
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2012

Discovering Influential Nodes from Social Trust
Network
Sabbir Ahmed
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Ahmed, Sabbir, "Discovering Influential Nodes from Social Trust Network" (2012). Electronic Theses and Dissertations. Paper 5407.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5407?utm_source=scholar.uwindsor.ca%2Fetd%2F5407&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 
 

Discovering Influential Nodes from Social 
Trust Network 

 
 

By 
 
 
 
 

Sabbir Ahmed 
 
 
 

A Thesis 
Submitted to the Faculty of Graduate Studies through the School of 

Computer Science in Partial Fulfillment of the Requirements for the Degree 
of Master of Science at the  

University of Windsor 
 

Windsor, Ontario, Canada 

 2012 

© 2012 Sabbir Ahmed 



 
 

Discovering Influential Nodes from Social 
Trust Network 

 
 
 
 

By 
 
 

Sabbir Ahmed 
 

 

 

APPROVED BY: 
 

 

Dr. Eugene H. Kim, External Reader 

Department of Physics 

 

  

Dr. Alioune Ngom, Internal Reader 

School of Computer Science 

 

 

Dr. Christie I. Ezeife, Advisor 

School of Computer Science 

 

 

Dr. Richard Frost, Chair 

School of Computer Science 



III 
 

AUTHOR’S DECLARATION OF ORIGINALITY 
 
I hereby certify that I am the sole author of this thesis and that no part of this thesis has 

been published or submitted for publication.  

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s 

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or 

any other material from the work of other people included in my thesis, published or 

otherwise, are fully acknowledged in accordance with the standard referencing practices. 

Furthermore, to the extent that I have included copyrighted material that surpasses the 

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I 

have obtained a written permission from the copyright owner(s) to include such 

material(s) in my thesis and have included copies of such copyright clearances to my 

appendix. 

I declare that this is a true copy of my thesis, including any final revisions, as approved 

by my thesis committee and the Graduate Studies office, and that this thesis has not been 

submitted for a higher degree to any other University or Institution. 

  



IV 
 

ABSTRACT 
The goal of viral marketing is that, by the virtue of mouth to mouth word spread, a small 

set of influential customers can influence greater number of customers. Influence 

maximization (IM) task is to discover such influential nodes (or customers) from a social 

network. Existing algorithms adopt Greedy based approaches, which assume only 

positive influence among users. But in real life network, such as trust network, one can 

also get negatively influenced. 

In this research we propose a model, called T-GT model, considering both positive and 

negative influence. To solve IM under this model, a trust network where relationships 

among users are either ‘trust’ or ‘distrust’ is considered. We first compute positive and 

negative influence by mining frequent patterns of actions performed. Then using local 

search a new algorithm, called MineSeedLS, is proposed. Experimental results on real 

trust network shows that our approach outperforms Greedy based approach by almost 

35%. 

 
KEYWORDS 
 

Influence Maximization, Trust Network, Social Network, Data Mining. 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 
 

 

 

 

 

DEDICATION 
 

 

 

 

 

 

 

To my loving wife Tanya and my beautiful daughter Alaida. 

 

 

 

 

 

 

 
  



VI 
 

ACKNOWLEDGEMENT 
 
My sincere appreciation goes to my parents, wife and siblings. Your perseverance and 

words of encouragement gave me the extra energy to see this work through.  

 

I will be an ingrate without recognising the invaluable tutoring and supervision from Dr. 

Christie Ezeife. Your constructive criticism and advice at all times gave me the needed 

drive to successfully complete this work. The research assistantship positions helped as 

well!!  

 

Special thanks go to my external reader, Dr. Eugene H. Kim, my internal reader, Dr. 

Alioune Ngom for accepting to be in my thesis committee. Your decision, despite your 

tight schedules, to help in reading the thesis and providing valuable input is highly 

appreciated. 

 

And lastly to friends and colleagues at University of Windsor, I say a very big thank you 

for your advice and support throughout the duration of this work. 



VII 
 

TABLE OF CONTENT 
 
AUTHOR’S DECLARATION OF ORIGINALITY ................................................... III 
 
ABSTRACT ..................................................................................................................... IV 
 
DEDICATION.................................................................................................................. V 
 
ACKNOWLEDGEMENTS ........................................................................................... VI 
 
LIST OF FIGURES ........................................................................................................ IX 
 
LIST OF TABLES .......................................................................................................... XI 
 
CHAPTERS 
 
1. INTRODUCTION......................................................................................................... 1 

1.1 Social Network Analysis ......................................................................................................... 1 

1.2 Data Mining ............................................................................................................................. 4 

1.3 Social Network Graph and Properties ................................................................................ 8 

1.4 Social Network mining and challenges ............................................................................ 14 

1.5 Submodular Function Maximization .................................................................................. 17 

1.6 Influence Maximization ....................................................................................................... 19 

1.7 Thesis contribution ................................................................................................................ 25 
2. RELATED WORKS ................................................................................................... 28 

2.1 Diffusion Models .................................................................................................................... 28 

2.1.1 Linear Threshold Model ................................................................................................ 29 

2.1.2 Independent Cascade Model ................................................................................... 32 

2.2 Greedy algorithm for Influence Maximization ................................................................. 33 

2.3 ‘Lazy Forward’ Optimization ............................................................................................... 39 

2.4 Improving scalability of Greedy ......................................................................................... 42 

2.4.1MixedGreedy .................................................................................................................. 42 

2.4.2 CELF++ ............................................................................................................................ 42 

2.4.3 SimPath ........................................................................................................................... 43 

2.4.4 Community Based Greedy ......................................................................................... 43 

2.4.5 Sparsification of Influence Network ........................................................................... 44 

2.5 Data Mining Approaches ................................................................................................... 45 

2.5.1Mining Action Log .......................................................................................................... 46 

2.5.2 Mining Leaders using Frequent Pattern approach ................................................. 47 



VIII 
 

2.5.3 Learning Influence Probability .................................................................................... 51 

3. PROPOSED MINING FOR INFLUENTIAL NODES FROM TRUST 
NETWORK ..................................................................................................................... 56 

3.1 Trust-General Threshold Model ........................................................................................... 56 

3.2 Solution framework .............................................................................................................. 62 

3.3 Computing Positive and Negative Influence Probability .............................................. 66 

3.4 Discovering Influential Nodes ............................................................................................. 68 

3.5 Complexity Analysis ............................................................................................................. 76 

3.6 Running Example .................................................................................................................. 76 

3.6.1 Example Dataset .......................................................................................................... 76 

3.6.2 Preprocessing Step ....................................................................................................... 79 

3.6.3 Computing Influence Probability using APG ............................................................ 80 

3.6.4 Mining Influential Nodes using mineSeedLS.............................................................. 84 

4. EXPERMENTS AND ANALYSIS ............................................................................ 87 
4.1 Dataset .................................................................................................................................. 87 

4.1.1 Epinions Dataset ........................................................................................................... 87 

4.1.2 Wikipedia Dataset ........................................................................................................ 88 

4.2 Performance Analysis .......................................................................................................... 88 

4.3 Runtime Analysis ................................................................................................................... 91 

4.3.1 Runtime of APG ............................................................................................................. 91 

4.3.2 Runtime of mineSeedLS ............................................................................................... 91 

5. CONCLUSIONS AND FUTURE WORKS .............................................................. 93 
 

 
BIBLIOGRAPHY ........................................................................................................... 94 
 
VITA AUCTORIS ........................................................................................................ 100 

 

 

 



IX 
 

LIST OF FIGURES 
 
Figure 1: Data Mining process ............................................................................................ 4 

Figure 2: An example of a decision tree ............................................................................. 6 

Figure 3: A clustering example ........................................................................................... 7 

Figure 4: Example of Directed and Undirected Graph ....................................................... 9  

Figure 5: Graph model of social network data in Table 3 and 4. ...................................... 10 

Figure 6: An example of Social Network Graph .............................................................. 11 

Figure 7: Trust Network Graph ......................................................................................... 14 

Figure 8: Types of Social Network Mining Tasks ............................................................ 14 

Figure 9: Greedy algorithm requires Social network graph with influence probabilities  22 

Figure 10: a) Social Network Graph. b) Action Log ........................................................ 24 

Figure 11: Proposed framework by Goyal et al. (2010) ................................................... 25 

Figure 12: Linear Threshold Model example ................................................................... 31 

Figure 13: Independent Cascade Model example ............................................................. 33 

Figure 14: Social Network Graph modeled on data in table 5 .......................................... 35 

Figure 15: The Greedy k-best influence maximization algorithm .................................... 36 

Figure 16: Running time of exhaustive search, greedy and CELF. .................................. 40 

Figure 17: (a) Example social graph; (b) A log of actions; (c) Propagation graph of action 

a and (d) of action b .......................................................................................................... 47 

Figure 18: The propagation graph of an action PG(a) in fig.(a), Inf8(u4, a) in fig.(b), 

Inf8(u2, a) in fig.(c) .......................................................................................................... 48 

Figure 19: Compute Influence Matrix. (Goyal et al. 2008). ............................................. 50 

Figure 20: (a) Undirected social graph containing 3 nodes and 3 edges with timestamps 

when the social tie was created; (b) Action Log ............................................................... 53 

Figure 21: Propagation graphs of actions in action log of Figure 20 b ............................. 54 

Figure 22: Example of social network graph with influence probability ......................... 58 

Figure 23: Trust- Influential Node Miner Framework ...................................................... 63 

Figure 24: Trust based Influential Node Miner (T-IM) algorithm ................................... 64 

Figure 25: The Preprocess() method.. .............................................................................. 65 

Figure 26: The ComputeInfluence(u,v) method. ............................................................... 65 



X 
 

Figure 27: An example input to APG algorithm ............................................................... 66 

Figure 28: Algorithm: Action Pattern Generator (APG) .................................................. 67 

Figure 29: Algorithm: SpreadTGT (G(V,E),S,TM,IM) .................................................... 72 

Figure 30: Algorithm: SpreadTGT2 (T, G(V,E),S,TM,IM) ............................................. 73 

Figure 31: Algorithm mineSeedLS() ................................................................................ 75 

Figure 32: Social network graph modelled from trust data in table 7. ............................. 80 

Figure 33: Influence spreads of different algorithms on Wikipedia Dataset under TGT 

model................................................................................................................................. 90 

Figure 34: Influence spreads of different algorithms on Epinions Dataset under TGT 

model................................................................................................................................. 90 

Figure 35: Runtime of APG with various size of Action Log. ......................................... 91 

Figure 36: Running time on Epinion Dataset under TGT model. ..................................... 92 

Figure 37: Running time on Wikipedia Dataset under TGT model. ................................. 92 

 

 

 

 

 

 

 

 

 

 

 

 

  



XI 
 

LIST OF TABLES 
 
 

Table 1:An example of a training set for classification ...................................................... 5 

Table 2:An example of transaction table ............................................................................ 8 

Table 3: Sample table with user information .................................................................... 10 

Table 4: Relationship information of users in Table 1 ..................................................... 10 

Table 5: Sample social network data with Influence Probability ..................................... 35  

Table 6: Sample Influence Matrix .................................................................................... 50 

Table 7: Example of Trust Data. ....................................................................................... 77 

Table 8: Example of an Action Log. ................................................................................. 78 

Table 9: Trust Matrix. ....................................................................................................... 79 

Table 10: Action sequence table of action log in table 8.. ................................................ 81 

Table 11: Values of Au for all user v in G(V,E). ............................................................... 81 

Table 12:  Au.v computed from action sequence table. ..................................................... 82 

Table 13:  A′u.v computed from action sequence table. .................................................... 83 

Table 14: Influence Matrix. .............................................................................................. 83 

Table 15: Nodes with its joint influence probability in queue T. ..................................... 84 

Table 16: Nodes with its joint influence probability in queue T. ..................................... 85 

Table 17: Spread of each node. ......................................................................................... 86 

Table 18: Epinions trust dataset. ....................................................................................... 87 

Table 19: Epinions rating dataset. ..................................................................................... 88 

 
 
 
 
 

 

 

 
 



1 
 

CHAPTER 1 

 

INTRODUCTION 

 
 
1.1 Social Network Analysis 
A social network is a social structure made up of individuals or entities (e.g. 

organization) also called "nodes", which are inter connected by various types of 

relationships, such as friendship, trust etc. Social Network Analysis (SNA) concentrates 

on techniques to analyze these relationships and information flows, between nodes in a 

social network, and produce formal models which facilitates understanding of the 

structure of a network as well as which network structure is more likely to emerge 

(Wellman and Berkowitz, 1988).  

Popularity of online social networking sites (e.g. Facebook, Google+), caused a rise of 

social network data of very large scale. Researchers are actively involved in studying and 

understanding properties and structures of these networks and the challenges they pose by 

applying various data mining and machine learning methods to these data, such as Kempe 

et al (2003) and Leskovec et al. (2010). These studies are to better understand the online 

social structure, its growth and user behaviour etc. (Backstorm et al. 2010). Such studies 

can help developers of social network sites to improve user experience, make it scalable, 

and of course, profitable. Also tools and techniques for analysing and mining social 

network have various range of use in business processes such as marketing, sales etc. 

(Bonchi et al. 2011). 

There are several examples of such works, for example Link Prediction, the task of 

predicting a future link (such as friendship) between two individual (nodes) in a social 

network. Link prediction is a key tool for friend recommendation system in many social 

network sites. Another example is the task of influence maximization, which is the 

problem of detecting a small subset of social network graph that could maximize the 

spread of influence (Kempe et al. 2003). Here ‘influence’ can be for a piece of 

information from government that needs to be spread to maximum possible members of a 



 2 

social network, or it can be a new technology, such as new android phone, a company 

wants to promote etc. Kempe et al. (2003) defines the influence maximization problem as 

a submodular function maximization problem and provide greedy based solution for it. 

Existing algorithms for influence maximization, such as Greedy (Kempe et al. 2003) and 

‘Lazy Forward’ (Leskovec et al. 2006) based algorithms, requires that the influence 

probability, the probability of an individual adopting a product under the influence of 

another user, is known and given to the algorithm as input along with a social network 

graph. A social network graph can be easily constructed if the relationship (among users 

in a social network) data is explicitly available. However influence probabilities are not 

explicitly available (Goyal et al. 2008). In most of the literature reviewed influence 

probabilities are assumed and given as input.  

To tackle this, researchers are recently looking into data mining techniques, such as 

frequent pattern mining (Goyal et al. 2008), to mine influence from user’s action log. 

These techniques in general takes Action Log, which is a relation Actions (User, Action, 

Time), along with a social graph G(V, E). Action log are extracted from log of user 

activities, such as rating a movie, in a social network site databases. Action log table 

contains tuples, for e.g. (u, a, t), which indicates that user u (such that u ∈ V) performed 

action a, at time t. Recent researches show that such action log can provide traces of 

influence among users in a social network (Goyal et al. 2011). In other words, if a user v 

rate “Mission Impossible” movie and later v’s friend u does the same, then the action of 

rating the movie “Mission Impossible” propagates from user v to user u. This is to be 

noted that these works primarily consider only the positive influence among users. 

However a user can also get negatively influenced by another user, especially by a 

distrusted user. For example let us say Tom trust Mary and John, but do not trust Rob. 

Current solutions for IM will only consider influence (positive) of Mary and John on 

Tom and use it to compute the probability of Tom performing a certain task or action. 

Furthermore, in current models Tom’s probability of performing an action (or adopting a 

product) will increase as the number of his friends performing the same action increases. 

However, we argue that, Tom’s probability of performing an action (e.g. Buy iPhobe 4S) 

should also decrease if Tom’s distrusted neighbours, such as Rob, also buy iPhobe 4S. 

And thus we should also consider negative influence in Influence Maximization tasks.  



 3 

In this research a trust network is considered, which is a social network where we have 

both positive (e.g. friendship) and negative (e.g. foes) types of links or edges, to solve 

influence maximization where both positive and negative influence exist. We propose a 

new model; called Trust-General Threshold (TGT) Model, in which the probability of a 

user to adopt a product relies on both positive and negative influence probabilities. By 

extracting patterns of actions performed by users we present a pattern mining based 

method to compute the influence probabilities (both positive and negative), from Action 

Log using Bernoulli distribution. Furthermore we show that, influence maximization 

under the new TGT model cannot be solved with good approximation guarantee using 

existing methods, such as ‘Lazy Forward’ of  Leskovec et al. (2006). This is mainly 

because existing works assume that probability of a user performing an action increases 

as more of its neighbours perform the same action. However in our model this is not that 

case as the probability may in fact decrease if its neighbours who perform the actions are 

not the trusted ones. Using local search techniques we propose a new algorithm, 

MineSeedLS, to solve IM under TGT model. We conduct experiments using dataset 

collected from Epinions.com and Wikipedia.com to evaluate our approach.  

In remaining of chapter 1 we provide a brief background on data mining, social network 

and its analysis. Here we also discuss submodular function optimization as influence 

maximization problem can be formulated as this problem. Then we discuss the influence 

maximization problem and also provide problem statement for the thesis. In chapter 2 we 

provide a detailed related work on influence maximization and also discuss limitations of 

these works and motivation for the thesis. In chapter 3 we provide a proposed solution 

framework to solve influence maximization in trust network. In chapter 4 we provide 

various experimental results including comparisons between the existing and the 

proposed influence maximization techniques. Finally, Chapter 5 provides some 

concluding remarks. 

 

 



 4 

1.2 Data mining 

Data mining (also refer to as knowledge discovery from data or KDD) is the process of 

analysing data from different perspective and presenting it into meaningful information 

that can be used to make important and critical decisions. Agrawal and Srikant (1996) 

define data mining as a way of efficiently discovering interesting rules from large 

databases. This area of study is motivated by the need for solutions to decision support 

problems faced by organisations such as Banks, Retail stores etc. 

 

 
Figure 1: Data mining process. (http://docs.oracle.com) 

 

Any data mining task first involve defining the problem or business goal. For example a 

business may want to find potential customers to target to initiate a viral marketing 

campaign. The next step is to gather and process available data. This typically involves 

creating databases or warehouses where data are then read using various techniques. 

Then the next process is to build models to analyse and forecast on future events. The 

entire data mining steps can be illustrated as shown in figure 1. Data mining algorithms 

typically employs techniques from statistics; machine learning and pattern recognition to 

search large databases automatically. One key factor that is important in this field is to 

ensure that information or knowledge extracted is accurate and conclusions drawn from 

data can be good enough to represent the general situation.  Therefore it is also important 

to ensure that proper cleaning is done on the data so that so that the results generated by 



 5 

the mining task are accurate. The process of discovering interesting information from 

large set of data often employs different techniques and approaches. Some of the 

approaches include: 

 

• Classification – it is the task of assigning or classifying objects to one of several 

predefined categories or class.  For example we may want to predict whether it is 

suitable to play tennis on a given day by looking into playing condition data from 

previous days.  A collection of records, also known as training set, with their 

class labels is used as input data for a classification task. An example of an data of 

tennis play which can be used as training set for classification is in table 1 below: 

 

Table 1: An example of a training set. 

Temp Outlook Wind Humidity Play? 

Hot sunny weak High no 

Hot sunny strong High no 

Hot overcast weak High yes 

Mild rain weak High yes 

Cool rain weak Normal yes 

Cool rain strong Normal no 

Cool overcast strong Normal yes 

Mild overcast weak High no 

Cool sunny weak Normal yes 

Cool rain weak Normal yes 

Mild sunny strong Normal yes 

Mild overcast strong High yes 

Hot overcast weak Normal yes 

Mild rain strong High no 

 

Attributes outlook, temp, humid and wind in the training set are called 

independent attributes and the attribute whose class we need to predict, i.e. ‘play?’ 



 6 

is called dependent attribute. The goal of any classification algorithm is to take 

training set data as input and produce a classification model which is then used to 

classify a new record of which the class or value for dependant attribute is 

unknown. Examples include decision tree classifiers, neural networks, naïve 

Bayes classifier etc. Figure 2 is a decision tree generated using the training set in 

table 1 above. A decision tree is a tree representation which is a collection of 

classification rules, one for each leaf node. In order to predict or classify an 

unknown record, the attribute values of the record are compared against the 

decision tree. A path from root of the decision tree to a leaf node which holds the 

predicted class of that record is traced. 

 

 

 
Figure 2: An example of a decision tree. 

 

The decision tree is then used to predict the value of the target attribute ‘play?’ 

for a new instance. For example, from the above decision tree model, if outlook is 

‘sunny’ and humidity is ‘high’ we can predict ‘no’ for ‘play?’ attribute according 

to the decision tree. 

 

• Clustering – tasks seeks to discover records that are closely related and put them 

into different groups, or clusters, such that records in same cluster are more 

similar to each other than records that belong to other clusters.  For example a 

business can look into their customer data and perform clustering analysis to 

segment customers into small groups for various marketing activities. K-means 



 7 

algorithm is an example of a clustering algorithm. Figure 3 below shows a simple 

example of clusters of 3 groups separated based on debt and income.  

 

 

 
Figure 3: A clustering example. 

 

• Association rule mining – is used to discover patterns that describe strongly 

associated features in data. It is often very useful to discover such interesting 

patterns or relationship hidden in large data sets. The uncovered relationships are 

represented in the form of association rules or set of frequent items (Agrawal et al. 

