analyses were: 12 NRF, 13 

RF, 14 NRM, 11 RM; sample sizes for tone latency were: 12 NRF, 10 RF, 14 NRM, 11 

RM.   

 

Plasma 17β-estradiol assays 

Plasma 17β-estradiol was assayed from 16 females (8 RF, 8 NRF) that had their 

hearing tested; the sample size was 16 for all tone analyses and 14 for all pulse analyses.  

After hearing tests, females were anaesthetized with clove oil (~60 mg L
-1

) and blood 

was drawn with heparinized capillary tubes following caudal severance.  Blood was spun 

at 14,500 rpm (Micro-Hematocrit Centrifuge, LWS-M24, LW Scientific, Lawrenceville, 

GA, USA) for 10 min and then stored at -80ºC to be assayed at a later date.  Total plasma 

volumes for fish ranged from 5-40 µL.  Prior to assay, steroids were extracted once with 

diethyl ether and assayed in triplicate using enzyme-linked immunosorbent assays 

(Cayman Chemical, Ann Arbour, MI, USA).  Plasma dilutions for assays were 1:45 and 

1:90 for non-reproductive and reproductive females, respectively.  Limited plasma 

volumes precluded running extraction efficiencies on all individuals, therefore extraction 

recoveries were determined separately for reproductive and non-reproductive females by 

cold spike recoveries on plasma pools comprised of equal volumes from at least 10 

individuals (Bowley et al., 2010).   Percent recovery for non-reproductive females was 

115.2%, and percent recovery for reproductive females was 95.4%.  Inter-assay 

variability was 11.09%, (n = 2), and intra-assay variability was 11.14 ±13.15 (mean ± 

s.d., n = 46).  Plasma levels were 1.12 ± 1.25 ng/mL (mean ±s.e.m) in non-reproductive 

females and 2.43 ± 4.21 ng/mL in reproductive females.  
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Saccule hair cell bundle microscopy 

Saccules were collected from 7 NRF, 8 RF, 8 NRM, and 10 RM in total.  Heads 

were fixed in 4% paraformaldehyde for up to 16 weeks prior to dissection to remove 

saccular epithelia.  Epithelia were stained with Oregon green phalloidin (Molecular 

Probes Inc., Eugene, OR, USA), which binds to F-actin fibers in stereocilia bundles 

(Flock et al., 1982).  Tissues were soaked for 20 min in a 1:16 dilution [stain:phosphate 

buffer] (Higgs et al., 2002).  Multiple micrograph images were captured across the entire 

epithelium area at 200x using a fluorescent microscope (Leica DMIRB inverted 

fluorescent microscope, Wetzlar, Germany).  Composite images of the entire epithelium 

were stitched together using Autostitch (v. 2.2, 

http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html, Ma et al., 2007) under default 

settings, except that ‘Scale’ and ‘Image Quality’ options were set at 100%.  Stereocilia 

bundles were manually counted from four 10,000 µm
2
 boxes distributed across the 

middle region of the saccule using ImageJ (v. 1.44, http://imagej.nih.gov/ij/) for each 

saccular epithelium.  The locations of these boxes were determined using the following 

method: (1) a line was drawn that transected the saccule along the maximum longitudinal 

distance, (2) seven equidistant lines were drawn perpendicularly along the initial transect 

line, and (3) counting boxes were drawn over the midpoint of every other one of these 

seven perpendicular lines, beginning with the line on the most posterior end (Fig. 2).   

 

http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html
http://imagej.nih.gov/ij/
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Statistical analyses 

Analyses testing effects of reproductive condition were performed separately within 

each sex, and sex effects were examined by grouping together reproductive and non-

reproductive individuals.  Amplitude, latency, and threshold were analysed separately.  

Mass and length were included as covariates in some analyses when they contributed 

significantly to statistical models (see below).  T-tests were used to examine group 

differences in pulse responses, and two-way repeated measures ANOVAs were used on 

tone responses.  The repeated measures ANOVAs included stimulus frequency as the 

within subjects factor and either sex or reproductive condition as the between subject 

factor.  Post-hoc tests were performed using t-tests on averaged responses grouped into 

low (100-200 Hz) and high (300-600 Hz) frequency categories, with sequential 

Bonferroni corrections (α = 0.05/2 for the lowest p-value) due to the repeated tests on 

tone responses.  The frequency categories represent a distinction between the frequency 

band corresponding to the dominant energy in round goby male vocalizations (100-200 

Hz, Rollo et al. 2007) and higher frequencies, which will propagate further in shallow 

waters due to the inverse relationship between propagation frequency and water depth 

(Bass and Clark, 2003).  Moreover, AEP traces at 100 and 200 Hz showed distinct slow 

wave morphologies often observed in low frequency hearing fish AEPs (e.g. Wysocki 

and Ladich, 2003, Maruska et al., 2007), and are therefore qualitatively different from 

responses at higher frequencies.  Plasma E2 was related to all hearing measures using 

simple least squares linear regressions.  For tonal responses, 17β-estradiol was related to 

responses grouped into the same low (100-200 Hz) and high (300-600 Hz) frequency 

averages described above.  Variation in hair cell density across epithelial microregions 
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was tested with a one-way ANOVA.  Since no effect of location on hair cell density was 

observed (F3,95 = 2.20, P = 0.09), data were averaged across boxes.  Reproductive 

condition effects on hair cell density were assessed using t-tests, and ANCOVAs 

including mass and length were used to test differences between sexes. 

Potential influences of body size on hearing ability were examined by including 

body mass and length as separate covariates.  They were removed from models when 

main effects and interaction terms effects were p > 0.1 (Engqvist, 2005).  Mass and 

length contributed to the following models: tone amplitudes within males and between 

sexes, and pulse threshold within males and between sexes.  Mass and length were 

excluded from analyses which included the following factors: females, latency, tone 

threshold and pulse amplitude. 

Data were assessed for normality using a combination of normality tests 

(Kolmogorov-Smirnov and Shapiro-Wilk) and probability plots.  Hearing data for tone 

responses were considered normal if most frequency levels (at least 4 of 6) passed formal 

normality tests.  Tone threshold data failed normality tests (presumably due to a lack of 

sufficient variation), but data fell closely onto the probability plot lines.  Plasma 17β-

estradiol, length, tone amplitude, RMS amplitude and particle motion threshold were log 

transformed to meet normality assumptions for hearing analyses, and body mass was log 

transformed for the saccule hair cell density sex ANCOVA analysis.  All statistical tests 

were performed in SPSS (IBM SPSS Statistics, v. 19.0).  Descriptive statistics are 

reported as mean ± s.e.m., unless otherwise indicated. 
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Results 

Threshold 

Thresholds to the pulse stimulus (120.9 ± 0.068 dB re 1 uPa, 2.75, ± 0.21 x 10
-3

 m 

s
-2

) were lower than to most tones but similar to responses at 100 Hz (Fig 3).  Statistics 

were not performed to compare tones and the pulse thresholds because these stimuli are 

not directly comparable due to different RMS power spectra.  Audiogram shapes were 

similar between pressure and particle acceleration audiograms, and as a species, 

audiograms varied as a function of frequency (pressure: F5,275 = 233.57, P < 0.001, m s
-2

: 

F5,275 = 46.01, P < 0.001), with lowest thresholds at 100 Hz and highest thresholds in the 

middle frequencies (300-400 Hz). The maximum threshold in the particle acceleration 

audiogram was observed at 300 Hz, whereas it occurred at 400 Hz in the pressure 

audiogram.   

Females had lower thresholds to tones than males in both pressure and particle 

acceleration audiograms, (m s
-2

: tones:  F1, 54 = 4.71, P = 0.034, pressure: tones: F1, 54 = 

5.05, P = 0.029), and this effect was frequency dependent (pressure: sex*frequency: F5, 

270 = 2.03, P = 0.075; m s
-2

: sex*frequency: F5, 270 = 5.41, P = 0.024).  Post hoc tests 

revealed that the female effect was restricted to the 300-600 Hz category (pressure: t54 = 

2.92, P = 0.005, m s
-2

: t54 = 2.27, P = 0.027) with no significant sex effects at 100-200 Hz 

(pressure: t54 = 0.53, P = 0.60, m s
-2

: t54 = 0.7, P = 0.49).  On average, female thresholds 

were 2.62 dB (5.6 x 10
-2 

m s
-2

) lower than males at 300-600 Hz. After accounting for 

mass and length effects using ANCOVA (mass: F1, 51 = 3.39, P = 0.07, TL: F1,51 = 1.51, P 

= 0.22), male and females exhibited no difference in pulse thresholds (mass: F1,51 = 0.32, 

P = 0.57, TL-sex: F1,51 = 0.70, P = 0.41).    
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Within females, reproductive state did not affect pulse thresholds (m s
-2

: F1,25 = 

1.47, P = 0.15) or tone thresholds (m s
-2

: F1,24 = 0.37, P = 0.55, pressure: tones: F1,24 = 

0.10, P = 0.76).  Auditory thresholds were positively associated with E2 at 100-200 Hz 

(m s
-2

: F1, 14   = 6.06, P = 0.027, pressure: F1, 14 = 3.53, P = 0.081, Fig. 4A), but not at 

300-600 Hz (m s
-2

: F1, 14 = 0.28, p = 0.61, pressure: F1, 14  = 0.23, P = 0.64) or in response 

to the pulse (F1,12 = 0.46, P = 0.51).  For pulse threshold analyses within males, 

significant reproductive condition*body size interactions (mass: F1,23 = 4.72, P = 0.04; 

TL: F1,23 = 4.87, p = 0.04) prevented a simple test of main effects.  Assessment of the 

scatterplot indicated no clear elevation between NRMs and RMs, and t-tests revealed no 

differences between these groups (t25 = 1.39, P = 0.18) (Fig. 5). 

