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Highlights of main contributions of this research:   

 We introduce parts failure distribution into the spare parts inventory management 

problem. Compared with the traditional forecasting methods based on past demand data, 

this new approach predicts the future demand more accurate.  

 

 Our proposed models satisfy spare parts demands from two perspectives: quantity and 

time. Therefore, it can better improve service level and control the total costs which 

generally include purchasing cost, holding cost, and shortage cost.  

 

 Two nonlinear programming (NLP) formulations are established and two solution 

methodologies, GAMS and an iterative method are developed. Comparisons of the two 

models and solution methodologies are also discussed. 

*Highlight (for review)
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Efficient Aircraft Spare Parts Inventory Management under Demand Uncertainty 

Abstract 

In airline industries, the aircraft maintenance cost takes up about 13% of the total operating cost. It 

can be reduced by a good planning. Spare parts inventories exist to serve the maintenance planning. 

Compared with commonly used reorder point system (ROP) and forecasting methods which only 

consider historical data, this paper presents two non-linear programming models which predict 

impending demands based on installed parts failure distribution. The optimal order time and order 

quantity can be found by minimizing total cost. The first basic mathematical model assumes shortage 

period starts from mean time to failure (MTTF). An iteration method and GAMS are used to solve this 

model. The second improved mathematical model takes into account accurate shortage time. Due to 

its complexity, only GAMS is applied in solution methodology. Both models can be proved effective in 

cost reduction through revised numerical examples and their results. Comparisons of the two models 

are also discussed.  

Keywords: aircraft maintenance; spare parts; inventory management; non-linear programming; failure 

distribution; iteration method 

 

1. Introduction 

In airline industries, an operator has to deal with two types of issues: the aircraft operating cost and 

customer satisfaction. Aircraft maintenance planning plays a major role in both of them. On the one 

hand, based on an analysis in 2012 conducted by the International Air Transport Association (IATA)’s 

Maintenance Cost Task Force, the maintenance cost takes up about 13% of the total operating cost, 

and it can be reduced by a good planning. On the other hand, an excellent maintenance program can 

effectively avoid flight delays and cancellations, thus improve customer satisfaction and 

competitiveness in the industry. Spare parts inventories exist to serve the maintenance planning. An 

excess of spare parts inventory leads to a high holding cost and impedes cash flows, whereas 

inadequate spare parts can result in costly flight cancellations or delays with a negative impact on 

airline performance. Since the airline industry involves with a large number of parts and some of them 

are quite expensive, it is important to find an appropriate inventory model to achieve a right balance.  

*Manuscript WITHOUT Author Identifiers
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Rotables 

Complex components     

Normally unlimited number of repairs 

Normally no scrap is expected  

Controlled by individual serial number   

Exchange during maintenance 

Repairables 

components which can be technically and economically repaired:  

Under normal conditions, a follow up of each individual serial number is not necessary. 

Have limited number of repairs and also have a possibility of scrap 

Expendables 

cannot be repaired and will be scrapped after removal and inspection result is unserviceable 

100% replacement items 

Items which cannot be repaired (not economical to be repaired) 

Standard parts 

Consumables 

any materials used only once 

Raw material 

Chemical material 

Items which merge on production with new product and cannot be removed 

Table 1．．．．Definitions of Rotables, Repairables, Expendables and Consumables 

 

Compared with other industries, the airline industry is unique due to a combination of four market 

characteristics: global need for parts, demand unpredictability, traceability of parts for safety reasons, 

and high cost of not having a part. Traditionally, spare parts are generally classified into four groups: 

Rotables, Repairables, Expendables and Consumables, which are listed in Table 1.  For different 

categories, different replenishment policies are used. Rotables and Repairables are mainly based on 

predicted failures estimated by manufacturers, and the planning parameters are finished as 

management decision. As to Expendables and Consumbles, the reorder point system (ROP) is used and 

input comes from historical demand with estimated changes. However, this kind of inventory 

management is typically subjective and imprecise, thus is not an ideal policy. From a survey conducted 

by Ghobbar and Friend (2004), 152 out of 175 respondents were using the ROP system and about half 

were dissatisfied and considering implementing new systems. 

 

Our research was motivated by creating an efficient spare parts inventory model in order to provide 
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better service for maintenance needs. When aircraft parts fail, they generate demand for spare parts, 

and are supplied from spare parts inventory. Under ideal situation, those parts should be in stock and 

in turn replenished by further activities such as purchasing or repairing. Demands will be satisfied 

immediately, and aircraft maintenance work can take place on schedule. However, if required spare 

parts are not available at that time, even purchase orders can be accepted by suppliers at once, 

delivery time is still a big issue that cannot be ignored. Postponed troubleshooting due to spare parts 

shortage will probably lead to flight delay or cancellation which will incur huge extra cost. 