1993). For example retail stores are interested in analysing the point of sales data 

to learn about purchasing behaviours of their customer. If they see, for example, 

80% of their user buy bagels when they buy cream cheese, the retail store may 

put these items close to each other to encourage more sales. Association rule 

mining typically involves exploring transaction table (example Table 2). Each 

row in transaction table corresponds to a list of items bought by a customer. For 

example transaction 1 (TID 1) corresponds to a sale where the customer bought 



 8 

bread and milk. The goal is to generate all possible patterns from the database, 

calculating their support (how often does the rule apply) and confidence (how 

often is the rule correct). Rules are generally simple, example, “If bread is 

purchased, then milk is purchased 60% of the time and this pattern occurs in 60% 

of all shopping baskets.” 

 

Table 2: Example of transaction table 

TID Items 

1 {bread, milk} 

2 {bread, diapers, beer, eggs} 

3 {bread, diapers, beer, cola} 

4 {bread, milk, diapers, beer} 

5 {bread, milk, diapers, cola} 

 

1.3 Social Network Graph and Properties 

 
Graphs are used to specify relationships among a collection of items or nodes. It 

consists of a set of objects, called nodes, with certain pairs of these objects connected 

by links called edges. Graphs appear in many domains and context, whenever it is useful 

to model how things (or nodes) are either physically or logically connected to each other 

in a network structure (Easley and Kleinberg, 2010).  

 

Following is the more formal definition of graph: 

 

Definition 1 Graph - Graph G is a pair (V,E), where V is a set of vertices (or 

Nodes), and E is a set of edges between the vertices E ⊆  {(u,v) | u, v ∈  V} 

 

The structures of social networks, most commonly, are modeled as directed or undirected 

graph G(V, E). Where V is the set of all nodes in the network and E is the set of edges 

between nodes. In Figure 4(a), the relationship between the two ends of an edge is 



 9 

symmetric (e.g. friendship); the edge simply connects them to each other. However in 

various other settings, it may be required to express asymmetric relationships. For 

example a node can point to another node but not vice versa. Such relationships in a 

social network are modeled as directed graph which consist of a set of nodes with a set of 

directed edges; that is each directed edge is a link from one node to another. For example 

in Email network we need to specify sender and receiver. An example of a directed graph 

is shown in figure 4(b), with edges represented by arrows. 

 

u1 u5

u2

u4

u3

u1 u5

u2

u4

u3

 
a) Undirected graph                b) Directed graph 

Figure 4 – Example of Directed and Undirected Graph.  

 

Graph is a popular way to model the interaction among the people in group or community. 

For example, in a friendship network, each vertex V corresponds to a person in that 

network, and an edge E between two such vertices represents an association of friendship 

among them. Each edge in a graph structure can also have weights assigned to them. 

Such graph models are known as weighted graphs, and are used to model structures in 

which each edge between a pair of nodes has some numerical value. For example, in an 

Email network graph, the weights of its edges may represent the number of emails sent 

from one node to another. By modeling of social network as graph and analyzing it, 

useful perspectives on range of social computing applications, such as friend 

recommendation system can be provided. Graph modeling of social network are also 

useful because they provide us with mathematical models of the network structures 



 10 

(Easley and Kleinberg 2010). Let us consider the following social network data tables. 

Table 3 consist of list of individuals in a social network and Table 4 reports friendship 

relationship among these individuals. 

 

Table 3: Sample table with user information 

Userid Name Age Sex Location 

101 Bob 32 M Toronto 

102 Mary 22 F Windsor 

201 Tanya 32 F Dhaka 

301 Ahmed 22 M NewYork 

 

Table 4: Relationship information of users in Table 3 

Userid Friend_Of DateCreated 

101 301 12-Mar-2007 

301 201 22-Apr-2009 

101 102 05-Jun-2011 

102 301 02-Dec-2010 

 

 
Based on these data we can model a simple social network graph as shown in Figure 5. 
 

 

 

 

 

 

 

Figure 5 - Graph model of social network data in Table 3 and 4. 

 

 

Tanya 

Ahmed 

Bob 

Mary 



 11 

In the above graph G(V,E), V is the set of individuals (or vertices) in the social network , 

i.e. V={Tanya, Bob, Ahmed, Mary}. And E is the set of all friendship links (or edges), i.e. 

E={(Tanya, Ahmed), (Bob, Mary),(Mary, Ahmed),(Bob, Ahmed)}. 

 

 
Figure 6 - An example of Social Network Graph 

(Easley and Kleinberg, 2010. Page 48) 

 

After modeling network data into graph, as shown in figure 6, social network mining 

tasks, such as (Kunegis et al. 2009), uses various graph based proximity measures, 

adapted from graph theory (Karamon et al. 2008). Following are some of the most 

commonly used graph-based properties used in mining and analysing network data. We 

use the example graph in figure 6 to explain these properties. The graph in figure 6 have 

7 vertices as follows, V={A,B,C,D,E,F,G} and 8 edges as follows, E={(A,B), (A,D), 

(A,C), (A,E), (F,E), (F,B), (G,B)}. 

a. Degree 

The degree of a vertex in a graph can be denoted as D (v), is the number of edges 

on that vertex. Let us consider the social network graph in figure 6. In this graph 

the degree of node A is 4 and node B is 3. The notion of degree in directed graph 

is a bit different. For example in the directed graph in figure 4 b, for the node B 

there are 2 types of degrees, namely in-degree which is 2, because edges from 

nodes A and D are directed towards node B. Similarly, the out-degree of node B 

is 1 as it has 1 edge, to node C, away from itself. 

 



 12 

 
b. Bridge 

An edge is called a bridge if deleting the edge would cause its nodes at each 

endpoints to lie in different connected components of a graph. For example the 

edge GB in figure 4 is a bridge because it will split the graph into two connected 

components. 

 

c. Distance 

The distance between two vertices in a graph (denoted as dxy , the distance 

between node x and y) is the number of edges in a shortest path connecting them. 

For example the distance between nodes E and C in figure 6 is 2. 

 

d. Closeness  

Average distance from a node to all others. Closeness of node x can be calculated 

using following formula: 
∑ 𝑑𝑥𝑦𝑦∈𝑉

𝑁 − 1
 

Where N is the number of nodes in G (V, E) 

 

e. Common Neighbours 

For a node x, let Γ(𝑥) denote the set of neighbours of x in a social network graph. 

Common neighbours define CN(x, y) as the number of neighbours that x and y 

have in common: 

𝐶𝑁(𝑥, 𝑦) = Γ(𝑥) ∩ Γ(𝑦) 

For example number of common neighbours of nodes A and B in figure 6 is 1 

(node D). 

 

f. Clustering Coefficient 

The clustering coefficient of a node is defined as the probability that any of its 

two selected neighbors connected with each other. That is, it is the fraction of 

pairs of a node’s neighbors that are connected to each other by edges.  Let Kv is 



 13 

number of neighbours of vertex v. Then there is at most Kv * (Kv - 1)/2 number of 

edges that can exist between the neighbours of v. If Lv is the number of edges that 

actually exist between neighbours of v then clustering coefficient of node v, 

denoted as C(v) is: 

𝐶(𝑣) =  
𝐿𝑣

𝐾𝑣 ∗ (𝐾𝑣 − 1)/2
 

For example, the clustering coefficient of node A in figure 6 is 1/6. Because 

number of neighbors of A is 4, so number of edges that can exist between it’s 

neighbors is 4*(4-1)/2 = 6. And there is only one edge C-D among these possible 

six pairs.  

 

Types of Social Network 

The following are some of the main types of large-scale social networks that researchers 

have used for research in mining social network: 

a. Friendship Network: 

This is the simplest but most popular type of social network. Friendship network 

records who is friend to whom relationship among nodes. The largest of such network 

in online domain is currently Facebook which recently reported over 750 million 

users. 

 

b. Collaboration Network:  

Collaboration Network records who works with whom in a specific setting. Co-

authorships among scientists, is an example of collaboration network. That is if 2 

authors, A and B, publish a paper together there will be an edge between A and B in 

the corresponding Collaboration network. 

 

c. Trust Network 

Signed network or Trust network is a social network where we have both positive (e.g. 

friendship) and negative (e.g. foes) types of links or edges. E.g. in Wikipedia 

(www.wikipedia.com), one can vote for or against the nomination of others to 

adminship. Also in Epinions (www.epinions.com) users can express trust or distrust 



 14 

of others (Leskovec et al. 2010a, 2010b). Figure 7 below is a graph model of a typical 

trust network. 

u1 u5

u2

u4

u3

-ve

+ve

+ve

-ve

-ve
+ve

-ve

-ve

+ve

+ve
-ve

 
Figure 7 – A Trust Network graph example 

 

d. Communication Network 

Communication network models the “who-talks-to-whom” structure of social 

network. Such networks can be constructed from the logs of e-mail or from phone 

call records. 

1.4 Social Network mining and Challenges 

 
Data mining, such as classification, is very commonly used to tackle many SNA tasks 

and can be classified into two major categories; either descriptive or predictive (Figure 8). 

  

 

 

 

 

 

 

 

 

 

Figure 8 – Types of Social Network Mining Tasks 

Data Mining of Social Network 

Predictive 
E.g. Link Prediction, Edge Sign 

Prediction etc. 
Uses data mining such as 

Classification etc. 
 

Descriptive 
E.g. Group Detection, 

Discovery of Influential 
Leaders etc. 

Uses data mining such as 
Clustering etc. 

 



 15 

A predictive model produced using mining social network data makes a prediction about 

unknown values. For example Prediction whether an individual will be a friend of 

another individual. This task is also known as Link Prediction (Liben-Knowell and 

Kleinberg, 2003). Classification and Regression are commonly used to produce 

predictive model in Social Network. Some predictive mining of social network are listed 

below: 

 

a. Link Prediction 

Link prediction task in social network is to predict existence of an edge between two 

nodes. More formally given a snapshot of a social network at time t, link prediction 

task seeks to accurately predict which edges will be added to the network at time t’ 

(Liben-Nowell and Kleinberg 2003). Liben-Nowell and Kleinberg (2003) used graph 

based properties such as common neighbours and distance as features in their dataset 

to apply classification mining techniques to predict future link. Tasker et al. (2003) in 

their work to predict link in social network of universities relied on using user’s 

personal information such as music and book preferences etc. Link Prediction is an 

important component of Friend Recommendation system in many Social Network 

sites such as Facebook.  

 

b. Node Classification 

In large social network graphs, such as online social networks like Facebook, a subset 

of users or nodes may be labelled with information that indicate demographic values, 

interest, beliefs or other characteristics of the users (). Node Classification task make 

use of this data to predict or classify the labels of nodes of which the labels are 

unknown (Bhaghat et al., 2011). 

 

A descriptive model identifies patterns or relationship, such as trends, clusters and 

anomalies etc. in data. An example of descriptive model of social network mining task 

can be identification or detection of groups within a Social Network. Clustering and 

pattern mining are some of the data mining techniques used for descriptive mining of 

social network. Some descriptive mining tasks in social network are listed below: 



 16 

c. Community Detection (Clustering) 

The goal of community detection task (Senator 2005) in social network mining is to detect 

groups or community in the social network graph which have more (or dense) edges among 

nodes in a same group than that of among nodes outside the group. There are many reasons to 

discover such group or communities in the network, for instance, target marketing schemes 

can be designed based on clusters, and it has been claimed that terrorist cells can be identified 

(Bonchi et al. 2011). 

 

d. Influence Maximization 

Using data mining method, influence maximization task attempts to help companies 

to determine potential customers to market to, so that by the virtue of mouth to mouth 

word spread, these customers can influence greater number of customers. Such 

marketing procedure is commonly known as viral marketing. For example Hotmail 

when launched grew from zero users to 12 million users in just 18 months on a very 

small advertising budget. There are many other application areas where influence 

maximization solution can be applied, such as virus or disease spread detection, social 

search, innovation adoption etc. Influence maximization in trust is the focus of this 

thesis. 

 

Research challenges in Mining Social Network: 

 

Privacy – Privacy protected mining of social network is a very important and sensitive 

issue that needs to be addressed (Wang et al. 2009) (Provost 2009). Current techniques to 

ensure privacy while mining social network is primarily based on anonymization, which 

is for example, replace node names with random IDs (Agrawal  2005).  

 

Linked Data - While data representation and feature selection are significant issues for 

traditional data mining and machine learning algorithms, data representation for linked 

data is even more complex. Traditional data mining tasks such as, classification or 

association rule mining, usually attempt to extract knowledge from a dataset stored in a 

well-structured database (Getoor 2003) such as data in table 1 and 2. However in social 



 17 

network, data are also linked to one another with using some type of relationship, such as 

friendship. So while analyzing a social network it is vital to take such relations under 

consideration. In many social network analysis (SNA) tasks, such as link prediction, 

graph based features- such as degree, is used and analyzed (Liben-Nowell and Kleinberg 

2003). Identifying and computing such features and applying appropriate mining or 

machine learning technique is one of the challenges in SNA. 

 

Scalability – In online domain the datasets are very large, with millions of nodes and 

edges. Mining tasks of these large dataset is quite time consuming especially if the task 

requires real time results. The challenge here is to devise efficient and scalable mining 

techniques that can process large amount of data in shortest possible amount of time and 

also produce models with high accuracy. 

 

Dynamic One key drawback of recent studies, such as (Liben-Nowell and Kleinberg 

2003), is that most of these work largely ignored the fact that social network is dynamic, 

meaning it changes over time (Tantipathananandh et al. 2007). There are significant work 

to be done in modeling and analyzing dynamic social networks.  

 

1.5 Submodular Function Maximization 

In recent times submodular function optimization has emerged as a fundamental problem 

structure in machine learning applications (Krause 2010). A submodular function is a set 

function defined as follows: 

 

Definition 2 Submodular Function – A function 𝑓: 2𝑋 →  ℝ is submodular if for 

any 𝐴 ⊆ 𝐵 ⊆ 𝑋 and 𝑥 ∈ 𝑋\𝐵, 𝑓(𝐵 ∪ {𝑥}) −  𝑓(𝐵) ≤  𝑓(𝐴 ∪ {𝑥}) −  𝑓(𝐴). 

 

The above definition basically states that any function f is submodular if its marginal gain 

(or benefit) for adding an element in a small set is larger than that of adding the same 

element to a larger set. This phenomenon is also known as diminishing returns. Sub 

modularity appears in many important problem settings including cuts in graph, set 



 18 

covering problem and also in influence maximization problem (Feige et al. 2009). 

Optimization of any submodular function involves finding a set A which maximize or 

minimize f(A). While minimizing a submodular function can be achieved in polynomial 

time, maximizing is unfortunately turns out to be very difficult (Feige et al. 2009). Indeed 

for all the problems mentioned above, the maximization is NP-Hard (Feige et al. 2009) 

(Kempe et al. 2003).  

 

Submodular functions can be further classified as follows: 

• Monotone functions: f is monotone if for any  𝐴 ⊆ 𝐵 , 𝑓(𝐴)  ≤   𝑓(𝐵) 

• Non monotone functions: no requirement as above. 

The maximization of any submodular functions when it is monotone can be solved using 

a greedy algorithm which have approximation guarantee of (1-1/e) or 63% (Nemhauser et 

al. 1978). However when the function is non-monotone this guarantee does not hold. 

Feige et al. (2009) provides a deterministic local search based algorithm which have 1/3 

approximation guarantee. Local search algorithms are commonly used to solve 

computationally hard optimization problems that can be formulated as finding a solution 

which maximizes a criterion, among a number of solutions. Local search algorithms 

typically start with a small solution based on certain criteria. Then, it applies local 

changes to the current solution, such as adding an element or removing an element, until 

a solution deemed optimal is found or certain criteria (example budget) is met. Feige et 

al., however, do not consider any restriction or constraint on the solution size. So the 

solution size can be potentially large. In many settings we require to maximize the 

function with constraint on the solution size. Such constraint is also known as cardinality 

constraint. For example in viral marketing we may want to target small group of people 

subject to a budget. That is we want set of influential set in which the number of 

influential nodes do not cross the budget. Lee et al. (2009) provides a different local 

search based algorithm for maximizing non monotone sub modular functions which can 

guarantees a solution with various kinds of constraint such as cardinality constraint. The 

local search based algorithm of Lee et al. (2009) proved to produce solution which is at 

least ¼ to the optimal solution under cardinality constraint. 



 19 

1.6 Influence Maximization 

 
Viral Marketing is the process of targeting the most influential users in the social network 

so that these customers can start a chain reaction of influence driven by word-of-mouth, 

so that with a small marketing budget a large population of a social network can be 

reached or influenced. Here ‘influence’ can be for a piece of information from 

government that needs to be spread to maximum possible members of social network, or 

it can be a new technology a company wants to promote etc. For example a phone 

manufacturer wants to promote their new phone model and have limited budget for the 

marketing campaign. To get maximum possible benefit out of the limited budget the 

company may want to choose a small group with largest influence, so that this small 

‘influential’ group can influence greater number of potential customers. Selecting such 

influential nodes from a large social network graph is an interesting research challenge 

that has received a good deal of attention in the last years (Bonchi et al., 2011).  

Influence according to Webster dictionary is "The power or capacity of a person or things 

in causing an effect in indirect or intangible ways". Several studies confirm that influence 

exists in online Social Network. For example, Leskovec et al. (2006, 2007b) show 

patterns of influence by studying person-to-person recommendation for purchasing books 

and videos, finding conditions under which such recommendations are successful. As 

considered in other literature on influence maximization such as Bonchi et al. (2010), in 

this thesis, influence is considered to be the ability (or probability) of a person to 

convince others to act or behave in certain way. This phenomenon or process of influence 

propagating from one user to another in a social network is also known as influence 

propagation or diffusion process. 

The first to consider the propagation of influence and the problem of discovering 

influential users from a social network are Domingos and Richardson (2001, 2002). 

Kempe et al. (2003) formulated the same problem as a problem maximization of 

submodular function. They formalize Influence Maximization problem by adopting 

diffusion models (definition below), such as Linear threshold (LT) model and 

Independent Cascade (IC) model from mathematical sociology. We discuss these models 

in more details in chapter 2 of this thesis. Diffusion models, in general, models the spread 



 20 

of influence or the diffusion process, through a social network represented by a directed 

graph G. In these models a node or user is said to be active if the node adopts a product 

(or performs an action) or inactive if the node does not adopt a product (or performs an 

action). We will discuss these models in detail in Chapter 2 of this thesis. 

  

Definition 3 Diffusion Model - A diffusion model, also known as propagation 

model, describes the entire diffusion process and determines which nodes will be 

activated due the influence spread through the social network.   

 

Based on these Kempe et al. (2003) defined influence spread function as stated below.  

 

Definition 4 Influence Spread – Given a social network graph G(V,E), a diffusion 

model M and an initial  set of active vertices A⊆ V, the influence spread of set A, 

denoted  σM(A), is the expected number of vertices to become active, under the 

influence of vertices in set A,  once the diffusion process is over. 

 
Note that both LT and IC models requires additional parameters, such as influence 

probability, along with social network graph G(V,E), to determine or compute influence 

spread.  

 
Definition 5 Influence probability – Given a social network graph G(V,E), 

influence probability, denoted as p(u,v) (such that 𝑢, 𝑣 ∈ 𝑉and (𝑢, 𝑣) ∈ 𝐸) is  the 

probability of node v to perform some action under the influence of user u. 

 

Using these notations Kempe et al. (2003) defines the k-best influence maximization 

problem as follows: 

Problem 1 - Given a social network graph G=(V,E) along with influence 

probabilities of all edge in E, a diffusion model M and a number k such that k ≤ 

|V|, find a set A such that A⊆ V, |A|≤k and the influence spread, that is σM(A), is 

maximum. 



 21 

From viral marketing perspective the parameter k is the budget of how many individuals 

we want to target and is given as input by the end user. And any algorithm that solves the 

above influence maximization problem must return a set of nodes consisting of k number 

of nodes. The selected set A is also referred to as “seed set”.   

Kempe et al. (2003) prove that the optimization problem (problem 1) is NP-hard for IC 

and LT diffusion models. This means that there is no polynomial time algorithm that can 

solve the influence maximization problem. However they show that σM(.) function is sub-

modular and monotone. Due to the sub modular property, when adding a node v ∈ V of 

social network graph G(V,E) into a seed set S, the incremental influence spread or 

marginal gain of influence spread function σM(.), is smaller than adding v to any subset of 

S. Marginal gain of any node v in a social network with respect to any current seed set S, 

such that S ⊆ V and v not in S, is the difference of influence spread caused by the node v. 

That is marginal gain for adding node v can be expressed as σM(S ∪ {v}) - σM(S). For 

example let us consider a seed set S and let’s say it’s influence spread is 7, i.e σ(S) = 7. 

Now let’s also consider that adding a node v to S causes the influence spread to increase 

to 9, i.e σ(S ∪ {v}) = 9. Then the marginal gain of node v is 9-7 = 2, i.e. σM(S∪{v})- 

σM(S) = 9 – 7 =2. Therefore the sub modularity of influence spread function σM(.)  can be 

formally expressed as σM(S ∪ {v}) - σM(S) < σM(T ∪ {v})- σM(T)  where 𝑇 ⊆ 𝑆 ⊆ 𝑉 and 

v ∈ V of a social network graph G(V,E). This actually means that under IC and LT models, 

the effect, or the marginal gain; of adding a new node to a seed set S is smaller than the 

effect of adding same node to a subset of S.  

Note that submodular function f is said to be monotone if we have 𝑓(𝑆)  ≤ 𝑓(𝑆 ∪ {𝑣})  

for all elements v and for every sets S ⊆ 𝑉  . That is adding an element to a set does not 

decrease the value of the function f. 

