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Abstract 

 

 Thrombomodulin (TM) is known mostly for its role in the regulation of 

hemostasis, but it has also been shown to play an antimetastatic role in cancer. A 

previous study showed that the anitmetastatic effects of TM were dependent on thrombin 

binding. However, it is not known which substrate of thrombin-TM, protein C or TAFI, is 

responsible for these antimetastatic effects. We hypothesized that TAFI is responsible for 

the antimetastatic effects of TM, specifically tumour angiogenesis, due to its role in the 

inhibition of pericellular plasminogen activation. We determined the effect of TAFIa on 

tumour angiogenesis through inhibition of TAFIa and manipulation of cofactor ability of 

TM. We found inhibition of TAFIa resulted in increased proliferation, invasion, tube 

formation, and ECM proteolysis. We also found an inhibitory effect of TAFI activation 

by thrombin-TM on tube formation and ECM proteolysis. Our results suggest that TAFIa 

inhibits tumour angiogenesis in breast cancer cells. 
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Chapter 1 Introduction 
 

1.1 Cancer 
 

 The body contains over 30 trillion cells whose growth and proliferation is highly 

controlled [1]. When these processes become uncontrolled a cell can become transformed 

[1]. There are more than one hundred different types of cancer and almost every tissue in 

the body is capable of forming tumours [1, 2]. Cancer is the leading cause of death in 

Canada [3]. In 2009, 40% of Canadians were expected to develop cancer in their 

lifetimes, and 25% of Canadians were expected to die from cancer [3]. There are multiple 

different theories of the mechanisms by which cancer arises, and it is likely that multiple 

combinations of these mechanisms lead to the disease.  

The development of a malignant tumour involves a multistep process of 

consecutive alterations in many oncogenes, microRNAs, and tumour-suppressor genes in 

somatic cells [2, 4]. Germ-line mutations of these genes are also possible which could 

predispose a person to a heritable cancer [4]. Mutations can be caused from chemical 

compounds, viruses, and radiation [5]. Epigenetic events, such as promoter methylation, 

can lead to cancer [5]. Mutated cells have a greater survival advantage compared to non-

mutated cells, which could lead to carcinogenesis [5]. Tumours are usually heterogeneous 

due to secondary and tertiary genetic alterations [4]. This heterogeneity of tumours can 

make treatment difficult because there are multiple different populations of cancer cells 

with differing vulnerability to treatment [4]. 
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 There are hallmark capabilities that most cancer cells exhibit. The six main 

hallmarks of cancer are: sustaining proliferative signaling, evading growth suppressors, 

enabling replicative immortality, resisting apoptosis, inducing angiogenesis, and 

activating invasion and metastasis [2, 6]. There are also two emerging hallmarks of 

cancer: reprogramming energy metabolism and evading immune destruction. Cancer cells 

can acquire sustained proliferative signaling by producing their own growth factors, 

overexpressing growth factor receptors, influencing tumour-associated stroma to secrete 

growth factors, and compromised negative feedback loops that inhibit proliferative 

signaling [2, 6]. Cancer cells can evade growth suppressors by disruptions in cell cycle 

progression pathways, or redirection of an antiproliferative pathway such as the TGF-β 

pathway towards activating the epithelial-mesenchymal transition (EMT) [2, 6]. Another 

hallmark is enabling replicative immortality which can be attributed to telomere 

maintenance and prevention of senescence [2, 6]. Cancer cells can resist apoptosis 

through the loss of tumour suppressor function, downregulating pro-apoptotic factors, 

increase in expression of anti-apoptotic regulators, or increasing expression of survival 

factors [2, 6]. During tumour formation the “angiogenic switch” occurs where normally 

quiescent vasculature becomes activated by increasing activation or expression of pro-

angiogenic factors and decreasing expression or activation of anti-angiogenic factors [2, 

6]. Metastasis of tumour cells is responsible for 90% of cancer deaths [2]. Activation of 

invasion and metastasis in cancer cells can occur through activation of extracellular 

proteases, altered binding specificities of integrins, cadherins, and cell-cell adhesion 

molecules [2, 6]. An emerging hallmark of cancer is the reprograming of energy 

metabolism by relying on glycolysis which leads to an “aerobic glycolysis” state that 
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fuels cell growth and uncontrolled proliferation [6]. The second emerging hallmark, 

evading immune destruction, has not been completely solved but it seems that tumours 

manage to avoid being destroyed by the immune system by disabling components of the 

immune system that have been sent to destroy them [6]. These hallmarks of cancer 

showcase the complexity of the disease and how treatment of the disease is complicated 

due to the amount of contributing factors.  

 Due to the prevalence and complexity of cancer there has been extensive research 

invested in finding new pathogenic pathways to better understand and treat this disease. 

 

1.2 Angiogenesis 
 

 Angiogenesis is the process in which preexisting blood vessels sprout new 

capillaries. In adults, new vessels are formed predominantly through angiogenesis, as 

opposed to vasculogenesis which is the process of blood vessel formation from 

endothelial-cell precursors [7]. In adults, the vasculature is quiescent and is only normally 

activated through wound healing and female reproductive processes such as ovulation 

[8]. 

 New capillaries from quiescent vasculature can be formed in response to a 

stimulus which activates the vasculature [8]. Once activated, endothelial cells locally 

degrade the vascular basement membrane and extracellular matrix allowing the cells to 

invade the surrounding stroma [8, 9]. The endothelial cells begin to proliferate into the 

perivascular space toward the stimulus forming a migrating column [8, 9]. Extravascular 
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fibrin is deposited and acts as a temporary matrix scaffold for the migrating endothelial 

cells [10]. The endothelial cells in the migrating column enter a differentiation zone 

where the cells stop proliferating and begin to change shape and tightly adhere to each 

other to form the lumen of the new capillary [8, 9]. The sprouting tubes fuse and coalesce 

into loops allowing circulating blood to flow through the new capillary [8]. Finally, there 

is further proliferation in the blood vessel wall to increase diameter, and perivascular 

cells are attracted to the new vessel to form a new basal lamina [9]. Once the new blood 

vessel has formed, the vessel becomes quiescent.  

 The process of angiogenesis in normal processes like the female reproductive 

cycle and wound healing is usually not harmful, but overactive angiogenesis can lead to 

many diseases. Angiogenesis is overactive in macular degeneration, endometriosis, 

psoriasis, rheumatoid arthritis, and cancer [11, 12].  

 

1.3 Tumour Angiogenesis 
  

 Sustained angiogenesis is one of the hallmarks of cancer [2, 6]. The key role that 

angiogenesis plays in cancer has been recognized since the early 1970s. In 1971, 

Folkman published an article stating that vascularization of a tumour was necessary for 

expansion of the tumour [13]. His group found that tumours could not grow beyond 1-2 

mm
3
 in size without angiogenesis because the tumour could not receive enough oxygen 

and nutrients [14]. Without angiogenesis, the tumour maintains a balance of proliferation 

and apoptosis preventing growth and causing it to be dormant [11]. Folkman’s initial 
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findings were controversial since it was widely believed that tumour growth was not 

dependent on angiogenesis [15]. Moreover, there was a general belief that tumours grew 

around existing vasculature and recruitment of blood vessels was not possible [15]. 

Eventually, the scientific evidence grew to support Folkman’s initial findings and a vast 

amount of research has gone into discovering how tumour angiogenesis occurs. Now it is 

firmly established that highly angiogenic tumours have a higher metastatic potential than 

less vascular tumours [16]. 

 When blood vessels are quiescent, there is a balance between pro-angiogenic 

factors and anti-angiogenic factors. Where there is an increase in pro-angiogenic factors 

and a decrease in anti-angiogenic factors, the “angiogenic switch” occurs and 

angiogenesis is activated [8]. Tumour angiogenesis goes through two phases separated by 

the “angiogenic switch”: an avascular phase and a vascular phase [9]. In the avascular 

phase the dormant tumour is in a steady state of proliferation and apoptosis [9]. Only a 

small subset of the avascular tumours reach the vascular phase in which exponential 

tumour growth occurs due to tumour angiogenesis [9]. Tumours can release diffusible 

angiogenic factors, such as VEGF and bFGF, that can signal quiescent vasculature to 

begin angiogenesis [8]. Negative regulators of angiogenesis, such as thrombospondin-1 

and endostatin, must also be decreased for tumour angiogenesis to occur [11]. Different 

factors such as hypoxia in the tumour can cause an increase in VEGF secretion from 

tumour cells and surrounding stromal cells [9]. The tumour suppressor gene p53 

upregulates thrombospondin-1; p53 is lost in half of all cancers which could lead to a 

decrease of thrombospondin-1 [6, 9].  
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 The blood vessels formed through tumour angiogenesis differ from blood vessels 

formed through normal angiogenesis. Vessels formed by tumour angiogenesis do not 

become quiescent, and the constant growth of new blood vessels within a tumour causes 

them to have a different physiology [9]. Structurally, tumour blood vessels are dilated, 

irregularly shaped, have dead ends, and can have cancer cells integrated into the vessel 

wall [9]. The blood vessels aren’t organized into normal structures like capillaries, 

arterioles, and venules: they are instead chaotically organized with excessive vessel 

branching [17]. The blood flow in tumour vessels is erratic, it is slow moving and 

sometimes oscillating; this leads to acidic and hypoxic regions in tumours [9, 18]. 

Tumour vessels are leaky due to overproduction of VEGF and thus experience 

microhemorrhaging [9]. There is high interstitial pressure within the tumour due to the 

leakiness of the tumour vasculature [17]. Tumour vessels have altered endothelial cell-

pericyte interactions, which results in defective surrounding basement membrane [17]. 

The endothelial cells within the tumour vessel have abnormal gene expression and 

require growth factors for survival [17]. Overall, tumour vessels are functionally and 

structurally different than normal blood vessels. 

 Blood vessels within the tumour can act as an escape route for a tumour to 

metastasize. Metastasis follows a step-wise sequence sometimes referred to as the 

invasion-metastasis cascade [6, 19]. First, tumour cells locally invade and intravasate into 

the blood vessel within or surrounding the tumour [19]. The cancer cells then travel and 

survive through the blood stream, arrest in a capillary bed, and extravasate from the blood 

stream into the parenchyma of distant tissues [19, 20]. The cancer cells proliferate in their 

new environment and form a micrometastatic lesion, through the process of colonization 
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[19]. Once the micrometastatic lesion has formed, vascularization of the new tumour can 

occur and the process of metastasis can begin again [19]. Cancer cells can metastasize 

through either blood vessels or through lymphatic vessels [19]. 

 The process of tumour angiogenesis is necessary for the growth of a tumour past a 

dormant avascular stage [9, 11, 13, 14]. Tumour angiogenesis provides nutrients and 

oxygen to a tumour and also can act as an escape route allowing metastasis to occur [14, 

19]. 

 

1.4 Vascular Endothelial Growth Factor  
 

Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis. 

VEGF is responsible for vascular permeability and growth [21]. Originally, VEGF was 

identified by different groups as two different proteins named based on its two main 

activities [21]. Senger and colleagues first identified a protein they named “tumour 

vascular permeability factor” (VPF) in 1983 and suggested that this protein could be 

responsible for the high permeability of tumour blood vessels [22]. Ferrara and Henzel 

identified a protein they named “vascular endothelial growth factor” (VEGF) in 1989 due 

to the protein being an endothelial cell specific mitogen [23]. Eventually, cDNA cloning 

of both VPF and VEGF determined that they were the same protein [21]. VEGF is also 

referred to as VEGF-A, as it belongs to a family of proteins including VEGF-B, VEGF-

C, VEGF-D, and placenta derived growth factor (PDGF) [21]. The other VEGF proteins, 

VEGF-B, VEGF-C, and VEGF-D do not play a role in endothelial angiogenesis [21]. 
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VEGF-C and VEGF-D play a role in lymphatic angiogenesis [21]. VEGF-A (hereafter 

referred to simply as “VEGF”) exists as four main isoforms produced by alternative 

splicing: VEGF121, VEGF165, VEGF189, and VEGF206, with VEGF165 being the most 

prominent isoform [21]. VEGF binds to two receptors, VEGFR-1 and VEGFR-2, both of 

which are receptor tyrosine kinases [21]. VEGF binding to VEGFR-2 leads to the 

mitogenic activity while VEGFR-1 acts as a decoy receptor by sequestering VEGF 

leading to less VEGF availability for VEGFR-2 [21]. 

 VEGF expression is upregulated most effectively by hypoxia due to the 

transcription factor hypoxia-inducible factor 1 (HIF-1) [21]. The inflammatory cytokines 

IL-1 and IL-6 upregulate the expression of VEGF [21]. Many growth factors upregulate 

VEGF expression such as PDGF, TGF-α, TGF-β, FGF, and EGF; these growth factors 

are frequently expressed by tumours [21, 24]. Activation of Ras and mutations in the 

Wnt-signaling pathway result in increased VEGF expression [21]. VEGF expression can 

also be upregulated by mutations in the tumour suppressors PTEN and p53 [21, 25]. 

Biologically active VEGF189, VEGF206, and, to a lesser extent, VEGF165 can be released 

from the extracellular matrix (ECM) by the proteolytic enzyme plasmin or the 

glycosaminoglycan heparin [26]. 

 

1.4.1 Role of VEGF in Cancer 
 

VEGF acts as a key mediator of angiogenesis by promoting endothelial cell 

growth, vascular permeability, chemotaxis, extracellular matrix (ECM) degradation, and 

endothelial cell survival [21, 25]. In endothelial cells, VEGF induces the expression of 
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the anti-apoptotic proteins Bcl-2 and survivin [21]. VEGF induces expression of 

urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), 

and plasminogen activator inhibitor-1 (PAI-1) [27]. uPA is involved in extracellular 

proteolysis and cell migration [27]. VEGF also upregulates the expression of urokinase-

type plasminogen activator receptor (uPAR) in endothelial cells; uPAR greatly increases 

the rate of plasminogen activation [28]. In retinal pigment epithelium (RPE) cells there is 

a positive feedback loop that exists between VEGF and matrixmetaloproteinase-9 

(MMP9), where MMP9 is involved in ECM degradation [29].
 

VEGF is the key mediator of angiogenesis and it is upregulated by hypoxia, 

growth factors frequently expressed in tumours, loss of tumour suppressors, and over-

activation of oncogenes [21, 24, 25]. VEGF has been found to be overexpressed in many 

human tumours including kidney, colon, pancreas, bladder, breast, stomach, and 

glioblastomas [30]. VEGFR-1 and VEGFR-2 are expressed in many human tumours [31]. 

Elevated levels of VEGF in cancer are associated with a poorer prognosis [24]. Due to 

these factors inhibiting the VEGF became an attractive cancer therapeutic target. Many 

drugs have been made to target VEGF and the VEGFRs. While these drugs have been 

successful in treating mouse tumours, they only have modest effects on human cancers 

[32]. Bevacizumab, a human antibody against VEGF-A, was the first FDA approved drug 

for cancer treatment that inhibited VEGF [21]. Bevacizumab seems to be only slightly 

beneficial to advanced colon cancer patients by prolonging life for 4 to 5 months [32]. 

The FDA has revoked the approval of bevacizumab for the treatment of metastatic breast 

cancer [33]. In phase III clinical trials VEGF or VEGFR inhibitors were shown to have 

modest effects on human cancers [32, 34]. A potential explanation for the minimal 
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benefit of these therapies is the tumour cells that are resistant to anti-VEGF therapy could 

upregulate many other growth factors that can stimulate tumour angiogenesis [32]. The 

failure of the anti-VEGF therapeutics suggests that new molecular targets need to be 

found to treat tumour angiogenesis [32]. 

 

1.5 Urokinase Plasminogen Activation System 
 

 The urokinase plasminogen activation system (uPAS) is involved in many 

different processes including tissue and vascular remodeling, cell migration, cell 

invasion, cell adhesion, tumour development, angiogenesis, and metastasis [35]. uPAS 

consists of urokinase-type plasminogen activator (uPA), urokinase-type plasminogen 

receptor (uPAR), and two inhibitors: plasminogen activator inhibitor-1 (PAI-1), and 

plasminogen activator inhibitor-2 (PAI-2) [36]. The uPAS system is involved in the 

conversion of the zymogen plasminogen to the active enzyme plasmin (Fig. 1.1)  [36]. 

 

 

 

 

 

 

 



11 
 

Urokinase-type plasminogen activator receptor (uPAR) can bind both the zymogen 

urokinase-type plasminogen activator (pro-uPA) and the active form uPA with the same 

affinity. Plasmin can activate pro-uPA to uPA, and uPA can activate plasminogen to 

plasmin. Both of these processes are more efficient when the zymogen forms are bound 

to their cell surface receptors, uPAR or plasminogen receptor. Plasmin degrades the 

extracellular matrix (ECM) and activates and releases matrix metalloproteinases (MMPs). 

Both plasmin and the active MMPs can activate and release growth factors from the 

ECM. uPA bound to uPAR can bind to the ECM protein vitronectin. uPA-uPAR bound to 

vitronectin can interact with integrins to activate intracellular signaling events. uPA is 

antagonized by plasminogen activator inhibitor 1 (PAI-1) and plasminogen activator 

inhibitor 2 (PAI-2). Plasmin activity can be inhibited by α2-antiplasmin. (Image adapted 

from ref. 41).  

 

  

 

 

  Figure 1.1 Activation of plasminogen by the urokinase plasminogen activation 
system 



12 
 

Plasminogen is the zymogen form of plasmin, its activation plays a role in 

fibrinolysis, inflammation, and cancer [37]. Plasminogen is produced by the liver and 

circulates at a relatively high concentration through interstitial fluids and plasma [38]. 

The concentration of plasminogen can be upregulated in response to injury or 

inflammation [38]. Plasminogen circulates under physiological conditions as Glu-

plasminogen [37]. Glu-plasminogen consists of a single chain with a carboxyl-terminal 

serine protease domain, five kringle domains, and an amino-terminal glutamic acid [37]. 

Plasminogen can bind to proteins with carboxyl-terminal lysine through the lysine-

binding site in kringle domains 1, 2, 4, and 5 [37]. Glu-plasminogen is in a tight 

conformation; proteolysis by plasmin of the amino-terminal portion results in the 

cleavage of the amino-terminal portion and generates Lys-plasminogen [36]. 

Plasminogen is in the tight conformation under physiological conditions to limit the 

amount of plasminogen activation in the blood [36]. Lys-plasminogen is in an open 

conformation and is susceptible to cleavage from proteolytic enzymes such as uPA and 

tissue-type plasminogen activator (tPA)  to form plasmin [36]. 

 There are more than twelve known plasminogen receptors possibly present on the 

cell surface, most with a carboxyl-terminal lysine residue to which the kringle domains of 

plasminogen can bind [39]. Activation of plasminogen by uPA or tPA is enhanced 

through binding of plasminogen to a cell surface plasminogen receptor [39]. Plasmin is 

protected from inhibitors by being bound to a plasminogen receptor [37]. Binding of 

plasminogen to a cell surface plasminogen receptor localizes plasminogen activation to 

the cell surface (Fig. 1.1)  [37]. 
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Plasmin is a serine protease with activity toward a broad range of substrates. In 

the blood, fibrin is the main substrate of plasmin [40]. Plasmin mediates fibrinolysis by 

degrading and clearing fibrin blood clots [41]. Plasmin also degrades a range of basement 

membrane and ECM components including proteoglycans, fibronectin, vitronectin, type 

IV collagen, and laminin (Fig. 1.1)  [36]. Plasmin can release many growth factors from 

the ECM that promote migration, growth and angiogenesis such as VEGF, EGF, bFGF, 

and TGF-β (Fig. 1.1)  [36]. Many of these growth factors then act to upregulate the 

expression of uPAR, uPA, and PAI-1 [36]. Plasmin also activates many matrix 

metalloproteinases (MMPs) that can further degrade the ECM and release growth factors 

(Fig. 1.1)  [38]. Plasmin activates MMP1, 2, 3, 9, 13, and 14 [38]. Plasmin has been 

shown to have activity toward osteopontin (OPN); proteolytic cleavage of OPN can result 

in increased cell adhesion of tumour cells [42]. Angiostatin, an inhibitor of angiogenesis, 

is a fragment of plasminogen and plasmin that can be produced from plasmin 

autoproteolysis or degradation by MMPs [35]. Overall, plasmin acts to regulate 

fibrinolysis and tissue remodeling. 

There are two different plasminogen activators: uPA and tPA [43]. tPA is 

involved in plasminogen activation in the blood which leads to the lysis of fibrin clots 

[38]. uPA is involved in plasminogen activation which leads to tissue remodeling [43]. 

uPA is secreted as a single-chain zymogen pro-uPA [35, 36]. Single chain pro-uPA can 

be converted to the two chain active form of uPA by proteases such as plasmin and 

trypsin [35, 36]. There is reciprocal zymogen activation between plasmin and uPA: 

plasmin is the main activator of pro-uPA, and plasminogen is the main substrate of uPA 

(Fig. 1.1)  [36]. Pro-uPA and uPA bind with the same affinity to uPAR, and the 
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conversion of pro-uPA to uPA is more efficient when pro-uPA is bound to uPAR (Fig. 

1.1)  [35, 36]. This localization of the activation of pro-uPA to uPAR leads to pericellular 

generation of uPA [36]. 

uPAR is involved in regulating extracellular proteolysis, cell signaling, and cell 

adhesion [41]. uPAR localizes to cell-cell contacts, cell-ECM contacts, and the leading 

edge of migrating cells [36]. uPAR has low expression in normal cells and it is 

upregulated by injury and inflammation and during ECM remodeling [41]. uPAR does 

not contain a transmembrane domain: instead it is associated with the cell surface by a 

glycosyl phosphatidylinositol (GPI) anchor [36]. uPAR binds both pro-uPA and uPA and 

it enhances the production of uPA at the cell surface (Fig. 1.1)  [36]. Another ligand of 

uPAR is the ECM protein vitronectin [36, 43]. Vitronectin binds to a different location on 

uPAR than pro-uPA/uPA; therefore, both vitronectin and pro-uPA/uPA can 

simultaneously bind to uPAR [41]. Binding of uPAR to vitronectin is enhanced by uPA 

binding to uPAR [41]. Vitronectin binding to uPAR results in cell adhesion [41]. The GPI 

anchor attached to uPAR allows it to localize to lipid rafts which have a higher 

concentration of vitronectin and integrins [41]. Integrins are cell surface receptors that 

transduce signals from the extracellular environment; some integrins are co-receptors of 

vitronectin [40]. uPAR or uPAR associated with vitronectin may interact with integrins 

which results in cell signaling leading to cell survival, cell proliferation, cytoskeleton 

remodeling, and cell mobility (Fig. 1.1)  [41, 43]. uPAR regulates extracellular 

proteolysis through uPA, cell adhesion through vitronectin, and cell signaling through 

vitronectin and potentially through integrins [41]. 
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There are inhibitors of the uPAS which act to regulate the amount of uPA and 

plasmin generation: PAI-I, PAI-2, α2-antiplasmin, and α2-macroglobin [36, 37, 43]. PAI-

1 and PAI-2 are plasminogen activator inhibitors while α2-antiplasmin and α2-

macroglobin inhibit plasmin [36, 37, 43]. PAI-1 and PAI-2 are serine protease inhibitors 

(serpins). PAI-1 is considered the main inhibitor of uPA and tPA (Fig. 1.1) [43]. PAI-2 

can inhibit tPA and uPA,  albeit to a lesser extent than PAI-1 (Fig. 1.1)  [35]. PAI-1 

inactivates tPA and uPA in a 1:1 ratio and it can also moderately inhibit plasmin [36, 43]. 