Unfortunately, the second situation is hard to avoid because of uncertain parts failures, large number 

of parts, limit budget and warehouse space, etc. We try to establish an efficient spare parts inventory 

model that use minimum expense to achieve maximum productivity. Unlike the previous inventory 

models that just address the problem of determining the amount of parts to be purchased, our 

efficient inventory model satisfies spare parts demands from two perspectives: quantity and time. 

Therefore, it can better improve service level and control the total costs which generally include 

purchasing cost, holding cost, and shortage cost. 

 

In the context of our model, the installed parts failure distribution is introduced. We assume failures 

can be predicted based on maintenance data or manufacturer’s manual, and maintenance activities 

are the key drivers of spare parts demand. Advance orders are triggered to reduce downtime caused 

by parts delivery time. In our analysis, we examine the parts failure distribution to find optimal order 

time and order quantity by considering that the lifetime and quantity of installed parts failure 

distribution may influence the duration and numbers of spare parts shortage or overstock, thus result 

to total cost fluctuation. A non-linear programming (NLP) model is presented with the objective of 

minimizing air carriers’ expected cost in spare parts. Numerical and iteration methods and GAMS are 

employed to solve the model. 

 

This paper is organized as follows. In the next section, we give a brief literature review. Section 3 

presents a basic mathematical model considering shortage period starts from mean time to failure 

(MTTF). Numerical and iteration methods as well as GAMS can be used to solve this model. We also 

develop an improved mathematical model, which takes into account exact shortage time, and its 
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solution methodology in Section 4. Section 5 illustrates the value of our models in cost reduction by 

numerical examples and their results. Sensitivity analysis and models comparison is conducted in the 

following section. Finally, Section 7 provides the conclusions and suggestions for future research. 

 

2. Literature Review 

Over the past few decades, great efforts have been made to improve spare parts inventory 

management. Some research did demand forecast based on spare parts consumption in the past years. 

Among those work, Ghobbar and Friend (2003) discussed the forecasting of intermittent demand in 

relation to these primary maintenance processes, and compared the experimental results of thirteen 

forecasting methods. Regattieri et al. (2005) analyzed the behavior of forecasting techniques when 

dealing with lumpy demand, and made a comparison for twenty forecasting techniques. Both papers 

found that the best approaches for intermittent demand are weighted moving average, Holt and 

Croston methods.  

 

In some other research, flying hours was considered as a critical factor in demand forecast. This is due 

to the fact that long flying hours may cause aging or wearout which closely relates to part failure or 

demand. Campbell (1963) examined demand data from the United State Air Force’s maintenance 

records, and explored relationships between demand and operational variables. He concluded that 

demand seemed to be related to flying hours and sorties flown, with flying hours having a stronger 

relationship. Ghobbar and Friend (2002) investigated the source of demand lumpiness, and proposed 

an assumption that demand is strictly linearly to flying hours/landings. Today, more companies are 

considering flying hours as the major factor in their forecasting of demand calculation and using the 

mean time between removal/ overhaul (MTBR/O) to forecast a failure rate. Thus preventive 

maintenance (PM) is widely used especially for some critical components that directly affect flight 

safety.  

 

Many papers are presented to address spare parts and failure-based maintenance actions or spare 

parts with either an age or block-based replacement policy. The earliest papers can be traced to 

Natarajan (1968) who proposed a reliability problem with spares and Allen and D’esopo (1968) who 
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studied an ordering policy for repairable stock items. Armstrong and Atkins (1996) and de Smidt-

Destombes (2007) described the joint optimization of spare parts inventory and age or block-based 

replacement policies. Vaughan (2005) proposed a failure replacement and PM spare parts ordering 

policy. Wang (2012) presents a model to optimize the order quantity, order intervals, and PM intervals 

jointly under a two-stage failure process.  

 

The aforesaid papers mainly address the problem either from an inventory point of view based on the 

past spare parts usages to forecast the future demand, or from a maintenance point of view to find an 

optimal order quantity and PM interval considering the correlation between flying hours and failures. 