According to Nemhauser et al. (1978) any submodular monotone function can be solved 

using natural greedy algorithm with a (1-1/e) approximation guarantee. That is due to the 

submodular and monotone property of σM(.) function, the greedy solution will produce 

result which is at least 63% of the optimal. Thus, if A* is an optimal set maximizing the 

function σM(.) the approximation guarantee is expressed as: 

σM(A) ≥ (1 − 1/e) ・σM(A∗) 



 22 

Kempe et al. (2003) present a greedy approximation algorithm applicable to IC and LT 

models. The algorithm requires computing marginal gain of influence spread of every 

node v, σM(S ∪ {v}) - σM(S), in each iteration. The node with highest marginal gain is 

'greedily' added to the seed set until the size of the seed set reaches k. We will discuss the 

greedy algorithm further in Chapter 2 of this thesis. 

The greedy algorithm for influence maximization requires 2 inputs (figure 9) as follows 

(Goyal et al. 2011):  

a) A social directed network graph G(V,E) and 

b) Influence Probability of each edge in E.  

 
 

Greedy 
Algorithm

Influential 
Nodes

Social Network Graph G with influence 
probabilities

 
Figure 9: Greedy algorithm requires Social network graph with influence probabilities.  

 
 
Although simple, the greedy algorithm of Kempe et al. (2003) is computationally 

expensive and not scalable to large social network. According to Chen et al. (2010), the 

greedy algorithm would fail or become unfeasible to extract influential nodes from large 

social network graph with more than 500K edges even on modern server machine.   The 

computationally expensive step of the greedy algorithm is where we select the node that 

provides the largest influence spread. To be able to do this we need to compute influence 



 23 

spread of each and every nodes which can be quite time consuming if the number of 

nodes and edges in the social network graph is very large. Most of the work, such as 

work of Leskovec et al. (2007) and Chen et al. (2009, 2010), that followed in the area of 

influence maximization attempt to tackle the efficiency issue of the greedy approach. We 

discuss some these works in Chapter 2 of the thesis. However, this is to be noted that 

tackling scalability is not within scope of this research and we keep the discussion on this 

issue limited. 

Another major issue that is largely ignored in the works in influence maximization, such 

as (Kempe et al. 2003) and (Chen et al. 2010),   is the question – How and where we can 

compute Influence Probability? Here, it is assumed that the network itself and influence 

probabilities are known and given to the algorithm as input. A social network graph G 

can be easily constructed if the data is explicitly available (Goyal et al 2011). However 

influence probabilities are not explicitly available. In most of the literature reviewed, 

influence probabilities are assumed to be given as input (Bonchi et al. 2011).   To conduct 

experimentation researchers adopted various trivial methods of assigning influence 

probabilities (Bonchi et al. 2011). For example assuming uniform link probabilities (e.g. 

all link have probability p = 0.01), or the trivalency (TV) model where link probabilities 

are selected uniformly at random from the set {0.1, 0.01, 0.001}, or assuming the 

weighted cascade (WC) model, that is p(u, v) = 1/dv where dv represent the in-degree of v 

(Goyal et al. 2011).  

Goyal et al. (2011) recently compared these above methods and compared the different 

outcomes of the greedy algorithm. The finding of their experiments shows that the seed 

sets extracted under different probabilities settings are very different (with empty or very 

small intersection). This shows the importance of computing influence probability from 

real data instead of assigning them based on some naïve assumptions (Goyal et al. 2011). 

To tackle this issue researchers are now looking into ways to mine influence probabilities 

from Action Log of users in a social network (Goyal et al. 2010). Action log is a relation 

Actions(User, Action, Time) which contains tuples, for example (u, a, t), which indicates 

that user u (such that u ∈ V) performed action a, at time t (Figure 10b).  

In (Goyal et al. 2010), factors such as the influenceability, of a specific user’s tendency of 

getting influenced by its neighbours, or how influence drives a certain action are also 



 24 

investigated. Finally, the authors also show that using the proposed method they can also 

predict whether a user will perform an action and when with high accuracy. We discuss 

this method further in Chapter 2 of this thesis. 

u1 u5

u2

u4

u3

 
Figure 10: a) Social Network Graph. b) Action Log  

 

Goyal et al. (2010) propose to apply their method as a preprocessing step of influence 

maximization algorithms, such as Greedy by Kempe et al. (2003) or CELF by Leskovec 

et al. (2007). The overall framework of this method can be demonstrated by figure 11. In 

this framework Goyal et al. (2010) suggests to first learn influence probabilities from 

social graph and propagation log (or Action Log) and then apply Greedy (Kempe et al. 

2003) or Lazy optimization (Leskovec et al. 2007b) algorithm to discover the seed set. 

We discuss these methods further in Chapter 2 of the thesis report. 

Note that all of these works consider only positive influence among users in a social 

network. That is techniques for influence maximization (Kempe et al. 2003) and mining 

influence probability (Goyal et al. 2010) only consider how much a node has influence on 

another node to perform a certain task. However in real life scenario a node can also have 

some degree of negative influence on another node, especially by a user who he/she does 

not trust.  



 25 

 
Figure 11: Proposed framework by Goyal et al. (2010) 

(Bonchi et al. 2011. Pg. 11) 

 

Therefore in this research our goal, though same as the works discussed above (i.e. 

discovering influential nodes), but different in the sense that we consider both positive 

and negative influence among users in a trust network to discover influential nodes. In 

the following section we summarize the problem definition and outline the contributions 

of the proposed research. 

 
1.7 Thesis Contribution 
 
Recent research shows that people trust the information they obtain from their close 

friends or family more than information obtained from general advertisements (Chen et al. 

2010). Furthermore viral marketing is different from other strategies of marketing, 

because it is based on trust among such close social circle of families and friends (Chen 

et al. 2010).  Therefore we claim that for influence maximization we need to consider 

negative influence by a distrusted user while modeling diffusion process. That is, we 

should consider a user can also get negatively influenced by another user, especially by a 

distrusted user. Existing diffusion models such as Linear Threshold Model (Kempe et al. 

2003) and influence maximization techniques do not consider negative influence and 

resulting seed sets may contain negative influencers. Based on this in this research we 



 26 

consider trust social network where relationship is either trust or distrust. Such 

relationships in trust networks are asymmetric, meaning an existence of an edge (u,v) 

does not necessarily mean existence of an edge (v,u) (Guha et al. 2004).  For example in a 

trust network, as defined in section 1.3, a positive edge (u,v) signifies that node u trust 

node v, but not vice versa. There are several examples of trust network in online domain 

For example, users on Wikipedia (www.wikipedia.com) can vote for or against the 

nomination of others to adminship; users on Epinions (www.epinions.com) can express 

trust or distrust of others; and users on Slashdot (www.slashdot.com) can declare others 

to be either “friends” or “foes” (Leskovec et al. 2010). Existing diffusion models for IM 

are modeled such a way that a node’s probability of performing an action (or adopting a 

product) will increase as the number of his/her friends performing the same action 

increases. However, we argue that, a node’s probability of performing an action (e.g. Buy 

iPhobe 4S) should also decrease if its distrusted users, also buy iPhone 4S.  

Motivated by this the formal problem definition we propose to tackle is as follows: 

 

Thesis Problem Definition – Find Influential Nodes from a directed trust network graph, 

G(V,E) with every edge (u,v) of E is directed and labelled either positive (trust) or 

negative (distrust), and Action Log, Actions(User, Action, Time) such that every user u 

in User column of action log table is member of V. 

To solve the above problem we make the following contribution in this research: 

 

1) We propose a new diffusion model named Trust-General Threshold (TGT) model 

which incorporates both positive and negative influence probabilities based on trust 

relationship among users in trust network. 

 

2) Based on this new TGT model we propose a new influence maximization framework 

for trust network, called Trust-Influential Node Miner (T-IM), which takes trust network 

data and action log to find influential nodes. 

 

2) To compute influence probabilities we propose an algorithm (Action Pattern 

Generator) which mines the action log to find frequent patterns of action performed by 



 27 

trusted and distrusted users and use it to compute both positive and negative influence 

probability using Bernoulli distribution. 

 

3) We show that approximation guarantee of (1-1/e)  by existing IM algorithms such as 

Lazy Forward by Leskovec et al. (2007) is not applicable to TGT model because the 

influence spread function in this model is non monotonous.  

 

4) We also show that influence spread function is still sub modular and define the 

problem of finding influential nodes from trust network under TGT model as an 

optimization of non-monotone submodular function problem. 

 

4) We propose a new algorithm, mineSeedLS, based on local search (Lee et al. 2009) to 

solve IM under our proposed TGT model. 

 

5) Perform in depth analysis of our proposed solution using real life data set collected 

from Epinions (www.epinions.com) and Wikipedia (www.wikipedia.com). In terms of 

number of quality of seed selected, our experiments shows that mineSeedLS outperforms 

greedy based solutions by almost 35%. 

http://www.epinions.com/�


 28 

CHAPTER 2 

 

RELATED WORKS 

 
 
Analyzing information diffusion and social influence in social network has many 

applications to real-world. Influence maximization for viral marketing is an example of 

such an important application (Tang et al. 2009). In this section, we introduce the 

problem of influence maximization and review recent research progress. In section 2.1 

we introduce some vocabulary related to information diffusion (Gruhl et al. 2004) 

process and also discuss several diffusion models that attempts to describe the diffusion 

process in social network. Most works, such as (Kempe et al. 2003, Leskovec et al. 2007b, 

Chen et al. 2010) on influence maximization problem rely on these models. In section 2.2 

we discuss the classical paper by Kempe et al. (2003), where they first formulated the 

influence maximization as a discrete optimization problem and solved it using a greedy 

algorithm. In section 2.3 we discuss ‘Lazy forward’ optimization, by Leskovec et al. 

(2007), which is about 700 times faster than greedy of Kempe et al. (2003). In section 2.4 

we discuss further improvement to the greedy approach mainly in terms of scalability. In 

section 2.5 we discuss some of the more recent data mining based approaches, such as by 

Goyal et al. (2010) in this area.  

 

2.1 Diffusion Models 
In information diffusion process in social network there exists some vocabulary specific 

to the context. In a social graph G(V,E), a vertex v ∈ V becomes (or is called) active, if 

the information has reached the vertex and was accepted by it. Similarly a vertex which 

information has not reached or got convinced so far, is called inactive. It is assumed that 

during the process of diffusion of the information, an inactive vertex can become active 

but not vice-versa. To simplify diffusion models this restriction is applied. In order to 

diffusion process to start, there must be some initial set of active nodes called seed nodes 

which are initially activated.  



 29 

A diffusion model, also known as propagation model, describes the whole diffusion 

process and determines how the influence propagates through the network. The role of 

these diffusion model is primarily, to replicate or simulate real life diffusion process and 

determines which nodes and how many nodes will be activated by any given set of nodes 

(called seed nodes) after the diffusion process is over. There are few classical models 

which are used very commonly used to tackle the influence maximization problem. Here, 

we review some of them.  

The status of the chosen set of users to market (also referred to as “seed nodes”) is 

viewed as active and initially all other users are considered inactive. Then, the chosen 

activated users, may further influence their friends (neighbour nodes) to be active as well. 

In this section we discuss the two of the most well known models namely Linear 

Threshold Model (LT) and Independent Cascade Model (IC)  (Kempe et al. 2003). These 

models, or their variations, are most commonly used diffusion models in Influence 

Maximization.  

 

2.1.1 Linear Threshold Model 
Given a directed graph of social network G(V,E). A threshold value 𝜃𝑣 is assigned to each 

node v in V. Also each edge (u,v) in E is also assigned with a weight value  bu,v. In linear 

threshold model the probability of a vertex v to become active will increase as more of its 

neighbours become active. The vertex v is influenced by each of its neighbour w 

according to the weight bw,v such that sum of all the weights bw,v for all w∈ Nv is ≤ 1. 

Where Nv is set of all active neighbours of v.  At any given time t a vertex become active 

if  

 

� 𝑏𝑤,𝑣 ≥  𝜃𝑣
𝑤∈𝑁𝑎(𝑣)

 

 

Where 𝑁𝑎(𝑣) is the set off all active neighbours of v at time t-1. Usually threshold 𝜃𝑣 is 

uniformly set at random in the interval [0,1]. However in some approach this threshold is 

simply fixed to a given value for all the vertices, such as 0.7. (Kempe et al. 2003) 

 



 30 

The LT Model can be summarized using the following steps: 
 

Given 

- Threshold 𝜃𝑣 

- Seed Sets A ⊆ V 

In time t 

• Vertices that are active at time t-1 will remain 

active 

• Inactive vertex v becomes active at time t+1 if 

� 𝑏𝑤,𝑣 ≥  𝜃𝑣
𝑤∈𝑁𝑎(𝑣)

 

• STOP when no nodes becomes active 

 
Example: 

 

Let us now look at an example of an LT model. Let us consider the social network graph 

at time t-1 as shown in figure 12.a below. Let us also consider A = {a, c, i}, meaning 

nodes a, c and i are initially activated. The left column bar on each node represents the 

threshold 𝜃 and each directed edge has a weight value 𝑏𝑤,𝑣. For example 𝑏𝑖,ℎ is .1 and 

𝑏𝑎,𝑏 is .3.  

At time t (Figure 12.b) node b be will be active as 𝑏𝑎,𝑏 + 𝑏𝑐,𝑏 = 0.3 + 0.3 = 0.6 ≥ 𝜃𝑏. 

Similarly node f becomes active at time t as 𝑏𝑖,𝑓 = 0.4 ≥ 𝜃𝑓. Note here that nodes g and h 

do not get activated here as the total weight of active neighbours (right column bar) is 

less than their respective threshold 𝜃. 

At time t+1 (Figure 12.c) node e gets activated as total weight of active members b and f 

is 𝑏𝑏,𝑒 + 𝑏𝑓,𝑒 = 0.1 + 0.3 = 0.4 ≥ 𝜃𝑒. The diffusion process stops at this point as there are 

no more nodes that can be activated 



 31 

 
a) At Time t-1 

 

 
b) At time t 

 

 
c) At time t+1 

 

Figure 12 – Linear Threshold Model example. 

 

 

 

 



 32 

2.1.2 Independent Cascade Model 
In independent cascade model every arc (u,v) in G(V,E) is associated with the influence 

probability p(u,v) of u influencing v. Influence Probabilities is the probability of a node to 

be influenced by another node. At time t, nodes that became active at t-1 will activate 

their inactive neighbours according to probability p(u,v). The IC Model can be 

summarized using the following steps: 

 
Given 

- Seed Sets A ⊆ V 

At time t 

        If u becomes active at time t-1 

           u attempts to activate each of its inactive 

neighbours v. 

           u activates v with probability p(u,v) 

           If successful, v becomes active in step t+1 

STOP when no nodes becomes active 

 

Example: 
 

Let us now look at an example of an IC model. Given a social network graph at time t-1 

as shown in Figure 13.a below. Let us consider A={a,i}, meaning nodes a and i are 

initially activated. Each directed edge (u,v) ∈ E has a influence probability value p(u,v). 

For example p (a, b) = .3 means that the probability of node u influencing node v is 30%.  

At time t-1 the node i will attempt to activate g, h and f and will succeed with the 

probability of .4, .1 and .4 respectively. Let say it succeeds to influence g and f and fails 

to influence h. Similarly node a attempts to influence node b and succeeds. So node g, f 

and b are activated at time t (Figure 13.b). And this process continues until no more 

nodes can be activated (Figure 13.c and 13.d). 

 

 



 33 

 

 
a) At time t-1 

 

 
b) At time t 

 

 
c) At time t+1 

 

 
d) At time t+2 

 

Figure 13 – Independent Cascade Model example. 

 

2.2 Greedy algorithm for Influence Maximization 
Kempe et al. (2003), studied the Viral Marketing problem in several of the most widely 

used models in Social Network Analysis such as Linear Threshold Model and 

Independent Cascade Model as discussed is Section 2.1. Their goal is to formally express 



 34 

the viral marketing problem, choosing a good initial set of nodes (customers) to target, as 

optimization problem in the context of these models.  

First they introduced diffusion models namely LT and IC (Section 2.1). Then they 

defined influence spread function, σ(.) as follows, given a network graph G(V,E) which is 

directed with influence probability or weight for each edge as shown in figure 14, and a 

diffusion model M, the influence of set of vertices A⊆ V, denoted  σM(A) is the expected 

number of active vertices once the diffusion process is over. Using these notations we can 

formally define the k-best maximization problem as follows: 

 

Problem 1 (Influence Maximization) Given a social network graph G(V,E) 

along with influence probabilities of all edge in E, a diffusion model M and a 

number k find a set A ⊆  V, |A| ≤ k such that influence spread, that is σM(A), is 

maximum. 

Kempe et al. (2003) prove that the optimization problem is NP-hard for both LT and IC 

Models. That is influence maximization problem as defined above cannot be solved in 

polynomial time. However they showed that σM(.) function is sub-modular and monotone.  

 

Theorem 1(Kempe et al. 2003): For an arbitrary instance of the Independent 

Cascade Model or Linear Threshold Model, the resulting influence function is 

submodular and monotone. 

 

According to Nemhauser et al. (1978) any submodular monotone function can be solved 

using natural greedy algorithm with a (1-1/e) approximation guarantee (Theorem 1).  

 
Theorem 2(Nemhauser et al. 1979): The greedy algorithm gives a (1 – 1/e) 

approximation for the problem max{f (S) : |S| < k} where f is a monotone 

submodular function. 

 

That is due the submodular and monotone property of σM(.) function, the greedy solution 

will produce result which is at least 63% of the optimal. They presented the greedy 

algorithm (figure 15) which takes social network graph G(V,E), k and Model m.  It begins 



 35 

by initializing seed set S to Null (line 1). Vertex w which maximize the marginal gain 

σM(S ∪{w}) -  σM (S) is added to S at each iteration (line 3), until the |S|=k. 

 

Table 5: Sample social network data with Influence Probability 

From Node To Node Influence Probability 
A E 0.1 
A F 0.9 
B A 0.3 
B D 0.4 
B C 0.3 
C D 0.6 
C E 0.4 
D E 1 
E A 0.55 
E F 0.45 

 

 

Figure 14 - Social Network Graph with influence probability modeled on data in table 5. 

  



 36 

Algorithm 1: The Greedy k-best influence maximization algorithm 

Input: G, k, σm  /*G is the social network graph, k the desired size of the seed set and σm 

is the influence model*/ 

Output: Seed set S 

Begin 

1. Set S ← ∅ 

2. for i  = 1 to k do /*Look for seeds until k seeds are found / 

3.      u ← argmax w ∊ V-S (σm(S ∪ {w}) -  σm (S));/Pick node u which have maximum 

marginal gain/ 

4.      S ← S + u 

5. end for 

 

Figure 15: The Greedy k-best influence maximization algorithm 

 

 

For Step 3 of the greedy algorithm, the conventional method for estimating all the 

marginal influence gain of any node w in V, σm(S ∪ {w}) -  σm (S), with respect to current 

seed set S is described as follows (Kempe et al. 2003). First, a sufficiently large positive 

integer M is specified. For any node w ∈ V - S, the process of the diffusion model (IC or 

LT model) is run for the initial active set S  and also for S∪{w}, and the number of final 

active nodes activated by S (or S ∪ {w}), denoted as ϕ(S) (or ϕ(S ∪ {w})) , is counted. 

Each σ(S) and σ(S ∪ {w}) is then estimated as the empirical mean obtained from M such 

simulations. This process of estimation is known as Monte Carlo simulations (Kimura et 

al. 2007). The conventional method for estimating σ(S ∪ {w}) for all w ∈ V - A as follows 

(Kimura et al. 2007): 

 

 

 

 

 

 



 37 

INPUT: A Seed Set S 

OUTPUT: Average number of nodes activate by S (σ(S)) 

1. For m = 1 to M do 

2. Compute ϕ(S) /Compute # of users activated by S/ 

3. Set xm ← ϕ(S) 

4. End For 

5. Set σ(S) ← (1/M)∑ 𝑥𝑚𝑀
𝑚=1  /Return the average # of users 

activated by S/ 

 

Here, each ϕ(S) is computed as follows (Kimura et al. 2007): 

 

1. Set H0 ← S ∪ {w}. /* H0 is set of currently active 

users*/ 

2. Set t ← 0. /*Set time t to 0*/ 

3. while Ht is not ∅ do /*Until no new nodes are activated*/ 

4. Set Ht+1 ← {the activated nodes at time t + 1}. 

5. Set t ← t + 1. 

6. end while 

7. Set ϕ(S) ← ∑ |𝐻𝑗|𝑡−1
𝑗=0  /Return total number of activated 

nodes by S/ 

 
Example: 

Now let us consider the social network graph with influence probability given in figure 

14 above. Using this we will demonstrate the greedy algorithm under independent 

cascade model. For simplicity we will demonstrate the algorithm by setting M to 1. 

Meaning we are going to estimate the influence spread by running the diffusion random 

process only once. Also let us consider k to be 2 i.e. we are looking for a set of influential 

nodes, S of size 2 from the social graph in figure 14. First the algorithm will first 

initialize S to ∅ (Line 1). Then the algorithm will enter a for loop. Since k=2 this loop 

will run twice. In the first iteration the algorithm will look for node w ∈ V\S which 

maximize the marginal gain of influence spread relative to the set S (is null at this point). 



