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Abstract

Coalition analysis is extended to incorporate uncertain preference into three sta-

bility concepts, general metarationality (GMR), symmetric metarationality (SMR),

and sequential stability (SEQ) under the paradigm of the graph model for conflict

resolution. As a follow-up analysis in the graph model, coalition analysis aims to as-

sess whether equilibriums under individual calculations are vulnerable to coalition

moves and countermoves and, hence, become unstable under coalition stabilities.

Coalition analysis has been considered for transitive graph models with simple pref-

erence under four stabilities, Nash, GMR, SMR, and SEQ, as well as general graph

models with uncertain preference for the Nash stability. This paper introduces pref-

erence uncertainty into coalition stabilities under GMR, SMR, and SEQ for general

graph models that can be transitive or intransitive. Depending on the focal coali-

tion’s different attitudes towards preference uncertainty, four different extensions

are presented. Interrelationships of coalition stabilities are investigated within each

∗Corresponding author. E-mail: inohara@valdes.titech.ac.jp (Takehiro Inohara).
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extension and across the four extensions. A case study is carried out to illustrate

how to apply the proposed coalition stabilities.

Keywords: Conflict analysis, coalition analysis; preference uncertainty; graph model.

1 Introduction

Conflict and confrontation among agents with distinct interests may occur at many dif-

ferent settings and scales [3]. To handle strategic conflicts, different approaches have been

put forward such as hypergame analysis [7], drama theory [2], and the graph model for

conflict resolution [3]. As a simple but flexible group decision technology, the graph model

is a proven and invaluable tool for modeling and analyzing strategic conflict in which two

or more self-interested agents are in dispute over some issues [3, 10]. When a conflict

model is established within the graph model framework, two stages are involved: model-

ing and analysis. In the modeling stage, an analyst or stakeholder identifies two or more

decision-makers (DMs) involved in the conflict situation, each DM’s available courses of

action or options, feasible states formed by all DMs’ plausible option selections, state

transitions among feasible states controlled by each DM, as well as all DMs’ preference

over feasible states [3]. Once a conflict model is set up, the analysis stage involves a stan-

dard stability analysis and some follow-up analyses such as coalition analysis [8,9,11,22]

and status quo analysis [15, 16, 21]. The stability analysis assesses stability of each state

from each DM’s perspective and a state that is stable for all DMs is called an equilibrium,

corresponding to a potential resolution for the conflict model. The stability analysis is

built upon a noncooperative concept with an underlying assumption that each DM acts

independently for its own best interests after calculating its moves as well as coutermoves

by its opponents. Following this line of thinking, the status quo analysis takes a forward

looking perspective to assess how DMs act and react to direct a conflict from a status

quo state or initial state to any particular equilibrium that is of interest to the analyst

or stakeholders [16,17,21]. On the other hand, the other post-stability analysis, coalition

analysis follows a cooperative viewpoint and assesses whether individual DMs can jointly
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improve their position by joining a coalition [8, 11,22].

Coalition formation and stability have been an active research area in game the-

ory [1, 12, 13, 19]. The coalition analysis considered here is confined to the graph model

for conflict resolution paradigm. As Kilgour et al. [11] put it, coalition analysis assesses

whether self-interested and independent DMs can gain by forming a coalition and coor-

dinating their moves. This paper follows the idea in [11,22] and treats coalition analysis

as a post-stability analysis. The implication is that only equilibria identified in the sta-

bility analysis stage will be examined for coalition stability. The rationale is that a

non-equilibrium state is not sustainable as at least one DM is expected to deviate from

it unilaterally based on the DM’s calculations. An equilibrium, on the other hand, is

expected to sustain for a while since no DM is motivated to depart from it as per individ-

ual contemplations. However, when two or more DMs form a coalition, an equilibrium

may be upset via a sequence of joint moves by the coalition members. In this case, the

target state should also be an equilibrium as any non-equilibrium state is transient. This

process is referred to as an “equilibrium jump” in [11]. Understandably the target state

of an equilibrium jump should presumably make all members in the coalition better off

and cannot be achieved by any DM acting individually. Coalition analysis, therefore,

aims to alert the analyst whether such a coalition exists and, if existent, which equilibria

are vulnerable to equilibrium jumps and how these jumps are attained by coalition joint

moves.

When a state is assessed for individual stability, different solution concepts such as

Nash stability (Nash) [18], general metarationality (GMR) [7], symmetric metarational-

ity (SMR) [7], and sequential stability (SEQ) have been proposed to characterize DMs’

distinct behavioural patterns in face of conflict [3]. For details of the characteristics and

interrelationships of these solution concepts, readers are referred to Fang et al. [3] and

the original references therein.

The original graph model methodology employs a simple preference structure, con-

sisting of strict preference (≻) and indifference (∼) relations, to characterize DMs’ relative

preference over feasible outcomes. To accommodate the case that some preference infor-
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mation is unknown to the analyst, Li et al. [14] develop a non-probabilistic framework

to handle preference uncertainty in the graph model where a new binary relation U is

introduced to represent a DM’s uncertainty about its preference between two states. The

four solution concepts, Nash, GMR, SMR, and SEQ, have been redefined based on the

extended preference structure. Depending on how unknown preferences are incorporated,

four versions of stability definitions are put forward and labeled as a, b, c, and d accord-

ingly. These different extensions are conceived to reflect the focal DM’s distinct attitudes

towards preference uncertainty, ranging from conservative, to mixed and aggressive [14].

Within the graph model framework, coalition analysis has been actively studied. Mo-

tivated by the strong equilibrium concept by Aumann [1], Kilgour et al. [11] introduce a

coalition Nash stability concept with simple preference and the aim is to alert whether

a status quo equilibrium can be upset by joint moves coordinated by a subset of DMs

or a coalition. Subsequently, Inohara and Hipel [8] extend the idea and define coalition

GMR, SMR, and SEQ stability. The interrelationships of these coalition stabilities are

then examined [9]. For tractability, the aforesaid research has been confined to transitive

graphs with the simple preference structure, in which consecutive moves by the same DM

are allowed. By exploiting a convenient matrix system, Xu et al. [22] investigate coalition

Nash stability with preference uncertainty for general graph models, where the require-

ment of no successive moves by the same DM is honoured to keep the new development

consistent with the general decision rule in the graph model methodology. According to

how uncertain preferences are incorporated, conservative and aggressive coalition Nash

stabilities are introduced [22].

Building upon the research by Xu et al. [22] and Inohara and Hipel [8, 9], the contri-

bution of this article is to integrate preference uncertainty into coalition GMR, SMR, and

SEQ stabilities. To keep notation consistent with individual stabilities in Li et al. [14],

four different versions of each coalition stability will be defined accordingly.

