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Abstract 

 

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and Single-Electron 

Transistor (SET) hybrid architectures, which combine the merits of both MOSFET and 

SET, promise to be a practical implementation for nanometer-scale circuit design. In this 

thesis, we design arithmetic circuits, including adders and multipliers, using SET/MOS 

hybrid architectures with the goal of reducing circuit area and power dissipation and 

improving circuit reliability. 

Thanks to the Coulomb blockade oscillation characteristic of SET, the design of 

SET/MOS hybrid adders becomes very simple, and requires only a few transistors by 

using the proposed schemes of multiple-valued logic (MVL), phase modulation, and 

frequency modulation. The phase and frequency modulation schemes are also further 

utilized for the design of multipliers with more discussions.  

Two types of SET/MOS hybrid multipliers are presented in this thesis. One is the 

binary tree multiplier which adopts conventional tree structures with multi-input counters 

(or compressors) implemented with the phase modulation scheme. Compared to 

conventional CMOS tree multipliers, the area and power dissipation of the proposed 

multiplier are reduced by half. The other is the frequency modulated multiplier following 

a novel design methodology where the information is processed in the frequency domain. 
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This method involves the design of digital-to-frequency and frequency-to-digital 

conversions which are also implemented with SET/MOS hybrid architectures. In this 

context, we explore the implicit frequency properties of SET, including both frequency 

gain and frequency mixing. The major merits of this type of multiplier include: a) 

simplicity of circuit structure, and b) high immunity against background charges within 

SET islands. 

One of the biggest challenges associated with SET-based circuits is the background 

charge effect. Background charges are mainly induced by defects or impurities located 

within the oxide barriers, and cannot be entirely removed by today’s technology. Since 

these random charges deteriorate the circuit reliability, we investigate different circuit 

solutions, such as feedback structure and frequency modulation, in order to counteract 

this problem. The feedback represents an error detection and correction mechanism 

which offsets the background charge effect by applying an appropriate voltage through an 

additional gate of SET. The frequency modulation, on the other hand, exploits the fact 

that background charges only shift the phase of Coulomb blockade oscillation without 

changing its amplitude and periodicity. Therefore, SET/MOS hybrid adders and 

multipliers using the frequency modulation scheme exhibit the high immunity against 

these undesired charges.  
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Chapter 1 

Introduction 

 

1.1 Motivations 

The scaling-down of the size of MOS transistors according to Moore's law – the 

number of transistors on a chip doubles about every two years – has taken place for the 

last 40 years, and pushed today’s CMOS technology towards the sub-50nm regime [1] 

(Moore's law has been adjusted around 2001 to reflect the realities of integrated circuits, 

and currently it states that the number of transistors is going to increase about 1.3 times 

every two years). However, MOSFET cannot be shrunk beyond certain limit. The 

International Technology Roadmap for Semiconductors (ITRS) [2] stated that “we have 

reached the point where the horizon of the roadmap challenges the most optimistic 

projections for continued scaling of CMOS.” While some advanced technologies, such as 

high-k dielectric, metal gate, or ultrathin silicon-on-insulator (SOI) film, may extend 

CMOS lifetime, 10nm gate length is labelled as the showstopper region where CMOS is 

going to face some fundamental limits, such as quantum limit. In order to continue the 

fascinating performance of CMOS scaling, various nanotechnologies have been 

investigated, bringing forward the advent of a new generation of nano-devices.  
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1.2 Single-Electron-Tunneling Technology 

Single-electron-tunneling technology [3] is among the most promising candidates for 

next-generation electronics which allows the control of a single electron or a small 

number of electrons. A basic element of this technology is the tunnel junction which can 

be used to build many different single-electron devices (SEDs), such as single-electron 

box, single-electron pump, single-electron trap, and so on. Single-electron transistor (SET) 

[4] is a special type of SED which is featured by its extremely-small size, ultra-low 

power dissipation, and unique Coulomb blockade oscillation characteristic. By utilizing 

such novel characteristics of SET, one is able to realize new functionalities with less 

number of devices.  

 In contrast to CMOS technology where current flows continuously, the charge 

transport in a SET is discretely controlled by the tunnel junction. Electrons are considered 

to tunnel through a tunnel junction strictly one after another.  

SET itself exhibits some intrinsic drawbacks, such as low current drivability, small 

voltage gain, and low temperature operation. Studies have shown that MOSFET and SET 

are rather complementary. Hybrid MOS and SET architectures which combine the merits 

of both MOSFET and SET promise to be a much practical implementation for 

nanometre-scale circuit design [5].  

1.3 Research Objectives 

The work presented in this thesis has three objectives: 

1. To design arithmetic circuits, including adders and multipliers, using hybrid MOS 

and SET architectures. 
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2. To further reduce circuit area and power dissipation by utilizing SET’s unique 

Coulomb blockade oscillation characteristic.  

3. To improve the reliability of SET-based circuits against background charges (BCs) 

by using different circuit structures.  

It is desirable to design adders and multipliers using hybrid MOS and SET 

architectures which are able to dramatically reduce the circuit area and power dissipation. 

While it is straightforward to design these circuits following conventional CMOS design 

styles, they do not utilize the potential benefits offered by the SET. By using the unique 

Coulomb blockade oscillation characteristic (i.e., the periodic I-V curve of SET), new 

functionalities can be effectively achieved with less number of devices through novel 

design methodologies.  

Since BCs (i.e., undesirable fractional charges on the island of SET induced by the 

defects or impurities located within the oxide barriers) create serious problem for SET-

based circuits [6], people working at different abstraction levels (i.e., device level, circuit 

level, and system level) are trying to find solutions to deal with this effect. As the circuit 

designers, we need to build robust circuits that are able to work properly with certain 

tolerance against BCs.  

1.4 Thesis Organization 

This thesis is organized as follows. Chapter 2 introduces the background of single-

electron transistor (SET). It starts with the introduction of the related physics and theory of 

single-electron-tunneling technology. Then the structure of SET and its unique Coulomb 

blockade oscillation characteristic are presented to provide the reader a general idea about 
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how single electrons transport in a SET. This chapter also addresses some important 

aspects associated with the SET, including simulation techniques, applications, and 

fabrications. Since Coulomb blockade oscillation is the most important characteristic of 

SET which is utilized throughout the research work, a variety of simulations using 

SIMON simulator are introduced at the end of this chapter. The results are used as the 

basic principles that guide the design of more complex circuits.  

Chapter 3 discusses the hybrid MOS and SET architectures. This chapter first 

introduces a simulation technique used to co-simulate MOSFET and SET, and then 

analyzes the performance of two typical SET/MOS hybrid architectures –– serial 

SETMOS and parallel SETMOS –– in terms of power dissipation, current driveability, 

and temperature effect. An adaptive feedback structure is also introduced in order to 

increase the circuit robustness against BCs. A SET/MOS hybrid analog-to-digital 

converter (ADC) is demonstrated as an example.  

Chapter 4 deals with the design of 1-bit binary full adder (FA), and provides three 

different implementations using modified SET/MOS hybrid architectures based on the 

schemes of multiple-valued logic (MVL), phase modulation and frequency modulation. 

The proposed FA fully utilizes the Coulomb blockade oscillation characteristic of SET and 

hence consumes less number of devices and power. The frequency modulated FA exhibits 

the high immunity against BCs and can be used to build multi-bit FAs.  

Chapter 5 focuses on the design of binary tree multipliers based on multi-input counters 

(or compressors) implemented using SET/MOS hybrid architectures. The structure of the 

proposed (3:2) and (7:3) counters is based on the phase modulation scheme presented in 

Chapter 4. We study the phase modulation scheme in details, and introduce new circuit 
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5 

structures to deal with some practical issues associated with the SET-based counters, such 

as temperature, BCs, and the operating seed.  

Chapter 6 proposes the SET-based frequency synthesis including frequency gain and 

frequency mixing, and introduces a novel design methodology for arithmetic operations 

based on the frequency modulation scheme (similar to the one used in Chapter 4). The 

main idea is to first convert the operands from digital to frequency representation, then 

perform arithmetic operations in the frequency domain before converting the result back 

to the digital representation. The demand for digital-to-frequency and frequency-to-digital 

conversions is driven by the simplicity of doing frequency multiplication and the high 

immunity against BCs.  

Finally, Chapter 7 concludes this thesis and provides recommendations for future work.  



 

Chapter 2 

SET Background 

 

2.1 Single-Electron Scaling  

The manipulation of a single electron was first demonstrated at the beginning of last 

century, but in solid state circuits it was not implemented until the late 1980s. The 

necessary nanofabrication techniques have become available during the past three 

decades, and have made possible a new field of solid state physics, single-electronics [7]. 

Single-electronics allows us to control the movement and position of a single electron 

or a small number of electrons. Consider a small conductor (traditionally called an island) 

to be electrically neutral (i.e., the number of electrons equals to the number of protons). 

Initially, the island does not generate any electric field which can be easily charged by an 

electron from the outside. With the net charge on the island of – e (i.e., fundamental 

charge of an electron, where e ≈ 1.6 × 10–19 C), the resulting electric field (for the island 

with the size less than 10nm) repulses the following electrons to be added. Although the 

fundamental charge is small at the human scale of things, the electric field (which is 

inversely proportional to the square of the island size) is rather strong for nanometer-

scale structures (as large as ~140 kV/cm on the surface of a 10nm sphere in vacuum). 
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This phenomenon makes it possible to control a single electron in a solid-state structure. 

More accurately, we have not isolated a single electron since many other electrons are 

still presented. But we are able to add (or remove) electrons to (or from) the island with 

single-electron precision [3].  

A more adequate measure to quantitatively understand single-electron transfer and 

related effects is not the electric field, but the charging energy, which is given by  

CeEC 2/2=      (2.1) 

where C is the capacitance of the island. Since thermal fluctuations will disturb the 

motion of electrons, the minimum charging energy to control an electron is  

 TkE BC >       (2.2) 

where kB is Boltzmann’s constant (i.e., kB ≈ 1.38 × 10–23 J/K) and T is the absolute 

temperature. This means that the capacitance C has to be smaller than 12aF for the 

observation of charging effects at the temperature of liquid nitrogen (77K) and smaller 

than 3aF for charging effects to appear at room temperature (300K). This requires the 

island size to be smaller than 15nm and 5nm, respectively. To use charging effects for the 

deterministic logic, most suggested single-electron devices (SEDs) require even higher 

values of EC (factor about 50) in order to avoid thermally-induced random tunneling 

events. As a result, for room temperature operation, the minimum feature size of the 

island has to be smaller than 1nm [8].  

In this size range, the electron kinetic energy (i.e., Ek) becomes substantial. It is very 

important to develop SEDs capable of working in this size range with EC >> Ek, thus 

avoiding complications stemming from the energy quantization effects. 
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2.2 Orthodox Theory 

Orthodox theory [9] of single-electron tunneling provides the unique guiding role in 

single-electronics. The theory is developed with the following assumptions: 

1) The electron energy spectrum within the island is continuous (i.e. the electron 

energy quantization is ignored). Strictly speaking this assumption is valid only if 

Ek << kBT, but it frequently gives an adequate description of observations as soon 

as Ek << EC. It should be mentioned that the electron transfer is discrete, but the 

electron energy is continuous. Since we are ignoring any quantization of electron 

energy in the island, SEDs cannot be included in the group of “quantum electronic 

devices” [10].  

2) The time taken by an electron tunneling through the barrier (i.e., τt) is assumed to 

be negligibly small in comparison with other time scales (including the interval 

between neighboring tunneling events). This assumption is valid for tunnel 

barriers used in SEDs of practical interest, where τt ~ 10–15 seconds.  

3) Coherent quantum processes consisting of several simultaneous tunneling events 

(i.e., co-tunneling) are ignored. This assumption is valid only when the electrons 

are well localized in the island [11]. This leads to the requirement that the 

resistance (i.e., RT) of all tunnel barriers in the system has to be large enough in 

order to effectively suppress the quantum-mechanical uncertainty of the electron 

location. According to Heisenberg’s energy uncertainty principle, the minimum 

resistance  of a tunnel barrier is given by 

  Ω≈> KehRT 262           (2.3) 
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where h is Planck’s constant (i.e., h ≈ 6.63 × 10–34 J·s). Notice that this 

relationship is of principal importance for SEDs as a whole which makes it 

possible to control a single electron. 

With above assumptions to be satisfied, the Orthodox theory is in quantitative 

agreement with virtually all the experimental data for systems with metallic conductors 

and gives a qualitative description of most results for most semiconductor structures.  

The main result of Orthodox theory can be concluded as follows [3]: the tunneling of a 

single electron through a particular tunnel barrier is always a random event with a 

certain rate which depends solely on the reduction of the free energy of the system as a 

result of this tunneling event.  

2.3 SET Structure  

The basic element of a SET [4] is the tunnel junction. If we consider a piece of 

conductor separated by an ultrathin dielectric, the overall structure will behavior as a 

tunnel junction, as shown in Figure 2.1 (a). Such arrangement of two conductors with an 

insulating layer in between not only has a huge resistance (up to MΩ), but also a finite 

capacitance (i.e., at the range of aF). According to the laws of classical electromagnetism, 

no current can flow through an insulating barrier; however, from the viewpoint of 

quantum mechanics, there is a non-vanishing probability for electrons to pass through it 

as long as the barrier is thin enough [12]. Most SEDs can be constructed by placing such 

tunnel junctions in series, such as single-electron box [13], single-electron pump [14], 

single-electron trap [15], single-electron turnstile [16], and so on, where the transport of 

electrons through the tunnel junction is discrete strictly one after another.  
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(a) 

 

(b) 

Figure 2.1: (a) Structure of a tunnel junction; (b) Structure of a single-electron transistor (SET) 

where the left one is the one-gate SET and the right one is the two-gate SET. 

(Reproduced with permission from [32]).  
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With two tunnel junctions that share a common electrode, known as the island, one 

can build a SET, as shown in Figure 2.1 (b), where the gate terminal is capacitively 

coupled to the island via a thin dielectric (the left one is the one-gate SET while the right 

one is the two-gate SET).  

If the source terminal of a SET is connected to the ground, and the drain and gate 

terminals are biased to the external voltage sources of VDS, VGS1, and VGS2, respectively 

(for a two-gate SET), the potential on the island of SET can be expressed as:  

  
ΣΣΣΣ

⋅
−++=

C
ekV

C
CV

C
CV

C
CV DS

TD
GS

G
GS

G
Island 2

2
1

1    (2.4) 

where k is the net number of electrons on the island, CΣ is the total device capacitance of 

SET (i.e., CΣ = CG1 + CG2 + CTD + CTS). It is VIsland that determines the voltage across the 

two tunnel junctions and hence controls the electron transport.  

According to the Orthodox theory, the electron tunneling event from a microscopic 

point of view is a stochastic process; however, from a macroscopic perspective, the 

current flowing through a SET is a deterministic behavior which depends on different 

external voltage or current biasing conditions. 

2.4 Coulomb Blockade Oscillation 

For constant voltage or current biased SET, its drain-to-source current or voltage 

exhibits an oscillating characteristic with respect to the input gate voltage. This 

phenomenon is known as Coulomb blockade oscillation [11], which is the most important 

property of the SET.  
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For the Coulomb blockade oscillation to occur, Orthodox theory must be satisfied. 

Other than this, SET’s drain-to-source voltage (i.e., VDS) cannot exceed e/CΣ. With e/CΣ < 

VDS < 3e/2CΣ, Coulomb blockade region no longer exists but Coulomb oscillation remains. 

If VDS is further increased, Coulomb oscillation will vanish out and SET functions as a 

regular resistor.  

To understand how electrons transprot in a SET, assume that initially the charge on the 

island is Q, then the electrostatic energy of the system (i.e., E1) can be expressed as  

  
Σ

=
C

QE
2

2

1       (2.5) 

Now if an electron tunnels from the source to the island, the total electrostatic energy of 

the system will become 

  
( )
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2      (2.6) 

According to the Orthodox theory, an electron tunneling event can only take place if it 

decreases the total energy of the system. That is 
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Since Q = CΣ · |V|, where |V| is the voltage drop across the tunnel junction, we can 

conclude that the electron tunneling event is possible only when 

  
Σ

>
C
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2
      (2.8) 

 
 

12 



Chapter 2
 

Notice that at higher temperature, electron may tunnel through the junction even though 

|V| is less than e/2CΣ due to the thermal energy effect. Assume that SET works at near 

absolute temperature (i.e., the thermal energy effect is negligible), then the electron 

tunneling event in a SET can only happen if |VIsland| > e/2CΣ (i.e., electron tunnels from the 

source terminal to the island) or |VDS – VIsland| > e/2CΣ (i.e., electron tunnels from the 

island to the drain terminal).  

To simplify the explanation, we set VDS equal to e/2CΣ and increase the gate votlage (i.e., 

VGS) from 0 to a considerable positive value. Since VIsland is determined by the external 

biasing voltages (refer to (2.4)), VIsland will increase along with VGS. Then from Figure 2.2 

(where α = e/2CΣ), we can observe that:  

1) When VIsland < α, the voltage drop across both source and drain tunnel juctions is 

less than α, hence there is no electron tunneling event happened and SET is in 

Coulomb blockade region –– see Figure 2.2 (a). 

2) If we increase VGS so that VIsland is greater than α –– see Figure 2.2 (b), one electron 

will tunnel from the source terminal to the island. Once an electron enters into the 

island, the VIsland is dropped by 2α (from point A to point B). As a result, the voltage 

drop across the drain terminal is greater than α, and then one electron tunnels from 

the island to the drain terminal. Right after the electron leaves the island, the VIsland 

returns back to its original value (from point B to point C) which induces another 

electron. In this way, a continuous current path is estabilished between the source 

and drain terminals.  