To the author’s best knowledge, limited research handles failure-based procurement inventory 

management which is very common in practice. One the one hand, when demand is triggered by 

failures, the demand forecast result based on past consumption may not be accurate. For example, 

past low demand in many periods may indicate significant parts aging and therefore high impending 

demands, but the traditional replenishment system will scale back replenishment which is counter to 

the actual requirement. One the other hand, PM inventory management is different from failure-based 

inventory management. As the spare parts demand is uncertain, and sometimes the part delivery time 

may be very long, it could lead significant loss if a critical part fails but there is no spare to replace it.  

 

Deshpande et al. (2006) explored this issue. To improve the performance of aircraft service parts 

supply chain in the United States Coast Guard (USCG), they used mathematical programming tools to 

link the demand transactions to a corresponding maintenance activity. Subsequently, they developed 

an approach to use part-age data to make inventory decisions. It sets an age threshold and observes 

the number of installed parts whose age is greater than the threshold, thereby deciding the advance 

order quantity in the end of the observation period. This approach tries to synchronize the inventory of 

good parts with demand distributions, and replenish the inventory just as anticipated demands arrive. 

It has great advantages compared with traditional inventory policies. However, one important 

operational problem is not mentioned- when is the best time to issue orders? Ordering at the 

beginning of period will result in high holding cost, whereas replenishing at the end of period may lead 

to extensive shortage cost, both tend to drive up the total cost. Our proposed model considers both 
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order time and order quantity. Furthermore, in Deshpande et al. (2006), based on the assumption that 

lead-time demand D and the signal level S follow a joint bivariate-normal distribution, they derived a 

result that the total cost per unit time is minimized by setting the part-age threshold T to a value that 

maximizes the correlation ρ(T) between D and S. In contrast, we introduce the parts failure distribution 

from two aspects, life time and total number of failures, and assume they are uncorrelated, that is, ρ 

equals to 0. Because all demands come from installed parts failures, we can predict impending 

demands and develop an efficient proactive inventory model to replenish spare parts inventory before 

most failures occur. Accordingly, the best order time and the optimal order quantities can be worked 

out by minimizing the total cost which consists of purchasing, holding, and shortage costs. 

 

3. Basic Mathematical Model and Solution Methodology 

3.1 Basic Mathematical Model 

In this paper, we consider a generalized ordering policy for only one kind of part with a given part 

number (PN) in a single period. A part number is a fundamental identifier of a particular part design 

used in the airline industry. It unambiguously identifies a part design within a single corporation, or 

sometimes across several corporations. For example, when specifying a bolt, it is easier to refer to "PN 

BACB30LH3K24" than describing the key information of the bolt, such as dimensions, material, 

installed position and manufacturer, which may be lengthy and incomplete. Moreover, multiple parts 

with the same PN are often found in one or more aircrafts. For instance, if one Boeing 737-300 has 

installed 200 PN BACB30LH3K24 bolts, and the fleet size of Boeing 737-300 is 20, thus the total number 

of PN BACB30LH3K24 operated by the carrier will be 4000.  

 

The length of the planning horizon is denoted by T (0 � � � ∞) and the order quantity in this period is 

denoted by Q. The spare parts for replacement can be delivered after a constant lead time L. The 

demand is uncertain, and depends on the parts failure distribution. We assume that the number of 

failures in period T follows a probability density function (PDF) g (·) and a cumulative distribution 

function (CDF) G (·). The lifetimes of the operating parts are assumed independent with an identical 

probability density function f (·) and a cumulative distribution function F (·). We also assume g (·) and f 

(·) are uncorrelated.  
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Input parameters and function: 

�        the unit holding cost per unit time  

�        the unit shortage cost per unit time  

�        planning horizon, can be infinite 

�        order lead time 

�        demand quantity, a random variable 

	        unit cost 


��
     the PDF of failure distribution considering lifetime for each part 

���
	     the PDF of failure distribution considering number of failures for each PN 

���
     the CDF of failure distribution considering lifetime for each part 

���
     the CDF of failure distribution considering number of failures for each PN 

 

Define the following decision variables 

��        point in time to place an order  

��        the parts arrival time  

�        order quantity 

 

The objective of minimizing the expected total cost is formulated as: 

Min R = ��� � ��
 � �� � �
���
���
� � ��� � � �
��
���

� � � �� � �
���
���
� � 

																�� � �� � ��

��
�� � ��
 ! � ��� � �

��
�� !� " � � 	�							  

(1) 