To illustrate how this new development can be applied in practice, a coalition analysis

is conducted for a case study of bulk-water export conflict occurred in the Province of

Newfoundland and Labrador in Canada. This conflict was first examined by Fang et al. [4]
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and a three-DM graph model is established to investigate strategic interactions among

different stakeholders. Subsequently, preference uncertainty is introduced into the model

to characterize the oscillating attitude of the provincial government towards bulk-water

export from its jurisdiction [14]. These analyses furnish useful strategic advice on how

different stakeholders may act and react to bring the conflict to potential resolutions. The

current analysis moves one step further by investigating which equilibria are sustainable

and will not be upset by coalition moves and which equilibria are likely to be transient

and susceptible to be overturned by a subgroup of DMs coordinating their moves. The

aim is to shed additional structural insights on whether any DM may further improve its

position by joining a coalition.

To make the paper self-contained, the next section briefly reviews the graph model

for conflict resolution and puts the current research in a proper context. Section 3 de-

fines coalition GMR, SMR, and SEQ stabilities with preference uncertainty. Section 4

investigates interrelationships of coalition stabilities within each extension and across the

four extensions, followed by an illustrative case study in Section 5. The paper concludes

with some remarks in Section 6.

2 Preliminaries

2.1 The graph model for conflict resolution

A graph model consists of a set of DMs N,2 ≤ ∣N ∣ < ∞, a finite set of feasible states

S, a collection of digraphs Gi = (S,Ai), i ∈ N , where S is the vertex set and Ai is DM

i’s set of directed arcs in Gi and depicts the moves among feasible states controlled by

DM i, and relative preference over the feasible states for all DMs [3]. When a graph

model is not too big, it is often convenient to draw an integrated digraph for all DMs

where arcs are appropriately labeled with controlling DMs. As the graph model has

the flexibility in characterizing common moves, it is possible that two arcs a1 and a2

may share the same pair of starting and terminal states s1 and s2, i.e., a1 = (s1, s2) and

a2 = (s1, s2). In this case, these common moves must be controlled by different DMs such
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that a1 ∈ Ai, a2 ∈ Aj, i, j ∈ N, i ≠ j.

Preference information plays a central role in conducting a stability analysis. The

original graph model adopts a pair of binary relations {≻i,∼i}, the so-called simple pref-

erence, to represent DMs’ relative preference over feasible states. In practice, the analyst

may have a hard time in obtaining accurate preference information about the conflict

when complicated and multiple criteria have to be evaluated [5, 6], and sometimes, even

the DMs themselves cannot tell their true preference when the conflict is still ongoing

and evolving. To handle partially unknown preferences, Li et al. [14] extend the simple

preference structure to a triplet of binary relations {≻i,∼i, Ui}. For DM i and any two

states s1, s2 ∈ S, s1 Ui s2 indicates that DM i is uncertain about its preference between

s1 and s2, which may turn out to be either s1 ≻i s2, s1 ∼i s2 or s2 ≻i s1 when additional

information becomes available.

For a general preference relation P and three states s1, s2, and s3, if s1P s2 and

s2P s3 imply s1P s3, then P is called transitive. The graph model does not require DMs’

preferences to be transitive. As indicated in the sustainable development game in Li et

al. [14], the uncertain preference relation can be intransitive. The new development here

inherits this fine property and is applicable to both transitive and intransitive preferences.

2.2 Existing coalition analysis in the graph model

Coalition analysis has been studied in the graph model with simple preference under four

solution concepts, Nash, GMR, SMR, and SEQ [8, 9, 11]. Xu et al. [22] further extend

coalition Nash stability to accommodate uncertain preference. Below, a brief introduction

is presented for the existing coalition analysis research.

A subset of DMs H ⊆ N is called a coalition. Generally speaking, an empty coalition

H does not have any realistic meaning and, hence, it is hereafter assumed that ∣H ∣ ≥ 1.

When ∣H ∣ = 1, the coalition H is called trivial as it contains only a single DM. If ∣H ∣ > 1,

the coalition is nontrivial.

Before stability definitions are introduced, it is necessary to characterize a DM’s

potential moves starting from a status quo state s, the following lists define DM i’s
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possible moves incorporating different preference information [3, 14].

i) Reachable list: Ri(s) = {t ∈ S ∶ (s, t) ∈ Ai}, describing the states that are reachable

by DM i unilaterally in one step.

ii) Unilateral improvement (UI) list: R+i (s) = {t ∈ S ∶ (s, t) ∈ Ai and t ≻i s}, depicting

the states that are attainable by DM i unilaterally in one step and the terminal

state is more preferred by the DM.

iii) Unilateral improvement or uncertain move (UIUM) list: R+,Ui (s) = {t ∈ S ∶ (s, t) ∈ Ai

and t ≻i s or t Ui s}, defining the states that are achievable by DM i unilaterally

in one step and the DM either prefers the terminal state or is uncertain about its

preference between the terminal and starting states.

For a general n-DM graph model (∣N ∣ = n ≥ 3), the opponents of a focal DM i consist

of a coalition N − i and ∣N − i∣ ≥ 2. When a focal DM contemplates a potential move

away from a status quo, some solution concepts such as GMR, SMR, and SEQ require it

to account for its opponents’ countermoves. The countermoves by a nontrivial coalition

is comprised of all states that are attainable from a particular state via a legal sequence

of unilateral moves (UMs) by any subset of DMs in the coalition, where a DM may move

more than once but not consecutively [3]. In existing coalition analysis research with

simple preference in the graph model [8, 9, 11], the rule of no consecutive moves by the

same DM is lifted for the sake of tractability. The implication is that the applicability of

the research is restricted to transitive graph models. Xu et al. [22] bring this restriction

back to their coalition Nash stability with uncertain preference.

In parallel to Ri(s) by a single DM, the reachable list by a coalition H ⊆ N , denoted

by RH(s), can be defined inductively below. If s1 ∈ RH(s), denote by ΩH(s, s1) the set

of all last DMs in legal sequences of UMs from s to s1.

Definition 1 A unilateral move by H is a member of RH(s) ⊆ S, defined inductively by

(1) if j ∈H and s1 ∈ Rj(s), then s1 ∈ RH(s) and j ∈ ΩH(s, s1);

(2) if s1 ∈ RH(s), j ∈ H and s2 ∈ Rj(s1), then s2 ∈ RH(s) provided that ΩH(s, s1) ≠ {j},

and j ∈ ΩH(s, s2).
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Definition 1 ensures that a DM may move more than once in a legal sequence of moves

by coalition H, but not in succession. If each move in the sequence is restricted to be a

UIUM for the mover, one can have the following definition of coalition UIUM list R+,UH (s).