 

Amplitude 

 Pulse amplitudes (50.97 ± 2.77 µV) were greater than amplitudes at most tonal 

frequencies but similar to responses at 100 Hz (Fig. 6).  Again, statistics were not 

performed to compare responses between tones and the pulse.  For tonal stimuli, there 

was an overall effect of frequency on amplitude (F5,245 = 14.13, P < 0.001), with highest 

amplitudes at 100 Hz (mean 49.2 µV) and lowest amplitudes at 300 Hz (mean 28.5 µV).   

After adjusting for a significant mass effect (F1,44 = 6.82, P = 0.012), there were no 

differences between sexes in tone amplitude (F1,44 = 0.40, P = 0.53).  When length was 

included as a covariate, there was a sex*length interaction (F1, 43 = 4.28, P = 0.045), a 

sex*frequency interaction (F5,215 = 2.29, P = 0.047), and a sex*frequency*length 

interaction (F5,215 = 2.40, P = 0.038).  An assessment of scatterplots indicated a 

collinearity problem in that only males were present in the largest length (Fig. 7).  To 
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clarify these interactions, the analysis was run again after excluding the 8 largest fish (2 

NRMs, 6 RMs).  This removed the length*sex interaction (F1,35 = 0.95, P = 0.34) and the 

effect of length (ANCOVA, F1,36 = 0.13, P = 0.72) and revealed no sex differences 

(ANOVA, F1,37 = 3.01, P = 0.09).   

Female E2 level was positively related to pulse amplitude (pk-pk: F1,12 = 7.73, P = 

0.017, R
2
 = 0.39, RMS: F1,12 = 3.96, P = 0.07, R

2
 = 0.25) (Fig. 4B).  There was a trend for 

a positive association between E2 and tone amplitude at 100-200 Hz (F1,14 = 4.49, P = 

0.052), but not at 300-600 Hz (F1,14 = 0.002, P = 0.96) (Fig 4C).  Female reproductive 

condition had no effect on pulse amplitude (pk-pk: t25 = 1.61, P = 0.12, RMS (unequal 

variance t-test): t19.1 = 0.57, P = 0.58) or tone amplitude (F1,20 = 0.31, P = 0.58).   

Similarly, there were no differences in pulse amplitude between reproductive and non-

reproductive males (F1,22 = 1.80, P = 0.19).  After adjusting for mass and length in tone 

analyses (mass: F1,22 = 7.21, p = 0.014; TL: F1,22 = 5.56, P = 0.028) there were no male 

reproductive condition effects on tone amplitudes (mass: F1,22 = 2.83, p = 0.11, TL: F1,22 = 

2.76, P = 0.11).   

 

Latency 

Pulse latencies averaged 49.4 ± 0.23 ms, which was much longer than responses to 

tones (3.2-17.6 ms), potentially due to the longer rise time of the pulse stimulus relative 

to tones.  There was an overall effect of frequency on tone latency (F5,245 = 299.63, P < 

0.001), with longest latencies at 100 Hz (mean = 13.3 ms), and shortest latencies at 600 

Hz (mean = 6.3 ms) (Fig. 8).  In females, 17β-estradiol level was positively related to 

pulse latency (Fig. 4D. F1,12  = 5.17, P = 0.04, R
2
 = 0.30).    This hormonal effect was 
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specific to the pulse stimulus, as 17β-estradiol was not related to latency at 100-200 Hz 

(F1,14  = 0.80, P = 0.38) or 300-600 Hz (F1,14  = 0.65, P = 0.432).  Reproductive condition 

had no effect on male pulse latency (male condition: t25 = 0.39, P = 0.70).  For tonal 

stimuli, reproductive males had longer latencies than non-reproductive males (F1,23 = 

3.84, P = 0.04).  Post-hoc tests revealed that non-reproductive males had shorter latencies 

than reproductive males at 100-200 Hz (male condition: t23 = 2.77, P = 0.011), but not at 

300-600 Hz (t23 = 0.92, P = 0.37).  There were no effects of sex or female reproductive 

condition on latency, neither for the pulse (sex: t52 = 1.32, P = 0.19; female condition: t25 

= 0.64, P =0.43) nor for tones (sex: F1,45= 0.13, P = 0.72; female condition: F1,23  = 0.05, 

P = 0.82).   

 

Saccule hair cell bundle densities 

Hair cell bundle density did not differ significantly across counting regions (F3,95 = 

2.20, P = 0.09), so results were collapsed across microregions, generating a single density 

measurement for each individual.  Males in the sample were longer (t-test: t31 = 8.30, P < 

0.001) and heavier (t-test: t31 = 8.51, P < 0.001) than females, indicating a collinearity 

problem between sex and body size.  When assessed with a t-test, females had a higher 

density of hair cells than males, averaging 13.5 more cells/ 10,000 µm
2
 box (t31 = 2.43, p 

= 0.021), but the sex effect was statistically removed through ANCOVAs including mass 

and length (mass: F1,30 = 0.73, p = 0.40, length: F1,30 = 0.44, p = 0.51).  Both measures of 

body size, however, did not contribute significantly to the ANCOVAs (mass: F1,30 = 0.40, 

p = 0.53, length: F1,30 = 0.83, p = 0.37), yet each have significant linear regressions 

(mass: F1,31 = 6.12, p = 0.019, R
2
 = 0.17, length: F1,31 = 6.99, p = 0.013, R

2
 = 0.18).  The 
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relationship between body length and average hair cell density is shown in Fig. 9.  As 

such, it is unclear whether the differences in hair cell bundle density among individuals 

are due to sex differences or to non-sex specific growth changes.  Reproductive condition 

had no effect on density in either sex (males: t13 = 0.77, p = 0.45; females: t16 = 0.68, p = 

0.51).   

 

Discussion 

Species hearing ability 

The hearing results suggest that the auditory system of the round goby is well 

equipped for intraspecific communication, which is consistent with behavioural findings 

that both male and female round gobies show phonotaxis towards conspecific calls (Rollo 

et al., 2007; Rollo and Higgs, 2008).  The dominant spectral peaks in round goby 

vocalizations typically occur between 100 and 200 Hz (Rollo et al., 2007), and this 

energy was correlated with auditory responses; the lowest auditory thresholds and highest 

response amplitudes were observed at 100 and 200 Hz and in response to the pulse 

stimulus.  The audiogram shape in the current study differs from the relatively flat round 

goby audiogram collected by Belanger et al., 2010, although I similarly observed greatest 

sensitivity at 100 Hz.  The difference between audiograms could be due to the larger 

number of samples taken during trace acquisition in the current study (1000 in the current 

study vs. 200 in Belanger et al., 2010).  My particle acceleration thresholds are within the 

range reported for other fish lacking specializations for transducing pressure (Anderson 

and Mann, 2011).  Like other teleosts living in shallow water habitats, the range of 
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communication in the round goby during breeding season is likely limited to several 

meters (Mann and Lobel, 1997; Bass and Clark, 2003).  However, given that population 

densities of round gobies colonies can reach more than 10 fish m
-1

 in rocky substrate 

(Ray and Corkum, 2001; Johnson et al., 2005), acoustic signals likely function effectively 

as part of this species’ reproductive biology.    

 

Sex differences 

I predicted that females could have greater auditory sensitivity than males due to 

the potentially greater importance of nest localization for mating purposes in females.  

Lower thresholds in females at higher frequencies could result in sex differences in the 

effective range of male vocalization detection in shallow waters. Males may nests at 

depths as shallow as 1 m (Charlebois et al., 1997), which would limit propagation of low 

frequency components of the vocalization (Bass and Clark, 2003).  In propagation of 

damselfish sounds in shallow water, frequency bands at 400 and 500 Hz had little 

attenuation at 4 m from the sources, whereas lower frequencies continued to attenuate 

beyond this mark (Mann and Lobel, 1997).   Thus, enhanced auditory sensitivity at 300-

600 Hz could facilitate nest localization in females.     

There were no effects of mass or length on tone auditory thresholds, which is 

consistent with Belanger et al.’s, (2010) finding of no differences in auditory sensitivity 

with size in this species.  However, body size had a significant effect on tone amplitude 

and contributed to variation in pulse threshold.  Body size effects were not evident for 

any hearing measures within females, which could be due to the smaller size range of 

females.  One possible explanation for the body size effects is that mass and length 
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covary positively with skull casing and muscle tissue above the brain, resulting in a 

reduced signal from the brain at the recording electrode.  In this case, however, it is 

unclear why mass and length would affect tone amplitude and not tone threshold, and 

also influence pulse threshold but not pulse amplitude.  Additional evidence against the 

influence of skull size is that the influence of mass on tone amplitude did not appear to be 

evident at 100 Hz; differences in recording electrode placement should presumably affect 

all stimuli indiscriminately.  Furthermore, hair cell density declined in concert with size, 

which provides a potential biological explanation for the results. 