PAI-1 is stabilized in its active conformation by an interaction with vitronectin and PAI-1 

bound to vitronectin can still bind to uPA [43]. PAI-1 bound to uPA loses its affinity for 

vitronectin [35]. uPA bound to uPAR is not protected from inhibition by PAI-1 and PAI-

2 [43]. α2-antiplasmin is the main inhibitor of plasmin (Fig. 1.1)  [35]. Cell surface bound 

plasmin is protected against inhibition from α2-antiplasmin and α2-macroglobin 

circulating in the plasma, this acts to restrict active plasmin to the cell surface [43].  

 

1.1.1 Urokinase Plasminogen Activation System in Cancer 
 

 uPA, uPAR, and PAI-1 expression has been found to be upregulated in cancer and 

associated with a poorer prognosis [36]. These uPAS components are upregulated in 

many cancers including lung, bladder, breast, colon, ovary, cervix, kidney, stomach, 

brain, thyroid, bladder, and endometrium [36]. In breast cancer specifically, high levels 

of uPA and PAI-1 are robust prognostic markers associated with poor relapse-free 

survival and overall survival [44]. The uPAS system is involved in tumour cell migration, 

invasion, tumour angiogenesis, proliferation and adhesion [36]. 
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 The uPAS has been implicated in tumour angiogenesis. While uPA and uPAR 

levels are undetectable in normal quiescent endothelial cells, their production is induced 

at the leading edge of migrating endothelial cells by pro-angiogenic factors such as 

VEGF [10, 27, 45]. PAI-1 is highly expressed in tumour associated endothelial cells [10]. 

The major angiogenic stimulator hypoxia can induce uPAR and PAI-1 [10]. MMPs 

released from the ECM and activated by plasmin play a role in angiogenesis by degrading 

the ECM and basement membrane of existing vasculature to allow movement and 

proliferation of endothelial cells into the surrounding stroma [36]. uPA expression can be 

induced by NFκB; in many cancers NFκB is constitutively active [36]. The uPA 

promoter has also been found to be hypomethylated in many cancer cells leading to 

increased uPA production [36]. The tumour suppressor p53 can bind to a sequence in the 

untranslated region of uPAR mRNA, resulting in an increase in its mRNA degradation by 

other proteins [36]. In more than 50% of cancers there are loss-of-function mutations of 

p53 which could account for the upregulation of uPAR in many cancers [36]. 

 The upregulation of PAI-1 in cancers seems paradoxical since PAI-1 inhibits 

uPA. A study from Bajou et al. showed prevention of tumour vascularization and 

invasion of transplanted keratinocytes in PAI-1 deficient mice [46]. When PAI-1 

expression was restored in the PAI-I deficient mice there was invasion and tumour 

vascularization of the transplanted keratinocytes [46]. This study showed that PAI-1 

expression is essential for tumour angiogenesis and invasion [46]. Excessive ECM and 

basement membrane proteolysis hinder angiogenesis because there is the absence of a 

scaffold for migrating endothelial cells to adhere [10]. PAI-1 prevents excessive 

proteolysis which therefore supports angiogenesis [10]. PAI-1 can bind to vitronectin, 
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and when PAI-1 binds to uPA it loses affinity for vitronectin [35, 43]. In this manner, 

PAI-1 could regulate cell adhesion: when PAI-1 interacts with vitronectin it inhibits cell 

adhesion while when PAI-1 complexes with uPA adhesion is promoted [47]. In the 

absence of uPA, cells would be nonadherent and motility of the cells would increase [47]. 

When PAI-1 is bound to vitronectin it can block the binding of vitronectin to integrin 

αvβ3 which leads to a decrease in migration on the substratum [48]. Binding of PAI-1 to 

uPA restores binding of vitronectin to integrin αvβ3, therefore increasing cell migration on 

the substratum [48]. PAI-I can regulate both adherence and migration on the cell surface 

[47, 48]. PAI-1 could favour tumour progression by preventing excessive proteolysis, 

regulating cell adhesion, and regulating migration on the substratum [10, 47, 48].  

 Inhibiting different components of the uPAS has become an attractive target for 

cancer therapeutics. Drugs targeting the uPAS have showed promise in vitro and in vivo 

and many have entered clinical trials [36]. For example, WX-UK1, an inhibitor of uPA, 

has shown promise in phase I and II clinical trials [36]. However, there have also been 

many drugs that showed promise in vitro and in vivo but have failed in clinical trials such 

as surmin, a competitive inhibitor of uPA binding to uPAR [36]. Plasminogen receptors, 

like uPAR, also localize plasmin generation to the cell surface which is essential for the 

metastatic role of plasmin [37, 39]. It may be more beneficial to target cell surface 

plasminogen receptors than uPAR because they are directly involved in the localization 

of plasminogen activation on the cell surface [39]. Therefore a potential therapeutic target 

could be the inhibition of pericellular plasminogen activation.  

 



18 
 

1.6 Matrix Metalloproteinases 
 

 Matrix metalloproteinases (MMPs) constitute a family of 23 zinc-dependent 

endopeptidases known mainly for their involvement in extracellular proteolysis [10]. 

MMPs play a role in organ development, regulating inflammatory processes, and tissue 

remodeling [49]. They also play a role in diseases such as rheumatoid arthritis and cancer 

[49, 50]. MMPs can be placed into two broad structural categories: secreted MMPs and 

membrane-type MMPs (MT-MMPs) [10]. Most MMPs share three common domains: a 

pro-domain with a conserved cysteine residue, a catalytic domain containing a zinc ion, 

and a carboxyl-terminal hemopexin-like domain linked to the catalytic domain with a 

hinge region [49, 50]. MMPs are synthesized as zymogens, and are kept inactive through 

a covalent coordination of the zinc ion in the catalytic domain to the conserved cysteine 

in the pro-domain [50]. MMPs are activated through a mechanism called cysteine switch, 

during which the cysteine zinc coordination is disturbed either by chemical modification 

of the cysteine residue or proteolytic removal of the pro-domain [51]. Plasmin is a major 

protease involved in the removal of the pro-domain and subsequent activation of MMPs 

[52].  While there are many inhibitors of MMPs such as α2-macroglobin and α1-

proteinase inhibitor, the main inhibitors of MMPs are tissue inhibitors of 

metalloproteinases (TIMPs) [49]. TIMPs form reversible 1:1 complexes with active 

MMPs [49]. MMPs degrade components of the ECM including collagens, proteoglycans, 

and glycoproteins [53]. MMPs are also involved releasing growth factors embedded in 

the ECM [53]. Other MMP substrates include cytokines, chemokines, growth factor 

receptors, tyrosine kinase receptors, and cell adhesion molecules [50, 53].  
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1.1.2 Involvement of Matrix Metalloproteinases in Cancer 
 

MMPs are upregulated in many cancers and high levels of MMPs are correlated 

with poorer prognosis [50]. MMPs are expressed in many cells found in the tumour 

microenvironment including fibroblasts, endothelial cells, and inflammatory cells [49]. 

MMPs degrade the ECM which leads to cell invasion and metastasis [49]. MMPs are 

involved in increasing the bioavailability of many growth factors in the tumour 

microenvironment leading to cell proliferation [49]. MMPs are also involved in the 

regulation of apoptosis through cleavage of receptors or ligands that are pro-apoptotic 

[49]. MMPs can activate many inflammatory mediators which can lead to tumour-

associated inflammation [49]. MMPs have been found to be highly involved in tumour 

angiogenesis [49]. Many MMPs have been found to have tumour-suppressing functions 

as well, such as the production of angiostatin formed through proteolytic cleavage of 

plasminogen by MMP2, 3, 7, 9, and 12 [35, 53].  

 MMPs have been implicated in tumour angiogenesis, specifically MMP2, 9, and 

14 [53]. Endothelial cells have been found to express MMP2, 3, 7, 14, and 19 as well as 

TIMP1, and 2 [49]. Mice deficient in MMP2 have reduced tumour angiogenesis [54]. 

Mice deficient in MMP9 and MMP14 have impaired angiogenesis during development 

[55, 56]. MMP2 and MMP9 are known as gelatinases since one of their substrates is 

gelatin, but they can also degrade other substrates such as collagen type IV, laminin, and 

fibrin [53]. MMP14 is a MT-MMP that can degrade substrates such as collagen types I, 

II, III, fibrin, and fibronectin [53]. These MMPs could be playing a role in tumour 

angiogenesis by degrading the vascular basement membrane and ECM [53]. MMP9 can 

release VEGF from the ECM [49]. MMP9 has been shown to be in a positive feedback 
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loop with VEGF in RPE cells [29]. MMP3, 7, 9, and 16 can cleave matrix-bound VEGF 

producing truncated versions that cause vascular dilation of existing vessels, whereas 

non-truncated VEGF induces vessel sprouting [57]. The angiostatin that MMPs can 

create from plasminogen can act to inhibit angiogenesis [35, 53]. The effects that MMPs 

have on angiogenesis are diverse since they can generate pro- and anti-angiogenic effects. 

 Since MMPs have been associated with multiple cancers there have been many 

MMP inhibitor drugs made. They have, however, had disappointing results in clinical 

trials [49]. Many of these drugs lacked specificity toward particular MMPs as many 

MMPs are structurally similar [53]. Another potential reason for the failure of these drugs 

could be that they were tested on late-stage tumours that had already metastasized and/or 

had established vasculature [53]. Since MMPs are implicated in tumour angiogenesis, 

MMP inhibitor drugs may be more beneficial in treating early-stage tumours to prevent 

tumour angiogenesis and metastasis [53]. 

 

1.7 Coagulation and Fibrinolysis 
 

 While the activation of plasmin on the cell surface is involved in cancer amongst 

other effects, its activation in the blood plays a key role in the fibrinolytic system [41, 43, 

58]. Maintaining vascular blood fluidity an essential physiological process [59]. There is 

a delicate balance between blood clot deposition and removal known as hemostasis that 

occurs under normal physiological conditions [59]. Normal hemostasis regulates the 

maintenance of blood fluidity while protecting against excessive bleeding resulting from 

vascular injury [59]. The coagulation system is responsible for the formation of a fibrin 
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clot at the site of an injury, whereas the fibrinolytic system is responsible for the 

degradation of the fibrin clot [59]. Imbalances in hemostasis can lead to the formation of 

a thrombus that can occlude blood flow leading to a heart attack or stroke or to diseases 

involving a bleeding tendency, such as hemophillia [58, 60]. There are control 

mechanisms present in both the coagulation and fibrinoytic systems – as well as between 

the systems – that act to ensure the hemostatic balance is maintained [60]. 

 Endothelial cells provide a barrier between blood and tissues, and they act to 

maintain blood fluidity, and protect against vascular injury by producing 

thromboresistant and vasoprotective molecules [61]. Under normal conditions, the 

surface of endothelial cells is thromboresistant which ensures that platelets and other 

blood cells do not adhere [61]. Upon vascular injury platelets adhere to the endothelial 

cell surface due to the loss of endothelial cell protective molecules and expression of 

prothrombotic factors and adhesive molecules [61]. Vascular injury can expose ECM 

components, mainly collagen, to the blood which platelets can come into contact with 

and adhere to [62]. After platelets adhere to the ECM components platelet activation and 

aggregation occur [62]. The cycle of platelet adhesion, activation, and aggregation 

continues and results in the formation of a platelet plug [61, 62].  

 The platelet plug is the first hemostatic structure; after it forms the coagulation 

cascade is initiated [59, 63]. The function of the coagulation system is to add to the 

platelet plug and form a stable fibrin clot at the site of injury to prevent excessive 

bleeding [58, 63]. Thrombin is the main enzyme produced in the coagulation cascade, 

and is responsible for the formation of the fibrin clot [63]. The coagulation cascade is 

further divided into the extrinsic and intrinsic pathways [63]. The extrinsic pathway of 
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the coagulation cascade produces the thrombin needed for initial fibrin clot formation, 

while the intrinsic pathway of the coagulation cascade leads to a large burst of thrombin 

formation within the clot which protects the clot from fibrinolysis (Fig. 1.2)  [63, 64]. 
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Figure 1.2 Coagulation and fibrinolytic pathways 

The coagulation cascade is initiated upon vascular injury in which tissue factor (TF) is 

exposed to the bloodstream. Initially the extrinsic pathway is activated, by which TF 

binds to activated factor VII (VIIa). The TF-VIIa complex activates limited quantities of 

factors X and IX. Activated factor X (Xa) along with its cofactor factor Va activate 

prothrombin to thrombin (factor IIa) on the surface of activated platelets. IIa converts the 

soluble zymogen fibrinogen to the insoluble fibrin. The formation of fibrin forms a fibrin 

clot. IIa can activate factor XI, which activates factor IX. TF-VIIa can also catalyze the 

production of IXa. IXa along with its cofactor factor VIIIa activate factor X and lead to 

further production of IIa. The intrinsic pathway makes large amounts of IIa which can 

consolidate the clot forming a thrombus. The fibrinolytic cascade is initiated after the 

formation of a thrombus. Initially limited digestion of the fibrin clot occurs by 

plasminogen converted by tissue-type plasminogen activator to plasmin forming fibrin’ 

which contains carboxyl-terminal lysine residues that make fibrin’ an effective cofactor 

for plasminogen activation thereby mediating positive feedback in the fibrinolytic 

cascade. Digestion of fibrin into soluble fibrin degradation products (FDPs) dissolves the 

clot. IIa can bind to the transmembrane cofactor thrombomodulin (TM) to activate 

protein C and thrombin-activatable fibrinolysis inhibitor (TAFI). Activated protein C 

(APC) along with its cofactor Protein S can inhibit coagulation by degrading factors Va 

and VIIIa. TAFIa can remove the carboxyl-terminal lysine residues from fibrin’ therefore 

inhibiting the positive feedback loop in fibrinolysis. (Image adapted from ref. 63). 
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 The initial step in the coagulation cascade involves the expression of membrane 

bound tissue factor (TF) [65]. TF is not normally exposed to the blot clotting factors 

under physiological conditions, but when blood enters the interstitium after vascular 

injury it is exposed to TF [65]. TF recruits circulating factor VIIa and forms a 

catalytically active complex [63, 66]. The TF-VIIa complex activates limited quantities 

of factors IX and X to factors IXa and Xa (Fig. 1.2) [66, 67]. Factor Xa is involved in the 

common pathway while factor IXa is involved in the intrinsic pathway [63]. The extrinsic 

pathway proceeds with factor Xa along with its cofactor Va and the activated platelet 

surface forming a complex known as prothombinase which activates prothrombin to 

thrombin (Fig. 1.2) [66]. Thrombin then cleaves soluble fibrinogen into insoluble fibrin 

forming a fibrin clot (Fig. 1.2) [66]. The amount of thrombin generated through the 

extrinsic pathway is relatively small, being only around 5% of the total thrombin 

generated during coagulation [63]. The TF-VIIa complex is rapidly inactivated by tissue 

factor pathway inhibitor (TFPI) which results in trace amounts of Xa formation and 

consequently low amounts of thrombin formation formed through the extrinsic pathway 

[65]. The small amount of thrombin generated through this pathway is sufficient to form 

a fibrin clot but cannot stabilize the clot [63, 67]. The majority of thrombin is generated 

through the intrinsic pathway in order to protect the newly formed fibrin clot [63]. 

Thrombin generated through the extrinsic pathway can activate factor XI, which can then 

activate factor IX (Fig. 1.2) [63]. TF-VIIa complex also catalyzes the production of factor 

IXa (Fig. 1.2) [66, 67]. Factor IXa along with its cofactor VIIIa and an activated platelet 

surface form a complex known as intrinsic tenase [66]. Tenase activates factor X which 

can further activate prothrombin to thrombin [66]. This pathway leads to a large 
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amplification of thrombin generation (Fig. 1.2) [67]. The thrombin generated can activate 

factors V, VIII, and XIII, platelets, and can convert fibrinogen to fibrin [66]. Activated 

factor XIII (XIIIa) is a transglutaminase that cross-links fibrin to stabilize the clot [66]. 

The insoluble fibrin mesh binds to the platelets forming a platelet-fibrin thrombus at the 

site of the vascular injury [59]. 

 For wound healing and tissue remodeling to occur after vascular injury the formed 

thrombus must be broken down through fibrinolysis (Fig. 1.2) [67]. tPA can activate 

plasminogen to plasmin, however this conversion is slow in the absence of a fibrin 

cofactor, accounting for the localization of fibrinolysis to the thrombus itself (Fig. 1.2) 

[58]. Plasmin can proteolytically cleave fibrin into soluble fibrin degradation products 

(FDPs) (Fig. 1.2) [58]. Partial cleavage of fibrin by plasmin generates carboxyl-terminal 

lysine residues that can bind tPA and plasminogen greatly enhancing the efficiency of 

tPA activation of plasminogen (Fig. 1.2) [68]. These carboxyl-terminal lysines therefore 

mediate positive feedback in the fibrinolytic cascade. An additional positive feedback 

mechanism mediated by carboxyl-terminal lysines in fibrin is acceleration of plasmin-

mediated conversion of Glu-plasminogen to Lys-plasminogen [62, 67]. Lys-plasminogen 

is in an open conformation and is a better substrate for tPA [36]. The serine protease 

inhibitors α2-antiplasmin and PAI-1 can downregulate fibrinolysis by irreversibly binding 

to plasmin and tPA, respectively [58, 64]. Plasmin bound to carboxyl-terminal lysine 

residues on partially-degraded fibrin is protected from inactivation by α2-antiplasmin 

[69]. Therefore, the generation of carboxyl-terminal lysine residues on fibrin is an 

important regulatory mechanism that promotes fibrinolysis [63]. 
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 Within both the coagulation and fibrinolytic systems there are regulatory 

mechanisms such as the anticoagulant pathway involving protein C and the 

antifibrinolytic pathway involving thrombin-activatable fibrinolysis inhibitor (TAFI) 

(Fig. 1.2) [64]. Both of these mechanisms are mediated by the endothelial transmembrane 

enzyme thrombomodulin (TM) in complex with thrombin [64]. TM binds thombin and 

prevents it from its procoagulant functions and directs it toward the activation of either 

protein C or TAFI [64]. When TM concentrations are low the activation of TAFI is 

favoured, whereas high TM concentrations favour protein C activation [70]. Thrombin 

bound to TM is both anticoagulant through the activation of protein C and antifibrinolytic 

through the activation of TAFI [64]. The protein C anticoagulant pathway is an important 

mechanism for controlling thrombosis [71]. The thrombin-TM complex can activate 

protein C more than 1000-fold more efficiently than thrombin alone [72]. Once activated 

protein C (APC) is formed, it along with its cofactor protein S (PS) can proteolytically 

degrade cofactors Va and VIIIa (Fig. 1.2) [66, 73]. This inhibits the formation of 

prothrombinase and intrinsic tenase leading to an overall decrease of thrombin production 

and an overall downregulation of coagulation [66, 73]. The TAFI antifibrinolytic 

pathway is an important mechanism in regulating the positive feedback loop of the 

fibrinolytic pathway (Fig. 1.2) [68]. This antifibrinolytic pathway creates a direct 

molecular link between the coagulation and fibrinolytic pathways since activation of 

coagulation produces thrombin that can then inhibit fibrinolysis through activation of 

TAFI [74]. The thrombin-TM complex is the most likely physiological activator of TAFI, 

with a 1250-fold increase in activation efficiency over thrombin alone [75]. The burst of 

thrombin generation during the intrinsic coagulation cascade can trigger the activation of 
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TAFI [68]. TAFIa can cleave carboxyl-terminal lysine and arginine residues from 

partially degraded fibrin, therefore attenuating the effect of these residues on positive 

feedback via plasminogen activation, Glu- to Lys-plasminogen conversion, and  

protection of plasmin from α2-antiplasmin [62, 76, 77].  Therefore, TAFIa leads to a 

decrease in plasmin formation and delays the lysis of the fibrin clot [64]. 

 

1.8 Thrombomodulin 
 

 Thrombomodulin (TM) is transmembrane glycoprotein that plays a role in 

regulating vascular hemostasis and has recently been linked to cancer. It is mainly found 

on endothelial cells but is also present in monocytes, platelets, megakaryocytes, 

chondrocytes, smooth muscle cells, osteoblasts, keratinocytes, astrocytes, and in various 

tumour cells [78, 79]. In the vasculature, TM concentration is higher within capillaries 

compared to arteries and veins [78]. TM acts as a cofactor for thrombin in the activation 

of protein C and TAFI [64]. 

TM contains 557 amino acids and has a theoretical molecular mass of 75 kDa 

[80]. TM is usually present in a highly glycosylated form with an apparent molecular 

mass of 100 kDa [80]. TM contains five domains: an amino-terminal lectin-like domain, 

six-epidermal growth factor (EGF)-like repeats, a serine-threonine rich domain, a 

transmembrane domain, and a carboxyl-terminal cytoplasmic tail (Fig. 1.3) [80]. The 

amino-terminal lectin-like domain makes up the majority of the extracellular component 

of TM and contains two potential sites for N-linked glycosylation [78]. The lectin-like 

domain plays a role in inflammation, cell proliferation, and cell adhesion [78]. The EGF-



28 
 

like domains are responsible for activation of protein C and TAFI (Fig. 1.3) [78]. EGF-

like repeats 5 and 6 are specifically responsible for thrombin binding (Fig. 1.3) [78]. 