Similarly, if s1 ∈ R+,UH (s), denote by Ω+,UH (s, s1) the set of all last DMs in legal sequences

of UIUMs from s to s1.

Definition 2 A unilateral improvement or uncertain move (UIUM) by H is a member

of R+,UH (s) ⊆ S, defined inductively by

(1) if j ∈H and s1 ∈ R+,Uj (s), then s1 ∈ R+,UH (s) and j ∈ Ω+,UH (s, s1);

(2) if s1 ∈ R+,UH (s), j ∈ H and s2 ∈ R+,Uj (s1), then s2 ∈ R+,UH (s) provided that Ω+,UH (s, s1) ≠

{j}, and j ∈ Ω+,UH (s, s2).

If each move in the legal sequence is restricted to be a UI for the mover, the resulting

set will be the coalition UI list R+H(s) starting from state s for coalition H. For brevity,

the definition of R+H(s) is omitted here.

To define coalition stability, Kilgour et al. [11] introduce the following concept of

coalition improvement (CI).

Definition 3 For a status quo state s and a nonempty coalition H ⊆ N , a state s1 ∈

RH(s) is a coalition improvement for H from s, denoted by s1 ∈ CR+H(s), iff s1 ≻i s

for every i ∈H.

It is worth noting that CR+H(s) ≠ R+H(s) asR+H(s) denotes all states that are attainable

by coalition H via legal sequences of UIs from s. Although each individual move is a

UI for the mover, there is no guarantee that the terminal state is preferred to s by any

DM involved in the sequence of moves [3]. On the contrary, CR+H(s) ensures that the

terminal state is always preferred to s by all DMs in the coalition though an individual

move along the sequence may not be a UI for the mover [11].

This paper envisages coalition analysis as a post-stability analysis and examines

whether equilibria that are stable for all DMs under individual calculations are vul-

nerable to joint moves by coalitions. Therefore, both the status quo and target states
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are presumably equilibria. Next, coalition stabilities under Nash, GMR, SMR, and SEQ

with simple preference are furnished.

Definition 4 State s ∈ S is Nash stable for coalition H ⊆ N , denoted by s ∈ SCNash
H , iff

CR+H(s) = ∅.

This coalition Nash stability is adapted from [11], but CR+H(s) here is expected to

honour the rule of no successive moves by the same DM and, hence, this definition is

applicable to both transitive and intransitive graph models. As mentioned earlier, an

empty coalition does not have any realistic meaning, it is assumed hereafter that ∣H ∣ > 0.

If ∣H ∣ = 1, then H = {i} and CR+H(s) = R+i (s). In this special case, Definition 4 is

reduced to individual Nash stability [18]. However, for a nontrivial coalition H ⊆ N, ∣H ∣ ≥

2, coalition Nash stability checks the coalition improvement list CR+H(s) rather than

coalition members’ individual UI lists R+i (s), i ∈H.

If state s ∈ S is Nash stable for every nonempty coalition H ⊆ N , it is called coalition-

ally Nash stable and denoted by s ∈ SCNash.

For notational convenience, let s ⪰i t represent s ≻i t or s ∼i t, and Φ⪯H(s) = {t ∈ S ∶

s ⪰i t for at least one i ∈ H}. It is apparent that Φ⪯H(s) considers only the preference

relative to state s without examining the reachability of those states from s by H.

Definition 5 State s ∈ S is general metarational (GMR) for coalition H ⊆ N , denoted

by s ∈ SCGMR
H , iff for every s1 ∈ CR+H(s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s).

This coalition GMR definition is adapted from [8,9]. Instead of using subclass reach-

able lists as in [8, 9], a coalition reachable list by the opponents is adopted here. Under

the assumption of no consecutive moves by the same DM in a legal sequence of UMs,

Definition 5 is equivalent to Definition 7 in [8]. Similarly, if H = {i}, this definition is

reduced to individual GMR [7].

If state s ∈ S is GMR for every coalition H ⊆ N , it is called coalitionally GMR stable

and denoted by s ∈ SCGMR.
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Definition 6 State s ∈ S is symmetric metarational (SMR) for coalition H ⊆ N , denoted

by s ∈ SCSMR
H , iff for every s1 ∈ CR+H(s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s)

and s3 ∈ Φ⪯H(s) for all s3 ∈ RH(s2).

This coalition SMR definition is adapted from [8, 9] and is equivalent to Definition 9

in [8]. The only difference here is, once again, the incorporation of no consecutive moves

by the same DM in any sequence of UMs. Similarly, if H = {i}, Definition 6 is reduced

to individual SMR [7].

If state s ∈ S is SMR for every coalition H ⊆ N , it is called coalitionally SMR stable

and denoted by s ∈ SCSMR.

Definition 7 State s ∈ S is sequentially stable (SEQ) for coalition H ⊆ N , denoted by

s ∈ SCSEQ
H , iff for every s1 ∈ CR+H(s), there exists s2 ∈ R+N−H(s1) such that s2 ∈ Φ⪯H(s).

Remark: By employing the subclass improvement list concept, the coalition SEQ

stability definition introduced by Inohara and Hipel [8, 9] is able to consider credible

sanctions by subcoalitions in the opponent camp. But this thoroughness comes at a signif-

icant computational cost as the number of subcoalitions increases exponentially with the

number of opponents, making the calculation of subclass improvement list prohibitively

difficult when the number of DMs in the model is large. In addition, it remains open

about how to enforce the legality of sequences of moves by subcoalitions. As a tradeoff,

it is proposed here to treat opponents N −H as individuals. For transitive graph models,

if a state is SEQ for a coalition under Definition 7 here, it is automatically SEQ for the

coalition under Definition 11 in [8]. However, the inverse is generally not true. Similarly,

when H = {i}, coalition SEQ would be reduced to individual SEQ stability.

If state s ∈ S is SEQ for every coalition H ⊆ N , it is called coalitionally SEQ stable

and denoted by s ∈ SCSEQ.

Xu et al. [22] extend coalition Nash stability proposed by Kilgour et al. [11] by in-

cluding uncertain preference in the coalition Nash stability definitions. Depending on

the focal coalition’s attitude towards risks associated with uncertain moves [14], aggres-

sive and conservative coalition Nash stabilities are introduced [22]. As a preparation, a

coalition improvement or uncertain move (CIUM) is defined first.
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Definition 8 For a status quo state s and a nonempty coalition H ⊆ N , a state s1 ∈

RH(s) is a coalition improvement or uncertain move for H from s, denoted by

s1 ∈ CR+,UH (s), iff s1 ≻i s or s1 Ui s for every i ∈H.