3)  With the further increase of VGS, VIsland is greater than 2α –– see Figure 2.2 (c), 

where the voltage drop across both source and drain terminals is greater than α. 
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However, since |VIsland – Vsource| > |Vdrain – VIsland|, from the probability point of view, 

electrons have more chance to tunnel from the source terminal to the island than 

from the island to the drain terminal. As a result, the net number of electrons on the 

island will be increased by one, and the VIsland will be reduced by 2α (from point A 

to point B). Like Figure 2.2 (a), the SET again enters into the Coulomb blockade 

region.  

4) When VIsland > 3α –– see Figure 2.2 (d), VIsland is first dropped by 2α (from point A 

to point B) with one more electron residuing on the island. Then similar to Figure 

2.2 (b), electrons keep tunneling from the source terminal to the drain terminal 

which create a continuous current path.   

From above observation, we can infer that the periodicity of electron tunneling current 

(i.e., IT) is 2α (i.e., e/CΣ) with respect to VIsland. By differentiating (2.4) (assume there is 

only one gate for SET, and VDS and k are constant), we can get that 

  GS
G

Island V
C
CV Δ⋅=Δ

Σ
    (2.9) 

As a result, the periodicity of IT with respect to VGS is e/CG.  

For the current biased SET, the VDS will oscillate with the same periodicity as the IT. 

The amplitude of VDS oscillation at near absolute temperature is e/CΣ with the positive and 

negative slopes of CG / (CΣ – CTD) and – CG /CTD, respectively. While these values will 

attenuate at higher temperature, they can be used as the good estimations to predict SET’s 

performance.  
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                                         (a)                                                                                       (b) 

 

 

                                         (c)                                                                                       (d) 

 

Figure 2.2: Electron tunneling mechanisms in the SET. (Reproduced with permission from [32]). 
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2.5 Simulation Techniques  

There are mainly three approaches used to simulate SET-based circuits:  

1) Monte Carlo (MC) simulation technique: MC technique [17] is the most popular 

approach used to simulate SED-based circuits (including SET which is special type 

of SED). MC approach starts with all possible tunneling events, calculates their 

probabilities, and chooses one of the possible events randomly using the 

probabilities for weighting. This is done many times to simulate the transport of 

electrons through the network.  

2) Master Equation (ME) simulation technique: ME technique is a description for 

the underlying Markov process [18] of electron tunneling from island to island, and 

thus the circuit occupies different states. With ME method, one needs the set of all 

possible states of the circuit, which are defined by the external voltage sources and 

the charge distribution in the circuit.  

3) SPICE macro modeling technique: This method models SET’s behaviour using 

equivalent circuits based on conventional microelectronic components [19, 20], 

such as voltage and current sources, diodes, and resistors. Although this approach is 

compatible with SPICE environment, the purely empirical nature makes them not 

convenient for the SET-based circuit design. 

MC technique is considered to be the most accurate way to find the characteristics of 

not only SETs, but any SEDs. Some of the well-known MC simulators are SIMON [21], 

MOSES [22], KOSEC [23], and SENECA [24]. At the end this chapter, we will simulate a 

constant current biased SET using SIMON simulator so as to examine different parameter 

effects on the Coulomb blockade oscillation.  
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2.6 Background Charge Effect 

One of the biggest disadvantages of single-electron-tunneling technology is its large 

charge sensitivity. This is good for sensors which can be used to build super sensitive 

electrometers. However, for logic applications which work at particular voltage or current 

biasing conditions, any trapped charge or the charge movement near the island could 

easily change the circuit operating point, and hence produces an error [25]. These 

undesirable charges are referred as BCs which are mainly induced by defects or impurities 

located within the oxide barriers, and cannot be entirely removed by today’s technology. It 

has been measured that BCs on the island of SET vary over a period from a few minutes 

to hours, and the variation generally follows Gaussian distribution with the high 

probability of being less than ±0.3e [6, 26].  

Researchers are trying to find solutions dealing with this problem at different levels: 

1) Device level: physicists and chemists are looking for different structures and 

materials to fabricate SET with as less BCs as possible.  

2) Circuit level: circuit designers try to build robust circuits that are able to tolerant 

certain amount of BCs. Notice that BCs only shift the phase of Coulomb blockade 

oscillation without changing the amplitude and periodicity, SET-based circuits will 

exhibit high immunity against BCs if the information is encoded into the amplitude 

or frequency. 

3) System level: people at this level try to add certain redundancy into the logic to 

tolerant BCs, such as using neural network.  

This thesis deals with BCs at the circuit level by using novel circuit configurations and 

different design methodologies.  
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2.7 Applications  

Memory design is the most attractive application of SET due to the fact that one can 

achieve extraordinary storage density at an extremely low power consumption by using 

SETs. Also, for SET-based memories, several known solutions exist to the effect of BCs 

[27]. Many research groups have reported different memory architectures based on SETs 

[28, 29], and a 128 MB prototype for giga-scale SET memory has already been 

implemented on the silicon wafer [30].  

In terms of logic applications, SET is very suitable for the multiple-valued logic (MVL) 

design [31]. Because of the Coulomb blockade oscillation characteristic, SET has multiple 

threshold voltages (this is in contrast to MOSFET which has single threshold voltage) 

which can be directly linked to the MVL operations. MVL functions can be therefore 

realized by using SETs with a significant reduction of the number of devices.  

2.8 Intrinsic Drawbacks 

Despite limitations of low temperature operation and the background charge effect, 

SET suffers from low current drivability and small voltage gain. As mentioned before, to 

sustain Coulomb oscillation, the drain-to-source voltage of SET cannot exceed 3e/2CΣ. 

This results in the biasing current of SET at the range of nA which cannot drive large 

capacitive load (say 100aF) at relatively high speed. Also, given the slopes of Coulomb 

oscillation (i.e., CG / (CΣ – CTD) and – CG /CTD, respectively), the voltage gain of SET is 

normally around (or less than) one. Since MOSFETs have advantages that can compensate 

these intrinsic drawbacks of SET, hybrid MOS and SET architecture is considered to be a 

more practical implementation for the nanometer-scale circuit design.  
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Although a complete replacement of MOSFET by SET is unlikely in the near future, it 

is true that by combining MOSFET and SET, we can bring out a lot of new functionalities 

which cannot be mirrored in pure CMOS technology [32].  

2.9 Fabrications 

Historically, the research on SET fabrications started with metals and superconductors 

[33–35] and then expanded to semiconductors [36]. The reason of using silicon as a base 

material for SET fabrication is that we can take advantage of the existing CMOS 

fabrication technologies. To fabricate SETs on the silicon wafer faces the following 

challenges: 

1) Island dimension: the island diameter has to be on the order of 2 ~ 3 nm for sub-

ambient temperature operation (i.e., –150 ºC ~ –50 ºC), and ~1nm for room 

temperature. It is very difficult for today’s lithography to isolate a tiny piece of 

material with a size of a few nanometers. An alternative to lithography techniques 

is needed for fabricating silicon SETs.  

2) Batch processing: reproducibility in SET fabrication is very important. A cost-

effective SET fabrication technology should be the one that can be used for batch 

processing (like CMOS).  

3) Background charge effect: since BCs create serious problem for the proper 

operation of SET [26], all the processing steps and materials used should be very 

clean in order to avoid charge trapping.  

4) Energy quantization effect: quantization effect creates another problem for the 

practical operation of SET which introduces some unpredictable irregularities to the 
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Coulomb blockade oscillation. Among possible approaches to avoid such complex 

features might be the use of highly doped silicon nano-wires or the use of charge 

injection in silicon nano-crystals deposited on SETs [37].  

5) Control of tunnel junction resistance: it is difficult to fabricate the tunnel junction 

with the resistance as small as possible which is still larger than 26KΩ for proper 

quantum confinement. 

Despite so many difficulties, various SET fabrication techniques have been reported. 

Pattern Dependent Oxidation (PADOX) technique [38] appears to be a very reliable 

technology for fabricating SETs which is first introduced by NTT Research Laboratories. 

The process is based on the thermal oxidation of a short silicon wire which is connected to 

the wide silicon layers. The initial silicon wire is defined in a very thin silicon-on-insulator 

(SOI) layer by electron beam lithography and dry etching, and then it is thermally 

oxidized in dry oxygen ambient. A polysilicon gate deposition over the silicon wire 

defines the final SET structure. An equivalent island with 7nm diameter is effectively 

formed in the silicon wire whose CΣ = 1.5aF. Such small dimensions which are below the 

lithographic limit are possible because the size of the remaining silicon is reduced as 

oxidation proceeds.  

Providing islands with sub-lithographic controlled dimensions is one of the advantages 

of thermal oxidation. Another important feature of PADOX is that the gate capacitance 

(i.e., CG) of the silicon island shows an almost linear relationship to the designed length of 

the silicon wire which makes the reproducible silicon SET fabrication possible.  

Other SET fabrication techniques are listed as follows:  
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 Lithographic point contact [37]: this SET architecture uses the point contact of two 

triangular-shaped MOSFETs which are fabricated on SOI wafer using electron 

beam lithography and an anisotropic etching technique. The width of the point 

contact channel is less than 30nm. Although the tunnel barriers and silicon dots are 

not intentionally formed, they are naturally introduced in the channel. Some devices 

are found to operate as SETs even at room temperature.  

 Scanning Tunneling Microscope (STM) nano-oxidation [39]: a layer of 3 nm thick 

titanium is deposited by evaporation on the thermally oxidized SiO2 n-Si substrate. 

The Ti surface is oxidized by anodization using the STM tip as a cathode through 

the water that adhered to the surface of the Ti from the atmosphere, and oxidized 

titanium lines of nanometer size are formed which are used for the formation of the 

small island of SET.  

 Focused Ion Beam (FIB) prototyping [40]: this is based on two steps, the first one 

consists of preparing a relatively large and long SOI wire connected between two 

silicon pads on SOI with a thickness of around 30nm, and the second one is the FIB 

treatment which reduces the channel width to a dimension as small as 50nm. The 

silicon wire is further oxidized to decrease its size from 30nm to around 15nm in 

diameter, and to grow an all-around gate oxide.  

 Sidewall patterning method [41]: this is based on SOI nano-wire processing 

combined with an electrostatically defined island where the tunnel barrier are 

electrically formed by the sidewall depletion gates. This fabrication process is 

interesting because the tunnel barrier and the size of the island are controlled in a 

simple yet smart way, beyond the lithographic limits. 
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Recent alternatives to silicon SETs are based on carbon nano tubes (CNTs) [42] and 

some molecular materials [43, 44]. These new nano materials have the potential to be co-

integrated in or above the silicon CMOS devices. CNTs have also been suggested as the 

possible candidates for room-temperate operated SETs [45].  

2.10 Case Study: SIMON Simulations  

Since Coulomb blockade oscillation is the unique characteristic of SET which can be 

utilized to effectively achieve a lot of functionalities with less number of devices through 

novel design methodologies, we first of all study this characteristic in detail, and examine 

different parameter effects on this characteristic using the SIMON simulator. The results 

can be used as the basic principles to guide the design of more complex circuits.  

The circuit simulated in the SIMON simulator is shown in Figure 2.3 which is a 

constant current biased one-gate SET with a loading capacitor. The parameters used for 

the simulations are as follows: RTD = RTS = 1MΩ, CTD = CTS = 1aF (SET’s source and 

drain junction resistance and capacitance), CG = 2aF (SET’s gate capacitance), IBias = 2nA 

(biasing current), CLoad = 100aF (loading capacitance), T = 1K (operating temperature), 

and BC = 0 (background charge on the island of SET).  

If increasing VGS from 0 to 80mV, we will get a voltage oscillation at VDS. By changing 

the following parameters one at a time, we can observe that:  

1) Effect of loading capacitance: with CLoad = 1aF, 10aF, 100aF, and 1fF, respectively, 

we get four VDS oscillations, as shown in Figure 2.4. It is observed that when CLoad is 

small (i.e., less than 10aF), it will have an effect on the VDS oscillation. The VDS 

oscillation with CLoad greater than 100aF reflects the real SET characteristic. This 
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indicates that when we build large SET-based circuits, interconnected SETs will affect 

each other. In order to prevent this effect, a large grounded capacitor (with the 

capacitance more than 100aF) needs to be added to the node of interconnected SETs.  

2) Effect of biasing current: with IBias increasing from 2nA to 11nA in the step of 3nA, 

we get four VDS oscillations, as shown in Figure 2.5. It is observed that as IBias 

increases, the level of VDS (i.e., the averaging VDS) increases but the amplitude of VDS 

decreases. In order to sustain Coulomb oscillation, IBias for this configuration cannot 

exceed 10nA. With further reduced junction resistance and device capacitance, IBias 

can be as high as a few hundred nA.  

3) Effect of total device capacitance (i.e., CΣ): with CTD = CTS = 1aF, 1.5aF, and 2aF (i.e., 

CΣ = 3aF, 4aF, and 5aF), respectively, we get three VDS oscillations, as shown in 

Figure 2.6. It is observed that as CΣ increases, the amplitude of VDS oscillation 

decreases (i.e., the maximum VDS decreases but the minimum VDS remains constant). 

The amplitude of VDS oscillation is inversely proportional to CΣ which can be 

expressed as e/CΣ at near absolute temperature.  

4) Effect of input gate capacitance: with CG = 1aF, 2aF, and 3aF, respectively, we get 

three VDS oscillations, as shown in Figure 2.7, where we set CTD = CTS = 1.5aF, 1aF, 

and 0.5aF (corresponding to the CG of 1aF, 2aF, and 3aF, respectively) so as to 

maintain the same CΣ = 4aF (this ensures the same amplitude of VDS oscillation for 

better comparison) and increase VGS from 0 to 160mV. It is observed that as CG 

increases, the periodicity of VDS oscillation decreases. The periodicity of VDS 

oscillation is inversely proportional to CG which can be expressed as e/CG.  
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5) Effect of temperature: with operating temperature increasing from 1K to 21K in the 

step of 10K, we get three VDS oscillations, as shown in Figure 2.8. It is observed that as 

the temperature increases, the amplitude of VDS decreases (i.e., the maximum VDS 

decreases but the minimum VDS remains constant). In order to sustain Coulomb 

oscillation, the operating temperature for this configuration has to be less than 100K. 

With further reduced device capacitance (i.e., CΣ < 3aF), SET is able to work at room 

temperature.  

6) Effect of BCs: with BCs on the island of SET being –0.1e, 0, and 0.1e, respectively, 

we get three VDS oscillations, as shown in Figure 2.9. It is observed that BCs only shift 

the phase of VDS oscillation without changing its amplitude and periodicity. Positive 

BCs shift VDS oscillation to the right while negative BCs move VDS oscillation to the 

left. Only fractional BCs will change the phase of VDS oscillation. This observation 

indicates that the SET-based circuits will exhibit high immunity against BCs if the 

information is encoded into the amplitude or periodicity of this oscillation.   

7) Effect of second gate voltage: in order to examine this effect, we add one more gate 

for SET with the gate capacitance of 1aF. With the voltage applied on the second gate 

of SET (i.e., VGS2) being –100mV, 0, and 100mV, respectively, we get three VDS 

oscillations, as shown in Figure 2.10. It is observed that the effect of VGS2 is the same 

as the effect of BCs (i.e., only shift the phase of VDS oscillation without changing its 

amplitude and periodicity). Positive VGS2 shifts VDS oscillation to the left while 

negative VGS2 moves VDS oscillation to the right. This observation implies that one is 

able to offset the effect of BCs by applying appropriate voltage through an additional 

gate of SET.  
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Figure 2.3: Constant current biased SET in SIMON simulator environment.  

 

 

 

Figure 2.4: Effect of CLoad on VDS oscillation, where CLoad = 1aF, 10aF, 100aF, and 1fF.  
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Figure 2.5: Effect of IBias on VDS oscillation, where IBias = 2nA, 5nA, 8nA, and 11nA.  

 

 

 

Figure 2.6: Effect of CΣ on VDS oscillation, where CΣ = 3aF, 4aF, and 5aF.  
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Figure 2.7: Effect of CG on VDS oscillation, where CG = 1aF, 2aF, and 3aF.  

 

 

 

Figure 2.8: Effect of temperature on VDS oscillation, where T = 1K, 11K, and 21K.  
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Figure 2.9: Effect of BCs on VDS oscillation, where BC = – 0.1e, 0, and 0.1e.  

 

 

 

Figure 2.10: Effect of VGS2 on VDS oscillation, where VGS2 = –100mV, 0, and 100mV. 
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Chapter 3 

SET/MOS Hybrid Architectures 

 

3.1 Introduction 

SET is considered to be a promising candidate for further VLSI design because of its 

nanometer-scale feature size, ultra-low power dissipation, and unique Coulomb blockade 

oscillation characteristic. Unfortunately, circuits with pure SETs have very limited 

applications due to the low current drivability, small voltage gain and low temperature 

operation. Study shows that MOSFET and SET are rather complementary. Since 

MOSFET has advantages such as high-speed driving and high voltage gain that can 

compensate for the intrinsic drawbacks of SET, hybrid MOS and SET architectures, 

which combine the merits of both MOSFET and SET, promise to be a more practical 

implementation for nanometer-scale circuit design [32]. With hybrid circuits, a lot of new 

functionalities can be achieved with less number of devices which cannot be mirrored in 

pure CMOS technology.  

