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ABSTRACT 

This work presents a test method for capacitive Micro-Electro-Mechanical Systems 

(MEMS).  A major class of MEMS sensors operate based on the principle of capacitance 

variation.The proposed test method in this work utilizes a resonant circuit to detect 

structural defects of capacitive MEMS sensors. It is shown that a small variation of 

MEMS capacitance due to a defect alters the resonance frequency considerably. It is also 

shown that the variation of the output amplitude can be observed for fault detection if an 

inductor with a high quality factor is employed in the test circuit. Mathematical approach 

is taken and verified to prove the validity of this work. The effects of structural defects 

such as short, broken and missing fingers of the MEMS comb-drive on the equivalent 

circuit models have been determined through frequency domain simulations. Simulation 

results and experimental measurements using an implemented MEMS comb drive 

indicate that the proposed method can detect common faults such as missing, broken and 

short fingers. 
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Chapter 1 

Introduction and Background 

1.1 Micro-Electro Mechanical Systems 

1.1.1 A brief introduction to Micro-Electro-Mechanical Systems 

Micro-electro mechanical systems (MEMS) is a technology to fabricate small devices 

that can be integrated with microelectronic circuits. MEMS technology covers multi-

disciplinary area and it includes many fields of applications including optical devices, 

thermal, fluidic and magnetic. MEMS structure can vary from a simple structure with no 

moving element to a very complex system with multiple moving elements. MEMS 

devices are able to convert energy from one domain to another [1].  

MEMS technology can be utilized in several domains. For instance design of micro-

sensors, microstructures and micro-actuators are performed through MEMS technology. 

Figure 1.1[2] demonstrates different MEMS sectors with respect to their applications.  
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1.1.2 MEMS application 

MEMS devices have many applications in different areas such as automotives, medical, 

industrial, avionics, optical communications and electronics. For example pressure 

sensors are utilized vastly in automotive industry such as tire pressure monitoring 

systems, crash detection for airbags and oil pressure sensing [3]. In medical sector they 

broadly used as disposable sensors to monitor blood pressure of patients requiring 

intensive care. To name other applications we can mention shock and motion detection 

sensors, image stabilizers in cameras, embedded microphones and screen rotation 

features in cell phones. 

 

 

 

 

Fig. 1.1 MEMS sectors with respect to their application on a single integrated chip [2]. 
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1.1.3 Microsystems historical background 

The number of transistors in Integrated Circuits (IC) has doubled every 18 months since 

1970 as predicted by Moor’s law. Figure 1.2[4] presents the plot of microprocessor 

transistor counts with respect to date of their introduction to the market. 

 

 

 

Figure 1.2 CPU transistor counts from 1971 to 2011 following Moor’s law [4] 
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It can be observed that approximately every 18 months the transistor count doubles. 

Currently in commercially available CPUs there are over 4 billion transistors which 

provide a considerable processing power. 

In 1958, Jack Kilby (inventor of IC) introduced his first integrated circuit at Texas 

Instrument in Dallas which was a revolution in electronic circuits. This integrated circuit 

contained a single transistor, three resistors and a capacitor on a chip of germanium in a 

millimeter scale. This was a significant starting point to open a gate for researchers 

todevelop complex ICs and attempt to fabricate circuits in a much smaller area. Table 

1.1demonstrates the historical perspective of micro systems [5]. 

Year  Name of Invention/Discovery 

1824 Silicon discovered (Berzelius) 

1948 First transistor (Bardeen, Brattain, Shockley, Bell Lab) 

1954 Piezoresistive effect in Germanium and Silicon discovered 

1958 First integrated circuit (Kilby, TI) 

1961 First silicon pressure sensor (Kulite) 

1964 First batch fabricated MEMS (Nathanson) 

1967 Surface micromachining invented (Nathanson) 

1970 First silicon accelerometer (Kulite) 

1971 First single chip microprocessor (Intel) 

1977 First capacitive pressure sensor (Stanford) 

1984 First poly-silicon MEMS device (Howe, Muller ) 

1989 Lateral comb drive (UC Berkeley) 

1992 Diffraction grating light modulator (Stanford) 
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1999 First optical network switch (Lucent technologies) 

2000 Micro gas turbine engine (MIT) 

2000s Increasing number of MEMS devices and their applications 

Table 1.1 Historical perspectives of micro systems 

1.1.4 MEMS operational zone 

MEMS devices are able to sense, receive, control, transmit and actuate in micro scale. 

Figure 1.3 displays the block diagram of MEMS operational zone and their application 

[7]. 

 

1.1.5 MEMS market share 

MEMS industry has been growing dramatically since 2001 and has an estimated of $10 

billion market with the projected annual growth rate of 10-20%.Silicon pressure sensor 

alone is a billion-dollar industry [6]. Figure 1.4[7] displays the estimated percentage of 

the market share projection for different types of MEMS devices in 2007. The overall 

 

Figure 1.3 Typical MEMS operational zone [7]. 
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prediction of worldwide MEMS revenue forecast per application is graphically 

demonstrated in figure 1.5. 

 

 

 

Figure 1.5 Worldwide revenue forecast for MEMS from 2010 to 2016 [8]. 

 

 

Figure 1.4 Typical MEMS operational zone [7]. 
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It can be observed that there is a great potential in the MEMS and Microsystems industry 

as manufacturers invest billions of dollars in these technologies. There are lots of 

advantages in MEMS technology that makes it very attractive. As the fabricated devices 

scale down, the power consumption per function drops and the speed increases which 

eventually lowers the costs of Microsystems.  

1.2 Capacitive Micro-Electro Mechanical Systems 

Capacitive MEMS devices contain energy-storage element which it can be modeled as 

typical capacitor. This capacitor can be defined in terms of a relationship between 

displacement and effort. Capacitors are associated with potential energy which means 

whenever it has a non-zero effort there is some stored energy in the capacitor. A simple 

example of capacitive MEMS devices as shown in figure 1.6[9] is MEMS microphone 

which operates based on the principle of capacitance sensing.  

 

 

Figure 1.6 CMOS-based Capacitive MEMS microphone introduced by Akustica [9]. 
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1.3 Implementation and modeling of micro-electro mechanical systems 

1.3.1CAD Tools 

Capacitive MEMS devices can be modeled by various 3-D finite element analysis (FEA) 

CAD tools such as Intellisuite, Coventorware, MEMSCAP, FEMLAB, ANSYS, 

ALGOR, and MEMSPRO. MATLAB can also be used for analytical modeling.   

1.3.2Coventorware CAD tool 

Coventorware is an integrated suite of design and simulation software that provides the 

accuracy and capacity to address real-world MEMS designs. 

1.3.3Agilent ADS CAD tool 

Advanced design system (ADS) is one of the world’s leading electronic design 

automation (EDA) software.  ADS in this work mainly is used to generate the layout of 

the design and observe the S-parameters.  
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Chapter 2 

Micro-Electro Mechanical Systems fabrication process 

2.1 MEMS material 

Micro fabrication is based on planar technologies which involve implementing MEMS 

components and electronic devices on a substrate that originally are in the form of flat 

wafers. Microelectronics industry invested huge amounts of dollars to develop wafer 

based process technologies [1].MEMS fabrication process is similar to the conventional 

VLSI technology where three dimensional microstructures are fabricated on a microchip 

[1]. In other words, MEMS is a logical evolution of the VLSI technology which adds new 

dimensions to microchips and introduces new functionalities to microelectronic devices. 

There are two main methods for micro fabrication (a) Wafer-level processes (including 

wafer bonding) and (b) pattern transfer (isotropic and anisotropic etching). 

First step in MEMS fabrication process is the substrate material selection. This includes 

single-crystal quartz, single-crystal silicon, glass and fused quartz. Recently special 

attention is also given to gallium arsenide due to their variety of application in 

optoelectronic device fabrication. 

In general, silicon is introduced as a semiconductor that can be doped to act like a 

conductor or used as an insulator. One of the advantages of silicon is its great stability 

against temperature as it can maintain its property as semiconductor at high temperatures. 
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Due to many advantages in using silicon in MEMS technology, sometimes it is also 

referred as second silicon revolution. Single-crystal silicon wafers are dominantly utilized 

as a substrate to initiate the fabrication process. They are classified by the pattern 

orientation and most silicon crystals are grown utilizing Czochralski (CZ) method. 