CR+,UH (s) here differs from R+,UH (s) in Definition 2 in that R+,UH (s) cares about the

process without worrying about the final result, but CR+,UH (s) is concerned with the

final result instead of the process. In other words, R+,UH (s) requires each move in a legal

sequence has to be a UIUM for the mover, but the preference relation between a final state

and status quo for the coalition is not a concern at all. On the contrary, CR+,UH (s) ensures

that all coalition members prefer the terminal state to the status quo or are uncertain

about their preference between these two states without examining the relative preference

for each individual move along the legal sequence. Next, definitions of conservative and

aggressive coalition Nash stability can be introduced [22]. To be consistent with the four

extension notation in Li et al. [14], these two definitions are relabeled accordingly.

Definition 9 State s ∈ S is aggressively Nash stable for coalition H ⊆ N , denoted by

s ∈ SCNasha

H , iff CR+,UH (s) = ∅.

Definition 10 State s ∈ S is conservatively Nash stable for coalition H ⊆ N , denoted by

s ∈ SCNashb

H , iff CR+H(s) = ∅.

Similar to the equilibrium concept in stability analysis under individual calculations,

coalition Nash stability for aggressive and conservative DMs can be ascertained as follows:

If state s ∈ S is aggressively (or conservatively) Nash stable for every nonempty coalition

H ⊆ N , it is called coalitionally aggressively (or conservatively) Nash stable and denoted

by s ∈ SCNasha (or s ∈ SCNashb).

Although Definition 10 looks the same as Definition 4, they are different in the sense

that Definition 10 is defined with preference uncertainty where uncertain moves are not

strong enough motivation for the focal coalition to deviate from its status quo state. On

the other hand, Definition 4 is defined for transitive graph models with simple preference

and does not consider uncertain preference in its conception. As Nash stability does

not examine countermoves by the opponents, similar to individual stability case in [14],
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SCNasha

H = SCNashc

H and SCNashb

H = SCNashd

H . For brevity, coalition Nash stability under

extensions c and d, which are identical to that under extensions a and b, respectively,

will not be repeated here.

3 Coalition stability with preference uncertainty in

the graph model

Coalition Nash stability has been extended to general graph models with uncertain pref-

erence by Xu et al. [22]. This section will consider coalition GMR, SMR, and SEQ

stabilities with preference uncertainty.

DMs may exhibit different attitudes towards uncertainty when making choices. For

instance, an optimistic DM tends to view uncertainty as a potential opportunity while a

pessimistic DM may often regard an uncertain outcome as a risk. In addition, a DM’s

attitude towards uncertainty change with its status quo state: a DM who has little to lose

is more likely to take an aggressive attitude towards uncertainty and treat it as a potential

gain. On the contrary, a DM who has little to gain is highly likely to regard uncertain

outcomes as a risk and adopt a conservative stance. To accommodate different attitudes

towards preference uncertainty, Li et al. [14] define individual Nash, GMR, SMR, and

SEQ stabilities with preference uncertainty under four forms, a, b, c, and d. The purpose

of these four extensions is to characterize a focal DM with diverse attitudes towards pref-

erence uncertainty, ranging from aggressive, to mixed and conservative. When coalition

GMR, SMR, and SEQ stability definitions are extended from graph models with simple

preference [8] to those with uncertain preference, these four extensions are maintained

depending on the focal coalition’s attitude towards preference uncertainty.

Definition 11 State s ∈ S is GMR for coalition H ⊆ N , denoted by s ∈ SCGMRa

H , iff for

every s1 ∈ CR+,UH (s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s).

Definition 12 State s ∈ S is SMR for coalition H ⊆ N , denoted by s ∈ SCSMRa

H , iff for

every s1 ∈ CR+,UH (s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s) and s3 ∈ Φ⪯H(s) for

all s3 ∈ RH(s2).
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Definition 13 State s ∈ S is SEQ for coalition H ⊆ N , denoted by s ∈ SCSEQa

H , iff for

every s1 ∈ CR+,UH (s), there exists s2 ∈ R+,UN−H(s1) such that s2 ∈ Φ⪯H(s).

In extension a, the focal coalition members are conceived to be aggressive as they

are willing to deviate from the status quo state for uncertain outcomes (uncertainty is

allowed at the incentive end for the focal coalition). While assessing sanctions from their

opponents, at least one coalition member must be ascertained for a no-better-off position

in order to successfully block the focal coalition (uncertainty is not allowed at the sanction

end for the focal coalition).

Definition 14 State s ∈ S is GMR for coalition H ⊆ N , denoted by s ∈ SCGMRb

H , iff for

every s1 ∈ CR+H(s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s).

Definition 15 State s ∈ S is SMR for coalition H ⊆ N , denoted by s ∈ SCSMRb

H , iff for

every s1 ∈ CR+H(s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s) and s3 ∈ Φ⪯H(s) for

all s3 ∈ RH(s2).

Definition 16 State s ∈ S is SEQ for coalition H ⊆ N , denoted by s ∈ SCSEQb

H , iff for

every s1 ∈ CR+H(s), there exists s2 ∈ R+,UN−H(s1) such that s2 ∈ Φ⪯H(s).

Compared to the coalition stability definitions in extension a, the only difference

is that this extension does not treat uncertain moves as sufficient incentive for the fo-

cal coalition to deviate from the status quo. The focal coalition under this extension

presumably exhibits mixed attitude towards preference uncertainty, conservative at the

incentive end but aggressive at the sanction end [14]. Although Definitions 14, 15, and

16, respectively, look the same as Definitions 5, 6, and 7, they are in fact different in

the sense that Definitions 14, 15, and 16 are conceived with preference uncertainty but

uncertain moves are neither strong enough motivation for the focal coalition to deviate

from the status quo nor allowed as valid sanctions to deter the focal coalition. On the

other hand, Definitions 5, 6, and 7 are designed for graph models with simple preference.

For convenience, let Φ⪯,UH (s) = {t ∈ S ∶ s ⪰i t or s Ui t for at least one i ∈H}.
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Definition 17 State s ∈ S is GMR for coalition H ⊆ N , denoted by s ∈ SCGMRc

H , iff for

every s1 ∈ CR+,UH (s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯,UH (s).

Definition 18 State s ∈ S is SMR for coalition H ⊆ N , denoted by s ∈ SCSMRc

H , iff for

every s1 ∈ CR+,UH (s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯,UH (s) and s3 ∈ Φ⪯,UH (s)

for all s3 ∈ RH(s2).

Definition 19 State s ∈ S is SEQ for coalition H ⊆ N , denoted by s ∈ SCSEQc

H , iff for

every s1 ∈ CR+,UH (s), there exists s2 ∈ R+,UN−H(s1) such that s2 ∈ Φ⪯,UH (s).

