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ABSTRACT 

 

Optical networks play a major role in supporting the traffic in backbone 

computer networks. Routing and Wavelength Assignment (RWA) is the technique 

used to establish a light-path from a source node to a destination node in a 

Wavelength Division Multiplexed (WDM) optical network. As an optical signal 

propagates through the network, the quality of the signal degrades due to physical 

layer impairments. To address this problem, in translucent WDM networks, the 

signal is regenerated at intervals. The main objective of this research is to propose 

a fast heuristic for dynamic lightpath allocation in translucent WDM networks and 

to compare the heuristic with an optimal algorithm that was proposed recently. 
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CHAPTER 1 

 

1 INTRODUCTION 

1.1 Overview of Optical Networks 

In the past 20 years, there have been many changes in the telecommunication 

industry. The growth in internet traffic, including high bandwidth video and voice 

transmissions, and the availability of inexpensive and high-speed computers has led 

to a tremendous increase in demands for high-speed communication [11].  

 Before the emergence of optical networks, the information was transmitted 

through the electrical cables. Optical networks transmit data in the form of light, 

which allows higher capacity due to its higher carrier frequency [5]. Since 1960s lot 

of research has been carried out on optical communication [11]. Optical fibers are 

immune to electromagnetic interference; they are very secure, lightweight and smaller 

in size. They have a low transmission loss [25] and high bandwidth compared to 

copper cables [5].  These features have made them attractive candidates for high 

capacity wide-area networks. 

Wavelength division multiplexing (WDM) is a technique where multiple signals from 

the transmitter are combined together and are sent on single fiber to a receiver in an 

optical network [25]. A lightpath is an optical level connection between two end-

nodes in an optical network. Each lightpath is characterized by a route over the 

network topology and a wavelength on each edge of the route [11]. The problem of 

finding a suitable route and wavelength(s) for each established lightpath is known as 
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the routing and wavelength assignment (RWA) problem. RWA is of two kinds: static 

RWA and dynamic RWA [25].  

In static RWA [11], all lightpath requests are known in advance at the time of 

network setup. In dynamic RWA [11], a lightpath has to be setup as each connection 

request arrives and should be taken down after a specified period of time. When a 

lightpath is taken down, the resources allocated for that lightpath are released and can 

be reused to service another lightpath request.  

1.2 Translucent Networks 

The first generation of optical networks was opaque networks where the 

signal undergoes optical-electronic-optical (OEO) conversion at each intermediate 

node. Recently, the architecture is moving from standard opaque networks to 

transparent all-optical networks. In such networks the signal is carried entirely in the 

optical domain, and does not undergo any opto-electronic conversion until it reaches 

the destination node. Due to physical layer impairments (PLIs), the quality of 

transmission (QoT) decreases as the signal travels over a fiber. The optical reach is 

the maximum distance an optical signal can travel before the signal quality degrades 

to a level that requires regeneration at a particular node. The optical reach depends on 

a number of factors including modulation formats, and interference from other 

signals, and values of 2500km -3000km have been reported in the literature [27]. 

Signal regeneration typically involves re-amplification, reshaping and re-timing - 

known collectively as 3R regeneration [27]. Although 3R regeneration can be 

completely carried out in optical domain, electrical 3R regenerators are economically 

much more feasible; so, 3R regeneration normally implies OEO conversion as well. 



 

3 
 

The cost of signal regeneration is determined by a number of factors such as, the cost 

and number of regenerators required, power consumption, increased heat dissipation 

and additional space requirements. Translucent networks were introduced to address 

the problem of signal degradation in transparent networks and high cost of opaque 

networks. In translucent networks 3R regenerators are scattered in a network, such 

that only some node will have the 3R regenerators instead of all the nodes. With this 

the cost will be reduced as the signal is maintained in the optical domain for longer 

time and OEO conversion is eliminated at every node [27]. This thesis mainly focuses 

on translucent networks. 

1.3 MOTIVATION 

In Wavelength Division Multiplexing (WDM) networks, lightpaths are 

established from a source node to a destination node through the multiple fiber links. 

Given a set of lightpath requests and the constraint on the number of wavelengths, 

routing and wavelength assignment must be done intelligently, in order to achieve 

lower lightpath blocking probability. RWA is known to be a difficult problem even 

for transparent optical networks [25]. Taking the effect of physical layer impairments 

into consideration makes the problem even more intractable. For the dynamic RWA 

case, the routing and wavelength assignment decisions for each connection request 

must be determined in real time. Based on the complexity of the problem, it is not 

feasible to generate optimal solutions within the required time frame. Therefore, it is 

extremely important to develop fast and efficient algorithms that can be used to 

establish lightpaths quickly, while still maintaining an acceptable blocking 

probability. 
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The main objective of this thesis is to propose a fast heuristic for dynamic lightpath 

establishment (DLE) in translucent optical networks, considering physical layer 

impairments.  There are two main problems associated with RWA in translucent 

optical networks. These are briefly outlined below. 

1.3.1 Regenerator Placement Problem (RPP): 

In a translucent network where dynamic PLI-RWA is used, before the network is in 

operation, a minimum number of nodes has to be equipped with 3R-regeneration 

capability, so that each node in the network can communicate with any other node, 

using either a transparent or a translucent lightpath. The problem of identifying such a 

minimum number of nodes to be designated as regenerator nodes is called the 

Regenerator Placement Problem (RPP) [27]. The RPP problem is known to be NP-

complete and heuristics are often used to solve this problem [27] for relatively larger 

networks.   

1.3.2 Routing with Regenerator Problem (RRP):  

In a network with 3R regeneration capable nodes, RRP tries to route a transparent or 

translucent lightpath using a minimum number of 3R regenerators [27]. The 

regenerators are deployed first during RPP phase and IA-RWA is performed 

afterwards during RRP phase. [30] 

The main objective of the thesis is to propose a fast heuristic for dynamic lightpath 

allocation in translucent optical networks, to be used during the RRP phase. 
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1.4 Solution Outline 

Given a network and the optical reach, the RPP phase gives the list of 3R 

regeneration capable nodes for the given network. In this thesis, we have utilized the 

approach proposed by Rahman et al. 2015 [27], in order to complete the RPP phase. 

This approach finds a minimum number of nodes, where regenerators should be 

placed, so that it is possible to establish a feasible translucent lightpath between any 

two nodes. 

Once the regeneration capable nodes have been determined, the next step is to 

compute k shortest paths between each node pair, such that a feasible (possibly 

translucent) lightpath can be established using each potential path. The existing traffic 

on the network is simulated by randomly designating each channel on a fiber link as 

‘busy’ or ‘available’, based on a specified probability. Finally, an A* algorithm [30] 

is used to select a good  route for each connection request, based on the current 

traffic. In order to validate our approach, we have run simulations on different 

network topologies and with different traffic conditions on each topology. 

1.5 Thesis Outline 

The remainder of the thesis is organized as follows. In chapter 2, we discuss 

about the fundamentals of the optical networks and review the relevant literature on 

RWA in translucent networks. In chapter 3, we proposed our “fast heuristic for 

dynamic lightpath allocation” and explain each step with a clear example. In chapter 

4, we present and discuss the results of our simulations and in chapter 6, we present 

our conclusions and outline some possible directions for future work. 
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Chapter 2 

 

2 Review 

In this chapter we will introduce some of the fundamental concepts and basic 

terminology used in optical networking. We will also identify different types of 

physical layer impairments that lead to signal degradation and review the current 

literature on impairment-aware RWA (IA-RWA) techniques. 