Another method for growing silicon crystal is the float zone (FZ) which has higher purity 

compared to the CZ method. 

Prior to using a wafer as a substrate for fabrication, it must be cleaned to avoid any 

problem that may affect the fabrication process. The standard set of wafer cleaning is 

called RCA by removing all organic coatings through a strong oxidant [1]. The RCA 

cleaning should be carried out prior to high-temperature steps such as oxidation, diffusion, 

chemical or vapour deposition [1]. Figure 2.1[7] presents the block diagram of a 

simplified MEMS fabrication process. After wafer level, deposition is carried out and 

followed by lithography and etching. 

 

 

Figure 2.1 MEMS fabrication process [7]. 
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Many microelectronics fabrications include deposition processes that relatively depend 

on the designer what deposition method to be undertaken. Most common deposition 

process is based on TFD (Thin Film Deposition) that is also referred to as additive 

process. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are 

also used in deposition methods. Practically, most commercially significant CVD 

processes are low-pressured; hence the process is sometimes called low pressure 

chemical vapour deposition (LPCVD). If deposition rate needs to be more enhanced then 

PECVD (plasma enhanced chemical vapour deposition) is used which occurs in glow-

discharge plasma [1]. Other additive processes are available for MEMS fabrication which 

is relatively expensive such as electro-deposition, lift off and spin casting methods. 

After deposition process, optical lithography is performed. This process is pretty much 

similar to the photographic process of printing from a negative image on a photosensitive 

paper.  

In order to create a pattern, a photo-mask is used which transfers a set of transparent and 

opaque region. Then ultraviolet light is emitted through the photo-mask onto the wafer 

and this will change the chemical properties of the unprotected portion exposed to the 

light [1]. Figure 2.2 [7] displays the block diagram of the photolithography process for 

MEMS fabrication. 
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On the opposite side of deposition process, etching process is performed which is also 

called subtractive process. It basically refers to the process of removing the deposited 

layer through the patterned mask and the openings created in the previous stages. There 

are two main etching techniques utilized by the industry, known as Wet and Dry etching. 

The conventional approach in etching process is to immerse the patterned substrate in a 

suitable chemical liquid that reacts with the exposed region of the substrate and leaves the 

unexposed region intact [1].There are many factors that can affect the rate and shape of 

etching features such as type of substrate, material of the etchant, and selection of 

 

Figure 2.2 Photolithography process [7]. 
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masking layer and how tight the adhesion to the substrate is. The temperature is also 

extremely important in order to control the reaction rates.   

As mentioned, there are two main techniques of etching called Wet and Dry etching. The 

Wet etching is mainly isotropic which means the orientation of the substrate will not be 

affected by the rate of material removal in printing from a negative on the etching process 

and they are independent of each other. Therefore the etching occurs in all direction. 

Figure 2.3 [7] demonstrates the concept of isotropic etching.  

 

 

Figure 2.3 isotropic etching [7]. 
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It can be seen that the patterned photo-resist is undercut and lateral etching is formed at 

about the same rate as vertical etching. This is due to isotropic properties of the etchant. 

Table 2.1 illustrates various materials that can be etched with wet etchant [1]. 

Material Etchant 

Thermal or CVD silicon dioxide Buffered hydrofluoric acid 

Polysilicon KOH or ethylene diamine 

Silicon nitride Hot phosphoric acid 

Aluminum PAN (Phosphoric, acetic, nitric acids) 

Copper Ferric Chloride 

Gold Ammonium iodide/iodine alcohol 

Table 2.1 wet etchant selection 

There are complete etchant database including selectivity and etch rates in [10, 11]. In 

contrast with isotropic etching, there is anisotropic etching process in which the etch rate 

depends on the orientation of the substrate. For example potassium hydroxide (KOH), 

ethylene diamine pyrochatecol (EDP) and tetramethyl ammonium hydroxide (TmAH) 

exhibit high dependency on the orientation of the substrate for etch characteristics in 

silicon [12]. Similar orientation-dependent effect is observed from hydrofluoric acid for 

single crystal quartz etching [13]. 

Similar to Wet etching, Dry etching is also classified as isotropic etching and anisotropic 

etching with the same concept. In Dry etching process chemically reactive vapours are 

highly effective etchant [1]. The most commercially important vapour etchant in 
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micromachining technique is the gas of xenon difluoride (𝑋𝑒𝐹2) which for silicon is a 

highly selective vapour etchant [14]. 

There are also some other etch gases for dry etching of different material that are 

illustrated in table 2.2[15, 16, 17]. 

Etch gas Material to be etched 

𝑪𝑭𝟒, 𝑺𝑭𝟔 Silicon or poly-silicon 

𝑪𝑭𝟒,/𝑶𝟐 Silicon nitride 

𝑪𝑭𝟒/𝑯𝟐 Silicon dioxide 

𝑶𝟐, 𝑶𝟐/𝑪𝑭𝟒, 𝑶𝟐/𝑺𝑭𝟔 Organics 

𝑩𝑪𝒍𝟑, 𝑺𝑭𝟔 Aluminum 

Table 2.2 Etching gases for different material in Dry etching process. 

Surface micromachining is another commercially important process that is widely used 

for fabrication of MEMS devices. In this approach, oxidized silicon coated with silicon 

nitride is used as a substrate. This is to make electrical isolation and also provide an 

anchor to hold the attached element. Silicon dioxide is used as the sacrificial layer and 

poly-silicon is selected as the structural material [1]. The surface micromachining 

material system is illustrated in table 2.3 which includes the types of material commonly 

used for structural, sacrificial, release etch and isolation layer [18, 19, 20]. 

 

 

 



 

16 

 

Structural Sacrificial  Release Etch Isolation 

Polysilicon 𝑆𝑖𝑂2 Buffered HF S𝑖3𝑁4 + 𝑆𝑖𝑂2 

Polyimide Aluminum PAN etch 𝑆𝑖𝑂2 

LPCVD S𝒊𝟑𝑵𝟒 + 𝑨𝒍 Poly-silicon 𝑋𝑒𝐹2 𝑆𝑖𝑂2 

Aluminum Photo-resist Oxygen Plasma 𝑆𝑖𝑂2 

Table 2.3 Material commonly used in surface micromachining technique. 

Figure 2.4[7] demonstrates the surface micromachining method from starting point which 

is placing the pattern contact on the oxidized silicon and then depositing the sacrificial 

layer. Pattern structural layer is deposited on top of the sacrificial layer and at the final 

stage the pattern contact is removed to have the structural layer suspended. 

 

 Figure 2.4 Surface micromachining [7]. 
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Micromachining is compatible with standard CMOS fabrication which provides a critical 

enabling technology that allows mechanical components to be fabricated on a silicon 

substrate [1]. 

2.2 Cost of a typical MEMS devices 

Figure 2.5 [7] illustrates the cost distribution of typical MEMS devices based on each 

production sector individually. 

 

It can be seen that the major portion of the total cost belongs to the testing phase which 

amounts to almost 40% of the overall unit cost. This shows how crucial and significant 

the testing sector is in the industry. Hence, MEMS testing is extremely important from 

economical point of view. Although, each manufacturer has its approach towards testing, 

MEMS devices are normally tested at two different stages. MEMS manufacturing tests is 

first performed at the wafer level and then at the packaging stage. Manufacturers also 

 

Figure 2.5 Cost distribution of a typical MEMS device [7]. 
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randomly select samples and perform sampling check on every fabrication run. 

Developing a test solution for MEMS devices to minimize the test time and reduce the 

costs is still a challenging research topic. 

 

2.3 Microsystems general test approach in the industry 

Automatic test equipment (ATE) is widely used in the industry to test devices after 

fabrication. To conduct manufacturing test hardware and software are developed by test 

engineers to carry out the testing task using ATE systems. The software directs the ATE 

to apply various electrical stimuli such as sine waves, triangle waves, pulses and digital 

signals to the device under test (DUT). The ATE [19] tester then observes the responses 

of DUT in order to determine whether the DUT is fault-free or not. The block diagram of 

general approach for device testing is shown in Fig 2.6. 