In this chapter, we first introduce the MIB compact mode which can be used to co-

simulate MOSFET and SET. Then we simulate and compare two typical SET/MOS 

hybrid architectures – serial and parallel – in terms of power dissipation, current 
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drivability and the temperature effect. Since BCs create serious problem on the circuit 

performance, we propose an adaptive feedback structure which dramatically increases the 

robustness of hybrid circuits against BCs. An improved SET/MOS hybrid analog-to-

digital converter (ADC) is also presented as an example which takes advantage of the 

proposed feedback structure.  

3.2 Hybrid MOS and SET Co-Simulation 

MC technique is considered to be the most accurate method to simulate SED-based 

circuits (including SET) which is based on probability calculation. However, this method 

takes very long time if the circuit becomes large and cannot be used to co-simulate with 

MOSFETs. For example, each simulation conducted at the end of Chapter 2 using 

SIMON simulator takes more than three minutes (based on a general personal computer), 

and there are only components of tunnel junctions, resistors, capacitors, and voltage and 

current sources that can be used to build large circuits.  

MIB (named after three authors [46]) compact model of SET achieves very fast 

simulation speed. The model is developed using ME technique and has been verified with 

perfect match to the MC result. The Verilog-A version of this model can be easily 

integrated into a conventional SPICE simulator through the Verilog-A interface [47].  

MIB model is founded on the following assumptions:   

1) It obeys Orthodox theory of single-electron tunneling; 

2) The interconnect capacitances associated with gate, source, and drain terminals are 

much larger than the device capacitances (i.e., CTD, CTS, CG, or CG2), which ensures 

that the total device capacitance with respect to ground (i.e., CΣ) equals to the 

summation of all device capacitances.  
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Remember the simulation conducted at the end of Chapter 2 where the small loading 

capacitance has an effect on the actual SET characteristic. In fact, in a circuit where many 

SETs are connected to each other, CΣ of any SET not only depends on its own device 

capacitances but also on the parameters of other SETs. This difficulty can be solved if the 

second assumption holds true. For hybrid MOS and SET circuits, because the 

interconnect capacitance between MOSFET and SET (via connection lead) is much 

larger than SET’s device capacitances (a few aF at most), the second assumption appears 

to be very practical.  

MIB compact model not only integrates device capacitances and resistances but also 

temperature and BCs as the model parameters which is very attractive for hybrid MOS 

and SET co-simulation [48].  

In the following of the thesis, we use MIB compact model for SETs along with 

BSIM3v3 (for CMOS 180nm technology) and BSIM4 (for CMOS 65nm technology) 

Spector models for MOSFETs. The hybrid MOS and SET co-simulations are conducted 

using conventional Spector simulator in Cadence analog environment.  

3.3 Serial and Parallel SETMOS 

There are two widely used hybrid MOS and SET architectures, one is SET and 

MOSFET connected in serial biased by one current source, and the other is SET and 

MOSFET connected in parallel biased by two current sources, as shown in Figure 3.1. In 

the remainder of the thesis, they are called serial SETMOS and parallel SETMOS, 

respectively.  
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                         (a)                                                                                   (b) 

 

Figure 3.1: (a) Serial SETMOS; (b) Parallel SETMOS. 

 

 

 The serial SETMOS structure is first proposed by Inokawa et al. [31] and has been 

used as the basic building block to construct many functional circuits, such as static 

random-access memory (SRAM) [31], analog-to-digital converter (ADC) [31, 49], 

random-number generator (RNG) [50], voltage-controlled oscillator (VCO) [51], and so 

on. The parallel SETMOS structure is first introduced by Mahapatra et al. [46–48] which 

increase the current drivability at the cost of increased power consumption.  
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In both structures, NMOS transistor is biased in the sub-threshold region in order to 

achieve a high voltage gain. This is done by changing the gate voltage of NMOS 

transistor in the serial SETMOS and the source voltage of NMOS transistor in the parallel 

SETMOS, respectively. VPC (‘PC’ stands for phase control) is used to adjust the phase of 

voltage oscillation at SET’s drain terminal (i.e., VDS|SET) as a result of increasing the input 

gate voltage (i.e., VIN). Due to the constant biasing current for NMOS transistor in both 

structures, VDS|SET oscillation is then transferred with amplified amplitude to the output 

node (i.e., VOUT).  

We then simulate the two structures and compare their performance in terms of power 

dissipation, current drivability, and temperature effect. The following device parameters 

are used for the simulations: for all SETs, CTD = CTS = 0.1aF, CG1 = CG2 = 0.13aF, RTD = 

RTS = 1MΩ; for the NMOS transistors, W = 500nm and L = 180nm. To sustain Coulomb 

blockade oscillation, the constant current source connected with the SET in Figure 3.1 

need to be chosen properly ― normally set as several tens of nA. The values of all 

current and voltage sources used in Figure 3.1 are summarized in Table 3.1.  

Figure 3.2 shows the simulation results for both serial and parallel SETMOSs at room 

temperature. It can be seen that the amplitude and periodicity of VDS|SET oscillation with 

respect to VIN are about 200mV and 1.24V, respectively. The output voltages of both 

serial and parallel SETMOSs oscillate with amplitude of 1.6V and the same periodicity as 

VDS|SET. Notice that the output voltage polarity for serial SETMOS is the same as VDS|SET 

while for parallel SETMOS it is inversed.  
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TABLE 3.1  PARAMETERS OF  SERIAL AND PARALLEL SETMOSS 

 

Serial SETMOS 

IDC 40nA 

VGG 655mV 

VPC 330mV 

Parallel 
SETMOS 

IDC1 40nA 

IDC2 1µA 

VSS –283mV 

VPC 330mV 

 

 

 
 

Figure 3.2: VDS|SET and output voltage oscillations where VOUT1 is the output of serial SETMOS 

and VOUT2 is the output of parallel SETMOS. 
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3.3.1 Power Dissipation 

It is known that the power dissipation of MOSFETs is dominated by dynamic power 

during the logic transition region where there is a current from VDD to ground. However, 

the power dissipation of SETs is mostly consumed by static power at non-transition 

regions (i.e., the output is logic ‘0’ or ‘1’) [52]. This is because for constant current 

biased SET, electrons keep tunneling into and out of the island which produce the 

continuous current path. To calculate the total power dissipation of serial and parallel 

SETMOS in Figure 3.1, we use an ideal clock signal as the input with voltage levels of 0 

and 450mV (as a result, according to Figure 3.2, the serial SETMOS functions as an 

inverter while the parallel SETMOS acts as a buffer) and the period of 2μs, and then run 

transient analysis at room temperature.  

Simulation results are shown in Figure 3.3. It is found that the serial SETMOS has 

ultra-low power dissipation of 35.1nW due to the small biasing current of IDC which is 

40nA. For the parallel SETMOS, however, the total power dissipation turns out to be as 

high as 676.5nw which is dominated by the power of NMOS transistor (665.5nW).  

3.3.2 Current Drivability 

The driving drivability of both serial and parallel SETMOS can be tested by adding a 

loading capacitance at output node. Figure 3.4 shows output voltages (based on the same 

input used in Figure 3.3) with different loading capacitances for both serial and parallel 

SETMOSs. It is observed that the serial SETMOS can only drive a capacitive load of 

several fF; however, the parallel SETMOS is able to drive up to several hundreds of fFs 

due to large biasing current of IDC2 which is 1μA. 
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Figure 3.3: Transient analysis of serial and parallel SETMOSs where VIN, VDS|SET, VOUT1, and 

VOUT2 are defined in Figure 3.2. 

 

 

                                              (a)                                                                           (b) 

Figure 3.4: Loading effect on the output of serial SETMOS (a) and parallel SETMOS (b).  
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3.3.3 Temperature Effect 

Pure SET-based circuits can only work at extremely low temperature (usually less 

than 100K). At higher temperature, the amplitude of Coulomb Blockade oscillation will 

be reduced. One of the most important advantages of hybrid MOS and SET architectures 

is that they can work at much higher temperature [53]. Due to the fact that MOSFET has 

a large voltage gain which can amplify the tiny output voltage swing of SET to an 

acceptable level. Serial and parallel SETMOSs are able to work at room temperature; 

however, they are still very sensitive to the temperature variation. Figure 3.5 shows 

output voltages (based on the same input used in Figure 3.3) at different temperature 

(from 10 °C to 30 °C with increment of 5 °C).  

 

 

                                              (a)                                                                                (b) 

 
Figure 3.5: Temperature effect on the output of serial SETMOS (a) and parallel SETMOS (b).  
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Some experimental data with different temperatures are shown in Table 3.2, indicating 

that as the temperature decreases, the threshold voltage (VTH) of NMOS transistor 

increases while the amplitude of VDS oscillation decreases (i.e., the peak value of VDS|SET 

decreases, but the valley value of VDS|SET remains almost the same). In other words, the 

voltage gain of NMOS transistor has a positive temperature coefficient, while the 

amplitude of VDS oscillation of SET exhibits a negative one. Therefore, by utilizing the 

opposite temperature responses of SET and NMOS transistor, both serial and parallel 

SETMOSs could be less temperature-dependent.  

 

TABLE 3.2  TEMPERATURE EFFECT ON SET AND MOSFET DEVICES 
 

Temperature 
VTH (mV) of 

NMOS transistor 
Peak voltage (mV) 

of VDS|SET 
Valley voltage (mV) 

of VDS|SE 

100 °C 497.2 312.7 160.1 

80 °C 509.8 320.1 160.1 

60 °C 522.3 327.3 160.1 

40 °C 534.8 334.3 160.1 

20 °C 545.4 340.9 160.4 

0 °C 554.1 347.5 160.3 

–20 °C 562.7 353.7 160.2 

–40 °C 572.1 359.7 160.4 

–60 °C 581.1 365.4 160.3 

–80 °C 588.9 370.5 160.1 

–100 °C 594.3 375.5 160.1 
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3.4 Robust Design against Background Charges  

It is known that BCs shift the phase of Coulomb blockade oscillation which for SETs 

working at voltage or current mode will result in circuit malfunction. Remember that the 

effect of BCs on VDS|SET oscillation is the same as that of voltage applied on the second 

gate of SET; we therefore propose a feedback structure which counteracts the effect of 

BCs by introducing a feedback voltage through another gate of SET.  

3.4.1 Adaptive Feedback Structure 

Since the fluctuation of BCs is random in nature, we need to find a way that is able to 

automatically adjust the output voltage, depending on the amount of charges on island of 

SET. Figure 3.6 shows a parallel SETMOS with an adaptive feedback structure which 

actually employs an error detection and correction mechanism.  

 

 

 
Figure 3.6: Parallel SETMOS with an adaptive feedback structure.   
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Before explaining how the feedback works, let us first examine the effect of BCs on 

the output of parallel SETMOS. Figure 3.7 shows the voltage oscillations of VDS|SET and 

VOUT versus VIN of the parallel SETMOS with different BCs. In this case, the phase of 

VDS|SET (also VOUT) is initially shifted by 2π compared to the one in Figure 3.2 (i.e., VOUT2), 

which can be done by changing the value of VPC.  

 

 

 

 

Figure 3.7: VDS|SET and VOUT oscillations of the parallel SETMOS (without feedback) with BCs 

changing from –0.3e to 0.3e. 
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For VDS|SET and VOUT oscillations of Figure 3.7,  if input voltages are chosen to be VL 

and VH (representing logic ‘0’ and ‘1’, respectively), the parallel SETMOS structure 

exhibits good immunity against BCs when the input is logic ‘1’ (i.e., VIN = VH = 700mV). 

This is because that the transfer of voltage oscillation from SET’s drain terminal (i.e., 

VDS|SET) to the output node (i.e., VOUT) is based on the threshold logic of NMOS transistor. 

Even though VDS|SET varies a lot when VIN = VH due to the presence of BCs, VOUT remains 

almost zero since VDS|SET is always greater than the threshold voltage of NMOS transistor. 

However, when the input is logic ‘0’ (i.e., VIN = VL = 0V), VOUT changes significantly 

even with small amount of BCs, resulting in incorrect logic operation. As a result, for the 

circuit robustness against BCs, we only need to consider the reliability issue during the 

input period of logic ‘0’.  

The working principle of the circuit in Figure 3.6 is as follows. When VIN is logic ‘0’, 

P1 is on. If there is no BC during this period, VOUT will be logic ‘1’ and P2 will be off, 

resulting in no feedback path in the circuit. However, if there are BCs that are large 

enough to change VOUT from logic ‘1’ to ‘0’, P2 will be on, forcing the feedback voltage 

(i.e., VFB) to increase which adjusts VOUT accordingly. Once VOUT returns back to logic ‘1’ 

for correct logic operation, P2 will be off again, leaving VFB constant to offset certain 

amount of BCs. On the other hand, when input is logic ‘1’, P1 is off with no feedback 

path in the circuit. In fact, since VOUT is always logic ‘0’ during this period which is 

logically correct regardless the presence of BCs. Thus, no feedback is required at this 

moment.  

It should be mentioned that the operating speed of SET is much slower than MOSFET 

due to the low biasing current. The delay of the circuit in Figure 3.6 from the input to the 
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output is about 10ns, most of which is required by SET. Since the feedback is designed to 

play a role right after the circuit becomes logically incorrect, the first step of the circuit in 

each clock cycle is to evaluate the logic correctness. Therefore, it is critical to add a 

buffer in the feedback path to match the delay. 

Simulation results show that the circuit in Figure 3.6 is able to counteract the effect of 

BCs effectively, as shown in Figure 3.8, where VFB varies with different amount of BCs 

on island of SET. The circuit is able to tolerance BCs up to ±0.3e.  

 

 

 

 

Figure 3.8: Simulation result of parallel SETMOS with adaptive feedback of Figure 3.6 where 

BCs = 0, 0.1e, 0.2e, and 0.3e. 
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3.4.2 Improved SET/MOS Hybrid ADC using Adaptive Feedback 

The proposed parallel SETMOS with adaptive feedback structure if working as an 

inverter is more complicated than its CMOS counterpart. However, parallel SETMOS is 

not just an inverter (because of the Coulomb blockade oscillation). Other circuits that 

incorporate it as the basic building block can be much simpler. SET/MOS hybrid ADC is 

such an example.  

SET/MOS hybrid ADC has already been proposed by other research groups which 

consists of a sample/hold circuit, a capacitor divider, and several ADC units (which is 

actually the serial SETMOS) [31, 49]. The circuit has very low current drivability due to 

the small biasing current. Also, the effect of BCs significantly limits the practical 

application of this circuit.  

In this work, we use parallel SETMOS as the ADC unit in order to increase current 

drivability. Also along with adaptive feedback structure, the circuit exhibits higher 

immunity against BCs. Since the input of ADC is a continuous analog signal, we need to 

consider the background charge effect over the entire input range instead of certain 

values as mentioned previously for the digital applications. Therefore, the adaptive 

feedback structure used for ADC units is re-designed, as shown in Figure 3.9. Assume all 

MOS transistors in this figure have the same threshold voltage (i.e., VTH|N1 = VTH|N2 = 

|VTH|P1| = |VTH|P2| = VTH). With an appropriate parameter selection, one can guarantee 

that with no BC, VOUT will be smaller than VTH as long as VIN is smaller than VTH, thus 

producing logic ‘0’. During this period, P1 and P2 are on while N1 and N2 are off, 

resulting in no feedback in the circuit. However, if there are BCs that cause VOUT to be 

greater than VTH, N1 will be on and P2 will be off, and hence a feedback path through P1 
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and N1 will be established, forcing VOUT to go back to its desired value. Once VOUT is 

reduced to be smaller than VTH again, the feedback path will be cut off, leaving VFB 

constant to offset the BCs. On the other hand, when VIN is greater than VTH, the feedback 

path through N2 and P2 will play a role in the same way to correct the output logic 

regarding to the BCs.  

In the real situation, it will take some time for MOSFETs to turn on and off, and the 

switching time for PMOS and NMOS is a little different. However, if the threshold 

voltage of PMOS and NMOS in the feedback is chosen carefully, the circuit will 

converge to an appropriate point where the output can be adjusted accordingly.  

 

 

 

Figure 3.9: Parallel SETMOS with adaptive feedback used for the ADC units.   
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Figure 3.10 shows the simulation result of the circuit in Figure 3.9 with different 

amount of BCs on island of SET. Since SET is a multi-threshold device, the feedback 

structure is only valid during the first period of VOUT oscillation where VFB stays at 

different voltage levels that maintain the constant phase of VOUT oscillation without being 

affected by the BCs.  

 

 

 

 

Figure 3.10: Simulation result of the circuit of Figure 3.9 with BCs = 0, 0.1e, 0.2e, and 0.3e..   
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In order to make all the periods of VOUT oscillation less sensitive to the BCs, the input 

voltage needs to be biased within the range corresponding to the first period of VOUT 

oscillation before going to the feedback structure. Figure 3.11 (a) shows the input and 

output of an ADC circuit. The feedback structure with a biasing network used for output 

bit D1 and D0 is shown in Figure 3.11 (b) and (c), respectively.  

 

 

(a) 

 

 

(b) 
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(c) 

 

Figure 3.11: (a) Input and output relationship of a 3-bit ADC circuit; (b) The feedback structure 

with the biasing network used for the output bit D1; (c) The feedback structure with 

the biasing network used for the output bit D0.  

 

 

It can be seen from Figure 3.11 (b) and (c) that each digital output bit is determined by 

the combination of higher bits. The biasing network for a higher bit turns out to be 

simpler and faster. Since the most significant bit (i.e., D2 which only utilizes the first 

period of VOUT) is very reliable against BCs, the lower output bits (i.e., D1 and D0) are 

quite reliable as well. The feedback structure applied on each ADC unit acts as a shield 

covering every period of VOUT oscillation which protects the ADC circuit from being 

affected by the BCs.  
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Figure 3.12 shows the entire schematic of a 3-bit SET/MOS hybrid ADC circuit. 