EGF-like repeats 3-6 are essential for TAFI activation, while EGF-like repeats 4-6 are 

essential for protein C activation [78]. There are specific residues within the EGF-like 

domains that are essential for substrate binding, residing in EGF-like repeat 3 for TAFI 

activation and EGF-like repeat 4 for protein C activation [81, 82]. Mutation to alanine of 

Val340, Asp341, and Glu343 in EGF-like repeat 3 of TM result in more than a 90% 

reduction in TAFI activation with marginal loss in protein C activation [82]. Mutation to 

alanine of Phe376 in EGF-like repeat 4 of TM results in a 90% reduction in protein C 

activation and retains approximately 80% TAFI activation [81, 82]. Mutation to alanine 

of Asp349, Glu357, Tyr358, and Gln387 in EGF-like domain 4 of TM results in loss of 

both TAFI and protein C activation [81, 82]. Mutation of Gln387 to proline results in the 

greatest loss of both TAFI and protein C activation by abolishing thrombin binding to 

TM [81, 82]. The serine-threonine rich domain contains four potential sites for O-linked 

glycosylation [78]. The serine-threonine rich domain also supports the attachment of 

chondroitin sulfate (CS) (Fig. 1.3) [78]. CS is a glycosoaminoglycan with approximately 

20 repeating disaccharide units and a trisaccharide terminus [78]. CS is important for the 

protein C cofactor ability of TM and it acts as a second lower affinity binding site for 

thrombin [78]. 
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Figure 1.3 Schematic diagram structure of thrombomodulin  

Thrombomodulin (TM) contains five domains: amino-terminal lectin-like domain (D1), 

epidermal growth factor (EGF)-like domain (D2), serine-threonine rich domain (D3), 

transmembrane domain (D4) and a cytoplasmic tail (D5). The lectin-like domain is 

involved in cell proliferation, inflammation and adhesion. The EGF-like domain is 

responsible for substrate activation. EGF-like repeats 5-6 are responsible for thrombin 

binding (IIa). Activation of thrombin activatable-fibrinolysis inhibitor (TAFI) by the TM-

IIa complex is achieved through EGF-like repeats 3-6. Activation of protein C by the 

TM-IIa complex is achieved through EGF-like repeats 4-6. The serine-threonine rich 

domain supports the attachment of chondroitin sulfate (CS). (Image adapted from ref. 78) 
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Many factors have been found to modulate TM cellular expression. TM can be 

upregulated by factors such as VEGF, thrombin, heat shock, histamines, and statins [78, 

83]. Factors that can downregulate TM expression include hypoxia, inflammatory 

cytokines, TGF-β, and shear stress [78, 83]. There are also regulatory mechanisms of TM 

which can regulate its cofactor activity towards its substrates. Oxidation of Met388 which 

is in the linker region between EGF-like repeats 5 and 6 results in an 80% loss in protein 

C activation by thrombin-TM but does not affect TAFI activation [82, 84]. Concentration 

of TM is another regulatory mechanism for substrate activation of TM: when TM 

concentration is high protein C activation is favoured, when TM concentration is low 

TAFI activation is favoured [70]. Within the capillaries the concentration of TM is high 

which would lead to protein C activation and reduced coagulation [71, 78]. 

The main function of TM is being a cofactor to thrombin in the activation of 

TAFI and protein C, but TM has been shown to play a role in inflammation, cell 

adhesion, and cancer [78]. The lectin-like domain plays a role in maintaining cell-cell 

adhesion [85]. The lectin-like domain has also been shown to attenuate inflammation 

through binding to HMGB1 and Lewis Y antigen [78, 85]. HMGB1 is a pro-

inflammatory protein and binding of HMGB1 to the lectin-like domain of TM sequesters 

HMGB1 from its inflammatory pathway therefore inhibiting inflammation [78, 85]. The 

Lewis Y antigen is a carbohydrate present in lipopolysaccharide component of the cell 

wall of gram-negative bacteria that is highly involved in strong inflammatory processes 

during infection [85]. Binding of the lectin-like domain of TM to the Lewis Y antigen can 

block the inflammatory reaction [85]. TM can also indirectly inhibit inflammation by 

sequestering thrombin [78]. Thrombin has many pro-inflammatory functions, of which 
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many are mediated through activation of protease activated receptors (PARs) [78]. 

Thrombin bound to TM is prevented from activating PARs therefore the pro-

inflammatory effects of thrombin are inhibited [78]. 

 

1.1.3 Role of Thrombomodulin in Cancer 
 

  Expression of TM has been found to be inversely correlated to tumour 

malignancy and prognosis [86, 87]. Patients with TM-positive tumours have a 

significantly higher survival rate than patients with TM-negative tumours [88]. In breast 

cancer patients low TM is strongly correlated with high relapse rate and poor prognosis 

[89]. Soluble TM has been shown to reduce invasion and metastasis in vivo [90]. TM 

expression has also been shown to decrease cell proliferation [79, 87]. Zhang et al. found 

that TM decreased tumour cell growth and that it was dependent on TM containing a 

functional lectin-like domain [79]. Conversely, Horowitz et al. found that TM does not 

affect established tumour growth, rather TM has a role in metastatic potential and 

survival of newly metastasized tumour cells in the lungs [86, 91]. Horowitz et al. also 

found that TM is an important regulator of metastasis and this was dependent on 

thrombin binding to TM [91]. They made a strain of mice containing a Q387P mutation 

“knocked in” to the gene encoding TM, a mutation that leads to a severe reduction in TM 

cofactor activity toward TAFI and protein C by abolishing thrombin binding [82, 91, 92]. 

The presence of the Q387P mutation in the mice had no effect on tumour growth but 

significantly increased metastatic potential and spontaneous metastasis, and increased the 

probability of a metastatic focus forming from circulating tumour cells [91]. Furthermore, 
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Horowitz et al. performed the same experiments using mice expressing a form of TM 

lacking the lectin-like domain and did not find significant impact on metastasis [91]. 

These findings suggest that thrombin binding to TM, not the lectin-like domain of TM, is 

required for the antimetastatic effects of TM [91].  

 TM has recently been shown to play a role in angiogenesis. Shi et al. reported that 

recombinant TM containing the six EGF-like repeats and the serine-threonine rich 

domain (rTMD23) promoted angiogenesis [93]. Kuo et al. performed a follow-up to the 

work of Shi et al. and made mutations within the rTMD23 of E357A, R385S, and 

D400A; these mutations do not allow for the activation of protein C  [94]. They found 

that the mutations of the rTMD23 increased angiogenesis but did not alter the angiogenic 

potential compared to the non-mutated rTMD23 [94]. Their result suggested that 

rTMD23 induced angiogenesis in a manner independent of activation of protein C [94]. 

Kuo et al. published another study suggesting that TM could be inhibiting angiogenesis 

through the lectin-like domain [95]. They found that the lectin-like domain of TM could 

be inhibiting angiogenesis through interaction with the Lewis Y antigen [95]. The Lewis 

Y antigen has been shown to increase angiogenesis, therefore the lectin-like domain 

could inhibit angiogenesis by sequestering the Lewis Y antigen [95]. These studies 

suggest that TM could be playing both pro- and anti-angiogenic roles and therefore 

further studies are required to determine the role of TM in angiogenesis. 
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1.9 Protein C 
 

 Protein C is plasma zymogen that is activated by thrombin-TM to form activated 

protein C (APC) a serine protease involved in inhibiting coagulation [73]. Thrombin can 

convert protein C into APC, however this conversion is very slow [73]. Binding of 

thrombin to TM can increase the rate of activation of protein C by thrombin 1000-fold 

[72]. The endothelial protein C receptor (EPCR), which binds protein C, can increase the 

rate of activation of protein C by thrombin-TM another 20-fold [71]. EPCR aligns protein 

C to the thrombin-TM [71]. Once formed, APC can decrease thrombin production by 

inhibiting both the intrinsic and common coagulation pathways [66, 73]. APC along with 

its cofactor protein S can degrade factors VIIIa and Va [66]. APC-mediated degradation 

of FVIIIa also requires inactive factor V as a cofactor [66]. The result of decreasing 

thrombin production by APC is decreased coagulation as well as enhanced fibrinolysis 

(vide infra)  [66]. APC has functions independent of the coagulation pathway including 

cytoprotective and anti-inflammatory functions [66]. EPCR binds to both protein C and 

APC with equal affinity [71]. APC bound to EPCR can activate protease-activated 

receptor 1 (PAR-1) [73]. Activation of PAR-1 by APC can result in cytoprotective effects 

including anti-apoptotic activities, protection of endothelial cell barrier, anti-

inflammatory activities and altered gene expression [96]. 
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1.9.1 Role of Protein C in Cancer 
 

 APC may play a role in cancer however there are conflicting reports on whether it 

is playing an antimetastatic or prometastatic role. Studies have found that APC promotes 

cancer cell invasion, migration, angiogenesis, DNA synthesis, and proliferation as well as 

inhibits apoptosis and these effects were due to EPCR-bound APC activation of PAR-1 

[97–100]. Conversely, one study found that APC limited cancer cell extravasation 

through PAR-1 signaling [101]. Another study found that transgenic mice over 

expressing EPCR reduced metastases in the liver and lung [102]. In contrast, another 

study found overexpression of EPCR in lung adenocarcinoma cells was prometastatic and 

silencing EPCR decreased metastasis [103]. Further studies are needed to determine 

whether APC is playing a prometastatic or antimetastatic role in cancer. 

 

1.10 Thrombin-Activatable Fibrinolysis Inhibitor  
 

 Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) is a plasma zymogen that 

plays a role in attenuating fibrinolysis. TAFI was originally discovered by different 

groups as carboxypeptidase U, R, and B. Initially, Hendriks et al. identified a basic 

carboxypeptidase in human serum similar to but distinct from the stable basic 

carboxypeptidase N (CPN) [104]. This carboxypeptidase showed unstable basic 

carboxypeptidase activity at 37
°
C, it was therefore named ‘unstable’ carboxypeptidase 

(CPU) [104]. Campbell and Okada found an unstable enzyme that exhibited 

carboxypeptidase activity preferentially towards arginine over lysine residues that was 
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generated during coagulation and named it carboxypeptidase R (CPR) [105]. Eaton and 

colleagues found a pro-enzyme contaminant that bound to a plasminogen affinity column 

when purifying α2-antiplasmin and named it plasma procarboxypeptidase B (pCPB) 

because its activated form had similar activity to pancreatic carboxypeptidase B (CPB) 

[106]. Wang et al. determined that pCPB and CPU were the same enzyme [107]. At the 

same time, Bajzar and coworkers discovered TAFI when trying to solve the conundrum 

that the anti-coagulant APC appeared to have profibrinolytic activity [108]. It was 

determined that the profibrinolytic effect of APC was actually an indirect effect through 

inhibition of thrombin generation by APC which lead to an attenuation of TAFI 

activation [108, 109]. Bajzar and coworkers also determined that TAFI was the same 

protein as pCPB [108]. TAFI, CPU, CPR, and CPU were all determined to be the same 

protein [60, 107, 108].  

 Plasma TAFI is primarily produced in the liver, but there are extrahepatic sources 

of TAFI including monocytes, endothelial cells, adipocytes, macrophages, and 

megakaryocytes [110, 111]. Unpublished data from our laboratory indicate that TAFI is 

also expressed in breast cancer cells. 

 The mature TAFI protein has a theoretical molecular mass of 45 kDa and consists 

of 401 amino acids after the removal of a 22 amino acid signal peptide [60, 68]. 

However, TAFI is glycosylated and thus the apparent molecular mass of TAFI on SDS-

PAGE is 60 kDa [60]. The structure of TAFI consists of an activation peptide containing 

92 residues and a catalytic domain containing 309 residues [112]. The activation peptide 

contains four N-linked glycosylation sites at Asn22, Asn51, Asn63, and Asn86 that are 

always glycosylated [112]. Within the catalytic domain there is a catalytic zinc ion 
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coordinated by His159, Glu162, and His288 [112]. Cleavage at Arg92 removes the 

activation peptide resulting in the activation of TAFI (TAFIa) [112]. After removal of the 

activation peptide, TAFIa has a molecular mass of approximately 35 kDa [113, 114]. 

There is a dynamic flap with considerable mobility that resides within the catalytic 

domain of TAFI from residues 296-350 [112]. When the activation peptide is present, the 

dynamic flap (consisting of coil-helix-coil secondary structure) is stabilized by 

hydrophobic interactions between Val35 and Leu39 in the activation peptide and Tyr 341 

in the dynamic flap [112]. Once the activation peptide is removed the stabilizing 

interactions are lost and the dynamic flap becomes mobile [112]. An irreversible 

conformational change occurs over time as a consequence movement of the dynamic flap 

which disrupts the catalytic site thus inactivating TAFI (TAFIai) [112]. During the 

irreversible conformational change TAFIa activity is destroyed due to the displacement 

of the critical residues Tyr341 and Asp348 [112]. Tyr341 is involved in stabilizing 

interactions and Asp348 is responsible for substrate specificity of TAFI [112]. The 

irreversible conformational change also exposes a cryptic thrombin cleavage site at 

Arg302 in TAFIai [112].  

 TAFI can be activated by cleavage at Arg92 by thrombin, plasmin and, most 

effectively, by thrombin in complex with TM [75, 106, 109]. Both thrombin and plasmin 

are relatively weak activators of TAFI and need high concentrations in order to activate 

TAFI. The thrombin-TM complex increases activation of TAFI 1250-fold over thrombin 

alone [75]. The large thrombin generation that occurs during the intrinsic coagulation 

pathway is sufficient to activate TAFI, even in the absence of TM [60]. 
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Glycosaminoglycans, which can be found in the ECM exposed by vascular injury, can 

increase the rate of plasmin-mediated TAFI activation by 20-fold [115].  

 TAFIa has no known physiological inhibitors, and therefore its intrinsic thermal 

instability regulates its inactivation [104, 113]. At 37
°
C, TAFIa has a half-life of 

approximately ten minutes [113]. Cleavage by thrombin at Arg302 occurs after 

inactivation of TAFI, therefore thrombin cleavage is a consequence of TAFIa inactivation 

and not a cause [60, 112]. Plasmin can cleave TAFI at Arg302, Lys327, and Arg330 

[116]. Some of these plasmin cleavage sites are available when TAFI is in the zymogen 

form, therefore plasmin could cleave the zymogen resulting in a decrease in TAFI 

activation [60, 116]. APC indirectly inhibits TAFI activation by decreasing thrombin 

generation [108]. Due to the catalytic zinc ion, TAFI is susceptible to inhibition by 

chelating agents such as EDTA [68]. There are synthetic TAFIa inhibitors and naturally 

occurring inhibitors that have been found to inhibit TAFIa [68]. As an example, potato 

tuber carboxypeptidase inhibitor (PTCI) is a reversible inhibitor of TAFIa [76]. 

 TAFIa plays a role in attenuating fibrinolysis after activation by the thrombin 

generated through the intrinsic coagulation pathway [68]. Very low concentrations of 

TAFIa are required to attenuate fibrinolysis; 1 nM (less than 2% of the total plasma 

concentration of TAFI) was shown to be sufficient to half-maximally inhibit fibrinolysis 

[75]. TAFIa removes carboxyl-terminal lysine and arginine residues from fibrin partially 

degraded by plasmin cleavage [64], thereby interfering with several positive feedback 

mechanisms in the fibrinolytic cascade (vide supra). Overall TAFIa attenuates 

fibrinolysis which ensures consolidation of the fibrin clot [67].  
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1.10.1  Role of TAFI in Inflammation 
 

TAFIa also plays a role in inflammation by cleaving carboxyl-terminal lysine and 

arginine residues from inflammatory mediators such as bradykinin (BK), C5a, C3a, and 

thrombin-cleaved osteopontin (OPN) [77, 117]. BK is an important part of the 

inflammatory response, as it leads to vascular permeability, vasodilation, as well as the 

four classic signs of inflammation redness, heat, pain, and swelling [63, 77]. The 

anaphylatoxins, C3a and C5a, are potent leukocyte chemoattractants [63, 77]. OPN plays 

a role in cell-matrix interactions, adhesion, and inflammatory responses [77]. OPN is a 

chemoattractant and it also stimulates cell motility and survival [77]. Thrombin cleavage 

of OPN results in a carboxyl-terminal arginine residue (OPN-R) [118]. OPN-R appears to 

increase migration, adhesion, and spreading of various cell types [119]. Thrombin-

cleavage of OPN up-regulates the pro-inflammatory properties of OPN while cleavage of 

OPN-R by TAFIa decreases these pro-inflammatory effects [77]. Experiments using 

TAFI knockout mice revealed that neutrophil recruitment was enhanced and 

unexpectedly the mice were protected from liver damage which could potentially be 

attributed to increased C3a and C5a levels [120]. These results suggest that TAFIa is 

playing a role in downregulating inflammation. 

 

1.10.2  Role of TAFI in Wound Healing 
 

TAFIa has been shown to play a role in two distinct types of wound healing: 

cutaneous wounds and colonic anastomoses [121]. The plasminogen activation system 

plays an important role in wound healing through regulation of ECM remodeling [35]. In 
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plasminogen knockout mice wound healing is impaired [122] . A study done by te Velde 

et al. showed that TAFI knockout mice had impaired secondary wound healing of 

cutaneous wounds, and impaired healing of colonic anastomoses [121]. Primary wound 

healing occurs in sutured wounds, secondary wound healing occurs in unsutured wounds 

[121]. Secondary wound healing, as opposed to primary wound healing, involves 

epithelial cell migration toward opposite edges of the wound to cover the wound [121]. 

The general wound healing process involves tissue exudate and clotted blood forming a 

scab and the wound is then filled in by granulation tissue beneath the scab [121, 123]. 

Subsequently, fibroblasts arrive at the wound and begin to make ECM proteins and 

angiogenesis occurs [121, 123]. Wound healing is completed through re-epithelialization 

and formation of a collagen scar [121, 123]. During re-epithelialization, as well as 

formation of granulation tissue, fibrin acts as a provisional matrix [121, 123]. The 

collagen scar is formed through contraction of the wound after the degradation of the 

provisional matrix [121]. Wound healing is impaired when the balance between 

production and degradation of ECM is disrupted [121]. In cutaneous wound healing 

migration of keratinocytes is important, whereas wound healing of colonic anastomoses 

depends on angiogenesis and matrix remodeling [121]. Colonic anastomoses are a higher 

risk wound, where impaired healing can lead to death [121]. During healing of colonic 

anastomoses proteolytic degradation of the ECM and ECM remodeling must be 

controlled [121]. The TAFI knockout mice had impaired re-epithelialization of 

keratinocytes during secondary cutaneous wound healing. However, complete wound 

healing of the TAFI knockout mice did occur, albeit significantly delayed [121]. 

Fibrinogen deficient mice showed similar secondary cutaneous wound healing to TAFI 
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deficient mice, as both had impaired keratinocyte migration [121, 124]. This similarity 

could indicate absence of TAFI could lead to increased removal of fibrin from the 

provisional matrix leading to impaired wound healing [121, 123]. During healing of 

colonic anastomoses, TAFI knockout mice had poorer postsurgical recovery [121]. TAFI 

knockout mice had decreased anastomotic strength of the healed colon, as well as a 

higher rate of postsurgical mortality, peritonitis, and bleeding complications [121]. In this 

type of wound healing, absence of TAFI could lead to increased plasminogen activation 

leading to increased angiogenesis and matrix remodeling [36, 121]. Healing of colonic 

anastomoses requires matrix remodeling which involves pericellilar plasminogen 

activation [35, 121]. Many plasminogen activation components and MMPs reside in the 

leading edge of migrating cells in wound healing [41, 123]. Crucially, TAFIa has been 

shown to inhibit plasminogen binding to cell surface receptors by removing carboxyl-

terminal lysine residues [76, 125]. These experiments show that TAFI plays a role in 

wound healing through fibrinolysis and potentially through inhibition of cell surface 

plasminogen receptors [76, 121, 123].  

 

1.10.3  Role of TAFI in Cancer  
 

 TAFI could also be playing a role in cancer. TAFIa has been shown to reduce 

plasminogen binding to the surface of cells [76]. In hepatocytes, silencing of TAFI led to 

increased plasmin activity on the cell surface and increased cell proliferation [126]. 

TAFIa has been shown to remove carboxyl-terminal lysine residues from cell surface 

plasminogen receptors leading to inhibition of cell migration in TAFI deficient mice 
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[125]. Reijerkerk et al. published a study stating that TAFIa does not affect tumour 

growth and metastasis in TAFI deficient mice [127]. However, this study used B16 

melanoma cells and Lewis lung carcinoma cells which do not support TAFI activation 

[127]. Higuchi et al. found that activation of TAFI by TM in HT1080 fibrosarcoma cells 

inhibited plasminogen activation and resulted in decreased cell invasion [128]. Atkinson 

et al. found that inhibition of TAFIa leads to increased levels of ECM breakdown due to 

decreased inhibition of plasminogen activation by TAFIa [129]. Guimarães et al. showed 

that TAFIa can inhibit both endothelial tube formation in a 3D plasma clot matrix and 

endothelial cell migration [130]. They suggested that the 3D plasma clot matrix served as 

an in vitro model of wound healing angiogenesis since the plasma clot used for 

endothelial tube formation mimics a thrombus [130]. This study showed that TAFIa 

controlled wound healing angiogenesis through inhibition of plasminogen activation 

[130]. Overall these results suggest that TAFI could be playing a role in cancer through 

inhibition of pericellular plasminogen activation leading to metastasis, and TAFI could be 

playing a role in tumour angiogenesis since it was shown to play a role in wound healing 

angiogenesis.  

 

1.11 Research Rationale 
 

 The antimetastatic role of TM is well established, however the mechanism of 

these effects has not yet been determined. The study by Horowitz et al. showed that the 

antimetastatic effects of TM were dependent on its ability to bind thrombin [91]. 