 

 

 

 

Figure 2.6 General micro-systems test approach 
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2.4 MEMS test solutions proposed in the literature 

Developing test solutions for MEMS devices is proven to be a challenging task. This is 

mainly due to the multidisciplinary nature of MEMS systems where the input stimulus or 

the output response may not be electrical signals. In general, testing MEMS devices can 

be costly and may require sophisticated equipment to characterize performance 

parameters in different energy domains. There is a need for dedicated test solutions for 

MEMS devices to detect possible structural defects that can lead to the device failure. A 

fast and accurate on-chip method to determine the impulse response (IR) of MEMS 

devices is presented in [22]. This technique is able to provide a vast dynamic range in 

noisy environments with low power test signal. In [23], a contact free capacitive MEMS 

approach is proposed which is able to examine the surface potentials of a solid surface to 

generate a potential map. The information provided by the potential map is then used to 

defect analysis for MEMS devices. In [24], a tester architecture that supports calibration 

and testing of MEMS devices is implemented. This tester can manage the testing process 

through a specific hardware module that can reduce the test time. An electrical-only test 

procedure for MEMS accelerometer as an alternative to functional test is introduced in 

[25]. It presents a low cost MEMS test setup at the wafer level to detect parametric faults 

through screening MEMS devices prior to packaging. In [26], the micro-mechanical 

portion of MEMS structures is demonstrated as a black box that can be used as a good 

approximation for mechanical behavior to conduct manufacturing test. A base exciter is 

developed in [27] to trigger a MEMS device. This dynamic test solution is applicable at 

the wafer level. In [28], a solution is presented to test parallel MEMS sensors using an 

analog parallel test technique. This method can reduce the test time significantly for 
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MEMS batch process manufacturing. A Built-In-Self-Test (BIST) technique that can be 

applied to symmetrical micro structures is described in [29]. Self-test outputs have been 

used to detect the presence of asymmetry due to the defects. This approach can detect the 

structural defects due to manufacturing process. A MEMS test structure and measurement 

procedure is presented in [30] to extract the lateral conductivity of thin film such as 

aluminum and p-doped poly silicon. In [31], a set of electrostatically actuated 

MEMS test structures is presented to monitor MEMS fabrication process and measure 

material properties. A fully electrical test procedure for characterization of MEMS at the 

wafer-level is presented in [32]. In this approach a test setup to measure electrical and 

mechanical parameters of capacitive MEMS sensors has been developed. This test setup 

presents a fast wafer-level test solution for MEMS devices. A BIST solution for 

capacitive MEMS devices which is called dual-mode BIST technique is proposed in [33]. 

The control circuit in this technique only consists of several multiplexers and as a result 

the area overhead due to the test circuits is small. In [34], a technique to diagnose 

mechanical parameters of a cantilever-beam using electrical test stimulus is described. In 

this method, the MEMS response is mapped to the mechanical properties of the beam 

using a regression-based mapping technique. It is reported that this test solution can 

estimate the beam mechanical parameters with accuracy of 5% of the nominal values. A 

major class of MEMS sensors operate based on the principle of capacitance sensing 

where the MEMS sensor can be modeled by a variable capacitor. The parameters of 

interest in these sensors are detected through capacitance variations. Various test methods 

for this class of capacitive MEMS have been proposed in the literature [35, 36, 37, 38, 39, 

40]. Most of the test methods in the literature rely on the test response evaluation in the 
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time domain. In this work a new solution is presented in which the output response 

analysis is performed in the frequency domain. It is shown that a small variation of 

MEMS performance parameters translates into a measurable quantity in the frequency 

domain. 

The rest of this thesis paper is organized as follows. The proposed test solutions are 

presented in chapter three and four respectively that are paper-based already published in 

relevant IEEE conferences. The test setup used to implement a resonant-based test 

method shows the variation of capacitance and resonance frequency within a fault free 

and faulty capacitive MEMS structure. The circuit model representing the idea with 

fabrication results according to the mathematical model and simulations are included in 

chapter five and the conclusions and results are summarized in chapter six. 
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Chapter3 

Resonant-Based Test Method for MEMS Devices 

Developing test solutions for MEMS devices is proven to be a challenging task. This is 

mainly due to the multidisciplinary nature of MEMS systems where the input stimulus or 

the output response may not be electrical signals. In general, testing MEMS devices can 

be costly and may require sophisticated equipment to characterize performance 

parameters in different energy domains. There is a need for robust test solutions for 

MEMS devices to detect possible structural defects that can lead to the device failure. A 

major class of MEMS sensors operate based on the principle of capacitance sensing. 

PRINCIPLE OF OPERATION 

A capacitive MEMS sensor is a variable capacitor where the variations of the 

capacitance from its nominal value are used to measure the inputs. Physical defects such 

as missing or shorted fingers, rigid or deformed arms affect either the nominal 

capacitance value or its variations with the bias voltage. Accurate measurement of a 

MEMS capacitance can reveal most of the structural defects. For a typical MEMS sensor, 

the capacitance variations are in the femto-farad range. To detect such small changes in 

the time domain, high resolution and accurate measurement circuits are required. These 

requirements are relaxed if the measurement is performed in the frequency domain. The 

schematic diagram of the proposed solution to conduct the measurement in the frequency 

domain is shown in figure.3.1. It includes a signal source of variable frequency to apply 

input signals and a response evaluator to observe the output signals. To conduct the test, a 

signal is applied to the circuit to determine the resonance frequency. At this frequency the 
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voltage across the output which is composed of a series LC circuit drops sharply. To 

show how small variations of MEMS capacitance can be identified in the frequency 

domain, the changes of the resonance frequency with respect to the MEMS capacitance 

has been determined. The resonance frequency (𝑓𝑟𝑒𝑠 ) of the circuit is obtained from 

𝑓𝑟𝑒𝑠 =
1

2𝜋√𝐿𝐶
. The variations of the resonant frequency with respect to the 

MEMS capacitance can be calculated form: 

C

f

LCCC

f resres
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    (1) 

For a small capacitance variation we can write: 

   (2) 

From (2) it can be seen that the variations of the MEMS capacitance, C , is multiplied by 

a factor of Cfres 2/  which can be a significant number. For a case where 𝑓𝑟𝑒𝑠 =

C
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Fig. 3.1. Block diagram of the test solution for capacitive MEMS devices. 
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1 𝐺𝐻𝑧  and 𝐶 = 100 𝑓𝐹 the resonance frequency changes by 5KHz due to 10 atto-farad 

capacitance variations. Such a frequency shift can be measured in the frequency domain 

but measurement of 10 atto-farad variation in the time domain is a major challenge.  

The schematic diagram of a MEMS comb-drive is shown in figure 3.2. It includes fixed 

and movable arms. The distance between the movable and fixed arms, 𝑥, in this structure 

changes due to the applied inputs. The variations of the capacitance with the distance 

between the arms can be determined from )/()( xdAxC o  . Assuming odx   from 

Taylor series )(xC can be estimated by: 

)1()1()(
0

1

0 d

x
C

d

x
CxC       (3) 

where 0/ dAC  . The resonance frequency variation as a function of movable arm 

displacement is obtained from: 

)(2

1

2

1

xLCLC
fres


     (4) 

Substituting for )(xC  from (3) we have: 









  2/1

0

)1(1
d

x
ff resres     (5) 
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Using Taylor series estimation of: 

0

2/1

0 2
1)1(

d

x

d

x
     (6) 

Equation (5) is simplified to: 













o

resres
d

x
ff

2

1
   (7) 

As expected equation (7) indicates that a small displacement of the movable arm is 

multiplied by a significant factor of ores df 2/ affecting the resonance frequency. This is 

consistent with the results obtained from equation (2).   

To reduce the required test resources and the test time, instead of frequency the 

amplitude of the output can also be observed at the resonant frequency. In this case, the 

test signal can be applied at the frequency where the inductor resonates with the comb 

drive's nominal capacitance. The structural defects of the MEMS device are detected 

through observation of the output amplitude variations rather than the resonant frequency 

 

Fig.3.2. Schematic diagram of a linear comb drive used to determine variations of the resonance frequency 

with the displacements of the movable arm. 

0d x

Fixed Arm

Movable Arm
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variations. The quality factor of the inductor in Fig.3.1 does not affect the performance of 

the circuit considerably if resonant frequency variations are observed. However, the 

quality factor of the inductor has a significant effect if the amplitude variations at the 

resonant frequency are observed. 