Although it remains unclear whether the sex differences in auditory function in 

response to tone amplitude and pulse threshold are due to a non-sex specific growth 

related effects, they will still have sex-specific consequences.  Females typically mature a 

year earlier than males and are smaller at a given age than males (MacInnis and Corkum, 

2000; Young et al., 2010).  Additionally, large males are more likely to successfully 

occupy nests than smaller males (Stammler and Corkum, 2005).  Round goby male nest 

colonies have high densities with relatively low number of aggressive interactions 

between males (Stammler and Corkum, 2005).  A decrease in auditory response could 

minimize the number of aggressive interactions between conspecifics, which could be 

one mechanism accounting for high colony densities.  This possibility is consistent with 

observations that reproductive males decrease locomotion and remain in nest in response 

to olfactory signals from other males (Marentette and Corkum, 2007).  It would also 

resemble a situation in another colonial breeder, the Hawaiian sergeant damselfish 

Abudefduf abdominalis, where GnRH - thought to be released post spawning in this 

species - has inhibitory responses on auditory thresholds (Maruska and Tricas, 2011).   
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Latency and amplitude 

Latency decreased as frequency increased, and this has been observed in other fish 

AEP studies (Kenyon et al., 1998; Ladich and Yan, 1998; Higgs et al. 2003). The neural 

source of origin for specific peaks in transient AEPs are unknown for fishes (Corwin et 

al., 1982), although earlier waves are thought to correspond to peripheral regions of the 

auditory pathway (Corwin et al., 1982; Hall, 1992).  Some studies have found that 

delayed auditory latencies are associated with poor auditory function (Lucas et al., 2002; 

Goense and Feng, 2005; Maruska and Tricas, 2011), and these were the basis of my 

initial predictions.  In AEPs tested on songbirds, shorter latencies were found in the 

spring, when acoustic communication is most intense (Lucas et al., 2002).  In northern 

leopard frogs, Rana pipiens, a shorter first spike latency occurs concurrently with an 

increase in phase locking (Goense and Feng, 2005).  In the Hawaiian sergeant damselfish, 

A. abdominalis, GnRH injection increases first spike latency in the torus semicircularis of 

damselfish, which occurred in association with increases in threshold (Maruska and 

Tricas, 2011).  On initial assessment this would indicate that long pulse latency in 

association with E2 level in females and the long latencies in reproductive males at 100-

200 Hz are indicative of poorer hearing ability.   

However, it is also critical to evaluate latency concurrently with additional hearing 

measures because they may vary independently.  For example, in human ABR studies, 

increases in auditory brainstem response (ABR) latencies have been associated with high 

levels of estrogen in the ovulatory phase, which is when females also exhibit greatest 

auditory sensitivity and frequency discrimination (McFadden, 1998; Walpurger et al., 
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2004).  Such an enhancement is similar to my results for E2 association with pulse 

latency and amplitude.  The latency shift observed in reproductive males at 100-200 Hz 

was not associated with a threshold change, so the functional significance of this finding 

will require further study.   

Auditory evoked potential latencies reflect a different measure than individual 

neuron spike latencies, which should also be considered in the interpretation of the 

consequence of latency shifts.  It is possible that the long AEP latency is associated with 

a more complex acoustic analysis.  The longest AEP latencies are observed at the low 

tone frequencies in fish, which corresponds to regions of best auditory sensitivity and 

frequency discrimination.  In general, changes in onset latency will have implications for 

temporal processing of acoustic signals, which could have consequences for pulse 

repetition rate encoding, a key component of auditory encoding (McKibben and Bass, 

2003).   

It is similarly difficult to make defined predictions concerning AEP amplitude 

effects in fish as it is rarely reported (but see Higgs et al. 2003; Wysocki and Ladich, 

2003) and represents a clear area in need of further study.  Amplitudes of AEP responses 

should correspond closely with the number of neurons synchronously firing in response 

to the acoustic stimulus (Hall, 1992), and thus indicate the salience of the acoustic 

stimulus.  Amplitudes of AEPs have been linked to acoustic discrimination in songbirds 

(Lucas et al., 2002, 2007), although precise measures of frequency selectivity, phase 

locking, and/or pitch tracking and behavioural studies are required to address these 

correlates (e.g. Henry and Lucas, 2009).   Overall, however, the observed increases in 
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amplitude in relation to E2 level and the differences between the sexes highlight the 

importance of auditory reception in females. 

 

Female reproductive condition and hearing 

I predicted that reproductive fish would exhibit enhanced auditory function relative 

to non-reproductive fish due to the greater demands on detection and discrimination of 

acoustic signals during reproduction.  In females, I found that auditory function was 

similar between females designated as reproductive or non-reproductive, which did not 

support the prediction.  However, circulating E2 level was associated with changes in 

auditory function, which could indicate that short term hormonal modulation of auditory 

processing is occurring over the course of the reproductive cycle.  For example, in studies 

on the Hawaiian sergeant damselfish, no effects of sex or season on hearing ability were 

observed using AEP recordings (Maruska and Tricas 2007), yet administration of GnRH 

was found to affect auditory processing in the auditory midbrain (Maruska and Tricas, 

2011).  Also, GSI may not be an accurate measure of reproductive status in female round 

gobies (Chapter 3), so categorization of “status” may have clouded these effects.  Short 

term hormonal control of auditory function could be an important adaptive mechanism in 

multiple spawners with a protracted spawning season.   

Female plasma E2 level was positively associated with pulse amplitude and 

latency, but not pulse threshold.  While this relationship is associative rather than due to 

an experimental manipulation, steroids are well known to affect response properties of 

sensory neurons (Zakon, 1998), and there is increasing evidence for a stimulatory role of 

steroids in auditory function (Hultcrantz et al., 2002; Bass and Zakon, 2005; Yodel and 
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Vicario, 2012).  The seasonal auditory plasticity in plainfin midshipman is estrogen 

dependent (Sisneros et al., 2004; Sisneros 2009), although the effects are thought to be 

due to long term genomic changes in the auditory periphery (Rohmann and Bass, 2011; 

Coffin et al., 2012).  The current study is the first that I am aware of to examine the 

natural covariation between E2 level and physiological measurement of auditory neural 

responses in fishes, and its findings are consistent with observations in other taxa, in 

which E2 has a stimulatory effect on auditory neural responses (Yovanov and Feng, 

1983; Tremere and Pinaud, 2009).   

During the round goby reproductive cycle, E2 presumably peaks during maximal 

gonad growth due to the central role of E2 in vitellogenesis (Wallace, 1985; Nagahama, 

1994).   However, E2 is not an effective trigger of sexual behaviour in female fishes in 

most species studied to date (Munakata and Kobayashi, 2010) and often decreases during 

final oocyte maturation (Kime, 1993; Nagahama, 1994).  Peak vitellogenic activity in 

female round gobies could be temporally coupled with migration to shallow waters prior 

to breeding, and the high circulating E2 levels at this time could affect auditory function 

to facilitate male localization.  Females arrive on the breeding grounds after males 

(Kotvun, 1979) and may retreat to deeper waters in between spawning batches to avoid 

predation (Young et al., 2010).  However, the associations between E2 and auditory 

function were mostly related to suprathreshold processing, supporting the notion that E2 

affects auditory function at close range.  Alternatively, E2 could be produced rapidly in 

response to vocal stimulation to influence auditory discrimination, as has been observed 

in other taxa (e.g. birds:  Remage et al., 2008; Yoder and Vicario, 2012; anurans: Lynch 

2005; Wilczyinksi and Lynch, 2011).  Future studies examining how E2 levels covary 
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with natural reproductive behaviours and with gonadal development are needed to test 

these possibilities.   

It is interesting that there was a positive association between E2 level and threshold 

at 100-200 Hz.  The effects of hormones and neuromodulators on auditory function are 

likely to depend on acoustic parameters including frequency content and amplitude 

envelope (e.g. Miranda and Wilczyinski, 2009; Maruska and Tricas, 2009; Maruska and 

Tricas, 2011).  Moreover, the frequencies eliciting maximal neural responses can vary 

with sound level above threshold (Lu et al., 2004).  The pulse stimulus clearly differs 

from tone responses in its acoustic parameters, and the most salient features relevant for 

acoustic signal coding in round gobies is currently unknown (but see Rollo and Higgs 

2008).  One possible explanation for the increase in thresholds at 100-200 Hz is that E2 

adjusts frequency filtering properties of the auditory system to increase the critical ratio 

around vocalization peak frequencies occurring between 100 and 200 Hz.  Alternatively, 

a shift in auditory threshold at the low frequency end could potentially facilitate signal 

extraction at higher frequencies, where females are more sensitive (300-600 Hz).  

 

Physiological mechanisms 

Hair cell densities paralleled hearing performance, were greater in females than in 

males, and were negatively related to body size.  Hair cell numbers increase with age in 

fishes (Corwin, 1983, Lombarte and Popper, 1994), but ontogenetic studies of hearing in 

fish have revealed mixed results on changes in auditory sensitivity with growth.  Some 

species exhibit increases in auditory sensitivity with development (Kenyon et al., 1996; 

Sisneros and Bass, 2005), or no change (Mann et al., 2009), or a decrease (Egner and 



 

42 

Mann, 2005).  There are relatively few studies that have directly related hair cell number 

with auditory ability (Corwin et al., 1983; Higgs et al., 2001; Coffin et al., 2012).  In a 

study on the elasmobranch ray, Raja clavata, for example, an increase in total hair cell 

number was associated with an increase in auditory sensitivity (Corwin et al., 1983).  In 

contrast, Higgs et al. (2001) found no change in auditory sensitivity with hair cell 

addition in zebrafish (Danio rerio).   

While an increase in total hair cell number may increase the amount of information 

travelling in the auditory nerve, the corresponding growth of the rest of the brain and 

other auditory structures (e.g. otolith, swim bladder, swim bladder connections) could 

influence the significance of hair cell addition on auditory function. For example, some 

authors have argued that the addition of hair cells may maintain auditory threshold as the 

otolith grows and the distance between swim bladder and ear increases (Higgs et al., 

2002, 2003).  Thus, hair cell density may interact with other factors to affect auditory 

function; a simple relationship between hair cell density and auditory sensitivity may not 

always be found.   

Nonetheless, in the current study, the decline in hair cell density with increasing 

length corresponded to a decline in hearing ability.  Changes in hair cell number could be 

one possible mechanism for the sex differences in auditory sensitivity observed in the 

current study.  In plainfin midshipman, a fish lacking pressure detection specializations, 

auditory sensitivity is positively related to hair cell bundle density; however, hair cell 

bundle density is negatively related to size in females (Coffin et al., 2012).  Hair cell 

number may show tighter links with auditory sensitivity in fish lacking pressure detection 
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specializations, since the allometric growth of auditory specializations does not need to 

be considered.   