However this study did not determine which substrate of thrombin-TM, TAFI or protein 
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C, was responsible for the antimetastatic effects of TM. With regards to the role of 

protein C in cancer, there are conflicting reports of whether it is playing an antimetastatic 

or a prometastatic role [97–103]. TAFIa has been shown to inhibit pericellular 

plasminogen activation through cleavage of carboxyl-terminal lysine residues in vitro and 

in vivo [76, 125, 126]. Pericellular plasminogen activation has been shown to be 

upregulated in cancer and plays a role in metastasis and tumour angiogenesis through 

degradation of ECM, release of growth factors from ECM, and regulation of MMP 

activity [36]. Higuchi et al. found decreased invasion of HT1080 fibrosarcoma cells due 

decreased plasminogen activation by TAFIa activated by TM [128]. The study published 

by Reijerkerk et al. stated TAFIa did not affect metastasis and tumour growth in TAFI 

deficient mice [127]. However, the cell lines used in that study do not support TAFI 

activation, therefore this study does not clearly rule out a role for TAFI in cancer. TAFIa 

has been implicated in reducing degradation of ECM, this result could be anti-metastatic 

in a cancer cell microenvironment [129]. It has also been shown that TAFIa can inhibit 

wound healing angiogenesis on a plasma clot [130]. Since TAFIa has been shown to 

inhibit pericellular plasminogen activation and angiogenesis on a plasma clot, TAFIa 

could be playing a role in inhibition of tumour angiogenesis. Due to the ability of TAFIa 

to inhibit pericellular plasminogen activation it is hypothesized that TAFI, and not 

protein C, is responsible for the antimetastatic effects of TM (Fig. 1.4).  
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Figure1.4 Hypothesized model of TAFIa inhibition of pericellular plasminogen 
activation 

TAFI is activated by thrombin (IIa) in complex with the transmembrane cofactor 

thrombomodulin (TM). Activated TAFI (TAFIa) can cleave the carboxyl-terminal lysine 

(K) residues from cell surface plasminogen receptors. Removal of the carboxyl-terminal 

lysine residues from cell surface plasminogen receptors results in inhibition of 

plasminogen (Plg) binding to the cell surface receptor, and consequently a decrease in 

plasminogen activation. The decrease in pericellular plasminogen activation leads to a 

decrease in plasmin (Pln) formation. Plasmin plays a role in many metastatic activities 

including: extracellular matrix (ECM) degradation, release and activation of matrix 

metalloproteinases (MMPs) from the ECM, and release and activation of growth factors 

from the ECM. Cell invasion and migration occur as a result of plasmin activation due to 

the breakdown of ECM surrounding the cell. Plasmin can lead to increased angiogenesis 

due to increase in growth factors, ECM breakdown, and MMPs. TAFIa inhibits plasmin 

formation therefore it is hypothesized that TAFIa can inhibit the pro-metastatic effects of 

plasmin.  
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1.12 Research Objectives 
 

 TAFIa plays a role in inhibiting pericellular plasminogen activation and therefore 

is hypothesized to inhibit the prometastatic effects of plasmin specifically, for this thesis, 

those on tumour angiogenesis. In breast cancer patients, low TM is strongly correlated 

with poor prognosis and high relapse rate [89]. Unpublished data from our laboratory 

shows that breast cancer cells express TAFI. Endothelial cells have also been shown to 

express TAFI [110]. Unpublished data from our laboratory also shows that TAFIa 

inhibits plasminogen activation in breast cancer cells. Therefore endothelial cells and 

breast cancer cells will be used in the following objectives to determine the role TAFIa 

plays in tumour angiogenesis. It is hypothesized that TAFIa will inhibit tumour 

angiogenesis.  

The specific objectives to show the role TAFIa plays in tumour angiogenesis are: 

1. To inhibit TAFIa activity, with potato tuber carboxypeptidase inhibitor (PTCI), to 

determine the role of TAFIa in endothelial cell invasion, proliferation, tube formation, 

ECM proteolysis, MMP mRNA expression and secretion either in cultured endothelial 

cells alone or in a co-culture system containing both endothelial cells and breast cancer 

cells 

 

2. To promote TAFI activation using mutant forms of soluble TM with differing substrate 

activation capability to determine the role of TAFIa in endothelial tube formation and 

ECM proteolysis either in cultured endothelial cells alone or in a co-culture system 

containing both endothelial cells and breast cancer cells. 
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Chapter 2 Materials and Methods 
 

2.1 Cell Lines and Culture 
 

SUM149 and MDA-MB-231 cell lines were a gift from Dr. Lisa Porter 

(Department of Biological Sciences, University of Windsor, Windsor, ON, Canada), and 

the HUVEC cell line was purchased from the American Type Culture Collection (ATCC) 

(Manassas,VA, USA).  SUM149 cells were grown in Dulbecco’s Modified Eagles 

Medium (DMEM) (Gibco, Mississauga, ON, Canada) supplemented with 10% fetal 

bovine serum (FBS) (Gibco), 1% antibiotic/antimycotic (Gibco), 10 μg/mL insulin 

(Sigma-Aldrich, Oakville, ON, Canada) and 0.5 μg/mL hydrocortisone (Sigma-Aldrich). 

MDA-MB-231 cells were supplemented with DMEM (Gibco) completed with 10% FBS 

(Gibco), 1% antibiotic/antimycotic (Gibco). HUVECs were supplemented with 

Endothelial Cell Basal Medium-2 (EBM-2) (Lonza, Walkerville, MD, USA) completed 

with 2% FBS (Lonza) and Endothelial Cell Growth Media-2 (EGM-2) SingleQuots Kit 

(Lonza). HUVECs were used at passage five for all experiments. These cells were 

maintained at 37
°
C and 5% CO2. 

 

2.2 Cloning of rTM EGF3-6 and rTM EGF3-6 mutants 
 

To clone rTM EGF3-6, first the desired mutations, V340A/D341A and F376A, 

were made in TM within the puc19TM15 vector (ATCC) using the QuikChange II Site-

Directed Mutagenesis Kit (Angilent Technologies, Santa Clara, CA, USA), as per the 

manufacturer’s protocol. The primer sequences that were used for the V340A/D341A and 
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F376A mutations are located in Table 2.1. The wild-type TM and mutated TM in 

puc19TM15 were cut out using EcoRI and ligated to pcDNA4/myc-His A (Invitrogen), 

which was linearized using EcoRI. 

Next, wild-type, V340A/D341A, and F376A TM within pcDNA4/myc-His A 

were used as template DNA in PCR, using Q5 high fidelity polymerase (New England 

BioLabs, Whitby, ON, Canada), as per the manufacturer’s protocol. The primers in Table 

2.2 were used to amplify the lectin-like domain and EGF-like repeats 1-6 (hereafter 

called rTMD12) in wild-type, V340A/D341A, and F376A TM in pcDNA4/myc-His A. 

Both the PCR amplicon and pcDNA4/myc-His A were digested with EcoRI and AgeI to 

insert rTMD12 into pcDNA4/myc-His A. 

The next step in the process of making rTM EGF3-6 involved removal of the 

lectin-like domain and EGF1-2 without removal of the signal sequence. Using site-

directed mutagenesis EcoRV restriction sites were engineered. The EcoRV sites were 

engineered downstream of the signal peptide and upstream of EGF3. Introduction of 

these sites were done simultaneously using the QuikChange II Site-Directed Mutagenesis 

Kit (Angilent Technologies) with wild-type rTMD12 in pcDNA4/myc-His A as the 

template DNA. The primers used for the introduction of the EcoRV sites using site-

directed mutagenesis are located in Table 2.3. Once the sites were introduced, the 

mutagenesis product was ligated back on itself through digestion with EcoRV which 

formed rTM EGF3-6. 

After rTM EGF3-6 was made, wild-type, V340A/D341A, and F376A rTMD12 in 

pcDNA4/myc-His A were digested with KpnI, this was used as the insert. rTM EGF3-6 
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was also digested with KpnI, this was used as the vector. The various mutations were 

inserted into rTM EGF3-6 producing wild-type, V340A/D341A, and F376A rTM EGF3-

6
1
. 

Table 2.1 Primer sequences used for site-directed mutagenesis to make 
mutations in TM in puc19TM15 

Primer name Sequence (5’3’) 

V340A/D341A sense  TAA CTA CGA CCT GGC GGC CGG CGA GTG TGT GG 

V340A/D341A anti-

sense 

CCA CAC ACT CGC CGG CCG CCA GGT CGT AGT TA 

F376A sense CTG CGC CGA GGG CGC CGC GCC CAT TCC C 

F376A anti-sense GGG AAT GGG CGC GGC GCC CTC GGC GCA G 

 

Table 2.2 Primer sequences used to amplify rTMD12 

Primer name Sequence (5’3’) 

5’ Primer (TM 5’ 

EcoRI) 

GAA TTC GGC AGC GCG CAG CGG CAA GAA 

3’ Primer                

(EGF3-6 3’ AgeI) 

ACC GGT ACA GTC GGT GCC AAT GTG GCG 

 

Table 2.3 Primer sequences for site-directed mutagenesis removal of lectin-
like domain and EGF1-2 in rTMD12 

Primer name Sequence (5’3’) 

Signal Peptide EcoRV 

sense 

CCC CGC ACC CGC AGA TAT CCA GCC GGG TGG CAG 

C 

Signal Peptide EcoRV 

anti-sense 

GCT GCC ACC CGG CTG GAT ATC TGC GGG TGC GGG 

G 

EGF3 EcoRV sense CTG GCG GCC GAC GAA CAC CGG GAT ATC GAC GTG 

GAT GAC TGC ATA CTG 

EGF3 EcoRV anti-

sense 

CAG TAT GCA GTC ATC CAC GTC GAT ATC CCG GTG 

TTG GTC GGC CGC CAG 

 

 

                                                 
1
 Cloning of rTM EGF3-6 was completed by Zainab Bazzi under the supervision of Dr. Michael Boffa 



48 
 

2.3 Protein Purification and Quantification 
 

 The rTM EGF3-6 mutants were transfected using polyethylenimine (Sigma-

Aldrich) into HEK293 cells (ATCC), and stably expressing lines were selected for using 

3 mg/mL zeocin (Life Technologies Inc.). The recombinant proteins were purified using 

His-tag purification. Briefly, binding buffer (50mM NaH2PO4, 0.5M NaCl, 1mM β-ME, 

5mM imidazole, 10% glycerol, pH 7.9) was passed over a nickel column, then the protein 

harvest containing the same components as the binding buffer was passed over the 

column, a wash was completed (binding buffer with 10mM imidazole), and then protein 

was eluted (binding buffer with 400mM imidazole). The eluted protein was dialyzed in 

storage buffer (20 mM HEPES, 150 mM NaCl, 10% glycerol, pH 7.9). The dialyzed 

samples were concentrated with polyethylene glycol (PEG)-20 000 (Sigma), and dialyzed 

in storage buffer.  The purified proteins were checked for purity using a silver stain. 

Protein concentrations were determined using a Pierce™ BCA Protein Assay Kit (Life 

Technologies Inc.) according to the manufacturer’s instructions. rTM EGF3-6 mutants 

were stored at -70°C in aliquots until use
2
. 

 

2.4 TAFIa Activity Assay 
 

 An AAFR assay was used to determine the initial rate of TAFI activation with the 

rTM EGF3-6 mutants. In a 96-well plate 10 nM of each rTM EGF3-6 mutant was added 

in triplicate with and without 25 nM of thrombin (IIa) (Haematologic Technologies Inc., 

                                                 
2
 Production of stable cell lines and some purification of the rTM EGF3-6 proteins were completed by 

Zainab Bazzi under the supervision of Dr. Michael Boffa. 
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Essex Junction, VT, USA). Rabbit soluble TM was used as a control (Haematologic 

Technologies Inc.). All the wells received 5 mM of CaCl2, and 200 nM of TAFI (His-tag 

purified), and HBST (20 mM HEPES pH 7.4, 150 mM NaCl, 0.01% (v/v) Tween 20) was 

added to each well to make each reaction up to a final volume of 50 μL. Following the 

addition of IIa, TAFI was allowed to activate for ten minutes at room temperature. Then 

0.24 mM N-(4-Methoxyphenylazoformyl)-Arg-OH · HCL (AAFR) (BaChem, Torrance, 

CA, USA), and 200 nM D-phenylalanyl-prolyl-arginyl chloromethyl ketone (PPACK) 

(Calbiochem, Darmstadt, Germany) diluted in HBST was added to each well for a final 

volume of 100 μL. AAFR is a colorimetric substrate that absorbs strongly at 350 nm. 

TAFIa, and other enzymes with carboxypeptidase B activity, can cleave the 

anisylazoformyl moiety from AAFR [131]. The resulting products no longer absorb at 

350 nm [131]. PPACK inhibits IIa, and therefore stops the reaction. Absorbance was read 

at 350 nm for one hour using a SpectraMax Plus384 Absorbance Microplate Reader 

(Molecular Devices, Sunnyvale, CA, USA). 

 

2.5 Activated Protein C Activity Assay 
 

An S-2366 assay was used to determine the initial rate of protein C activation in 

the rTM EGF3-6 mutants. In a 96-well plate 10 nM of each rTM EGF3-6 mutant was 

added in triplicate with and without 25 nM of IIa (Haematologic Technologies Inc.). 

Rabbit soluble TM was used as a control (Haematologic Technologies Inc.). All the wells 

received 5 mM of CaCl2, and 100 nM of protein C (Haematologic Technologies Inc), and 

HBS with 0.1% BSA was added to each well to make each reaction up to a final volume 
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of 50 μL. Following the addition of IIa, protein C was allowed to activate for 30 minutes 

at 37
°
C. Then 200 μM of L-Pyroglutamyl-L-prolyl-L-argininep-Nitroaniline 

hydrochloride (S-2366) (Chromogenix, Orangeburg NY, USA), and 200 nM PPACK 

(Calbiochem) diluted in HBS (20 mM HEPES pH 7.4, 150 mM NaCl) with 0.1% BSA 

was added to each well for a final volume of 100 μL. S-2366 is a colorimetric substrate, 

which initially does not absorb at 405 nm [132]. Upon cleavage by activated protein C 

the products of cleaved S-2366 absorb at 405 nm [132]. Absorbance was read at 405 nm 

for one hour using a SpectraMax Plus384 Absorbance Microplate Reader (Molecular 

Devices). 

 

2.6 Proliferation Assay 
 

Cell proliferation was determined in HUVECs using the WST-1 assay (Roche 

Diagnostics, Laval, QC, Canada). WST-1 is a stable tetrazolium salt that can be cleaved 

to formazan due to the glycolytic production of NAD(P)H in viable cells [133]. This 

assay measures metabolic activity of viable cells which can be used an index of 

proliferation. HUVECs were seeded at 10 000 cells/well in a total volume of 100 µL in a 

96-well plate in EBM-2 media (Lonza). Cells were treated in quadruplicate with either 50 

ng/mL Vascular Endothelial Growth Factor (VEGF) (VEGF-A165, R&D systems, 

Minneapolis, MN, USA), or 25 µg/mL potato tuber carboxypeptidase inhibitor (PTCI) 

(Sigma-Aldrich).  VEGF was used as a positive control, and PTCI is an inhibitor of 

TAFIa. Twenty-four hours after treatment, 10 μL of WST-1 was added to each well and 

incubated for 2 hours at 37
°
C. The cleavage of WST-1 to formazan by metabolically 
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active cells can be measured at 450 nm. Using a SpectraMax Plus384 Absorbance 

Microplate Reader (Molecular Devices) absorbance values were measured at 450 nm.  

 

2.7 Endothelial Cell Invasion Assay 
 

 Transwell invasion assays were used to assess the effect of inhibiting TAFIa on 

endothelial cell invasion. BD Falcon™ Cell culture inserts 8 μm pore size PET track-

etched membranes (BD Biosciences, Mississauga, ON, Canada) were coated with 150 μL 

of  2 mg/mL Cultrex® Basement Membrane Extract without Phenol Red (Trevigen, 

Gaithersburg, MD, USA) in an 24-well plate for one hour. Cultrex was diluted to 2 

mg/mL from a stock solution with serum and supplement free EBM-2 media (Lonza). 

Following the incubation the inserts were washed thrice with HEPES Buffered Saline 

Solution (HBSS) (Lonza). In the bottom of each well in the 24-well plate 600 µL of 

supplement free EBM-2 with 0.2% FBS with and 50 ng/mL VEGF or 25 µg/mL PTCI 

was added. Coated inserts were placed in the wells and 50 000 HUVECs/well in 100 µL 

of serum and supplement free EBM-2 media were added into the coated inserts. Cells 

were allowed to invade into the Cultrex for 20 hours, after which non-invaded cells were 

removed with a cotton swab, and the invaded cells were fixed in methanol. The invaded 

cells were stained with 0.25% Crystal Violet (Sigma-Aldrich). The cells in five different 

fields of view were counted under a 20× objective using an Olympus CKX415F2 

Inverted Microscope (Olympus America, Center Valley, PA). 
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2.8 Tube Formation Assay 
 

2.8.1 HUVEC Tube Formation Assay  
 

HUVECs were grown in T25 flasks to ~80% confluency, washed four times with 

HBSS (Lonza), and were labelled with 5 µM Cell Tracker™ Orange CMTMR (Life 

Technologies Inc.) in EBM-2 with 0.75% FBS for one hour at 37
°
C. The labelled cells 

were then washed four times with HBSS (Lonza) and incubated in complete EBM-2 for 

one hour at 37
°
C. Next, 50 µL of Cultrex (Trevigen) was used to coat a 35 mm glass 

bottom culture dish (MatTek, Ashland, MA, USA), then the coated dish was incubated 

for 10 minutes at 37
°
C to allow the Cultrex to solidify. After incubation with complete 

media, 20 000 HUVECs in 50 µL of EBM-2 with 0.75% FBS were seeded on top of the 

solidified Cultrex and were allowed to attach for 40 minutes at 37
°
C. Subsequently, 

complete EBM-2 media with 2% Cultrex and treatment (50 ng/mL VEGF, 25 µg/mL 

PTCI, 10 nM wild-type rTM EGF3-6, 10 nM rTM EGF3-6 V340A/D341A, and/or 10 nM 

rTM EGF3-6 F376A) was added.  The assay was incubated at 37
°
C for 18 hours to allow 

formation of tube-like structures [134, 135]. The assay was imaged using an Olympus 

IX81 confocal microscope (Olympus America, Center Valley PA, USA). Tube formation 

in eight to ten different fields of view was imaged under a 10× objective. Relative tube 

length was calculated using ImageJ software by determining total tube length and 

dividing by total number of tubes and comparing the values to the control. 
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2.8.2 Co-culture Tube Formation Assay 
 

SUM149 or MDA-MB-231 cells were grown in T25 flasks to ~80% confluency, 

washed four times with phosphate buffered saline (PBS), and were labelled with 5 µM 

CellTrace Far Red DDAO-SE (Life Technologies Inc.) in serum free DMEM (Gibco) for 

one hour at 37
°
C. The labelled cells were then washed four times with PBS, and 

incubated in complete DMEM for one hour at 37
°
C. Next, Cultrex was used to coat a 

35mm glass bottom culture dish as previously described in section 2.8.1. After incubation 

with complete media, breast cancer cells [20 000 SUM149 cells or 7000 MDA-MB-231 

cells in 50 µL serum free DMEM] were seeded on top of the solidified Cultrex, and were 

allowed to attach for 40 minutes at 37
°
C. Then complete DMEM media with 2% Cultrex 

was added.  The assay was incubated at 37
°
C for 24 hours, after which the media was 

aspirated off. Thereafter, 20 000 HUVECs prelabelled with Cell Tracker™ Orange 

CMTMR (Life Technologies Inc.) were seeded on top of the embedded breast cancer 

cells using the same procedure as described in 2.8.1. Again treatment included 50 ng/mL 

VEGF, 25 µg/mL PTCI, 10 nM wild-type rTM EGF3-6, 10 nM rTM EGF3-6 

V340A/D341A, and/or 10 nM rTM EGF3-6 F376A.  The assay was incubated at 37
°
C for 

18 hours, and was imaged and quantified as previously described in section 2.8.1.  
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2.9 Proteolysis Assay 
 

2.9.1 HUVEC Proteolysis Assay 
 

Proteoysis of DQ-collagen IV by  HUVECs was assessed as previously described 

[136, 137]. The HUVEC proteolysis assay was set up the same way as the HUVEC tube 

formation assay in section 2.8.1, except 50 µL of a solution containing 25 µg/ml DQ-

collagen IV (Life Technologies Inc.) mixed with Cultrex (Trevigen) was used to coat a 

35 mm glass bottom culture dish (MatTek). Again treatment included 50 ng/mL VEGF, 

25 µg/mL PTCI, 10 nM wild-type rTM EGF3-6, 10 nM rTM EGF3-6 V340A/D341A, 

and/or 10 nM rTM EGF3-6 F376A.  The assay was incubated at 37
°
C for 18 hours, and 

was imaged using an Olympus IX81 confocal microscope (Olympus America). Three to 

four z-stacks with fourteen 2.5 µm slices were imaged using a 20× objective with a zoom 

of three. Amount of proteolysis was determined using ImageJ software by calculating 

total fluorescence of the DQ-collagen type IV divided by HUVEC area.  

 

2.9.2 Co-culture Proteolysis Assay 
 

Proteolysis of DQ-collagen IV by co-cultured HUVECs and breast cancer cells 

was assessed as previously described [138]. Cultrex mixed with 25 µg/ml DQ-collagen 

IV was used to coat a 35 mm glass bottom culture dish as previously described in section 

2.9.1. Next, breast cancer cells prelabelled with CellTrace Far Red DDAO-SE (Life 

Technologies Inc.) were seeded on top of the DQ-Collagen type IV-Cultrex mixture 

seeding the same cell number and using the same procedure as described for the co-
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culture tube formation assay in section 2.8.2. Again treatment included 50 ng/mL VEGF, 

25 µg/mL PTCI, 10 nM wild-type rTM EGF3-6, 10 nM rTM EGF3-6 V340A/D341A, 

and/or 10 nM rTM EGF3-6 F376A.  The assay was incubated at 37
°
C for 18 hours, and 

was imaged as previously described in section 2.9.1.  Areas to images were selected by 

finding areas were HUVEC tubes were in contact with a breast cancer spheroid. Amount 

of proteolysis was determined using ImageJ software by calculating total fluorescence of 

the DQ-collagen type IV divided by combined HUVEC and breast cancer cell areas. 

 

2.10 Preparation of HUVEC and SUM149 Conditioned Media 

Samples 
 

 SUM149 cells were seeded into a 6-well plate at 250 000 cells/mL and were 

either untreated, or treated with 50 ng/mL VEGF or 25 µg/mL PTCI. After 24 hours of 

incubation with treatment, SUM149 cells were washed thrice with PBS and 1 mL of 

serum free DMEM was added. HUVECs were seeded into a 6 well plate and were grown 

to 60% confluency and were either untreated, or treated with 50 ng/mL VEGF or            

25 µg/mL PTCI. After 24 hours of incubation with treatment, HUVECs were washed 

thrice with HBSS (Lonza) and 1 mL of EBM-2 with 0.2% FBS media was added. Both 

the treated SUM149 cells and HUVECs were serum starved for 24 hours. Then media 

was collected and centrifuged for 5 minutes at room temperature at 700 g to pellet cells 

[139]. The supernatant was collected and centrifuged for 10 minutes at 4
°
C at 2000 g to 

remove cell debris [139]. Lysates from both cell types were collected by adding 100 µL 

of lysis buffer [50 mM Tris-HCl (pH 7.4), 1% Nonidet P-40, 0.25% sodium 
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deoxycholate, 150 mM NaCl, 1 mM EDTA], shaking on ice for 10 minutes, and 

centrifuging for 10 minutes at 12000 g. Cell lysate concentration was determined using a 

Pierce™ BCA Protein Assay Kit (Life Technologies Inc.) according to the 

manufacturer’s instructions. 