In the whole planning horizon, we just order this given PN once. If the order quantity is above the total 

actual demand level, that is, the total number of failures in the whole planning horizon is less than the 

order quantity Q, the holding cost of those extra stock will start from t� and last till the end of the 

period. The expected holding cost of this part is represented by the first term. Conversely, if the order 

quantity Q is below the total number of failures, the parts shortage situation will last till the end of the 

planning horizon. The second term describes this expected shortage cost. Notice that the duration of 
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parts shortage is decided by when the � $ failure occurs and when the planning horizon finishes. This 

basic model simplifies the problem by using the mean time to failure (MTTF), which is defined by 

MTTF=� �
��
���
� , to replace the � $ failure time. The third term depicts the expected value of the 

remaining holding cost and shortage cost during the planning horizon when the order quantity “Q” just 

matches the total number of failures. Figure 1 illustrates how this part of holding cost and shortage 

cost are generated. For example, if five failures occurred during the whole planning horizon T, and 

purchased parts arrived between the third failure and the fourth failure, shortage cost would be 

incurred due to the first three failures. On the other hand, the remaining ordered parts would be kept 

in stock and continuously generate holding cost until they are used up. The last term accounts for the 

purchasing cost. Once we find the optimal parts arrival time, the optimal timing to place an order can 

be calculated easily by �� % �� � �.  

 

Figure 1. Time sequence 

 

3.2 Solution Methodology  

3.2.1 Numerical and iteration methods 

From objective function (1), we are obviously interested in determining the value of t� and Q, which 

minimize the expected cost R. Without considering any constraint, Q and	t� can be found by the 

following procedure: 

&'
&� % 	��� � ��
���
 � � (� � ) �
��
���

�
* +1 � ���
-

� (�) �� � ��

��
�� � ��
 !

) ��� � �

��
�� !
�

* � 	 

(2) 

It follows that  
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.!/

.0! % 1��� � ��
 � ��� � � �
��
���
� �2	���
 3 0,	for all Q3 0. 

Because the second-order derivative is nonnegative, the function R (Q) is said to be convex. The 

optimal solution, Q*, occurs where 
67
6� equals zero. That is,  

���∗
 % ��� � � �
��
���
� � � �� � �� � ��

��
�� � ��

 ! � ��� � �

��
�� !� " � 	
��� � ��
 � ��� � � �
��
���

� �  

(3) 

Also, 

&'
&�� % ��) �� � �
���
���

�
� ��+1 � ����
- � ������
 

(4) 

It follows that  

.!/

. !! % 	�
���
�� � �
 3 0,	for all Q3 0. 
As the second-order derivative is nonnegative, R (��) is convex, and the optimal solution, ��*, is 

attained when 
67
6 ! equals zero. That is,  

����∗
 % � � �� � �
���
���
� � ��

��� � �
  

(5) 

One of the widely-used probability distributions in reliability to model fatigue and wear-out 

phenomena is the normal distribution, as illustrated by the works of Tuomas et al. (2001), Byington et 

al. (2002), Batchoun et al. (2003), Deshpande et al. (2006), Muchiri and Smit (2011), and Kiyak (2012). If 

we assume that f(x) is normally distributed, with a mean μ: and standard deviation	σ:, the formula for 

the PDF is 


��
 % 1
√2>σ:

exp (� 1
2
�� � μ:
�σ:� * ,				� ∞ B � B ∞ 

Meanwhile, assume g(z) follows a normal distribution with a mean μC and standard deviation σC. The 

formula for the PDF is 

���
 % 1
√2>σC

exp (�1
2
�� � μC
�σC� * ,				� ∞ B � B ∞ 
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As the random variable ranges from �∞ to �∞, the normal distribution is not a true reliability 

distribution. However, if for most observed values of mean and standard deviation in the context of 

this study, the probability that the random variable takes on negative values is negligible, then the 

normal distribution can be regarded as a reasonable approximation to a failure process. We 

assume	0 B � B ∞, 0 B � B ∞, also f(x) and g(z) are uncorrelated. 

From Equation (3), we have 

�∗ % �D� EF�GDHI
DJ�HID !
D�$KF
�� !DHI
LMNO!PQIRI SKTIUMNO!PQIRI S"DV
$�GD !
KF�GDHI
 W  

(6) 

Here 
F�X
 is the standard normal density function, and �F�X
 is the standard normal cumulative 

distribution function for the normal density function	
��
.		�D��X
 is the inverse of the cumulative 

density function for the normal density function	���
. 

From Equation (5), we have 

��∗ % �D� E$��DHY
ZM��[PQY
RY "K$TY\M��[PQY
RY "K�$
��$KF
 W  

(7) 

Here �F�X
 is the standard normal density function, and	�F�X
 is the standard normal cumulative 

distribution function for the normal density function	���
. 	�D��X
 is the inverse of the cumulative 

density function for the normal density function	
��
. 