 38 

To get this algorithm will compute the number of nodes activated by set S ∪ {w} for 

each w ∈ V \S under the independent cascade model.   Following is the list of all nodes w 

∈ V\S and number of nodes that gets activated by each of these: 

 

A – 4 as it activates nodes F, D and E 

B – 3 as it activates nodes D and E 

C – 3 as it activates nodes D and E 

D – 2 as it activates node E 

E – 1 as it does not activate any more nodes 

F – 3 as it activates nodes D and E 

 

Based on the above, the algorithm will choose node A in the first iteration and put it into 

set S. Now the seed set S = {A} and we still need to find one more node so that |S| = 2.  

In the second iteration the algorithm will compute marginal gain, σM(S ∪ {w}) – σM (S) 

for each w ∈ V\S, of each of the remaining nodes in V\{A}. Following is the list of nodes 

and its corresponding number of nodes activated by adding it to set S: 

 

B – 2 as it activates node C 

C – 1 as it does not activate any additional nodes. 

D – 0 as it does not activate any additional nodes and D is already activated by set S 

E - 0 as it does not activate any additional nodes and E is already activated by set S 

F - 0 as it does not activate any additional nodes and F is already activated by set S 

 

From the above numbers we can see that B has the highest marginal gain, i.e. activates 

most nodes. So node B is now added to set S which now has 2 nodes {A,B}. Since |S|=2 

which was our required number of influential nodes the algorithm stops and here and 

return S={A,B}. 

To test their approach Kempe et al. (2003) used co-authorship data compiled from the 

complete list of papers in the high-energy physics theory section of the e-print arXiv 

(www.arXiv.org). They modeled the data as a collaboration graph which contains a node 

for each researcher who has at least one paper with co-author(s) in the arXiv database. 



 39 

The resulting graph has 10748 nodes and 53000 edges. They compared their algorithm in 

three different models of influence – independent cascade model, the weight cascade 

model, and the linear threshold model. Also they further compared their greedy algorithm 

with heuristics based on node's degrees and centrality within the network, as well as 

choosing random nodes to target. The authors claim to have shown through experiments 

that their greedy algorithm significantly outperforms, in terms of influence spread, the 

degree and centrality-based heuristics in influence spread. 

One of the main limitations of the above greedy approach is efficiency and scalability. 

Note that for selecting a node (step 3) that maximize the marginal gain σ(S ∪ {w}) - σ 

(S) is computationally expensive, as it needs to explore all the possible combinations. 

Kempe et al. (2003) used Monte Carlo simulations, as discussed above, of the 

propagation model for sufficiently many times to obtain an accurate estimate (Goyal et al. 

2011). As a result, finding a very small seed set in a relatively large network (e.g. 15000 

vertices) could take days to complete in a modern server machine (Chen et al. 2009). 

Several recent studies aimed at addressing this efficiency and scalability issues such as by 

Leskovec et al (2007) and Chen et al. (2009, 2010). 

 

2.3 ‘Lazy Forward’ Optimization 
The most notable work in attempt to improve the scalability of greedy approach of 

influence maximization is by Leskovec et al. (2007). Leskovec et al. in (Leskovec et al. 

2007b) tackle the problem of outbreak detection, which is the problem of selection of 

nodes in a network in order to detect the spreading of virus or information as quickly as 

possible. Though this work is not exactly in the area of influence maximization, the work 

done here contributed towards improving the scalability. 

The authors refer to the work of Kempe et al. [2003], and suggest that this work 

generalizes the work on selecting nodes which maximize the influence in social network. 

Leskovec et al. (2007) exploited the submodular property of influence function σm(.) to 

develop an efficient algorithm called CELF, based on a “lazy-forward” optimization in 

selecting seeds. Due to the submodular property the marginal gain of a node in the 

current iteration of the greedy algorithm cannot be better than its marginal gain in the 

previous iterations.   



 40 

To take advantage of this property CELF algorithm maintains a table of marginal gain, 

mg(u,S), of each node u in current iteration sorted on  mg(u,S) in decreasing order, where 

S is the current seed set and mg(u,S) is the marginal gain of u with respect to S. Table 

mg(u,S) is re-evaluated only for the top node in next iteration. If required the table is 

resorted. If a node remains at the top after this, it is picked and added to the seed set.  

Leskovec et al. (2007) evaluated their methodology extensively on two large scale real 

world scenarios namely: a) detection of contamination in large water distribution network, 

and b) selection of informative blogs in a network of more than 10 million posts. Using 

these scenarios they compared CELF's performance and scalability with natural greedy 

algorithm as shown in figure 16. In terms of performance, CELF generated results that 

are at most 5% - 15% from optimal. In terms of scalability, CELF also performed a lot 

better than greedy. For example for selecting 100 influential blogs, the greedy algorithm 

require 4.5h, while CELF takes 23 second (about 700 times faster). Also memory usage 

of CELF is about 50 MB compared to 3.5 GB required for greedy algorithm. 

 

 

 
Figure 16. Running time of exhaustive search, greedy and CELF. (Leskovec et. al. 428) 

 

 

 



 41 

Example: 
Let us consider the same example we discussed in the previous section. Consider the 

social network graph in figure 14 with given influence probabilities. Again let us set k=2, 

ie we are looking for the seed set of size 2. Similar to the greedy approach CELF 

optimization will pick node A in the first iteration and will also create a table mg(u,S) as 

follows: 

Mg(A,{}) 4 

Mg(B,{}) 3 

Mg(C,{}) 3 

Mg(D,{}) 2 

Mg(E,{}) 1 

 
As mentioned the algorithm will pick A as its marginal gain is the highest and will be 

removed from the table as follows: 

 

Mg(B,{}) 3 

Mg(C,{}) 3 

Mg(D,{}) 2 

Mg(E,{}) 1 

 
Now in the next iteration the CELF optimization the algorithm will only evaluate the top 

node, ie node B. We saw earlier that marginal gain of node B in respect to S={A} was 3. 

As there is no change the node B will selected as next seed and added to the seed set S. 

Note that unlike greedy algorithm discussed in the previous section the CELF algorithm 

avoids computing marginal gain of rest of the nodes (such as C, D and E) and still gets 

the same result. Thus CELF is much efficient compared to greedy algorithm. Leskovec et 

al. (2007) empirically show that CELF improves the efficiency of the greedy algorithm 

by about 700 times.  

 



 42 

2.4 Improving scalability of Greedy 

2.4.1 MixedGreedy 
Chen and Yang (2009) attempts to reduce run time of the greedy algorithm of Kempe et 

al. (2003) and its improvement by Leskovec et al. (2007). The authors point out that the 

work of Kempe et al. (2003) is not at all efficient. They claim that it would take days to 

find a small seed set in a moderately large network (e.g. 1500 vertices). Also though they 

acknowledge that the CELF algorithm by Leskovec et al. (2007) is 700 times faster, but 

they claim that it still takes few hours to complete in graph with few ten thousand nodes. 

Chen et al. (2009) tackle the efficiency issue of influence maximization by introducing 

new schemes to improve the greedy algorithm and combine it with CELF (named 

MixedGreedy) to obtain more efficient algorithm. 

They conducted extensive experiments on two real life collaboration networks to 

compare their proposed approaches with CELF optimization. Experimental results 

showed that the for their new greedy algorithm the influence spread was exactly that of 

natural greedy algorithm of Kempe et al. [2003] and running time was 15-34% less than 

CELF. 

 

2.4.2 CELF++ 
Goyal et al. (2011a) propose CELF++, based on CELF by (Leskovec et al. 2007b), which 

exploits the sub modularity of ininfluence spread function. It avoids unnecessary re 

computations of marginal gains incurred by CELF. Goyal et al. conducted experiments to 

test CELF++, in IC model, using two real world dataset from collaboration networks 

collected from arXiv (www.arXiv.com). The authors claim that CELF++ was about 35-

55% in all the datasets. Furthermore the memory usage of CELF++ was more than that of 

CELF but not significant. The authors further claim that CELF++ works efficiently and 

effectively, and is significant improvement in terms of both running time and average 

number of node look up. 

 

 

 

http://www.arxiv.com/�


 43 

2.4.3 SimPath 
Goyal et al. (2011b) attempt to design a scalable algorithm delivering high quality seeds 

for influence maximization problem under LT model. In Goyal et al. (2011) the authors 

highlighted several performance related drawbacks of simple greedy approach of Kempe 

et al. (2003) which are as follows: i) it requires to run Monte Carlo (MC) simulations 

sufficiently many times to estimate accurate influence spread which prove to be very 

expensive. ii) the greedy algorithm makes O(nk) calls to the MC simulations where n is 

the number of nodes in the graph and k is the number of seeds to be picked. They 

acknowledge the CELF optimization of Leskovec et al. improves the greedy, but stated 

that it still found to be quite slow and definitely not scalable. 

To address these issues Goyal et al. propose the SIMPATH algorithm for influence 

maximization under the LT model. SIMPATH is built using CELF optimization that 

iteratively selects seeds in a lazy forward manner. SIMPATH make use of two key ways 

of optimizing the computation and improving the quality of seed selection which are as 

follows: i) Vertex Cover Optimization ii) Look Ahead Optimization. 

For experiment they used four real-world datasets to evaluate SIMPATH and compare it 

with other well known influence maximization algorithms. The goal here was to evaluate 

in terms of efficiency, memory consumption and quality of the seed set. 

The authors claim that qualities of seed sets, in terms of influence spread, generated by 

SIMPATH were quite competitive. For instance SIMPATH was only 0.7% lower than 

CELF in spread achieved and performed better compared to all other algorithms. In terms 

of efficiency, SIMPATH was fastest among all the algorithms; expect HIGH-DEGREE 

and PAGERANK of Page et al. (1998). Based on these results the authors claim that 

SIMPATH outperforms LDAG of Chen et al. (2010), in terms of running time, memory 

consumption and quality of seed sets. 

 

2.4.4 Community-Based Greedy 
In (Wang et al. 2010) the authors attempt to reduce the computational cost of greedy 

algorithm of influence maximization problem by using Community-based approach. 

Their focus is on mobile social network, where individual communicate each other using 

mobile phones. The authors highlight that most of the Greedy based approach is 



 44 

computationally expensive and not suitable for a large mobile network. Also they 

mention that none of the previous works attempted to use community based approach for 

influence maximization. Wang et al. (2010) in their work proposes a new algorithm for 

mining top-K influential nodes, called Community-based Greedy algorithm (CGA). The 

idea behind their approach is to exploit the community structure property of social 

networks. CGA consists of two components 1) an algorithm for detecting communities 

based on information diffusion and 2) a dynamic algorithm to find influential nodes from 

these communities. To evaluate the effectiveness and efficiency of the proposed CGA 

algorithm the authors used data sets collected from call detail record (CDR) from China 

Mobile. They compared run time and influence spread of CGA with MixedGreedy of 

Chen et al. (2009), NewGreedy of Chen et al. (2009) and DegreeDiscount of Chen et al. 

(2010). The authors claim that the run time of CGA was faster than MixedGreedy but as 

expected was slower than heuristics based algorithms. However the experimental results 

showed that the influence spread of CGA was very close to MixedGreedy and 

NewGreedy. CGA outperformed the rest of the heuristic based algorithms quite 

comfortably. The authors claim that their approach is more than an order magnitude 

faster than the state of the art Greedy algorithm for finding top-K influential nodes. 

 

2.4.5 Sparsification of Influence Network 
In (Mathioudakis et al. 2011) the authors tackle the scalability issue of influence 

maximization problem by pruning the social network graph, called sparsification of 

network, while preserving the most of its properties. This work can be collocated with 

works on network simplification, the goal of which is to identify sub networks that 

preserve properties of a given network. They argue that such simplification of social 

network will yield significant improvement in terms of scalability. The authors define the 

problem of sparsification in terms of observed activity in the network. Given a social 

network and log of actions performed by nodes in the 

network, the problem is to find a sub network of prefixed extent while maximizing the 

likelihood of generating the propagation traces in the log. They prove the problem to be 

NP-Hard. They define a greedy algorithm to solve this, called SPINE (Sparsification of 

influence network). SPINE works in two phases as follows: First it selects a set of arcs 



 45 

that yields a finite log-likelihood. Then it greedily seeks a solution of maximum log-

likelihood.  

They used two real world data sets collected from Yahoo! Meme and a prominent online 

news site. To test their hypothesis that SPINE could play important role in reducing run 

time of influence maximization problem, they applied SPINE as preprocessing step to see 

if computation on sparsified network gives up any accuracy. For each network generated 

for collected datasets they measured the running time and influence spread before and 

after sparsification. Mathioudakis et al. (2011) claim that the experimental results shows 

that run time on sparsified network is considerably low compared to the full network. 

Also influence spread of seed set computed using sparsed network is quite close to that of 

the full network. 

 

2.5 Data Mining Approaches 
As highlighted earlier both greedy of Kempe et al. (2003) and its improvement, CELF by 

Leskovec et al. (2007) requires two kinds of data – a directed graph G, and assignment of 

probabilities or weights (depending on which diffusion model is considered) to the edges 

of G. A social network graph G can be easily constructed if the data is explicitly 

available. However influence probabilities or weights as used in LT and IC models are 

not explicitly available. In the work of Kempe et al. in (2003) and also the others listed 

above primarily made assumptions about these probabilities.  The methods used to assign 

influence probabilities/weight to edges include the following (Bonchi et al. 2011): 

i. Using constant value for all edges (e.g. 0.1) 

ii. Choosing value uniformly at random from a small set of constant. E.g. 

{.1, .25, .5} 

iii. Using nodes in-degree.  

 

To tackle this issue researchers recently attempt to take advantage of available 

information about users of online social networks performing some action, such as 

reading a blog, posting a picture, rating a movie etc. (Bonchi et al. 2011).  



 46 

In section 2.4.1 we first discuss the structure of action log and definition of terms, such as 

action propagation and user influence graph. These terms are frequently used in the work 

done by Goyal et al. (2008) and Goyal et al. (2010). In section 2.4.2 we discuss frequent 

pattern approach by Goyal et al. (2008) to discover leaders (or influential nodes) from 

social network graph and its action log.  And finally in section 2.4.3 we discuss the work 

of Goyal et al. (2010) where they used action log to trace action propagation to learn 

influence probability that can be used for influence maximization algorithms such as 

greedy of Kempe et al. (2003) and CELF of Leskovec et al. (2007). 

 

2.5.1 Mining Action Log 
Goyal et al. (2008) and (2010) presents techniques which takes Action Log, which is a 

relation Actions(User, Action, Time), along with a social graph G(V, E) to mine for 

influential nodes (Goyal et al. 2008) and to learn influential probability (2010).  Action 

log contains tuples, for example (u, a, t), which indicates that user u (such that u ∈ V) 

performed action a, at time t (Figure 17 b).  This means the action log table contains such 

tuples for every action performed by every user of the social network. For example in 

Flixster (www.flixster.com), an online social network for movie rating, an action is a user 

rating a movie. In other words, if a user v rate “Mission Impossible” movie and later v’s 

friend u does the same, then the action of rating the movie “Mission Impossible” 

propagates from user v to user u. Goyal et al. (2008) make use of such propagation traces 

available to tackle finding influential nodes or leaders from social graph (Discussed 

further in section 2.5.2). Also in (Goyal et al. 2010) they proposed to mine action log to 

compute influential probability, which we discuss in section 2.5.3. 

Before we present these techniques we provide some important definitions. The 

projection of Actions on the first column is contained in the set of V of the social graph G. 

This means users in Actions table correspond to nodes of the social graph. Let us assume 

A be the universe of all actions. Using these Goyal et al. (2008 and 2010) defined 

propagation of action as follows: 

Definition 6 Action Propagation - We say that an action a ∈ A propagates from 

user vi to vj iff (vi, vj) ∈ E and ∃( vi, a, ti),( vj, a, ti) ∈ Actions with ti < tj. (Goyal et 

al. 2008) 



 47 

Note that, for an action to propagate between vi  and vj , there must be a social tie between 

vi  and vj , both must have performed the action, one strictly before the other. Using the 

definition of action propagation we can define Propagation Graph as follows. 

 
Figure 17 - (a) Example social graph; (b) A log of actions; (c) Propagation graph of 

action a and (d) of action b. (Goyal et al. 2008, Pg. 2) 

 

 
Definition 7 Propagation Graph - For each action a, we define a propagation 

graph PG(a) = (V(a), E(a)), defined as follows. V(a) = {v|∃t : (v, a, t) ∈ Actions}; 

there is a directed edge 𝑣𝑖 
∆t
→ 𝑣𝑗   whenever a propagates from vi to vj, with (vi, a, 

ti),( vj, a, ti) ∈ Actions, where ∆𝑡 =  𝑡𝑗 − 𝑡𝑖. (Goyal et al. 2008) 

 

The propagation graph consists of users who performed the action and models the 

propagation of influence with edges connecting them in direction of propagation. Figure 

17(c) and 17(d) is the Propagation Graph of action a and action b respectively.  

 

2.5.2 Mining Leaders using Frequent Pattern approach 

 
In Goyal et al. (2008) propose a solution based on the discovery of frequent pattern of 

influence, by mining the social graph and the action log. The goal is to identify the 

“leaders” in a social network. The general goal here is very similar to that of Kempe et al. 

(2003) and Leskovec et al. (2007), however the problem setting is different as they 

consider different set of input, such as action log, and applied pattern mining to discover 

leaders. 



 48 

Motivated by frequent pattern mining and association rules mining, Goyal et al. (2008), 

define the notion of leadership based on how frequently a user exhibits influential 

behavior. In particular a user u is considered leader w.r.t. an action a provided a 

sufficient number of other users performed action a within a chosen time bound after u 

performed a. Furthermore these other users must be neighbour of u social network. If a 

user is found to act as a leader for sufficiently many actions, then it is considered a leader. 

Note based on this definition of leader we have three constraints which a leader must 

satisfy: 

• For an action, should influence sufficiently large number of users ( >ψ )  

• For an action, should influence these users in a reasonable amount of time 

( <π )  

• Should act as a leader in sufficiently large number of actions ( >σ )  

To aid in the definition of leaders, Goyal et al. (2008) defines the notion of an influence 

graph (Figure 18) next.  

 

Definition 8 User influence graph - Given action a, a user u, and a maximum 

propagation time threshold π, we define the influence graph of the user u, denoted 

Infπ(u, a) as the subgraph PG(a) rooted at u, such that it consists of those nodes of 

PG(a) which are reachable from u in PG(a) and such that every path from u to any 

other node in Infπ(u, a) has an elapsed time at most π. (Goyal et al. 2008) 

The elapsed time along a (directed) path in a propagation graph is the sum of edge labels 

along the path. E.g., in Figure 18(c), the elapsed time on the path u3→u5→u6 is 4 + 1 = 

5. 

 
Figure 18 - The propagation graph of an action PG(a) in fig.(a), Inf8(u4, a) in fig.(b), 

Inf8(u2, a) in fig.(c). (Goyal et al. 2008, Pg. 4) 



 49 

Figure 18 shows an example of propagation graph PG(a), and two user influence graphs. 

Based on this Goyal et al. (2008) formally defined the problem as follows: 

 

Problem 3 (Leaders) Given a set of actions I ⊆ A, and three thresholds π, ψ and 

σ, find all users v ∈ V such that: 

∃𝑺 ⊆ 𝑰, |𝑺| >  σ: ∀a ∈ S. size�Infπ(𝒗,𝒂)� ≥  ψ 

 

Recall that a user to be selected as leader, based on above problem definition, he/she 

must perform number of actions larger than a given action threshold (σ). This is similar 

to minimum frequency constraint in pattern discovery and association rule (Goyal et al. 

2008). To extract pattern of leaders based on the above definition Goyal et al. (2008) 

presented an algorithm (Algorithm 2 in figure 19) which scan the action log and 

computes an influence matrix IMπ(U,A). Each entry of influence matrix, IMπ(u,a), is the 

number of users performed the action a after u within time threshold π. 

 

Example: 

Once the above algorithm computes the influence matrix IMπ(U,A) it can be used to  

compute leaders as defined in Problem 3. Given a user u and thresholds ψ (minimum 

number of user influenced for each action) and σ (minimum number of action to be 

influenced), let L(u) = {a| IMπ(U,A) > ψ }. That is L(u) is a set of all actions that user u 

influenced on at least ψ number of users. Now if |L(u)| > σ we can say node u is a leader. 

For example let us consider the following the influence matrix (table 6) computed by 

Algorithm 3 by taking social network graph and action log in figure 17 a and b.  

Let us consider minimum number of user influenced for each action ψ to be 2 and 

minimum number of action to be influenced σ to be 1. For user u2, L(u2) = {a,b} because 

u2 influenced more than 2 users in both action a and b. Now |L(u2)| =2 which is greater 

than 1 (the value set for threshold σ). Therefore according to definition of leader as stated 

in Problem 3 we can conclude that user u2 is a leader. Similarly, L(u4)={} and therefore 

|L(u4)|=0 and that is why user u4 is not a leader. 

 

 



 50 

Algorithm 2 Compute Influence Matrix 

Input: Graph G; Action log Actions; Threshold π. 

Output: Influence matrix IMπ(U,A). 

1: Position a window of size π at the end of table Actions. 

2: Discover the visible subgraph GW of G on the fly from the tuples in the window. 

3: Compute the state of every node by starting from the most recent tuples and working 

backward up the graph. 

4: Fill in the cells IMπ(u,a) whenever we have the state for node u w.r.t. action a 

computed. 

5: while top of Actions not reached do 

6:  Move the window from the most recent tuple in the window to the next earlier 

tuple. 

7:  For every tuple that drops off the window, update the state of every other node. 

8:  For every new tuple that appears in the window, compute the state of the 

corresponding node by propagating the state from its children in the visible 

graph. 