 

2.11 Treatment of HUVECs with SUM149 Conditioned Media 
 

HUVECs were grown to 60% confluency in a 6-well plate were washed thrice 

with HBSS (Lonza) and the supernatant from untreated, VEGF, or PTCI treated SUM149 

cells as described in 2.10, was mixed 1:1 with complete EBM-2 media and added to the 

HUVECs. Also, a non-treated HUVEC well was seeded as a control. After 24 hours of 

incubation with SUM149 conditioned media (CM) the HUVECs were washed thrice with 

HBSS and placed in EBM-2 media with 0.2% FBS. Twenty-four hours after incubation 

in EBM-2 media with 0.2% FBS, the supernatant and lysate were collected, and lysate 

concentration was determined as previously described in section 2.10.  

 

2.12 Gelatin Zymography 
 

 MMP2 and MMP9 enzymatic activities in SUM149, HUVEC, and HUVEC 

treated with SUM149-CM media samples were determined by SDS-PAGE gelatin 

zymography as described by Mohamed et al. [139]. Samples were mixed with 2X SDS 

sample buffer and were loaded equally (20 µg/lane SUM149 samples, 6 µg/lane HUVEC 

samples) without heating or reducing, and electrophoresed in 10% SDS-PAGE 
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containing 1% gelatin (w/v) at 125 V for 2.5 hours at 4
°
C. Human recombinant MMP2 (5 

ng) and MMP9 (2.5 ng) (R&D Systems) were also loaded as positive controls.  After 

electrophoresis, gels were incubated twice in renaturing buffer (2.5% Triton X-100) for 

15 minutes with gentle shaking at room temperature. Thereafter, gels were washed twice 

with water for 15 minutes with gentle shaking at room temperature. Gels were then 

placed in developing buffer (50 mM Tris-HCl pH 7.8, 5 mM CaCl2, 0.05% Brij 35) and 

incubated with gentle shaking overnight at 37
°
C. Subsequently, gels were stained for one 

hour in Coomassie brilliant blue R-250 (50% methanol, 10% acetic acid, 40% water, 

0.5% Coomassie brilliant blue R-250), and destained (50% methanol, 10% acetic acid, 

40% water) until clear bands of proteolytic activity appeared. Relative proteolytic activity 

of the samples was determined by densitometry using FluoroChem® Q imaging system 

software (Alpha Innotech Corporation, Santa Clara, CA, USA). 

 

2.13 RNA Extraction 
 

 Total RNA was extracted from SUM149, HUVEC, and HUVECs treated with 

SUM149-CM cells using RNeasy Mini Kit (Qiagen, Toronto, ON, Canada) as per 

manufacturer’s protocol. RNA concentrations were measured using a NanoDrop 2000 

UV-Vis Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). 
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2.14 Quantitative Real Time PCR 
 

 qRT-PCR was carried out using iTaq Universal SYBR Green One-Step Kit 

(BioRad, Mississauga, ON, Canada)  as per the manufacturer’s protocol on a BioRad 

CFX96 Real-Time System to determine relative amounts of MMP2 and MMP9 mRNA in 

VEGF or PTCI treated HUVECs, SUM149 cells, and HUVECs treated with SUM149-

CM.  300 ng of RNA was used in each qRT-PCR experiment.  The primer sequences that 

were used can be found in Table 2.4, primers were constructed as per Wang et al [140]. 

Thermocycling conditions used for all reactions were: 50
°
C for 10 minutes, 95

°
C for 1 

minute, 40 cycles of 95
°
C for 12 seconds and 60

°
C for 30 seconds. Also, no reverse 

transcriptase controls and a no template control were run as negative controls to ensure 

there was no contamination of the RNA samples with genomic DNA, or contamination of 

the reagents, respectively. Relative mRNA expression as compared to the control was 

calculated using the 2
-∆∆CT

 method [141]. 

Table 2.4 Primer sequences used for qRT-PCR 

Primer Name Sequence  (5’3’) 

MMP2 Forward CAG GGA ATG AGT ACT GGG TCT ATT 

MMP2 Reverse ACTCCAGTTAAAGGCAGCATCTAC 

MMP9 Forward AATCTC TTCTAGAGACTGGGAAGGAG 

MMP9 Reverse AGCTGATTGACTAAA GTA GCT GGA 

GAPDH Forward  AGA GAG AGG CCC TCA GTT GCT 

GAPDH Reverse TTG TGA GGG AGA TGC TCA GTG T 
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2.15 Statistical Analysis  
 

Results are expressed as a mean ± SEM from at least three independent 

experiments. Statistical analysis was performed with IBM SPSS Statistics V22.0 software 

using one-way ANOVA test with post-hoc Tukey HSD. p<0.05 was considered 

significant. 
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Chapter 3 Results 
 

3.1 Inhibition of TAFIa increases endothelial cell proliferation 
 

One of the main steps in angiogenesis involves proliferation of endothelial cells in 

response to an angiogenic stimulus [8, 9]. To assess the role that TAFIa plays in 

endothelial cell proliferation, potato tuber carboxypeptidase inhibitor (PTCI) was used to 

inhibit TAFIa. PTCI is a small 39-residue protein purified from potatoes that binds tightly 

to and inhibits both the carboxypeptidase A and B family of proteases [142, 143]. Even 

though PTCI can inhibit other proteases, in this system only TAFIa is present. PTCI 

specifically inhibits TAFIa, and has no effect on the TAFI zymogen [144]. PTCI 

reversibly binds to TAFIa [68].  Human umbilical vein endothelial cells (HUVECs) were 

treated with either PTCI or VEGF. After incubation with the treatment, proliferation was 

quantified using the WST-1 assay. WST-1 is a tetrazolium salt that can be cleaved to 

formazan through a bioreduction mechanism that is dependent on the glycolytic 

production of NAD(P)H in viable cells [133]. The production of formazan can be 

quantified, and is a measure of metabolically active cells which can be used as an index 

of proliferation. VEGF was used as a positive control since it is the key mediator of 

angiogenesis [21]. Inhibition of TAFIa by PTCI significantly increased endothelial cell 

proliferation, 1.3-fold increase compared to control (Fig. 3.1). Inhibition of TAFIa using 

PTCI resulted in same increase in cell proliferation compared to control as VEGF (Fig. 

3.1). This result suggests that TAFIa inhibits endothelial cell proliferation, although 

further experiments will need to be completed to confirm proliferation is being affected 

such as flow cytometry. 
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Figure 3.1 Inhibition of TAFIa increases proliferation of endothelial cells 
Effect of inhibiting TAFIa with PTCI on HUVEC proliferation determined by WST-1 

proliferation assay, measured by absorbance at 450 nm. HUVECs were treated for 24 

hours with 50 ng/mL VEGF or 25 µg/mL PTCI. Significantly increased production of 

formazan, therefore increased metabolically active cells, was observed by both VEGF 

and PTCI treatment of HUVECs represented relative to the control. The amount of 

metabolically active cells can be a measure of cell proliferation. Values are expressed as 

mean ± SEM from 5-6 independent experiments performed in quadruplicate. ** p <0.01 

versus control.  

 

  



62 
 

3.2 Inhibition of TAFIa increases endothelial cell invasion 
 

 

For angiogenesis to occur, endothelial cells must locally degrade the vascular 

basement membrane and invade into the surrounding stroma [8, 9]. Transwell inserts 

coated in Cultrex can mimic the basement membrane endothelial cells need to invade 

through during angiogenesis. HUVECs were seeded in the top chamber of a Cultrex 

coated transwell insert, and either VEGF or the TAFIa inhibitor PTCI were added to the 

lower chamber. PTCI significantly increased invasion of HUVECs (Fig. 3.2B). PTCI 

increased invasion of HUVECs 4.6-fold relative to the control, while the positive control 

VEGF increased invasion of HUVECs 6-fold relative to the control (Fig. 3.2B).  This 

result suggests that TAFIa could decrease endothelial cell invasion. 
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Effect of inhibition of TAFIa with PTCI on endothelial cell invasion. (A) HUVECs were 

added to a transwell chamber coated with Cultrex, either 50 ng/mL VEGF or 25 µg/mL 

PTCI were added to the bottom chamber. Cells were allowed to invade for 20 hours after 

which cells were fixed, stained and imaged. Images above were obtained at 4× 

magnification. (B) Quantification of HUVEC invasion. Cells were counted from 5 

different fields of view at 20× magnification, and cell numbers expressed relative to 

control. Both VEGF and PTCI significantly increased invasion of HUVECs. Values are 

expressed as mean ± SEM from four independent experiments. ** p <0.01 verses control. 

  

Figure 3.2 Inhibition of TAFIa increases endothelial cell invasion 
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3.3 Inhibition of TAFIa increases tube formation in endothelial 

cells and in co-culture systems containing endothelial and breast 

cancer cells 
 

Another aspect of angiogenesis is the formation of tube-like structures [8]. 

Previous studies have shown that inhibition of TAFIa increases endothelial tube 

formation in a 3D plasma clot matrix [130]. This result demonstrated a role for TAFI in 

wound healing angiogenesis [130], however, the role of TAFI endothelial tube formation 

in regards to tumour angiogenesis has yet to be studied. The role of TAFIa on 

angiogenesis was assessed using a plasma clot which consisted of a fibrin matrix as the 

ECM [130]. Studies have not been conducted determining a role for TAFIa on tube 

formation on reconstituted basement membrane as the ECM. An endothelial tube 

formation assay was used to determine the effect on tube formation when TAFIa was 

inhibited. HUVECs were seeded on top of reconstituted basement membrane (Cultrex), 

and were treated with either VEGF, as a positive control, or the TAFIa inhibitor PTCI. 

HUVECs formed capillary tube-like structures on Cultrex (Fig. 3.3A). The formation of 

tube-like structures on Cultrex represents a process of attachment, migration, and 

differentiation of endothelial cells into tube-like structures in a manner that mimics the in 

vivo process of tube formation [135, 145]. PTCI significantly increased relative tube 

length (1.3-fold) compared to the control (Fig. 3.3B). PTCI increased relative tube length 

similarly to VEGF (Fig. 3.3B). 

The effect of inhibition of TAFIa on endothelial tube formation was also 

completed with co-culture systems consisting of HUVECs and either SUM149 cells (Fig. 

3.4A) or MDA-MB-231 cells (Fig. 3.5A), both of which are breast cancer cell lines. The 
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breast cancer cells form spheroid structures on top of the Cultrex, while the endothelial 

cells form tube-like structures. These co-culture systems function to mimic a tumour 

microenvironment. The tumour cell microenvironment consists of cancer cells as well as 

stromal cells, such as endothelial cells [49]. There is a dynamic interplay between cancer 

cells and endothelial cells [49]. Both the endothelial cells [110] and the breast cancer 

cells could be a source of TAFI (unpublished data from our laboratory).Therefore co-

culture systems containing endothelial cells and breast cancer cells were used to look the 

effect of inhibition of TAFIa on endothelial tube formation by both endothelial and breast 

cancer cells in the same environment. Interaction between HUVECs and breast cancer 

cells can be seen in merge images combining differential interference contrast (DIC), 

HUVEC fluorescence, and breast cancer cell fluorescence images (Fig. 3.4A & Fig. 

3.5A). The co-culture systems were treated with either VEGF or PTCI. The co-culture 

systems produced nearly identical results between the two breast cancer cell lines used. 

PTCI significantly increased relative tube length compared to the control with a 1.4-fold 

increase in both the SUM149 and HUVEC co-culture (Fig. 3.4B), and in the MDA-MB-

231 and HUVEC co-culture (Fig. 3.5B). PTCI treatment increased relative tube length 

similar to treatment with VEGF in both co-culture systems (Fig. 3.4B & Fig. 3.5B). 

Overall these results suggest that TAFIa could decrease endothelial tube 

formation in both endothelial cells in isolation and in and co-culture systems containing 

endothelial cells and breast cancer cells. 
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Figure 3.3 Inhibition of TAFIa increases endothelial tube formation 
Effect of inhibition of TAFIa with PTCI on tube formation of endothelial cells. (A) 

HUVECs labelled with Cell Tracker Orange (red) were seeded on top of Cultrex in a 35 

mm glass bottom culture dish and treated with either 50 ng/mL VEGF or 25 µg/mL 

PTCI. Cells were imaged 18 hours after seeding HUVECs using confocal microscopy. 

Images above were obtained at 40× magnification.  Scale bar, 400 µm. (B) Quantification 

of endothelial tube formation. To quantify tube formation 8-10 images were obtained at 

100× magnification. Tube length was determined by measuring total tube length divided 

by total tube number, and is expressed relative to that in the control untreated cells. 

Treatment with either VEGF or PTCI significantly increased relative tube length of 

HUVECs. Values are expressed as mean ± SEM from six independent experiments.      

** p< 0.01 verses control.  
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Figure 3.4 Inhibition of TAFIa increases endothelial tube formation in a co-
culture system containing HUVECs and SUM149 cells 
Effect of inhibition of TAFIa with PTCI on tube formation of endothelial cells co-

cultured with SUM149 breast cancer cells. (A) SUM149 cells labelled with Cell Trace 

Far Red (green) were seeded on top of Cultrex in a 35 mm glass bottom culture dish. 

After 24 hours HUVECs labelled with Cell Tracker Orange (red) were seeded on top of 

the SUM149 cells and Cultrex. The co-cultures were treated with either 50 ng/mL VEGF 

or 25 µg/mL PTCI. Cells were imaged 18 hours after HUVECs were seeded using 

confocal microscopy. Images above were obtained at 40× magnification. Scale bar, 500 

µm. (B) Quantification of endothelial tube formation. To quantify tube formation 8-10 

images were obtained at 100× magnification. Tube length was determined by measuring 

total tube length divided by total tube number, and is expressed relative to that in the 

control untreated cells.  Treatment with either VEGF or PTCI significantly increased 

relative tube length of HUVECs. Values are expressed as mean ± SEM from six 

independent experiments. ** p< 0.01 verses control.  
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Figure 3.5 Inhibition of TAFIa increases endothelial tube formation in a co-
culture system containing HUVECs and MDA-MB-231 cells 
Effect of inhibition of TAFIa with PTCI on tube formation of endothelial cells co-

cultured with MDA-MB-231 breast cancer cells. (A) MDA-MB-231 cells labelled with 

Cell Trace Far Red (green) were seeded on top of Cultrex in a 35 mm glass bottom 

culture dish. After 24 hours HUVECs labelled with Cell Tracker Orange (red) were 

seeded on top of the MDA-MB-231 cells and Cultrex. The co-cultures were treated with 

either 50 ng/mL VEGF or 25 µg/mL PTCI. Cells were imaged 18 hours after HUVECs 

were seeded using confocal microscopy. Images above were obtained at 40× 

magnification. Scale bar, 500 µm. (B) Quantification of endothelial tube formation. To 

quantify tube formation 8-10 images were obtained at 100× magnification. Tube length 

was determined by measuring total tube length divided by total tube number, and is 

expressed relative to that in the control untreated cells.  Treatment with either VEGF or 

PTCI significantly increased relative tube length of HUVECs. Values are expressed as 

mean ± SEM from six independent experiments. ** p< 0.01 verses control. 
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3.4  Inhibition of TAFIa increases proteolysis of DQ-collagen IV by 

endothelial cells and by co-cultured endothelial and breast cancer 

cells 
 

Degradation of the ECM is an important aspect of angiogenesis. One of the initial 

steps of angiogenesis involves degradation of vascular ECM and basement membrane [8, 

9]. Pericellular plasminogen activation has been implicated in angiogenesis and 

metastasis though regulation of MMP activity, release of growth factors from the ECM, 

and degradation of the ECM [36]. VEGF has been shown to upregulate components of 

the plasminogen activation system in the leading edge of migrating endothelial cells [10, 

27, 45]. Moreover, tube formation has been shown to spatially correlate to ECM 

proteolysis in vitro [146]. TAFIa has been shown to inhibit pericellular plasminogen 

activation in vitro and in vivo [76, 125, 126]. Therefore, we wanted to determine the 

effect of TAFIa on proteolysis of DQ-collagen IV, the most abundant type of collagen 

found in the basement membrane [147], by endothelial cells. HUVECs were seeded on 

top of Cultrex mixed with DQ-collagen IV, and were treated with either VEGF or PTCI 

(Fig. 3.6A). Once DQ-collagen IV, an initially quenched fluorescent substrate, is cleaved 

by proteases DQ-collagen IV degradation products are produced (green) (Fig. 3.6A). 

Degradation products of DQ-collagen IV were localized predominantly intracellularly 

(Fig. 3.6A), although treatment with VEGF did increase pericellular (outside the cell or 

on the cell membrane [146]) localization of DQ-collagen IV degradation products (Fig. 

3.6A). Treatment of HUVECs with PTCI significantly increased proteolysis of DQ-

collagen IV, 2-fold relative to the control (Fig. 3.6B).   
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Within the tumour cell microenvironment, consisting of cancer cells and stromal 

cells, there is a dynamic interplay between cancer cells and stromal cells, such as 

endothelial cells [49]. Degradation of the ECM of endothelial cells can lead to metastasis 

of tumour cells [19]. Therefore co-culture systems containing endothelial cells and breast 

cancer cells were used to look the effect of inhibition of TAFIa on proteolysis of DQ-

collagen IV by both endothelial and breast cancer cells in the same environment. 

HUVECs co-cultured with SUM149 cells (Fig. 3.7A) or MDA-MB-231 cells (Fig. 3.8A) 

were treated with PTCI or VEGF. In both co-culture systems there was a mix of 

intracellular and pericellular proteolysis (Fig. 3.7A & Fig. 3.8A). The co-culture system 

containing HUVECs and MDA-MB-231 cells exhibited predominately pericellular 

proteolysis (Fig. 3.8A).  In both co-culture systems treatment with VEGF or PTCI 

increased both pericellular and intracellular proteolysis as compared to the control (Fig. 

3.7A & Fig. 3.8A). PTCI significantly increased proteolysis of DQ-collagen IV in the co-

culture system containing both HUVECs and SUM149 cells, 1.6-fold compared to the 

control (Fig. 3.7B). In the co-culture system containing HUVECs and MDA-MB-231 

cells, PTCI also significantly increased proteolysis of DQ-collagen IV by the co-cultured 

cells, 1.5-fold as compared to the control (Fig. 3.8B). In both co-culture systems, 

treatment with PTCI increased proteolysis of DQ-collagen IV similarly to the positive 

control VEGF (Fig. 3.7B & Fig. 3.8B).  

Taken together these results suggest that TAFIa could be playing a role in 

inhibiting ECM proteolysis in both endothelial cells, as well as in a tumour cell 

microenvironment containing both endothelial and breast cancer cells.  
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Figure 3.6 Inhibition of TAFIa increases proteolysis of DQ-collagen IV by 
endothelial cells 
Effect of inhibition of TAFIa with PTCI on proteolysis of DQ-collagen IV by endothelial 

cells. (A) HUVECs labelled with Cell Tracker Orange (red) were seeded on top of 

Cultrex mixed with DQ-collagen IV in a 35 mm glass bottom culture dish and treated 

with either 50 ng/mL VEGF or 25 µg/mL PTCI. Cells were imaged 18 hours after 

seeding HUVECs using confocal microscopy. DQ-collagen IV cleavage products (green) 

were present predominantly intracellularly. Merge images show intracellular (yellow) and 

pericellular proteolysis (green). Images were obtained at 600× magnification. 

Representative images from the equatorial plane of a Z-stack are shown. Scale bar, 30 

µm. (B) Quantification of proteolysis of DQ-collagen IV. To quantify proteolysis three 

equatorial planes from 3-4 different images from one experiment were quantified. Total 

integrated intensity of DQ-collagen IV florescence divided by total HUVEC area was 

calculated and expressed relative to the control. Treatment with either VEGF or PTCI 

significantly increased proteolysis of DQ-collagen IV by HUVECs. Values are expressed 

as mean ± SEM from 3-5 independent experiments. ** p< 0.01 verses control.  
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Figure 3.7 Inhibition of TAFIa increases DQ-collagen IV proteolysis by co-
cultured HUVECs and SUM149 cells 
Effect of inhibition of TAFIa with PTCI on DQ-collagen proteolysis by co-cultured 

HUVEC and SUM149 cells. (A) SUM149 cells labelled with Cell Trace Far Red (blue) 

were seeded on top of Cultrex mixed with DQ-collagen IV in a 35 mm glass bottom 

culture dish. After 24 hours HUVECs labelled with Cell Tracker Orange (red) were 

seeded on top of the SUM149 cells and Cultrex mixed with DQ-collagen IV. The co-

cultures were treated with either 50 ng/mL VEGF or 25 µg/mL PTCI. Cells were imaged 

18 hours after HUVECs were seeded using confocal microscopy. DQ-collagen IV 

cleavage products (green) were present both intracellularly and pericellularly. Merged 

images show pericellular proteolysis (green) surrounding the co-cultured cells. Images 

were obtained at 600× magnification. Representative images from the equatorial plane of 

a Z-stack are shown. Scale bar, 30 µm. (B) Quantification of proteolysis of DQ-collagen 

IV. To quantify proteolysis three equatorial planes from 3-4 different images from one 

experiment were quantified. Total integrated intensity of DQ-collagen IV florescence 

divided by total combined cell area of HUVECs and SUM149 cells was calculated and 

expressed relative to the control. Treatment with either VEGF or PTCI significantly 

increased proteolysis of DQ-collagen IV. Values are expressed as mean ± SEM from 5-6 

independent experiments. ** p< 0.01 verses control. 
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Figure 3.8 Inhibition of TAFIa increases DQ-collagen IV proteolysis by co-
cultured HUVECs and MDA-MB-231 cells 
Effect of inhibition of TAFIa with PTCI on DQ-collagen proteolysis by co-cultured 

HUVEC and MDA-MB-231 cells. (A) MDA-MB-231 cells labelled with Cell Trace Far 

Red (blue) were seeded on top of Cultrex mixed with DQ-collagen IV in a 35 mm glass 

bottom culture dish. After 24 hours HUVECs labelled with Cell Tracker Orange (red) 

were seeded on top of the MDA-MB-231 cells and Cultrex mixed with DQ-collagen IV. 