An actual inductor has a small series resistance. The inductor L in figure 3.1 can be 

modeled by an ideal inductor, sL , in series with a resistor, sR . The magnitude of the 

impedance of L in series with the comb drive's capacitance is given by: 

































 0

0

21)( QRZ s
     (8) 

Where   is the angular frequency, CLs/10   and Q is the quality factor at the 

resonant frequency which is determined from ss RLQ / . The variations of )(Z with 

frequency is plotted in figure 3.3. It can be seen that the value of the quality factor affects 

the impedance considerably. 

 

 

Fig.3.3. Effect of quality factor of the inductor on the variations of impedance. 
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For the case where  ∆𝜔 = 𝜔 − 𝜔0 << 𝜔0the impedance can be simplified to: 
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Assuming 1/2 0  Q  and using Taylor series we have: 
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The impedance variation )()()( 0 ZZZ  can be calculated from 
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(a) 

 

(b) 

 

Fig. 3.4. (a) Implemented comb-drive used to evaluate the proposed test method. (b) 

Comb-drive with missing fingers used for fault analysis.  
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Equation (11) indicates that the impedance variations and consequently the variations of 

the amplitude at the output in figure 3.1 is directly proportional to the quality factor of the 

employed inductor. Therefore to detect small variations of comb drive capacitance, a high 

Q inductor has to be employed.  

SIMULATION RESULTS 

To test the validity of the presented method, a MEMS comb drive was designed and 

simulated using Coventorware CAD tool. The circuit simulations were performed using 

Agilent’s Advanced Design System (ADS). The implemented comb-drive in figure3.4 (a) 

was used to perform circuit level simulations. Fig 3.4(b) shows the same comb-drive with 

missing fingers which is used to observe the variations of the resonance frequency due to 

the physical defects.  

Figure 3.5 presents the MEMS structure in Coventorware environment before and after 

applying the stimulus. It can be seen that the stimulated movable arm deflect by as much 

as 10nm. This displacement affects the MEMS nominal capacitance and consequently the 

resonant frequency in the test mode.  
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The nominal capacitance of the structure as shown in Fig.3.6 remains close to 0.96 pf up 

to 3.0 GHz.  

(a) 

 

(b) 

 

 

Fig.3.5. Implemented capacitive MEMS (a) before applying the stimuli and (b) after applying the stimulus. 
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At higher frequencies the capacitance increases due to the high frequency effects of the 

substrate used to implement the comb drive. The test circuit is designed to ensure that the 

resonance frequency falls below 3.0 GHz to avoid the undesired effects on the test results 

at higher frequencies. 

The test setup in figure 3.1 with Ls=23nH, Rs=2Ω and R=50Ω was simulated using ADS. 

The output signal is shown in Fig.3.7. It can be seen that the signal falls sharply at the 

resonance frequency of 2.81 GHz. The effects of missing fingers on the MEMS 

capacitance and resonance frequency have been summarized in Table I. The variations of 

the resonance frequency is linear and as the number missing fingers increases as expected 

the capacitance decreases and the resonance frequency increases. 

 

Fig.3.6. Plot of the capacitance with respect to frequency sweep. 
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The variation of output with respect to the frequency sweep for short fingers and tilted 

movable arm is shown in Table II. Simulations were also performed to see the effect of a 

high Q inductor on the output amplitude variations. The results indicate that the 

amplitude of the output signal varies approximately 1.0 dB from the reference value for 

each missing finger when an inductor with 𝑄 = 30is used. 

 

 

TABLE II.VARIATIONS OF PERFORMANCE PARAMETERS OF THE IMPLEMENTED COMB 

DRIVEF WITH SHORT FINGERS AND TILTED MOVABLE ARM. 
 Output at the 

resonant 

frequency(dB) 

resf  (GHz) 

 

resf

(MHz) 

Short fingers -12.031 2.8179 5 

Tilted movable 

arm by 3 degrees 

-24.404 2.8234 9 

 

 

 

Fig.3.7. Insertion loss of the circuit indicating that the inserted inductance and the MEMS 

capacitance resonate at 2.81GHz. 



 

32 

 

 

 

 

 

 

 

 

 

 

 

TABLE I.VARIATIONS OF PERFORMANCE PARAMETERS OF THE IMPLEMENTED COMB 

DRIVEF WITH MISSING FINGERS. 
Number of 

missing 

fingers 

Total 

Capacitance 

(pF) 

C  

(fF) 

resf  (GHz) resf  

(MHz) 

0 0.934 0 2.8136 0 

1 0.928 6 2.8141 0.5 

2 0.921 13 2.8144 0.8 

3 0.914 20 2.8149 1.3 

4 0.907 27 2.8152 1.6 

5 0.898 36 2.8158 2.2 

6 0.892 42 2.8162 2.6 

7 0.885 49 2.8167 3.1 
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Chapter 4 

Test Method for Capacitive MEMS Devices Utilizing Pierce Oscillator 

 

In this paper a test method for MEMS devices is presented in which physical defects are 

detected in the frequency domain rather than the time domain. A resonator that can be 

part of a read out circuits utilized to test capacitive Micro-Electro-Mechanical Systems 

(MEMS). The proposed technique is based on the principle of resonant frequency where 

variations of the resonant frequency are observed to detect structural defects. To verify 

the validity of the proposed approach, a MEMS comb-drive is designed and fabricated. 

Measurement and simulation results indicate that the proposed method can be used to 

capture common comb-drive defects such as missing or broken fingers, shorted fingers 

and tilted arms. In this work, Pierce oscillator is utilized to conduct test on MEMS 

devices. The proposed method has a good sensitivity and detects common faults of 

capacitive MEMS devices. 

PRINCIPLE OF OPERATION 

Fig.4.1 shows the block diagram of the proposed test setup. The circuit is implemented 

using 65nm CMOS technology. ARLC tank is utilized to ensure operation at the desired 

frequency and support a good stability against external disturbances. The circuit diagram 

includes three delay cells to form a delay line. The RLC tank acts as a selective tuner to 

affect the output response through the feedback resistor. At the resonant frequency, the 

input and the output of the delay line is shorted and the delay cells form a ring oscillator. 

As shown in Fig.4.1, the MEMS device is connected to the oscillator in series with a 
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capacitor, C1. This capacitor is used as a reference and its value is chosen to be equal to 

the nominal capacitance of the MEMS device.  

 

Fig.4.2presents the schematic diagram of a differential delay cell used to implement the 

oscillator. The delay cell is optimized to minimize the jitter. The tail current which is 

commonly used for a differential pair is removed to increase the speed of transition from 

low to high level. The tail current in a differential pair contributes heavily to the common 

mode and power supply rejections. However, the tail current can be removed for a 

differential delay cell with digital level outputs to improve jitter performance. The tail 

current in a differential pair limits the maximum current. As a result the transition from a 

low level to a high level the parasitic capacitors are charged with a limited current which 

increases the time required to complete the transition. This will give a higher chance to 

the noise to corrupt the switching level and introduce jitter to the oscillator. 

 

 
 

 

Fig.4.1 Block diagram of the proposed test solution. 
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PMOS transistors in Fig.4.2, M3 and M4, act as variable resistor loads to control the 

delay over a certain range. M5 and M6 are added to further increase the speed of 

transitions from a low level to a high level. The aspect ratio of 
𝑊

𝐿
=

3.2

0.2
(𝜇𝑚)is chosen for 

M1-M2 transistors and M3-M6 are sized to have
𝑊

𝐿
=

3.8

0.2
(𝜇𝑚) to achieve the oscillation 

frequency of 1.1 GHz. The feedback network stabilizes the frequency and keeps the 

oscillator in the linear region of operation, even though in practice obtaining a pure linear 

oscillator is not feasible [41]. A feedback resistor is also inserted to change the input 

impedance of the oscillator and maintain proper matching so that the resonator can drive 

the delay cells. 

The resonance frequency (𝑓𝑟𝑒𝑠) of the circuit can be obtained from 𝑓𝑟𝑒𝑠 =
1

2𝜋√𝐿𝑠𝐶
  where 

𝐶 = (𝐶1𝐶𝑀𝐸𝑀𝑆)/  (𝐶1 + 𝐶𝑀𝐸𝑀𝑆 ). 