2.1 Optical Fiber 

An optical fiber is a thin high quality extruded glass (Silica) cylinder, slightly 

thicker than the human hair [8]. Optical fibers support transmission of signals in the 

optical domain (in the form of light) and are capable of carrying high bandwidth data 

over longer distance, compared to electrical transmission [5]. An optical fiber consists 

of two main layers - core and cladding. The inner layer is known as core and the 

outer layer as cladding, as shown in Figure 2.1. The cladding has slightly lower 

refractive index than the core [30], which allows light to travel using total internal 

reflection. Optical fibers have a loss rate of 0.2 dB per kilometer in 1.55-µm 

waveband. Each fiber is protected by two outer layers, known as buffer and jacket. 

 

Figure 2.1: Optical Fiber  
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A single fiber can support transmission of multiple wavelengths (channels), which are 

used to send different streams of data simultaneously over the fiber. This is referred 

to as wavelength division multiplexing (WDM) [25]. 

2.2 Optical Networks 

Based on the physical technology, three generations of networks have been 

developed [25]. First, a network based on copper wire or microwave radio 

technology. Second, a network that uses optical fibers, where the fiber simply 

replaces the copper because of its advantages in terms of bandwidth, signal quality 

and cost. But the performance of such networks is limited by the maximum speed of 

electronics deployed in switches and at the end nodes. Finally, all-optical networks, 

which carry information in the optical domain until it reaches the destination [25]. 

The traffic load on an optical network can be characterized in terms of a set of 

demands or connection requests, which must be routed over the network using the 

available resources. A demand can represent a request for a single (or multiple) 

lightpath(s). Alternatively, a demand can be at the sub-wavelength level, such that 

multiple demands can be combined on to a single lightpath. In the remainder of this 

thesis, we consider the granularity of a demand to be at the lightpath level, so each 

demands represents a request for a single lightpath to be setup. 

2.2.1 WDM Networks 

The encoded optical signals in the optical networks are carried by optical 

fibers for communication between the end-nodes. There have been lots of 

improvements in technology in last 20 years [30]. In order to utilize the high 
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bandwidth (50 tera-bits per second) of an optical fiber, concurrency among 

transmissions is required, which can be achieved by Wavelength Division 

Multiplexing (WDM) [25]. A multiplexer (MUX) is used to combine multiple signals 

on different channels (wavelengths) prior to transmission. Similarly, at the receiver, a 

demultiplexer (DEMUX) is used to separate the combined signal into different 

channels [8]. 

2.2.2 Wavelength Conversion 

WDM Networks can be classified into three categories, based on their 

wavelength conversion capabilities [5], as outlined below.  

 Full wavelength convertible networks: In this type of network, every node 

has the capability, to convert any incoming wavelength to any other 

wavelength. Thus, a lightpath can be assigned a different channel on each link 

in its path.  

 

 Sparse wavelength convertible networks: In this type of network, only 

some nodes have the wavelength conversion capacity. This allows some 

flexibility in assigning wavelengths to lightpaths, but the cost is lower 

compared to the previous category. 

 

 Wavelength continuous networks: In this type network there are no 

wavelength converters available, so each lightpath must use the same 

wavelength along its entire path [5]. This may lead to increased blocking 
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probability, since there is less flexibility in assigning wavelengths to 

lightpaths. 

2.3 Routing and Wavelength Assignment 

Due to technological and constraints, wavelength convertible networks are 

typically not feasible for current networks. In our work, we also assume that 

wavelength converters are not available at intermediate nodes. Therefore, when 

performing RWA, the following two constraints must be satisfied.  

i. Wavelength clash constraint: Two lightpaths that traverse the same link at the 

same time must be assigned two different wavelengths. 

ii. Wavelength continuity constraint: A lightpath must use the same wavelength 

along each link in its path. 

The RWA problem has been widely researched in the last two decades and both 

optimal and heuristic approaches have been proposed to solve this problem. In static 

RWA, all requests known in advance [25], i.e., the demand set is known and fixed. In 

the dynamic RWA, a lightpath is set up as each connection request arrives (assuming 

sufficient resources are available), and released after a finite time [30].  

If all connection requests are known in advance, this information can be used to 

determine which node requires the 3R regeneration capability [5] in translucent 

networks. In such cases, the regenerator placement problem and the impairment 

aware routing and wavelength assignment (IA-RWA) can be done parallel. 
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2.4 3R Regeneration 

The quality of the optical signal degrades while traveling through the network. 

In order to restore the lost quality of the signal 3R regeneration technique can be used 

[27]. Figure 2.2 shows that every signal coming to a 3R regenerator is first converted 

from optical to electronic form (O/E) at the receiver. After the signal comes in, three 

operations called re-amplification, re-shaping and re-timing are performed [27]. Then 

at the transmitter, signal is again converted back to optical domain from electronic 

form (E/O) [27]. The wavelength assigned to the outgoing optical signal (C2) may or 

may not be the same as the incoming signal (C1). So, 3R Regenerator is also capable 

of performing wavelength conversion on the optical signal. 

 

 

Figure 2.2: 3R Regeneration 

In Figures 2.4 – 2.5, nodes which are capable of 3R regeneration are shaded in blue. 

Based on the availability of regenerators, 3 types of networks are possible. 

Transparent: This type of network is also referred to as all-optical network, since 

the signal carried on a lightpath remains in the optical domain from the source to the 

destination. This is depicted by Figure 2.3, where none of the nodes can perform 3R 

regeneration along a lightpath. 
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Figure 2.3: Transparent network 

Translucent: This type of network has a few nodes with 3R regeneration capability, 

which are scattered in the network. This is depicted in Figure 2.4, where nodes 2 and 

5 have regeneration capability. A lightpath which passes through these nodes may 

undergo 3R regeneration at these nodes. 

 

Figure 2.4: Translucent network Opaque: This type of network will have 3R 

regeneration capability at every node present in the network. This is depicted in 

Figure 2.5, where all nodes are shaded in blue. In opaque networks the signal 

undergoes OEO conversion at every intermediate node along its path. This increases 

cost and reduces performance, but can result in higher signal quality. 

 

Figure 2.5: Opaque network  
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2.5 Physical Layer Impairments 

The quality of signal degrades due to the physical layer impairments (PLI) 

along the fiber, which affects the overall performance and increases the bit error rate 

(BER) [5].  

PLIs can be classified into two categories: Linear and Non-Linear impairments. [12] 

 

2.5.1 Linear Impairments 

These impairments affect the individual lightpaths, without affecting the 

existing lightpath. Some examples are given below, [8] 

Polarization Mode Dispersion (PMD): “Anywhere along a fiber-span, fiber could 

be non-circular, contain impurities, or be subject to environmental stress such as local 

heating or movement. These irregularities present obstacles to an optical pulse along 

its path. These obstacles cause different polarizations of the optical signal to travel 

with different group velocities resulting in pulse spread in the frequency domain, 

known as PMD. PMD becomes a major limiting factor for WDM systems designed 

for longer distances at higher bit-rates.” [28] 

Amplifier Spontaneous emission (ASE): “The primary source of additive noise in 

optically amplified systems is due to the ASE produced by the optical amplifiers used 

as intermediate repeaters and as preamplifiers at the receiver end. This noise is often 

quantified with noise figure (NF). In optical amplifiers, ASE limits the achievable 

gain of the amplifier and increases its noise level. ASE effects may be mitigated by 
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increasing the input laser intensity, decreasing the amplifier facet reflectivities, or 

tuning the master oscillator so that it is resonant with the amplifier.” [28]. 

Chromatic dispersion (CD): “CD brings about pulse broadening, thereby affecting 

the receiver performance by reducing the pulse energy within the bit slot and 

spreading the pulse energy beyond the allocated bit slot leading to inter-symbol 

interference (ISI).” [27] 

2.5.2 Non Linear Impairments 

These impairments not only affect the lightpath under consideration but also 

affects the other existing lightpaths [11]. 