Extension c assumes that uncertain moves are allowed as sufficient incentives and

sanctions for the focal coalition and is designed to characterize focal coalition members

with mixed attitude towards preference uncertainty: aggressive at the incentive end but

conservative at the sanction end.

Definition 20 State s ∈ S is GMR for coalition H ⊆ N , denoted by s ∈ SCGMRd

H , iff for

every s1 ∈ CR+H(s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯,UH (s).

Definition 21 State s ∈ S is SMR for coalition H ⊆ N , denoted by s ∈ SCSMRd

H , iff for

every s1 ∈ CR+H(s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯,UH (s) and s3 ∈ Φ⪯,UH (s) for

all s3 ∈ RH(s2).

Definition 22 State s ∈ S is SEQ for coalition H ⊆ N , denoted by s ∈ SCSEQd

H , iff for

every s1 ∈ CR+H(s), there exists s2 ∈ R+,UN−H(s1) such that s2 ∈ Φ⪯,UH (s).

Coalition stability definitions in extension d are devised for conservative focal coali-

tions: When contemplating incentives, they do not envision uncertain moves as oppor-

tunities (preference uncertainty is not allowed as incentives); while assessing sanctions,

these DMs would view uncertain moves as potential harms (preference uncertainty is

allowed as valid sanctions).

Similarly, if state s ∈ S is GMR, SMR, or SEQ stable for each coalition H ⊆ N

under a particular extension, it is called coalitionally GMR, SMR, or SEQ stable under

this extension, and denoted by s ∈ SCGMRk , s ∈ SCSMRk , or s ∈ SCSEQk , k = a, b, c,

d. It is obvious that SCGMRk = ∩H⊆NSCGMRk

H , SCSMRk = ∩H⊆NSCSMRk

H , and SCSEQk =

∩H⊆NSCSEQk

H , k = a, b, c, d.
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4 Interrelationships of coalition stabilities with pref-

erence uncertainty

For the four solution concepts, Nash, GMR, SMR, and SEQ, different interrelation-

ships exist for individual stabilities with both simple preference [3] and uncertain prefer-

ence [14]. This section examines interrelationships of coalition stabilities with preference

uncertainty and the examination starts with interrelationships among the four coalition

stabilities within each extension.

Theorem 1 Interrelationships of coalition stability for H within each extension. For a

particular extension k ∈{a, b, c, d} and a nonempty H ⊆ N , SCNashk

H ⊆ SCSEQk

H ⊆ SCGMRk

H

and SCNashk

H ⊆ SCSMRk

H ⊆ SCGMRk

H .

Proof: The proof will be carried out for extension a only and the remaining three

extensions can be proved similarly.

Firstly, for a state s ∈ S and a nonempty H ⊆ N , if s ∈ SCNasha

H , Definition 9 implies

that CR+,UH (s) = ∅. Then it automatically follows that s ∈ SCGMRa

H , s ∈ SCSMRa

H and

s ∈ SCSEQa

H . Hence, SCNasha

H ⊆ SCGMRa

H , SCNasha

H ⊆ SCSMRa

H , and SCNasha

H ⊆ SCSEQa

H .

Next, we prove that SCSEQa

H ⊆ SCGMRa

H . For any state s ∈ SCSEQa

H , either CR+,UH (s) = ∅

or CR+,UH (s) ≠ ∅. If CR+,UH (s) = ∅, then s ∈ SCNasha

H ⊆ SCGMRa

H based on the aforesaid

argument. Next, we examine the case that CR+,UH (s) ≠ ∅. As per Definition 13, for

every s1 ∈ CR+,UH (s), there exists s2 ∈ R+,UN−H(s1) such that s2 ∈ Φ⪯H(s). By Definition 2,

R+,UN−H(s1) ⊆ RN−H(s1), implying that s ∈ SCGMRa

H .

Lastly, we certify that SCSMRa

H ⊆ SCGMRa

H . For any state s ∈ SCSMRa

H , either CR+,UH (s) =

∅ or CR+,UH (s) ≠ ∅. If CR+,UH (s) = ∅, then s ∈ SCNasha

H ⊆ SCGMRa

H as certified above. If

CR+,UH (s) ≠ ∅, based on Definition 12, for every s1 ∈ CR+,UH (s), there exists s2 ∈ RN−H(s1)

such that s2 ∈ Φ⪯H(s) and s3 ∈ Φ⪯H(s) for all s3 ∈ RH(s2). Without considering H’s re-

sponse s3, one obtains s ∈ SCGMRa

H . 2
It should be noted that SCGMRa

H ⊈ SCSMRa

H . The reason is as follows: If s ∈ SCGMRa

H ,

for every s1 ∈ CR+,UH (s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s). However,
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as long as for a particular s2, there exists s3 ∈ RH(s2) such that s3 ∈ CR+,UH (s), then

s ∉ SCSMRa

H .

Similarly, SCGMRa

H ⊈ SCSEQa

H . Once again, if s ∈ SCGMRa

H , for every s1 ∈ CR+,UH (s),

there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s). In this case, if for a particular s1 ∈

CR+,UH (s), R
+,U
N−H(s1) = ∅, then s ∉ SCSEQa

H .

In addition, there generally does not exist any inclusion relationship between SCSEQa

H

and SCSMRa

H , either.

Theorem 1 ascertains the interrelationships for the four coalition stabilities for a

particular nonempty coalition within each extension. Given that for any extension k,

SCGMRk = ∩H⊆NSCGMRk

H , SCSMRk = ∩H⊆NSCSMRk

H , and SCSEQk = ∩H⊆NSCSEQk

H , k = a, b,

c, d, the following corollary immediately follows:

Corollary 1 Interrelationships of coalition stability within each extension For a partic-

ular extension k ∈{a, b, c, d}, SCNashk ⊆ SCSEQk ⊆ SCGMRk and SCNashk ⊆ SCSMRk ⊆

SCGMRk .

The interrelationships of the four coalition stabilities within each extension can thus

be depicted in a Venn diagram as shown in Fig. 1. The result here is consistent with

the interrelationships for individual stabilities with simple preference [3] and uncertain

preference [14] as well as coalition stabilities with simple preference [9].

CGMR

CSMR

CNash

CSEQ

Figure 1: Interrelationships of coalition stabilities within each extension

Next, the interrelationships of each coalition stability across the four extensions will

be investigated. First, for coalition Nash stability, the following result holds true.

Theorem 2 Interrelationships of coalition Nash stability for H across extensions. For a

nonempty H ⊆ N , SCNasha

H = SCNashc

H , SCNashb

H = SCNashd

H , and SCNasha

H ⊆ SCNashb

H .
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Proof. When Definitions 9 and 10 are introduced, it has been mentioned that

SCNasha

H = SCNashc

H , SCNashb

H = SCNashd

H . Now, we shall confirm that SCNasha

H ⊆ SCNashb

H .