M1 M2

M6M4M3M5

Vcont

Vout+Vout-

Vin+ Vin-

Vdd

 

 

 
Fig.4.2. Schematic of the differential cell. 
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The variations of the resonance frequency of the implemented test circuit with MEMS 

capacitance changes can be written as:   

𝜕𝑓𝑟𝑒𝑠

𝜕𝐶
=

−1

4𝜋𝐶√𝐿𝑠𝐶
=

−𝑓𝑟𝑒𝑠

2𝐶
    (1) 

Since the capacitance variation is very small, it can be presented as: 

∆𝑓𝑟𝑒𝑠 ≈
−1

4𝜋𝐶√𝐿𝑠𝐶
∆𝐶 ≈

−𝑓𝑟𝑒𝑠

2𝐶
∆𝐶    (2) 

It can be seen that the capacitance variation (∆𝐶) is multiplied by a factor of −𝑓𝑟𝑒𝑠/2𝐶 

which is a significant value.The above analysis indicate that the detection of MEMS 

defects in the frequency domain is much easier than the time domain. For instance, a 

defect causing 10fF variation from a nominal value of 1pF in the time domain can alter 

the resonant frequency of 1.0GHz by more than 10MHz. Such a significant variations of 

frequency can readily be measured in the frequency domain while measurement of 10fF 

in the time domain is a challenging task.    

SIMULATION AND MESUERMENT RESULTS 

To verify the validity of the proposed method, simulations were carried out using 

advanced design system (ADS) simulation tool from Agilent with TSMC 65nm CMOS 

technology. In addition, a MEMS comb-drive was designed and fabricated to validate the 

proposed test solution.Fig.4.3 (a) shows the implemented MEMS comb-drive structure in 

Coventorware environment in the steady state without a test stimulus and Fig.4.3 (b) 

presents the response after excitation with a test stimulus. It can be observed that the 

MEMS movable arm is displaced by about 10nm in response to the applied input.  
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This displacement affects the capacitance of the comb-drive by about five femto-Farads. 

Such a minor capacitance variation is extremely difficult to measure in the time domain. 

However, in the frequency domain the 5fF variation translates to a significant change in 

the frequency of the implemented oscillator. The response of the oscillator for a fault-free 

comb-drive is shown in Fig.4.4.  

 

(a) 

 

(b) 

 

Fig.4.3. Implemented MEMS comb-drive (a) steady state without a test stimulus and (b) excited 

with a test stimulus. 
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It can be seen that the periodic sinusoidal signal is generated with a constant envelope. 

The voltage swing of 690 mV was obtained which is the normal operating mode. From 

Fig.4.4, the measured time period of the output signal is about 0.93ns which represent the 

oscillation frequency of 1.07 GHz. 

For the purpose of fault analysis, different faults were injected to observe the effect of the 

output. In addition to the frequency variations, the deviations of the amplitude can also be 

observed to detect possible defects. Fig.4.5 presents the effects of missing fingers on the 

output frequency response. It can be seen, as the number of missing fingers increases the 

output voltage swing grows and the frequency of oscillation changes. 

 

 
Fig.4.4 Output of the oscillator running at 1.07GHz. 
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Based on the simulation results each missing finger corresponds to approximately five 

femto-Farads reduction in the total capacitance which will corresponds to almost 5MHz 

resonance frequency shift. Simulation results for different cases of missing fingers are 

summarized in Table. I. The variation of frequency with missing fingers is linear and for 

each missing finger the oscillation frequency rises by about 4.6MHz. The table also 

presents the amplitude variations with missing comb-drive fingers. It can be seen that the 

amplitude variation with frequency is not linear.  

 

 

 

 

 

 

 
Fig.4.5. Output response according to the comb-drive missing fingers. 

 

Four missing finger      ----------
Three missing finger    ----------
Two missing finger      ----------
One missing finger       ----------
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A comb-drive was fabricated and tested as a proof of concept. Fig.4.6 (a) shows photos of 

the fabricated comb-drive using a gold-based surface micromachining process. The 

measured return loss of the comb-drive using Agilent’s E5016B network analyzer is 

shown in Fig.4.6 (b). To evaluate the fault coverage of the proposed test solution, physical 

faults were injected into samples of the fabricated comb-drive.  

TABLE I.VARIATIONS OF PERFORMANCE PARAMETERS ACCORDING TO MISSING FINGERS OF 

THE IMPLEMENTED MESMS STRUCTURE. 
 

Number 

of 

missing 

fingers 

Total 

capacitance 

(fF) 

 

C

(fF) 

 

Period

(ns) 

 

resf  

(GHz) 

 

resf

(MHz) 

Voltage 

swing 

(mV) 

0 52 0 0.931 1.0741 0 302 

1 47.2 4.8 0.927 1.0787 4.6 324 

2 42.3 9.7 0.924 1.0822 8.1 349 

3 37.2 14.5 0.920 1.0869 12.8 386 

4 32.4 19.6 0.918 1.0893 15.2 421 

5 27.5 24.5 0.915 1.0928 18.7 476 

6 23.3 28.7 0.911 1.0976 23.5 514 
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The measured S-parameters for both faulty and fault-free comb-drives are shown in 

Fig.4.7. It can be seen that the structural defects affect the S-parameters considerably. The 

measured S-parameters were used to extract circuit models for both faulty and fault-free 

comb-drives. Then the circuit models were imported to the ADS environment for fault 

analysis. 

(a) 

 
 

(b) 

 
 

 
Fig.4.6. (a) Photos of the fabricated comb-drive using a gold-based surface micromachining 

process, (b) Measured return loss of the fault-free comb-drive. 
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The results indicate that the proposed test solution can successfully detect missing, broken 

and shorted fingers. The resonant frequency in this case changes by about 5.5 MHz for 

each missing finger which is close to the results obtained through simulations. 

 

(a) 

 
 

(b) 

 
 

 
Fig.4.7 (a) Photo of a faulty comb-drive (b) Return loss for both faulty and fault-free comb-

drives. 
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Chapter 5 

Self-Resonation Test Methodology for Capacitive MEMS devices 

 

Developing test solutions for MEMS devices is proven to be a challenging task. This is 

mainly due to the multidisciplinary nature of MEMS systems where the input stimulus or 

the output response may not be electrical signals. In general, testing MEMS devices can 

be costly and may require sophisticated equipment to characterize performance 

parameters in different energy domains. A dedicated test solution for MEMS devices is 

needed to detect possible structural defects that can lead to the device failure. Test 

solutions for MEMS devices to evaluate their performance in different energy domain [42] 

are needed. In general, micro-system testing poses certain challenges due to the high 

density and complexity of fabricated components which limits the controllability and 

observability. Test for MEMS devices, in addition to the electrical test stimuli, may 

require signals in other domains such as mechanical, temperature or light inputs to 

characterize the device by stress, strain or heat transfer analysis [43]. Ultimately, a series 

of tests should be performed prior to device deployment in the field. In the area of semi-

conductor testing, mixed-signal circuits and MEMS devices introduce greater challenges 

in comparison with digital circuits due to their component design complexity and larger 

sample space for testing purposes. A major class of MEMS sensors operate based on the 

principle of capacitance sensing where the MEMS device can be modeled by a variable 

capacitor. The parameters of interest in these sensors are detected through capacitance 

variations. As an example, in automotive industry MEMS accelerometer is widely used 

as an innovative approach to trigger vehicle airbag. Capacitive MEMS sensors are also 
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used in many other applications such as vibration monitoring, shock detection, navigation 

systems, air blast pressure sensor. At the heart of accelerometers, a single or multiple 

comb-drives are used that are operating based on the capacitance sensing. Various test 

methods for capacitive MEMS have been proposed in the literature [35-40]. A Built-In-

Self-Test (BIST) technique that can be applied to symmetrical structures is presented in 

[29]. Self-test techniques have been employed to detect the presence of asymmetry due to 

the defects. This approach can detect manufacturing related structural defects. 

A MEMS test structure and measurement procedure is presented in [30] to extract the 

lateral conductivity of thin film such as aluminum and p-doped poly silicon. In [31], a set 

of electrostatically actuated MEMS structures is presented to monitor MEMS fabrication 

process and measure material properties. A fully electrical test method for MEMS 

devices at the wafer-level is presented in [32]. In this approach a test setup to measure 

electrical and mechanical parameters of capacitive MEMS sensors has been developed. 