Self-Phase Modulation (SPM): “The non-linear phase modulation of an optical 

pulse caused by its own intensity in an optical medium is called SPM. The primary 

effect of SPM is to broaden the pulse in the frequency domain, keeping the temporal 

shape unaltered.” [28]   

Cross Phase Modulation (XPM): “The non-linear refractive index seen by an 

optical pulse depends not only on the intensity of the pulse but also on the intensity of 

the other co-propagating optical pulses, i.e., the non-linear phase modulation of an 

optical pulse caused by fluctuations in intensity of other optical pulses is called 

XPM.” [28] 

XPM is illustrated in figure 2.6, where L0, L1 and L2 are three different signals 

which are using three different channels (c0, c1 and c2). On link 4  5, all three 

signals share the link which creates interferences between them. [30] 
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Figure 2.6: Cross Phase Modulation [30] 

 

Four Wave Mixing (FWM): “FWM originates from third order non-linear 

susceptibility (χ(3)) in optical links. If three optical signals with carrier frequencies 

ω1, ω2 and ω3, co-propagate inside a fiber simultaneously, (χ(3)) generates a fourth 

signal with frequency ω4, which is related to the other frequencies by ω4 = ω1 ± ω2 ± 

ω3. In general for W wavelengths launched into a fiber, the number of FWM 

channels produced is M = 𝑊2 (W −1)/2).” [28]  

 

2.6 YEN’S Algorithm 

Yen’s algorithm is a very well-known algorithm which is used to compute the 

k shortest paths from a source to a destination [34]. I have implemented this 

algorithm and will use it in my thesis for computing k distinct shortest paths between 

each possible node pair in a given topology. In this section, we will give a brief 

overview of Yen’s algorithm  

The algorithm maintains two lists:  

 L1, which contains the m (m < k) shortest paths found so far 
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 L2, which contains potential shortest paths that have been generated by 

applying small ‘deviations’ to one of the paths in L1.  

Initially, L1 contains a single shortest path, which can be generated using Dijsktra 

algorithm [34] or any other appropriate algorithm. Starting with the first shortest path 

in L1, all deviations from this path are computed and the resulting paths are added to 

L2. The path p with lowest cost in L2 is then moved from L2 to L1. The next iteration 

continues in a similar fashion by calculating deviations from path p [34].   The 

process terminates when the desired number of shortest paths have been found (in 

L1), or no new paths can be generated. The following example is used to illustrate the 

steps in Yen’s algorithm.    

Example: 

 

Figure 2.7: Sample 6 Node Network  

We consider the topology of Fig 2.7, with node 1 as source and node 6 as destination. 

Using Dijkstra’s algorithm a best path from node 1 to 6 is been calculated i.e. 1-3-4-6 

with total cost 5. Now this path is added into list L1, which is first of k shortest path 

in 𝐿11 . Node 1 in 𝐿11  is selected and the edge 1-3 will be set to infinity which 
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becomes unreachable, this is done because it coincides with the root path and with the 

path in the list L1. Now again the Dijkstra’s algorithm is used to get shortest path 

from 1 to 6 by deleting an edge 1-3. We get 1-2-4-6 with cost 8. This is the first 

deviation from the shortest path and is added to L2 as a potential candidate for being 

one of the k shortest paths. Next node 3 is chosen from 𝐿11 and the edge 3-4 is set as 

infinity. Again the Dijkstra’s algorithm is used to get shortest path from 1 to 6 after 

deleting an edge 3-4. We get 1-3-5-6 with the cost 7, which is added in list L2. 

Finally, node 4 chosen from 𝐿11 and the edge 4-6 is set to infinity; using Dijkstra’s 

algorithm we get a shortest path 1-3-4-5-6 with the cost 8 (after deleting an edge 4-6), 

which is added in list L2 as a possible shortest path. Now from the three paths in list 

L2, we select the least cost path (that is 1-3-5-6 with the cost 7), move it to L1 and 

call it 𝐿12 . This completes one iteration, and we continue until we have found k 

shortest paths or no new paths are available. 

2.7 Literature Review 

In the previous sections, we have explained some fundamental concepts and 

based terminology related to translucent WDM optical networks. In this section, we 

review some current literature dealing with IA-RWA in such networks.  

In [2] the authors argue that traditional RWA solutions that do not consider PLIs are 

not sufficient for future photonic networks. In this paper the authors propose two new 

algorithms, MCP- D2 and MCP-S [2], to support the critical services in Wavelength 

Routed Photonic Networks. The main objectives of these two algorithms are to 

protect with assured QoT and to minimize the resource allocation. The first algorithm 

uses on-the-fly multipath RWA based on Dijkstra Algorithm and the second 
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algorithm uses Suurballe algorithm. The results are compared with IA-RWA 

survivable algorithm Markidis et al. [09]. The authors stated that this algorithm 

strictly provides either 1+1 or 1:1 protection. The main aim of these algorithms is to 

guarantee QoT and survivability in single link failure case. The complexity of these 

algorithms is lower and setup delay of the lightpath is reduced.  

 

In [13], the authors Hirata, K., et al. consider multi-fiber WDM networks, where 

every link consists of multiple fibers and can establish multiple lightpaths with the 

same wavelength in the same link using different fibers. The authors propose a new 

scheme for RWA in multi-fiber networks [13], with sparse and full wavelength 

conversion. A suitable path is selected from the set of pre-defined routes between 

each sender and receiver node. Then each path is divided into segments between 

nodes with wavelength conversion capabilities and a suitable wavelength is assigned 

for each segment. This approach can be adapted for IA-RWA as well. 

 

In [14] the authors, Hirata, K et al. state that the probability of blocking is high in 

wavelength routed WDM networks, due to the coarse granularity and wavelength 

continuity constraint for establishment of lightpaths. The paper presents a new 

Dynamic RWA scheme [14] by signaling the backward reservation for multi-fiber 

WDM networks. This scheme helps in reducing the blocking probability in 

establishing the light-path.  
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In this paper [21], the authors Pachnicke, S et al. address the problem that quality of 

transmission (QoT) goes down with the network load and change of channel. In large 

translucent optical networks (pan-European Networks) the quality of the signal is 

very important in transparent paths. Due to the high cost of 3R regenerations, limited 

regeneration sites are deployed. The authors present a novel online constraint-based 

routing (CBR) algorithm [21], which uses the present channel load to properly model 

the inter-channel effects, guarantee connections and give the minimum signal quality 

when new connection is established. This CBR algorithm considers both linear and 

non-linear impairments. The authors compare their CBR algorithm to a commonly 

used shortest path routing with high transparent reach. The results show that shortest 

path routing results in higher blocking probability compared to offline and online 

CBR algorithms. 

 

In this paper [10], the authors Christodoulopoulos, K., et al. point out that signal 

interference will affect an existing lightpath when new lightpaths are added; similarly 

the QoT of a new lightpath is affected by already existing lightpaths. The authors 

propose two multi-cost algorithms which consider interference effects and physical 

effects to create a cross layer optimization between network and physical layers. The 

first algorithm evaluates the quality of the candidate lightpath. In the second 

algorithm the physical models are used to define noise variance, which is related with 

the cost parameters for calculating the Q-factor of the candidate lightpath.  
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Varanasi et al. 2014 [30] in his Master’s thesis, states that due to the physical layer 

impairments the quality of optical signal degrades in the optical fiber and effects the 

RWA. In order to restore the lost signal 3R regeneration technique has been used. 

The work in [30] tries to lower both the capital and operational costs by sparsely 

using 3R regenerators in translucent networks. A new A* best first search algorithm 

is proposed, which guarantees that a feasible RWA using a minimum number of 

regenerators will be found if such a path exists. 