Simulation results in Figure 3.13 shown that without feedback, the circuit output will be 

totally destroyed due to the effect of BCs; however with feedback, the output is highly 

immune to BCs with the tolerance up to 0.3e. 

 

 

 

 

Figure 3.12: Improved 3-bit SET/MOS hybrid ADC with adaptive feedback structure.  
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(a) 

 

(b) 

 
Figure 3.13: Simulation results of the 3-bit SET/MOS hybrid ADC without (a) and with (b) the 

feedback, where BCs = 0, 0.1e, 0.2e, and 0.3e.  
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3.5 Summary 

In this chapter, we first introduced the simulation technique used for SET/MOS hybrid 

circuits based on MIB compact model for SET. Then we analysed the performance of 

two widely used SET/MOS hybrid architecture –– serial and parallel SETMOSs –– in 

terms of power dissipation, current drivability, and temperature effect. Study shows that 

serial SETMOS has extremely low power dissipation and very weak current drivability 

because of the small biasing current. Parallel SETMOS has strong current drivability at 

the cost of increased power dissipation. Both serial and parallel SETMOSs are able to 

work at room temperature, but still very sensitive to the temperature variation. By taking 

advantage of the opposite temperature coefficients of the voltage gain of MOSFETs and 

the amplitude of Coulomb oscillation, SET/MOS hybrid circuits could be less 

temperature-dependent. In order to increase the circuit robustness against BCs, we also 

proposed an adaptive feedback structure which is actually an error detection and 

correction mechanism. The offset of BCs is realized by applying a feedback voltage 

through a gate terminal of SET. Finally, a SET/MOS hybrid ADC is demonstrated as an 

example that uses such a feedback structure and exhibits high immunity against BCs with 

the tolerance up to 0.3e. 

 

 



 

Chapter 4 

SET/MOS Hybrid Binary Full Adders 

 

4.1 Introduction 

Binary full adder (FA) is the key element for arithmetic operations. It is therefore of 

special interest to design FA with extremely small size and ultra-low power dissipation. 

Extensive research work has been done on the FA design based on single-electron-

tunneling technology, utilizing a variety of methods such as majority logic [54, 55], linear 

threshold logic [56], pass-transistor logic (PTL) [57], binary decision diagram (BDD) [58], 

and many others [59–61]. While these pure SED-based FAs consume small area and 

power, they can only work at very low temperature (less than 10K), making them 

impractical for real applications. Several FAs using hybrid MOS and SET architectures 

have also been reported with increased temperature operation (up to room temperature) 

[62–64]; However, some of them [62, 63] simply adopted conventional CMOS FA 

structures which did not adequately take advantage of the new characteristic of SET. The 

hybrid FA in [64] did utilize Coulomb blockade oscillation characteristic that reduced the 

number of devices, the less regularity of those circuits made them not suitable for further 
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VLSI design. Also, the background charge effect creates serious problem on the circuit 

reliability, which has not been taken into account in above FAs.  

In this Chapter, we propose three different implementations for the 1-bit binary FA 

using parallel SETMOS structure based on the schemes of multiple-valued logic (MVL), 

phase modulation and frequency modulation, respectively. Theses FAs fully utilize the 

Coulomb blockade oscillation characteristic of SET which further reduces the circuit area 

and power dissipation with high regularity. In particular, the frequency modulated 1-bit 

FA exhibits high immunity against BCs and can be easily extended to multi-bit FAs.  

4.2 Implementations of SET/MOS Hybrid FAs 

4.2.1 Multiple-Valued Logic (MVL) Scheme 

For a constant current biased SET, due to hole accumulation at SET’s drain terminal, 

electrons induced from the ground will tunnel through both source and drain junctions of 

SET via the island, leading to a tunneling current. At steady state, the tunneling current 

equals to SET’s biasing current, which means that the number of electrons successfully 

passed through SET’s source and drain junctions equals to the number of holes 

accumulated at SET’s drain terminal per unit time. The excess number of accumulated 

holes during transient response contributes to SET’s drain voltage (i.e., VDS|SET). Since 

SET’s input gate voltage (i.e., VGS|SET) has an impact on electron tunneling rate, it affects 

the net amount of holes at SET’s drain terminal at steady state, and hence affects VDS|SET. 

In other words, SET can be considered as a tunable resistor whose resistance is controlled 

by VGS|SET.  
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Consider a parallel SETMOS structure employing three SETs, as shown in Figure 4.1 (a) 

where the three SETs are identical with the same biasing voltage of VPC applied on each 

one’s second gate. Such parallel connected SETs are analogous to three parallel resistors. 

Through appropriate configuration, each SET reaches its minimum (or maximum) 

resistivity with its input gate voltage (i.e., VIN-A, VIN-B, and VIN-C) being logic ‘0’ (or ‘1’). 

As a result, if all three inputs are logic ‘0’, the total equivalent resistance (i.e., Req) of three 

SETs is minimal, and thus VDS|SET reaches its minimum value. As the number of 1’s in the 

input increases, so do the values of Req and VDS|SET. With all three inputs being logic ‘1’, 

Req and VDS|SET will reach their maximum values.  

More specifically, as shown in Figure 4.1 (b), if one input voltage (say VIN-A) increases 

from zero to a considerable value with two other inputs being:  

(1) both logic ‘0’,  

(2) logic ‘0’ for one and logic ‘1’ for the other, or  

(3) both logic ‘1’,  

one can obtain three VDS|SET oscillations which have the same periodicity and phase but at 

different voltage levels. For digital applications (i.e., digital voltage levels are VL and VH), 

eight input patterns (i.e., from ‘000’ to ‘111’) correspond to six points (i.e., P0 ~ P5) on 

three voltage oscillating curves which are located at four voltage levels (i.e., V0 ~ V3).  

Notice that each voltage level represents different number of 1’s within the input. Since 

a 1-bit FA is equivalent to a (3:2) counter whose input and output relationship is listed in 

Table 4.1, the four voltages of V0 ~ V3 have to be appropriately converted to VL and VH 

(i.e., logic ‘0’ and  ‘1’) so as to generate correct output carry and sum logics. This can be 

done by using two more parallel SETMOSs. Because the NMOS transistor within the 
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parallel SETMOS inverses the voltages of V0 ~ V3, as shown in Figure 4.1 (c), the VOUT 

oscillations (i.e., inversely amplified VDS|SET oscillation) of the parallel SETMOSs used to 

realize carry and sum output bits need to be configured to the pattern as shown in Figure 

4.1 (d), where the periodicity and phase can be set by choosing different input-gate 

capacitances and second-gate voltages for SETs. The entire schematic of 1-bit FA based 

on MVL scheme is shown in Figure 4.1 (e).  

 

TABLE 4.1 INPUT AND OUTPUT RELATIONSHIP OF A (3:2) COUNTER 
 

# of 1’s within the input Carry Out Sum 

0 0 0 

1 0 1 

2 1 0 

3 1 1 

 

 

Parallel connected multiple-SET architecture can also be used to implement digital-to-

analog converter (DAC). Since SET can be viewed as a voltage controlled tunable 

resistor, the equivalent resistance of all SETs and hence the corresponding voltage at 

VDS|SET can be modulated to represent the evaluations of digital inputs (i.e., decimal 

representation) rather than the number of 1’s in the inputs as long as the resistivity of 

each individual SET is properly weighted.  
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(a) 

 

(b) 

 

(c) 
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(d) 

 

Figure 4.1: (a) Parallel SETMOS with three SETs connected in parallel; (b) VDS|SET oscillation 

and the voltage conversion of the NMOS transistor; (c) Output voltage oscillations 

used to realize carry and sum functions; (d) Overall schematic of 1-bit FA based on 

the MVL scheme. 
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4.2.2 Phase Modulation Scheme 

Instead of applying inputs on three SETs, one can use only one SET with multiple input 

gates to accommodate three input digits, as shown in Figure 4.2 (a) where the three left-

hand-side gates of SET are identical and used to accept three input digits, and the fourth 

right-hand-side gate of SET is used to adjust the phase of VDS|SET oscillation. This is 

known as phase modulation scheme. Unlike MVL scheme which moves VDS|SET oscillation 

vertically, phase modulation scheme moves VDS|SET oscillation horizontally based on 

different input patterns.  

By adjusting the device capacitance of SET and biasing voltage of VPC, the VDS|SET 

oscillation (as a result of increasing one input) can be configured to the pattern as shown 

in Figure 4.2 (b) where the axes Y0, Y1 and Y2 correspond to the condition of two other 

inputs being:  

(1) both logic ‘0’,  

(2) logic ‘0’ for one and logic ‘1’ for the other, or  

(3) both logic ‘1’,  

It is observed that eight input patterns (i.e., from ‘000’ to ‘111’) are well distributed at 

four points (i.e., P0 ~ P3) on the oscillation curve. For the sum function, a π phase shift 

occurs each time one input digit alters its logic value. For the carry function, since the 

periodicity is doubled, only π/2 phase shift is obtained under the same operation. Both 

carry and sum outputs can be implemented using the same circuit architecture with 

different parameters.  
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(a) 

 

 

(b) 

 
Figure 4.2: (a) Overall schematic of a 1-bit FA based on the phase modulation scheme; (b) VDS|SET 

oscillations used to realize sum and carry functions. 
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4.2.3 Frequency Modulation Scheme 

It should be noticed that previous two schemes for FAs strongly rely on particular 

voltage or current operating point. They work properly with no BC on island of SET. 

However, with BCs which are random in nature and cannot be entirely removed by 

today’s technology, those schemes may fail to function correctly, depending on the 

amount of charges. In order to construct a robust SET/MOS hybrid FA against 

background charge fluctuation, we propose another scheme –– frequency modulation 

scheme –– as follows.  

A. 1-bit FA 

The circuit structure based on frequency modulation scheme is shown in Figure 4.3 (a), 

where three left-hand-side gates of SET are identical and  connected to a voltage source 

(i.e., VS which changes monotonically) through three NMOS transistors that function as 

switches controlled by the digital inputs. Due to the fact that the node capacitance between 

NMOS and SET is relatively large (at the range of several fF), SET’s input gate 

capacitance (at the range of several aF) in such a structure would not be affected by the 

NMOS switches. It is known that the period of VDS|SET oscillation (as a result of increasing 

the input gate voltage) is inversely proportional to SET’s input gate capacitance. If the VS 

in Figure 4.3 (a) is applied to multiple input gates of SET, the period of VDS|SET oscillation 

is thus determined by the total capacitance of the gates that are connected with VS (similar 

to parallel connected capacitors). Since three input digits applied on the NMOS switches 

are able to control the connection between Vs and input gates of SET, the period of VDS|SET 

oscillation is hence modulated by different input patterns. When Vs increases from zero to 
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VTOP (i.e., VTOP = e/CG1), as shown in Figure 4.3 (b), the number of 1’s in the inputs equals 

to the number of VDS|SET oscillating cycles.  

The VDS|SET oscillation can be reflected into the time domain if one applies a ramp VS 

that varies linearly over time. By using a 2-bit ripple counter, the number of voltage 

oscillation cycles at the output with respect to time is recorded in the binary system, and 

the counter’s outputs represent the carry and sum bits. As long as BCs on island of SET 

keep constant during the period of varying Vs, same number of voltage oscillation cycles 

will appear at the output. Since the amount of BCs on SET’s island varies at very low 

frequency (from minutes to hours), the circuit exhibits much higher immunity against the 

background charge effect. 

 

 

 

(a) 
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     (b) 

 

Figure 4.3: (a) Overall schematic of a 1-bit FA based on the frequency modulation scheme; (b) 

VDS|SET oscillations with different digital inputs. 

 

B. Multi-bit FA  

Frequency modulation scheme can also be used to implement multi-bit FAs. To accept 

higher-order input bits, one simply needs to add more input gates for SET, which are 

connected with Vs via NMOS switches, and higher-order output bits can be obtained by 

adding more cells for the ripple counter.  

As an example, Figure 4.4 shows the schematic of a 2-bit FA, where input gate 

capacitances for x1 and y1 are twice as much as those for x0 and y0, and three D flip-flops 

are used to generate three output bits. For a n-bit FA in general, SET will have (2n + 1) 

input gates whose capacitance corresponding to the i th (i starts from 1) input bit is i times 

as much as that for the least significant input bit, and the number of D flip-flops for the 

ripple counter is n + 1. Since each D flip-flop can be implemented with minimum of 8 

MOSFETs, the total number of MOSFETs needed is (2n + 1) + 3 + 8n = 10n + 4 (each 
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current source is implemented by a PMOS transistor). With CMOS technology, an n-bit 

ripple carry adder (RCA) (an implementation with minimum hardware) requires 24n 

MOSFET. A n-bit SET/MOS hybrid FA based on frequency modulation scheme 

dramatically reduces the circuit area and power dissipation, especially for a large n (the 

area and power consumed by SET are negligible compared to MOSFET). 

 

 

 

Figure 4.4: Overall schematic of a 2-bit FA based on the frequency modulation scheme.  

 

4.3 Parameter Selection of the Proposed FAs 

All proposed SET/MOS hybrid FAs share the same parameters of RTD = RTS = 1MΩ 

and CTD = CTS = 0.1aF (SET’s source and drain junction resistance and capacitance),      

ID1 = 40nA (SET’s biasing current), ID2 = 1uA (biasing current for the NMOS transistor), 

VTH|NMOS = 150 ~ 200mV (threshold voltage of the NMOS transistor), and T = 300K 

(operating temperature). Other parameters used in the proposed FAs (i.e., in Figure 4.1 (d), 
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Figure 4.2 (a) and Figure 4.3 (a)) are listed in Table 4.2. Figure 4.5 shows the simulation 

result of FA based on MVL scheme using the provided parameters.  

To simulate FA based on frequency modulation scheme, extra control units are needed 

so that the ripple counter is initialized to zero each time before the evaluating operation 

(i.e., get the output by changing VS). For multi-bit FA, as shown in Figure 4.4, CG1 and 

CG2 are the same as those used in Figure 4.3 (a) but with different values of VPC.  

 

TABLE 4.2 SET’S INPUT-GATE CAPACITANCE AND THE BIASING VOLTAGES USED IN THREE FAS 
 

Based on Multiple-
Valued Logic (MVL) 

MVL block 
CG1 = CG2 = 0.13aF 

VPC-M = 650mV 

Carry circuit 
CG1 = CG2 = 0.13aF 

VPC-C = – 450mV 

Sum circuit 
CG1 = CG2 = 0.2aF 

VPC-S = – 315mV 

Based on Phase 
Modulation 

Carry circuit 
CG1 = 0.1aF, CG2 = 0.4aF 

VPC-C = 100mV 

Sum circuit 
CG1 = 0.2aF, CG2 = 0.1aF 

VPC-S = 600mV 

Based on Frequency 
Modulation  

CG1 = CG2 = 0.1aF 

VPC = – 450mV  
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Figure 4.5: Simulation result of a FA based on the MVL scheme using parameters in Table 4.2.  

 

4.4 Summary 

We have proposed three SET/MOS hybrid FAs based on the schemes of MVL, phase 

modulation and frequency modulation. For MVL scheme, SET is considered as a voltage 

controlled tunable resistor. This method can also be used to implement the DAC. For 

phase modulation scheme, the carry and sum functions are realized by changing the phase 

of VDS|SET oscillation. For frequency modulation scheme, the VDS|SET oscillation is reflected 

in the time domain, and the output is generated by counting the number of oscillation 

cycles. With this method, a higher immunity against BCs is achieved when the circuit 

works at a relatively high frequency. Frequency modulation scheme can also be utilized 

easily to implement multi-bit FAs. 
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Chapter 5 

SET/MOS Hybrid Binary Tree Multiplier 

 

5.1 Introduction 

Due to the fact that MOSFET cannot be shrunk beyond certain limit, more advanced 

technologies need to be investigated in order to continue the improvement for high 

performance of multipliers. There has been some research on multipliers based on single-

electron-tunneling technology [65–70]. Lageweg et al [65] designed a binary tree 

multiplier using Threshold Logic Gates (TLGs) as the basic building blocks that operated 

following Single-Electron Encoded Logic (SEEL). Cotofana et al [66] proposed a novel 

multiplication scheme using Electron Counting (EC) paradigm through controlled 

transport of charge, based on which Meenderinck et al [67] designed a high-radix 

multiplier. Recently, Wu et al [68] designed a ternary multiplier based on the 3-T gate 

using SET. These pure SED-based multipliers exhibit extraordinary performance 

compared to conventional CMOS multipliers due to the extremely small feature size and 

ultra-low power consumption of SEDs; however, the low temperature operation (< 10K) 

and high sensitivity to environment noises (such as BCs) make them not suitable for 

practical implementations.  
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Further, Inokawa et al [69] designed multi-input counters for tree multipliers using 

SETs combined with MOSFETs which utilized the unique Coulomb blockade oscillation 

characteristic of SET. Zhang et al [70] introduced a fast multiplication approach which is 

similar to EC paradigm but implemented using MOSFET-based single-electron turnstiles 

that can transfer single electrons with fast speed at high temperature. While SET/MOS 

hybrid multipliers are able to work at relatively high temperature (around 100K), BCs still 

create serious problems which are not discussed in [69] and [70].  

Inokawa’s counter is much simpler than conventional CMOS counters (or 

compressors); however, its circuit structure is a little complicated which uses inverting 

adder, latched quantizer and voltage divider along with negative input voltages. In this 

chapter, we simplify Inokawa’s counter by using multi-input-gate SET with MOSFET 

through phase modulation scheme, where the output is generated through appreciate 

configuration on the phase and periodicity of Coulomb blockade oscillation. Moreover, a 

phase adjustment scheme is introduced for the counter which improves the circuit 

reliability against BCs. The proposed (7:3) counter can be alternatively viewed as a 2-bit 

full adder which if employed as the building block for carry propagation adder during the 

final step of multiplication will further reduce the area and delay of a multiplier.  