 

Because Q* and ��∗ cannot be determined in closed forms from (6) and (7), a numerical algorithm is 

employed to find solutions. The algorithm converges in a finite number of iterations, provided that a 

feasible solution exists. The algorithm is described as follows: 

Step 0. Use the initial solution �� % �∗ % �D� EF�GDHI
DJ�HID !
D�$KF
�� !DHI
LMNO!PQIRI SKTIUMNO!PQIRI S"DV
$�GD !
KF�GDHI
 W,	and let 

����
 % 0. Set i=1, and go to step i. 

Step i. Use �] to determine �2�^
from Equation (7). If �2�^
 _ �2�^�1

, stop; the optimal solution is �∗ % �] , 

and ��∗ % �2�^
. Otherwise, use �2�^
 in Equation (6) to compute �]. Set i=i+1, and repeat step i.  
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When the iteration terminates, we can find the optimal timing to place an order as �� % ��∗ � �. 

To facilitate the calculation of the objective function value in the basic model in the numerical 

experiment, Equation (1) can be simplified as: 

 

`^a	' % ��� � t�
 E�� � μC
�F (�� � μC
σC * � σC�F (�� � μC
σC *W 

																���� � μ:
	E�μC � �
 b1 � �F�� � μCσC 
c � σC�F (�� � μC
σC *W 

																�h�μ: � ��
� � �� � �
� E��� � μ:
�F (��� � μ:
σ: * � σ:
F (��� � μ:
σ: *W � 	� 

(8) 

If the part failure process for a given part number follows other distributions, we can find the 

corresponding solution by solving Equations (3) and (5) with the suitable distribution function. 

 

3.2.2 Solve the basic model by GAMS 

Another method is to use the function errorf(X) in GAMS to implement the non-linear integral 

component of the objective function and find an optimal solution. Both MINOS and CONOPT can yield 

good results. MINOS is suitable for large constrained problems with a linear or nonlinear objective 

function and a mixture of linear and nonlinear constraints. For nonlinear constraints, MINOS 

implements a sequential linearly constrained algorithm derived from the Robinson's method. CONOPT 

is a feasible path solver based on the generalized reduced gradient method and is often preferable for 

nonlinear models where feasibility is difficult to achieve.   

 

4. An Improved Mathematical Model and Solution Methodology 

In the basic model presented in the previous section, the value of T minus MTTF instead of the ��� 

failure time is adopted to define the parts shortage period till the end of the planning horizon. The 

improved mathematical model herein aims to find when the ��� failure occurs and plugs it into the 

model. Therefore, this improved model is designed to find more accurate order quantity Q and order 

time ��. 
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In reliability engineering, it is well known that given that t�, t�, … , tf, where tg � tgK�,	 are n ordered 

failure times comprised in a random sample, the number of units surviving at time tg is n-i. A possible  

estimate for the reliability function can be expressed as 

'h�tg
 % a � ^
a % 1 � ^

a. 
The estimate for the cumulative failure distribution is  

�h�tg
 % 1 � 'h�tg
 % ]
f. 

If we assume the total number of parts with a given PN in the observed fleet is n, which is technical 

information provided by the original equipment manufacturer (OEM), and t� is the � $ failure time, 

� ≪ a. We also assume that f(x) is normally distributed, and the failure times follow �]~k�lm, nm�
, 

then 

 ���]
 % Ф� pDHI
TI 
. 

Because �hqt�r % �
f, and �qt�r % Ф�s[DHI

TI 
, 

we have 

 
�
f % 	Ф�s[DHI

TI 
. That is, � % a	Ф Ns[DHI
TI S. 

Accordingly, the ��� failure time can be expressed as  

 t� % σ: ∗ �tD� N�fS � μ:, 

(9) 

and Equation (1) can be improved as  

Min R = ��� � ��
 � �� � �
���
���
� � � � +� � σ: ∗ �tD� NufS � μ:-�� � �
���
���

� � 

 															�� � �� � ��

��
�� � ��
 ! � ��� � �

��
�� !� " � � 	�. 

(10) 

It is too difficult to determine Q* and ��∗ from Equation (10) due to the complexity of the second term. 

To simplify the formulation, we propose Equation (11) as below, where the second term on shortage 

cost is approximately expressed by using the � $ failure time.  