For every dynamic connection request, from source to destination, a search tree is 

constructed with the source node as the root node in the search tree. All the nodes 

connected to the source node are explored and an estimated cost to reach the 

destination from each node is calculated. The node with the lowest cost is selected for 

further exploration. This process continues in each iteration, where the lowest cost 

node is expanded, until the destination is reached or no more feasible paths exist. In 

chapter 3, the algorithm is clearly explained with and example. 
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Chapter 3 

 

3 Algorithm for Dynamic Route and Wavelength Assignment in 

Translucent WDM Networks 

We have proposed a fast heuristic algorithm for dynamic lightpath allocation 

in translucent optical networks. We have used the A* best first search algorithm for 

finding the IA-RWA solution. We have constructed a search tree for finding a 

feasible path for any request from source to destination. We have precomputed k 

shortest paths from every node to every other node within optical reach in the 

network, which helps the algorithm to search the destination using a segment by 

segment search. 

Figure: 3.1 Translucent Network 

The main aim is to reach the destination without degrading the quality of the signal to 

an unacceptable level. Here in figure 3.1, to set up a lightpath from a source to 

destination, three transparent lightpath segments are used. The regenerators are fixed 

in the network and, we find a good path to reach the destination using regenerators as 

needed. As the destination is beyond the optical reach, we cannot find a transparent 

path to the destination. So we first establish a transparent path to a regenerator R1, 
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where the signal undergoes a 3R regeneration process. We then establish a 

transparent path to a regenerator R2, where the signal again undergoes a 3R 

regeneration process. This process is repeated until the signal reaches the destination. 

Each transparent lightpaths in known as a segment and concatenating all segments 

give us the translucent lightpath. 

3.1 Notations 

Topology → is a graph G = (V, E) with a set of nodes V, a set E of 

   edges (i, j), each denoting a fiber from i to j,  

s  → Source of request in communication 

d  → Destination of request in communication 

T  → Search tree created by the Best First Search 

q  → A node in the physical topology 

𝑡𝑛  → A node n in the search tree 𝑡 

𝑡𝑟  → Root node in the search tree 

(s, d)   →  Source and Destination of a request. 

R   →  A set of nodes which are equipped with regenerators. It is 

   assumed that each node equipped with regenerators have an 

   infinite number of regenerators 
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𝑃𝑞  → A set of a set of paths from q, each set of paths denotes 

   possible routes  from q to a regenerator. 

𝑃𝑞
𝑏  → A set of paths from node q to node b in the physical topology 

𝑝𝑞
𝑏  → A path from node q to node b in the physical topology 

𝐴𝑏
𝑠   → Actual cost from source s to node b in the physical topology 

𝐻𝑑
𝑏  → Heuristic cost from node b to destination d in the physical 

   topology 

𝑐𝑡𝑛
  → Total cost from source s to destination d in the physical 

   topology through node n 

r   →  Optical reach 

ʓ𝑦
𝑥  → Set of paths from node 𝑥 to node y such that 

a) The length of each path is <= optical reach r, 

b) The number of paths in any given set does not exceed k, 

c) Any path from 𝑥 to y not included in ʓ𝑦
𝑥 has a length >= the 

longest path in ʓ𝑦
𝑥 

 

Z  →  Set of all non-empty sets ʓ𝑦
𝑥 for all pairs 𝑥 and y 

Ł  → RWA solution from source s to destination d 
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create_root(s) → this function creates root node in the 

 search tree which corresponds to the 

 source node for the communication. 

create_node(𝑡𝑛, b)  → this creates a node 𝑡𝑏 in the search tree

  corresponding to node b in the physical

  topology, node 𝑡𝑛 becomes the parent of

  node 𝑡𝑏. 

select_eligible_paths_from_Z(q) → returns all the paths from a node q in the

      physical topology, to every regenerator

      node 

select_best_leaf(T)   → returns a node to explore in T 

find_node_in_physical_topology(𝑡𝑛) → returns the node in the physical topology

      corresponding to node 𝑡𝑛 in the 

      search tree T 

actual_cost(q,b)   → returns the actual cost to go from the 

      previous node q to the present node b. 

heuristic_cost(b,d)   → returns the heuristic cost to go 

      from the present node b to the  

      destination d. 

create_path_from_s_to_d (s,d) → returns the RWA solution 
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NoPath    → Communication Request  

      is Blocked 

light_path_feasible (𝑝𝑞
𝑏)  → checks whether the   

     lightpath is feasible in   

     this path from node b to q  

delete_path(𝑝𝑞
𝑏)   → if no lightpath is feasible,  

   the path is deleted and is  

   not explored in the future. 

 

3.2 Actual Cost and Heuristic Cost 

The main objective of the BFS-RWA is to minimize the number of 

regenerators used, the actual and the heuristic costs are calculated according to the 

number of regenerators needed. [30] 

𝐴Ƭ𝑛 = 𝑅𝑛 +
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑛𝑜𝑑𝑒

𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐ℎ
  (1) 

 

𝐻Ƭ𝑛   =  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑟𝑜𝑢𝑡𝑒 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐ℎ
    (2) 

This heuristic is admissible, as the actual route chosen to go from a node to the 

destination will never exceed the distance of the shortest route from the node to the 

destination. We have used the optical reach to determine when regeneration is needed 

and have omitted the Non-linear impairments.  
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3.3 Algorithm 

Input: Request for communication from s to d, Topology, R, Z 

Output: RWA path, NoPath 

1. 𝑡𝑟 ← create_root(s) 

2. 𝑐𝑡𝑛
 ← heuristic_cost(𝑡𝑟 , 𝑑) 

3. 𝑤ℎ𝑖𝑙𝑒 termination condition not satisfied 

4.   𝑡𝑛 ← select_best_leaf(T) 

5.   q ← find_node_in_physical_topology(𝑡𝑛) 

6.   𝑃𝑞 ← select_eligible_paths_from_Z(q) 

7.   𝑓𝑜𝑟 each 𝑃𝑞
𝑏 in 𝑃𝑞   repeat step 8 to 20 

8.    𝑓𝑜𝑟 each 𝑝𝑞
𝑏 in 𝑃𝑞

𝑏   repeat step 9 to 20 

9.     if (light_path_feasible (𝑝𝑞
𝑏)) then 

10.      { 

11.       𝑡𝑚 ← create_node(𝑡𝑛, b) 

12.       𝐴𝑏
𝑠  ← actual_cost(q, b) 

13.       𝐻𝑑
𝑏 ← heuristic_cost(b,d) 

14.       𝑐𝑡𝑛
 ← 𝐴𝑏

𝑠  + 𝐻𝑑
𝑏 

15.      break out of the for loop from step 8 to 19 

16.      else 

17.           delete_path(𝑝𝑞
𝑏) 

18.     end_if 

19.    end for 

20.   end for 

21.  end 𝑤ℎ𝑖𝑙𝑒 

22. if (path to destination is found) then 

23.   Ł  ← create_path_from_s_to_d(s,d) 

24.   return path 

25.  else 

26.   return NoPath // request is blocked 

27.  end if  
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The above algorithm takes a new request for communication from source node s to 

destination node d, the topology, the set of regenerators and the set of paths Z as its 

inputs. The algorithm generates either the RWA solution or returns a flag NoPath if 

the request cannot be handled. When the request arrives, the algorithm creates, from 

the source, a root node 𝑡𝑟in the search tree (see line 1). As the value of the actual cost 

always remains 0 at the source node, only the heuristic cost is calculated for 𝑡𝑟. Lines 

3-21 shows the exploration of the search tree. The while loop (lines 3-21) is executed 

until the termination i.e. until the destination is found or until there are no more paths 

to explore in 𝑃𝑞. 