This test solution presents a fast wafer-level verification for MEMS devices. A BIST 

solution for capacitive MEMS devices which is called dual-mode BIST technique is 

presented in [33]. The control circuit in this technique only consists of several 

multiplexers, as a result the area overhead due to the test circuits is negligible. In [34], a 

technique to detect mechanical parameters of a cantilever-beam using electrical test 

stimulus is described. In this solution, the MEMS response is mapped to the mechanical 

properties of the beam using a regression-based mapping technique. It is reported that this 

test solution can estimate the beam mechanical parameters with accuracy of 5% of the 

nominal values. Intensive researches are conducted to materialize MEMS-CMOS 

integration [22-23]. There are many advantages in using MEMS devices such as low 
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parasitic, small sizes and low costs [24]. Capacitive sensors can benefit from MEMS 

technology [25] which can reduce the costs and improves the performance [26].Most of 

the test methods for MEMS devices in the literature rely on the test response evaluation 

in the time domain. In this work a new solution is presented in which the output response 

analysis is performed in the frequency domain. It is shown that a small variation of 

MEMS performance parameters translates into a measurable quantity in the frequency 

domain. 

PRINCIPLE OF OPERATION 

A capacitive MEMS sensor is in fact a variable capacitor where the variations of the 

capacitance from its nominal value are used to measure the inputs. Comb-drive is a 

commonly used capacitive MEMS for many applications. Physical defects such as 

missing, broken or shorted fingers, rigid or deformed arms affect the nominal MEMS 

capacitance value or alter its variations with the bias voltage. Accurate measurement of a 

MEMS capacitance can reveal most of the structural defects. For a typical MEMS 

capacitive sensor, the capacitance variations are in the femto-farad range and in certain 

cases in the atto-range. To detect such small changes in the time domain, high resolution 

and accurate measurement circuits are required. These requirements are relaxed if the 

measurements are performed in the frequency domain. The schematic diagram of the 

proposed solution to conduct the measurement in the frequency domain is shown in Fig. 

5.1. It includes a signal source of variable frequency with known internal impedance to 

apply input signals to a spiral inductor in series with a capacitive MEMS device to 

observe the output signals. To conduct the test, a signal is applied to the circuit to 

determine the resonance frequency. At this frequency the voltage across the output which 
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is composed of a series LC circuit drops sharply. Due to the interaction between the 

capacitance and the inductance, the impedance of these components cancel out each other 

at the resonant frequency [20]. 

In order to validate the proposed test method, a comb-drive and a spiral inductor was 

designed. The reason for selecting spiral inductor is due to the fact that a spiral inductor 

can readily be fabricated using the available CMOS technologies and it presents a 

relatively good quality factor [21]. 

 

Based on the principle of operation for capacitive MEMS, the capacitor is stimulated by 

applying the electrical input signals. The stored energy on the capacitor affects the 

electrostatic force on the movable and stationary arms of the capacitive MEMS. A comb-

drive is designed and simulated to model a capacitive MEMS device. The implemented 

comb-drive includes two stationary and one movable arms which are attached to a 

suspension beam from both sides. The MEMS comb-drive, without applying the stimuli, 
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Fig. 5.1 Block diagram of the test solution for capacitive MEMS devices. 
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can be modeled as parallel plate spring-suspended capacitor that follows the basic 

electrostatic actuation rule that is displayed in figure 5.2. 

 

From the principle of operation for electrostatic actuators, we can write: 

𝐹𝑒 =
𝑞2

2𝜀𝐴
         (1) 

Where 𝑞 is the total charge stored on the capacitor, 𝐴 is the capacitor plate area and 𝜀 is 

the permittivity. Equation (1) represents the relationship between the stored energy in a 

capacitor and the electrostatic force (𝐹𝑒) which is applied to the movable and stationary 

component. It can be observed that 𝐹𝑒 is not a function of the distance between the plates. 

This potentially can ease the test procedure as the structural collapse of the capacitive 

MEMS can be avoided in the testing phase. On the other hand based on the Hooke’s law 

𝐹𝑒 = 𝑘𝑦  where k and y are the spring constant and displacement of the spring 

++++++++

-------------

K (Spring)

Anchor

Fixed arm

Movable arm
+

-

VFed

+q

-q

 

 

Fig.5.2. Fundamental diagram of the spring-suspended model of a parallel plate capacitor. 
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respectively. When MEMS capacitor experiences an applied voltage and consequently 

electrostatic force, the distance between the plates (𝑑) changes from 𝑑0 to 𝑑0 − 𝑦 where 

𝑑0 is the free-standing distance. In the steady state, the electrostatic force cancels out the 

mechanical force in equation (1) and thus we can write: 

𝑑 = 𝑑0 − 𝑦 = 𝑑0 −
𝐹𝑒

𝑘
= 𝑑0 −

𝑞2

2𝜀𝐴

𝑘
   (2) 

 

On the other hand, the overall voltage across the capacitor could be written as:  

𝑉 =
𝑞

𝐶
=

𝑞
𝜀𝐴

𝑑

=
𝑞(𝑑0−

𝑞2

2𝜀𝐴
𝑘

)

𝜀𝐴
      (3) 

 

𝑉 = 𝑞(
𝑑0

𝜀𝐴
−

𝑞2

2𝜀2𝐴2𝑘
)      (4) 

 

The above equations show that as the stored charge (𝑞) increases, the electrostatic force 

between the plates increases by 𝑞2 . In order to balance the electrostatic force at 

equilibrium, the suspension beam needs to be stretched from its rest position. 

Mathematical Approach for Capacitance Variation 

The main parameter that changes according to the capacitance variation is the resonance 

frequency. To show how small variations of MEMS capacitance can be identified in the 

frequency domain, the changes of the resonance frequency with respect to the MEMS 

capacitance has been determined. The resonance frequency ( 𝑓𝑟𝑒𝑠 ) of the circuit is 
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determined from 𝑓𝑟𝑒𝑠 =
1

2𝜋√𝐿𝐶
 . Accordingly, the variations of the resonant frequency 

with respect to the MEMS capacitance can be calculated form: 

C

f

LCCC

f resres

24

1 










    (5) 

For a small capacitance variation we can write: 

∆𝑓𝑟𝑒𝑠 ≈
−1

4𝜋𝐶√𝐿𝐶
∆𝐶 ≈

−𝑓𝑟𝑒𝑠

2𝐶
∆𝐶   (6) 

From (6) it can be seen that the variations of the MEMS capacitance, C , is multiplied 

by a factor of Cfres 2/  which can be a significant number. For a case where 𝑓𝑟𝑒𝑠 =

1 𝐺𝐻𝑧  and 𝐶 = 100 𝑓𝐹 the resonance frequency changes by 5KHz due to just 10 atto-

farad capacitance variations. Such a frequency shift can be readily measured in the 

frequency domain but measurement of 10 atto-farad variation in the time domain is a 

major challenge. The schematic diagram of the MEMS comb drive used to determine the 

variations of the resonance frequency is shown in Fig. 5.3. 

 

 

Fig. 5.3. Schematic diagram of a comb drive used to determine the variations of the resonance 

frequency with respect to the displacements of the movable arm. 

0d x

Fixed Arm

Movable Arm
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It includes fixed and movable arms. The distance between the movable and fixed arms is 

marked by  𝑥 whichvaries according to the applied inputs. The variations of the 

capacitance with the distance between the arms can be determined from )/()( xdAxC o  . 