Min R = ��� � ��
 � �� � �
���
���
� � �+� � σ: ∗ �tD� N�fS � μ:- � �� � �
���
���

� � 
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 															�� � �� � ��

��
�� � ��
 ! � ��� � �

��
�� !� " � � 	�. 

(11) 

Compared with Equation (1), Equation (11) is still much more complex due to the inverse function 

�tD� N�fS, and it is hard to be solved by iterative method. However, with the simplification, we can use 

GAMS and its solver CONOPT to solve the problem (11). Numerical examples and comparative results 

of the two models are conducted in next section. 

 

5. Numerical Examples and Results 

A numerical example, which is introduced in Deshpande et al. (2006), is modified by introducing the 

distribution of the number of failures for a specified PN. The data are originally drawn from the aircraft 

maintenance and inventory databases of the United States Coast Guard (USCG) ( Deshpande et al., 

2006). Here we list the same parameter values used in Deshpande et al. (2006) in Table 2, which is 

about the main gearbox of aircraft type HH65A.  

 
Unit price Unit holding cost per day Unit shortage cost per day Mean time to failure Standard deviation 

c h= 0.25*c/365 s=5*c/365 μ: σ: 

$449,586.00 $307.94 $6,158.71 2436 hours 659 hours 

Table 2. Parameter values of main gearbox in Deshpande et al. (2006) 

Note that if we assume a daily flying time of 10 hours, the gearbox mean age at failure should be 

2436/10=243.6 days, similarly the standard deviation should be 659/10=65.9 days. Additional 

parameter values in Table 3 are introduced for our new models.  

 
Planning horizon Mean number of failures Standard deviation Total number of parts observed in fleet 

T μC σC n 

5 years=1,825days 25 10 200 

Table 3. New designed parameter values for main gearbox 

 

Table 4 summarizes the calculation results of both the Iterative method and GAMS for the basic model, 

and of GAMS for the improved model. We can see that, for the basic model, the decision variables for 

both the Iterative approach and the GAMS approach produce very similar results. The objective 
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function values for both approaches are slightly different with a percentage error margin of 0.45%. This 

error is likely due to the assumption that � �
��
��v
mw� ≅ � �
��
��v

mwD� % μ�F ��vDH

T " �

σ
F ��vDH

T "		in the iterative approach, which neglects the part of the negative values in the normal 

distribution. On the other hand, both approaches yield almost identical decision variable values. Next 

we compare the differences of GAMS results between the basic and improved models. The values of t� 

are essentially the same for the models. However, the values of Q and R change to a certain degree. 

Compared with the basic model, the value of Q for the improved model increases by 0.55%, and the 

value of R increases by 0.54%. A closer examination of the two objective functions reveals that the only 

difference exists in the second term: the shortage period described in the basic model is (� � μ:), 

while in the improved model it is q� � t�r % �� � σ: ∗ �tD� N�fS � μ:". Because the change is only 

related to Q and R, it barely affects the optimal value of t�. In this example, t� is less than μ: implying 

that the shortage situation starts a little earlier in the improved model than that in the basic model, 

therefore more shortage cost would be incurred and more spare parts should be ordered during the 

planning horizon. 

 

Solution approach 
Iterative GAMS 

basic model basic model improved model 

Objective function value R $30,110,394.24 $29,974,161.85 $30,135,359.75 

Decision variable 
Q 37.90 37.92 38.13 

t� 
 

143.52 143.41 143.48 

 
t� * * 185.91 

Iteration number 
 

3 14 14 

Feasible solution yes yes yes 

Table 4．．．．Results from iterative and GAMS solution approaches  

In order to gain better insights into the proposed models and understand their values for cost 

reduction in reality, we input different values of Q and t� in Equation (8) and then compare their 

objective function values. The basic model is chosen because its format is easier than the improved 

model whereas the calculation results of both models are comparable as illustrated in Table 4. Figure 2 

illustrates the relationship between the expected cost and parts arrival time for the main gear box 

when Q=37.90. The optimal value of parts arrival time, which minimizes the expected cost, should be 



 

set at 143.52. Based on the trend, as the parts arrival time increases, the expected cost first decreases 

slightly, followed by a dramatic increase. The reason is that, c

holding cost only takes a small fraction of the unit cost. Moreover, the mean age at failure happens at 

the early period of the planning horizon.