The co-cultures were treated with either 50 ng/mL VEGF or 25 µg/mL PTCI. Cells were 

imaged 18 hours after HUVECs were seeded using confocal microscopy. DQ-collagen IV 

cleavage products (green) were present predominately pericellularly. Merge images show 

pericellular proteolysis (green) surrounding the co-cultured cells. Images were obtained 

at 600× magnification. Representative images from the equatorial plane of a Z-stack are 

shown. Scale bar, 30 µm. (B) Quantification of proteolysis DQ-collagen IV. To quantify 

proteolysis three equatorial planes from 3-4 different images from one experiment were 

quantified. Total integrated intensity of DQ-collagen IV florescence divided by total 

combined cell area of HUVECs and MDA-MB-231 cells was calculated and expressed 

relative to the control. Treatment with either VEGF or PTCI significantly increased 

proteolysis of DQ-collagen IV. Values are expressed as mean ± SEM from six 

independent experiments. ** p< 0.01 verses control. 
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3.5 Effect of inhibition of TAFIa on MMP2 and MMP9 mRNA 

expression and secretion 
 

Since inhibition of TAFIa was shown to increase proteolysis of DQ-collagen IV 

by endothelial cells and by endothelial cells co-cultured with breast cancer cells, we next 

wanted to look at whether inhibition of TAFIa increased mRNA expression and secretion 

of MMPs involved in ECM proteolysis. Pericellular plasminogen activation is involved in 

ECM remodelling, as well as the release and activation of MMPs from the ECM [36]. 

MMP2 and MMP9 have been shown to be implicated in tumour angiogenesis [54]. 

MMP2 and MMP9 are gelatinases, but also degrade other ECM proteins such as collagen 

type IV [53]. VEGF has been shown to be in a positive feedback loop with MMP9 in 

RPE cells [29], therefore it was used as a positive control in these experiments. Gelatin 

zymography was used to determine the effect of inhibition of TAFIa on secretion of 

MMP2 and MMP9. Using gelatin zymography gelatinolytic activity of latent and active 

MMP2 and MMP9 can be visualized  [148]. Samples are run using gel electrophoresis 

under denaturing and non-reducing conditions [148]. Active and latent MMP2 and 

MMP9 can be separated based on their molecular mass [148]. Gels are then renatured 

which causes activation of latent forms of these MMPs in the gel [148]. Both latent 

MMP2 and MMP9 can then proteolytically degrade gelatin in the gel [148]. After 

coomassie blue staining and destaining, clear zones where the staining has disappeared 

represent areas of proteolytic activity [148]. Quantitative RT-PCR was used to determine 

the effect of TAFIa inhibition on mRNA expression of MMP2 and MMP9. 

PTCI or VEGF were used to treat SUM149 breast cancer cells. Bands from the 

SUM149 media samples migrated identically to recombinant pro-MMP2 and pro-MMP9 
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controls, which suggests that they are likely pro-MMP9 and pro-MMP2 (Fig. 3.9A). It 

was determined that PTCI significantly increased secretion of both pro-MMP2 (1.7-fold) 

and pro-MMP9 (2.6-fold) compared to the control (Fig. 3.9A). Preliminary qRT-PCR 

results suggest that PTCI does not affect the mRNA expression of either MMP2 or 

MMP9 (Fig. 3.9B).  

PTCI or VEGF were used to treat HUVEC cells. Bands from the HUVEC media 

samples migrated identically to recombinant pro-MMP2 which was loaded as a control 

(Fig. 3.10A). This suggests that the gelatinolytic activity was likely due to pro-MMP2. It 

was determined that PTCI does not significantly affect the secretion of pro-MMP2 (Fig. 

3.10A). We could not detect secretion of MMP9 (Fig. 3.10A). Preliminary qRT-PCR 

results suggest that PTCI increases the mRNA expression of both MMP2 (1.8-fold) and 

MMP9 (2.3-fold) compared to control (Fig. 3.10B). 

Conditioned media (CM) from PTCI or VEGF treated SUM149 cells was used to 

treat HUVECs. Bands from the HUVEC media samples migrated identically to 

recombinant pro-MMP2 which was loaded as a control (Fig. 3.11A). This suggests that 

the gelatinolytic activity was likely due to pro-MMP2. Treatment of HUVECs with CM 

from untreated SUM149 cells resulted in a 1.2-fold increase in pro-MMP2 secretion 

compared to the untreated HUVEC control, although this was not significant (Fig. 

3.11A). Treatment of HUVECs with CM from PTCI treated SUM149 cells significantly 

increased the secretion of pro-MMP2, 1.6-fold relative to the untreated HUVEC control 

(Fig. 3.11A). Preliminary qRT-PCR results show that treatment of HUVECs with CM 

from untreated SUM149 cells decreased MMP2 mRNA expression 2-fold and did not 

affect MMP9 mRNA expression compared to the untreated HUVEC control (Fig. 3.11B). 
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PTCI increased mRNA expression of MMP2 (4.8-fold) and MMP9 (1.5-fold) compared 

to the untreated HUVEC control (Fig. 3.11B).  

Taken together these results suggest that inhibition of TAFIa in SUM149 breast 

cancer cells can increase the secretion of pro-MMP2 and pro-MMP9, and inhibition of 

TAFIa in SUM149 cells can increase the secretion of pro-MMP2 and increase the 

expression of MMP2 and MMP9 mRNA in HUVECs. The results therefore indicate that 

TAFIa has an opposite effect to the pro-angiogenic VEGF. These results also suggest that 

TAFIa is playing a different role in MMP2 and MMP9 secretion and expression in 

different cell types.  
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Figure 3.9 Inhibition of TAFIa in SUM149 cells increases secretion of pro-
MMP2 and pro-MMP9, but does not affect mRNA expression of MMP2. 
(A) Representative zymogram depicting gelatinolytic activity of pro-MMP9 (92 kDa), 

pro-MMP2 (72 kDa) secreted by SUM149 breast cancer cells treated with either 25 

µg/mL PTCI or 50 ng/mL VEGF for 24 hours. Lanes 1 and 2 are control lanes for 

recombinant MMP2 (pro-MMP2 72 kDa, active MMP2 62 kDa) and pro-MMP9 (92 

kDa), respectively. Lane 3 represents the control untreated SUM149 cells. Lanes 4 and 5 

represent PTCI and VEGF treated SUM149 cells, respectively. Bands of gelatinolytic 

activity from SUM149 media samples migrate similarly to the recombinant MMP 

controls suggesting that the samples contain pro-MMP9 and pro-MMP2. Densitometry 

was performed and reported as relative intensity as compared to the control. Both PTCI 

and VEGF treatment significantly increased secretion of pro-MMP2 and pro-MMP9 in 

SUM149 cells. Data represent results of 3-6 independent experiments and are presented 

as mean ± SEM. * p<0.05, ** p<0.01 verses control. (B)  MMP2 and MMP9 mRNA 

levels in PTCI and VEGF treated SUM149 cells using qRT-PCR. GAPDH was used as 

an internal control. Data represented as relative mRNA expression as compared to the 

control from one independent experiment. PTCI treatment of SUM149 cells did not affect 

mRNA expression of MMP2 or MMP9, while VEGF treatment increased mRNA 

expression of both MMP2 and MMP9. 
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Figure 3.10 Inhibition of TAFIa in HUVECs does not affect secretion of pro-
MMP2, but increases mRNA expression of MMP2 and MMP9. 
(A) Representative zymogram depicting gelatinolytic activity of pro-MMP2 (72 kDa) 

secreted by HUVECs treated with either either 25 µg/mL PTCI or 50 ng/mL VEGF for 

24 hours. Lanes 1 and 2 are control lanes for recombinant MMP2 (pro-MMP2 72 kDa, 

active MMP2 62 kDa) and pro-MMP9 (92 kDa), respectively. Lane 3 represents the 

control untreated HUVECs. Lanes 4 and 5 represent PTCI and VEGF treated HUVECs, 

respectively. Bands of gelatinolytic activity from HUVEC media samples migrate 

similarly to the recombinant pro-MMP2 control suggesting that the samples contain pro-

MMP2. Densitometry was performed and reported as relative intensity as compared to 

the control. Neither PTCI nor VEGF treatment significantly affected secretion of pro-

MMP2 in HUVECs. Data represent results of eight independent experiments and are 

presented as mean ± SEM. (B) MMP2 and MMP9 mRNA levels in PTCI and VEGF 

treated HUVECs using qRT-PCR. GAPDH was used as an internal control. Data 

represented as relative mRNA expression as compared to the control from one 

independent experiment. Both PTCI and VEGF treatment increased mRNA expression of 

MMP2 and MMP9. 
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Figure 3.11 Treatment of HUVECs with conditioned media from SUM149 cells 
treated with TAFIa inhibitor increases secretion of pro-MMP2 and mRNA 
expression of MMP2 and MMP9. 
(A) Representative zymogram depicting gelatinolytic activity of pro-MMP2 (72 kDa) 

secreted by HUVECs treated with conditioned media (CM) from either 25 µg/mL PTCI 

or 50 ng/mL VEGF treated SUM149 cells. Lanes 1 and 2 are control lanes for 

recombinant MMP2 (pro-MMP2 72 kDa, active MMP2 62 kDa) and pro-MMP9 (92 

kDa), respectively. Lane 3 represents the untreated control of untreated HUVECs. Lane 4 

represents the control of HUVECs treated with untreated SUM149 CM. Lanes 5 and 6 

represent HUVECs treated with CM from PTCI and VEGF treated SUM149 cells, 

respectively. Bands of gelatinolytic activity from HUVEC media samples migrate 

similarly to the recombinant pro-MMP2 control suggesting that the samples contain pro-

MMP2. Densitometry was performed and reported as relative intensity as compared to 

the untreated control. CM treatment of HUVECs from PTCI and VEGF treated SUM149 

cells significantly increased secretion of pro-MMP2. Data represent results of 4-5 

independent experiments and are presented as mean ± SEM. * p<0.05, ** p<0.01 verses 

control.  (B) MMP2 and MMP9 mRNA levels in HUVECs treated with CM from PTCI 

and VEGF treated SUM149 cells using qRT-PCR. GAPDH was used as an internal 

control. Data represented as relative mRNA expression as compared to the untreated 

control from one independent experiment. Treatment of HUVECs with CM from PTCI 

and VEGF treated SUM149 cells increased mRNA expression of MMP2. Treatment of 

HUVECs with CM from PTCI treated SUM149 cells increased the mRNA expression of 

MMP9. 
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3.6 Characterization of thrombin-dependent substrate activation 

of rTM EGF3-6 mutants 
 

Different versions of recombinant thrombomodulin (rTM) consisting of the EGF-

like domains 3-6 (rTM EGF3-6) were characterized for cofactor ability of thrombin-

dependent activation of TAFI or protein C. Specifically, wild-type rTM EGF3-6, rTM 

EGF3-6 V340A/D341A, and rTM EGF3-6 F376A were characterized. Wang et al. 

characterized the V340A, D341A, and F376A mutations in rTM containing EGF-like 

repeats 1-6 [82]. The both V340A and D341A were shown to drastically decrease TAFI 

activation, while only marginally decreasing protein C activation [82]. The F376A 

mutation was found to severely reduce protein C activation, while maintaining TAFI 

activation [82]. The cofactor ability of rTM containing EGF-like repeats 3-6 has been 

determined to have full protein C activation capability (107%) and 82% TAFI activation 

capability compared to rTM containing the lectin-like domain, EGF-like repeats 1-6, and 

the serine/threonine rich domain [82, 149]. These mutations in rTM containing only 

EGF3-6 have yet to be characterized, but are hypothesized to maintain the substrate 

activation capabilities as determined by Wang and colleagues [82]. 

Using the colorimetric substrate, AAFR, initial rate of TAFI activation was 

quantified using the rTM EGF3-6 mutants and thrombin (Fig. 3.12A). rTM EGF3-6 

V340A/D401A supported a significantly decreased initial rate of TAFI activation in the 

presence of thrombin. rTM EGF3-6 F376A had a similar initial rate of TAFI activation 

compared to wild-type rTM EGF3-6 in the presence of thrombin (Fig. 3.12A). 
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Using the colorimetricc substrate, S-2366, initial rate of protein C activation was 

quantified using the rTM EGF3-6 mutants and thrombin (Fig. 3.12B). rTM EGF3-6 

V340A/D401A had a similar initial rate of protein C activation in the presence of 

thrombin. rTM EGF3-6 F376A had a significantly decreased rate of protein C activation 

compared to wild-type rTM EGF3-6 in the presence of thrombin (Fig. 3.12B).  

The results indicate that the rTM EGF3-6 mutants have expected cofactor 

abilities. rTM EGF3-6 D340A/V341A has significantly decreased TAFI activation but 

retains protein C activation capability in comparison to wild-type rTM EGF3-6. rTM 

EGF3-6 F376A has significantly decreased protein C activation but retains TAFI 

activation in comparison to wild-type rTM EGF3-6.  
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Figure 3.12 Characterization of cofactor ability of rTM EGF3-6 mutants  
The cofactor ability of rTM EGF3-6 (wild-type), rTM EGF3-6 V340A/D3401A, and 

rTM EGF3-6 F376A for thrombin-dependent activation of TAFI or protein C was 

determined. (A) Thrombin-dependent activation of TAFI by measuring initial rate of 

AAFR hydrolysis of rTM EGF3-6 mutants using 10 nM of the rTM EGF3-6 mutants and 

25 nM of thrombin (IIa). TAFI was allowed to be activated by the rTM EGF3-6 mutants 

and IIa for 10 minutes at room temperature before IIa was inhibited by PPACK. rTM 

EGF3-6 V340A/D341A has significantly decreased TAFI activation compared to wild-

type rTM EGF3-6 in the presence of IIa. Values are expressed as mean ± SEM from 3-5 

independent experiments. ** p< 0.01 verses rTM EGF3-6. (B) Thrombin-dependent 

activation of protein C by measuring initial rate of S-2366 hydrolysis of rTM EGF3-6 

mutants using 10 nM of the rTM EGF3-6 mutants and 25 nM of IIa. Protein C was 

allowed to be activated by the rTM EGF3-6 mutants and IIa for 30 minutes at 37
°
C 

before IIa was inhibited by PPACK. rTM EGF3-6 F376A has significantly decreased 

protein C activation compared to wild-type rTM EGF3-6 in the presence of IIa. Values 

are expressed as mean ± SEM from three independent experiments. ** p< 0.01 verses 

rTM EGF3-6. 
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3.7 Effect of treatment with rTM EGF3-6 mutants on tube formation 

in endothelial cells and in co-culture systems containing 

endothelial and breast cancer cells 
 

The role that TM plays in angiogenesis is not yet firmly established. Some studies 

have suggested that rTM containing the EGF-like repeats and the serine/threonine-rich 

domain is angiogenic [93]. Other studies have found through the lectin-like domain TM 

is anti-angiogenic [95]. TM has been shown to be antimetastatic and this was found to be 

dependent on the ability of thrombin to bind to TM [91]. Since inhibition of TAFIa 

resulted in increased tube formation (Fig. 3.3-3.5), we decided to test the effect on 

endothelial tube formation that the rTM EGF3-6 mutations would have. The 

V340A/D341A mutant of rTM EGF3-6 was shown to allow thrombin dependent 

activation of protein C but not TAFI, and the F376A mutant of rTM EGF3-6 was shown 

to allow thrombin-dependent activation of TAFI but not protein C (Fig. 3.12). We 

therefore hypothesized addition of wild-type rTM EGF3-6 would decrease endothelial 

cell tube formation (i.e., have the opposite effect of inhibiting TAFIa), and that this effect 

would be retained by the F376A mutant but not the V340A/D341A mutant.  

Tube formation assays using HUVECs on Cultrex were used, and were treated 

with either rTM EGF3-6 (wild-type), rTM EGF3-6 V340A/D41A, or rTM EGF3-6 

F376A (Fig. 3.13A). Treatment with wild-type rTM EGF3-6 did not significantly affect 

relative tube length (Fig. 3.13B). Treatment with rTM EGF3-6 V340A/D341A 

significantly increased relative endothelial tube length compared to the control and 

compared to wild-type, 1.4-fold and 1.5-fold respectively (Fig. 3.13B). Treatment with 
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rTM EGF3-6 F376A significantly decreased relative endothelial tube length by 1.2-fold 

compared to the control and compared to wild-type (Fig. 3.13B). 

The effect on endothelial tube formation in co-culture systems consisting of breast 

cancer cells using the rTM EGF3-6 mutants was also assessed. The cultures consisting of 

either HUVECs and SUM149 cells (Fig. 3.14A) or HUVECs and MDA-MB-231 cells 

(Fig. 3.15A) were treated with either rTM EGF3-6 (wild-type), rTM EGF3-6 

V340A/D41A, or rTM EGF3-6 F376A. Both co-culture systems produced nearly 

identical results compared to each other. Treatment with wild-type rTM EGF3-6 did not 

affect relative endothelial tube length in either co-culture system (Fig. 3.14B & Fig. 

3.15B). Treatment with rTM EGF3-6 V340A/D341A significantly increased relative 

endothelial tube length compared to control and compared to wild-type by 1.3-fold in 

both co-culture systems (Fig. 3.14B & Fig. 3.15B). Treatment with rTM EGF3-6 F376A 

significantly decreased relative endothelial tube length compared to control by 1.2-fold in 

both co-culture systems (Fig. 3.14B & Fig. 3.15B). Treatment with rTM EGF3-6 F376A 

significantly decreased relative endothelial tube length compared to wild-type rTM 

EGF3-6 by 1.2-fold in co-cultured HUVECs and SUM149 cells (Fig. 3.14B). 

Overall, treatment with rTM EGF3-6 had no effect on endothelial tube formation, 

treatment with rTM EGF3-6 rTM EGF3-6 V340A/D341A increased endothelial tube 

formation, and treatment rTM EGF3-6 F376A decreased endothelial tube formation. The 

results on endothelial tube formation with wild-type rTM EGF3-6 are not consistent with 

our hypothesized outcome, but do suggest an anti-angiogenic role for TAFI and a pro-

angiogenic role for protein C.  



93 
 

 

 

Figure 3.13 Effect of differing cofactor ability of rTM EGF3-6 on endothelial 
tube formation 
(A) HUVECs labelled with Cell Tracker Orange (red) were seeded on top of Cultrex and 

treated with 10 nM of either rTM EGF3-6, rTM EGF3-6 V340A/D341A, or rTM EGF3-6 

F376A. Cells were imaged 18 hours after HUVECs were seeded using confocal 

microscopy. Images above were obtained at 40× magnification. Scale bar, 500 µm.  (B) 

Quantification of endothelial tube formation. To quantify tube formation 8-10 images 

were obtained at 100× magnification. Tube length was determined by measuring total 

tube length divided by total tube number, and is expressed relative to that in the control 

untreated cells. Values are expressed as mean ± SEM from 6-10 independent 

experiments. Asterisks: **p< 0.01 verses control, daggers: †† p< 0.01 verses rTM  

EGF3-6. Treatment with rTM EGF3-6 V340A/D341A significantly increased relative 

tube length of HUVECs compared to control and to rTM EGF3-6. Treatment with rTM 

EGF3-6 F376A significantly decreased relative tube length of HUVECs compared to 

control and to rTM EGF3-6.   
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Figure 3.14 Effect of differing cofactor ability of rTM EGF3-6 on endothelial 
tube formation in a co-culture system with HUVECs and SUM149 cells 
(A) SUM149 cells labelled with Cell Trace Far Red (green) were seeded on top of 

Cultrex, after 24 hours HUVECs labelled with Cell Tracker Orange (red) were seeded on 

top of the SUM149 cells and Cultrex. The co-cultures were treated with 10 nM of either 

rTM EGF3-6, rTM EGF3-6 V340A/D341A, or rTM EGF3-6 F376A. Cells were imaged 

18 hours after HUVECs were seeded using confocal microscopy. Images above were 

obtained at 40× magnification.  Scale bar, 500 µm. (B) Quantification of endothelial tube 

formation. To quantify tube formation 8-10 images were obtained at 100× magnification. 

Tube length was determined by measuring total tube length divided by total tube number, 

and is expressed relative to that in the control untreated cells. Values are expressed as 

mean ± SEM from 5-8 independent experiments. Asterisks: **p< 0.01 verses control, 

daggers: †† p< 0.01 verses rTM EGF3-6. Treatment with rTM EGF3-6 V340A/D341A 

significantly increased relative tube length of HUVECs compared to control and to rTM 

EGF3-6. Treatment with rTM EGF3-6 F376A significantly decreased relative tube length 

of HUVECs compared to control and to rTM EGF3-6. 
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Figure 3.15 Effect of differing cofactor ability of rTM EGF3-6 on endothelial 
tube formation in a co-culture system with HUVECs and MDA-MB-231 cells 
(A) MDA-MB-231 cells labelled with Cell Trace Far Red (green) were seeded on top of 

Cultrex, after 24 hours HUVECs labelled with Cell Tracker Orange (red) were seeded on 

top of the MDA-MB-231 cells and Cultrex. The co-cultures were treated with 10 nM of 

either rTM EGF3-6, rTM EGF3-6 V340A/D341A, or rTM EGF3-6 F376A. Cells were 

imaged 18 hours after HUVECs were seeded using confocal microscopy. Images above 

were obtained at 40× magnification.  Scale bar, 500 µm.  (B) Quantification of 

endothelial tube formation. To quantify tube formation 8-10 images were obtained at 

100× magnification. Tube length was determined by measuring total tube length divided 

by total tube number, and is expressed relative to that in the control untreated cells. 

Values are expressed as mean ± SEM from 5-6 independent experiments. Asterisks:        

* p<0.05, ** p< 0.01 verses control, daggers: †† p< 0.01 verses rTM EGF3-6. Treatment 

with rTM EGF3-6 V340A/D341A significantly increased relative tube length of 

HUVECs compared to control and to rTM EGF3-6. Treatment with rTM EGF3-6 F376A 

significantly decreased relative tube length of HUVECs compared to control. 
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3.8 Effect of treatment with rTM EGF3-6 mutants on proteolysis of 

DQ-collagen IV by endothelial cells and by co-culture systems 

containing endothelial and breast cancer cells 
 

We next tested the effect that the rTM EGF3-6 mutants had on proteolysis of DQ-

collagen IV by endothelial cells and by endothelial cells in co-culture with breast cancer 

cells. We hypothesized that treatment with rTM EGF3-6 V340A/D341A would increase 

proteolysis of DQ-collagen IV, while treatment with rTM EGF3-6 F376A would decrease 

proteolysis of DQ-collagen IV. We hypothesized this due to the results obtained in 

endothelial tube formation assays using treatment with the rTM EGF3-6 mutants which 

suggested an anti-angiogenic role for TAFI and a pro-angiogenic role for protein C. 