9:  Update the IMπ entries as needed. 

Figure 19: Compute Influence Matrix. (Goyal et al. 2008) 

 
Table 6: Sample Influence Matrix 

 a b 

u1 1 2 

u2 3 4 

u3 1 1 

u4 0 1 

u5 1 2 

u6 1 2 

u7 1 2 

 

 

 



 51 

2.5.3 Learning Influence Probability 
Goyal et al. (2010) tackles the problem learning influence probabilities among the users, 

by mining action log. To tackle this problem Goyal et al. (2010) introduces a framework 

in which they adopt an instance of general threshold model (Kempe et al 2003) which is 

defined as follows: Let us consider an inactive user u and the set of its active neighbors S 

(that is all nodes in S already performed certain task). To determine if u will activate (or 

perform the task), we first compute 𝑝𝑢(𝑆), which is the joint influence probability of S on 

u. If 𝑝𝑢(𝑆)≥ 𝜃𝑢, where 𝜃𝑢 is the activation threshold of user u, according to GT model we 

conclude that u activates. Activation threshold is used to determine at what point a user 

will get activated. Goyal et al. (2010) defined the joint probability 𝑝𝑢(𝑆) as follows: 

 

𝑝𝑢(𝑆) = 1 −��1 − 𝑝𝑣,𝑢�
𝑣∈𝑆

 

 

To learn influence probability, 𝑝𝑣,𝑢  for an edge (v, u) ∈ E, Goyal et al. (2010) first 

proposes 2 classes of influence probabilities models as follows: 

 

Static Model – In this model the influence probabilities are static and do not 

change over time.  

 

Continuous Time (CT) Model – In this model influence probabilities it changes 

over time. 

 

Based on experiments and its results, it turns out that time-aware model are more 

accurate. However they are computationally very expensive to learn from large data sets. 

To tackle this Goyal et al. (2010) proposes an approximation of CT model called Discrete 

Time model which is defined as follows: 

 

Discrete Time (DT) Model – In this model the influence of an active user v on its 

neighbour u remains constant at p(v,u) for a time window, 𝜏𝑣,𝑢. 

 



 52 

We limit our discussion to DT model as it is the most efficient and accurate as claimed by 

Goyal et al. (2010). To compute p(u,v) in DT model Goyal et al. (2010) introduces the 

notion of credit. When a user u performs an action under influence of its neighbours, who 

already performed the action before u, all the active neighbours of u are assigned or 

shares partial ‘credit’ for influencing u to perform the action. Let us suppose user u 

performs an action a and S is the set of its active users, then for each node v ∈ S partial 

credit can be assigned using equation, where I is an indicator function and 𝑡𝑢(𝑎) is the 

time when u performs action a.: 

 

 

𝑐𝑟𝑒𝑑𝑖𝑡𝑣,𝑢(𝑎) =
1

∑ 𝐼(0 < 𝑡𝑢(𝑎) − 𝑡𝑤(𝑎) ≤ 𝜏𝑣,𝑢)𝑤∈𝑆
 

 

 

The indicator function I returns 1 for any node v if the user u performs an action a, within 

time 𝜏𝑣,𝑢 and returns 0 otherwise. To compute 𝜏𝑣,𝑢, the time window used in DT model, 

Goyal et al. (2010) suggests the following equation, where 𝐴𝑣2𝑢 is the number of action 

propagated from v to u. 

  

 

𝜏𝑣,𝑢 =  
∑ (𝑡𝑢(𝑎) − 𝑡𝑣(𝑎))𝑎∈𝐴

𝐴𝑣2𝑢
 

 

Using the above definition of credit, Goyal et al. (2010) proposes the following equation 

to compute p(u,v), where 𝐴𝑣 is the number of action performed by user v. 

 

𝑝(𝑢, 𝑣) =  
∑ 𝑐𝑟𝑒𝑑𝑖𝑡𝑣,𝑢𝑎∈𝐴 (𝑎)

𝐴𝑣
 

 

To mine p(u,v) for static, CT and DT model Goyal et al. (2010) presents algorithms 

which scans action log and the social network graph (Figure 20 a and b). In online social 



 53 

network the action log tend to be potentially huge with hundreds of thousands to millions 

of data. Due to this Goyal et al. (2010) pay particular attention in minimizing the number 

of scans of action log. They claim that their algorithm can learn the influence probability 

for all the models in no more than two scan of the action log.  

 

 

 
Figure 20: (a) Undirected social graph containing 3 nodes and 3 edges with timestamps 

when the social tie was created; (b) Action Log(User, Action, Time)  

(Goyal et al. 2010. Pg. 6) 

 

Example: 

To show how p(u,v) is computed in Discrete Time Model using method described above 

let us consider the social network graph and action log in figure 20 (Goyal et al. 2010). 

Figure 20(a) shows a social graph consisting of three nodes P, Q and R with three edges 

among them. Each edge is labeled with timestamps indicating at which time the two 

nodes became friends. The action log consists of 3 actions a1, a2 and a3 as shown in 

figure 20(b). First propagation graph is constructed for each action in the action log. 

Propagation graph for each action a1, a2 and a3 is in Figure 21 a, b and c respectively. 

Note that edges are directed in Propagation Graphs and labeled with time taken to 

propagate the action.  

 

 

 

 

 



 54 

                              
a) Propagation Graph for action a1      (b) Propagation Graph for action a2 

 
(c) Propagation Graph for action a3 

Figure 21: Propagation graphs of actions in action log of figure 20 b. 

(Goyal et al. 2010. Pg. 6) 

 

 

Using these propagation graphs we then need to compute the following: 

𝐴𝑣2𝑢 – Number of action propagated from v to u. 

𝐴𝑣  – Number of action performed by v. 

𝜏𝑣,𝑢 – Average time for user u to perform an action after v performs the same action. 

𝑐𝑟𝑒𝑑𝑖𝑡𝑣,𝑢(𝑎) – Total credit assigned to v for influencing u. 

 

To show how we can compute all of the above parameters let us consider node P and Q, 

i.e. we like to compute influence probability of p(P,Q). 𝐴𝑃2𝑄 is 1 as user P influences 

only one action, a1, on user Q according to propagation graphs (Figure 21).  𝐴𝑃 is 2 as 

user P performs action a1 and a3. Similarly 𝐴𝑄 is also 2 as it performs action a1 and a2. 

Now using the formula for  𝜏𝑣,𝑢,we can compute 𝜏𝑃,𝑄 as follows: 

 

𝜏𝑃,𝑄 =  
∑ �𝑡𝑄(𝑎) − 𝑡𝑃(𝑎)�𝑎∈𝐴

𝐴𝑃2𝑄
 

 



 55 

=  
𝑡𝑄(𝑎1) − 𝑡𝑃(𝑎1)

𝐴𝑃2𝑄
 

 

=  
10 − 5

1
 

= 5 

 

To compute the credit given to user P for influencing Q for action a1 we use the 

following formula: 

 

𝑐𝑟𝑒𝑑𝑖𝑡𝑃,𝑄(𝑎1) =
1

∑ 𝐼(0 < 𝑡𝑄(𝑎1) − 𝑡𝑤(𝑎1) ≤ 𝜏𝑃,𝑄)𝑤∈𝑆
 

=
1

∑ 𝐼(0 < 𝑡𝑄(𝑎1) − 𝑡𝑤(𝑎1) ≤ 5)𝑤∈𝑆
 

 

=
1

𝐼(0 < 𝑡𝑄(𝑎1) − 𝑡𝑃(𝑎1) ≤ 5)
 

= 1
1
 =1 

 

Since no other neighbour of Q performed action a1 before Q other than user P, user P 

gets the full credit for influencing user Q for performing action a1. Based on these we 

then compute the influence probability p(P,Q), the probability of user P influencing user 

Q using the following: 

 

𝑝(𝑃,𝑄) =  
∑ 𝑐𝑟𝑒𝑑𝑖𝑡𝑃,𝑄𝑎∈𝐴 (𝑎)

𝐴𝑃
 

 

=  
𝑐𝑟𝑒𝑑𝑖𝑡𝑃,𝑄(𝑎1)

𝐴𝑃
 

=  
1
2

 

From the above we can conclude that the influence probability between users P and Q, 

is .5.  



 56 

CHAPTER 3 
 
PROPOSED MINING FOR INFLUENTIAL NODES FROM 
TRUST NETWORK 

3.1 Trust-General Threshold Model 

 
Note that the main problem we tackle in this thesis is to define and solve influence 

maximization considering both positive and negative influence among the nodes (or 

users) in trust network to find influential nodes. First we propose a new diffusion model, 

called Trust-General Threshold (TGT) Model, which is an extension of general threshold 

(GT) model by Kempe et al. (2003).  

 
Recall that general threshold model (Kempe et al 2003) is a generalized model of LT and 

IC models which is defined as follows. Consider an inactive user u and the set of its 

active neighbours S (that is all nodes in S already performed a certain task). To predict 

whether u will activate (or perform the task), we need to determine 𝑝𝑢(𝑆), the joint 

influence probability of S on u. If 𝑝𝑢(𝑆) ≥𝜃𝑢, where 𝜃𝑢 is the activation threshold of user 

u, we can conclude according to GT model that u activates. Goyal et al. (2010) defined 

the joint probability𝑝𝑢(𝑆) as follows, where 𝑝𝑣,𝑢 is the influence probability of any node 

v on another node u: 

 

𝑝𝑢(𝑆) = 1 −∏ �1 − 𝑝𝑣,𝑢�𝑣∈𝑆          [1] 

 
 

However in case of trust network the above joint probability equation is appropriate only 

if we consider only trusted neighbours of node u. Let us consider two scenarios for node 

C in figure 22. Let us assume node C trust node E, that is edge CE is +ve. Also node C 

distrust node A, that is edge CA is –ve. In the first scenario let us consider node E gets 

activated at time t. Also let us assume the influence probability 𝑝𝐸,𝐶=0.3. So according to 

equation 1, the probability of node C getting activated (at time t + 1), is 𝑝𝐶({𝐸}) = 1 −

(1 − 0.3) = 0.3. In the second scenario let us consider node E and A gets activated at 



 57 

time t. Since node E is the only trusted user of node C the probability of node C getting 

activated in second scenario is also, i.e. 𝑝𝐶({𝐸}) = 1 − (1 − 0.3) = 0.3. In the second 

scenario we should also consider any negative influence on node C by node A, because C 

do not trust A. If few of trusted friends of a user adopt a product, the probability of 

him/her to also adopt a product should not stay same if few distrusted neighbours also 

adopt the product.  

To accommodate such negative influence while computing  𝑝𝑢(𝑆) , we introduce the 

notion of negative influence probability. Negative influence probability is the probability, 

denoted as 𝑝𝑣,𝑢
− , of a user u not getting activated due to negative influence of user v. Here 

we assume that 𝑝𝑣,𝑢
− = 0 if node u trusts node v. That is there is no negative influence on 

a user by any trusted neighbour. Similarly we also assume influence probability, from 

here on denoted as 𝑝𝑣,𝑢
+ , is 0 is node u not trust user v. That is there is no positive 

influence by any distrusted neighbours.   

Let S+ be all the trusted active neighbour of node u and S- be the distrusted active 

neighbour of node u. Let us say S = S+ ∪ S- .To predict whether u will activate given all 

nodes in S are active, we need to determine 𝑝𝑢(𝑆), the joint influence probability of S on 

u. To be able to compute pu(S), we first need to compute 𝑝𝑢(𝑆+)  and 𝑝𝑢(𝑆−) . To be able 

to do this we can simply use the equation 1 individually for S+ and S-. That is: 

 

 

𝑝𝑢(𝑆+) = 1 −∏ �1 − 𝑝𝑣,𝑢
+ �𝑣∈𝑆+          [2] 

 

𝑝𝑢(𝑆−) = 1 −∏ �1 − 𝑝𝑣,𝑢
− �𝑣∈𝑆−          [3] 

 

 

Note that 𝑝𝑢(𝑆+) is the positive joint influence probability by all trusted neighbours of u. 

And 𝑝𝑢(𝑆−) is the negative joint influence probability by distrusted neighbours of u. That 

is 𝑝𝑢(𝑆−) is the probability of user u not performing the task or getting activated due to 

negative influence from 𝑆−.  

  



 58 

According to the proposed TGT model we say a node becomes active if: 

𝑝𝑢(𝑆+) >  𝜃1 AND 

𝑝𝑢(𝑆−) <  𝜃2 

Where 𝜃1  and 𝜃2  are thresholds that are chosen uniformly at random for each node. 

Thresholds, 𝜃1  and  𝜃2, essentially represent the latent tendencies of nodes to adopt a 

product when their trusted and distrusted neighbours do. The fact that these are randomly 

chosen is intended to model unavailability of these values in real life (Kleinberg 2007).  

 

Example 

Let us now demonstrate how we can compute 𝑝𝑢(𝑆) using the method proposed above. In 

figure 22 below, let us consider node C trusts node B and E. Also influence probabilities 

of node B and E on node C are 0.3 and 0.4 respectively. Furthermore let us also consider 

node A and D are not trusted by node C. Negative influence probabilities of node A and 

D on node C are 0.2 and 0.6 respectively. Also let us say threshold values 𝜃1 and 𝜃2 of 

node C are 0.5 and 0.7 respectively. Now let us say nodes A, B, D and E gets activated at 

the same time. To compute the probability of C also getting activated under trust-general 

threshold (TGT) model using equation 4, we first need to compute 𝑝𝐶(𝑆+) and 𝑝𝐶(𝑆−). 

Note that in this case 𝑆+ = {𝐵,𝐸} and 𝑆− = {𝐴,𝐷}.  

 

 
 
 
 

 
 

 

Figure 22: Example of social network graph with influence probability  

 

  

A 

C 

B 

D 

E 

0.3 0.4 

0.2 0.6 



 59 

We first use equation 2 to compute 𝑝𝐶(𝑆+) as follows: 

 

𝑝𝐶(𝑆+) = 1 − ��1 − 𝑝𝑣,𝑢
+ �

𝑣∈𝑆+
 

 

                                      = 1 − {�1 − 𝑝𝐵,𝐶
+ � ∗  �1 − 𝑝𝐸,𝐶

+ � } 

                                                 = 1 − {(1 − 0.3) ∗  (1 − 0.4) } = 0.58 

 

That is the joint probability of node C to get activated by the influence of trusted 

neighbours of C is 0.58. Now we also need to consider any negative influence on C by 

distrusted neighbours, which are nodes A and D. Now we compute the joint probability, 

that is  𝑝𝐶(𝑆−) , of node C not getting activated under negative influence from its 

distrusted neighbours using equation 3. 

 

𝑝𝐶(𝑆−) = 1 − ��1 − 𝑝𝑣,𝑢
− �

𝑣∈𝑆−
 

 

                                      = 1 − {�1 − 𝑝𝐴,𝐶
− � ∗  �1 − 𝑝𝐷,𝐶

− � } 

                                                 = 1 − {(1 − 0.2) ∗  (1 − 0.6) } = 0.68 

 

Note that 𝑝𝐶(𝑆−) = 0.68 is the probability of node C not getting activated given node A 

and C gets activated and greater than 𝑝𝑢(𝑆+) = 0.58. And therefore under TGT model 

node C will get activated because 𝑝𝐶(𝑆+) >   𝜃1 = 0.5 and  𝑝𝐶(𝑆−) <   𝜃2 = 0.7. 

 

Influence Maximization using the proposed Trust-General Threshold Model faces several 

challenges which we propose to tackle in this thesis. The first challenge we face while 

solving influence maximization in trust network is to tackle the problem of computing 

both positive and negative influence probabilities. To estimate these probabilities we use 

action log and extract pattern of user behavior. To do this we extract two types of 

frequent patterns from action log. The first pattern we extract, we call it Positive Frequent 

Action Pattern, is the number of actions performed by any user u after the same actions 



 60 

were performed by a trusted neighbour of u. This is similar to extracting frequent item set 

in frequent pattern mining. In frequent pattern mining we are interested to find items 

which appear frequently in data. Similarly we propose to extract users who perform 

actions frequently after their trusted neighbours. Let us say a node u performs 𝐴𝑣.𝑢 

number of actions after its trusted neighbour v, and user v performs total of 𝐴𝑣 tasks in 

total. We compute positive influence probability of node v on node u by using dividing 

𝐴𝑣.𝑢  by 𝐴𝑣 . In frequent pattern mining this is also known as confidence which is 

interpreted as the probability of u performing an action after v. Note that unlike 

traditional frequent pattern mining we are also interested in computing number of times a 

user do not perform a task after its distrusted neighbour. Therefore we extract second 

pattern, we call it Negative Frequent Action Pattern, which counts the number of actions 

not performed by any user u after the same actions were performed by a distrusted 

neighbour of u. Let us say a node u do not performs 𝐴′𝑣.𝑢 number of actions after its 

distrusted neighbour v, and user v performs total of 𝐴𝑣  tasks in total. We compute 

negative influence probability of node v on node u by using dividing 𝐴′𝑣.𝑢 by 𝐴𝑣 . To 

illustrate this approach, let us consider that in a trust social network, a user u trust another 

user v and also distrust another user w. Now let us assume that according to action log 

user v performs in total of 3 actions. And out of these 3 actions 2 actions were performed 

by u after user v (trusted user of u) performs these same actions. So the probability of 

user u performing a task after user v performs the same action is 2/3 = 0.66. This is the 

positive influence probability of user v on user u. That is 𝑝𝑣,𝑢
+  = 0.66. Based on this, for 

any nodes u and v, if 𝐴𝑣.𝑢 is the number of actions performed by u after user v and 𝐴𝑣 is 

the number of actions performed by user v positive influence probability of user v on user 

u can be expressed as: 

 

𝑝𝑣,𝑢
+ = �

0 𝑖𝑓 𝑇𝑀(𝑢, 𝑣)𝑖𝑠 − 𝑣𝑒
𝐴𝑣.𝑢

𝐴𝑣
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

 

Now let us further consider that a user w (distrusted user of u) performs 4 tasks in total 

and out this only 1 task was performed by u after w. That is u did not perform 3 out of 4 



 61 

tasks performed by w. So the negative influence probability of user w according Bernoulli 

distribution is 3/4 = 0.75. Based in this, for any nodes u and v, if 𝐴′𝑣.𝑢 is the number of 

actions not performed by u after user v and 𝐴𝑣 is the number of actions performed by user 

v, negative influence probability of user v on user u can be expressed as: 

 

𝑝𝑣,𝑢
− = �

0 𝑖𝑓 𝑇𝑀(𝑢, 𝑣)𝑖𝑠 + 𝑣𝑒
𝐴′𝑣.𝑢

𝐴𝑣
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

 

Note that to compute influence probabilities as discussed above, we need to learn 

required patterns of actions, such as 𝐴𝑣.𝑢 and 𝐴𝑣  from action log. We discuss these 

methods further in section 3.4. 

Once both positive and negative influence probabilities are learned from action log, we 

are in position to discover influential nodes from trust network under TGT model. Recall 

influence spread (denoted as σ(S)) of any set of nodes S (S is a subset of V of social 

network graph G(V,E)) is the number of users (or nodes) getting activated (i.e. 

performing a task) given all the nodes in S  is activated. Under linear threshold model and 

independent cascade model the influence spread function, σ(.), is proves to be monotone 

and submodular (Kempe et al. 2003). Influence maximization, under these models, is 

basically to find a set S of maximum k nodes (k is given as input from end user) which is 

a subset of V of social network graph, G(V,E), such that influence spread, σ(S), is 

maximized. This however is a NP-Hard problem (Kempe et al. 2003) and can be solved 

with Greedy (Kempe et al. 2003) or Lazy Forward optimization (Leskovec et al. 2007b) 

with 63% approximation guarantee. However these approaches rely on the fact that the 

influence spread function, σ(.), is monotone and submodular. In contrast the influence 

spread function under the new proposed TGT model is non-monotone. That is adding a 

node (or user) may not result in influence spread to increase in TGT model. To show this 

let us consider the following scenario. Let S is the initially activated seed set and ∂( S) are 

the nodes that were successfully activated by the seed set S. That is the influence spread, 

σ(S), is actually the number of nodes in ∂( S) or |∂( S)|. Now let us consider a node w that 

has a negative influence (due to distrust) on two nodes u and v which is in ∂( S). Now 

adding w to S will cause the probability of u and v getting activated to decrease according 



 62 

to equation 4 and will not get activated. This will cause the influence spread of S+w, i.e. 

σ(S+w), to decrease as |∂(S)-2| < |∂(S)|. Therefore we claim that influence spread function 

is not monotone. So to solve influence maximization under TGT model, the 

approximation guarantee by Greedy approaches by Kempe et al. (2003) and Leskovec et 

al. (2007) is not applicable. However we show that the spread function under TGT model 

is still sub modular. Therefore we define the problem of finding influential nodes from 

trust network as a problem of maximizing non-monotone submodular function under 

budget constraint. We propose to use approximate local search based algorithm which is 

based on (Lee et al. 2009) to solve influential maximization (that is to discover influential 

nodes), under TGT model, from a trust network subject to budget constraint. In the next 

section we discuss the overall framework of our proposed solution. 

3.2 Solution framework 

The overall solution framework, called Trust-Influential Node Miner (T-IM), for discovering 

influential node from trust network is illustrated in figure 23. Following are the input to 

T-IM framework: 

i. Action Log – Contains tuples, for example <a, u, t>, which indicates that user 

u performed action a, at time t. (e.g. Figure 17 b).   

ii. Trust Data – Contains tuples, for example <u, v, trust>. If trust is 1 it indicates 

that user u trust user v. If trust is 0 it indicates that user u does not trust user v. 

iii. Budget – Number of influential nodes to be extracted. 