Line 4, using the best first search approach, finds the best leaf node in the search tree 

to explore, initially the root node is chosen to explore as it is the only node present in 

the search tree. Later the leaf node, which has the lower value of total cost, will be 

explored chosen to explore. Line 5, find_node_in_physical_topology(𝑡𝑛) returns a 

node q in the physical topology corresponding to node 𝑡𝑛  in search tree. In line 6, the 

list of valid paths from node q to the regenerators will be selected from a set of sets of 

paths (Z) and saved in 𝑃𝑞. 𝑃𝑞 contains the set of set of paths from q, each set of paths 

denote possible routes from q to a regenerator. Line 7-20 is an iterative process where 

every path in every set of paths 𝑃𝑞 is checked to determine whether the lightpath is 

feasible or not.  

The function light_path_feasible(𝑝𝑞
𝑏), checks whether the light path may be set up . If 

the lightpath is feasible for a particular path then in Line 11, the algorithm creates a 

node as a child b to the explored node 𝑡𝑛 in the search tree. In lines 12-14, the actual 
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cost, the heuristic cost and the total cost is calculated for the node b. Line 15, breaks 

out of the inner loop and checks for lightpath feasibility for each and every path in 

𝑃𝑞
𝑏. 

If the lightpath is not feasible, for any path 𝑝𝑞
𝑏 in the set 𝑃𝑞

𝑏, that particular path 𝑝𝑞
𝑏 

will be deleted from the set 𝑃𝑞
𝑏. The while loop is executed until the termination i.e. 

until the destination is found or until there are no more paths to explore in𝑃𝑞. Once 

the destination is found in line 23, create_path_from_s_to_d(s,d) generates the RWA 

solution and returns the path, and if the destination was not found the request will be 

blocked. 

 

3.4 Example 

We consider a network with 9 nodes, shown in Figure 3.2. In this figure, each 

edge represents a fiber, and has a label denoting the distance of the fiber. Here each 

fiber can accommodate up to 4 channels. We assume that the optical reach is 1000 

km. We also assume that we have already run a regenerator placement algorithm to 

identify regeneration-capable nodes and that nodes 4 and 5 are equipped with 

regenerators (shown as shaded nodes for convenience). Table 3.1 shows the list of 

channels available on different fibers. The edges not included in Table 3.1 do not 

have any available channel.  Table 3.2 is the list of k or fewer shortest paths, using k 

= 3, for selected source-destinations pairs, as samples of set Z. For instance, if the 

source is 0 and the destination is 4, we have included path 0-3-4 having a length of 

500 and path 0-1-2-3-4 having a distance of 800. Since we used k = 3, the next path is 



 

28 
 

0-1-3-4 which we have not included in the table, since the length of the path is 1100, 

which exceeds the optical reach. 

We now consider the problem of finding a valid path from node 0 to node 8. We will 

use the optimal algorithm given in Varanasi et al. 2014 and the heuristic that we have 

proposed above to discuss the two approaches to find a valid path for communication. 

We recall that in Varanasi et al. algorithm, the search is carried out fiber-by-fiber. In 

our algorithm we carry out a limited search for possible paths of each segment. We 

indicated in Figure 3.2 that the heuristic cost of a node is the ratio of the length of the 

shortest path of the node to the destination and the optical reach. 

 

Source: 0, Destination: 8 

 

 

Figure 3.2: 9 Node Network 
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Figure 3.3: Varanasi et al. 2014, search tree exploration 

 

Figure.3.4: Our search tree exploration 
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3.4.1 Search tree using Varanasi Algorithm 

Figure. 3.3 represents the search tree for this problem using the algorithm 

proposed in Varanasi et al. 2014.  In the search tree we included the letter ‘g’, if we 

used a regenerator in that particular node of the search tree. The total cost is shown 

beside every node in the search tree. X indicates that the node cannot be explored any 

more due to any one of the following reasons:  

a. No channel is available for communication in the segment corresponding to 

that node in the search tree, 
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b. The length of the segment corresponding to that node in the search tree 

exceeds the optical reach, 

c. If the node in the search tree is already occurred before in the same path of 

search tree. 

The source node 0 in the physical topology is used to create root node in the search 

tree shown in Figure 3.3. We recall that the heuristic cost of a node is the ratio of the 

length of the shortest path of the node to the destination and the optical reach. Thus, 

the root node has an estimated total cost of 0.8, since the shortest path between source 

node 0 and destination node 8 is 0-3-4-7-8 with the total distance 800 so that by 

dividing this total shortest path distance, 800 by the optical reach 1000 gives 0.8. 

Then, 0 has two neighbors, nodes1 and 3.  The search explores both neighbors and 

calculates the total costs of both the nodes. Node 1 has a cost of 1.1 and node 3 has 

the cost of 0.8. As node 3 has the least total cost, it is explored first. But due to the 

lack of availability of channels or exceeding the optical reach, all the neighbor nodes 

of 3 cannot be explored as discussed below 

Edges Reason 

3-0 Node 0 is already visited 

3-1 No channel is available 

3-2 No channel is available 

3-4 No channel available for a segment from 0-4 

3-4g No channel available for a segment from 0-4 

Table 3.3: Sample of exploration at node 3 



 

32 
 

Hence we will explore node 1, the remaining child node of 0. Node 1 has three 

neighbors - node 0, node 1 and node 3. Node 0 and node 3 cannot be explored as 

node 0 is already visited and the segment 0-1-3 to node 3 exceeds the optical reach.  

When we explore node 2, which has neighbors 1 and 3, node 1 is already visited, so 

we explore node 3. Node 3 has 4 neighbors – nodes 0, 1, 2 and 4.  Node 0, 1 and 2 are 

already visited nodes. Node 4 has to be considered twice – once when we use node 4, 

without using any regeneration, and when we use node 4 for regeneration. We have 

shown the case when we use node 4 for regeneration as ‘4g’ in Fig. 3.3. We explore 

the node with the least total cost. In this case we will explore node 4 with a total cost 

of 1.2. However, the neighbors (nodes 3, 5, 6, 7,5g) cannot be explored further, for 

reasons similar to those given above. We next choose node 4g with a total cost 1.3. 

Since this is a regenerator node, the path 0-1-2-3-4g forms one segment and we can 

use channel C1 for the segment. Exploring 4g, we get node 5, 5g, 6, and 7, but due to 

the lack of channels or repetition of nodes or since the optical reach is exceeded, 

nodes 5g, 6 and 7 cannot be explored. Only node 5 with total cost 1.4 is available for 

further exploration. In a similar way, we get a path 4g-5-6-7-8 to the destination. This 

translucent lightpath contains two transparent paths as shown below. 

Segment Path Channels 

S1 0-1-2-3-4g C1 

S2 4g-5-6-7-8 C3 

 

Table 3.4: BFS-RWA-SV Transparent segments 
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3.4.2 Search tree using our algorithm 

In Step 1 of my algorithm, the source node 0 in the physical topology is used 

to create root node 𝑡𝑟  in the search tree shown in Figure 3.4. In Step 2, 𝑡𝑟  has an 

estimated total cost of 0.8, since the shortest path between source node 0 and 

destination node 8 is 0-3-4-7-8 with the total distance 800. When we divide this total 

shortest path distance, 800, by the optical reach 1000, we get 0.8 as the total cost of 

the node. Since the node in the physical topology corresponding to node 𝑡𝑟  in the 

search tree is not the destination node, the termination condition is not satisfied. 

Therefore we enter the while loop (line 4 – 20). 