 HUVECs were seeded on top of Cultrex mixed with DQ-collagen IV and were 

treated with either rTM EGF3-6 (wild-type), rTM EGF3-6 V340A/D41A, or rTM EGF3-

6 F376A (Fig. 3.16A). Degradation products of DQ-collagen IV were localized 

predominantly intracellularly when HUVECs were treated with the rTM EGF3-6 mutants 

(Fig. 3.16A). Treatment of HUVECs with wild-type rTM EGF3-6 or rTM EGF3-6 

F376A significantly decreased proteolysis of DQ-collagen IV, 1.2-fold  and 1.4-fold 

relative to the control, respectively (Fig. 3.16B). Treatment of HUVECs with rTM   

EGF3-6 V340A/D341A significantly increased proteolysis of DQ-collagen IV, 1.9-fold 

relative to the control (Fig. 3.16B). Treatment of HUVECs with rTM EGF3-6 

V340A/D341A also significantly increased proteolysis of DQ-collagen IV compared to 

wild-type by 2.3-fold (Fig. 3.16B). 
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Co-culture systems containing endothelial cells and breast cancer cells were used 

to look the effect of the rTM EGF3-6 mutants on proteolysis of DQ-collagen by both 

endothelial and breast cancer cells in the same environment. HUVECs co-cultured with 

SUM149 cells (Fig. 3.17A) or MDA-MB-231 cells (Fig. 3.18A) were treated with either 

rTM EGF3-6, rTM EGF3-6 V340A/D41A, or rTM EGF3-6 F376A. In both co-culture 

systems there was a mix of intracellular and pericellular proteolysis (Fig. 3.17A & Fig. 

3.18A). The co-culture system containing HUVECs and SUM149 cells exhibited 

predominately pericellular proteolysis (Fig. 3.17A). Treatment with rTM EGF3-6 

V340A/D341A increased intracellular proteolysis of DQ-collagen IV in the co-culture 

system containing HUVECs and MDA-MB-231 cells (Fig. 3.18A). Treatment with wild-

type rTM EGF3-6 did not significantly affect proteolysis of DQ-collagen IV in either co-

culture system (Fig. 3.17B & Fig. 3.18B). Treatment with rTM EGF3-6 F376A decreased 

proteolysis of DQ-collagen IV by 1.2-fold in the both co-culture systems compared to the 

control, although this was not considered significant (Fig. 3.17B & Fig. 3.18B). 

Treatment with rTM EGF3-6 F376A decreased proteolysis of DQ-collagen IV 

significantly compared to wild-type by 1.4-fold in the co-culture system containing 

HUVECs and SUM149 cells (Fig. 3.17B). Treatment with rTM EGF3-6 V340A/D341A 

significantly increased proteolysis of DQ-collagen IV in the both co-culture systems (1.4-

fold in the HUVEC and SUM149 co-culture, and 1.6-fold in the HUVEC and MDA-MB-

231 co-culture) compared to control and compared to wild-type (1.3-fold in the HUVEC 

and SUM149 co-culture, and 1.6-fold in the HUVEC and MDA-MB-231 co-culture) 

(Fig. 3.17B & Fig. 3.18B). 
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Overall, treatment with wild-type rTM EGF3-6 decreased proteolysis of DQ-

collagen IV by HUVECs alone, but did not have an effect on proteolysis of DQ-collagen 

IV in either co-culture system. Treatment with rTM EGF3-6 V340A/D341A increased 

proteolysis of DQ-collagen IV by HUVECs alone and by both co-culture systems. 

Treatment with rTM EGF3-6 F376A decreased proteolysis of DQ-collagen IV by 

HUVECs alone and by both co-culture systems. The results we obtained for the 

proteolysis of DQ-collagen IV in all systems (HUVEC monoculture and both co-culture 

systems) treated with the rTM EGF3-6 mutants are consistent with what we’d expect 

given the effect on endothelial tube formation we saw using the rTM EGF3-6 mutants. 

The effect of the rTM EGF3-6 mutants in both the endothelial tube formation assays and 

the DQ-collagen IV proteolysis assays are similar. These results suggest that TAFI 

activation plays an anti-angiogenic role in ECM proteolysis 
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Figure 3.16 Effect of differing cofactor ability of rTM EGF3-6 on proteolysis of 
DQ-collagen IV by endothelial cells 
(A) HUVECs labelled with Cell Tracker Orange (red) were seeded on top of Cultrex 

mixed with DQ-collagen IV in a 35 mm glass bottom culture dish and treated with 10 nM 

of either rTM EGF3-6, rTM EGF3-6 V340A/D341A, or rTM EGF3-6 F376A. Cells were 

imaged 18 hours after seeding HUVECs using confocal microscopy. DQ-collagen IV 

cleavage products (green) were present predominantly intracellularly. Merge images 

show intracellular (yellow) and pericellular proteolysis (green). Images were obtained at 

600× magnification. Representative images from the equatorial plane of a Z-stack are 

shown. Scale bar, 30 µm. (B) Quantification of proteolysis of DQ-collagen IV. To 

quantify proteolysis three equatorial planes from 3-4 different images from one 

experiment were quantified. Total integrated intensity of DQ-collagen IV florescence 

divided by total HUVEC area was calculated and expressed relative to the control. Values 

are expressed as mean ± SEM from five independent experiments. Asterisks: **p< 0.01 

verses control, daggers: †† p< 0.01 verses rTM EGF3-6. Treatment with both rTM 

EGF3-6 and rTM EGF3-6 F376A significantly decreased relative proteolysis of DQ-

collagen IV by HUVECs compared to control. Treatment with rTM EGF3-6 

V340A/D341A significantly increased relative proteolysis of DQ-collagen IV by 

HUVECs compared to control and to rTM EGF3-6.  
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Figure 3.17 Effect of differing cofactor ability of rTM EGF3-6 on proteolysis of 
DQ-collagen IV by co-cultured HUVECs and SUM149 cells 
(A) SUM149 cells labelled with Cell Trace Far Red (blue) were seeded on top of Cultrex 

mixed with DQ-collagen IV in a 35 mm glass bottom culture dish. After 24 hours 

HUVECs labelled with Cell Tracker Orange (red) were seeded on top of the SUM149 

cells and Cultrex mixed with DQ-collagen IV. The co-cultures were treated with 10 nM 

of either rTM EGF3-6, rTM EGF3-6 V340A/D341A, or rTM EGF3-6 F376A. Cells were 

imaged 18 hours after HUVECs were seeded using confocal microscopy. DQ-collagen IV 

cleavage products (green) were present predominately pericellularly. Merge images show 

pericellular proteolysis (green) surrounding the co-cultured cells. Images were obtained 

at 600× magnification. Representative images from the equatorial plane of a Z-stack are 

shown. Scale bar, 30 µm. (B) Quantification of proteolysis of DQ-collagen IV. To 

quantify proteolysis three equatorial planes from 3-4 different images from one 

experiment were quantified. Total integrated intensity of DQ-collagen IV florescence 

divided by total combined cell area of HUVECs and SUM149 cells was calculated and 

expressed relative to the control. Values are expressed as mean ± SEM from 3-7 

independent experiments. Asterisks: **p< 0.01 verses control, daggers: †† p< 0.01 verses 

rTM EGF3-6. Treatment with rTM EGF3-6 V340A/D341A significantly increased 

relative proteolysis of DQ-collagen IV by co-cultured HUVECs and SUM149 cells 

compared to control and to rTM EGF3-6.Treatment with rTM EGF3-6 F376A 

significantly decreased relative proteolysis of DQ-collagen IV by co-cultured HUVECs 

and SUM149 cells compared to rTM EGF3-6.  
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Figure 3.18 Effect of differing cofactor ability of rTM EGF3-6 on proteolysis of 
DQ-collagen IV by co-cultured HUVECs and MDA-MB-231 cells 
(A) MDA-MB-231 cells labelled with Cell Trace Far Red (blue) were seeded on top of 

Cultrex mixed with DQ-collagen IV in a 35 mm glass bottom culture dish. After 24 hours 

HUVECs labelled with Cell Tracker Orange (red) were seeded on top of the MDA-MB-

231 cells and Cultrex mixed with DQ-collagen IV. The co-cultures were treated with 10 

nM of either rTM EGF3-6, rTM EGF3-6 V340A/D341A, or rTM EGF3-6 F376A. Cells 

were imaged 18 hours after HUVECs were seeded using confocal microscopy. DQ-

collagen IV cleavage products (green) were present both intracellularly and 

pericellularly. Merge images show pericellular proteolysis (green) surrounding the co-

cultured cells. Images were obtained at 600× magnification. Representative images from 

the equatorial plane of a Z-stack are shown. Scale bar, 30 µm. (B) Quantification of 

proteolysis of DQ-collagen IV. To quantify proteolysis three equatorial planes from 3-4 

different images from one experiment were quantified. Total integrated intensity of DQ-

collagen IV florescence divided by total combined cell area of HUVECs and MDA-MB-

231 cells was calculated and expressed relative to the control. Values are expressed as 

mean ± SEM from 3-4 independent experiments. Asterisks: **p< 0.01 verses control, 

daggers: †† p< 0.01 verses rTM EGF3-6. Treatment with rTM EGF3-6 V340A/D341A 

significantly increased relative proteolysis of DQ-collagen IV by co-cultured HUVECs 

and MDA-MB-231 cells compared to control and to rTM EGF3-6.  
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Chapter 4 Discussion and Conclusions  
 

Thrombomodulin (TM) known mostly for its role in the regulation of vascular 

hemostasis, has also been shown to play an antimetastatic role in cancer. TM expression 

has been shown to be inversely correlated to tumour prognosis and malignancy [86, 87]. 

TM has been shown to decrease invasion, proliferation, and metastasis [79, 87, 90].  A 

study conducted by Horowitz et al. determined the antimetastatic effects of TM were 

dependent on its ability to bind thrombin [91]. However, this study did not determine 

which substrate of thrombin-TM, TAFI or protein C, was responsible for these effects. 

Moreover, TAFI has been shown to inhibit pericellular plasminogen activation through 

cleavage of carboxyl-terminal lysine residues in vitro and in vivo [76, 125, 126]. 

Pericellular plasminogen activation has been implicated in metastasis and tumour 

angiogenesis through degradation of ECM, regulation of MMP activity, and release of 

growth factors from ECM [36]. Higuchi et al. found TAFIa inhibited plasminogen 

activation in HT1080 cells resulting in decreased invasion [128]. We therefore 

hypothesized that due to the role that TAFI plays in the regulation of pericellular 

plasminogen activation it was the substrate of thrombin-TM responsible for the 

antimetastatic effects of TM.  

Tumour angiogenesis is a hallmark of cancer: without it tumours could not grow 

beyond 1-2mm
3
 [2, 6, 14]. Moreover, highly angiogenic tumours have greater metastatic 

potential, and metastasis is responsible for 90% of cancer deaths [2]. A previous study 

showed TAFIa inhibits wound healing angiogenesis on a plasma clot [130]. Another 

study suggested absence of TAFI inhibited healing of colonic anastomoses through 
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overactivation of angiogenesis and plasmin [121]. These results suggest that TAFIa plays 

a role in inhibition of wound healing angiogenesis and potentially tumour angiogenesis. 

Plasminogen activation plays a role in tumour angiogenesis through degradation of 

vascular ECM and basement membrane allowing endothelial cells to invade and 

proliferate into surrounding stroma [36]. There are conflicting reports on the role of TM 

in angiogenesis. Some studies suggest that it is anti-angiogenic through the lectin-like 

domain, while others suggest that it is angiogenic through the EGF-like domain [93–95].  

We decided to determine the role TAFIa plays in tumour angiogenesis through 

inhibition of TAFIa, and through manipulation of cofactor ability of TM. In breast cancer 

patients low TM is strongly correlated with poor prognosis and high relapse rate [89]. 

Unpublished data from our laboratory have shown that breast cancer cells, including 

SUM149 and MDA-MB-231 cells, express both TM and TAFI. Unpublished data from 

our laboratory also shows that TAFIa inhibits pericellular plasminogen activation in these 

breast cancer cell lines. We therefore used SUM149 and MDA-MB-231 breast cancer 

cells in these experiments because they provided an appropriate cellular model to 

evaluate tumour angiogenesis. We found that TAFIa plays a role in inhibition of tumour 

angiogenesis, and further clarified a role for TM in angiogenesis. 
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4.1 Inhibition of TAFIa increases tumour angiogenesis 
 

Through inhibition of TAFIa with PTCI there was an increase in crucial 

components of angiogenesis; namely endothelial cell proliferation, invasion, tube 

formation, and ECM proteolysis. Endothelial tube formation and ECM proteolysis were 

also increased when TAFIa was inhibited in co-culture systems consisting of endothelial 

cells and breast cancer cells. These results suggest that TAFIa plays a role in inhibition of 

tumour angiogenesis. 

 

4.1.1 Inhibition of TAFIa increases endothelial tube formation as a 

function of decreased inhibition of pericellular plasminogen activation 
 

TAFIa has been implicated as an anti-angiogenic factor in the context of wound 

healing angiogenesis [130]. Guimarães et al. showed TAFIa decreased tube formation on 

a 3D-plasma clot matrix [130]. This study determined that TAFIa decreased tube 

formation through inhibition of plasminogen activation on a fibrin matrix [130]. To date, 

no study has examined the role that TAFIa plays in endothelial tube formation in the 

context of tumour angiogenesis, where plasminogen activation is pericellular, supported 

by cell-surface plasminogen receptors, rather than occurring on a fibrin matrix.  

 Endothelial cells grown on reconstituted basement membrane form tube-like 

structures in vitro that mimic angiogenesis, in which tube formation can be quantified 

[134, 135]. Using this system we looked at the effect that inhibition of TAFIa had on tube 

formation. Inhibition of TAFIa significantly increased tube formation expressed as the 
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relative length of the endothelial cell tubes (Fig 3.3). In order to make this system 

relevant in the context of tumour angiogenesis, we also examined the effect of inhibition 

of TAFIa on endothelial tube formation using two different co-culture systems using 

endothelial and breast cancer cells. The endothelial tube networks formed around the 

cancer spheroids on the reconstituted basement membrane. Inhibition of TAFIa 

significantly increased endothelial tube formation in both co-culture systems (Fig. 3.4 & 

Fig. 3.5). There was no difference in the relative tube length increase due to PTCI 

treatment between the HUVEC monocultures and either co-culture system. There was, 

however, an apparent increase in proliferation of the endothelial cells in the MDA-MB-

231 and HUVEC co-culture system (Fig. 3.5) compared to the HUVEC monoculture 

(Fig. 3.3), and the SUM149 and HUVEC co-culture system (Fig. 3.4). This could be due 

to the fact that MDA-MB-231 cells are a more malignant cell line than HUVECs (a 

noncancerous cell line) and SUM149 cells, which could lead to an increased production 

of factors that increase proliferation [150]. 

Previous studies have shown that uPA bound to uPAR can enhance endothelial 

cell organization into tubes [151]. Since uPA/uPAR can activate plasminogen [41], and 

TAFIa can inhibit pericellular plasminogen activation [76, 125, 126], this could be the 

mechanism of tube formation seen in our study. These results suggest that TAFIa 

decreases formation of tumour angiogenesis, potentially through inhibition of pericellular 

plasminogen activation. 

There are some limitations to the tube formation assay used. The formation of 

tube-like structures could in part be a function of increased cell proliferation or increased 

cell adhesion, although this limitation could be argued to be a part of the differentiation 
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process that leads to the formation of tube-like structures on Cultrex [145]. Cultrex also 

contains many growth stimulating factors which leads to a gross stimulation of 

endothelial cells [145]. This results in large amounts of tube-like structures in the control, 

which causes increases in tube formation from pro-angiogenic factors to be less apparent 

[145]. Although Cultrex has been shown to direct endothelial cell differentiation, it is 

questionable whether the tube-like structures formed contain a lumen [145]. Therefore, 

the tube-like structures formed may not closely resemble blood vessels [145]. There is a 

lack of homogeneity in the tube-like structures formed which is another limitation of this 

assay [145]. Therefore, other morphological studies will have to be completed to further 

support these results, such as aortic ring assays. Angiogenic vessels grow from an aortic 

ring; the microvascular outgrowth can be quantified [145]. These assays have their own 

sets of limitations, such as variability of the aortic rings which can influence the 

outgrowth of microvessels [145]. 

 

4.1.2 Inhibition of TAFIa increases ECM proteolysis as a function of 

decreased inhibition of pericellular plasminogen activation 
 

In order for endothelial tube formation to occur the vascular basement membrane 

must be locally degraded by proteolytic enzymes [152]. Proteolysis of the ECM also 

plays an important role in invasion and metastasis of tumour cells [153].  Using a 3D 

live-cell proteolysis assay, we examined the effect of TAFIa inhibition on degradation of 

DQ-collagen IV, a quenched fluorescent derivative of type IV collagen [136]. This assay 

allows for the imaging and quantification of pericellular and intracellular proteolysis 

[153]. We examined proteolysis of DQ-collagen IV by endothelial cells, and by two co-
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culture systems containing endothelial cells (HUVECs) and breast cancer cells (SUM149 

or MDA-MB-231 cells). The co-culture systems act to recapitulate a tumour 

microenvironment [154].   

Inhibition of TAFIa increased total proteolysis of DQ-collagen IV in all three 

systems tested (Fig. 3.6-3.8). The HUVECs alone exhibited predominantly intracellular 

proteolysis. The co-culture consisting of HUVECs and SUM149 cells exhibited both 

pericellular and intracellular proteolysis (Fig. 3.7).  The co-culture system consisting of 

HUVECs and MDA-MB-231 cells predominantly exhibited pericellular proteolysis (Fig. 

3.8). Different proteases and pathways are involved in pericellular proteolysis as 

compared to intracellular proteolysis [136, 153]. The proteases involved in pericellular 

proteolysis are MMPs, serine proteases (including components of the plasminogen 

activation system), and cysteine proteases [136, 153]. Intracellular proteolysis involves 

endocytosis of DQ-collagen IV by the live cells, and degradation of the substrate in the 

lysosome [153, 155, 156]. Intracellular proteolysis can also occur after partial 

degradation of DQ-collagen IV with  pericellular proteases, after which endocytosis and 

further degradation in the lysosome can occur [157]. In this manner the same proteolytic 

enzymes can be involved in pericellular and intracellular proteolysis [157]. Within the 

lysosome cysteine proteases degrade the DQ-collagen IV [136, 153]. Treatment of the 

HUVEC monoculture with PTCI increased intracellular proteolysis as compared to the 

control (Fig. 3.6), whereas treatment with PTCI increased pericellular proteolysis as 

compared to the control in both the co-culture systems (Fig. 3.7 & Fig. 3.8). This result 

suggests that inhibition of TAFIa in the breast cancer cells plays a larger role in 

pericellular proteolysis than inhibition of TAFIa in the endothelial cells. Alternatively, 
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these results could suggest that there is more pericellular proteolysis in a real tumour 

microenvironment since the co-cultures mimic a tumour microenvironment. 

 Inhibition of TAFIa could lead to increased pericellular proteolysis, and 

potentially intracellular proteolysis, through decreased inhibition of pericellular 

plasminogen activation. This is the potential mechanism because pericellular proteolysis 

can be caused by degradation of the ECM by components of the plasminogen activation 

system [136, 153], and plasmin can liberate and activate MMPs from the ECM [38].  

Treatment of HUVECs alone with PTCI (Fig. 3.6) increased proteolysis of DQ-

collagen IV more than treatment of either co-culture system with PTCI (Fig. 3.7 & Fig. 

3.8). This could be due to the fact that the cancer cell lines are more malignant and 

invasive then the non-cancerous HUVECs, which causes them to have inherently more 

proteolytic activity. Therefore, the effect of PTCI on proteolysis of DQ-collagen IV by 

the co-culture systems appears less than in the HUVEC monoculture. Unpublished data 

from our laboratory have shown that there is more TAFI and TM expression in HUVECs 

than either breast cancer cell line. This could suggest that there is more TAFI activation 

in HUVECs compared to either breast cancer cell line. Therefore, the effect of inhibiting 

TAFIa is greater in HUVECs alone than in either co-culture system. There was no 

difference in relative tube length between the HUVEC monoculture and either co-culture 

system (Fig. 3.3-3.5) in contrast to what is seen with the proteolysis of DQ-collagen IV in 

the HUVEC monoculture compared to the co-culture systems (Fig. 3.6-3.8). This could 

suggest that TAFIa plays a larger role in proteolysis than in tube formation.  
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4.1.3 Differing effects of TAFIa inhibition on secretion and mRNA 

expression of MMP2 and MMP9 
 

MMP2 and MMP9 have been implicated in angiogenesis through degradation of 

the ECM [53]. MMPs are also upregulated in many cancers, and have been shown to 

increase invasion and metastasis by degrading the ECM [49, 50]. MMPs have been 

implicated in pericellular proteolysis, and potentially in intracellular proteolysis through 

partial degradation of ECM components before endocytosis and lysosomal degradation 

[136, 153, 157]. Due to the significant increase in proteolysis of DQ-collagen IV by 

endothelial cells and endothelial cells co-cultured with breast cancer cells when treated 

with PTCI, we wanted to see the effect of TAFIa inhibition on secretion of pro-MMP2 

and pro-MMP9, and mRNA expression of MMP2 and MMP9. We also wanted to 

determine the effect on mRNA expression and secretion of these MMPs on breast cancer 

cells alone, endothelial cells alone, and endothelial cells treated with CM from treated 

breast cancer cells. These systems were used to determine if the effects on MMP 

secretion and expression were cell specific, and to determine if soluble factors from 

PTCI-treated breast cancer cells can influence secretion and expression of MMPs in 

endothelial cells. Previous studies have shown that tumour-stromal cell interactions can 

lead to expression of MMPs [139, 158]. Once pro-MMP2 or pro-MMP9 have been made 

they are stored in the cytosol and are secreted by vesicles [159, 160]. Using gelatin 

zymography, bands from SUM149 or HUVEC media were assumed to be pro-MMP2 and 

pro-MMP9 because they migrated identically to recombinant pro-MMP2 and pro-MMP9 

that were loaded as controls (Fig. 3.9-3.11). Results were also assumed to reflect a 

change in secretion of pro-MMP2 and pro-MMP9 from the cells in response to PTCI or 
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VEGF. Transcriptional regulation of MMP2 and MMP9 is complex and is not completely 

understood, but many cytokines, oncogenes, and growth factors have been shown to 

increase mRNA expression of these MMPs [161].  