17β-estradiol could affect auditory function through several possible mechanisms.  

Estrogen receptors have been found in the saccule of plainfin midshipman (Forlano et al., 

2005) and the African cichlid (Astatotilapia burtoni) (Maruska and Fernald, 2010), 

suggesting that E2 could affect auditory sensitivity and frequency filtering in the auditory 

periphery.  17β-estradiol may influence hair cell ion channel production and kinetics.  

The number and kinetics of hair cell ion channel activation and deactivation is a main 

determinant of hair cell resonance (Fettiplace and Fuchs, 1999), which could be a major 

factor in determining the frequency filtering properties of the auditory system.  Changes 

in ion channel function could occur through genomic or non-genomic mechanisms.  

Steroid hormones are capable of inducing transcription of ion channels (Zakon, 1998; 

Few and Zakon, 2007), but E2 can also rapidly (within seconds) inhibit K+ channels in 

stria vascularis in gerbils (Lee and Marcus, 2001), indicating non-genomic action.  

Alternatively, since AEP measures the whole brain response, E2 could affect auditory 

function in the midbrain; E2 receptors have been found in the auditory midbrain of 

anurans (Chakraborti and Burmeister, 2010).   

 

 

Conclusions 

The current results reveal sexual dimorphism in auditory function in a novel teleost 

system and the potential for control of auditory function through E2 and hair cell number.  

This contributes to a framework for future studies on the ecological conditions and 
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physiological mechanisms of condition-dependent and sexually dimorphic auditory 

function.  Future studies examining the relationships between reproductive endocrine 

status and behavioural responses to acoustic signals are needed to place these results in an 

ecological context.  
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Figures 

 
Chapter 2, Fig. 1.  Waveform of a single male round goby pulse stimulus recorded from 

a hydrophone at the location of the recording platform in the experimental tank. (B) Fast 

Fourier transform (8192 pt Hanning window) created over 9 seconds of pulse repetition 

in tank. (C) A representative AEP response elicited in response to the pulse stimulus.  

The onset latency peak is indicated with a dotted line and peak-to-peak amplitude 

measurement is indicated with a double ended arrow. The region of the stimulus used for 

RMS amplitude measurement is denoted with solid lines at 50 and 150 ms. 
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Chapter 2, Fig. 2. (A) Line transects and distribution of the four counting regions of 

phalloidin labeled hair cell bundles in the saccule (see text for details).  Each box covers 

10,000µm
2
.  Methods for box placement are described in the text. D = dorsal, A = 

anterior.  Scale bar represents 100µm.   
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Chapter 2, Fig. 3. Auditory threshold in males (open circles) and females (closed circles) 

in response to the ‘pulse’ and tones, expressed in (A) pressure, and (B) particle motion.    

Error bars are mean ± s.e.m. in all hearing measure figures.  Letters above tone responses 

indicate results of Tukey HSD post hoc tests (α = 0.05) following a species-wide (males 

and females combined) test of frequency on auditory threshold.  Frequencies possessing 

different letters are significantly different. 
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Chapter 2, Fig. 4. Linear regressions of female 17 β-estradiol level on (A) average 

particle motion threshold (m s
-2

) between 100 and 200 Hz, (B) pulse response peak-to-

peak amplitude, (C) average amplitude at 100 and 200 Hz, and (D) pulse onset latency.  

Each data point in A and C represents a subject’s average response between 100 and 200 

Hz (see text for details). 
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Chapter 2, Fig. 5. Scatterplot illustrating the interactions between male length (A) and 

body mass (B) in relation to pulse auditory threshold.  Lines indicate separate regressions 

performed for non-reproductive males (dashed line, filled circles) and reproductive males 

(solid line, open circles).   
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Chapter 2, Fig. 6. Peak-to-peak amplitudes in response to the pulse and tonal stimuli 

grouped by sex (males = open circles, females = closed circles). (B) Male peak-to-peak 

amplitudes grouped by reproductive condition (reproductive males = open circles, = non-

reproductive males = closed circles).  Letters above tone responses indicate results of 

Tukey HSD post hoc tests (α = 0.05) following a species-wide (males and females 

combined) test of frequency on response amplitude.  Frequencies possessing different 

letters are significantly different. 
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Chapter 2, Fig. 7. Scatterplot illustrating the association between length and tone 

amplitudes at 100-200 Hz (A) and 300-600 Hz (B) in all reproductive groups (non-

reproductive females = black circles, reproductive females = black triangles, non-

reproductive males = open circles, reproductive males = open triangles).  Each data point 

represents an average of responses to all frequencies within the respective categories.    

The vertical lines separate the 8 largest fish (males) removed from the sex ANCOVA 

analysis (see text for details). 
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Chapter 2, Fig. 8 (A) Onset latency in response to tonal stimuli grouped by sex (males = 

open circles, females = closed circles). (B) Male peak-to-peak amplitudes grouped by 

reproductive condition (reproductive males = open circles, = non-reproductive males = 

closed circles).  Letters above tone responses indicate results of Tukey HSD post hoc 

tests (α = 0.05) following a species-wide (males and females combined) test of frequency 

on response latency.  Frequencies possessing different letters are significantly different. 
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Chapter 2, Fig. 9. Linear regression of total length on average hair cell number per 10, 

000 µm
2
 counting region (females = circles, males = triangles). 
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CHAPTER III: ASSOCIATIONS BETWEEN GONADOSOMATIC INDEX, 

GONADAL STEROIDS, AND GONAD DEVELOPMENT IN MALE AND 

FEMALE ROUND GOBIES, NEOGOBIUS MELANOSTOMUS 

Introduction 

Accurately assessing reproductive condition is an important task in fisheries 

management and fish biology research.  The gonadosomatic index (GSI), given by the 

equation: (gonad mass /body mass) × 100% (Schreck and Moyle, 1990), is a commonly 

used metric to determine reproductive condition in fishes (deVlaming et al., 1971, 

Tomkins and Simmons, 2002).  The GSI is an easy metric to collect and can correlate 

well with gonadotropins and gonadal steroid hormones (Campbell et al., 2006, Schulz, 

2010, Lubzens et al., 2010) and stage of reproductive development.  The GSI is also 

commonly used to document seasonal trends in reproduction (Scott et al., 1980, Prat et 

al., 1990, Rinchard et al., 1993, Sisneros et al., 2004).   

The utility of the GSI as a measure for reproductive condition, however, must be 

examined on a species-specific basis because it depends on the pattern of gonad 

development (Rinchard et al., 1996, Lowerre-Barbieri et al., 1996).  While GSI may be a 

reliable indicator of gonad development in group synchronous spawners (Modesto and 

Canario, 2003, Sisneros et al., 2004), it provides less reliable information on reproductive 

status in species that spawn repeatedly throughout the breeding period, particularly if the 

breeding season is extended.  In multiple spawning species, fish that have already 

spawned at least once may display similar GSI values to fish developing their first batch 

(Rinchard et al., 1996, Lowerre-Barbieri et al, 1996).  Additionally, steroid sex hormonal 

profiles across the reproductive cycle may differ between single spawners and multiple 

spawners due to the potential concurrent production of a subsequent batch (Rinchard et 
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al., 1997).  Using GSI alone to evaluate reproductive condition in multiple spawners 

could mask features of the animal’s reproductive condition and could affect conclusions 

on the behaviour and physiology of “non-reproductive” subjects.   

Round gobies (Neogobius melanostomus), an invasive species in the Laurentian 

Great Lakes (Charlebois et al., 2001, Corkum et al., 2004), are multiple spawners 

(Charlebois et al., 1997, Kornis et al., 2012) and it has been suggested that this trait has 

contributed to their invasion success (MacInnis and Corkum, 2000, Charlebois et al., 

2001).  Round gobies have a long breeding season (May-October, Young et al., 2010), 

although spawning intensity is greatest in May and July (MacInnis and Corkum, 2000, 

Young et al., 2010) and the length of the season depends on water temperature 

(Moiseyeva  and Rudenko, 1969, Charlebois et al., 1997).  Females lay 3-6 batches over 

the course of the summer (Charlebois et al., 1997, Kulikova, 1985, MacInnis and 

Corkum, 2000) in nests guarded by males (Charlebois et al., 1997).  After spawning, 

female GSI decreases to an average of 1.8% at 6 days after spawning (Kulikova 1985).   

The use of the GSI has now become a common metric of assessment of 

reproductive state among researchers interested in round goby biology (Gammon et al., 

2005, Marentette and Corkum, 2008, Marentette et al., 2009, Bowley et al. 2010, Yavno 

and Corkum, 2010, Young et al., 2010), yet there exists little data on the validity of this 

metric or its correspondence with hormonal state or gonad development (but see Bowley 

et al. 2010).   The goal of the current study was to examine the associations between sex 

hormone status, gonadal stage, and GSI in round goby.  Additionally, seasonal changes in 

GSI and gonad hormones were examined in reproductive fish to assess the potential for 

these metrics to show seasonal fluctuation.   
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Methods 

Subjects 

Round gobies were collected by angling from the shoreline of the Detroit River 

between April and August 2011.  Reproductive males and reproductive females were 

processed within one week of capture, whereas non-reproductive fish were euthanized 

after being held in the lab for various lengths of time. Lab fish were housed in aquaria 

with conspecifics in mixed sex tanks and fed with fish flakes (Tetramin Inc, Blacksburg, 

VA, USA) and kept on a 16L:8D photoperiod.   