The algorithm for TIM framework is listed in figure 24. The proposed solution consists 

of following four main steps listed below. Note that in rest of this thesis and in the 

algorithms presented, we denote adding an element v to any set S by S = S + {v}. 

Similarly we denote removing an element v from any set S by S = S-{v}. Also, V-S is the 

set of elements which are not in set S but in set V. 

 

Step 1 - First the algorithm constructs a social network graph G(V,E) using the Trust 

Table, T. For each tuple (u,v,trust) it adds nodes v and u to set V of social network graph 

G(V,E). It adds an edge (v,u) to set E of the social network graph. This is because if u 

trust (or distrust) v then there is an influence (positive or negative) of node v on node u. 



 63 

In this step the trust matrix is also constructed by setting TM[u][v] to 1 or -1 based on the 

trust value of tuple (u,v,trust) in Trust Table T. Detailed steps of these processes using 

method called Preprocess() is given in figure  25 below. 

 

Step 2 – In this second step the action log, L, is processed to compute parameters, 

𝐴𝑣.𝑢, 𝐴′𝑣.𝑢 and 𝐴𝑣 , which are required to compute the influence probabilities. We use 

frequent pattern based approach to extract these parameters from the Action Log, using 

an algorithm called Action Pattern Generator (APG) which we discuss in Section 3.3. 

 

Step 3 – In this step influence probabilities are computed using method called 

ComputeInfluence(u,v), of each edge (u,v) in E of social network graph we constructed in 

Step 1 and stores it into Influence Matrix, IM[u][v]. The entry IM[u][v]of the influence 

matrix is the probability of user u influencing user v. IM[u][v]is positive influence 

probability if v trust u. Otherwise IM[u][v] is negative influence probability if v distrusts 

u.  The ComputeInfluence(u,v) method is given in figure 26. 

 

 

T-IM

Compute Influence Probability

Trust Network 
Data

Preprocess

Action Log

Influential 
Nodes

Action Pattern Generator

Mine Seed Set

Directed Graph with 
Influence Probability

Social Network Graph G with 
influence probabilities

Action Patterns

Budget

Spread TGT

Trust Matrix

E.
g.

E.
g.

 
 

Figure 23: T-IM Framework 



 64 

 
 
Algorithm: Trust based Influential Node Miner (T-IM) 

Input:  

  1. ActionLog L // with tuples  <a, u, t> 

  2. Trust Table T // with tuples  <u,v,trust> 

  3. Budget // Number of nodes to be discovered 

Output: Set of influential nodes (seed set), S 

Other:  

1. G(V,E) - Social Network Graph G where V is the set of all users and E is the set of  

directed edges. 

2. TM[u][v] - TrustMatrix which is a 2D array where TM[u][v] is either 1, -1 or 0. 

3. IM[u][v] - Influence Matrix which is a 2D array where IM[u][v] is positive (or  

negative) influence probability on user v by u. 

4. 𝐴𝑣 - Stores the number of action performed by a user v 

5. 𝐴𝑣.𝑢 - Stores number of action performed by v after trusted user u. 

6. 𝐴′𝑣.𝑢 - Stores number of action not performed by v after distrusted user u. 

BEGIN 

//Construct directed graph G(V,E) from T and Construct trust matrix 

1. (TM, G)= Preprocess(T)  

2. (𝐴𝑣.𝑢,𝐴′𝑣.𝑢, 𝐴𝑣 )= APG(L,TM) //Compute action patterns  

3. FOR each edge (u,v) in E 

 { 

  IM[u][v] = ComputeInfluence(u,v) //Compute influence probabilities 

  IF IM[u][v]  = 0  

   E = E – {(u,v)} //Remove edge with 0 influence probability 

 } 

4. S=mineSeedLS(G(V,E),TM,IM, Budget) //Discover influential nodes 

END 

Figure 24: Trust based Influential Node Miner (T-IM) algorithm 

 

  



 65 

Step 4 – This is the main and final step of our proposed framework which takes social 

network graph G(V,E), the trust matrix TM, and Influence Matrix IM to extract 

influential nodes. To mine influential nodes (or seed set) using local search based 

technique we use algorithm, called mineSeedLS(). Detail of this algorithm is given in 

section 3.4. 

 

In section 3.5 we provide a running example of these steps using a simple data set. 

 

Method: Preprocess(T) 
Input: Trust Table T // with tuple <u,v,trust> 
Output: G(V,E), TM 
BEGIN 
 E = NULL, V = NULL 
 FOR each tuple <u,v,trust>  in T 
  { 
   E = E + {(v,u)}  
   V = V + {v} + {u} 
   TM[u][v] = trust 
  } 
 Remove duplicates from V 
 FOR each (u,v) not in E 

       Set TM[v][u] = 0  
END 

Figure 25: The Preprocess() method. 

 

Method: ComputeInfluence(u,v) 
Input: Nodes u and v 
Output: p(u,v) – The influence probability of node u on node v. 
 
BEGIN 
 IF TM[u][v] = 1 
  p(u,v) = 𝐴𝑣.𝑢

𝐴𝑣
 

 ELSE IF TM[u][v]= -1 
  p(u,v) =  𝐴′𝑣.𝑢

𝐴𝑣
 

 ELSE p(u,v) = 0 
 RETURN p(u,v) 
END 
 

Figure 26: The ComputeInfluence(u,v) method. 



 66 

3.3 Computing Positive and Negative Influence Probability 
 
To learn influence probability, 𝑝𝑣,𝑢

+  and 𝑝𝑣,𝑢
−  in a trust network we propose to first mine 

for patterns of action performed (or not performed) by users in the network and compute 

required parameters, such as 𝐴𝑣.𝑢 and 𝐴𝑣 , from action log. Before we present the 

algorithm, which can compute these parameters, we provide some definitions first. We 

define action sequence of an action a as a sequence of users performing the action a with 

respect to time when it was performed. For example if an action a in action log is 

performed by user u1 followed by u2 and then u3, then action sequence a, denoted as 

Seq(a) = {u1, u2, u3}. Sub-sequence of any user u for action a, denoted as Seq(a,u) is the 

sequence of users performing action a before user u. For example sub-sequence of action 

a for user u1 in our previous example is Seq(a, u3) = {u2, u3}. We generate such 

sequence of all actions in action log by converting it to sequenced action log. An example 

of sequence action log of a corresponding action log is in figure 27 below. 

 

 
a) Action Log sorted by Action and Time  b) Action Sequence Table 

Figure 27: An example of Action Log and corresponding action sequence table. 

 

Based on these we now present the algorithm, Action Pattern Generator (APG) that 

generates the patterns of action performed by users. The algorithm below (figure 28) 

takes the action log table and trust matrix as input and generates  𝐴𝑣.𝑢  (# of actions 

performed by user u after trusted neighbour v),  𝐴′𝑣.𝑢 (# of actions not performed by user 

u after distrusted neighbour v) and 𝐴𝑣 (# of actions performed by user u) for all users u 

and v in the social network. 

  



 67 

Algorithm: Action Pattern Generator (APG) 

Input: Action Log Table (T), TrustMatrix (TM),  

Output: 𝐴𝑣.𝑢, 𝐴′𝑣.𝑢and 𝐴𝑢 for all users u and v in social network. 

1. BEGIN 

2. Generate sequence table ST from action log T. 

3. Set  𝐴𝑣.𝑢 = 0 , 𝐴′
𝑣.𝑢 = 0 and 𝐴𝑣 = 0 for all users u and v 

4. FOR each action a in ST 

5.        FOR each user v in action sequence Seq(a) 

6.        { 

7.                 𝐴𝑣 += 1 

8.                 Su = SubSeq(a,v) // Get list of user performed the action a after user v  

9.                 Tu = Trust(v) // Get list of users who trust v               

10.                 // for each user u that trust u and performed action a after v 

11.                 FOR each user u in Su and Tu 

12.                     𝐴𝑣.𝑢 ++ // Increment # of actions that user u influenced on user v 

13.                 Du = Distrust(v) // Get list of users who distrust v 

14.                 // for each user u that distrust v and did not perform the action a 

15.                 FOR each user v in Du and not in Su  

16.                          𝐴′𝑢.𝑣 ++ // Increment # of actions that user v failed to influence on user v 

17.        } 

18. END 

Figure 28: Algorithm: Action Pattern Generator (APG) 

 

The algorithm first converts the action log table T to action sequence table, ST, as shown 

in figure 28 (Line 2). Then the algorithm initialize 𝐴𝑣.𝑢, 𝐴′𝑣.𝑢 and 𝐴𝑣 to 0 (Line 3). Then 

for each user v in action sequence of a, that is in Seq(a), the algorithm will do the 

following. First it will increment 𝐴𝑣, the number of action performed by v, by 1 (Line 7). 

Then it will get list of user who performed the action a after the user v, that is Seq(a,v), 

and stores it to a list Su (Line 8). Also it will get list of users who trust v and stores it to 

list Tu (Line 9). This is done using a simple function trust(v) which returns a list of users 

who trusts v. Then for each user u that trust v and performed action a after v, that is in 

intersection of Su and Tu, the algorithm will increment 𝐴𝑣.𝑢 by 1 (Line 11 and 12). After 



 68 

this it will get list of users who do not trust v and stores it to list Du (Line 13). This is 

done using a simple function distrust(v) which returns a list of users who do not trust v. 

Then for each user u not in Su but in Du, we increment 𝐴′𝑣.𝑢 (Line 15 and 16).  

The above APG algorithm runs in O(A*2N2) in worst case, where A is the number of 

actions and N is number of nodes in G(V,E). This is because for action in action sequence 

table the algorithm will process each user who performs the action. Now in worst case 

each and every node performs each and every action. However in real life data this is not 

the case and indeed not realistic, so APG runs much faster than this. 

3.4 Discovering Influential Nodes 

Recall that to finding influential nodes is basically finding a set of nodes that would 

maximize the influence spread function, σ(). As highlighted before that the influence 

spread function that we need to maximize is not a monotone function. However we claim 

that though influence spread function in TGT model is non-monotone, but it is still sub 

modular. To show our claim we rely on the following theorem of Kleinberg (2007). 

 

Theorem 3 (Kleinberg 2007): For any instance of the General Threshold Model 

in which all the threshold functions are submodular, the resulting influence spread 

function, σ(), is submodular. 

 

Note that the threshold functions in TGT model are basically equation 2 and 3. Here we 

show that equation 2,  𝑝𝑢(𝑆+) = 1 −∏ �1 − 𝑝𝑣,𝑢
+ �𝑣∈𝑆+  , is sub modular. 

 

Theorem 4: The joint influence probability 𝑝𝑢(𝑆+) = 1 −∏ �1 − 𝑝𝑣,𝑢
+ �𝑣∈𝑆+ , of a node u 

by its trusted neighbour S+ is submodular. 

 

Proof (Goyal et. al 2010). Let S+  be the set of trusted neighbours of u that are active and 

suppose a new trusted neighbour w of u gets activated. The new joint influence 

probability 𝑝𝑢(𝑆+ + {𝑤}) can be computed incrementally from 𝑝𝑢(𝑆+) as follows: 

 



 69 

𝑝𝑢(𝑆+ + {𝑤}) = 1 − ��1 − 𝑝𝑣,𝑢
+ �

𝑣∈𝑆+
 

                                                    = 1 − �1 − 𝑝𝑤,𝑢
+ � ∗ ��1 − 𝑝𝑣,𝑢

+ �
𝑣∈𝑆+

 

                                                = 1 − �1 − 𝑝𝑤,𝑢
+ � ∗ (1 − 𝑝𝑢(𝑆+)) 

 

                                                                           = 𝑝𝑢(𝑆+) + �1 − 𝑝𝑢(𝑆+)� ∗ 𝑝𝑤,𝑢
+     …….. [4] 

Since individual probabilities are always between [0,1], �1 − 𝑝𝑢(𝑆+)� ∗ 𝑝𝑤,𝑢
+ > 0.  

Therefore 𝑝𝑢(𝑆+) + �1 − 𝑝𝑢(𝑆+)� ∗ 𝑝𝑤,𝑢
+ >   𝑝𝑢(𝑆+).  

That is  𝑝𝑢(𝑆+ + {𝑤}) >  𝑝𝑢(𝑆+).   

Therefore influence probability 𝑝𝑢(𝑆+) = 1 −∏ �1 − 𝑝𝑣,𝑢
+ �𝑣∈𝑆+  is monotone. 

 
Now to show sub modularity let us first consider a set T+ which is a subset of S+. So 

according to property of sub modular function following must hold: 

 

𝑝𝑢(𝑆+ + {𝑤}) − 𝑝𝑢(𝑆+) <  𝑝𝑢(𝑇+ + {𝑤}) − 𝑝𝑢(𝑇+) 

 

OR   

𝑝𝑢(𝑆+ + {𝑤}) − 𝑝𝑢(𝑆+) −  𝑝𝑢(𝑇+ + {𝑤}) + 𝑝𝑢(𝑇+) < 0  

 

Lets evaluate the left hand side of the above inequality: 

 

𝑝𝑢(𝑆+ + {𝑤}) − 𝑝𝑢(𝑆+) −  𝑝𝑢(𝑇+ + {𝑤}) + 𝑝𝑢(𝑇+) 

                                =  �1 − 𝑝𝑢(𝑆+)� ∗ 𝑝𝑤,𝑢
+ − �1 − 𝑝𝑢(𝑇+)� ∗ 𝑝𝑤,𝑢

+  [According eq 4 above] 

                            =  �𝑝𝑢(𝑇+)− 𝑝𝑢(𝑆+)� ∗ 𝑝𝑤,𝑢
+  < 0  

 

As 𝑝𝑢(𝑇+) <  𝑝𝑢(𝑆+) due to monotonocity. ▄  

 
Similarly we can also show that equation 3,  𝑝𝑢(𝑆−) = 1 −∏ �1 − 𝑝𝑣,𝑢

− �𝑣∈𝑆−  , is also sub 

modular. Based on these we claim that the approximation guarantee of (1-1/e) by greedy 

based approaches according to Theorem 1 of Nemhauser et al. (1978) is not applicable 



 70 

for influence maximization under the new proposed TGT model. Recall that according to 

Nemhauser et al. (1978) the function that needs to be maximized must be monotone and 

submodular. So in contrast our problem of finding influential nodes from trust network is 

basically maximizing a non-monotone submodular function subject to budget constraint k. 

To solve this we propose an algorithm, mineSeedLS(), which is based on local search 

algorithm of Lee et al. (2009). MineSeedLS first picks a node, v, which achieves highest 

spread, σ(v), according the TGT model and add it to the set of influential nodes, S. This 

step is same as the first step of the Greedy algorithm. Then we apply three local search 

based operations, namely delete, add and swap until we reach the budget k. Before we 

present the algorithm to find influential nodes under TGT model we first present the 

procedure to compute the influence spread, σ(). Recall influence spread of a given active 

seed set S is the total number of nodes activated after the diffusion process is over.  

To compute total number of nodes activated we present algorithm, spreadTGT(), as 

shown in figure 29. The algorithm takes the following as input: 

 

i. Set of active set S 

ii. Social Network Graph G(V,E) 

iii. Trust Matrix TM 

iv. Influence Matrix IM 
 

Recall entry of influence matrix, IM[u][v] is the positive influence probability (𝑝𝑣,𝑢
+ ) or 

negative influence probability (𝑝𝑣,𝑢
− ), depending on whether v trusts u  or not according to 

the trust matrix TM[u][v]. Note that each nodes v in the V of social network graph G is 

associated with the following node parameters: 

 

i. boolean v.active [true or false. If true the node is active] 

ii. float v.inProbPos [Joint positive influence probability 𝑝𝑢(𝑆+)] 

iii. float v.inProbNeg [Joint negative influence probability 𝑝𝑢(𝑆−)] 

iv. float v.threshold1 [Positive threshold. Randomly assigned] 

v. float v.threshold2 [Negative threshold. Randomly assigned] 

 



 71 

The output of the spreadTGT function is the number of users activated by initial active 

set S after the diffusion process, according to TGT model, is over. The spreadTGT() 

function starts with initializing the variable spread to size of the seed set S (Line 1).  It 

also maintains a data structure queue T to store the list of nodes to be processed (Line 2). 

Then, for each active node v in seed set S (Line 3), the algorithm will process each 

neighbour u of v as follows (Line 4). First node u will be pushed to queue T if it is not 

already in T (Line 7). If  TM[u][v] = 1 (Line 8) the algorithm will set inProbPos of node 

u to (1-IM[v][u]) and  inProbNeg  of u to 1, according to eq 2 and 3 (Line 9). Otherwise 

the algorithm will set inProbPos of node u to 1, and inProbNeg of u is set to 1 to (1-

IM[v][u]) (Line 11). If node u was already in T the function will simply update the 

inProbPos and inProbNeg   of node u according to equation 2 and 3.  

Once all the neighbours of nodes v in seed set S is pushed to queue T, the algorithm calls 

another sub routine spreadTGT2() as shown in figure 30. The spreadTGT2 function takes 

queue T in addition to all the input that were passed to spreadTGT() function. Function 

spreadTGT2() actually traverse the social network graph to check which nodes in T 

meets the threshold requirement of TGT model (Line 4). If a node u in T meets the 

requirement the spreadTGT2() function activates the node u and then update the spread 

variable (Line 6). Then the function check for any neighbour w of u, not already in seed 

set S. Similar to function spreadTGT(), inProbPos  and inProbNeg  of node w is updated 

(Line 13 to 22). Then node u is removed from the queue T (Line 25). This process repeats 

until there are no more nodes getting activated in last iteration. Then the function returns 

variable spread to spreadTGT() function. Function spreadTGT() returns spread + size of 

S to its calling function (Line 22). 

 
 
 
 
 
 
 
 
 

  



 72 

Algorithm: SpreadTGT (G(V,E),S,TM,IM) 

//Estimates total number of nodes in G influenced by seed set S. 

Input: Set of active set S; Social Network Graph G(V,E); Trust Matrix TM; Influence Matrix IM 

Output: spread - # of users activate after the diffusion process is over 

1. spread = |S| //Size of S 

2. Queue T //T is a set of nodes that are to be processed 

3. FOR each node v in S { //for loop 1 

4. FOR each neighbours u of v in G { //for loop 2 

5.  IF u not in T //if node u is not processed yet. 

6.    { 

7.   T.push(u)  

 8.   IF TM[u][v]= 1 

 9.    { u.inProbPos = (1-IM[v][u]);  u.inProbNeg = 1} 

10.   ELSE IF TM[u][v]= -1 

11.       { u.inProbNeg = (1- IM[v][u]);  u.inProbPos = 1 } 

12.      }  

13.    ELSE // Update inProbPos and inProbNeg of u 

14.     { 

15.   IF TM[u][v]= 1 

16.       u.inProbPos = u.inProbPos * (1- IM[v][u]) //According to eq2  

17.   ELSE IF TM[u][v]= -1 

18.       u.inProbNeg = u.inProbNeg * (1- IM[v][u]) //eq3 

19.     } 

 20. } //end for loop 2 

 21. } // end for loop 1 

 22. RETURN spread+SpreadTGT2(T, G, S, TM, IM) 

Figure 29: Algorithm: SpreadTGT (G(V,E),S,TM,IM) 

 

 

 

 

 

 



 73 

Algorithm: SpreadTGT2 (T, G(V,E),S,TM,IM) 

Input: T, G(V,E),S,TM,IM  

Output: spread - # of users activate after the diffusion process is over 

1. spread = 0; stop = false 

2. WHILE stop  = false { 

3.   stop = true; u = T.front() 

4.  IF (1-u.inProbPos > u.Threshold1 && 1-u.inProbNeg<u.Threshold2) 

5. { 

6.  u.active = true; spread++; stop=false; 

7.    FOR each neighbours w of u { 

8.   IF w is in S continue; //if w is in S do nothing. 

19.   ELSE  { 

10.    IF w not in T //if node u is not processed yet. 

11.      { 

12.      T.push(w) 

13.      IF TM[w][u]= 1 

14.          { w.inProbPos = (1-IM[u][w]); w.inProbNeg = 1 } 

15.      ELSE IF TM[w][u]= -1 

16.           { w.inProbNeg = (1-IM[u][w]);  w.inProbPos = 1 } 

17.    }  

18.      ELSE IF(w.active = false) { 

19.       IF TM[w][v]= 1 

20.         w.inProbPos = w.inProbPos * (1- IM[u][w]) 

21.       ELSE IF TM[u][v]= -1 

22.         w.inProbNeg = w.inProbNeg * (1- IM[u][w]) 

23.          }  

24.      }// End for 

25.     }// End if  

26. T.pop() // } //End While 

27. RETURN spread  

 

Figure 30: Algorithm: SpreadTGT2 (T, G(V,E),S,TM,IM) 

 



 74 

Now we present the algorithm which mines for influential nodes, called mineSeedLS 

(Figure 31). It takes social network graph G(V,E) and integer budget. The algorithm 

returns set of influential nodes, S, such that S is a subset of V and |S|<= budget. The 

algorithm starts by initializing seed set S to NULL (Line 1). Using spreadTGT() method 

discussed above the algorithm computes spread of each node v in V. The node with 

highest spread is picked and added to S (Line 3). Note that in the algorithm we denote 

adding a node v to a set S by S = S+{v}. Similarly we denote removing a node v from a 

set S by S = S-{v}. Also, V-S is the set of nodes which are not in set S but in set of all 

nodes V. The algorithm then performs the following local search operations: 

 

Delete – If by removing any node v in S results in increasing the spread under TGT the 

node is removed from S. That is: 

 

𝐼𝑓 𝑣 ∈ 𝑆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒔𝒑𝒓𝒆𝒂𝒅𝑻𝑮𝑻(𝑆 − {𝑣}) > 𝒔𝒑𝒓𝒆𝒂𝒅𝑻𝑮𝑻(𝑆), 𝑡ℎ𝑒𝑛 𝑆 = 𝑆 − {𝑣} 

 

Add – If by adding any node v in V-S results in increasing the spread under TGT model 

the node is added to the set S. That is: 

 
𝐼𝑓 𝑣 ∈ 𝑉 − 𝑆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒔𝒑𝒓𝒆𝒂𝒅𝑻𝑮𝑻(𝑆 + {𝑣}) > 𝒔𝒑𝒓𝒆𝒂𝒅𝑻𝑮𝑻(𝑆), 𝑡ℎ𝑒𝑛 𝑆 = 𝑆 + {𝑣} 

 
Swap- If by swapping any node v in S with any node u in V-S results in increasing the 

spread under TGT model the node v is removed from the set S and node u is added to the 

set S. That is: 

 
𝐼𝑓 𝑣 ∈ 𝑆 𝑎𝑛𝑑 𝑢 ∈ 𝑉 − 𝑆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒔𝒑𝒓𝒆𝒂𝒅𝑻𝑮𝑻(𝑆 − {𝑣} + {𝑢}) > 𝒔𝒑𝒓𝒆𝒂𝒅𝑻𝑮𝑻(𝑆)  

𝑡ℎ𝑒𝑛 𝑆 = 𝑆 − {𝑣} + {𝑢} 
 
If none of the above local search yields any further improvements in spread the algorithm 

stops and returns set of influential nodes S.  