This chapter is organized as follows. Section 5.2 starts with the introduction of phase 

modulation scheme, based on which a SET/MOS hybrid (3:2) counter and (7:3) counter 

are proposed along with improvement for temperature, BCs, and the speed. Section 5.3 

presents the implementation of parallel tree multipliers using proposed phase modulated 

(3:2) and (7:3) counters. Section 5.4 provides the simulation results along with discussions 
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and comparisons in terms of area, delay and power dissipation. In the end, Section 5.5 

concludes the chapter. 

5.2 Multi-Input Counters for Tree Multiplier  

Multi-input counters are the basic building blocks of tree multipliers which output a 

BCD code (a condensed form) representing the number of 1’s within the input (unitary 

weighted). Thanks to Coulomb blockade oscillation of SET, the structures of counters 

implemented using SET/MOS hybrid architectures are very simple, and hence the 

complexity of the multiplier using these counters is significantly reduced. 

5.2.1 Phase Modulation Scheme 

One big difference between CMOS and single-electron-tunneling technologies is that 

MOSFET can only have two gates (bulk terminal is viewed as a second gate) while single-

electron devices (SEDs) are able to accommodate multiple gates. Multi-input-gate SET 

has already been fabricated [71] and the structure of charge storage node (i.e., island) with 

capacitively coupled multiple gate terminals is widely used, such as single-electron 

tunneling based majority gate (MAJ) [54, 55], threshold logic gate (TLG) [56], pass-

transistor logic (PTL) [57], and so on.  

Figure 5.1 (a) shows a serially connected SET and NMOS transistor (i.e., serial 

SETMOS) biased by a current source where SET is associated with multiple gate 

terminals. In this figure, the left n gates (with the same gate capacitance of CG) of SET are 

used to accept n input voltages (i.e., Vin0, Vin1, …, Vin(n-1)) while the one on the right (with 

the bias voltage of VPC, where ‘pc’ stands for phase control) is used to control the phase of 

VDS|SET oscillation (i.e., the drain-to-source voltage of SET which oscillates with respect to 
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the gate voltage for constant current biasing). The NMOS transistor used here is biased in 

the sub-threshold region (with the threshold voltage of Vth) which maintains the small 

value of VDS|SET so as to obtain observable Coulomb blockade oscillation. Ideally, when 

Vgg – VDS|SET > Vth, the NMOS transistor is on and Vout equals to VDS|SET which is nearly 

zero (because Vgg ≈  Vth for sub-threshold operation), otherwise, the NMOS transistor is 

off and Vout = VDD.  

Figure 5.1 (b) shows the VDS|SET and Vout oscillations of Figure 5.1 (a) (corresponding to 

the leftmost y axis) as a result of increasing one input voltage (say Vin-i, where 0 ≤ i < n) 

from zero to a considerable value with all other input voltages being zero; VPC is 

configured such that VDS|SET reaches the minimum value at origin; Vgg is chosen to be VM + 

Vth, where VM = (VH + VL) / 2, which ensures the 50% duty cycle for Vout. Note that: 1) 

VDS|SET shown here is symmetric for demonstration purpose which is not necessary for the 

real implementation as long as Vout maintains 50% duty cycle; 2) the square Vout is the 

ideal characteristic curve of a threshold logic which for a real NMOS transistor will have 

certain transition regions when VDS|SET approaches to VM.  

For digital application, let 0 V and e/2CG V (i.e., half of the periodicity of VDS|SET) be 

logic ‘0’ and ‘1’. Then with one other input voltage (say Vin-j, where 0 ≤  j < n and j ≠ i) 

being logic ‘1’, the VDS|SET in Figure 5.1 (b) will be shifted half of the period to the left. 

Instead of drawing another oscillation curve, we moves the y axis half of the period to the 

right. Likewise, with k (0 ≤ k < n – 1) other input voltages being logic ‘1’, the y axis will 

be shifted k/2 periods to the right. It can be seen from Figure 5.1 (b) that if k is an even 

number, y axis will stop at the valley point on VDS|SET; otherwise, it falls at the peak point. 

As a result, all kinds of n-bit digital inputs are separated into two groups where the  
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(a) 
 

 
 

(b) 
 
 

Figure 5.1:  (a) Serial SETMOS with n input gates for SET; (b) VDS|SET and Vout oscillations.  
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number of 1’s within the input is even or odd.  With VDD = e/2CG V (i.e., the same as input 

digital level), the input and output relationship of Figure 5.1 (a) is given by 

)1(10 −⊕⊕⊕= ninininout dddd L    (5.1) 

where  denotes the XOR logic, din0, din1,…, din(n-1) and dout are digital representations of 

the input and output. The structure of Figure 5.1 (a) with n = 2 is actually a XOR gate 

which is first demonstrated by Ono et al [57]. Equation (1) represents a chain of XOR 

gates connected in serial which if implemented using CMOS technology will require a lot 

more transistors.  

⊕

5.2.2 Primitive Implementation of (3:2) and (7:3) Counters 

(3:2) counter (i.e., full adder) and (7:3) counter can be implemented through the phase 

modulation scheme with great simplicity. According to the input and output relationships 

of the two counters summarized in Table 5.1 (circled parts are used for the (3:2) counter), 

it is observed that output bit dout0 (i.e., the least significant bit) represents an even/odd 

logic with respect to k (i.e., the number of 1’s within the input) which can be therefore 

generated using the structure of Figure 5.1 (a) with n = 3 for a (3:2) counter and n = 7 for a 

(7:3) counter.  

In fact, with two 1’s and four 1’s to be considered as a unit, respectively, output bits 

dout1 and dout2 stand for the even/odd logic as well (with respect to ⎣  and ⎦2/k ⎣ ⎦4/k , 

where  indicates the flow value) which can be produced by the same structure of 

Figure 5.1 (a) with different input gate capacitances for SET. 

⎣ ⎦⋅
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TABLE 5.1 INPUT AND OUTPUT RELATIONSHIPS OF  
        (3:2) AND (7:3) COUNTERS 

 
# of 1’s within 

the input (i.e., k)
dout2 dout1 dout0 

0 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 
 

 It is understood that by scaling CG down to the half and quarter values, the periodicity 

of VDS|SET will be doubled and quadrupled, as shown in Figure 5.2. With the same  digital 

levels at the input (i.e., y axes remain unchanged), the points associated with different y 

axes (i.e., point A, B, C, D, E, F, G, and H) on VDS|SET0 are re-grouped which with the 

help of MOSFET’s threshold logic generate the desired logic for outputs bits dout1 and 

dout2. Notice that for the three VDS|SET oscillations in Figure 5.2 the initial phases are 

different which can be set through VPC, while the amplitude is the same which requires 

the same total device capacitance of SET (i.e., CΣ = n · CG + CG2 + CTD +CTS for the SET 

in Figure 5.1 (a)). The reduced CΣ as a result of scaling CG can be compensated by CTD, 

CTS, or CG2.  

Figure 5.3 shows a basic implementation of a (3:2) counter and (7:3) counter, where 

the current source used to bias SET is implemented using a PMOS transistor; the input 

gate capacitance of SET used for dout0, dout1, and dout2 is configured as CG, CG/2, and CG/4, 
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respectively. It should be mentioned that the node capacitance at each input is much 

larger (several fF) than SET’s input gate capacitance (1aF at the most) which protects 

SETs from being affected by each others.  

 

 

 

 

 

Figure 5.2: VDS|SET oscillations with the input gate capacitances of CG, CG/2, and CG/4 for SET 

used to realize dout0, dout1, and dout2, respectively.  
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(a)                                                                    (b) 

 

Figure 5.3: Primitive type (3:2) (a) and (7:3) (b) counters based on the phase modulation scheme. 
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5.2.3 Enhanced Implementation of the (7:3) counter 

Primitive type (3:2) and (7:3) counters are very simple, with which as the basic 

building blocks tree multipliers will consume extremely small area and power with high 

regularity. However, this type of counters suffers from some critical limitations, such as 

operating temperature, reliability against BCs, and the operating speed. In order to deal 

with these practical issues, we introduce some modifications as follows.  

A. Increased Temperature using Input Capacitor Array 

With large number of input gates for SET, CΣ of SET becomes relatively large which 

significantly limits the operating temperature (because CΣ is inversely proportional to the 

amplitude of Coulomb blockade oscillation which attenuates with increased temperature). 

It is known that Coulomb blockade oscillation is essentially determined by potential on 

island of SET (i.e., VIsland) which for the SET in Figure 5.1 (a) is given by 
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  (5.2) 

where m · e is net charges on the island. Therefore, instead of applying individual input 

voltages to SET through multiple input gates, we can first accumulate input voltages and 

then apply the total voltage to SET through only one input gate. Normally, this can be 

done by using an analog voltage adder, such as the one used in Inokawa’s counter which 

is actually a cascode stage voltage amplifier with feedback that provides a linear 

relationship between the input and output (as long as the gain of voltage amplifier is large 
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enough). Consider that fact that the input gate capacitance of SET is extremely small, a 

simple CMOS capacitor array is able to sum the input voltages without being affected by 

SET (there is no loading effect associated with SET at the input node). Figure 5.4 shows 

the implementation of a (7:3) counter with input capacitor array, where Cin >> CG (say a 

thousand times). With digital input levels being 0 V and VDD, the summing voltage can be 

expressed as 

8
DD

sum
VkV ⋅=      (5.3) 

where k represents the number of 1’s within the input. In order to generate correct output 

following phase modulation scheme (refer to Figure 5.2), VDD has to be 4e/CG. If CG is 

chosen to be 0.64aF, then VDD = 1 V which is quite suitable for practical circuits.  

The structure of serial SETMOS with input capacitor array has also been used in 

Inokawa’s ADC [31] and counter [69] and Ou’s DAC [49] without any problem. By 

using input capacitor array, CΣ of SET is reduced, and hence the (7:3) counter is able to 

work at even room temperature.  

B. Improved Reliability using Phase Adjustment Scheme 

Since BCs on island of SET shift the phase of Coulomb blockade oscillation without 

changing its amplitude and periodicity, the proposed phase modulated multi-input 

counters are very sensitive to BCs. Thanks to the threshold logic of MOSFET, however, 

the output of counters exhibits certain redundancy against BCs. It can be seen from 

Figure 5.2 that with the input to be biased at peak and valley points of VDS|SET0, dout0 

exhibits the highest tolerance to BCs which is up to ±0.25e; while with the input to be 
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Figure 5.4: Implementation of a (7:3) counter with temperature enhancement using serial 

SETMOS and input capacitor array.  
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biased away from peak and valley points, dout1 and dout2 can only bear BCs up to ±0.12e 

and ±0.065e (worst case) for correct logic operation.  

With inputs biased close to the transition region (such as point A, D, E, and H for 

dout2), the output characteristic curve has to be very sharp which also places a lot design 

difficulties. In order to improve the reliability of dout1 and dout2 and alleviate the design 

difficulty, we need to dynamically adjust the phase of VDS|SET1 and VDS|SET2 so that all 

inputs are well located at the peak or valley point. This can be done by adding a bias 

voltage through an additional gate of SET.  

Notice that for VDS|SET1 in Figure 5.2, each peak and valley point is surrounded by two 

input points. If a input corresponds to the point on the left side of the peak and valley (i.e., 

point A, C, E, and G), the VDS|SET1 need to be shifted to the left, otherwise, it has to be 

moved to the right (i.e., input corresponds to point B, D, F, and H). Since dout0 generates 

different output logic for the two groups of input points, the direction of phase adjustment 

for dout1 can be therefore controlled by dout0. It is known that BCs vary from minutes to 

hours generally following Gaussian distribution with the high probability of being less 

than ±0.3e. If BCs are restricted within ±0.25e due to the manufacturing advancement, 

we can say dout0 is rather reliable against BCs which also results in the same reliability 

level for dout1.  

One is able to use two constant biasing voltages with equal amount and opposite 

polarity for dout1 controlled by dout0; however, this will need a multiplexer which 

consumes extra area and power. Instead of using the multiplexer, we can simply apply 

dout0 to the SET (used for dout1). This requires the phase of VDS|SET in Figure 5.2 to be re-

adjusted (through VPC) as shown in Figure 5.5.  
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Figure 5.5: VDS|SET and output voltage oscillations used for reliability improvement. 

 

 

It is observed that for VDS|SET1 in Figure 5.5, input point B, D, F, and H are already at 

the best position where dout0 = 1, so there is no need to adjust the phase; while input point 

A, C, E, and G are located at the switching point where dout0 = 0. As a result, when the 

input is biased at point A, C, E, and G, the phase of VDS|SET1 needs to be shifted π/2 to the 
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right so as to generate correct output (refer to Figure 5.2, where point A, C, E, and G are 

grouped with point B, D, F, and H, respectively). The phase adjustment for dout1 can be 

therefore accomplished by applying 0outd (i.e., the inverse of dout0 through a CMOS 

inverter) to the SET (used for dout1) though an additional gate. If the capacitance of the 

additional gate (i.e., CG3) is the same as the input gate capacitance (i.e., CG3 = CG/2), π/2 

phase adjustment for VDS|SET1 will require a voltage of e/2CG V. A capacitive voltage 

divider will be used so as to generate desired voltage from VDD.  

For VDS|SET2 in Figure 5.5, point D and H are on the right position, while point A, B, C 

and point E, F, G need to be grouped with point D and point H. The correct output of dout2 

can be realized by applying 0outd  and 1outd  to SET (used for dout2) through two additional 

gates that generate π/4 and π/2 phase adjustment for VDS|SET2, respectively.  

Figure 5.6 shows the implementation of a (7:3) counter with phase adjustment scheme, 

where CG3 = CG/2 and CG4 = CG/4. With the help of capacitive voltage divider, VPA1 = 

VPA2 = VDD/8 = e/2CG V (‘pa’ stands for phase adjustment). Notice that VPA1 is connected 

to the gate that has the same gate capacitance as the input, hence it produces π/2 and π/4 

phase adjustment for VDS|SET1 and VDS|SET2, respectively; while VPA2 is connected to the 

gate that has twice gate capacitance of the input gate, it thus generates π/2 phase 

adjustment for VDS|SET2. Such configuration results in the same gate capacitance (i.e., CG 

+ CG2) for three SETs which simplifies the parameter selection.  

Because output bit dout0 is reliable against BCs, output bits dout1 and dout2 are rather 

reliable as well. The reliability of the (7:3) counter is therefore improved. 

 

 

 
 

79 



Chapter 5
 

 

 
 

 

Figure 5.6: Implementation of a (7:3) counter using phase adjustment scheme. 
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C. Increased Speed using Parallel SETMOS Structure 

Due to the small biasing current (i.e., IBias) that drives MOSFET with large RC 

constant, the speed of the serial SETMOS is significantly limited. On the one hand, to 

sustain Coulomb blockade oscillation, IBias has to be a small value which with CΣ and the 

junction resistance (i.e., RTD and RTS) of SET being a few aF and hundreds of KΩ is about 

tens of nA. With further reduced CΣ, RTD and RTS, IBias can be as high as hundreds of nA 

which is able to keep the delay of SET less than 0.5ns (with the loading capacitance of a 

few hundred aF). On the other hand, because of the small amplitude of VDS|SET especially 

at higher temperature, the sub-threshold slope of NMOS transistor has to be steep so as to 

generate the square-like Vin vs. Vout characteristics shown in Figure 5.1 (b). This requires 

large width and length for the NMOS transistor that provides high voltage gain with 

relatively low on-state resistance. Also, with the current source to be implemented by a 

PMOS transistor, the length of PMOS has to be large as well which with large voltage 

swing at the output produces near constant IBias (fixed IBias is desirable so as not to kill the 

voltage gain of NMOS transistor). The large size of NMOS and PMOS transistors 

generate lots of parasitic capacitance which therefore introduces a large delay at the 

output. Even with hundreds of nA for the IBias, it is very difficult to constrain the delay of 

serial SETMOS within 1ns range.  

In order to increase the operating speed, we can use different biasing currents for SET 

and NMOS transistor that are connected in parallel (i.e., parallel SETMOS) and followed 

by a CMOS inverter, as shown in Figure 5.7, where VSS is used to bias Mn in the sub-

threshold region so as to obtain a large voltage gain. The parallel SETMOS structure 

reduces the delay at the cost of increased power consumption where the biasing current 
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for Mn (i.e., IBias2) is up to the range of µA.  

However, If one solely uses parallel SETMOS to generate a square-like Vin vs. Vout 

characteristics, the size of Mn and Mp2 has to be very large (generate very high voltage 

gain) which requires substantial IBias2 to maintain the high speed. To improve the power-

delay-product (PDP), we use small size of Mn and Mp2 (produce moderate high voltage 

gain) which amplify the amplitude of VDS|SET at high speed with less IBias2, and the square-

like Vin vs. Vout characteristics is generated through a CMOS inverter. With advanced 

CMOS technology (such as 65nm), the delay and power consumption (with the load of 

hundreds of aF and the working frequency of hundreds of MHz) contributed by the 

CMOS inverter is very small (i.e., tens of ps delay and hundreds of nW power dissipation) 

[72]. Therefore, the structure of parallel SETMOS followed by a CMOS inverter exhibits 

less PDP. Detail discussions will be provided in the simulation part in section 5.4. 