Now in Step 4, we choose the best node in the search tree to explore, where the best 

node is the leaf node in the search tree with the least total cost. Initially, there will be 

only one node present in the search tree i.e., node 𝑡𝑟. Hence we will choose node 𝑡𝑟 

in the search tree for exploration. The node in the physical topology corresponding 

to node 𝑡𝑟 in the search tree is 0. Therefore q is 0 in Step 5. Since node 0 has no path 

in Z to the destination node 8, in Step 6 the paths from node 0 will be to the 

regenerators. Since both 4 and 5 are within the optical reach of node 0, in Step 6 the 

list of k shortest paths will be as follows:  

 

Set 1 (𝑃𝑞
4) 

0-3-4 

0-1-2-3-4 

 

Set 2(𝑃𝑞
5) 

0-3-4-5 

0-1-2-3-4-5 

 

Table 3.5: set of set of possible paths (𝑃𝑞) 
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In lines 7 to 20, we will consider each path from each set of paths and check whether 

the lightpath is feasible or not. If the lightpath is not feasible, we will not explore the 

path, else we will create a node in search tree as a child to the node 0 (Line 11). In the 

first iteration of the for loop in lines 7-20, b = 4. In line 8-19 we will examine paths 

from 0 to 4. In the first iteration of the for loop from lines 8 to 19, we consider the 

path 0-3-4. In Line 9 we find that no channel is available for this segment. In the next 

iteration we consider the path 0-1-2-3-4. As shown in Fig 3.4, channel C1 is available 

for this segment.  Therefore in line 12 the value of the actual cost becomes 1 since 

one regenerator is used so far. In line 14 we calculate the total cost and create a node 

in the search tree corresponding to node 4 (Fig 3.4) 

In line 15 we break out of the loop since we don’t need to consider any other path to 

node 4. In a similar way we have to explore paths to regenerator node 5 in the next 

iteration of the for loop in lines 7-20. Both the paths 0-3-4-5 and 0-1-2-3-4-5 have to 

be processed in successive iterations of the for loop in lines 8-19. Both paths are 

rejected when executing line 9 since no channel exists for any of these paths. 

This concludes one iteration of the while loop in lines 3-21. Since node 4 is not the 

destination, the termination condition is not satisfied. We enter the next iteration of 

the while loop in lines 3-21.  

There is only one leaf node (the node in the search tree corresponding to physical 

node 4 in Fig. 3.4). Therefore in line 4, 𝑡𝑛 is the node in the search tree corresponding 

to physical node 4 in Fig. 3.4. In line 5, the node q is 4. This time we note that the 

destination is within the optical reach of node 4, in Step 6 the paths from node 4 will 
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be to the regenerator node 5 and to the destination node 8. Since both 5 and 8 are 

within the optical reach of node 4, in Step 6 the list of k shortest paths will be as 

follows: 

 

Set 1 (𝑃𝑞
5) 

4-5 

4-6-5 

4-7-6-5 

 

Set 2 (𝑃𝑞
8) 

4-7-8 

4-6-7-8 

4-6-8 

 

Table 3.6: set of set of possible paths (𝑃𝑞) 

 

In lines 7 to 20, we will consider each path from each set and check whether the 

lightpath is feasible or not. If the lightpath is not feasible, we will not explore the 

path, else we will create a node in search tree as a child to the node 4 (Line 11). In the 

first iteration of the for loop in lines 7-20, b = 5. In line 8-19 we will examine paths 

from 4 to 5. In the first iteration of the for loop from lines 8 to 19, we consider the 

path 4-5. In Line 9 we find channel C0 is available for this segment (Fig 3.4). 

Therefore in line 12 the value of the actual cost becomes 2, since two regenerators are 

used so far. In line 14 we calculate the total cost and create a node in the search tree 

corresponding to node 5 (Fig 3.4.) In line 15 we break out of the loop since we don’t 

need to consider any other path to node 5. In a similar way we have to explore paths 

to destination node 8 (b = 8) in the next iteration of the for loop in lines 7-20. All the 

paths 4-7-8, 4-6-7-8 and 4-6-8 have to be processed in successive iterations of the for 
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loop in lines 8-19. All the paths are rejected when executing line 9 since no channel 

exists for any of these paths. This concludes one more iteration of the while loop in 

lines 3-21. Since node 5 is not the destination, the termination condition is not 

satisfied. We enter the next iteration of the while loop in lines 3-21. 

Now we have only one leaf node (the node in the search tree corresponding to 

physical node 5). In line 4, 𝑡𝑛  is the node in the search tree corresponding to physical 

node 5 (Fig. 3.4). In line 5, the node q is 5. Here, we see that the destination is within 

the optical reach of node 5, in Step 6 the paths from node 5 will be to the destination 

node. In Step 6 the list of k shortest paths will be as follows: 

 

Set 1 (𝑃𝑞
8) 

5-4-7-8 

5-4-6-7-8 

5-6-7-8 

 

Table 3.7: set of set of possible paths (𝑃𝑞) 

In lines 7 to 20, we will consider each path from the set and check whether the 

lightpath is feasible or not. If the lightpath is not feasible, we will not explore the 

path, else we will create a node in search tree as a child to the node 5 (Line 11). In the 

first iteration of the for loop in lines 7-20, b = 8. In line 8-19 we will examine paths 

from 5 to 8. In the first iteration of the for loop from lines 8 to 19, we consider the 

path 5-4-7-8 and in line 9 we find that node 4 is already visited in the path so we 

ignore it (not shown in figure). Again we consider the next path 5-4-6-7-8 in next 

iteration, similarly we find that node 4 is already visited in the path so we even ignore 
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it. We consider 5-6-7-8, this time we find (Line 9) that channel C3 is available for 

this segment (Fig 3.4). Therefore in line 14 we calculate the total cost and create a 

node in the search tree corresponding to node 8 (Fig 3.4.) In line 15 we break out of 

the loop. Since node 8 is the destination, the termination condition is satisfied and we 

exit out of the loop and move to next line 22, as the destination is found the algorithm 

returns the whole translucent path (0-1-2-3-4g-5g-6-7-8) from source node to the 

destination node. If we fail to find a path to destination we have to block the request.  

The path 0-1-2-3-4g-5g-6-7-8 contain three transparent segments. 

 

Segment Path Channel 

S1 0-1-2-3-4g C1 

S2 4g-5g C0 

S3 5g-6-7-8 C3 

Table 3.8: BFS-RWA Transparent segments 

 

Comparing both the approaches we can observe that the number of node visited in 

each search tree are different. The number of nodes visited in Varanasi et al. is more, 

compared to number of nodes visited in my approach. Comparing both the search 

tree, figure 3.3 explored using a fiber by fiber search, where as in Figure 3.4 explored 

using segment by segment search, resulting in a decrease of the number of node visit. 
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Chapter 4 

4.1 Simulation 

In this section we will be presenting the experimental setup and the results of 

the proposed approach (BFS-RWA). We will discuss, in detail, each aspect of our 

experiment. We evaluated all the results by comparing them with the results using 

Varanasi’s approach (BFS-RWA-SV) outlined in [30]. Simulation is a very well-

known technique used to study the performance of network, and we have used it to 

study our algorithm as well as that in [30]. 

4.1.1 Experimental Setup 

 

Figure 4.1 Simulator 
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Components in the setup: 

 

Network Design :  This component generates the network 

topology, when number of nodes is given as input. 

RPP    :  This finds the regenerator node in network. 

Channels   :  This component randomly make some channels

     busy and gives available channels 

k shortest Paths  :  This component generates k shortest paths 

     between every pair of nodes in the network 

Lightpath Request  : This generates the dynamic connection requests. 