For H ⊆ N and any s ∈ S, if s ∈ SCNasha

H , by Definition 9, R+,UH (s) = ∅. As R+H(s) ⊆

R+,UH (s), it follows that R+H(s) = ∅, implying that s ∈ SCNashb

H . 2
Similarly, Corollary 2 immediately follows.

Corollary 2 Interrelationships of coalition Nash stability across extensions. SCNasha =

SCNashc, SCNashb = SCNashd, and SCNasha ⊆ SCNashb.

The interrelationships of coalition Nash stabilities across the four extensions can be

illustrated as a Venn diagram in Fig. 2.

CNashb = CNashd

CNasha = CNashc

Figure 2: Interrelationships of coalition Nash stabilities across extensions

Next, interrelationships across the four extensions will be investigated for the remain-

ing three coalition stabilities (CGMR, CSMR, and CSEQ) with preference uncertainty.

For conciseness, let CSC be a generic coalition solution concept, which can be CGMR,

CSMR, or CSEQ.

Theorem 3 Interrelationships of CGMR, CSMR, and CSEQ stabilities for H across four

extensions. For a nonempty H ⊆ N and a particular CSC, SCSCa

H ⊆ SCSCb

H ⊆ SCSCd

H and

SCSCa

H ⊆ SCSCc

H ⊆ SCSCd

H , where CSC = CGMR, CSMR, CSEQ.

Proof. The proof will only be carried out with coalition GMR stability. The interre-

lationships for the other two coalition stabilities can be similarly proved.

First, we shall prove that, for an H ⊆ N and any s ∈ S, if s ∈ SCGMRa

H , then s ∈

SCGMRb

H , s ∈ SCGMRc

H , and s ∈ SCGMRd

H .

If s ∈ SCGMRa

H and CR+,UH (s) = ∅, then s ∈ SCNasha

H = SCNashc

H ⊆ SCNashb

H = SCNashd

H as

per Definition 9 and Theorem 2. Based on Theorem 1, it is confirmed that s ∈ SCGMRb

H , s ∈

SCGMRc

H , and s ∈ SCGMRd

H .
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Next, we consider the case that CR+,UH ≠ ∅. Two cases may arise: if CR+H(s) = ∅, by

Definition 10, s ∈ SNashb

H and, hence, s ∈ SCGMRb

H by Theorem 1. Otherwise, if CR+H(s) ≠

∅, as s ∈ SCGMRa

H , for every s1 ∈ CR+H(s) ⊆ CR+,UH (s), there exists s2 ∈ RN−H(s1) such

that s2 ∈ Φ⪯H(s). By Definition 14, s ∈ SCGMRb

H .

For extension c, since s ∈ SCGMRa

H , for any s1 ∈ CR+H(s) ⊆ CR+,UH (s), there exists

s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s) ⊆ Φ
⪯,U
H (s), implying that s ∈ SCGMRc

H .

For extension d, the case of CR+H(s) = ∅ is trivial and we only consider CR+H(s) ≠ ∅.

For any s1 ∈ CR+H(s) ⊆ CR+,UH (s), as s ∈ SCGMRa

H , there exists s2 ∈ RN−H(s1) such that

s2 ∈ Φ⪯H(s). By Definition 20, s ∈ SCGMRd

H .

Next, we shall prove that, for any s ∈ S, if s ∈ SCGMRb

H , then s ∈ SCGMRd

H . If s ∈ SCGMRb

H

and CR+H(s) = ∅, then s ∈ SCNashb

H = SCNashd

H as per Definition 10 and Theorem 2. By

Theorem 1, we have s ∈ SCGMRd

H .

The following argument assumes that CR+H(s) ≠ ∅. Since s ∈ SCGMRb

H , for any s1 ∈

CR+H(s), there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯H(s). As Φ⪯H(s) ⊆ Φ⪯,UH (s), by

Definition 20, s ∈ SCGMRd

H .

Lastly, we shall verify that SCGMRc

H ⊆ SCGMRd

H . For any s ∈ SCGMRc

H , either CR+H(s) =

∅ or CR+H(s) ≠ ∅. If CR+H(s) = ∅, then s ∈ SCNashb

H = SCNashd

H by Definition 10 and

Theorem 2. If CR+H(s) ≠ ∅, for every s1 ∈ CR+H(s), we also have s1 ∈ CR+,UH (s) due to

CR+H(s) ⊆ CR+,UH (s). Since s ∈ S
CGMRc

H , there exists s2 ∈ RN−H(s1) such that s2 ∈ Φ⪯,UH (s).

This completes the proof of SCGMRc

H ⊆ SCGMRd

H .

The aforesaid argument proves that SCGMRa

H ⊆ SCGMRb

H ⊆ SCGMRd

H and SCGMRa

H ⊆

SCGMRc

H ⊆ SCGMRd

H . 2
It is apparent that the following corollary holds true.

Corollary 3 Interrelationships of CGMR, CSMR, and CSEQ stabilities across four ex-

tensions. For a particular CSC, SCSCa ⊆ SCSCb ⊆ SCSCd and SCSCa ⊆ SCSCc ⊆ SCSCd,

where CSC = CGMR, CSMR, CSEQ.

The interrelationships of CGMR, CSMR, CSEQ stabilities revealed in Theorem 3 and

Corollary 3 can thus be illustrated in Fig. 3.
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CSCd

CSCb

CSCa

CSCc

Figure 3: Interrelationships of coalition stabilities across extensions, where CSC =
CGMR, CSMR, CSEQ

5 A case study: Coalition analysis for the Gisborne

conflict

The conflict surrounding the Lake Gisborne bulk-water export issues was first established

as a three-DM graph model by Fang et al. [4]. The conflict arose in June 1995 when a

local company proposed to export bulk water from Lake Gisborne located in the Province

of Newfoundland and Labrador in Canada. The project was approved by the provincial

government in anticipation of its economic benefit in December 1996, but this initial

approval was heavily criticized by a number of lobby groups, citing unpredictable detri-

ments to the local environment and culture. This opposition was subsequently echoed by

the Canadian federal government with the introduction of a new policy to prevent water

export from major drainage basins in Canada. The mounting pressure led the provincial

government to withdraw its support and introduce a ban on bulk water export from New-

foundland and Labrador in late 1999. This development seemingly brought the conflict

to a conclusion. However, in March 2001 when a new provincial government took the

office, the newly elected premier initiated a review of the Gisborne project. This move

received immediate attention from the opposition group. Although the tension was soon

eased by a reiteration of the ban in a government report released on October 18, 2001,

the evolution of events surrounding the Gisborne project indicates that this conflict may

arise again in the future if potential revenue from water export creates a strong enough

incentive for an economically-oriented provincial government to deviate from its current

position. For more details about the development of this conflict, readers are referred

to [4] and [14].
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Table 1: DMs and options in the Gisborne conflict model [14]

DMs Options

DM 1: Federal government (Federal) 1. Continue a Canada wide ac-
cord on the prohibition of bulk
water export (Continue)

DM 2: Provincial government of New-
foundland and Labrador (Provincial)

2. Lift the ban on bulk water ex-
port (Lift)

DM 3: Support groups (Support) 3. Appeal for continuing the Gis-
borne project (Appeal)

A graph model was developed for this conflict with three DMs and each DM con-

trolling one option as shown in Table 1. In this model, DM 1 includes both the Federal

Government of Canada and opposition groups, DM 2 is self-evident, and DM 3 stands

for both the firm that proposed the Gisborne project and other groups that support bulk

water export from Canada. A brief explanation is furnished in Table 1 for each option

controlled by the corresponding DM.