 

 
 

Figure 5.7: Parallel SETMOS followed by a CMOS inverter 
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5.3 Implementation of Parallel Tree Multipliers 

A parallel tree multiplier involves three steps which are partial product generation 

(PPG), partial product accumulation (PPA), and carry propagation addition (CPA), 

respectively [73]. Each step (including PPG and CPA) can be implemented based on the 

proposed phase modulated multi-input counters.  

5.3.1 Partial Product Generation (PPG) 

The first PPG step requires an array of AND gates that generate a bit matrix used for 

the next PPA step. Notice that with two input gates for SET, a (3:2) counter becomes a 

(2:2) counter of which the output bits dout0 and dout1 actually realize the XOR logic and 

AND logic. Therefore, an AND gate can be implemented using the serial SETMOS of 

Figure 5.1 (a) with n = 2 but CG/2 input gate capacitance for SET. According to the 

VDS|SET1 in Figure 5.2, an AND gate (with 0 V and e/2CG V as two digital levels) only 

corresponds to the left three points that represent four input patterns (i.e., logic ‘00’ at 

point A, logic ‘01’ and ‘10’ at point B, and logic  ‘11’ at point C). In general, with the 

initial phase of VDS|SET1 to be set at point B, C, and D (through VPC), the same structure 

becomes the OR gate, NAND gate, and NOR gates, respectively.  

Furthermore, the three points used for the AND gate (i.e., point A, B, and C) can be 

evenly distributed over an entire period of the VDS|SET1, as shown in Figure 5.8. This can 

be realized by changing the gate voltage of NMOS transistor (i.e., Vgg) until the output 

reaches 33.3% duty cycle. In this case, digital levels are set as 0 V and 2e/3CG V (i.e., 

one third of the periodicity of VDS|SET1). Such configuration increases the reliability of an 

AND gate against BCs up to ±0.167e (instead of ±0.125e).   

 
 

83 



Chapter 5
 

 

 
 

Figure 5.8: VDS|SET oscillation with 33.3% duty cycle at the output for an AND gate that has 

increased reliability against BCs.  

 

5.3.2 Partial Product Accumulation (PPA) 

The second PPA step reduces the number of bits in a bit matrix through several levels 

until two rows remain. This is accomplished by using multi-input counters, such as (3:2) 

or (7:3) counter, following advanced tree algorithms. Because the number of bits is 

reduced more than half for a (7:3) counter but just one third for a (3:2) counter, the PPA 

step if utilizing (7:3) counters will experience less levels. However, in CMOS technology, 

a (7:3) counter is actually implemented by four (3:2) counters which require 3∆FA delay 

(∆FA represents the delay unit of a (3:2) counter). The overall performance (such as area, 

delay, and power dissipation) of the tree multipliers, if not worse, may not be improved 

that much when employing (7:3) counters. Reference [74] presented a 16×16 multiplier 

using (7:3) counters which is a little faster than the one using (3:2) counters but the total 

transistor count is about 10% higher.  

It is observed from previous session that the phase modulated (3:2) counter and (7:3) 
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counter exhibit a comparable complexity (even though including the input capacitor array 

and phase adjustment scheme which are also applied to the (3:2) counter). In addition, the 

(3:2) and (7:3) counters of Figure 5.3 (with no phase adjustment scheme) are carry free 

which exhibit the same delay. While there will be the propagation delay if employing the 

phase adjustment scheme of Figure 5.6, the delay of a (7:3) counter is about 1.5 times of 

that of a (3:2) counter (instead of 3 times in CMOS technology). Therefore, the multiplier 

if employing such (7:3) counters is expected to be superior in terms of area, delay, and 

power dissipation.  

While (2:2), (4:3), (5:3), and (6:3) counters are also used during the PPA step, they are 

modified (3:2) and (7:3) counters with reduced input gates for SET.  

5.3.3 Carry Propagation Addition (CPA) 

The third CPA step combines last two rows of bits together to generate the final output. 

This is accomplished through a multi-bit FA based on a group of 1-bit FA, such as ripple 

carry adder (RCA) or carry look-ahead adder (CLA). Similar to a (3:2) counter which is 

considered as a 1-bit FA, a (7:3) counter can be alternatively viewed as a 2-bit FA.  

Figure 5.9 shows the implementation of a (7:3) counter as a 2-bit FA, where each 

higher bit of the input controls two input terminals which are short connected; seven 

input terminals are assigned to two 2-bit inputs (i.e., X = x1x0 and Y = y1y0) with a carry 

input (i.e., cin) that generate a 3-bit output (i.e., Z = X + Y + cin = z2z1z0).   

In CMOS technology, such realization for a 2-bit FA is not acceptable because a (7:3) 

counter is composed of four 1-bit FAs while a 2-bit FA can be simply built with two 1-bit 

FAs. However, a 2-bit FA if implemented using the phase modulated (7:3) counter 

requires three serial or parallel SETMOSs which is even smaller than the implementation 
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of two (3:2) counters (needs four serial or parallel SETMOSs). More importantly, a 2-bit 

FA implemented using the proposed (7:3) counter of Figure 5.3 (with no phase 

adjustment scheme) exhibits the same delay as a 1-bit FA. Even though with the phase 

adjustment scheme (for both (3:2) and (7:3) counters), the (7:3) counter (used as a 2-bit 

FA) occupies three delay units which is still less than the delay of two propagated (3:2) 

counters (i.e., four delay units). With such 2-bit FA (i.e., the phase modulated (7:3) 

counter) as the basic building block, the propagation delay of a RCA will be reduced, and 

the circuitry used to generate and propagate carries for a CLA will be much simplified 

which also reduces the delay.  

 

 

 

 

Figure 5.9: A 2-bit full adder implemented using a (7:3) counter.  
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5.4 Simulations and Discussions  

We use MIB compact model for SETs along with BSIM4 Spector model for 

MOSFETs. All simulations are conducted using conventional SPICE simulator in 

Cadence based on CMOS 65nm technology. 

5.4.1 Simulation of the Enhanced Type (7:3) Counter 

To verify the proposed phase modulation scheme, we simulate the enhanced type (7:3) 

counter (a (3:2) counter is the sub-circuit of a (7:3) counter) based on the input capacitor 

array of Figure 5.4, the phase adjustment scheme of Figure 5.6, and the parallel SETMOS 

followed by a CMOS inverter structure of Figure 5.7. All parameters used for the 

simulation are listed in Table 5.2, and the design strategy is given as follows.  

With VDD of 1V, the periodicity of VDS|SET0 (refer to Figure 5.2 or Figure 5.5) is set as 

250mV which requires CG = 0.64aF. As a result, the input gate capacitance is 0.64aF, 

0.32aF, and 0.16aF for SETs used to generate dout0, dout1, and dout2, respectively, and the 

phase-adjustment gate capacitance is CG3 = 0.32aF and CG4 = 0.16aF (see Figure 5.6). 

With SET’s junction capacitance and phase-control gate capacitance of CTD = CTS = 

0.1aF and CG2 = 0.1aF, the total device capacitance is CΣ = 0.94aF (identical for three 

SETs) which enables the room temperature operation with 25mV amplitude of VDS|SET 

(varying from 125mV to 150mV).  

SET’s junction resistance is chosen to be RTD = RTS = 100KΩ which along with the 

biasing current of IBias1 ≈ 300nA (refer to Figure 5.7) achieves 0.25ns delay for SET. 

Because the voltage swing of VDS|SET is very small, we use minimum width and length for 

Mp1 (i.e., Wmin = 120nm and Lmin = 60nm for CMOS 65nm technology) with the gate 
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biasing voltage of Vctrl1 = 670mV which is able to produce near constant current without 

introducing too much parasitic capacitance that increases the delay.  

The small VDS|SET needs to be amplified to a detectable level before fed to the CMOS 

inverter that generates the square-like output characteristic. To achieve a high voltage 

gain, Mn is biased in the sub-threshold region with the width and length of 120nm and 

180nm and the source biasing voltage of VSS = – 200mV. Because the voltage swing of 

Vout is much larger, the length of Mp2 has to be large so as to maintain the high voltage 

gain. With the width and length of Mp2 being 120nm and 600nm, the amplitude of Vout is 

about 400mV that varies from 300mV to 700mV.  

To realize fast operating speed with large RC constant (the on-resistance of Mn is 

about 2.5MΩ), the biasing current of IBias2 is around 1µA with the gate biasing voltage of 

Vctrl2 = 487mV for Mp2 which ensures another 0.25ns delay (from VDS|SET to Vout). With 

the transition width of the CMOS inverter to be 80mV (reasonable range) centering at 

500mV, a quasi square-like output characteristics is therefore obtained which can be used 

to realize the phase modulated (7:3) counter with certain redundancy.  

Figure 5.10 shows the simulation result at room temperature with the working 

frequency of 100MHz (there is no BC). It can be seen that with the number of 1’s within 

the input increasing from 0 to 7, Vsum increases from 0 V to 875mV with each step of 

125mV, and the 3-bit output experiences all possible values from “000” to “111” which 

verifies the design. Notice that because of the propagation chain used by the phase 

adjustment scheme, the delay of the (7:3) counter is determined by dout2 which is about 

1.5ns.  
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TABLE 5.2 PARAMETERS FOR SPICE SIMULATION IN CADENCE 

 

SET 

RTD, RTS 100 KΩ 
CTD, CTS 0.1 aF 

CG 0.64 aF 
CG2 0.1 aF 
CG3 0.32 aF 
CG4 0.16 aF 

NMOS 

Wn 120 nm 
Ln 180 nm 

Cgdo, Cgso 100 pF/m 
Cgdl, Cgsl 73.6 pF/m 

tox 2.4 nm 
Vtho 228 mV 

nfactor 1.82 
minv – 0.6 

PMOS 

Wp 120 nm 
Lp1 (for Mp1) 60 nm 
Lp2 (for Mp2) 600 nm 

Cgdo, Cgso 79.48 pF/m 
Cgdl, Cgsl 67.97 pF/m 

tox 2.4 nm 
Vtho – 284 mV 

nfactor 0.92 
minv – 0.52 

Biasing Voltage 

VDD 1 V 
Vtrl1 670 mV 
Vtrl2 487 mV 
VSS – 200 mV 

VPC0 – 300 mV 
VPC1 900 mV 
VPC2 700 mV 

Capacitor CIN 1 fF 
Temperature T 300 K 

 
                 *  nfactor and minv affect the sub-threshold slope 
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Figure 5.10: Simulation result of the enhanced type phase modulated (7:3) counter.  
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5.4.2 Background Charge Effect 

To verify the reliability of the enhanced type phase modulated (7:3) against BCs, we 

compare the simulation result of the counter with and without the phase adjustment 

scheme of Figure 5.6. For the (7:3) counter to generate correct output without phase 

adjustment scheme, the initial phase of VDS|SET oscillation has to be configured to the 

pattern shown in Figure 5.2. This requires the phase control voltage of SET (used for 

three output bits) to be VPC0 = – 300mV, VPC1 = 900mV, and VPC2 = 700mV, respectively.  

Figure 5.11 shows the simulation results under the same input pattern as Figure 5.10, 

where (a) and (b) are the outputs without phase adjustment scheme that has no BC and 

0.1e BCs on each island of SET; while (c) and (d) are the outputs with phase adjustment 

scheme along with 0.1e BCs and 0.2e BCs on each island of SET. It is observed that 

without phase adjustment scheme, the output of the (7:3) counter is not reliable which 

falls corrupt with 0.1e BCs (refer to Figure 5.11 (b) where dout0 is not affected, dout1 is 

weakly affected but still works properly, and dout2 is strongly affected which does not 

function correctly); however, with phase adjustment scheme, the (7:3) counter is highly 

reliable which generates desired output even with 0.2e BCs.   

5.4.3 Area-Delay-Power Analysis 

Due to the small amplitude of VDS|SET at room temperature (around 25mV), to generate 

square-like output characteristics using serial SETMOS requires very large size for both 

NMOS and PMOS transistors (refer to [31] and [49] where the width and length are 

chosen to be a few µm) so as to achieve very high voltage gain. This results in the delay 

of serial SETMOS to be more than 1ns. One possible solution to speed up the serial  
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(a) 

 

 

 

(b) 
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(c) 

 

 

 

(d) 

 

Figure 5.11: Output of the (7:3) counter without phase adjustment scheme and no BC (a); without 

phase adjustment scheme and 0.1e BCs (b); with phase adjustment scheme and 0.1e 

BCs (c); and with phase adjustment scheme and 0.2e BCs (d).  
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SETMOS is to reduce the temperature. At lower temperature, the amplitude of VDS|SET is 

increased which relaxes the requirement of high voltage gain, and hence reduces the size 

of MOSFETs and the delay (refer to [69] where the delay of the serial SETMOS is less 

than 0.5ns at temperature of 77K). From this point of view, the speed trades off the 

temperature.  

Another practical solution is to use parallel SETMOS which also requires large 

MOSFETs to reach very high voltage gain. The reduced delay is because of the increased 

biasing current which increases the power dissipation (refer to [51] where the delay of the 

parallel SETMOS is about 0.5ns with the power dissipation of 2µW; the generated output 

voltage is not a square-like wave). In this case, the speed trades off the power dissipation. 

Because of the extremely low power consumption of the serial SETMOS (within the 

range of nW), to increase the speed at the cost of moderate power overhead is reasonable.  

To further improve the PDP, we reduce the size of MOSFETs for the parallel 

SETMOS which generates 400mV output voltage swing with 0.5ns delay and 1.3µW 

power dissipation. The quasi square-like output characteristics is then generated by a 

CMOS inverter which has the delay of about 10ps. Unlike the serial or parallel SETMOS 

where the static power (i.e., Pstatic = VDD × IBias) is dominant, most power consumed by 

the CMOS inverter is the dynamic power (i.e., Pdynamic = CLoad × VDD
2 × f). Due to the 

speed limitation, the power dissipation contributed by the CMOS inverter at the 

frequency of 100MHz with VDD = 1 V and the loading capacitance of 1fF is only 100nW.  

With the parallel SETMOS and CMOS inverter as the basic building cell, the area (i.e., 

transistor count), delay and power dissipation of the enhanced type phase modulated (3:2) 

and (7:3) counters are listed in Table 5.3, where each capacitor is counted as a MOSFET 
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and the power dissipation is evaluated at the frequency of 100MHz. From Figure 5.11 (d), 

it is observed that the worst case delay of a (7:3) counter is about 3ns with 0.2e BCs on 

island of SET. The maximum working frequency of the proposed (7:3) counter is up to 

300MHz with a little increased power dissipation of 4.5µW.  

 

TABLE 5.3 AREA-DELAY-POWER ESTIMATIONS OF THE ENHANCED TYPE  
     PHASE MODULATED (3:2) AND (7:3) COUNTERS 

 

 
Area Delay 

(ns) 
Power 
(µW) MOSFETs SETs 

(3:2) Counter 18 2 1.0 2.7 

(7:3) Counter 31 3 1.5 4.1 

 
 

We then construct a 16×16 multiplier as an example. During the PPA step, 212 units 

of (3:2) counter (each (2:2) counter is viewed as a (3:2) counter) are needed when using 

the Dadda’s tree structure [73]; while if (7:3) counters are utilized following Dadda’s 

strategy, there will need 40 units of (3:2) counter and 53 units of (7:3) counter (each (6:3), 

(5:3), and (4:3) counter is treated as a (7:3) counter) [74]. Table 5.4 summarizes the total 

cost of a 16×16 multiplier, where the PPG is implemented using CMOS AND gates (this 

ensures high reliability against BCs), the PPA is realized based on the elements in Table 

5.3, and the CPA is finished through the RCA (implemented using the (3:2) counter as a 

1-bit FA or the (7:3) counter as a 2-bit FA). It is observed from Table 5.4 that the 

multiplier when employing both (3:2) and (7:3) counters consumes less area, delay and 

power compared to the one only uses the (3:2) counters which verifies our initial 
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prediction in section 5.3.  

 

TABLE 5.4  AREA-DELAY-POWER ESTIMATIONS OF A 16×16 MULTIPLIER  
USING ELEMENTS IN TABLE 5.3 

 

 
Area Delay 

(ns) 
Power 
(µW) MOSFETs SETs 

(3:2) Counter 
Only 

8452 484 ~40 ~780 

(3:2) & (7:3) 
Counters 

6924 284 ~30 ~500 

 
 

5.4.4 Comparisons 

To complete the discussion, we compare the binary tree multipliers implemented with 

different technologies, as shown in Table 5.5, where the multiplier employs both (3:2) 

and (7:3) counters following the same circuit structure as the above and the power is 

estimated at the frequency of 100MHz. For the multiplier based on pure single-electron-

tunneling technology in [65], we treat each TLG equivalently to 3 SETs so that the area 

can be evaluated by the number of SETs for easy comparison. Because the TLG is 

operated at a single-electron precision, the error probability (i.e., Perror) is so important 

that the delay is calculated by the equivalent RC constant with a certain order of 

magnitude (i.e., factor –ln(Perror), where Perror = 10–8). For SET/MOS hybrid circuits 

where electrons keep tunneling into and out of the island of SET, there is a tunneling 

current and the analytical model of SET can be used for the delay estimation [70, 49, 51] 

which is actually the simple RC constant.  
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TABLE 5.5  AREA-DELAY-POWER ESTIMATIONS OF A 16 × 16 MULTIPLIER  
USING DIFFERENT TECHNOLOGIES 

 

 
Area Delay 

(ns) 
Power 

MOSFETs SETs 

Pure SET [65] 0 ~ 1900 ~ 130 ~ 10nW 

Hybrid MOS and 
SET [69] 

6436 392 ~ 45 ~ 250µW 

Pure MOSFET 
65nm [72] 

~ 12000 0 ~ 2 ~ 1mW  

 
 

TABLE 5.6  TEMPERATURE AND BC PERFORMANCES OF SINGLE-ELECTRON  
TUNNELING BASED MULTIPLIERS 

 

 Temperature Reliability  against BCs 

Pure SET [65] < 10K Not reliable 

Hybrid MOS and 
SET [69] 

77K 
Less reliable (tolerant BCs 

up to ±0.05e)  

This paper 300K 
Quite reliable (tolerant BCs 

up to ±0.2e) 
 

 

It is observed from Table 5.5 that pure SET-based multiplier (SET equivalent) 

consumes extremely small area (the size of SET is much smaller than the size of 

MOSFET) and power but the delay is substantial; the pure MOSFET-based multiplier 

(with 65nm technology) is very fast but requires a lot of area and power; the performance 

of hybrid MOS and SET multiplier lies in the middle. Notice that the proposed SET/MOS 

hybrid multiplier (the one uses both (3:2) and (7:3) counters) consumes more power than 

the one in [69] with comparable area and less delay. The increased power dissipation 
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stems from the fast operating speed at higher temperature. Table 5.6 shows the 

performances of multipliers involving the usage of SETs in terms of operating 

temperature and reliability against BCs. The proposed multiplier is able to work at room 

temperature and exhibits the high immunity against BCs, hence provides a practical 

solution for nanometer-scale integration.  