When SUM149 cells were treated with PTCI there was a significant increase in 

the secretion of pro-MMP2 and pro-MMP9, but there was no effect on mRNA expression 

of MMP2 or MMP9 (Fig. 3.9). When HUVECs were treated with PTCI there was no 

effect on pro-MMP2 secretion (no pro-MMP9 secretion was detected in these cells), but 

there was increased mRNA expression of both MMP2 and MMP9 (Fig. 3.10). These 

results suggest that inhibition of TAFIa increases secretion and mRNA expression of 

MMPs in a cell specific manner. 

In order to see the effect that the tumour microenvironment has on MMP2 and 

MMP9 secretion and mRNA expression in endothelial cells, CM from treated SUM149 

cells was used to treat HUVECs. Treatment of HUVECs with CM from untreated 

SUM149 cells resulted in a slight increase in secretion of pro-MMP2 (Fig. 3.11A). 

HUVECs treated with CM from PTCI treated SUM149 cells had significantly increased 

secretion of pro-MMP2 and increased mRNA expression of MMP2 and MMP9 (Fig. 

3.11). These results show dynamic interplay between components of the tumour cell 

microenvironment. The secreted soluble factors produced from SUM149 cells treated 

with PTCI resulted in significantly increased secretion of pro-MMP2 by HUVECs, which 

was not seen in HUVECs treated with PTCI. These results suggest inhibition of TAFIa in 

SUM149 cells can alter soluble factors that can exert a paracrine effect on HUVECs. 
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Both PTCI treated SUM149 cells, and HUVECs treated with CM from PTCI 

treated SUM149 cells resulted in increased secretion of pro-MMPs, likely due to some 

mechanism of stored vesicle release [159, 160]. Both PTCI treated SUM149 cells, and 

HUVECs treated with CM from PTCI treated SUM149 cells resulted in increased mRNA 

expression of MMP2 and MMP9. The specific mechanism of how these treatments 

influenced MMP2 and MMP9 mRNA expression remain to be investigated. Many 

inflammatory mediators increase the mRNA expression of MMP2 and MMP9, such as 

IL-6, IL-1β, TNFα, and TNFβ [161, 162]. Interestingly, the anaphylatoxins, C3a and C5a, 

induce IL-6 and IL-1β expression [163–165]. TAFIa has been shown to inactivate C3a 

and C5a [117].Therefore inhibition of TAFIa could increase C3a and C5a leading to 

increased IL-6 and IL-1β, and therefore increased mRNA expression of MMP2 and 

MMP9. In this manner a function of TAFIa separate from pericellular plasminogen 

activation could play a role in the antimetastatic effect of TAFI.  

These results taken together suggest inhibition of TAFIa results in differing 

secretion and mRNA expression of MMP2 and MMP9 dependent on cell type, and 

TAFIa inhibited SUM149 cells secrete soluble factors that can exert a paracrine effect on 

HUVECs.  
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4.2 Manipulation of TM cofactor activity suggests TAFIa plays a 

role in inhibition of tumour angiogenesis 
 

TM has been shown to be antimetastatic and these effects are attributable to 

thrombin binding [91]. We hypothesized that TAFI was the substrate of thrombin-TM 

responsible for these effects due to its role in the inhibition of pericellular plasminogen 

activation [76, 125, 126, 128]. Using different mutations of recombinant TM (rTM) 

containing EGF-like repeats 3-6, responsible for substrate binding and activation, we 

looked at the effect of TAFI activation on tube formation and ECM proteolysis. We 

hypothesized that wild-type rTM EGF3-6 would decrease tube formation and ECM 

proteolysis, since this would result in an increase in TAFIa generation. While the role of 

TM in angiogenesis has not been firmly established, previous reports have shown that the 

EGF-like domain of TM may be pro-angiogenic [93]. The rTM EGF3-6 V340A/D341A 

mutant, on the other hand, would have no effect on these parameters because it is unable 

to support TAFIa activation (Fig. 3.12). We also used rTM EGF3-6 F376A, which with 

thrombin can activate TAFI but not protein C (Fig. 3.12). We hypothesized that this 

mutant would show the same effects as wild-type rTM EGF3-6, as this variant retains the 

ability to support TAFIa activation. The results, however, confounded our expectations. 

Treatment with wild-type rTM EGF3-6 consistently had no effect on endothelial 

tube formation in any system (Fig. 3.13-3.15). In regards to tube formation, rTM 

containing all six EGF-like repeats (D2) and the serine/threonine domain (D3) (rTMD23) 

has been previously shown to significantly increase endothelial tube formation of 

HUVECs [93, 94]. Previous reports have also shown rTMD2 was less angiogenic than 
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rTMD23, suggesting the serine/threonine domain has angiogenic activity [93]. The 

variant of rTM we used in our experiments did not contain the serine/threonine domain, 

and only contained some of the EGF-like repeats. One possible conclusion from our work 

is therefore that EGF1-2 harbour pro-angiogenic activity. Treatment with wild-type rTM 

EGF3-6 significantly decreased proteolysis of DQ-collagen IV by endothelial cells alone 

compared to control (Fig. 3.16), but did not have a significant effect on proteolysis of 

DQ-collagen IV by either of the co-culture systems used compared to control (Fig. 3.17 

& Fig. 3.18). This result could suggest that HUVECs, a normal human endothelial cell 

line, are more affected by the antimetastatic effects of TM than the cancer cell lines, 

which are inherently more proteolytic. Our results, at first glance, appear to suggest that 

EGF-like repeats 3-6 are neither pro-angiogenic nor anti-angiogenic in regards to 

endothelial tube formation and ECM proteolysis (in co-culture systems). 

Treatment with rTM EGF3-6 V340A/D341A significantly increased tube 

formation in the endothelial monoculture and the co-culture systems containing 

endothelial and breast cancer cells compared to control and compared to wild-type rTM 

EGF3-6 (Fig. 3.13-3.15). Treatment with rTM EGF3-6 V340A/D341A significantly 

increased proteolysis of DQ-collagen IV by endothelial cells alone and in both co-culture 

systems significantly compared to control and compared to wild-type rTM EGF3-6 (Fig. 

3.16-3.18). This result suggests that absence of TAFI activation increases degradation of 

type IV collagen. These results are consistent with the results we obtained through 

inhibition of TAFIa with PTCI. 

On the other hand, treatment with rTM EGF3-6 F376A significantly decreased 

tube formation in all three systems used compared to control (Fig 3.13-3.15). Treatment 
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with rTM EGF3-6 F376A also significantly decreased tube formation in endothelial cells 

alone and the co-culture system consisting of HUVECs and SUM149 cells compared to 

wild-type rTM EGF3-6 (Fig. 3.14). Treatment with rTM EGF3-6 F376A decreased 

proteolysis in all three systems in which it was tested, although the decrease was only 

significant compared to control in the HUVEC monoculture (Fig. 3.16), and significant 

compared to wild-type rTM EGF3-6 in the HUVEC and SUM149 co-culture (Fig. 3.17). 

This mutant resulted in very little pericellular proteolysis in each of the three systems 

tested (Fig. 3.16-3.18). This result suggests that this mutant results in inhibition of 

proteases involved in pericellular proteolysis, such as plasmin and MMPs [157], 

consistent with its ability to support TAFI activation. Inhibition of pericellular 

plasminogen activation can lead to decreased plasmin and MMPs [41]. Hence, increased 

activation of TAFI by rTM EGF3-6 F376A could result in decreased pericellular 

proteolysis by inhibition of plasminogen activation.  

These findings suggest that, in fact, the wild-type rTM EGF3-6 harbours both pro- 

and anti-angiogenic effects that essentially cancel each other out. The pro-angiogenic 

effects are mediated through activation of protein C. The anti-angiogenic effects are 

mediated through activation of TAFI. When activation of TAFI is prevented (the 

V340A/D341A mutant), the pro-angiogenic effects of TM are observable. When 

activation of PC is prevented (the F376A mutant), the anti-angiogenic effects of TM are 

observable. The role of TM in angiogenesis is not fully established, but our results using 

wild-type rTM EGF3-6 have added insight into its role. The lectin-like domain (D1) of 

TM was found to elicit anti-angiogenic effects through use of rTM containing only the 

lectin-like domain (rTMD1) [95]. rTMD1 was found to inhibit angiogenesis through 
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interaction with Lewis Y antigen thereby preventing it from its pro-angiogenic activities 

[95]. Previous reports have shown that rTM containing EGF-like repeats 1-6 exhibited 

mitogenic effects in Swiss 3T3 fibroblast cells [166]. In addition, rTMD2 (containing 

EGF1-6) and rTMD23 (containg EGF1-6 and serine/threonine-like domain) were found 

to stimulate HUVEC proliferation [93]. Furthermore, rTMD23 was found to be more 

mitogenic than rTMD2 [93]. Treatment with rTMD23 was shown to increase 

angiogenesis in vitro and in vivo [93].We found that the EGF-like repeats 3-6 were not 

mitogenic. Our results taken together with previous reports potentially pin-point the 

specific domains within TM responsible for the reported angiogenic effects. The 

serine/threonine-like domain may have pro-angiogenic properties because rTMD23 was 

more pro-angiogenic than rTMD2 [93], and we found EGF-like repeats 3-6 are not pro-

angiogenic. The serine/threonine-like domain facilitates the attachment of a chondroitin 

sulfate (CS) moiety [78].  In fact, there are reports that CS is pro-angiogenic. CS from sea 

cucumber has been shown to be pro-angiogenic in the presence of fibroblast growth 

factor-2 (FGF-2) [167]. CS has also been shown to increase sprouting angiogenesis by 

binding TGF-β, VEGF, and PDGF [168]. Previous reports showing EGF-like domains 1-

6 have pro-angiogenic properties [93, 166], considered with our result that EGF-like 

repeats 3-6 do not stimulate angiogenesis, suggest that EGF-like repeats 1 and 2 are 

responsible for the observed pro-angiogenic effects. Our results highlight the complex 

role TM plays in angiogenesis. In the full-length TM protein, the lectin-like domain is 

anti-angiogenic, the serine/threonine-like domain is pro-angiogenic, and EGF-like repeats 

1-2 appear to be pro-angiogenic, EGF-like repeats 3-6 appear to have both anti-
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angiogenic (through TAFI activation) and pro-angiogenic (through protein C activation) 

effects.  

Our results are also consistent with the idea that TAFIa is an anti-angiogenic 

factor. On the other hand, the mutations of rTM EGF3-6 could be eliciting effects on tube 

formation and proteolysis of DQ-collagen IV due to protein C being a pro-angiogenic 

factor. The decrease in angiogenesis observed with rTM EGF3-6 F376A treatment could 

have been due to a loss of protein C activation. The increase in angiogenesis observed 

with rTM EGF3-6 V340A/D341A treatment could have been due to protein C activation. 

The role of protein C in cancer is not fully understood. There are reports that APC 

promotes proliferation, invasion, migration, angiogenesis, and DNA synthesis, as well as 

inhibition of apoptosis mediated by binding of APC to EPCR [97–99, 169]. Other studies 

have suggested APC limits extravasation of cancer cells, and overexpression of EPCR 

reduces metastasis in vivo [101, 102]. A recent study used mutants of rTMD23 that lack 

protein C activation (E357A, R385S, and D400A), and determined their effect on 

angiogenesis [94]. This study found that treatment with the mutants increased 

angiogenesis comparable to wild-type rTMD23, and therefore concluded that rTMD23 

induced angiogenesis independent of protein C activation [94]. However, one of the 

mutations used in this study (E375A) had been previously shown to abolish thrombin 

binding to TM, consequently neither TAFI or protein C can be activated by this mutant 

[82]. Therefore, this study cannot clearly rule out the involvement of protein C.  

A key experiment yet to be completed in our studies is the use of a mutant form of 

rTM EGF3-6 without the ability to bind thrombin, such as Q387P or E357A [81, 82]. The 

antimetastatic effects of TM have been shown to be dependent on thrombin binding [91], 
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and we found effects on angiogenesis were substrate activation dependent. We observed 

a cancelation of anti-angiogenic effects of TAFI activation and pro-angiogenic effects of 

protein C activation when using wild-type rTM EGF3-6, resulting in no effect on 

angiogenesis. We therefore hypothesize that a mutant without the ability to bind thrombin 

would also lead to no change in angiogenesis because neither TAFI nor protein C can be 

activated. Our studies using PTCI to inhibit TAFIa suggested that TAFIa decreases 

angiogenesis through pericellular plasminogen activation. These results support that the 

results we saw using rTM EGF3-6 mutants are an effect of TAFIa, since similar effects 

were seen with PTCI as were obtained with rTM EGF3-6 V340A/D341A. Further studies 

will have to be completed to determine the role of protein C activation on angiogenesis 

using the rTM EGF3-6 mutants. Treatment with an inhibitor of APC and rTM EGF3-6 

V340A/D341A should be completed to determine the role of APC on angiogenesis. If 

both the anti-angiogenic effects TAFI activation and the pro-angiogenic effects of protein 

C activation are equal, inhibition of APC when treating with the V340A/D341A mutant 

should result in no effect on angiogenesis since there will be neither TAFIa nor APC 

generation. Similarly, an experiment using treatment of both PTCI and the F376A mutant 

should be completed to determine the role of TAFIa on angiogenesis. Assuming that both 

the anti-angiogenic effects TAFI activation and the pro-angiogenic effects of protein C 

activation are equal, inhibition of TAFIa when treating with the F376A mutant should 

result in no effect on angiogenesis since there will be neither TAFIa nor APC generation. 

These experiments should help determine the anti-angiogenic and pro-angiogenic 

activities of EGF3-6 of TM.  
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The same trends were observed when the rTM EGF3-6 mutants were used as seen 

with PTCI treatment on increased proliferation of HUVECs in the MDA-MB-231 and 

HUVEC co-culture, suggesting that both the rTM EGF3-6 and PTCI treatments share a 

common underlying mechanism. Similarly, treatment of HUVECs alone with the rTM 

EGF3-6 mutants (Fig. 3.16) resulted in proportionally larger effects than with either co-

culture system (Fig. 3.17 &  Fig. 3.18) on the proteolysis of DQ-collagen IV as seen with 

treatment with PTCI. This again suggests treatments with rTM EGF3-6 and PTCI share a 

common underlying mechanism. There was a slight increase in the effect of treatment 

with rTM EGF3-6 V340A/D341A on proteolysis of DQ-collagen IV in the co-culture 

system containing MDA-MB-231 cells and HUVECs (Fig. 3.18) as compared to the co-

culture system containing SUM149 cells and HUVECs (Fig. 3.17). Our laboratory has 

found that there is less TM and TAFI expression in the more metastatic MDA-MB-231 

cells than in SUM149 cells. There would likely be more TAFI available to be activated in 

the SUM149 cells than the MDA-MB-231 cells. Treatment with rTM EGF3-6 

V340A/D341A should have resulted in a larger increase in proteolysis in the co-culture 

system containing SUM149 cells since there would be a larger overall change in the 

amount of TAFI activation compared to that in the MDA-MB-231 cells. Therefore, this 

result may not have been due to a difference in TAFI activation and potentially could be 

attributed to protein C activation. The amount of protein C expressed in these cell lines 

has not been determined. On the other hand, the amount of TAFI that can be activated by 

these breast cancer cell lines could differ from the amount of TAFI expressed. Treatment 

with rTM EGF3-6 F376A did not result in a significant decrease in proteolysis of DQ-

collagen IV compared to control in either of the co-culture systems (Fig. 3.17 & Fig. 
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3.18), but there was a significant decrease in the HUVEC monoculture (Fig. 3.16). This 

could suggest that using this mutant may not be effective on treatment of tumour 

angiogenesis of highly metastatic cancers since these breast cancer cell lines are highly 

invasive metastatic cell lines. However, by the time cancer cells become highly 

metastatic treating tumour angiogenesis is usually ineffective. Therefore, these results 

might suggest that treatment with rTM EGF3-6 F376A would be more effective at an 

earlier stage of cancer.  

 Taken together these results suggest that TAFI activation, using TM as a cofactor, 

plays a significant role in endothelial tube formation and on proteolysis of type IV 

collagen. Our findings also represent proof-of-principle that stimulation of TAFI 

activation in the tumour microenvironment using a variant of TM that cannot support 

protein C activation might be a viable strategy to inhibit tumour angiogenesis. 

 

4.3 Alternate mechanisms of TAFIa antimetastatic effects 
 

We hypothesized that TAFIa is responsible for the antimetastatic effects of TM 

through inhibition of pericellular proteolysis by cleaving carboxyl-terminal lysine 

residues from plasminogen receptors. However, TAFIa can also inactivate some 

inflammatory mediators that may play roles in cancer. TAFIa can inactivate these 

inflammatory mediators through removal of carboxyl-terminal lysine and arginine 

residues from C3a, C5a, bradykinin (BK), and thrombin-cleaved OPN (OPN-R) [77, 

117].   
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The anaphylatoxins, C3a and C5a, are potent leukocyte chemoattractants [77], 

and have been implicated in cancer. C3a and C5a have been shown to increase 

proliferation, angiogenesis, invasion, migration, and growth factor/cytokine production 

[164]. As mentioned previously (4.1.3), they can increase mRNA expression of IL-6 and 

IL-1β which can potentially increase MMP2 and MMP9 mRNA expression [161–165]. 

C3a and C5a also stimulate secretion of VEGF, the key mediator of angiogenesis [164, 

170]. 

BK plays a role in inflammation by increasing vasodilation and vascular 

permeability [77], it has also been shown to have metastatic properties. BK has been 

shown to increase migration, MMP9 mRNA expression and secretion in prostate cancer 

cells [171]. BK has also been shown to increase proliferation in epithelial breast cancer 

cells [172]. BK has been implicated in tumour angiogenesis by promoting VEGF 

expression [173]. 

OPN is involved in inflammation, but also has many metastatic properties [77]. 

OPN expression has been shown to be elevated in many cancers, especially in breast 

cancer where increased expression correlates with poor prognosis [174]. OPN is involved 

in cell adhesion, migration, invasion, and proliferation [174]. OPN has been implicated in 

the plasminogen activation system through integrin signaling and stimulation of uPA 

[174]. OPN can also up regulate pro-MMP2 [174]. OPN can induce VEGF expression, 

thereby increasing angiogenesis [175]. OPN can be cleaved by thrombin resulting in a 

carboxyl-terminal arginine residue (OPN-R). OPN-R has been shown to be more 

metastatic that OPN through increased adhesion, migration, and spreading of various cell 

types [119, 175]. OPN-R has also been shown to upregulate the proinflammatory effects 
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of OPN [77]. TAFIa has been shown cleave OPN-R forming OPN-L [77]. OPN-L has 

been shown to reduce the pro-inflammatory effects of OPN-R [77]. OPN-L has also been 

shown to decrease cell adhesion compared to OPN-R in Jurkat cells and sinovocytes [77, 

176]. 

Inactivation of these inflammatory mediators by TAFIa suggests that there are 

alternate mechanisms of antimetastatic effects of TAFIa. 

 

4.4 Future Directions 
 

The results from this study suggest that TAFIa plays a role in decreasing tumour 

angiogenesis. However, further experiments have to be completed to strengthen these 

findings. 

Specifically, we need to look at the effect on endothelial cell invasion and 

proliferation, and MMP mRNA expression and secretion with the rTM EGF3-6 mutants 

as completed with inhibition of TAFIa with PTCI. These experiments should be 

completed to further show an effect of these mutants on angiogenesis in vitro. As 

mentioned previously, to confirm the role of APC in the effects on angiogenesis of the 

rTM mutants, we need to complete experiments inhibiting TAFIa and APC in these 

mutants. 

A stable variant of TAFI, CIIQY [177], in our laboratory has recently been shown 

to inhibit breast cancer cell invasion, migration, and degradation of DQ-collagen IV 

(unpublished). It is also the first direct evidence that TAFIa plays an antimetastatic role. 
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This variant of TAFI should be used to determine a direct effect of TAFIa on tumour 

angiogenesis in the future. 

We also want to look at the effect of TAFIa on angiogenesis in vivo using 

zebrafish. Zebrafish can be used as an in vivo model that allows inexpensive, higher-

throughput screening than other available in vivo models [145]. Transgenic zebrafish 

lines with fluorescent (GFP-labelled) blood vessels can be used to image angiogenesis 

[178]. Sprouting intersegmental vessels (ISVs), and subintestinal vein (SIVs) vessels do 

so by angiogenesis, and can be easily quantified [145, 179]. We could test the rTM 

EGF3-6 mutants, or stable TAFI, and determine the effect of TAFIa on angiogenesis. 

Mammalian tumour cells can be xenotransplanted into zebrafish embryos and used to 

study tumour angiogenesis, invasion, and metastasis [179]. This system allows for the 

delivery of a limited number of cells which mimics the initial stages of tumour 

angiogenesis [179]. Moreover, fluorescently labelled tumour cells and vasculature can be 

easily visualized allowing analysis of temporal and spatial relationship between the cells 

[179].  We could fluorescently labelled MDA-MB-231 or SUM149 breast cancer cells 

and inject them, along with rTM EGF3-6 mutants, or stable TAFI, and look at the effect 

of TAFIa on tumour angiogenesis in vivo. 
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4.5 Conclusions 
 

In conclusion, this study determined inhibition of TAFIa with PTCI increased 

angiogenesis and tumour angiogenesis in vitro by increasing cell proliferation, invasion, 

endothelial tube formation, proteolysis of DQ-collagen IV, and secretion and mRNA 

expression of MMP2 and MMP9. These results most likely occurred due to a decrease in 

inhibition of pericellular plasminogen activation by TAFIa. Also, using rTM containing 

EGF-like repeats 3-6 with differing cofactor ability, TAFIa was determined to decrease 

angiogenesis and tumour angiogenesis in vitro through endothelial tube formation and 

DQ-collagen IV proteolysis experiments. These effects indirectly suggest TAFIa 

decreases angiogenesis. Further experiments are required to confirm the effects seen with 

certain rTM EGF3-6 mutants reflected effects on protein C activation. Furthermore, a 

direct effect of TAFIa on angiogenesis needs to be tested using a stable variant of TAFI. 

Additionally, in vivo experiments using zebrafish need to be completed to look at both 

angiogenesis and tumour angiogenesis in a more biologically relevant system. These 

results are promising in suggesting an anti-angiogenic role for TAFIa, and could 

eventually lead to the production of a therapeutic to prevent tumour angiogenesis using 

rTM EGF3-6 F376A or a stable variant of TAFI. 
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