The resulting eight feasible states are given in Table 2, where a “Y” opposite an

option indicates that the option is selected by the controlling DM and an “N” indicates

the corresponding option is not chosen by the DM.

Table 2: Feasible states for the Gisborne conflict model [14]

Federal

1. Continue N Y N Y N Y N Y

Provincial

2. Lift N N Y Y N N Y Y

Support

3. Appeal N N N N Y Y Y Y

States s1 s2 s3 s4 s5 s6 s7 s8

To model the oscillation of the provincial government’s attitude towards the Gisborne

bulk water export conflict, Li et al. [14] introduced uncertain preference for DM 2 Provin-

cial. The relative preference information for this conflict model is furnished in Table 3.

For DM 2, except for the strict preference indicated in the four pairs of states enclosed
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within the curly brackets, remaining preference relations are assumed to be uncertain be-

tween any two states from any two different curly brackets. For instance, the provincial

government prefers state s3 to s7, but is uncertain about its preference between s3 and

any other states.

Table 3: Preference information for the Gisborne model [14]

DMs Relative preference

1. Federal s2 ≻ s6 ≻ s4 ≻ s8 ≻ s1 ≻ s5 ≻ s3 ≻ s7
2. Provincial {s3 ≻ s7} U {s4 ≻ s8} U {s1 ≻ s5} U {s2 ≻ s6}
3. Support s3 ≻ s4 ≻ s7 ≻ s8 ≻ s5 ≻ s6 ≻ s1 ≻ s2

An integrated graph of this conflict model is illustrated in Fig. 4 where the nodes

correspond to the eight states and the DMs are labeled on the arcs to indicate the moves

controlled by the DMs.

s1

s4s2

s3 s5

s8s6

s7Provincial

Federal

Provincial

Provincial

Federal

Provincial

Support

FederalFederal

Support
Support

Support

Figure 4: An integrated graph of the Gisborne conflict model [14]

Based on the moves controlled by each DM given in Fig. 4, one can obtain the

reachable list for each of the seven nonempty coalitions as shown in Table 4, where a

particular coalition is identified by an appropriate subscript in columns 2 through 8.

This coalition reachable list information is needed for determining coalition improvement

lists and coalition improvement or uncertain move lists as well as examining countermoves

by an opponent coalition in assessing CGMR and CSMR stabilities.

By incorporating DMs’ preference information into the coalition reachable lists, the

following coalition improvement or uncertain move lists can be derived as given in Table
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Table 4: Coalition reachable lists for the Gisborne model

s R{1}(s) R{2}(s) R{3}(s) R{1,2}(s) R{1,3}(s) R{2,3}(s) R{1,2,3}(s)
s1 s2 s3 s5 s2, s3, s4 s2, s5, s6 s3, s5, s7 s2, s3, s4, s5, s6, s7, s8

s2 s1 s4 s6 s1, s3, s4 s1, s5, s6 s4, s6, s8 s1, s3, s4, s5, s6, s7, s8

s3 s4 s1 s7 s1, s2, s4 s4, s7, s8 s1, s5, s7 s1, s2, s4, s5, s6, s7, s8

s4 s3 s2 s8 s1, s2, s3 s3, s7, s8 s2, s6, s8 s1, s2, s3, s5, s6, s7, s8

s5 s6 s7 s1 s6, s7, s8 s1, s2, s6 s1, s3, s7 s1, s2, s3, s4, s6, s7, s8

s6 s5 s8 s2 s5, s7, s8 s1, s2, s5 s2, s4, s8 s1, s2, s3, s4, s5, s7, s8

s7 s8 s5 s3 s5, s6, s8 s3, s4, s8 s1, s3, s5 s1, s2, s3, s4, s5, s6, s8

s8 s7 s6 s4 s5, s6, s7 s3, s4, s7 s2, s4, s6 s1, s2, s3, s4, s5, s6, s7

Table 5: Coalition improvement or uncertain move lists for the Gisborne model

s CR+,U{1} (s)CR+,U{2} (s)CR+,U{3} (s)CR+,U{1,2}(s)CR+,U{1,3}(s)CR+,U{2,3}(s)CR+,U{1,2,3}(s)
s1 s2 s3 s5 s2, s4 s6 s3, s7 s4, s6, s8

s2 − s4 s6 − − s4, s8 −
s3 s4 s1 − s1, s2, s4 − − −
s4 − s2 − s2 − − −
s5 s6 s7 − s6, s8 − s3, s7 s4, s8

s6 − s8 − − − s4, s8 −
s7 s8 s5 s3 s5, s6, s8 s3, s4 s3 s3, s4

s8 − s6 s4 s6 s4 s4 s4

5, where a “−” indicates an empty CIUM list and a coalition improvement is highlighted

with an overline for the corresponding state in a CIUM list. For instance, from Table 5,

one can have R+,U{1,2,3}(s7) = {s3, s4} but R+{1,2,3}(s7) = {s3} as only s3 is highlighted by an

overline, indicating that it is a coalition improvement for the grand coalition N = {1,2,3}

relative to the status quo state s7. Similarly, Table 5 shows that R+,U{1,2}(s1) = {s2, s4}

but R+{1,2}(s1) = ∅ as none of the CIUMs starting from s1 is identified as a coalition

improvement for H = {1,2} by an overline. The information in Table 5 will play a

significant role in determining whether a focal coalition will be possibly motivated to

deviate from a status quo in coalition stability.

In assessing CSEQ stability, one has to examine the credibility of the sanction by the
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opponents N −H. Table 6 furnishes this information. Since a nonempty coalition will not

be examined for CSEQ stability, its opponents, the grand coalition N , is thus excluded

from Table 6.