Compared to pure MOSFET-based multiplier, the speed of the proposed multiplier is 

much slower with the area and power dissipation to be reduced by about 50%. It should 

be mentioned that the power dissipation of the CMOS multiplier (dominated by the 

dynamic power) significantly increases with further increased frequency, while for the 

proposed multiplier, it remains nearly constant (dominated by the static power). At the 

frequency of 300MHz, the power dissipation of the proposed multiplier is just about 

16.7% of that of the CMOS multiplier. The proposed multiplier is quite appealing for 

low-power and low-speed applications.  

5.5 Summary 

We have proposed multi-input counters for binary tree multipliers using hybrid MOS 

and SET architectures based on phase modulation scheme. Thanks to Coulomb blockade 

oscillation of SET, the primitive type (3:2) and (7:3) counters are very simple which 

require only a few MOSFETs and several multi-input-gate SETs. To solve the practical 

issues associated with the SET/MOS hybrid circuits, we introduce the enhanced type (7:3) 

counter (also applied to the (3:2) counter) which works at room temperature with 1.5ns 

delay and 4.1µW power dissipation (at the frequency of 100MHz), and is able to tolerant 

BCs up to 0.2e. The proposed (7:3) counter can be alternatively used as a 2-bit FA for the 
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CPA which further reduces the area and delay of a multiplier. The multiplier when 

employing both (3:2) and (7:3) counters consumes less area, delay and power compared to 

the one only uses the (3:2) counters which is in contrast to CMOS technology.  

 

 

 



 

Chapter 6 

SET/MOS Hybrid Frequency Synthesis for 

Arithmetic Applications 

 

6.1 Introduction 

Hybrid MOS and SET architecture has been studied widely. A variety of functional 

circuits have been realized using such a structure. However, one of the biggest challenges 

facing the SET is the random background charge effect [25], which limits the application 

of SET mainly in the field of memory design [27]. For logic applications, SET-based 

circuits are sensitive to random BCs, which are inherent on the islands of SET and may 

lead to circuit malfunction. While it is possible to design SET logic circuits with certain 

redundancy or error correction [75], the hardware overhead makes these schemes less 

attractive. Since BCs only change the phase of Coulomb blockade oscillation with no 

effect on its periodicity and amplitude, SET logic circuits can become highly immune to 

these charges if the information is modulated into the frequency or amplitude of this 

oscillation [25, 76].  

In this chapter, we first discuss SET based frequency synthesis including frequency 

gain and frequency mixing, followed by the design of SET/MOS hybrid frequency 
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synthesizer. Thanks to Coulomb blockade oscillation of SET, the proposed frequency 

synthesizer is much simpler compared to their CMOS counterparts which require a lot 

more transistors. Based on this frequency synthesizer, we then present a new design 

methodology for arithmetic operations using frequency modulation technique. The main 

idea is to first convert the operands from digital to frequency representation, then perform 

arithmetic operations in the frequency domain before converting the result back to the 

digital representation.  

The advantages of the designed arithmetic circuits are:  

1) Compared with conventional CMOS technology, the circuit structures are simple 

and hence consume less area and power;  

2) Compared with SET-based circuits operating in the time domain [54–70, 77], the 

proposed circuits are less sensitive to random BCs and are able to work at room 

temperature. 

This chapter is organized as follows. In section 6.2, we introduce SET’s frequency 

properties including frequency gain and frequency mixing, followed by sawtooth/ 

reverse-sawtooth wave generation which is required for SET-based frequency synthesis. 

Then, we present a SET/MOS hybrid frequency synthesizer (FSR) for signal processing 

in the frequency domain. Section 6.3 provides details about circuit implementations for 

arithmetic operations, including the design of digital-to-frequency converter (DFC), 

frequency-modulated arithmetic circuits, and frequency-to-digital converter (FDC).  In 

section 6.4, we show some simulation results along with discussions in terms of 

background charge effect, temperature effect, and other practical considerations. In the 

end, section 6.5 concludes the chapter.  
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6.2 SET Based Frequency Synthesis 

Frequency synthesis refers to a set of operations in the frequency domain, including 

frequency multiplication and frequency mixing (i.e., a process that generates sum and 

difference frequencies). While these can be generally realized by using a phase locked 

loop (PLL) and mixer, there are still many design challenges ahead. Thanks to Coulomb 

blockade oscillation, however, SET devices with a sawtooth or reverse-sawtooth voltage 

as their input exhibit very good frequency properties and hence provide an interesting 

solution for frequency synthesis.  

6.2.1 Frequency Gain 

A simple SET device is able to achieve the frequency gain which, analogous to the 

voltage gain of MOSFET, is defined as the ratio of the output frequency at drain terminal 

to the input frequency at gate terminal. Consider a constant current biased SET where VDS 

oscillates with respect to VGS, as shown in Figure 6.1 (a), where SET’s drain and source 

junction resistance RTD = RTS = 1MΩ and capacitance CTD = CTS = 0.1aF, gate capacitance 

CG = CG2 = 0.1aF, biasing current IBias = 30nA, second gate voltage VGS2 = 0, and load 

capacitance CLoad = 10fF. It is observed from Figurer 6.1 (b) that the amplitude and 

periodicity of VDS oscillation with respect to VGS are 240mV and 1.6V, respectively (note 

that the second gate of SET is also shown here for future discussions). The load 

capacitance has to be relatively large so as not to affect VDS.  

Throughout this chapter, the above parameter values are used for SET, unless 

otherwise specified. With such a simple configuration, one can easily realize the 

frequency gain as well as frequency mixing operation.  
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(a) 
 

 
 

(b) 
 

Figure 6.1: (a) Constant current biased SET with two gate terminals; (b) The voltage oscillation 

of VDS vs. VGS at room temperature.  
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If VGS is a ramp voltage that linearly increases over time, the voltage oscillation of VDS 

vs. VGS is then transformed to a time-domain periodic signal. Since every e/CG increment 

of VGS produces a complete cycle of VDS, this time interval corresponds to the period of 

VDS (i.e., TDS). The frequency of VDS (i.e., fDS = 1/TDS) is therefore given by 

e
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where δ is the slope of ramp VGS with the unit of V/s. Figure 6.2 (a) shows the time 

domain VDS oscillation based on the ramp input VGS. For instance, with CG = 0.1aF and δ 

= 1.6V/μs, the frequency of VDS (i.e., fDS) is 1MHz. 

Instead of applying a ramp signal VGS, a sawtooth wave can be used to generate the 

same VDS oscillation, as shown in Figure 6.2 (b) where the amplitude and frequency of 

VGS is 1.6V (i.e., e/CG with CG = 0.1aF) and 1MHz, respectively. The slope of VGS in each 

period of the sawtooth wave is the same as that of ramp VGS used in Figure 6.2 (a). In this 

case, each period of VGS generates a complete cycle of VDS that repeats itself with end-to-

end periodically, hence making VDS a pseudo-periodic signal with the same frequency as 

VGS. With a sawtooth input VGS, one is able to achieve the frequency gain (i.e., Gf = fDS / 

fGS). Assuming the amplitude of VGS (i.e., AGS) is N · e/CG, where N must be an integer 

which ensures integral VDS cycles for each period of VGS, the frequency of VDS based on 

(6.1) is then derived as 
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                                          (a)                                                                                  (b) 
 

  
 

                                          (a)                                                                                  (b) 
 
 

Figure 6.2: Time domain VDS oscillation for the SET of Figure 6.1 based on ramp VGS with slope 

of 1.6V/μs (a); sawtooth VGS with the amplitude and frequency of 1.6V and 1MHz (b); 

sawtooth VGS with the amplitude and frequency of 3.2V and 1MHz (c); and sawtooth 

VGS the same as the one in (b) but with CG = 0.2aF for SET (d).  
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On the other hand, if the amplitude of VGS is fixed at e/CG, SET’s input gate 

capacitance has to be N · CG in order to get the frequency gain of N. Figure 6.2 (c) and (d) 

show the VDS oscillations with frequency gain of 2. For Figure 6.2 (c), CG = 0.1aF and 

AGS = 3.2V = 2 · e/CG, so Gf = 2. For Figure 6.2 (d), CG = 0.2aF and AGS = 1.6V = 2 · e/CG, 

which results in the same Gf. Note that the amplitude of VDS oscillation in Figure 6.2 (d) 

is decreased which is the result of increased CΣ with a larger value of CG.  

6.2.2 Frequency Mixing 

A SET device with two input gates is able to achieve the frequency mixing operation. 

To understand how frequencies are mixed through an SET, we express the potential of 

the island as (for the SET in Figure 6.1 (a)) 
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where k · e is net charges on the island. If both k and VDS are constant, differentiating (6.3) 

will lead to  

22 GSGGSGIsland VCVCVC Δ⋅+Δ⋅=Δ⋅∑     (6.4) 

In reality, k is not fixed. Once VIsland (with respect to the source) is greater than e/CΣ, one 

more electron will be trapped in the island (i.e., k increases by one), forcing VIsland to drop 

by e/CΣ. Therefore, VIsland as a result of linearly increasing the gate voltage is a sawtooth 

wave whose amplitude is e/CΣ. It is understood that with a full swing of VIsland, the 

tunneling current (because of constant VDS) experiences a complete cycle, which means 

that the frequency of VIsland equals to the frequency of tunneling current (i.e., fTC). The 
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slope in each period of VIsland can be therefore written as ΔVIsland = (e/CΣ) · fTC. On the 

other hand, if VGS and VGS2 are sawtooth voltages (assuming the amplitude and frequency 

for VGS are N · e/CG and fGS, and the amplitude and frequency for VGS2 are    M · e/CG2 and 

fGS2), their slopes in each period are then represented by ΔVGS = (N · e/CG) · fGS and ΔVGS2 

= (M · e/CG2) · fGS2. With VGS and VGS2 being applied simultaneously, substituting 

derivations of ΔVIsland , ΔVGS, and ΔVGS2 into (6.4) gives 

2GSGSTC fMfNf ⋅+⋅=   (6.5) 

If one gate voltage is a sawtooth wave while the other is a reverse-sawtooth wave (i.e., 

the slope polarities in each period of VGS and VGS2 are opposite), one frequency 

component would be subtracted from the other.  

In terms of constant current biased SET, VDS oscillates with the same frequency as fTC, 

which also equals to the sum or difference of frequencies associated with two input gate 

voltages. Figure 6.3 shows two VDS oscillations for the constant current biased SET of    

Figure 6.1 (a), where the gate capacitances of SET are set to CG = 0.2aF and CG2 = 0.4aF. 

Since the amplitudes of VGS and VGS2 are both 1.6V, the frequency gain factor is 2 for 

gate1 (i.e.,   N = 1.6 / (e/CG) = 2) and 4 for gate2 (i.e., M = 1.6 / (e/CG2) = 4). For example, 

with the frequency of VGS and VGS2 being 3MHz and 2MHz, respectively, the mixed 

frequencies of VDS are 14MHz and 2MHz, respectively.  

Due to the equivalent effect of each gate terminal of SET, the superposition theorem 

can be used to evaluate the frequency of VDS with reduced complexity. In general, more 

frequency components can be mixed through SET with multiple gate terminals. 
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(a) 

 
(b) 

 
Figure 6.3:  Time domain VDS oscillations for the SET of Figure 6.1 where CG = 0.2aF, CG2 = 

0.4aF, the amplitude of VGS and VGS2 is 1.6V, the frequencies of VGS and VGS2 are 

3MHz and 2MHz respectively. Both VGS and VGS2 are sawtooth waves in (a) while the 

reverse-sawtooth wave for VGS and sawtooth wave for VGS2 in (b). 
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6.2.3 Sawtooth/Reverse-Sawtooth Wave Generation 

SET-based frequency gain and frequency mixing require the use of sawtooth and 

reverse-sawtooth waves. Through the configuration on slope of Coulomb oscillation, an 

SET device is able to generate a reverse-sawtooth wave, which, if passing through a 

voltage amplifier with gain of –1, becomes a sawtooth wave. For a constant current 

biased SET working at near absolute temperature, the amplitude of VDS oscillation with 

respect to VGS is e /CΣ with positive and negative slopes being CG / (CΣ – CTD) and            

– CG / CTD, respectively. While these values will attenuate at higher temperature, they can 

still be used to predict SET’s performance. This implies that if CTD dominants SET’s 

device capacitances such that CΣ ≈CTD, the positive slope goes to infinity, making VDS 

oscillation a reverse-sawtooth wave. Consider the second gate of a current biased SET to 

be short-connected to the drain terminal, as shown in Figure 6.4 (a). With VGS2 = VDS, the 

potential on the island from (6.3) becomes 
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Thus, the parallel-connected SET’s second gate and drain junction can be viewed 

equivalently as one junction with the capacitance of CTD + CG2. The positive and negative 

slopes of VDS oscillation is then estimated as CG / (CΣ – CTD – CG2) and – CG / (CTD + CG2). 

This equivalence can be better understood from the feedback point of view. By 

introducing VDS as a feedback voltage applied to the second gate, there will be a phase-

shift on VDS itself. Since VDS is a periodic signal, the amount of phase-shift (proportional 
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to the second gate voltage) varies from peak to valley points. The difference in phase-

shift results in the change in slope of VDS oscillation.  

Figure 6.4 (b) shows VDS oscillations without and with feedback (see curves A and B, 

respectively), where dashed curves are shifted versions of curve A with different values 

of VGS2 being indicated by the horizontal lines. Here, curve B converges to the points 

where VDS and VGS2 are equal.  

More changes in slope of VDS oscillation can be expected if there is a voltage gain (say, 

Gv) between SET’s second gate and drain terminals, as shown in Figure 6.5 (a) where 

VGS2 = Gv VDS. According to (6.3), the equivalent drain junction capacitance of SET is 

CTD + Gv CG2, which (assuming Gv > 1) further pushes the positive slope to climb up and 

the negative slope to reduce. Again, from a feedback perspective, the amplified VGS2 

enlarges the difference of the phase-shift from peak to valley of VDS oscillation. If Gv is 

large enough so that the above difference equals to e · (CΣ – CTD) / CGCΣ (i.e., the 

amplitude of VDS oscillation divided by the positive slope), VDS and VGS2 become reverse-

sawtooth waves.  

⋅

⋅

Figure 6.5 (b) shows VDS oscillations with enhanced feedback strength, where Gv 

varies from 1 to 8 with increment of 1. It can be seen from the figure that once Gv > 4, 

SET enters the deep feedback region, where the amplitude of VDS goes down for further 

increase in Gv while the amplitude of VGS2 remains nearly constant regardless of the 

change of Gv. In other word, as long as SET is in the deep feedback region, VGS2 is pretty 

much stabilized.  
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(a) 
 

 
 

(b) 
 

Figure 6.4: (a) Current biased SET with a short-connection between the drain and second gate 

terminals (load capacitor exists but not shown here); (b) VDS oscillations without (i.e., 

curve A) and with (i.e., curve B) the feedback, where dashed curves are shifted 

versions of curve A with VGS2 = 120mV, 180mV, 240mV, 300mV and 360mV (from 

right to left). 
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(a) 
 

 
 

(b) 
 

Figure 6.5: (a) Constant current biased SET with enhanced feedback strength; (b) VDS and VGS2 

oscillations, where Gv increases from 1 to 8 with the step size of 1.   
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6.2.4 SET/MOS Hybrid Frequency Synthesizer (FSR) 

Based on previous discussions, we look at circuit implementation of frequency 

synthesizer. Figure 6.6 (a) shows a schematic which adopts hybrid MOS and SET 

architecture, where both A1 and A2 are voltage amplifiers that can be implemented using 

CMOS differential pairs. By taking advantage of SET’s frequency properties, the input 

frequencies in this figure (i.e., f0, f1,…, fn-1) are first amplified and mixed through multiple 

input gates of SET. A1 in the feedback loop amplifies the amplitude of VDS oscillation 

without changing its voltage polarity. The output of A1 (i.e., Vfb) is fed to SET’s second 

gate in order to generate a reverse-sawtooth wave. A2 further amplifies the amplitude of 

Vfb which also changes its voltage polarity. With the help of A1 and A2, the circuit is able 

to generate matched input and output which enables cascaded FSR structures for signal 

processing.  