  



 75 

 

Algorithm: mineSeedLS - Mine influential nodes (seed set) under TGT using local search. 
Input: Directed Graph G(V,E) and budget 
Output: Set of influential nodes (seed set), S such that |S| <= Budget 
BEGIN 
1. S = NULL 
2. v = argmax{spreadTGT(v) |v in V} //Pick v which yields maximum spreadTGT() 
3. S = {v} 
4. Boolean continue = true 
5. WHILE continue { 
6.  continue = false 
7.  FOR each v in S //Delete Operation 
8.   IF spreadTGT (S - {v}) > spreadTGT (S) 
9.   {  
10.                                               S = S - {v} // Delete v from S 
11.     continue = true 
12.    break //Break if at least 1 delete operation is done. 
13.   } 
14.  IF (|S| <  budget) 
15.                  FOR each v in V //Add operation 
16.   IF spreadTGT (S + {v}) > spreadTGT (S) 
17.    { 
18.     S = S + {v} // Add v  
19.     continue = true 
20.     break //Break if at least 1 add operation is done. 
21.    } 
22.  FOR each v in S //Swap operaiton 
23.   FOR each u in V-S 
24.   IF spreadTGT (S - {v} + {u}) > spreadTGT (S) 
25.    { 
26.     S = S - {v} + {u} // Swap node u and v.  
27.     continue = true 
28.     break //Break if atleast 1 swap operation is done. 
29.    } 
30.   END FOR  
31.  END FOR 
32. END WHILE  
33. RETURN S 
34. END  

 

Figure 31: Algorithm mineSeedLS() 

 

  



 76 

3.5 Complexity Analysis 

The APG algorithm runs in O(A*2N2) in worst case, where A is the number of actions 

and N is number of nodes in G(V,E). This is because for each action in action sequence 

table the algorithm will process each user who performs the action after any user v. Now 

in worst case each and every user performs each and every action. That means the 

algorithm will have to process N2 number of times. The algorithm will also process each 

user who did not perform the action after any user v.  That means the algorithm will have 

to process N2 number of times. So for each action the algorithm have to process N2 + N2 = 

2N2 number of times. So if there are A number of actions in the action log the run time 

complexity of APG algorithm is O(A*2N2). 

The local search based algorithm as defined in figure 31 could run for an exponential 

amount of time, until it reaches a locally optimal solution (Lee et al. 2009). To tackle this 

and to ensure polynomial time execution, we follow the standard approach (Lee et al. 

2009) of an approximate local search under a suitable (small) parameter ∊ > 0. In 

approximate local search when looking for improvement, for example for adding a node, 

we multiply the spread of current seed set by a fraction 1+∈/𝑛4 (where n is the size of 

the search space, that is number of nodes in this case). ) For example when looking for 

local improvement for adding a node v with respect to current set S we will make 

following comparison: 

𝒔𝒑𝒓𝒆𝒂𝒅𝑻𝑮𝑻(𝑆 + {𝑣}) > (1+∈/𝑛4)𝒔𝒑𝒓𝒆𝒂𝒅𝑻𝑮𝑻(𝑆) 

3.6 Running Example 

3.6.1 Example Dataset 

To demonstrate the entire work flow of the Trust based Influence Maximization (T-IM) 

framework we will use a small sample dataset. Note that T-IM accepts three inputs 

namely, Trust Data table, Action Log table and an integer budget. The sample Trust Data 

is shown in table 7 and Action Log is shown in table 8. In this data set we have set of 10 

users which are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In the trust data we have 21 trust 

relationships. The action log consists of 3 tasks, {A, B, C}, performed by users at various 

time. Note that action log table is sorted by action and time in ascending order. Also let 

us set our budget to 2, meaning we are looking for 2 influential nodes from this dataset. 



 77 

 

Table 7: Example of Trust Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

User u User v trust 

1 4 -1 

1 7 1 

2 1 1 

2 3 1 

2 8 -1 

3 4 -1 

3 10 -1 

4 10 1 

4 9 1 

5 4 1 

5 1 1 

6 5 1 

6 1 -1 

7 6 1 

7 8 -1 

7 1 1 

8 3 -1 

8 9 1 

9 2 1 

9 10 1 

10 3 -1 



 78 

Table 8: Example of an Action Log 
Action User Time 

A 1 2 

A 10 4 

A 4 5 

A 5 8 

A 3 9 

A 2 12 

A 8 15 

A 9 19 

B 3 7 

B 5 8 

B 6 9 

B 8 12 

B 4 14 

B 2 12 

B 1 16 

B 9 17 

B 10 21 

C 2 5 

C 5 6 

C 2 7 

C 4 8 

C 6 9 

C 1 11 

C 10 15 

C 9 17 

C 3 18 

C 7 16 

 

 

 

 

 



 79 

3.6.2 Preprocessing Step 
We start with the preprocessing step which is the first step of T-IM. In this step a directed 

social network graph G(V,E) is generated using the trust data in table 7. According to the 

Preprocess() method, as listed in figure 25, for each row (u, v, trust) in the trust data an 

edge (v,u) will be added to E of G. Also node u and v will be added to V of G. After 

processing all the row of the trust data any duplicate nodes in V will be removed. So the 

set of nodes, V, of social network graph G(V,E) will be V={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

The graphical model of the social network graph G(V,E) constructed using the trust data 

of table 7 is shown in figure 32. Note that the social network graph is directed where each 

edge (v,u) is added to it if there is a tuple (u, v, trust) in the trust data. For e.g. there is an 

edge (4,1) because in trust data table there is a row (1,4). Also note that the number of 

edges in the graph, which is 21, is exactly equal to number of rows in the trust data table.  

Additionally in the preprocessing stage a trust matrix is constructed where each cell 

TM[u][v] of trust matrix will be set to the value of trust in tuple (u, v, trust). Any cell of 

trust matrix TM[u][v] is set to 0 if there is no trust/distrust relationship between u and v 

according to the trust table. The trust matrix constructed using the trust data of table 7 is 

shown in table 9 below. Note that TM[1][4] is -1 because there is a tuple (1, 4, -1) in the 

trust data table. Also TM[4][1] is 0 as there is no tuple where u is 4 and v is 1 in the trust 

data table. 

Table 9: Trust Matrix 
  1 2 3 4 5 6 7 8 9 10 

1 0 0 0 -1 0 0 1 0 0 0 

2 1 0 1 0 0 0 0 -1 0 0 

3 0 0 0 -1 0 0 0 0 0 -1 

4 0 0 0 0 0 0 0 0 1 1 

5 1 0 0 1 0 0 0 0 0 0 

6 -1 0 0 0 1 0 0 0 0 0 

7 1 0 0 0 0 1 0 -1 0 0 

8 0 0 -1 0 0 0 0 0 1 0 

9 0 1 0 0 0 0 0 0 0 1 

10 0 0 -1 0 0 0 0 0 0 0 

 



 80 

 
 

Figure 32: Social network graph modelled from trust data in table 7. 
 

3.6.3 Computing Influence Probability using APG() 
To compute influence probability of the each directed edge of social network work 

constructed in pre processing step earlier, we first use action pattern generator, APG(), as 

discussed in section 3.3. APG() algorithm (figure 28) is used to compute following 

patterns from action log (table 8): 

• 𝐴𝑢 - Stores the number of action performed by a user u 

• 𝐴𝑣.𝑢 - Stores number of action performed by v after trusted user u. 

• 𝐴′𝑣.𝑢 - Stores number of action not performed by v after distrusted user u. 

First the APG() algorithm will convert the action log table to action sequence table as 

shown in table 10. Then for each action, let us say action A, the algorithm will process the 

above mentioned parameters for each user, u, who performed action A (that is in Seq(A) ) 

as follows: 

 

Step 1: Increment 𝐴𝑢 by 1. For example, when processing the first row of the action table 

which is (A, 1, 2), the algorithm will update 𝐴1 to 1. Values of 𝐴𝑢 for all user v in G(V,E) 

according to action log in table 8 is shown in table 11. 



 81 

 

 

Table 10: Action sequence table of action log in table 8. 
Action Action Sequence 

A 1,10,4,5,3,2,8,9 

B 3,5,6,8,4,2,1,9,10 

C 2,5,2,4,6,1,10,9,3,7 

 

 

Table 11: Values of 𝐴𝑢 for all user v in G(V,E) according to  

action log in table 8. 
U  𝑨𝒖 

1 3 

2 3 

3 3 

4 3 

5 3 

6 2 

7 1 

8 2 

9 3 

10 3 

 

Step 2: A list of users who performed the action A after user u (currently user 1), that is 

Seq(A,1) = {10, 4, 5, 3, 2, 8, 9}, is then generated and is stored to list Su.  

 

Step 3: A list of users who trusts user u (currently user 1) is then extracted from the trust 

matrix and stored to list Tu. So T1 = {2, 5, 7}. For each user v in Su and Tu, that is who 

trusts user u and also performed action A after u, the parameter  𝐴𝑢.𝑣 is incremented by 1. 

That is  𝐴1.2 and  𝐴1.5 is incremented by 1 because both node 2 and 5 trusts node 1 and 

also performed action A after their trusted neighbour node 1. Table 12 below lists all  

 𝐴𝑢.𝑣 such that v trust u. Note that 𝐴𝑢.𝑣 consists of 13 entries because there are 13 entries 

in the trust data table listed in table 8 which is trusted relationship (that is the trust value 

is 1). 



 82 

 

Table 12: 𝐴𝑢.𝑣 computed from action sequence table (table 9) 
U V  𝑨𝒖.𝒗 

1 2 1 

1 5 1 

2 9 2 

4 5 1 

3 2 2 

9 4 0 

9 8 0 

5 6 2 

6 7 0 

7 1 0 

1 7 1 

10 4 2 

10 9 2 

 

 

Step 4: A list of users who do not trusts user v is then extracted from the trust matrix and 

stored to list Du. So D1 = {8}. For all the users in Du and not in Su will be increment by 

1. Node 8 in Du performed action A, therefore  𝐴′1.8 will not be incremented. Table 13 

below lists all  𝐴′𝑢.𝑣  such that v do not trust u. Note that  𝐴′𝑢.𝑣  consists of 8 entries 

because there are 8 entries in the trust data table listed in table 8 which is distrusted 

relationship (that is the trust value is -1). 

 

 

  



 83 

Table 13: 𝐴′𝑢.𝑣 computed from action sequence table (table 9) 

 
U V  𝑨𝒖.𝒗 

1 6 1 

4 1 1 

4 3 1 

3 10 2 

8 2 2 

8 7 2 

3 8 1 

10 3 1 

 

 

Once the APG() algorithm process the action log and generates the required parameters 

as discussed above, TIM will then compute the influence probabilities of edge (u,v) of 

graph G(V,E) using ComputeInfluence() method listed in figure 26. For example for edge 

(1,2), the ComputeInfluence() method will check if node 2 trust 1 or not. According to 

TM[2][1] = 1, which means node 2 do trust node 1. Also according to  𝐴𝑢.𝑣 in table 11, 

node 2 performed 1 action after node 1 (out of 3 actions in total by node 1). Therefore 

influence probability IM[1][2] = 1/3 = 0.333. Similarly influence probability of all edge 

in E is then computed and stored into the influence matrix as shown in table 14.  

Table 14: Influence Matrix 

 1 2 3 4 5 6 7 8 9 10 
1 0 0.33 0 0 0.33 0.33 0.33 0 0 0 
2 0 0 0 0 0 0 0 0 0.67 0 
3 0 0.67 0 0 0 0 0 0.33 0 0.67 
4 0.33 0 0.33 0 0.33 0 0 0 0 0 
5 0 0 0 0 0 0.67 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 
8 0 1 0 0 0 0 1 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 
10 0 0 0.5 0.67 0 0 0 0 0.67 0 

 

 

 



 84 

3.6.4 Mining Influential Nodes using MineSeedLS() 
Before presenting the running example of MineSeedLS() algorithm using the trust matrix 

and influence matrix constructed above, we first present the running example how 

spreadTGT() method (figure 29) estimates the number of node getting activated by a 

given set of nodes. This method is repeatedly used by MineSeedLS(). Let us say we like 

to compute the spread, σ, of set of nodes S = {8 , 10} from our example. Also let’s 

assume that for all nodes, both positive and negative threshold is set to 0.5. 

Total spread of set S will be initialized to size of S which is 2. First the spreadTGT() 

method (figure 29) will create a queue T which is empty at this point. Then it will process 

neighbours of each node in S. So it will start with node 8 and it has two outgoing edges to 

nodes 2 and 7. Both 2 and 7 are not in T so it will added to T. Now for node 2 since 

TM[2][8] is -1, which means node 2 do not trust node 8 its inProbNeg (joint negative 

influence probability or 𝑝𝑢(𝑆−)) will be set to 1-IM[8][2] = 1 – 1 = 0. Similarly for node 

7, since TM[7][8] is -1 its inProbNeg is set to 1 - IM[8][7] = 1 – 1 =0. The parameter 

inProbPos for both nodes 2 and 7 is set to 1. Using same steps neighbours of node 10 

(the second node is set S) will be processed. Table 14 below list all the nodes in queue T 

after all the neighbours of initial seed nodes S is processed.  

 

Table 15: Nodes with its joint influence probability in queue T  

Node inProbPos inProbNeg Active 
2 0 0 False 
7 0 0 False 
3 1 1-0.5 =0.5 False 
4 1-0.67=0.33 1 False 
9 1-0.67=0.33 1 False 

Once all the neighbours of initial seed set S is processed and stored into queue T, the 

spreadTGT() method will call spreadTGT2() (figure 30). A variable called spread is 

initialized to 0. In spreadTGT2() method, each element of T (table 15) will be evaluated 

to check if  inProbNeg ( 𝒑𝒖(𝑺−) ) and inProbPos ( 𝒑𝒖(𝑺+) ) meets the threshold 

requirement of TGT model. Note that both positive and negative threshold for all nodes 

are set to 0.5. Only node 4 in T meets the threshold requirement as its (1-inProbPos) = 1-

0.33 = 0.67 > 0.5 and (1-inProbNeg ) = (1-1)=0 < 0.5. Due to the activation of node 4 the 

spread variable is incremented by 1, so the spread is now 1. Now spreadTGT2() will start 



 85 

processing which additional nodes may get activated by new active node 4. It will get list 

of node 4’s neighbours which are {1, 5, 3}. Nodes 1 and 5 are not in T, so these nodes 

will be added to T with their respective inProbNeg and inProbPos values. Node 3 is 

already in T, so its inProbNeg and inProbPos will simply updated according to equation 2 

and 3. Since 3 do not trust 4 according to the trust matrix and IM[4][3] = 0.33, node 3’s 

inProbNeg is now 0.5 * (1 – 0.33) = 0.335. Table 16 lists the updated queue T. 

Table 16: Nodes with its joint influence probability in queue T 

Node inProbPos inProbNeg Active 
2 0 0 False 
7 0 0 False 
3 1 1-0.5 =0.5 True 
4 1-0.67=0.33 1 False 
9 1-0.67=0.33 1 False 
1 1 1-0.33 = 0.67 False 
5 1-0.33=0.67 1 False 

 

Then the spreadTGT() will further evaluate the nodes in T and check if any of non active 

nodes becomes further active. Only node 9 becomes as active according to TGT model as, 

1 - inProbPos = 1 – 0.33 = 0.67 > 0.5 and 1 – inProbNeg = 1 – 1 = 0 < 0.5. Due to the 

activation of node 9 the spread variable is incremented by 1, so the spread is now 2. Now 

spreadTGT2() will start processing which additional nodes may get activated by new 

active node 9. It will get list of node 9’s neighbours which are {8}. Note that node 8 is 

already in seed set S and is already active. Therefore there are no more nodes that may 

become active anymore. The process stops at this point and returns the value of spread 

which is 2 to the calling function spreadTGT(). The spreadTGT() will then return 2 + 2=4, 

because the size of the initial active nodes S is 2 and the spreadTGT2() returns 2.  

Now let us show the how mineSeedLS() algorithm finds influential nodes using 

spreadTGT() method we discussed above. First the algorithm will compute spread of 

each node as singleton using spreadTGT(). That is for every node v in V the algorithm 

will compute spreadTGT({v}). The node with maximum spread will be picked and stored 

into the set S of mineSeedLS(). By running the spreadTGT() for each node we will get 

the spread as shown in table 17. As node 3 have the highest spread it will picked and 

added to set of influential nodes S, which is now {3}. Note that node 10 have also spread 

3 but was processed after 3, which is why node 3 is picked instead of node 10. Now the 



 86 

local search is going to start. The delete operation is skipped as there is only 1 node is set 

S. Since our budget is 2 the algorithm continues to see if adding any node results in 

improving the spread. It picks node 1 as spreadTGT({3} + 1) = 4 > 3 ( spreadTGT({3} = 

3). So the set of influential set have two nodes {3, 1}. Note that the spread of current set 

S is now 4.  Then it continues to check if swapping (or exchanging) any node in S with 

any node in V (but not already in S) yields any improvement in spread. The spread of set 

S as a result of removing node 1 and replacing it with node 5 is 5, that is 

spreadTGT({3,1} – 1 + 5) = 5. This is actually an improvement from previous spread of 

4. So node 1 is dropped and node 5 is added to set S, which now is {3, 5}. The algorithm 

will continue search for any further improvement. First it checks if dropping any element 

from S improves the spread or not. Since spreadTGT({3,5} – 3) =3 and spreadTGT({3,5} 

– 3) =2 and do not improve the previous spread of 5, no element is dropped. Also the size 

of S is now 2 which is our budget the algorithm will not look for adding any new node. It 

will again check if swapping (or exchanging) any node in S with any node in V (but not 

already in S) yields any improvement in spread. No exchange yields any further 

improvement from pervious spread of 5. So the algorithm stops at this point and return 

set S = {3, 5} which manages to achieve total gross spread of 5. 

Table 17: Spread of each node 

 

 
 
 
 

Node 1 2 3 4 5 6 7 8 9 10 
Spread 1 2 3 1 2 1 1 1 1 3 



 87 

CHAPTER 4 

EXPERIMETNS AND ANALYSIS 

 
4.1 Dataset 
 
4.1.1 Epinions Dataset 
 
Epinions.com is a general consumer review site where visitors can read reviews about a 

variety of items to help them decide on a purchase or they can join for free and begin 

writing reviews. Users of the Epinions.com can declare whether to ''trust'' or “distrust” 

each other. 

Table 18: Epinions trust dataset 

Column Name Description 
MY_ID This stores Id of the member who is making the trust/distrust statement. 
OTHER_ID The other ID is the ID of the member being trusted/distrusted 
VALUE Value = 1 for trust and -1 for distrust 
CREATION It is the date on which the trust was made 
 

In this research we use Epinions dataset, provided by Masa and Avesani (2006) and 

downloaded from http://www.trustlet.org that has two types of information. The first 

dataset consists of trust and distrust information which have fields as listed in table 18. 

Each row in this data represents a link between MY_ID (u) and OTHER_ID (v). The 

VALUE field is either 1, meaning u trust v, or -1, meaning u do not trust v. In this dataset 

we identified about 95, 318 nodes with 11,56,753 edges. Out of these about 86% of the 

edges are positive and 14% is negative. However since our main goal is to show quality 

of nodes selected my mineSeedLS is better than that of greedy based solution under TGT 

model and also any network with nodes more than 10,000 may run for days, we select a 

small snap shot from the dataset comprising of approximately 10,000 nodes.  