Figure 2．．．．Cost vs. parts arrival time for main 

Figure 3 depicts the relationship between the expected cost and order quantity curve 

box when t�=143.52. From the figure, we can find that as the order quantity 

cost drops sharply till Q= 37.90, then followed 

of the curve can be intuitively explained as follows: if the actual order quantity is below the optimal 

order quantity, compared with overstocking, the shortage cost is much higher tha

Figure 3．．．．Cost vs. order quantity for gearbox when 
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Based on the trend, as the parts arrival time increases, the expected cost first decreases 

slightly, followed by a dramatic increase. The reason is that, compared with the shortage cost, the 

holding cost only takes a small fraction of the unit cost. Moreover, the mean age at failure happens at 

the early period of the planning horizon. 

 

Cost vs. parts arrival time for main gearbox when Q=37.90 

Figure 3 depicts the relationship between the expected cost and order quantity curve for the main gear 

. From the figure, we can find that as the order quantity increases, the expected 

, then followed by a much slower gradual increase. The different slopes

can be intuitively explained as follows: if the actual order quantity is below the optimal 

order quantity, compared with overstocking, the shortage cost is much higher than the holding cost

 

Cost vs. order quantity for gearbox when yz=143.52 

500 1000 1500 2000 t2

50 100 150 Q

Based on the trend, as the parts arrival time increases, the expected cost first decreases 

ompared with the shortage cost, the 

holding cost only takes a small fraction of the unit cost. Moreover, the mean age at failure happens at 

for the main gear 

creases, the expected 

The different slopes 

can be intuitively explained as follows: if the actual order quantity is below the optimal 

n the holding cost. 



16 

 

6. Sensitivity Analysis and Comparison of Models  

To examine how critical parameters in the model affect the optimal solution, we conduct sensitivity 

analyses for two different cases and compare their final results between the basic model and improved 

model. The parameter values are based on the second example in Section 5. In each case, only one 

parameter is changed while the others are kept constant. We investigate how the optimal solutions 

(total cost R, order quantity Q, parts arrival time t�) are affected by the failure distributions (μ:, σ:, μC, 

σC), and how R, Q, and t� in the improved model change with the total number of observed parts (n). 

 

First, we calculate the optimal objective values by varying μ: , the MTTF of given parts, as Table 5 

shows. Figure 4 describes that the expected total cost R of both the basic and improved models 

decreases as μ: increases from 200 to 1200. Also, the values of R in the improved model are always 

higher than those in the basic model, at a small margin from 1.04% to 2.90%. Figure 5 illustrates that 

the optimal order quantity Q in both models decreases when μ: increases. Compared with the basic 

model, the values of Q in the improved model are higher, at a margin from 1.05% to 4.24%. Figure 6 

shows that the parts arrival time t� in both models increases when μ: increases. The values of both t� 

are almost identical, verifying that the assertion in Section 2.5 that the two models mainly differ in 

their handling of Q and R, and, hence the optimal value of t� is barely affected. 

 

  Basic model Improved model Percentage Error 

μ: R Q  t� R Q  t� R Q  t� 

200 30080101 30.13 154.83 30395999 30.45 155.03 1.04% 1.05% 0.13% 

400 28282093 29.72 354.36 28620638 30.09 354.60 1.18% 1.24% 0.07% 

600 26433376 29.18 554.01 26802664 29.63 554.30 1.38% 1.52% 0.05% 

800 24530299 28.45 753.55 24944128 29.02 753.91 1.66% 1.96% 0.05% 

1000 22536336 27.40 952.89 23020242 28.17 953.37 2.10% 2.71% 0.05% 

1200 20370771 25.75 1151.87 20980234 26.89 1152.57 2.90% 4.24% 0.06% 

Table 5．．．．Objective values comparison of two models when {| changes 
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Figure 4. Total cost as {| increases 

 

 

Figure 5. Optimal order quantity as {| increases 

 

Figure 6. Optimal inventory replenishment time as {| increases 
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Basic model Improved model Percentage Error 

σ: R Q t� R Q t� R Q t� 

20 19042951 26.23 1203.48 19225695 26.60  1203.55 0.95% 1.40% 0.01% 

40 19534770 25.93 1188.85 19906533 26.67  1189.13 1.87% 2.76% 0.02% 

60 20020055 25.64 1174.12 20587051 26.73  1174.72 2.75% 4.08% 0.05% 

80 20498901 25.35 1159.28 21267288 26.78  1160.34 3.61% 5.36% 0.09% 

100 20971401 25.06 1144.34 21947276 26.83  1145.97 4.45% 6.62% 0.14% 

120 21437640 24.77 1129.3 22627043 26.88  1131.62 5.26% 7.84% 0.21% 

140 21897695 24.49 1114.16 23306612 26.92  1117.28 6.05% 9.04% 0.28% 

160 22351642 24.21 1098.93 23986003 26.97  1102.95 6.81% 10.23% 0.36% 

180 22799548 23.93 1083.61 24665234 27.00  1088.64 7.56% 11.38% 0.46% 

200 23241476 23.65 1068.2 25344320 27.04  1074.33 8.30% 12.54% 0.57% 

Table 6. Objective values comparison of two models when �| changes 

 