Figure 6.6 (b) shows a circuit symbol for SET/MOS hybrid frequency synthesizer, 

where CG at the right bottom corner indicates that the amplitude of both input and output 

sawtooth waves is e/CG, and x0, x1 ,…, xn-1 on the left side correspond to the frequency 

gain factors. The output frequency is thus given by  

111100 ... −− ⋅++⋅+⋅= nnout fxfxfxf   (6.7) 

Note that if any particular input is a reverse-sawtooth wave, the corresponding frequency 

component in (6.7) should change its sign. For illustration purpose, SET shown here has 

n input gates. For practical implementation, however, the number of SET’s input gates is 

limited due to the upper bound of CΣ for room-temperature operation. 
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(a) 
 

 
 

(b) 
 

Figure 6.6: (a) Implementation of SET/MOS hybrid frequency synthesizer (FSR); (b) Symbol of 

SET/MOS hybrid frequency synthesizer (FSR).  
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6.3 Frequency Modulated Arithmetic Operations 

The block diagram of arithmetic operations using frequency modulation is shown in 

Figure 6.7, which involves the design of digital-to-frequency converter (DFC), 

frequency-modulated arithmetic circuits, and frequency-to-digital converter (FDC). All 

these components are based on SET/MOS hybrid frequency synthesizer (FSR) presented 

in previous section.  

 

 
 

Figure 6.7: Block diagram of frequency modulated arithmetic operations. 

 

6.3.1 Digital-to-Frequency Converter (DFC) 

The design of DFC is based on FSR along with NMOS switches. Figure 6.8 shows the 

schematic and symbol of a 3-bit DFC, where a sawtooth input is connected to FSR 

through three NMOS switches controlled by a 3-bit binary operand (i.e., d2d1d0). The 

FSR has three input gates for SET, and the associated capacitances are configured as 1, 2 

and 4 times of CG. With input frequency being fin, the output frequency is expressed as 

( ) ininout fDfdddf ⋅=⋅++= 31
0

1
1

2
2 222     (6.8) 

where D3 represents the evaluation (i.e., decimal value) of a 3-bit digital operand, and the 
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subscript denotes the number of bits. The node capacitance between NMOS and SET 

devices is much larger (~fF) than SET’s input gate capacitance (~aF), and hence has 

negligible effects on the output frequency. 

Since the input gate capacitance of SET associated with each bit of the digital operand 

depends exponentially on bit’s weight, the total device capacitance of SET (i.e., CΣ) for 

multiple-bit DFC will become considerably large. This puts a limit on the number of bits 

for the DFC operating at room temperature. To overcome this limitation, multiple-bit 

DFCs can be built using several small ones. Figure 6.9 shows examples of 4-bit, 6-bit and 

8-bit DFCs that use 3-bit DFC as a basic building block. 

 

 
(a) 

 

 
(b) 

 
Figure 6.8: (a) Implementation of a 3-bit digital-to-frequency converter (DFC); (b) Symbol of a 

3-bit digital-to-frequency converter (DFC). 
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(a) 

 
(b) 

 
(c) 

 
Figure 6.9: Implementations of a 4-bit (a), 6-bit (b), and 8-bit (c) DFC. 
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6.3.2 Frequency-Modulated Arithmetic Circuits 

One of the advantages of converting a digital operand to frequency representation is 

the simplicity of performing multiplication in frequency domain. By connecting two 

DFCs serially, as shown in Figure 6.10 (a) where each DFC accepts one n-bit digital 

operand, the product of two operands is modulated into the output frequency (i.e., fout = 

An ⋅ Bn fin). If more stages of DFC are cascaded, multiplication for multiple operands can 

also be achieved using such a simple structure.  

⋅

Frequency division can be implemented using a phase locked loop (PLL), as shown in 

Figure 6.10 (b) where a 2n-bit dividend is applied to the DFC in the forward path while a 

n-bit divider is applied to the DFC in the feedback path. The PLL consists of phase 

frequency detector (PFD), charge pump (CP), low pass filter (LPF), and voltage 

controlled oscillator (VCO). At steady state, two input frequencies of PFD are locked, 

producing VCO’s output frequency of (A2n / Bn) ⋅ fin which incorporates the information of 

both quotient and reminder. Note that the output of VCO has to be a sawtooth wave with 

the amplitude of e/CG.  

Figure 6.10 (c) shows the implementation of frequency addition, where two n-bit 

digital operands are first modulated into frequencies through two DFCs, which are then 

added together with the help of FSR. Because the FSR in this circuit has unity gain for 

each input frequency, the output frequency is given by (An + Bn) ⋅ fin. If one inserts a 

voltage amplifier with gain of –1 between one of the DFCs and FSR (convert a sawtooth 

wave to a reverse-sawtooth wave), a frequency subtraction operation could be achieved 

with the output frequency of |An – Bn| ⋅ fin.  
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(a) 

 

(b) 

 

(c) 

Figure 6.10: Implementations of frequency multiplication (a), frequency division (b), and 

frequency addition (c).  
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6.3.3 Frequency-to-Digital Converter (FDC) 

After performing arithmetic operations in frequency domain, the results have to be 

converted back to digital representation. This can be done with a binary counter. By 

counting the number of cycles at the output during the time period of 1/fin, the counter 

will generate the frequency-modulated computation result in digital format (except for 

division operation where the output frequency may not be multiples of the input 

frequency).  

An alternative way of doing frequency-to-digital conversion is to use a frequency 

comparator. One-bit frequency comparator can be implemented using a D flip-flop with a 

delay unit, as shown in Figure 6.11 (a), where the delay (i.e., td) sets the threshold 

frequency (i.e., fth = 1/2td). If the input frequency is greater than fth, at each rising edge of 

clock signal, dout turns out to be logic 1. Otherwise, dout is logic 0, as shown in Figure 

6.11 (c). Some research groups have proposed flash type frequency based ADC using 

such a frequency comparator [78]. Similar to voltage based flash type ADC, a group of 1-

bit frequency comparators (their threshold frequencies differ slightly) are used to 

generate a thermometer code which is further encoded into a binary number through 

another digital circuitry. The circuit consumes less power and is able to operate at very 

high speed. However, it requires a large number of frequency comparators (i.e., 2n – 1 

units for n-bit output). Also, it could be a big challenge to precisely control the delay. 

In this work, we propose a pipeline type frequency based ADC, where the residue 

frequency for each stage irritation is generated with the help of SET/MOS hybrid 

frequency synthesizer (FSR). 
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(a) 

 
(b) 

 

(c) 

Figure 6.11:  One bit frequency comparator (a) and its symbol (b) as well as the frequency 

comparisons under different input conditions (c) 
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Figure 6.12 (a) shows the circuit implementation of one stage in the pipeline structure 

based on 1-bit frequency comparator. The FSR used here has two input gates for SET. 

The input with frequency gain factor of one is connected to the bias signal (i.e., a reverse-

sawtooth wave with the frequency of  fBias and amplitude of e/CG) through an NMOS 

switch controlled by dout, while the other input with frequency gain factor of two is fed by 

the input signal (i.e., a sawtooth wave with the frequency of  fin and amplitude of e/CG) 

which is also connected to a 1-bit frequency comparator through a buffer that changes the 

sawtooth wave into a square wave. With the dynamic range of  fin  from  fref
–  to  fref

+,  fBias  

and  fth  of Figure 6.11 (a) is given by (fref
+ – fref

–) and (fref
– + fref

+) / 2, respectively. If     

fin < fth, then dout = 0. The NMOS switch turns off, and fBias is not applied to FSR, leading 

to fout = 2fin; however, if fin > fth, then dout = 1, making NMOS switch on, which results in 

fout = 2fin – fBias. In other words, we have 

⎩
⎨
⎧

=−
=

=

⎩
⎨
⎧

>
<

=

12
02

1
0

outBiasin

outin
out

thin

thin
out

difff
diff

f

ffif
ffif

d

   (6.9) 

Note that due to the positive sign of fout (2fin > fBias with the condition of fin > fth), the 

output of FSR is a sawtooth wave as well. Figure 6.12 (b) shows the circuit symbol for a 

1-bit FDC. By connecting multiple 1-bit FDCs in series, we realize an n-bit FDC, as 

shown in Figure 6.12 (c) where fout from previous stage is directly connected to fin in the 

next stage and all stages are driven by a same fBias. This n-bit pipeline type FDC requires 

only n 1-bit frequency comparators with the same threshold frequency. The resolution of 

pipeline type FDC can be improved by cascading more stages of 1-bit FDC.   
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(a) 

 

(b) 

 

(c) 

Figure 6.12: Frequency comparator based one-bit FDC (a) and its symbol (b) as well as frequency 

comparator based n-bit FDC (c).  
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6.4 Simulation Result and Discussions 

To verify the proposed designs, we simulated a 3-bit DFC (refer to Figure 6.6 and 

Figure 6.8) which is a basic building block for large DFCs. The parameters for SET are 

the same as those in Figure 6.1 (a). With CG = 0.1aF, the amplitude of sawtooth wave VGS 

turns out to be 1.6V (i.e., varies from 0 to 1.6V). The increased CΣ results in decreased 

VDS which at room temperature oscillate from 113mV to 133mV with amplitude of 20mV. 

The voltage gain of A1 is 50, which keeps SET in the deep feedback region and generates 

a reverse-sawtooth Vfb with amplitude of 1V (Vfb changes from 0 to 1V with VCM1 being 

113mV). The voltage gain of A2 is 1.6, producing matched input and output sawtooth 

waves (with VCM2 being grounded).  

Figure 6.13 shows output voltage oscillations of 3-bit DFCs cascaded by three stages 

with the input reference frequency being 1MHz. The digital operand of each stage is 

configured as 3, 4, and 3. Each stage outputs multiple oscillating cycles within one period 

of the input, depending upon the specified digital operand. As can be seen from the figure, 

there is voltage distortions on Vout2 and Vout3 associated with the falling edges of Vout1 and 

Vout2, respectively. This represents a nonlinearity effect of the sawtooth wave, which can 

be better observed in Figure 6.14, where Vin is an ideal sawtooth input applied to a DFC 

and Vout (same frequency as Vin for comparison) is the real sawtooth output which has a 

finite difference in amplitude with Vin. Either reducing the temperature or strengthening 

the feedback will improve the linearity of the sawtooth output. The voltage distortions on 

Vout2 and Vout3 compress the voltage oscillating cycles, raising the output frequency, thus 

have to be smoothed out through low pass filters when performing frequency-to-digital 

conversion using pipeline type FDC presented in Figure 6.12. 
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Figure 6.13:  Output voltage oscillations of 3-bit DFCs cascaded by three stages with the input 

reference frequency being 1MHz and the digital operands of these stages configured 

as 3, 4, and 3.  
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Figure 6.14: Nonlinearity of the sawtooth wave at the output of DFC which has the same 

frequency as the input. The bottom curve shows the difference between the real and 

ideal sawtooth outputs. 
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6.4.1 Background Charge Effect 

The most important merit of the proposed frequency synthesis is the high immunity to 

BCs due to the fact that the periodicity of Coulomb blockade oscillation is independent of 

BCs. Figure 6.15 shows the background charge effect on the output voltage oscillations 

of Figure 6.13 (only Vout1 and Vout2 are shown for demonstration), where BCs in the first-

stage of SET change from 0 to 0.3e at 0.8µs and from 0.3e to 0 at 2.4µs. It can be seen 

from the figure that at the time when BCs changes, there is a certain discontinuity on Vout1, 

which is further propagated to Vout2. This will cause an error at the digital output if using 

a counter-based FDC that counts the number of voltage oscillation cycles corresponding 

to the first or third input period. However, the digital output will represent the correct 

value if generated from the second input period when the amount of BCs is not changed 

(stays at 0.3e). Actually, no matter how much BCs exist, as long as its value keeps 

constant during the counting process, they will have no effect on the digital output.  Since 

RBCs vary at very low frequency, the digital output is rather reliable if the circuit works 

at a relatively high frequency.  

While BCs might strike a disturbance on Vout1 and Vout2, their slopes remains unchanged, 

keeping the same output frequency (see (6.3) – (6.5)). Therefore, using a frequency-

comparator based FDC will produce a more reliable output. The spikes at the digital 

output due to the change of BCs can be easily removed through a low-pass digital filter.  

It is worth mentioning that, for the proposed frequency modulation technique, the 

output voltage can recover its normal oscillation even if BCs keep staying on the island. 

This high immunity against the charges can be viewed as a result of the time-redundancy 

characterized by the proposed design. In contrast, conventional SET circuits using 
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voltage or current mode will produce erroneous results (depending on the specific logic 

and the amount of charges) until BCs disappear or become small enough. 

 

 

 

 
 

 

Figure 6.15: Output voltage oscillations with BCs in the first-stage of DFC SET changing from 0 

to 0.3e at 0.8µs and from 0.3e to 0 at 2.4µs. 
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6.4.2 Amplitude Effect of Input Sawtooth Wave 

For a given input frequency, the amplitude sets the slope of sawtooth wave which 

determines the output frequency (see (6.1)). Therefore, the amplitude of a sawtooth input 

is critical for SET-based frequency synthesis. Consider the worst case (i.e., all input 

digits are 1’s) for an n-bit DFC where the amplitude of both input and output sawtooth 

waves is e/CG. A small change (say, Δx) in the amplitude of input (assuming there is no 

nonlinearity effect) will generate an error in the output frequency (refer to (6.2)): 
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                     (6.10) 

Since the output frequency of DFC is digitized, there is no quantization error when 

performing frequency based ADC. As long as the error frequency of (6.10) is less than 

half of the input frequency, the variation in input amplitude will have no impact on the 

digital output. The maximum tolerant amplitude variation is thus given by  

 ( )122
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n

GCex                                (6.11) 

For instance, if the input amplitude is 1.6V with CG = 0.1aF and n = 3, Δx|max is less 

than 114mV. This means that the maximum tolerant amplitude variation for a 3-bit DFC 

is 7.14%. However, from (6.11), Δx|max decreases exponentially with n, down to only 

3mV for n = 8. With the input amplitude of 1.6V, the maximum tolerant variation is 

within 0.2% only. This indicates that the input amplitude is required to be very accurate 

when designing DFC with more bits. Since Δx|max in (6.11) is independent of fin, high 

speed operation can be achieved by choosing a large input reference frequency which is 
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limited only by the pole of voltage amplifier used in FSR.  

6.5 Summary 

We have proposed SET-based frequency synthesis which takes advantage of unique 

Coulomb blockade oscillation to implement arithmetic operations using hybrid SET/MOS 

architectures. The frequency synthesis mainly consists of frequency gain and frequency 

mixing. The former is obtained by applying a sawtooth wave to SET’s input gate, while 

the latter is achieved by using multiple sawtooth inputs. In order to generate the required 

sawtooth waves, a feedback structure has been introduced and discussed. We have also 

presented an SET/MOS hybrid frequency synthesizer — a hardware implementation for 

frequency synthesis — which allows us to use frequency modulation technique for 

arithmetic circuit design, including design of digital-to-frequency converter, arithmetic 

operations in frequency domain, and frequency-to-digital converter. As shown during the 

simulation and discussion, the main benefits of using frequency synthesis for this 

application lie in a) the high immunity against background charges on island of SET, and 

b) the simple implementation of arithmetic operations in frequency domain.  

 

 



 

Chapter 7 

Conclusions and Future Work 

 

7.1 Conclusions 

In this thesis, we have studied the Coulomb blockade oscillation characteristic of SET 

in detail, and fully utilized such characteristic for the design of arithmetic circuits, 

including adders and multipliers. Since pure SET-based circuits suffer from low current 

driveability, small voltage gain and low temperature operation, hybrid MOS and SET 

architectures have been used as the basic building blocks throughout the thesis in order to 

provide practical solutions for the nanometer-scale integration.  

To increase the circuit robustness against BCs, an adaptive feedback has been 

introduced to the SET/MOS hybrid architecture which offsets the background charge 

effect by applying an appropriate voltage through an additional gate of SET.   

Three implementations of 1-bit FA have been presented using SET/MOS hybrid 

architectures based on the schemes of multiple-valued logic, phase modulation, and 

frequency modulation. Thanks to the Coulomb blockade oscillation characteristic of SET, 

the structure of the proposed 1-bit FAs requires only a few MOSFETs and SETs.  
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Furthermore, the phase modulation and frequency modulation schemes have been 

studied in more detail. Multi-input counters used for the binary tree multipliers have been 

implemented using SET/MOS hybrid architectures based on the phase modulation 

scheme. By using an input capacitor array, phase adjustment scheme, and parallel 

SETMOS followed by a CMOS inverter structure, the enhanced type of phase modulated 

counters is able to work at room temperature with improved reliability against BCs and 

increased operating speed.  

The frequency modulation scheme has been used to realize arithmetic operations 

following a novel design methodology. Because SET exhibits a good frequency property, 

including frequency gain and frequency mixing, the proposed frequency modulated 

arithmetic operations are easy to implement. Since the information is processed in the 

frequency domain, the circuit operation exhibits the high immunity against BCs.  

7.2 Future Work 

The phase adjustment scheme for the proposed phase modulated multi-input counters 

works properly under the condition that BCs on the island of SET are within ±0.25e. 

Since BCs are random in nature with the highest possibility within ±0.3e, such 

requirement depends on the technology improvement.  

Also, even though the speed of hybrid counters is improved when employing the 

parallel SETMOS structure, it is still much slower than the CMOS counterpart. Binary 

tree multipliers implemented using the proposed hybrid counters can only find 

applications where the area and power consumption is predominant but the speed is less 

important. The large delay of SET/MOS hybrid architecture limits the size of multipliers 
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implemented using the frequency modulation scheme as well. The higher operating speed 

also depends on further technology improvement. 
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