Table 6: Unilateral improvement or uncertain move lists by a coalition for the
Gisborne model

s R+,U{1} (s) R+,U{2} (s) R+,U{3} (s) R+,U{1,2}(s) R+,U{1,3}(s) R+,U{2,3}(s)
s1 s2 s3 s5 s2, s3, s4 s2, s5, s6 s3, s5, s7

s2 − s4 s6 s4 s6 s4, s6, s8

s3 s4 s1 − s1, s2, s4 s4 s1, s5, s7

s4 − s2 − s2 − s2, s6, s8

s5 s6 s7 − s6, s7, s8 s6 s1, s3, s7

s6 − s8 − s8 − s2, s4, s8

s7 s8 s5 s3 s5, s6, s8 s3, s4, s8 s1, s3, s5

s8 − s6 s4 s6 s4 s2, s4, s6

By utilizing the information in Tables 4, 5, and 6, one can conduct a coalition analysis

for CNash, CGMR, CSMR, and CSEQ under the four extensions as defined in Sections

2 and 3. As mentioned earlier, this paper treats coalition analysis as a follow-up analysis

after a standard stability analysis. Therefore, only predicted equilibria under individual

calculations are examined for coalition stability.

A stability analysis by Li et al. [14] reveals that states s4, s6, and s8 possess some

equilibrium status under various circumstances. As this research treats coalition analysis

as a follow-up analysis after a standard stability analysis, coalition stability is examined

for these three states only. The analysis result is summarized in Tables 7 (for CNash

and CGMR stabilities) and 8 (for CSMR and CSEQ stabilities). For the sake of space,

each coalition is simply identified by the corresponding DM(s) without curly brackets.

For instance, 12 in the second row of Tables 7 and 8 stands for coalition H = {1,2}.

A
√

in the column of a particular coalition in Tables 7 and 8 indicates that a state is

stable for this coalition under a specific extension of a coalition solution concept (CSC).

If a state is stable for all nonempty coalitions under an extension of a CSC, a
√

is

placed in the appropriate cell in the column for the particular CSC, indicating that the
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state is coalitionally stable for this CSC in terms of the specific extension. For instance,

Table 7 illustrates that states s4 and s6 are coalitionally conservatively Nash stable (under

extensions b and d) and coalitionally GMR stable under extensions b, c, and d. Similarly,

Table 8 shows that states s4 and s6 are coalitionally SMR stable under extensions b, c,

and d, but coalitionally SEQ stable for extensions b and d only.

Tables 7 and 8 confirm the interrelationships of the four coalition solution concepts,

CNash, CGMR, CSMR, and CSEQ, within each extension and across the four extensions

as described in the previous section.

Coalition analysis results in Tables 7 and 8 also shed structural insights into the

Gisborne conflict. More specifically, states s4 and s6 are Nash, GMR, SMR, and SEQ

equilibria under extensions b and d as ascertained by Li et al. [14], our analysis here

further confirms that they remain coalitionally stable for the four solution concepts under

these two extensions. A common feature between extensions b and d is that the first mover

(either an individual DM or a coalition) is conservative towards preference uncertainty

and is unwilling to depart for uncertain outcomes. Therefore, as long as an analyst is

confident that the DMs in this conflict are conservative at the incentive end, states s4

and s6 will be sustainable resolutions under both individual and coalition considerations.

[14] also indicates that states s4 and s6 are GMR, SMR, and SEQ equilibria under

extension c. Table 7 and 8 show that they remain coalitionally GMR and SMR stable

under this extension, but only s4 is coalitionally SEQ stable. Equilibrium s6 can be

upset by DMs 2 and 3 forming a coalition and coordinating their moves (Provincial

government sides with the support group and DMs are aggressive at the incentive end).

In this case, their CIUMs from state s6 are s4 and s8, which leave their opponent Federal

without any credible sanction. Given that coalition analysis is a post-stability analysis

and state s8 is not an SEQ equilibrium, a viable coalition move is an equilibrium jump

from s6 to s4, i.e., s6 Ð→2 s8 Ð→3 s4 or s6 Ð→3 s2 Ð→2 s4, where a subscript of an arrow

indicates a DM controlling a particular move. If the first mover (an individual DM or

a coalition) believes that its opponents are also concerned with their welfare in their

response as depicted in the SEQ stability, the only sustainable resolution of this conflict
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would be state s4 provided that the DMs’ risk profile towards preference uncertainty can

be characterized by extension c.

[14] further reveals that state s8 is GMR and SMR equilibrium under extensions

b, c, and d. Our analysis here indicates that this equilibrium will not survive coalition

moves for CGMR or CSMR under any of the three extensions. The implication is that

equilibrium s8 is likely a transient resolution and may be overturned by coalition moves.

Since s4 is preferred by all DMs relative to s8 and has the strongest individual and

coalition stability status in this model, an equilibrium jump from s8 to s4 seems to be

the most likely outcome.

Table 7: Coalition analysis result for CNash and CGMR for the Gisborne
model

State
CNashH CNash

CGMRH CGMR
1 2 3 12 13 23 123 1 2 3 12 13 23 123

s4

a
√ √ √ √ √ √ √ √ √ √

b
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s6

a
√ √ √ √ √ √ √ √ √ √

b
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s8

a
√ √ √ √

b
√ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √

6 Conclusions

This article incorporates preference uncertainty into coalition analysis under three solu-

tion concepts, GMR, SMR, and SEQ, in the framework of the graph model for conflict

resolution. The interrelationships are investigated for the four coalition solution con-

cepts, CNash, CGMR, CSMR, and CSEQ within each extension and across the four

extensions. The proposed development is illustrated by a bulk-water export conflict oc-

curred in Canada and structural insights are garnered about how the conflict may be
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Table 8: Coalition analysis result for CSMR and CSEQ for the Gisborne model

State
CSMRH CSMR

CSEQH CSEQ
1 2 3 12 13 23 123 1 2 3 12 13 23 123

s4

a
√ √ √ √ √ √ √ √ √ √

b
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s6

a
√ √ √ √ √ √ √ √ √ √

b
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √ √ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s8

a
√ √ √ √ √ √

b
√ √ √ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √ √ √

settled after considering potential coalitions.

Generally speaking, the proposed research reported herein enables an analyst to ex-

amine whether a subset of DMs can attain a better outcome by forming a coalition and

coordinating their moves in a strategic conflict with three or more DMs and uncertain

preference. As shown in the case study in Section 5, it can be quite tedious to carry

out the coalition analysis proposed in this article. To facilitate an analyst to apply the

proposed analysis, it is a worthy topic to address how to implement it into a decision

support system. To facilitate computer implementation, Xu et al. [20,22] have developed

an innovative matrix structure to represent moves and preferences in a graph model. It

would be worthwhile to investigate how to incorporate matrix representation into this

new development so that computer implementation can be conveniently tackled.
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