Gonadosomatic index (GSI) was calculated using the following equation: (gonad 

mass /body mass) × 100% (Shreck and Moyle, 1990).  Masses were measured to the 

nearest 0.01 g (Scout Pro, SP202, Ohaus Corp., Pine Brook, NJ, USA).  Round goby sex 

in adults is easily determined externally by urogenital shape (Charlebois et al., 1997).  

Males with a GSI greater than 1% were considered “reproductive” (“RMs”) (Marentette 

and Corkum, 2008, Marentette et al., 2009, Bowley et al. 2010, Young et al., 2010), and 

females with a GSI greater than 8% were considered “reproductive” (“RFs”) (Gammon et 

al., 2005, Yavno and Corkum, 2010, Bowley et al., 2010).  Masses and total lengths (TL) 

(mean ± s.e.m) in each reproductive group, as determined by GSI cutoffs were as 

follows: non-reproductive females (“NRF”): mass: 6.4 ± 0.60 g, TL: 8.14 ± 0.18 cm; 

reproductive females (“RF”):  mass: 6.83 ± 0.38 g, TL = 8.05 ± 0.17 cm; non-

reproductive males (“NRM”): mass: 15.33 ± 1.79 g, TL: 10.75 ± 0.32 cm; reproductive 

males (“RM”):  mass: 20.44 ± 2.5 g, TL: 11.76 ± 0.38 cm.  No “sneaker males” 
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(Marentette et al., 2009) were included in this study.  Average GSI (mean ± s.e.m) in 

each group were as follows: “NRF”: 1.9 ± 0.27%, “RF”: 12.9 ± 0.59%; “NRM”: 0.15 ± 

0.029%; “RM”: 1.8 ± 0.10%. 

 

Plasma steroid assays 

Males were tested for 11-ketotestosterone (11KT) and testosterone (T) levels, and 

females were tested for 17β-estradiol (E2) and testosterone.  Following anaesthesia with 

clove oil (~60 mg L
-1

), blood was drawn from the caudal vein using heparinized capillary 

tubes, following caudal severance.  The blood was spun at 14,500 rpm (Micro-

Hematocrit Centrifuge, LWS-M24, LW Scientific, Lawrenceville, GA, USA) for 10 min 

and then stored at -80ºC and assayed at a later date.  Total plasma volumes for fish 

typically ranged from 5-40 µL.  Some plasma samples were collected after a behavioural 

sensory experiment involving round goby acoustic or olfactory signals, or an auditory 

physiology test (Chapter 2).  Differences in hormone levels in these fish relative to fish 

collected directly from lab were tested (see below).  All plasma collection was done in 

the afternoon between 13:00 and 18:00 h to account for possible diel influences on 

hormone levels.   

Steroids were extracted once with diethyl ether prior to assay.  Samples were run in 

triplicate using enzyme-linked immunosorbent assays (Cayman Chemical, Ann Arbour, 

MI, USA) with individuals randomly assigned to plates.  Inter-assay variabilities, 

calculated from a single control triplicate across plates, were 41.8% (n = 3), 29.10 % (n = 

4), and 11.14%, (n = 2) for 11KT, T, and E2, respectively.  Intra-assay variabilities were 

5.22% ± 8.13 (n = 58), 5.16 ± 6.09 (n = 96), and 11.14 ±13.15 (n = 46) for 11KT, T, and 



 

64 

E2, respectively.  The total number of individuals samples for steroids in each group were 

as follows: “NRF”: 22 T, 22 E2; “RF”: 17 T, 19 E2; “NRM”: 25 11KT, 23 T; “RM”: 19 

11KT, 18 T.   

Limited plasma volumes precluded running extraction efficiencies on all 

individuals.  Therefore, extraction recoveries were determined separately for each 

reproductive group by cold spike recoveries on plasma pools comprised of equal volumes 

from at least 10 individuals (Bowley et al., 2010).   Recoveries for the different 

reproductive groups are summarized in Table 1, and additional information on 

calculations are provided in the Appendix.  Extractions of testosterones were sub-optimal 

and differed between reproductive groups, which were considered for data analysis and 

interpretation (see below).  Despite different dilution and spike amounts, similar 

recoveries between 11KT and T were observed for the same plasma pools in males.   

 

Gonad histology 

Following GSI morphometric measurements, gonadal tissue was placed in 10% 

formalin (after Marentette et al., 2010) and transferred within three months to 70% 

ethanol for long term storage before performing histology (2-8 months).  Testes were 

dehydrated, cleared with xylene, embedded in paraffin wax (Fisher Ltd.), and sectioned at 

5-7 µm using a microtome (Leica RM2125, RT, Leica Microsystems Nussioch GmbH, 

Nussloch, Germany).  Vitellogenic ovaries commonly burst during the dehydration and 

clearing process for paraffin embedding, so they were embedded in a glycol methacrylate 

resin immuno-bed kit (Model #17324, Polysciences, Inc., Warrington, PA) and sectioned 

at 10 µm.  Large gonads were cut in half along the medial-lateral axis before embedding.  
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Multiple sections were taken near the middle of each gonad.  Testis and ovary sections 

were mounted on Superfrost Plus slides (VWR International, LLC, Radnor, PA), placed 

on a slide warmer with water to facilitate slide adherance, and stained with hematoxylin 

and eosin.  Sections were viewed under a light microscope (Leica DME, Buffalo, NY).  

Gonad developmental staging was based on criteria proposed by Brown-Peterson et al., 

(2011).  Criteria are described in Table 2, and representative light micrographs of ovaries 

and testes in each stage are shown in Fig. 1 and Fig. 2, respectively.   

 

Statistical analyses 

Effects of collection method on hormone level were performed due to the potential 

influence of handling stress (Pickering et al., 1987) and/or social stimulation from 

conspecific signals from previous tests on hormone levels (Oliviera et al., 2001, Remage-

Healey and Bass, 2005).  Within each GSI group, t-tests were performed to compare 

hormone levels from fish that were sampled directly from lab to samples that were taken 

following a behaviour or hearing test.  Samples from the two latter ‘indirect’ collection 

methods were pooled together before the test due to small sample sizes.  “Reproductive 

females” were excluded from these analyses because only two were collected directly 

from the laboratory.  However, the sample sizes of hearing and behaviour tests in “RFs” 

were large enough to test for possible differences between hearing and behaviour tests on 

hormone levels, which was tested with a t-test.   

T-tests were used to compare hormone levels between GSI groups within each sex, 

and omnibus adjustments were made to 100% based on the mean recoveries, and then 

tested between reproductive groups.  Due to the potential confounding effect of 
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extraction efficiencies on the hormone data, all additional analyses including androgen 

data were performed within each GSI group.  To examine the hormonal milieu, Pearson 

correlations were performed between E2 and T in females and between 11KT and T in 

males.  Gonadosomatic index was related to hormone levels using Pearson correlations.  

Since all “RMs” and no “NRMs” were classified into the ‘spawning capable’ stage based 

on gonad staging (see Results), analyses comparing androgen levels between the different 

gonad stages were restricted to “NRMs”.  Comparisons of androgen levels within 

“NRMs” were further reduced to t-tests between immature and developing males due to 

the exclusion of a small sample size of males in the regressing stage (n = 3).  Within 

females, all “RFs” were in the spawning capable stage, whereas most “NRFs” were in the 

developing stage (see Results).  Thus, an explicit test of differences in T levels within 

each reproductive group was not done due to small sample sizes.   Plasma E2 data 

(pooled across “NRF” and “RF” groups) were compared between the spawning capable 

and developing groups using t-tests.  

Seasonal variability in GSI and reproductive hormones was examined with 

scatterplots relating ordinal date to these parameters.  Scatterplot analyses were restricted 

to “RMs” and “RFs”, because these fish were always processed within a week of capture.  

All data were examined for normality using probability plots and Kolmogorov-Smirnoff 

tests.  Hormone data were log transformed to meet normality assumptions.   
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Results 

Histological classification 

No immature females (only oogonia present) were observed, and the vitellogenic 

egg cohort occurred alongside primary growth and cortical alveolar oocytes (Fig 1B,C).  

Based on ovarian histology, all “RFs” possessed eggs with complete vitellogenesis.  In 

“NRFs”, 13/17 were in the developing stage and 4/17 were in the spawning-capable 

stage.  Within the developing stage, 10/13 were actively vitellogenic, whereas 3/13 had 

cortical alveoloar oocytes as the most advanced stage.  In the three spawning capable 

“NRFs”, although yolk was contained throughout the cytoplasm, the oocytes were likely 

not undergoing final maturation, as indicated by a relatively thin follicular layer.  All 

“RMs” (16/16) possessed spermatozoa within the lobule lumen (spawning capable), 

whereas no “NRMs” were classified as spawning capable.  Within “NRMs”, 8/21 were in 

the immature stage, 10/21 were in the developing stage, and 3/21 were in the regressing 

stage.  A summary of the numbers and GSI in each category is shown in Table 3. 

 

Hormone levels and GSI 

In all hormones and all sex groups tested, fish that were collected directly from lab 

tanks exhibited similar hormone levels to fish that were exposed to a behavioural or 

hearing tests (“NRMs”, 11KT: t22.9 = 0.4, p = 0.69; T: t8.8 = 0.60, p = 0.56, unequal 

variance t-test; “RMs”, 11KT: t6.28 = 1.5, p = 0.18, unequal variance test, T: t5.21 = 1.6, p 

= 0.17 unequal variance t-test; “NRFs”: E2: t20 = 0.18, p = 0.86; T: t12.3 = 0.16, p = 0.88, 
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unequal variance t-test).  Within “RFs” there was no difference in hormone levels after 

behavioural tests versus hearing tests (E2: t15 = 0.85, p = 0.41; T: t13 = 0.45, p = 0.81). 