Next, we consider the impact on the optimal objective value by changing the value of standard 

deviation (σ:
 of the parts lifetime, which is listed in Table 6. Figure 7 illustrates that the expected total 

cost R of both the basic and improved models increases as σ: increases from 20 to 200. This result is 

natural as a heightened uncertainty level tends to result in more holding and shortage costs. Figure 8 

describes an interesting situation that the optimal order quantity Q in the basic model decreases 

whereas that in the improved model increases when σ: grows. The order quantity Q in the basic model 

is always higher than in the improved model. The reason might be that failures between t� and μ: are 

ignored in the basic model, leading to a lower order quantity than that in the improved model. 

Furthermore, when σ: increases, the failures distribution becomes flatter, accordingly more parts will 

be ordered earlier to guarantee the same service level. However, the optimal value of Q in the basic 

model decreases due to a growing number of neglected failures between t� and μ:. Finally, Figure 9 

confirms that t� still has little change. 
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Figure 7. Total cost as �� increases 

 

 

Figure 8. Optimal order quantity as �� increases 

 

 

Figure 9. Optimal inventory replenishment time as �� increases 
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7. Concluding Remarks and Future Work 

In this paper, by using the airline industry as the background, we have developed two mathematical 

models to solve a single PN spare parts inventory management problem, where demands come from 

installed part failures. We aim to establish an efficient inventory policy that aims to minimize the total 

cost of stock outs and holding spare parts inventory. Our models aim to reduce downtime due to spare 

parts shortage and excessive inventory holding cost by introducing parts failures distribution and 

triggering advanced orders at a proper time with a proper quantity. Compared with traditional forecast 

methods based on historical data, our models are more reasonable because they consider parts aging 

and focus on impending demands. Computational results indicate that our proposed basic inventory 

model can lead to a significant reduction in inventory cost, ranging from 5.68% to 98.03% in the first 

example, and 45.93% to 93.06% in the second example. We also observed that the values of t� in the 

two models always remain at the same level no matter how we change μ:, σ:, or μC, σC. Furthermore, 

compared with μ: and μC, increased σ: and σC will widen the gap between the two models, in terms of 

both the minimum total cost (R) and the optimal order quantity (Q). The most dramatic gap in Q 

appears when we change the value of σ:, with a percentage error of 12.54%, while this also happens 

to R with a percentage error of 8.3% (See Table 6). An insight drawn from the numerical analyses is 

that the basic model can be used as a reasonable substitute for inventory planning due to its easier 

operation. Moreover, the calculation result of t� from the basic model can be used to approximate the 

result of the improved model which can effectively simplify the calculation process. 

 

It is assumed that the parts failure follows normal distribution in the improved model and the solution 

approaches, though the basic model developed is independent of the distribution. As stated in Section 

3.2.1, the normal distribution is widely used to describe the statistical process of parts failure. However, 

with the different distributions, the advanced model can be revised with using the suitable distribution 

function, and the model can be solved either by numerical iterative approaches or by optimization 

solvers, depending on the distribution function. In case of Poisson distribution, the models can be 

simplified. It would be interesting to observe the impact of different distributions of parts failure on 

the inventory management, which is beyond the scope of this paper. 
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The problem considered in this paper is for fixed horizon T. One of the future extensions of the 

research is to study the problem under a rolling horizon context taking past orders into account. In this 

situation, the running time for each part is different: some are new and some have been used for 

certain time in the system. One possible approach is still to employ the models and solution methods 

presented in the paper but we need update the failure distribution in the new period. For example, we 

calculate each part’s failure time in terms of the mean time to failure − running time (set to 0 if 

negative); then we use a normal distribution to approximate the updated statistical data of parts 

failure. The order quantity should deduct the remaining inventory ordered in the last period.   

 

Another extension of the research is to investigate the problem for multiple given part numbers with a 

budget constraint. It is common and necessary to maintain large numbers of different parts in airline 

industries.  In the case the model will be more complex and new solution approaches are needed to 

solve the problem, especially for large scale problems.   
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