 

In the simulator (Figure 4.1), the network design component takes “Number of 

nodes” as input from the user, which gives the network topology as an output. The 

network topology is given as an input to each component in the experiment i.e. RPP, 

Channels, k shortest paths and Lightpath Requests. All the information generated by 

the each component is stored as individual files in the database, in the preprocessing 

phase. Then the simulator looks for a request from “Requests for Lightpath” file. If 

there exists a request, that request is given to BFS-RWA algorithm (discussed in 

Chapter 3). The simulator outputs a file which contains the IA-RWA solution for 

each connection request, the number of nodes visited, the number of regenerators 

used in every path used by the lightpath corresponding to a successful request for 
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communication, and the success rate. We have carried out many simulations. For a 

given number of nodes and the number of requests for communication, the database 

created in the preprocessing phase contains 5 topologies with n nodes and 5 sets of 

requests. Our simulation considers 25 cases, one for each topology and request file. 

The simulation was repeated with Varanasi approach i.e. BFS-RWA-SV component 

instead of BFS-RWA component. 

The detailed description of each component is discussed below: 

4.1.2 Network Design  

This component generates a network topology, where the user inputs the 

number of nodes. Here, the term “degree” mean the number of edges connected to a 

node in the network, and we specify the minimum and the maximum value of the 

degree. The minimum and the maximum distance between the nodes can be altered. 

All the edges in the network are bi-directional. A sample 9 node network topology is 

shown in Figure 4.2, where the maximum degree is 4, the minimum and the 

maximum distance between the nodes is 100 and 800 respectively. The optical reach 

is 1000. 

Figure 4.2 Sample Network topology 
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4.1.3 RPP Component  

Given a network and the optical reach, the RPP phase gives the location of possible 

3R regeneration capable nodes for a network as solution. This RPP phase is based on 

the work done by Rahman et al. 2015 [27]. Non-linear impairments have not been 

considered in [27] RPP approach. The physical topology with the optical reach, is 

given as inputs to RPP component which finds the nodes which are capable for 3R 

regeneration, such that for any source destination pair from the source to the 

destination it can establish a translucent lightpath. For a given network topology and 

a value for the optical reach, the approach constructs an Integer Linear Program (ILP) 

and solves the problem using the software called IBM ILOG CPLEX [27]. 

Figure 4.3 Network topology with regenerator nodes 

 

Figure 4.3, shows a randomly generated network topology with 5 nodes having an 

optical reach of 50. This is given as input to RPP phase and we obtain a 

corresponding regenerator placement. The shaded nodes in the above figure are the 

regenerator capable nodes. 
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4.1.4 Channels  

Given a network, this component gives us a list of free channels available on 

every edge in the network. The fiber joining any pair of nodes in the network has a 

limited number of channels, where some channels will be free to accommodate the 

lightpath while the remaining channels are already carrying signals. For an example 

given below there are 4 channels available for each fiber, this component takes the 

given network as input and will designate some channels on each fiber as busy in the 

network. This is done by picking a random number between 0-4 for each edge, which 

says how many channels are free, suppose we got 3, that means 3 channels are free 

for a particular edge and then we will randomly pick which 3 channels are free like 

C0, C2, and C3.  Finally we output the list of free available channels on each edge. In 

this thesis, we consider three kinds of traffics - low, medium and high, where low 

indicates 0% – 30% channels are busy between the edges, medium means 30% – 60% 

channels are busy and high indicates 60% – 100% are busy in the network. 

 

 
Figure 4.4 Sample Network 

 

 

 

Edges Channels 

available 

1-2 C1, C2 

1-3 C0 

2-4 C3, C2 

3-4 C0, C1 

3-5 C1, C2, C3 

4-5 C2 

 

Table 4.1 Channels Available 



 

43 
 

Table 4.1 show a typical list of available channels on every edge for a given 5 node 

network topology. Each fiber on the network can support 4 channels available 

(namely C0, C1, C2, and C3). 

4.1.5 k shortest paths  

This component takes the network topology as input and outputs the list of k 

shortest paths from every node in the network to the every other node. Yen’s 

algorithm is a very well-known algorithm which is used to compute the k shortest 

paths from a source to a destination [33]. Yen’s algorithm uses Dijsktra’s algorithm 

or any other shortest path algorithm to start computing the shortest path from source 

to destination. The algorithm is divided into two parts, solving the first k-shortest path 

and others [33]. We have presented a brief descripting of Yen’s algorithm with an 

example in Chapter 2. We have consider k = 3, where we find, if possible, three 

shortest paths from a node to every other node in the topology.

 

 

 

 

Figure 4.5 Sample Network 

 

 

 

 

1-2 2-4-3-1 

1-3-4-2 2-4-5-3-1 

1-3-5-4-2 2-4-3 

1-3 2-4-5-3 

1-2-4-3 2-1-3 

1-2-4-5-3 2-4 

1-2-4 2-1-3-4 

1-3-4 2-1-3-5-4 

1-3-5-4 … 

2-1 … 

Table 4.2 Sample k shortest path list
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Table 4.2, shows part of a list of k shortest paths from every node to every other node 

for a given 5 node network topology using k=3. We have shown only a few paths in 

the table. 

4.1.6 Lightpath Request 

This component generates dynamic connection requests i.e. the source 

destination pairs for which our algorithm has to generate, if possible, the RWA 

solution.  We generate all possible source destination pairs i.e. every node to every 

other node in the request file, this file is given as input to the algorithm. Given a 

network, the location of the regenerators, k shortest paths and a dynamic connection 

request as an input to A* algorithm, it gives a good RWA solution. In this chapter, we 

have presented many experiments comparing my solution to that obtained by 

Varanasi approach considering different size of networks 

 

Figure 4.6: Sample network 

 

 

 

Source Destination 

1 2 

1 3 

1 4 

1 5 

2 … 

 

Table 4.3: Dynamic Requests  
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4.2 Results  

This section reports the simulation results for our proposed BFS-RWA 

approach. We have tested our approach on a number of different topologies and with 

different traffic distributions for each topology. We assumed there are 8 available 

channels on each fiber link in the physical topology. We considered three network 

sizes, with 10, 20 and 30 nodes in the network. For each network size, 5 random 

topologies were generated and each of these was simulated with different traffic 

distributions. The traffic demand sets were classified into 3 categories: i) Low traffic 

load, ii) Medium traffic load and iii) High traffic load, depending on the number of 

available channels on each link.   A high (respectively medium and low) traffic load 

has 0 to 2 (respectively 2 to 4 and 5 to 8) channels available on each link in the 

network. We generated 5 demand sets for each type of traffic load. So, the results 

reported in the remaining sections represent the average of 25 simulation runs for 

each case.  We have compared our approach with BFS-RWA-SV as reported in [30], 

by using the same data sets to generate solutions with BFS-RWA-SV. 

 

4.2.1 Success Rate  

Table 4.4 shows the average number of successful connections that could be 

established using BFS-RWA-SV and BFS-RWA respectively. The total number of 

connection requests for each network size is indicated in column 1 of the table. 

Overall both approaches achieved very high success rates (98.1% and 92.5%) for low 

and medium traffic loads. Even with a high traffic load, the success rates were 96.6% 

and 86%. We observed some variations in success rates with the network size as well.  
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For the 10 node network, the performance of the two approaches were very similar, 

resulting in  98.7% success rate in BFS-RWA-SV approach, and 97.8% success rate in 

BFS-RWA. The difference in performance was more noticeable in the larger 

networks. In the 20 node (30 node) networks, the average success rates were 96.4% 

(98.8%) and 80% (90%) using the BFS-RWA-SV and BFS-RWA respectively. The 

slight decrease in performance for BRS-RWA is expected, since it only searches k (=3) 

pre-computed routes for establishing a lightpath; whereas BFS-RWA-SV searches all 

possible paths over the topology, when trying to establish a connection. 