Plasma E2 and T levels were positively correlated in females (r = 0.52, p = 0.003), 

and the positive correlations remained when GSI groups were evaluated separately 

(NRFs: r = 0.75, p = 0.001; RFs: r = 0.54, p = 0.036) (Fig 3A).  Plasma E2 values were 

similar between “NRFs” (1.1 ± 1.3 ng/mL) and “RFs” (2.4 ± 4.2 ng/mL; t39 = 1.43, p = 

0.17).  There was no overall correlation between E2 and GSI in females (r = 0.11, p = 

0.48, Fig 4A).  When examined within each GSI group, E2 was not related to GSI 

(“NRFs”: r = 0.38, p = 0.082; “RFs”: r = -0.39, p = 0.10) (Fig. 5A).  Plasma E2 levels 

were similar between developing and spawning capable stages (t26 = 0.014, p = 0.99).  

Female testosterone levels were higher in “NRFs” (11.4 ± 12.8 ng/mL) than “RFs” (6.3 ± 

7.2 ng/mL; t37 = 2.37, p = 0.023) (Fig 5B).  However, it is likely that the reported 

difference in testosterone levels between “NRFs” and “RFs” was introduced by the 

correction needed for low extraction efficiencies in “NRFs”.  Testosterone level was 

positively associated with GSI value in “NRFs” (r = 0.574, p = 0.005), and negatively 

associated with GSI in “RFs” (r = -0.634, p = 0.006, Fig. 4B).   

Male 11KT and T level were positively associated with each other (r = 0.69, p < 

0.01), and when evaluated within each GSI grouping, their levels were similarly 

positively correlated (“NRMs”: r = 0.50, p = 0.012, “RMs”: r = 0.59, p < 0.01) (Fig. 3B).  

11-ketotestosterone levels in “RMs” (30.9 ± 7.6 ng/mL) were higher than “NRMs” (6.7 ± 

1.7 ng/mL; 11KT: t42 = 6.12, p < 0.01) (Fig 5C).  Similarly, levels of testosterone were 

higher in “RMs” (5.26 ± 0.96 ng/mL) than “NRMs” (2.3 ± 0.3 ng/mL, T:  t39 = 4.50, p 

<0.01, Fig 5D).  Gonadosomatic index was not correlated with 11KT or T levels in 
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“NRMs” (11KT: r = 0.30, p = 0.248, T: r = 0.225, p = 0.42) or “RMs” (11KT: r = 0.2, p = 

0.42; T: r = 0.02, p = 0.94) (Fig. 6).  Within “NRMs”, there was a trend for developing 

males to have higher 11KT levels than immature fish (t16 = 2.03, p = 0.059, Fig 7A), but 

testosterone levels were not different between these groups (t14 = 0.60, p = 0.56, Fig 7B).   

 

Seasonality 

Females with oocytes in late vitellogenic and final maturation stages (GSI > 8%) 

were found throughout May-August.  The overall investment appeared to decline (GSI), 

although hormone levels showed no clear trends.  In females there was a trend towards a 

decrease in GSI as the season progress, but no changes in E2 or T levels (Fig. 8A,C,E).  

Similarly, males with sperm (GSI >1 %) were found between May and August.  Female 

testosterone levels ranged from 1.6 ng/mL to 24.3 ng/mL, while E2 ranged from 0.082 

ng/mL to 19.0 ng/mL.  In males, there were no evident seasonal changes in GSI, 11KT, 

or T (Fig 8B,D,F).  Testosterone levels ranged from 2.33 to 18.65 ng/mL, while 11KT 

levels ranged from 6.46 to 145.05 ng/mL. 

 

Discussion 

Methodological considerations 

The extraction recoveries in androgens were sub-optimal and showed variation 

between reproductive group plasma pools.  Therefore, androgen levels should not be 

considered as absolute, and readers are referred to Bowley et al., 2010 for levels in 

different male reproductive groups.  While this indicates the presence of unexplained 



 

70 

variation in the steroid hormone data, the results contain several patterns which are 

consistent with biological expectations (see discussion below).  Additionally, 

comparisons between each GSI group using the omnibus adjusted values match 

expectations for relative differences between reproductive groups in male round gobies, 

as reported by Bowley et al. (2010).  One exception, however, is that while Bowley et al., 

(2010) found no differences in T levels between “RMs” and “NRMs” I found greater T in 

“RMs” relative to “NRMs”.   

 

Females 

The results indicate that the common practice of assigning female reproductive 

status based on the 8% cutoff alone (Gammon et al., 2005, Marentette and Corkum, 2008, 

Marentette et al., 2009, Bowley et al. 2010, Yavno and Corkum, 2010, Young et al., 

2010), can result in misleading classifications.  Gonadosomatic index values mask the 

high degree of variation in female endocrine condition and gonad stage.  “Non-

reproductive females” commonly possess vitellogenic oocytes, can have late stage 

vitellogenic oocytes, and can have relatively high steroid hormone levels.  Thus, it is 

possible that oocyte maturation may occur at a smaller total gonadal volume than 

previously thought.  As defined by Brown-Peterson et al. 2011, the spawning capable 

stage describes the completion of vitellogenesis, rather than the completion of final 

oocyte maturation (germinal vesicle breakdown).  However, the receptors necessary for 

oocyte maturation should be present at the end of vitellogenesis (Brown-Peterson et al., 

2011).    
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While E2 and T did not show simple linear correlations with GSI across the entire 

range, and no overall differences between “NRFs” and “RFs”, they still likely show some 

variation across the reproductive cycle, since vitellogenic round goby oocytes develop as 

distinct cohorts (Kulikova 1985).  The highest levels of E2 were observed in mid-GSI 

ranges, which could indirectly approximate peak vitellogenic activity due to the role of 

E2 in stimulating vitellogenesis (Matsuyama et al., 1991, Tyler and Sumpter, 1996, 

Campbell et al., 2006).  Additionally, the positive relationship between GSI and T in 

“NRFs” could indicate the positive relationship between steroid production and oocyte 

growth. Testosterone and E2 are commonly elevated together during gonadal 

recrudescence in both multiple and total spawning fish (Methven et al., 1992, Rinchard et 

al., 1998, Mandich et al., 2004, Sisneros et al., 2004) and their levels correlate with 

gonadal growth during vitellogenesis (Campbell et al., 2006).   

The relatively constant steroid levels between developing and spawning capable 

fish is consistent with Bowley et al.’s (2010) observation of similar vitellogenin mRNA 

expression rates between “NRFs” and “RFs”, based on the same GSI cutoffs used in the 

current study.  The stable E2 levels across GSI levels could also be explained by the 

presence of cortical alveolar stage oocytes throughout the developing batch.  The onset of 

the cortical alveolar stage is thought to be gonadotropin dependent (Lubzens, 2010), and 

recent work in coho salmon (Oncorhynchus kisutch) has also indicated that progression 

into the cortical alveolar stage is associated with an increase in E2 (Campbell et al., 

2006).  

The decrease in T with increasing GSI in “RFs” could indicate a decline associated 

with final maturation.  Final maturation of oocytes in fishes typically occurs with 



 

72 

declining levels of sex hormones (Nagahama, 1994).  Kulikova (1985) found that human 

chorionic gonadotropin (a leutinizing hormone analog) is effective in stimulating oocyte 

growth in female round gobies (Kulikova, 1985), but when it was delivered in late stages 

of development it delayed spawning, which could indirectly indicate that a reduction in 

steroid hormone levels is required for the hormonal milieu during maturation.  However, 

of the two steroid hormones, E2 typically declines more commonly than testosterone 

(Methven et al., 1992, Kime, 1993, Rinchard et al., 1997).  Future studies are needed to 

examine the role of testosterone in final oocyte maturation.  

 

Males 

The 1% GSI cutoff effectively categorized males into those with sperm and those 

without sperm, but androgen levels showed no correspondence with GSI within both 

“RMs” and “NRMs”.  The results within “NRMs” indicated that cellular and endocrine 

changes are occurring before gross increases in gonad size.  Such an initiation of 

spermatogenesis prior to increase in GSI has also been observed in the African cichlid 

Astatotilapia burtoni (Maruska et al., 2011).  Similarly, although mature sperm were 

observed in all “RMs”, the degree of active spermatogenesis occurring will be variable 

and cannot be described with a simple GSI measure.  In fact, the GSI may show closer 

correspondence with the proportion of cells in earlier stages of development, rather than 

mature sperm.  In male Atlantic stingrays (Dasyatis sabina), for example, GSI reaches a 

peak and begins to decline prior to maximum sperm production (Maruska et al., 1996).  

Researchers should take care in using and interpreting male round goby GSI data because 

this measure provides limited detail on gonadal and hormonal condition. 
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Despite the lack of association between hormone level and GSI, 11KT and T likely 

both play important roles in round goby testis development.  The trend for an increase in 

11KT level during the transition from immature to developing gonad stages could 

indicate that 11KT plays a role in early stages of spermatogonial development.  11-

ketotestosterone is generally more effective than T in stimulating spermatogenesis in 

fishes (Miura et al., 1991, Borg, 1994, Cavaco et al., 1998, Schulz, 2010).  Additionally, 

the concurrent elevation of 11KT and T is commonly observed in fishes and typically 

relates positively with testis development (Modesto and Canario, 2003, Sisneros et al., 

2004, Butts et al., 2011).   

   

 

Seasonality 

The presence of spawning-capable fish throughout the summer indicates that round 

goby spawning events are occurring throughout the summer.  There were no clear 

seasonal patterns in hormone level, which could be because these analyses were limited 

to spawning-capable fish, which are expected to be in similar hormonal states.  The 

proportion of reproductive female round gobies decreases as the reproductive season 

progresses, in both North America and Europe (MacInnis and Corkum, 2000, Young et 

al., 2010).  The length of the spawning season is expected to vary with environmental 

conditions, including temperature (Charlebois et al., 1997).   