The second dataset consists of rating information (table 19). Epinions users can post 

review on any certain product. Other users can rate these reviews from 5 (“Very 

Helpful") to 1 (“Not Helpful") etc. We use this dataset to extract action log of users in the 

network. Whenever a user rates a review it is considered as an action performed by the 

users. This dataset consists of 13,668,319 article ratings. We use this dataset as our 

http://www.trustlet.org/�


 88 

‘Action Log’. Rating of each object is first classified as ‘High’ (if the rating is between 3-

5) and ‘Low’ (if the rating is between 1-2). We consider two users perform same action if 

they rated a same object as ‘High’ or ‘Low’. 

 
Table 19: Epinions rating dataset 

Column Name Description 
OBJECT_ID The object ID is the object that is being rated. 
MEMBER_ID  Stores the id of the member who is rating the object 
RATING Stores the rating value between 1-5. 
CREATION The date on which the member first rated this object 

 
4.1.2 Wikipedia Dataset 
 
Wikipedia is a very popular free online encyclopaedia. And many volunteers around the 

world contribute to maintain and write articles on different topics. A small part of such 

contributors are ‘administrators’, who have access to additional technical features that 

helps in maintenance. Users of Wikipedia can vote for or against another user to become 

administrator. The data set we collected from ‘The Koblenz Network Collection’ 

(http://konect.uni-koblenz.de/) consists of network of users from the English Wikipedia 

that voted for and against each other in admin elections. Nodes represent individual users 

of Wikipedia. And edges represent votes, which can be positive ("for" vote) and negative 

("against" vote). In the dataset we have about 8,297 nodes and about 107,071 edges. 

Unfortunately there was no ‘Action Log’ available for this dataset. So we assigned 

influence probability uniformly and randomly to each edge. 

 

4.2 Performance Analysis 
 
The goal of our experiments is to show that influence spread achieved by our 

MineSeedLS algorithm improves influence spreads that can be achieved by standard 

approaches like CELF of Leskovec et al. (2007). We compared influence spread, number 

of nodes activated by seed set discovered, achieved by our proposed T-IM framework 

with the following approaches: 

CELF-TGT: This is the greedy algorithm of [6] with the CELF optimization  

[10].  

http://konect.uni-koblenz.de/�


 89 

Degree-TGT: For comparison, we also compare our approach with a simple 

heuristic that selects the top k vertices with the highest degrees [6] [2]. Since we 

are dealing with trust network we select vertices with largest positive in degree. 

 
Figure 33 show the influence spreads of various algorithms on trust network graph 

generated from Wikipedia dataset. Our T-IM performs very closely to CELFgreedy for 

smaller seed sets (<10). However it outperforms CELFGreedy for seed set size > 15. It 

also outperforms DegreeHeuristic for all seed set sizes. Also in Epinions dataset the 

spread achieved by T-IM outperforms both Degree and CELF based solutions (Figure 34). 

As expected CELF performs inconsistently in both datasets and in some cases it even 

performs below the Degree based solution. Recall that mineSeedLS performs additional 

operations such as delete and swap in attempt to improve the spread of selected set of 

influential nodes. On the other hand the Greedy (Kempe et al. 2003) just keep on adding 

nodes to the set of influential nodes based of maximum marginal gain. Due to these 

additional operations of mineSeedLS, it outperforms Greedy (Kempe et al. 2003) in terms 

of influence spread under the new proposed TGT model. Note that in Greedy (Kempe et 

al. 2003) algorithm gives good solution only when the influence function is monotone. 

Monotone property ensures that, adding a node will always increase the spread, which is 

why we do not need to track back and re-evaluate the solution. However in the case of 

influence spread under TGT models we the function is non-monotone. That is adding a 

node does not always guarantee an increase in spread, in fact spread may decrease. So we 

require tracking back and re evaluate our solution, by for example removing or swapping 

nodes. This actually ensures the quality of seed by such local search operations is better 

than that of greedy in case of TGT model. Our experimental results also validate this 

claim.  

 
 



 90 

 
 
 

Figure 33: Influence spreads of different algorithms on Wikipedia Dataset under TGT 
model 

 
 

 
 

Figure 34: Influence spreads of different algorithms on Epinions Dataset under TGT 
model 

 
 
  



 91 

4.3 Runtime Analysis 
 
4.3.1 Runtime of APG 
 
Figure 35 shows the scalability of APG algorithm. The runtime is almost linear function 

to the number of the records read from action log. 

 

 
Figure 35: Runtime of APG with various size of Action Log 

 
4.3.2 Runtime of mineSeedLS 
 
To compare runtime of mineSeedLS with CELF and Degree based heuristic we recorded 

time required to select influential nodes of different sizes. Figure 36 reports the runtime 

comparison on Epinions dataset and figure 37 reports the same on Wikipedia dataset. In 

both datasets Degree heuristic performs almost in constant time. MineSeedLS takes 

longer than CELF as the size of the required set of influential nodes increases in both 

datasets. This was expected as mineSeedLS performs additional operations such as delete 

and swaps which is computationally very expensive. For example to perform a swap 

operation the algorithm requires to remove each element in seed set S with every element 

not in S but in V. This shows room for improvement of mineSeedLS in terms of 

scalability. As mentioned earlier, scalability was not focus of this thesis; however there 

are several ways to make the approach more scalable. We discuss some of these 

approaches in the next chapter. 

 



 92 

 
 

Figure 36: Running time of different algorithms on Epinions Dataset under TGT model 
 

 
 
Figure 37: Running time of different algorithms on Wikipedia Dataset under TGT model 
  



 93 

CHAPTER 5 
 
CONCLUSIONS AND FUTURE WORKS 
 
Analyzing information diffusion and social influence in social networks has various real-

world applications. Influence maximization (IM) in viral marketing is an example of such 

an important application. In this research we tackled the influence maximization problem 

in trust network. We argue that to find influential nodes from a trust network we need to 

model the diffusion process by considering both positive and negative influence exerted 

by trusted and distrusted neighbours. Motivated by this we introduce a new diffusion 

model, called Trust-General Threshold (TGT) model, where both positive and negative 

influence exists. We showed that unlike existing diffusion models, influence 

maximization under proposed TGT model is a problem of maximizing non-monotone 

sub-modular function.  

To learn influence probabilities, which are required parameters for TGT model, we 

propose an algorithm, Action Pattern Generator (APG), to mine action logs to extract 

frequent patterns of actions performed by users in trust network. Using this we estimate 

both positive and negative influence probabilities required for the TGT model. Then we 

propose an algorithm, called mineSeedLS, using local search technique (Lee et al. 2009) 

to find influential nodes. We ran experiments on real life dataset collected from Epinions 

and Wikipedia to show that quality of nodes selected by our proposed mineSeedLS 

outperforms existing benchmark algorithms such as CELF(Leskovec et al. 2007b) by 

almost 35%.  

However as expected the scalability of minedSeedLS is not suitable for large social 

network. Previously scalability is tackled in Influence Maximization under various 

models such as LT and IC (Chen et al. 2009). In future we want to adopt some these 

methods in our TGT model to make it more scalable. Also we have plans to use hybrid 

approaches that combine the advantages of different algorithms, such as clustering and 

community detection, to improve the efficiency and effectiveness of influence 

maximization under TGT model. Further more in future we wish to tackle influence 

maximization considering dynamic network. One key property of any social network is 

that it is changing all the time, especially in online domain.   



 94 

BIBLIOGRAPHY 

 
1. Charu C. Aggarwal. 2005. On k-anonymity and the curse of dimensionality. In 

Proceedings of the 31st international conference on Very large data bases. VLDB '05. 

VLDB Endowment 901-909.  

2. Agrawal R., Imielinski T., Swami A. 1993. Mining association rules between sets of 

items in large databases. In Proceedings of the ACM SIGMOD Conference on 

Management of Data, Washington D.C., USA, 207-216. 

3.    Agrawal R., Srikant R. 1994. Fast Algorithms for Mining Association Rules. In 

Proceedings of the 20th VLDB conference, Santiago, Chile, 487-499. 

4.    Agarwal, N., Liu, H., Tang, L., and Yu, P. S. 2008. Identifying the influential 

bloggers in a community. In Proceedings of the international conference on Web 

search and web data mining. WSDM ’08. ACM, New York, NY, USA, 207–218. 

5.    Berger-Wolf, T. Y. and Saia, J. 2006. A framework for analysis of dynamic social 

networks. In Proceedings of the 12th ACM SIGKDD international conference on 

Knowledge discovery and data mining. KDD ’06. ACM, New York, NY, USA, 523–

528. 

6.    Bhagat, S., Cormode, G.  and Muthukrishnan, S. 2011. Node classification in social 

networks. In C. Aggarwal, editor, Social Network Data Analytics. Springer, 1 edition, 

115–148.  

7.    Bonchi, F., Castillo, C., Gionis, A., and Jaimes, A. 2011. Social network analysis and 

mining for business applications. ACM Trans. Intell. Syst. Technol. 2, 3 (May), 22:1–

22:37. 

8.    Cha, M., Mislove, A., and Gummadi, K. P. 2009. A measurement-driven analysis of 

information propagation in the flickr social network. In Proceedings of the 18th 

international conference on World wide web. WWW ’09. ACM, New York, NY, 

USA, 721–730. 

9.   Chen, W., Wang, C., and Wang, Y. 2010. Scalable influence maximization for 

prevalent viral marketing in large-scale social networks. In Proceedings of the 16th 

ACM SIGKDD international conference on Knowledge discovery and data mining. 

KDD ’10. ACM, New York, NY, USA, 1029–1038. 



 95 

10. Chen, W., Wang, Y., and Yang, S. 2009. Efficient influence maximization in social 

networks. In Proceedings of the 15th ACM SIGKDD international conference on 

Knowledge discovery and data mining. KDD ’09. ACM, New York, NY, USA, 199–

208. 

11. Chen, W., Yuan, Y., and Zhang, L. 2010. Scalable Influence Maximization in Social 

Networks under the Linear Threshold Model. In Proceedings of the 2010 IEEE 

International Conference on Data Mining (ICDM '10). IEEE Computer Society, 

Washington, DC, USA, 88-97.   

12. Domingos, P. and Richardson, M. 2001. Mining the network value of customers. In 

Proceedings of the seventh ACM SIGKDD international conference on Knowledge 

discovery and data mining. KDD ’01. ACM, New York, NY, USA, 57–66. 

13. Easley, D. and Kleinberg, J. 2010. Networks, Crowds, and Markets: Reasoning About 

a Highly Connected World. Cambridge University Press. 

14. Feige, U.; Mirrokni, V.S.; Vondrak, J. 2007. Maximizing Non-Monotone Submodular 

Functions. In Proceedings of the 48th Annual IEEE Symposium on Foundations of 

Computer Science (FOCS '07). IEEE Computer Society, Washington, DC, USA, 461-

471.   

15. Getoor, L. 2003. Link mining: a new data mining challenge. SIGKDD Explor. Newsl. 

5, 84–89. 

16. Gomez Rodriguez, M., Leskovec, J., and Krause, A. 2010. Inferring networks of 

diffusion and influence. In Proceedings of the 16th ACM SIGKDD international 

conference on Knowledge discovery and data mining. KDD ’10. ACM, New York, 

NY, USA, 1019–1028. 

17. Goyal, A., Bonchi, F., and Lakshmanan, L. V. 2008. Discovering leaders from 

community actions. In Proceeding of the 17th ACM conference on Information and 

knowledge management. CIKM ’08. ACM, New York, NY, USA, 499–508. 

18. Goyal, A., Bonchi, F., and Lakshmanan, L. V. 2010. Learning influence probabilities 

in social networks. In Proceedings of the third ACM international conference on Web 

search and data mining. WSDM ’10. ACM, New York, NY, USA, 241–250. 

19. Goyal, A., Bonchi, F., and Lakshmanan, L. V. S. 2011. A data-based approach to 

social influence maximization. Proc. VLDB Endow. 5, 73–84. 



 96 

20. Goyal, A., Lu, W., and Lakshmanan, L. V. 2011. Celf++: optimizing the greedy 

algorithm for influence maximization in social networks. In Proceedings of the 20th 

international conference companion on World wide web. WWW ’11. ACM, New 

York, NY, USA, 47–48. 

21. Gruhl, D., Guha, R., Liben-Nowell, D., and Tomkins, A. 2004. Information diffusion 

through blogspace. In Proceedings of the 13th international conference on World 

Wide Web. WWW ’04.ACM, New York, NY, USA, 491–501. 

22. Guha, R., Kumar, R., Raghavan, P., and Tomkins, A. 2004. Propagation of trust and 

distrust. ACM Press, 403–412. 

23. Hartline, J., Mirrokni, V., and Sundararajan, M. 2008. Optimal marketing strategies 

over social networks. In Proceeding of the 17th international conference on World 

Wide Web. WWW ’08. ACM, New York, NY, USA, 189–198. 

24. Karamon, J., Matsuo, Y., and Ishizuka, M. 2008. Generating useful network-based 

features for analyzing social networks. In Proceedings of the 23rd national 

conference on Artificial intelligence - Volume 2. AAAI’08. AAAI Press, 1162–1168. 

25. Kempe, D., Kleinberg, J., and Tardos, E. 2003. Maximizing the spread of influence 

through a social network. In Proceedings of the ninth ACM SIGKDD international 

conference on Knowledge discovery and data mining. KDD ’03. ACM, New York, 

NY, USA, 137–146. 

26. Kimura, M. and Saito, K. 2006. Tractable models for information diffusion in social 

networks. In Knowledge Discovery in Databases: PKDD 2006. Lecture Notes in 

Computer Science, vol. 4213. Springer Berlin / Heidelberg, 259–271. 

10.1007/11871637. 

27. Kimura, M., Saito, K., Nakano, R., and Motoda, H. 2009. Finding influential nodes in 

a social network from information diffusion data. In Social Computing and 

Behavioral Modeling. Springer US, 1–8. 10.1007/978-1-4419-0056-218. 

28. Kleinberg, J. M. Challenges in mining social network data: processes, privacy, and 

paradoxes. In Proceedings of the 13th ACM SIGKDD international conference on 

Knowledge discovery and data mining. KDD ’07. ACM, New York, NY, USA, 4–5. 

29. Kleinberg, J. 2007. Cascading behavior in networks: algorithmic and economic 

issues. Cambridge University Press. 



 97 

30. Kunegis, J., Lommatzsch, A., and Bauckhage, C. 2009. The slashdot zoo: mining a 

social network with negative edges. In Proceedings of the 18th international 

conference on World wide web. WWW ’09. ACM, New York, NY, USA, 741–750. 

31. Lee, J., Mirrokni, V. S., Nagarajan, V., and Sviridenko, M. 2009. Non-monotone 

submodular maximization under matroid and knapsack constraints. In Proceedings of 

the 41st annual ACM symposium on Theory of computing (STOC '09). ACM, New 

York, NY, USA, 323-332.  

32. Leskovec, J., Adamic, L. A., and Huberman, B. A. The dynamics of viral marketing. 

2007a. ACM Trans. Web 1. 

33. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., and Glance, N. 

2007b. Cost-effective outbreak detection in networks. In Proceedings of the 13th 

ACM SIGKDD international conference on Knowledge discovery and data mining. 

KDD ’07. ACM, New York, NY, USA, 420–429. 

34. Leskovec, J., Huttenlocher, D., and Kleinberg, J. 2010a. Predicting positive and 

negative links in online social networks. In Proceedings of the 19th international 

conference on World wide web. WWW ’10. ACM, New York, NY, USA, 641–650. 

35. Leskovec, J., Huttenlocher, D., and Kleinberg, J. 2010b. Signed networks in social 

media. In Proceedings of the 28th international conference on Human factors in 

computing systems. CHI ’10. ACM, New York, NY, USA, 1361–1370. 

36. Liben-Nowell, D. and Kleinberg, J. 2003. The link prediction problem for social 

networks. In Proceedings of the twelfth international conference on Information and 

knowledge management. CIKM ’03. ACM, New York, NY, USA, 556–559. 

37. Massa, P. and Avesani, P. Trust metrics in recommender systems. Massa, P. and 

Avesani, P. 2007. Trust-aware recommender systems. In Proceedings of the 2007 

ACM conference on Recommender systems. RecSys ’07. ACM, New York, NY, 

USA, 17–24. 

38. Massa, P., & Avesani, P. 2006. Trust-aware bootstrapping of recommender systems. 
In Proceedings of ECAI 2006 Workshop on Recommender Systems (pp. 29-33). 

39. Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., and Ukkonen, A. 2011. 

Sparsification of influence networks. In Proceedings of the 17th ACM SIGKDD 

international conference on Knowledge discovery and data mining. KDD ’11. ACM, 



 98 

New York, NY, USA, 529–537. 

40. Mossel, E. and Roch, S. 2007. On the submodularity of influence in social networks. 

In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. 

STOC ’07. ACM, New York, NY, USA, 128–134. 

41. Provost, F., Dalessandro, B., Hook, R., Zhang, X., and Murray, A. 2009. Audience 

selection for on-line brand advertising: privacy-friendly social network targeting. In 

Proceedings of the 15th ACM SIGKDD international conference on Knowledge 

discovery and data mining. KDD ’09. ACM, New York, NY, USA, 707–716. 

42. Richardson, M. and Domingos, P. 2002. Mining knowledge-sharing sites for viral 

marketing. In Proceedings of the eighth ACM SIGKDD international conference on 

Knowledge discovery and data mining. KDD ’02. ACM, New York, NY, USA, 61–

70. 

43. Saito, K., Kimura, M., Ohara, K., and Motoda, H. 2010. Behavioral analyses of 

information diffusion models by observed data of social network. In Advances in 

Social Computing, S.-K. Chai, J. Salerno, and P. Mabry, Eds. Lecture Notes in 

Computer Science. Vol. 6007. Springer Berlin. 

44. Saito, K., Nakano, R., and Kimura, M. 2008. Prediction of information diffusion 

probabilities for independent cascade model. In Proceedings of the 12th international 

conference on Knowledge- Based Intelligent Information and Engineering Systems, 

Part III. KES ’08. Springer-Verlag, Berlin, Heidelberg, 67–75. 

45. Senator, T. E. 2005. Link mining applications: progress and challenges. SIGKDD 

Explor. Newsl. 7, 76–83. 

46. Song, X., Chi, Y., Hino, K., and Tseng, B. 2007a. Identifying opinion leaders in the 

blogosphere. In Proceedings of the sixteenth ACM conference on Conference on 

information and knowledge management. CIKM ’07. ACM, New York, NY, USA, 

971–974. 

47. Staab, S., Domingos, P., Mike, P., Golbeck, J., Ding, L., Finin, T., Joshi, A., Nowak, 

A., and Vallacher, R. 2005. Social networks applied. Intelligent Systems, IEEE 20, 1 

(jan.-feb.), 80 – 93. 

48. Tang, J., Sun, J.,Wang, C., and Yang, Z. 2009. Social influence analysis in large-scale 

networks. In Proceedings of the 15th ACM SIGKDD international conference on 



 99 

Knowledge discovery and data mining. KDD ’09. ACM, New York, NY, USA, 807–

816. 

49. Tantipathananandh, C., Berger-Wolf, T., and Kempe, D. 2007. A framework for 

community identification in dynamic social networks. In Proceedings of the 13th 

ACM SIGKDD international conference on Knowledge discovery and data mining. 

KDD ’07. ACM, New York, NY, USA, 717–726. 

50. Wang, J., Luo, Y., Zhao, Y., and Le, J. 2009. A survey on privacy preserving data 

mining. In Database Technology and Applications, 2009 First International 

Workshop on. 111 –114. 

51. Wang, Y., Cong, G., Song, G., and Xie, K. 2010. Community-based greedy algorithm 

for mining top-k influential nodes in mobile social networks. In Proceedings of the 

16th ACM SIGKDD international conference on Knowledge discovery and data 

mining. KDD ’10. ACM, New York, NY, USA, 1039–1048. 

52. Wellman, B. & Berkowitz, S. 1988. Social Structures: A Network Approach, 

Cambridge University Press . 

  



 100 

VITA AUCTORIS 
Sabbir Ahmed was born in 1979 in Dhaka, Bangladesh. He received his Bachelors 

degree in Computer Science from University of Windsor, Windsor, Ontario in 2002. 

His research interests include data mining, social network analysis and machine 

learning. 


	University of Windsor
	Scholarship at UWindsor
	2012

	Discovering Influential Nodes from Social Trust Network
	Sabbir Ahmed
	Recommended Citation


	Sabbir_Thesis_Front_1
	Sabbir_Thesis_Front
	Sabbir_Thesis_1.pdf
	CHAPTER 1
	INTRODUCTION
	1.2 Data mining
	1.3 Social Network Graph and Properties
	1.4 Social Network mining and Challenges
	1.5 Submodular Function Maximization
	1.6 Influence Maximization

	CHAPTER 2
	RELATED WORKS
	3.1 Trust-General Threshold Model
	3.2 Solution framework
	3.4 Discovering Influential Nodes
	3.5 Complexity Analysis
	3.6 Running Example

	Once all the neighbours of initial seed set S is processed and stored into queue T, the spreadTGT() method will call spreadTGT2() (figure 30). A variable called spread is initialized to 0. In spreadTGT2() method, each element of T (table 15) will be e...
	Then the spreadTGT() will further evaluate the nodes in T and check if any of non active nodes becomes further active. Only node 9 becomes as active according to TGT model as, 1 - inProbPos = 1 – 0.33 = 0.67 > 0.5 and 1 – inProbNeg = 1 – 1 = 0 < 0.5. ...
	EXPERIMETNS AND ANALYSIS
	BIBLIOGRAPHY