TABLE 4.4:  Success rate with BFS-RWA-SV and BFS-RWA approach  

Network  

Size 

Traffic 

Load 

Number of Successful 

Connections 

Percentage of 

Successful Connections 

BFS-RWA-

SV 

BFS-RWA BFS-RWA-

SV 

BFS-

RWA 

 

10 Node 

90 requests 

Low 90 89.8 100% 99.7% 

Medium 90 89.6 100% 99.5% 

High 86.6 84.8 96.2% 94.2% 

20 Node 

380 

requests 

Low 379 315.8 99.7% 83.1% 

Medium 379 313.8 99.7% 83% 

High 341.4 273.6 89.8% 73% 

30 Node 

870 

requests 

Low 869.8 802 99% 93.1% 

Medium 870 800.6 100% 92% 

High 840.6 747.6 96.6% 86% 
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Fig 4.7 shows how the success rate varies with traffic load for a given network size. 

The results shown are for the 10 node networks, but the other network sizes follow a 

similar pattern. As expected, we observe that the success rate decreases consistently, 

as the network load increases. This is because there are fewer available channels to 

route the new connection request, as more channels become ‘busy’.  

 

Figure 4.7 Success rate in 10 Node Network 

 

Figure 4.8 Success rate with Medium Traffic load 
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Figure 4.8, shows the variation in success rate, with different network sizes, for a 

given type of traffic load. In all the 3 network we got nearly 2% difference between 

Varanasi and my approach with medium traffic. 

4.2.2 Average Nodes Visited 

The main motivation for the proposed BFS-RWA approach was to develop a 

fast, efficient strategy for dynamic impairment-aware RWA that can generate ‘good’ 

solutions in a reasonable amount of time. The BFS-RWA algorithm creates a search 

tree, and the number of nodes visited (nv) in the search process gives a good estimate 

of the amount of computation required to find a solution. This in turn is directly 

related to time needed to generate a solution. Therefore, we have used this metric (nv) 

in the following discussions. Table 4.5 shows the average number of nodes of the 

search tree that are explored before a solution is reached using the two approaches, 

for different network sizes and traffic loads. We see from Table 4.2 that, as the 

network size increases nv increases fairly quickly for BFS-RWA-SV. This means that 

the approach will become computationally intractable for networks of larger size. In 

fact, this has been observed to be the case, as reported in [30]. On the other hand, for 

BFS-RWA, we do not observe a steady increase in the value of nv, with network size.  

Figure 4.9 and Figure 4.10 show how nv varies with traffic and load network size 

respectively. We see from Fig 4.5 that there is relatively little change in nv with the 

traffic load. Also, there seems to be no consistent pattern. For the 10 node network, nv 

increases very slightly with traffic load. However, for the 20 and 30 node networks, 
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the high traffic load case actually has smaller values of nv compared to medium 

traffic. This is true for both BFS-RWA-SV and BFS-RWA.  

Table 4.5: Number of nodes visited with BFS-RWA-SV and BFS-RWA approach 

 

Network  

Size 

Traffic 

Load 

Number of nodes visited (nv) 

BFS-RWA-SV BFS-RWA 

 

10 Node 

90 requests 

Low 5.288 3.892 

Medium 5.368 3.894 

High 6.276 4.246 

 

20 Node 

380 requests 

Low 21.224 9.11 

Medium 22.078 9.076 

High 18.05 8.556 

 

30 Node 

870 requests 

Low 31.804 5.578 

Medium 31.226 5.496 

High 25.332 4.474 

 

 

Figure 4.9: Average nodes visited in 10 node network 
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Fig 4.10 on the other hand clearly demonstrates that the network size has a significant 

effect on the value of nv for BFS-RWA-SV. The results shown are for medium traffic 

load, but the same pattern is observed for low and high traffic as well. For BFS-RWA 

the change in nv, with network size, is much less significant. Also, the difference in nv 

values between the two approaches become more pronounced as the network size 

increases. This means that computations required to generate a solution will be 

significantly higher in larger networks for BFS-RWA-SV, resulting in a higher 

solution time. 

 

Figure 4.10: Average Number of nodes visited in each Network 
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connection. This is important because regenerators are expensive components in 

optical networks and it is desirable to use as few regenerators as possible, in order to 

reduce the overall network cost. Table 4.6 shows the average number of regenerators 

needed to establish a lightpath, using the two approaches under consideration. We 

note that Table 4.6 gives the number of regenerators required per successfully 

established connections. Connections which were blocked are not counted. This also 

means that the total number of regenerators needed increases with network size. So, 

even though the values per connection, for the 30 node networks are higher than the 

corresponding values for the 20 node networks, the 30 node topologies still use 

significantly more regenerators overall. 

Table 4.6: Average Number of Regenerator used with BFS-RWA-SV and BFS-RWA 

approach 

Network  

Size 

Traffic 

Load 

Avg. Number of Regenerators Needed  

BFS-RWA-SV BFS-RWA 

 

10 Node 

90 requests 

Low 1.686 1.536 

Medium 1.736 1.6 

High 1.806 1.4825 

 

20 Node 

380 requests 

Low 2.752 2.036 

Medium 2.768 2.028 

High 2.898 2.016 

 

30 Node 

870 requests 

Low 3.448 1.874 

Medium 3.43 1.862 

High 3.626 1.952 
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Table 4.6 shows that the number of regenerators required for the two approaches are 

fairly close particularly smaller networks. However, BFS-RWA does require fewer 

regenerators on average, and the difference becomes more noticeable for larger 

networks. As reported in [30], BFS-RWA-SV, is designed to find the feasible path 

requiring the minimum number of regenerators for each connection, if such a path 

exists. But, Table 4.6 seems to show that BFS-RWA requires fewer regenerators. This 

apparent anomaly can be explained by considering that the number of connections 

actually established using BFS-RWA-SV is higher. Often, these extra connections are 

established using very long paths, which require a higher number of regenerators. 

This is why BFS-RWA seems to require fewer regenerators on average. Fig 4.11 

shows that the traffic load does not have a significant impact on regenerator usage, 

for both approaches. Figure 4.12 shows that while regenerator usage increases 

steadily with network size for BFS-RWA-SV, network size appears to have relatively 

little impact on regenerator usage for BFS-RWA. 

 

Figure 4.11 Number of Regenerators used in 10 Node network 
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Figure 4.12 Number of Regenerators used in each network 
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Chapter 5 

 

5 Conclusions and Future Work 

5.1 Conclusions 

In this thesis, we have proposed a fast heuristic for dynamic lightpath 

allocation in translucent networks and have compared the heuristic with an optimal 

algorithm proposed by Varanasi et al. 2014 [30]. An existing regenerator placement 

strategy is used prior to the network operation, to determine the regeneration capable 

nodes. We have used an A* best first search algorithm for finding the IA-RWA 

solution. Our algorithm selects a route (from a set of pre-defined routes) for every 

source destination pair, using least possible number of regenerators. We constructed a 

search tree for finding a feasible path for any request from any source to any 

destination. Pre-computing k shortest paths between every node pair (within optical 

reach) helps the algorithm to reach the destination quickly, using a segment by 

segment search.  

We have performed simulations with 10, 20 and 30 nodes in the network, in 

chapter 4, to study the performance of the BFS-RWA.  We have discussed the 

advantages and disadvantages of our scheme compared to the scheme recently 

proposed in Varanasi et al. [30], where a fiber by fiber search approach was used.  
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5.2 Future Work 

The results achieved in our work are promising leaving more to be explored 

for further research.  We feel that fast heuristics should be explored, using techniques 

such as genetic algorithms, simulated annealing or tabu search. These approaches 

could use the framework described in this thesis as well as the optimal results using 

the approach proposed by Varanasi et al. 2014 [30].  

Currently our work only considers fault-free networks. It would be useful to 

extend this approach so that it is capable of handling faults in the network.  The 

relative effectiveness of both protection and restoration based schemes should be 

evaluated and compared.  
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