There was a trend for a decline in female GSI as the season progresses.  This could 

indicate that a cohort of younger fish with lower fecundity are spawning, which would be 

consistent with MacInnis and Corkum’s (2000) finding of a higher proportion of age 1 
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females in June and July.  Alternatively, a decline in GSI with the progression of the 

season could indicate that female round goby batch size decreases with subsequent 

batches.  For example, in Atlantic cod, another multiple spawning teleost, the number of 

developing oocytes in females decreases as the season progresses (Kjesbu et al., 1996).   

Since reproductively mature fish can be found throughout the breeding season, it is 

likely that a wide range of estrogen values will be observed throughout the summer.  

Relatively constant seasonal patterns of E2 levels are often common over the 

reproductive season in multiple spawners because gonadal recrudescence is occurring 

during the breeding period (Rinchard et al., 1996, 1997).  In Atlantic halibut, E2 

fluctuates within each batch, but decreased overall as the season progresses (Kjesbu et al., 

1996).  Elevated steroid hormone levels during the breeding period in multiple spawning 

fish contrasts patterns in single spawners, where E2 and T are highest weeks or months 

before spawning (Scott et al., 1980, Sisneros et al., 2004). 

 

 

Conclusions  

In studies where the reproductive condition of fish is critical, I suggest researchers 

examine histological stage of gonads, as GSI cutoffs encompass fish in various stages of 

development.  Most adult females captured during the summer can be considered to be 

vitellogenic, and egg recruitment appears to occur gradually between batches.  Due to the 

relatively continual oocyte growth in between batches and the long breeding season, 

steroid hormone and GSI are both likely a poor indicator of reproductive season in the 

round goby.  The hormone levels reported in this study lay a groundwork for future 
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studies in behavioural and sensory reproductive endocrinology of this species, as well as 

potentially studies on endocrine disruption (Marentette et al., 2010, Bowley et al., 2010).   
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Figures 

 

Chapter 3, Fig. 1. Light micrographs of ovaries in cortical alveolar (A), developing (B), 

and spawning capable (C) stages. PG = primary growth oocyte, CA = cortical alveoli 

oocyte; Vtg2 = stage 2 vitellogenic oocyte, Vtg3 = stage 3 vitellogenic oocyte; ZR = zona 

radiata; FL = follicle layer.  Scale bars represent 200 µm. 
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Chapter 3, Fig. 2. Light micrographs of testes in immature (A), developing (B), 

spawning capable (C), and regressing (D) stages of development. SG = spermatogonia, 

SC = spermatocytes, SZ = spermatozoa; L = lumen of lobule; GE = germinal epithelium.  

Seminiferous lobules are outlined with arrows in panels B,C and D.  Scale bars represent 

100 µm. 
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Chapter 3, Fig. 3. (A) The association between testosterone and 17β-estradiol in 

females.  Separate lines are fit for “NRFs” (filled circles, solid line) and “RFs” (open 

circles, dashed line).  (B) The association between testosterone and 11-ketotestosterone in 

males (“NRMs” = filled circles, solid line; “RMs” = open circles, dashed line).  

Testosterone values are adjusted based on reproductive group extraction recoveries 

(Table 1). 
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Chapter 3, Fig. 4. Correlation between female gonadosomatic index and plasma 17β-

estradiol (A) and testosterone (B).  In panel A, a single line represents the overall 

correlation between GSI and E2, whereas separate correlations were performed for each 

reproductive group in panel B. 
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Chapter 3, Fig. 5. Hormone levels in female (A,B) and male (C,D) reproductive groups, 

as determined by GSI cutoffs (GSI >1 and 8% in males and females, respectively).  

Androgens are adjusted to 100% according to pooled extraction efficiencies (Table 1).   
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Chapter 3, Fig. 6. Relationship between gonadosomatic index and (A) 11KT and (B) T 

in males.  Separate regressions were performed for “NRMs” (filled circles, solid lines) 

and “RMs” (open circles, dashed lines) due to differences in androgen extraction 

recoveries between the groups.  Values are adjusted to 100% according to pooled 

extraction efficiencies (Table 1).   
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Chapter 3, Fig. 7. (A) 11-ketotestosterone and (B) testosterone levels in “NRMs” 

according to histological staging.  Regressing males were excluded from statistical tests 

for both androgens due to small sample size.  Sample sizes are indicated within each bar. 
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Chapter 3, Fig. 8. Trends in gonadosomatic index and reproductive hormones through 

the summer of 2011.  (A,C,E) Scatterplots relating ordinal date to female gonadosomatic 

index (A), 17β-estradiol (C), and testosterone (E).  (B,D,F) Scatterplots relating ordinal 

date to “RM” gonadosomatic index (B), 11-ketotestosterone (D), and testosterone (E).  

Reference lines indicate the first day of each month.  Data are restricted to reproductive 

fish (GSI above 1% and 8% cutoffs in males and females, respectively). 
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Tables 

 

  

Chapter 3, Table 1. Summary of extraction recoveries for testosterone (T), 11-

ketotestosterone (11KT), and 17β-estradiol (E2) tested from pooled plasma from each 

reproductive group (reproductive males = “RM”, non-reproductive males = “NRM”, 

reproductive females = “RF”, non-reproductive females = “NRF”.  Symbols § and * 

indicate similar extraction efficiencies between 11KT and T from separate assays. 

Hormone 

Reproductive 

group pool 

Plasma 

volume 

(µL) 

Spike on curve 

(pg/mL) Recovery (%) 

T “RM” 7.7 40 13
§
 

T “NRM” 4.4 40 49* 

11-KT “RM” 1.0 25 18
§
 

11-KT “NRM” 1.0 25 56* 

T “NRF”  1.0 40 31 

T “RF” 1.0 40 90 

E2 NRF  4.0 100 115 

E2 RF 2.1 100 95 
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Chapter 3, Table 2. Criteria used for classifying reproductive stage using round goby 

gonads (Adapted from Brown-Peterson et al., 2011).  

Sex Stage Histological features 

Females Immature Only oogonia and primary growth oocytes 

present 

 Developing Cortical alveolar and/or vitellogenic 

oocytes (Vtg1 and Vtg2) are present. Yolk 

granules in vitellogenic oocytes are small, 

not filling the entire cytoplasm  

 Spawning capable Yolk globules densely packed throughout 

the oocyte (Vtg 3) 

 

Males 

 

Immature 

 

Only spermatogonia present, no lumen 

developed within lobules 

 Developing Lumen formation, spermatocytes present.  

Spermatids and spermatozoa may also be 

present in spermatocysts, but they have not 

yet started accumulating in the lumen 

 Spawning capable Spermatozoa present in the lumen of the 

spermatocytes, and some spermatogenesis 

occurring in germinal epithelium 

 Regressing Residual reserves of spermatozoa present 

in the lumen or sperm duct 
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Chapter 3,Table 3. Numbers and GSI (mean ± s.e.m) of fish categorized into each 

gonadal stage in relation to GSI groupings (CA stage = cortical alveolar stage). 

 Stage 

Immature/CA stage Developing Spawning capable Regressing 

(males) 

GSI 

group 

Total N GSI N GSI N GSI N GSI 

“NRM” 21 8 0.05 ± 0.02 10 0.2 ± 0.06 0 - 3 0.3 ± 0.13 

“RM” 16 0 - 0 - 16 1.9 ± 0.1 0 - 

“NRF” 17 3 0.7 ± 0.3 10 3.0 ± 0.5 4 3.9 ± 0.3 - - 

“RF” 21 0 - 0 - 21 13.0 ± 0.1 - - 
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CHAPTER IV: CONCLUSIONS AND RECOMMENDATIONS 

This thesis advances our understanding on the physiological conditions which 

may generate variability in auditory function.  Specifically, auditory function may vary 

with sex, reproductive state, and growth.  The results also highlight the importance of 

examining endocrine condition in sensory physiology and behavioral studies.   

In Chapter 2, E2 level was associated with changes in auditory function, despite 

no differences between “NRFs” and “RFs”.  In addition, sex differences in hearing were 

observed, yet they interacted with growth and E2 level to affect auditory function.  Taken 

together, the results from Chapter 2 indicate that multiple factors of a receiver’s internal 

physiological state can influence auditory function. 

Chapter 3 indicated that while GSI cutoff values are effective in making gross 

classification of reproductive development, these categories encompass individuals in 

varied endocrine states.  Many studies rely on GSI to determine reproductive state, 

particularly in females.  The GSI assumes that gonad volume and gonad state are related, 

but this assumption is not always valid.  The findings from Chapter 3 should inform 

experimental design for researchers studying round goby reproductive biology. 

Examining fluctuation in hormone levels across the reproductive cycle is a 

significant step towards further understanding the reproductive biology of the round 

goby. The finding that E2 was associated with changes in auditory processing contributes 

to emerging evidence for neuroendocrine coupling of reproductive signaling and sensory 

reception in the round goby.  Meunier et al. (2009) observed that after gravid females 

were introduced to a nest guarding male in the laboratory, a full 10 days elapsed prior to 

spawning.  This indicates the potential importance of dynamic signalling between males 
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and females in late stages of courtship, which could be under neuroendocrine control.  

Social triggers via auditory, olfactory and visual modalities likely stimulate the brain-

pituitary-gonadal axis to coordinate mating behaviours.  Conspecific acoustic input can 

trigger leutinizing hormone release in birds (Cheng et al., 1998); the conspecific 

interactions between male and female round gobies leading up to spawning could 

similarly initiate gonadotropin release to stimulate ovulation and spermiation.  Steroid 

hormones such as E2 could prime the auditory and olfactory systems during gonadal 

recrudescence to allow for the encoding of sensory stimuli required for final maturation 

and spawning.  