By expanding the Taylor series about 𝑥 = −𝑑0 for 𝐶(𝑥) we can write: 

𝐶(𝑥)=∑
𝐶𝑛(𝑑0)

𝑛!
∞
𝑛=0 (𝑥 + 𝑑0)𝑛   (7) 

 

𝜕𝐶(𝑥)

𝜕𝑥
=

−𝜀𝐴

(𝑑0+𝑥)2
     (8) 

𝜕2𝐶(𝑥)

𝜕𝑥2
=  

2𝜀𝐴

(𝑑0+𝑥)3
    (9) 

𝜕3𝐶(𝑥)

𝜕𝑥3𝑛
=

−6𝜀𝐴

(𝑑0+𝑥)4
    (10) 

By taking the derivatives, the expression for 𝐶(𝑥)becomes: 

𝐶(𝑥)=𝐶(𝑑0) + 𝐶′(𝑑0)(𝑥 + 𝑑0) +
𝐶′′(𝑑0)

2!
(𝑥 + 𝑑0)2 + ⋯ +

𝐶𝑛(𝑑0)

𝑛!
(𝑥 + 𝑑0)𝑛  (12) 

Assuming odx  , the Taylor series of 𝐶(𝑥) can be estimated from: 

)1()1()(
0

1

0 d

x
C

d

x
CxC  

  

(13) 

where 0/ dAC  . The resonance frequency variation as a function of movable arm 

displacement is obtained from: 

)(2

1

2

1

xLCLC
fres




  

(14) 

Substituting for )(xC  from (13) we have: 









  2/1

0

)1(1
d

x
ff resres

  

(15) 
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Using Taylor series we have: 

0

2/1

0 2
1)1(

d

x

d

x
     (16) 

 

Equation (15) is simplified to: 











o

resres
d

x
ff

2

1
     (17) 

As expected equation (17) indicates that a small displacement of the movable arm is 

multiplied by a significant factor of ores df 2/ affecting the resonance frequency. This is 

consistent with the results obtained from equation (6).   

To reduce the required test resources and the test time, instead of frequency the amplitude 

of the output can also be observed at the resonant frequency. In this case, the test signal 

can be applied at the frequency where the inductor resonates with the comb drive's 

nominal capacitance. The structural defects of the MEMS device are detected through 

observation of the output amplitude variations rather than the resonant frequency 

variations. However, the quality factor of the inductor has a significant effect if the 

amplitude variations at the resonant frequency are observed. To select an inductor for the 

purpose of testing MEMS devices, special attention needs to be given to the performance 

parameters of the inductor with respect to the area overhead and also the desired 

frequency of operation. 

In general, practical inductors that are implemented on-chip are in the range of 20 nano-

Henry or lower [21]. Aside from the large area overhead of spiral inductors, there is an 

important problem that involves a considerable loss due to the skin effect that can lead to 
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current distortion [21]. Thus, relative optimization with several trade-offs is required to 

implement the spiral inductor. There are different geometrical layouts for inductor 

implementation. The hexagonal format is preferred over square, octagonal or circular 

shapes. Figure 5.4(a) represents the parameters of the hexagonal spiral inductor that need 

to be taken into consideration. In this figure 𝑊 is the metal width, 𝑆 represents the edge 

to edge spacing between the adjacent turns, 𝑑𝑖𝑛  and 𝑑𝑜𝑢𝑡 are the inner and the outer 

diameters respectively. The number of turns is a key design factor in spiral inductor 

design [22].The hexagonal inductor was implemented using Advance Design System 

CAD tool from Agilent as shown in figure 5.4 (b). 
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The following constraints on the design space are imposed. The fill ratio, 𝜌, is chosen to 

be 0.1 < 𝜌 < 0.9 where𝜌 =
𝑑𝑜𝑢𝑡−𝑑𝑖𝑛

𝑑𝑜𝑢𝑡+𝑑𝑖𝑛
[22]. Another significant design parameter is 𝑆/𝑊 

ratio which normally is selected to be at less than “1”for the available fabrication 

technologies for on-chip inductors. Below is an empirical formula that can represent the 

inductance of a spiral inductor [23]: 

 

(a) 

 

(b) 

Fig. 5.4 Hexagonal inductor parameters (a) Hexagonal schematic (b) Layout of the 

implemented inductor in ADS. 
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𝐿ℎ𝑒𝑥 = 2.41 × 10−3𝑛
5

3⁄ 𝑑𝑎𝑣𝑔log (4
𝜌⁄ )      (15) 

𝑑𝑎𝑣𝑔is the average diameter which is
𝑑𝑖𝑛+𝑑𝑜𝑢𝑡

2
. 

The starting point for the spiral inductor design was the required frequency of operation. 

Since in this work the gigahertz range is targeted then the capacitance of the Pico-Farad 

range and the inductance of nano-Henry range are desired. The frequency range was 

limited to less than five gigahertz for the purpose of certain application and the total 

capacitance obtained from the comb-drive was in the range of 100 femto-Farad to 1 pico-

Farad. From the capacitance value and the upper limit for the resonant frequency 

equation,
1

2𝜋√𝐿𝐶
< 5𝐺𝐻𝑧, the inductance is required to be in the range of 2 to 10 nano-

Henry.  

It is necessary to properly model the desired on-chip inductor. There are couple of 

methods available in the literature to perform this task. Segment circuit model [22]is a 

simple approach by using a separate lumped 𝜋 models for every single segment of 

desired shape. In hexagonal case with 6 turns we would have had 8× 6 = 48 separate 

lumped 𝜋 model. Furthermore some additional parameters are also needed to model the 

coupling among the segments which adds to the complexity of the design. There is 

considerable research in the literature [24, 25, 26, 27] to model spiral inductors based on 

the lumped circuit model. The desired hexagonal inductor is represented by its equivalent 

𝜋 model. Figure 5.6 exhibits the 𝜋 circuit model of the inductor. 𝐿and𝑅𝑠  are the series 

inductance and resistance respectively. 𝐶𝑠 is the feed-forward capacitance. In fact, the 

implementation of the hexagonal inductor was carried out on silicon substrate; hence we 



 

55 

 

had to consider the substrate capacitance, 𝐶𝑠𝑖  , substrate-oxide capacitance, 𝐶𝑜𝑥 , and 

substrate resistance,𝑅𝑠𝑖, as well. 

 

The initial approach in the layout environment was the attempt to shrink the size of the 

inductor as much as possible to meet the required frequency of operation. Accordingly, 

the diameters (inner and outer) are selected in micro-meter range and by optimizing the 

parameters of the spiral inductor the following values were chosen, 𝑛 = 4  which 

represents the number of turns of the hexagonal inductor. 𝑑𝑖𝑛 = 50 𝜇𝑚  and 𝑑𝑜𝑢𝑡 =

145 𝜇𝑚  are selected respectively. These values will result in 𝜌 = 0.49 and 𝑑𝑎𝑣𝑔 =

97.5 𝜇𝑚. Also 𝑆 = 2.5 𝜇𝑚and 𝑊 = 7.5 𝜇𝑚 were chosen. By performing the frequency-

based simulation the inductance of 2.6 nH was obtained as displayed in figure 5.7. It can 

be seen from the frequency sweep that the inductance value is in the range of 2.5 to 2.7 

nano-Henry. This slight inductance variation is in the acceptable tolerance range. 

 

Fig. 5.6. 𝜋circuit model of the spiral inductor. 

 



 

56 

 

 

SIMULATION RESULTS 

To test the validity of the presented method, a MEMS comb-drive was designed and 

simulated using Agilent’s Advanced Design System (ADS). The 3D representation of the 

implemented comb-drive in figure5.8 (a) was used to perform the circuit level 

simulations. Figure5.8 (b) shows the same comb-drive with missing fingers which is used 

to observe the variations of the resonance frequency due to the physical defects. 

 

Figure 5.7 Inductance graph of the hexagonal inductor with respect to frequency sweep. 
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Figure 5.9 presents the comb-drive MEMS structure in Coventorware environment after 

applying the stimulus. It can be seen that the stimulated movable arm deflects by as much 

as 10nm. This displacement affects the MEMS nominal capacitance and consequently the 

resonant frequency in the test mode. 

(a) 

 

(b) 

 

Fig 5.8 (a) Implemented comb-drive used to evaluate the proposed test method. (b) Comb-

drive with missing fingers used for fault analysis. 
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The nominal capacitance of the structure that was obtained is shown in figure5.10 which 

remains in the range of 1.2 to 1.5 pico-Farad up to frequency of 5.0 GHz. At higher 

frequencies the capacitance increases due to the high frequency effects of the substrate 

used to implement the comb-drive. 

After designing the spiral inductor and comb-drive separately, the next step was to do the 

analysis for both of them on the same chip. The internal impedance of the input port was 

selected to be 50 ohms for proper load matching. The generated layout of interconnects 

for the inductor and the comb-drive are displayed in figure 5.11. 