The central role of gonadal steroids in pheromonal communication in the round 

goby (Murphy and Stacey, 2002, Belanger et al., 2007) is an additional motivation to 

proceed with other studies in this area.  In round goby pheromonal communication, both 

the production and reception of olfactory signals are reproductive state dependent 

(Murphy and Stacey, 2002, Gammon et al., 2005, Belanger et al., 2007).  Moreover, E2 

and estrone (a possible E2 precursor) are detected by the olfactory system of males 

(Belanger et al., 2007).   

The current thesis contributes to our understanding of the ecological and 

physiological mechanisms generating condition- and sex-dependent auditory function.  

Other fish audition studies failing to observe reproductive condition differences in 

auditory sensitivity have occurred in species which seem to rely on acoustic 

communication year round (Maruska et al., 2007, Vasconcelos et al., 2011a).  Round 

gobies exhibit seasonal reproduction patterns and seasonal migration to breeding sites, as 

seen in the plainfin midshipman (Sisneros et al., 2004), which led to the prediction that a 
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seasonal change in auditory function could be an adaptive trait.  However, round gobies 

have a flexible reproductive strategy and a nearly continuous reproductive capacity if 

environmental conditions are favourable (Moiseyeva and Rudenko, 1976, Kulikova, 

1985).  Dynamic hormonal modulation of auditory neural function, potentially via rapid, 

non-transcriptional mechanisms (Remage-Healey and Bass, 2006), could be a mechanism 

to facilitate reproductive behaviours in the round goby.   Such a control mechanism 

would resemble the endocrine control of auditory function observed in the Hawaiian 

sergeant damselfish, Abudef abdominalis, which despite exhibiting no overall effect of 

reproductive season on auditory function, exhibits GnRH-dependent regulation of 

auditory processing (Maruska et al., 2007, Maruska and Tricas, 2011).   

In Chapter 2, the lower thresholds in females at high tone frequencies in 

conjunction with potential E2 effects on auditory filtering indicate that female encoding 

of auditory signals likely differs from males.  However, there were no sex differences in 

auditory threshold at 100-200 Hz or in response to the pulse, which could indicate that 

indicating that auditory sensitivity may not differ between the sexes when receivers are 

within a critical range from the source (see sound propagation discussion below). Sex 

differences in auditory function may not always be evident in overall sensitivity, but 

rather arise in how the auditory information is encoded (e.g. Hoke et al., 2008, 2010, 

Henry and Lucas, 2010).   

Studies in fish acoustic communication should move beyond the simple tone 

audiogram, since communication occurs above threshold and tone responses do not 

directly reflect responses to natural stimuli (Maruska and Tricas, 2009).  Moreover, 

aspects of receiver condition (e.g. sex, age/growth, reproductive condition) may affect 



 

93 

 

hearing in a stimulus specific manner (Miranda and Wilczyinksi, 2009, Maruska and 

Tricas, 2011) and may only be evident using certain hearing metrics.  For example, in the 

Carolina chickadee (Poecile carolinensis), males have greater auditory sensitivity than 

females, yet females perform better on measures of frequency discrimination (Henry and 

Lucas, 2009).  Additionally, the frequencies eliciting maximum responses may vary as a 

function of sound level above threshold (Lu et al., 2004).  Thus, an examination of 

sensitivity should be decoupled from assessments of auditory processing above threshold.  

Some studies in fish acoustics have used conspecific stimuli in AEP setups, but the 

techniques used to analyze the data acquired are in early stages (e.g. Wysocki and 

Ladich, 2003, Belanger et al., 2010, Vasconcelos et al., 2011b). Cross correlation 

techniques commonly used in human ABR studies to examine signal fidelity and phase 

locking could be a promising area of investigation in fish acoustics (Skoe and Kraus, 

2010).   

Propagation studies of round goby vocalizations in the field would allow for a 

better assessment of the salient features of the acoustic stimulus at distances of several 

meters (e.g. Mann and Lobel, 1997), which could more fully address whether the 

auditory threshold of females in the high frequency range is of significance for the active 

space of male vocalization detection.  The range of the particle motion near field is 

wavelength dependent, with lower frequencies having a greater range (Bass and Clark, 

2003).  However, the propagation of low frequencies is hampered in shallow waters, and 

higher frequencies should be favoured for long range acoustic communication in shallow 

waters due to the cutoff frequency (Bass and Clark, 2003).  For example, in a study of 



 

94 

 

propagation of damselfish sounds in shallow water, frequency bands at 400 and 500 Hz 

exhibited less attenuation than lower frequencies (Mann and Lobel, 1997).   

Propagation can also vary dramatically based on substrate in shallow waters (Bass 

and Clark, 2003).  The rocky substrates favoured by round gobies (Young et al, 2010) 

should minimize sound absorption and favour a decrease in the cutoff frequency, 

resulting in greater propagation of vocalizations.  Most propagation studies to date 

measure sound in terms of pressure, but round gobies lack an air bubble or swim bladder 

to transduce pressure waves to the inner ear.  As accelerometer technologies become 

more commercially available, field studies on particle motion should be fruitful research 

avenues for examining the active space of round goby vocalizations.   

Overall, the current research highlights the dynamic nature of sensory and 

reproductive physiology.  I have elucidated some potential mechanisms through which 

the auditory system may interact with the reproductive system to influence reproductive 

behaviours.  In general, the findings indicate that the overt behavioural responses of 

animals are the result of complex interactions between physiological systems within the 

body.   
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APPENDIX 

 

  

Cold spikes used in extraction recovery, plasma dilutions 

Sample ID Hormone 

Standard 

solution 

supplied 

in 

Cayman 

kits 

(ng/mL) 

Standard 

solution 

used in 

spikes 

(pg/mL) 

Spike 

volume 

(uL) 

Final 

spike 

amount 

(on 

standard 

curve) 

(pg/mL) 

Volume 

of 

plasma 

assayed 

(uL) 

Volume 

of assay 

buffer Dilution 

RM T  10 600 12.00 40 7.7 180 1:24 

RM+spike T  10 600 12.00 40 7.7 180 1:24 

NRM T  10 600 12.00 40 4.4 180 1:41 

NRM+spike T  10 600 12.00 40 4.4 180 1:41 

NRF  T  10 600 12.00 40 1.0 180 1:180 

NRF spike T  10 600 12.00 40 1.0 180 1:180 

RF T  10 600 12.00 40 1.0 180 1:180 

RF+spike T  10 600 12.00 40 1.0 180 1:180 

RM 11-KT 50 500 9.75 25 1.0 195 1:195 

RM+spike 11-KT 50 500 9.75 25 1.0 195 1:195 

NRM 11-KT 50 500 9.75 25 1.0 195 1:195 

NRM+spike 11-KT 50 500 9.75 25 1.0 195 1:195 

NRF  E2 400 600 30.00 100 4.0 180 1:36 

NRF+spike E2 400 600 30.00 100 4.0 180 1:36 

RF  E2 400 600 30.00 100 2.1 180 1:87 

RF+spike E2 400 600 30.00 100 2.1 180 1:87 
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Raw data for pooled extraction recoveries 

Sample ID Hormone 

[Well 1] 

(pg/mL) 

[Well 2] 

(pg/mL) 

[Well 3] 

(pg/mL) 

[Mean 

wells] 

(pg/mL) 

Extraction 

efficiency 

(%) 

 RM T  90.7 92.3  91.5   

RM+spike T  98.0 95.7 

 

96.9 13.4 ←RM 

NRM T  

 

52.3 54.7 53.5 

  NRM+spike T  72.5 74.1 

 

73.3 49.3 ←NRM 

NRF  T  77.4 78.7 

 

78.0 

  NRF spike T  83.7 97.5 

 

90.6 31.4 ←NRF 

RF T  26.0 34.5 45.5 35.4 

  RF+spike T  65.5 77.4 

 

71.4 90.2 ←RF 

RM 11-KT 41.2 40.6 42.6 41.5 

  RM+spike 11-KT 45.5 

 

46.2 45.9 17.7 ←RM 

NRM 11-KT 9.6 9.9 9.7 9.7 

  NRM+spike 11-KT 23.7 

 

23.6 23.7 55.7 ←NRM 

NRF  E2 

 

122.2 134.4 128.3 

  NRF+spike E2 242.8 244.3 

 

243.6 115.2 ←NRF 

RF  E2 30.4 32.0 

 

31.2 

  RF+spike E2 

 

129.8 123.4 126.6 95.4 ←RF 
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Equations used to calculate spikes for recoveries: 

1.                                          (
             (  )

                       (  )
)  

                                    

2.                                 

(
                        

                                              
)  
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Ether Extraction Protocol 

 

1. Label one test tube (16x100 mm) and one scintillation vial for each sample 

2. Pipette out plasma sample into test tube and add 1 mL of double-distilled water. 

Vortex. 

3. Add 4 mL of ether to each test tube using a plastic pipetter. Vortex for 20 seconds 

until central whirlpool reaches the bottom of the test tube, increasing speed slowly 

from 1-6. Do this for each tube in sequences. Repeat 3 times, allowing the ether 

layer to settle each time. 

4. Cover test tubes with paraffin and place test tube rack in -80
○
C for 17 min to 

freeze the aqueous phase.  Transfer test tube rack in ice to -20C and retrieve each 

test tube individually to carefully decant the ether phase into the scintillation vial. 

5. Allow ether to evaporate overnight in fume hood.  

6. Prior to assay, reconstitute steroids in EIA buffer, vortexing bottom and sides of 

scintillation vial several times to level where ether reached the day before. 
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