 

 

 

 

Fig. 5.9. Implemented capacitive MEMS and relevant arm deflection according to applying the 

stimulus. 
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The test circuit is designed to ensure that the resonance frequency falls below 5.0 GHz to 

avoid the undesired effects on the test results at higher frequencies. The test circuit was 

simulated using ADS and the output signal is shown in figure 5. 12. It can be seen that 

the output signal falls sharply at the resonance frequency of 3.958 GHz. From the 

 

 

Fig. 5.11 Series combination of the comb-drive and spiral inductor. 

 

Fig. 5.10 Plot of the capacitance with respect to frequency sweep. 
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resonant frequency for fault free device the capacitance of the comb-drive at the resonant 

frequency was determined to be 1.28 pF. This value was used as the reference 

capacitance in the test mode. 

 

The effects of missing fingers on the MEMS capacitance and resonance frequency as part 

of structural defects have been summarized in Table I. The variations of the resonance 

frequency is linear and as the number of missing fingers increases as expected the 

capacitance decreases and the resonance frequency rises. It is also shown that the 

structural defects such as missing fingers will shift the frequency slightly. The frequency 

and the amplitude shifting are shown in figure5.13. It is noticeable that with each missing 

finger the amplitude of the signal increases respectively. The purple wave  in figure 5.13 

demonstrates the fault free case, light blue is the response for a case with a pair of 

missing fingers, the response of four pairs of missing fingers is presented by pink and 

 

Fig. 5.12 Insertion loss of the circuit indicating that the inductance and the MEMS capacitance 

resonate at 3.958 GHz. 
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ultimately the blue color displays the amplitude variations when there was six missing 

fingers. It can be observed that the amplitude variations with respect to the missing 

fingers increase. The variation of the resonant frequency with missing figures is 

summarized in Table. I. 

 

 

TABLE I.VARIATIONS OF PERFORMANCE PARAMETERS OF THE IMPLEMENTED COMB 

DRIVEF WITH MISSING FINGERS. 
 

Number of 

missing 

fingers 

Total 

Capacitance 

(pF) 

C

(fF) 
resf  (GHz) 

resf (MHz) 

0 1.280 0 3.958 0 

2 1.272 8 3.974 16 

4 1.263 17 3.995 37 

6 1.254 26 4.022 64 

8 1.247 33 4.031 73 

10 1.239 41 4.063 107 

12 1.225 55 4.088 130 

14 1.216 64 4.117 159 
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The variation of output with respect to the frequency sweep for short fingers and tilted 

movable arm is shown in Table II. Simulations were also performed to see the effect of a 

high Q inductor on the output amplitude variations. The results indicate that the 

amplitude of the output signal varies approximately 1.0 dB from the reference value for 

each missing finger when an inductor with 𝑄 = 40 is used. 

 

Fig. 5.13 S-parameter of the resonance circuit with respect to comb-drive missing fingers 
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Fabrication procedure and measurement results 

In order to verify the validity of the proposed test solution, a comb-drive and a spiral 

inductor were fabricated using poly-MUMPs surface micromachining process. Poly-

MUMPs technology is a three-layer poly-silicon surface micromachining process which 

is based on the silicon-on-insulator process. This process has the specific features as 

standard surface micromachining process. 

According to Poly-MUMPs technology for structural material, silicon is used as the main 

material for the substrate. In the deposition stage an oxide of poly-silicon is deposited 

which is used as a sacrificial layer. For electrical isolation between the substrate and the 

poly-silicon, silicon nitride is used to create a three-layer poly structure that is needed to 

complete the poly-MUMPs material selection. The process commences first by doping 

the silicon wafer substrate heavily with phosphorus. This greatly helps to avoid the 

electrostatic charge between the surface and the substrate during fabrication process. In 

TABLE II.VARIATIONS OF PERFORMANCE PARAMETERS OF THE IMPLEMENTED COMB 

DRIVEF WITH SHORT FINGERS AND TILTED MOVABLE ARM. 

 
 Output at the 

resonant 

frequency(dB) 

resf  

(GHz) 

 

resf

(MHz) 

 

Short fingers 

 

-13.045 

 

3.988 

 

30 

Tilted 

movable arm 

by 3 degrees 

 

-19.765 

 

4.019 
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general, seven layers are used at the end of the fabrication phase which three of them are 

poly0; poly1 and poly2.There are also two poly’s oxides (1st and 2nd) layers and at the top 

and bottom of the structure as well as metal and nitride layers. The Poly-MUMPs 

fabrication process including the seven layers is represented in figure 5.14 [28]. 

 

Figure 5.14 (a) displays the silicon as substrate, Nitride, Poly0 and photo-resist as initial 

layers to begin the fabrication process. The photo-resist is used to coat wafers and also to 

assist the photolithography process. By developing the exposed photo-resist, it is possible 

to make a desired mask to transfer the pattern into the subsequent underlying layer as 

shown in figure5.14(b) and figure 5.14(c) where Poly0 is etched through plasma etch 

system. Next step is the deposition of phosphosilicate glass (PSG) also known as 1st 

oxide that is sacrificial layer with the thickness of 2 𝜇m by low pressure chemical vapor 

 

 

 

Figure 5.14 the Poly-MUMPs fabrication process[28]. 
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deposition (LPCVD) process as shown in figure 5.14(d). This sacrificial layer is patterned 

lithographically with specific mask known as Dimple which is removed at the end of the 

process in order to free the first mechanical component of the poly-silicon. In order to 

create a hard mask for the next poly-silicon etch the PSG layer is etched initially There is 

a third mask layer called Anchor1 which is used to pattern the wafer again and also to 

reactivate the ion etch as demonstrated in figure 5.14(e). After the poly-silicon etch is 

done, the photo-resist is stripped and then the hard mask oxide is removed as shown in 

figure 5.14 (f). Next step is patterning the second oxide. This task is performed with two 

different etch masks to provide a connection between Poly1 and Poly2 electrically and 

mechanically. These two layers are lithographically patterned and etched. Anchor2 is 

another mask layer that is introduced to etch the first and the second oxide layers in a 

single step. This can assist in reducing misalignment between individual etched holes and 

also eliminating the need to make a cut in the oxides. This process is demonstrated in 

figure 5.14 (g) which includes the cross section of the wafer after completion of Poly1, 

Poly2 and Anchor2 levels. The final stage is the deposition and patterning of 0.5 𝜇m of 

metal layer which is used in many applications such as probing, bonding and electrical 

routing. In this work, the metal is used to probe the spiral inductor. Figure5.14 (h) 

presents the final structure that needs to be immersed in de-ionized (DI) water and 

alcohol for at least 10 minutes in temperature of 110 °𝐶respectively to reduce the stiction 

[28, 29]. The fabricated spiral inductor as well as probing station is presented in figure 

5.15. 
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In order to measure the return loss of the resonant circuit, Agilent’s E5016B network 

analyzer was used. The measurement results are shown in Fig. 5.16. 

 

 

Fig. 5.16Obtained S-parameter of the resonance circuit 

 

 

Figure 5.15 fabricated spiral inductor through Poly-MUMPs. 
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It can be seen that the resonance frequency drops sharply at 3.122 GHz which is close to 

the results obtained by simulation. The experimental measurements indicate that the 

proposed test solution could successfully detect broken, missing and shorted fingers. 
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Chapter 6  

CONCLUSION 

A test solution for capacitive MEMS presented in this work in which the test results are 

evaluated in the frequency domain rather than the time domain. It is shown that the 

frequency domain analysis has the potential to detect minor MEMS structural defects. 

Variations of the resonant frequency or the output amplitude can be observed to detect 

possible structural defects. Simulation results using an implemented comb-drive indicate 

that the presented test scheme can be utilized to detect missing fingers, short fingers and 

tilted arms. In the second phase of the work, an oscillator-based test solution for 

capacitive MEMS is presented in which the test results are inspected in frequency domain. 

Variations of the resonant frequency or the output amplitude can be observed to detect 

possible structural defects. Analytical analysis shows the proposed approach has the 

potential to detect minor MEMS structural defects. Variations in the output voltage swing 

and the resonance frequency alterations can be observed to detect possible structural 

defects.  

Simulation results and experimental measurements using an implemented spiral inductor 

and a comb-drive indicate that the presented test scheme can be utilized to detect missing 

fingers, short fingers, broken and tilted arms in MEMS devices. The proposed method is 

easy to implement and has a high sensitivity to capture structural defects affecting the 

capacitance of MEMS sensors. 
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