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Abstract 

  This article presents a goal programming framework to solve group decision making 

problems where decision-makers’ judgments are provided as incomplete interval additive 

reciprocal comparison matrices (IARCMs). New properties of multiplicative consistent 

IARCMs are put forward and used to define consistent incomplete IARCMs. A two-step goal 

programming method is developed to estimate missing values for an incomplete IARCM. The 

first step minimizes the inconsistency of the completed IARCMs and controls uncertainty 

ratios of the estimated judgments within an acceptable threshold, and the second step finds the 

most appropriate estimated missing values among the optimal solutions obtained from the 

previous step. A weighted geometric mean approach is proposed to aggregate individual 

IARCMs into a group IARCM by employing the lower bounds of the interval additive 

reciprocal judgments. A two-step procedure consisting of two goal programming models is 

established to derive interval weights from the group IARCM. The first model is devised to 

minimize the absolute difference between the logarithm of the group preference and that of 

the constructed multiplicative consistent judgment. The second model is developed to 

generate an interval-valued priority vector by maximizing the uncertainty ratio of the 

constructed consistent IARCM and incorporating the optimal objective value of the first 

model as a constraint. Two numerical examples are furnished to demonstrate validity and 

applicability of the proposed approach. 

Keywords: Goal programming, Interval additive reciprocal comparison matrices, 

Multiplicative consistency, Uncertainty, Group decision making 

1. Introduction  

The pairwise comparison method and hierarchy analysis technology have been widely used 
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to decompose a complex multi-criteria decision making (MCDM) into a series of more 

tractable and simpler sub-problems. In a conventional analytic hierarchy process (AHP) 

(Saaty, 1980), a decision problem is structured as a hierarchy of criteria, sub-criteria and 

alternatives, and a multiplicative reciprocal comparison matrix is employed to express a 

decision-maker’s pairwise comparison results, where the judgments are provided as crisp 

values. However, in many real-life decision problems, a decision-maker’s judgments may 

contain vagueness and uncertainty and, hence, cannot be represented as crisp data (Dubois & 

Prade, 2012; Durbach & Stewart, 2012; Entani & Sugihara, 2012; Guo & Tanaka, 2010; Saaty 

& Vargas, 1987; Wan & Li, 2013; Xia & Chen, 2014; Xu & Chen, 2008; Zhu & Xu, 2014). As 

such, other forms of pairwise comparison matrices have been developed to deal with 

imprecise and uncertain judgment information, such as interval multiplicative reciprocal 

comparison matrices (Saaty & Vargas, 1987) and interval additive reciprocal comparison 

matrices (IARCM) (also called interval fuzzy preference relations (Xu & Chen, 2008)). 

In a complete n n  comparison matrix, all judgment values are totally known. Given the 

reciprocity of a comparison matrix, it implies that the decision-maker should provide either 

the upper or lower diagonal ( 1) / 2n n  elements on a level with n alternatives or criteria. In 

reality, the decision-maker is sometimes unable or unwilling to provide his/her opinions over 

some alternatives due to insufficient information or limited expertise, especially in face of a 

large number of criteria or alternatives. In this situation, an incomplete comparison matrix is 

resulted (Alonso et al., 2008, 2010; Chiclana et al., 2008, 2009a; Fedrizzi & Giove , 2007; 

Gong, 2008; Herrera-Viedma et al., 2007; Liu, Zhang, & Wang, 2012; Liu, Pan, Xu, & Yu, 

2012; Xu, 2004, 2012; Xu, Li, & Wang, 2014). MCDM with incomplete comparison matrices 

have been receiving increasing attention and many different methods have been developed to 

estimate missing or unknown values for incomplete additive reciprocal comparison matrices 

(Alonso et al., 2008, 2010; Chiclana et al., 2009a; Gong, 2008; Herrera-Viedma et al., 2007; 

Liu, Pan, Xu, & Yu, 2012; Xu, 2004). For instance, Xu (2004) introduced the concept of 

incomplete additive reciprocal comparison matrices (or referred to as incomplete fuzzy 

preference relations), and proposed two goal programming models for obtaining priority 

weights of incomplete additive reciprocal comparison matrices from the viewpoints of 

additive transitivity and multiplicative consistency, respectively. An iterative procedure for 

estimating missing values was put forward by Herrera-Viedma et al. (2007) and applied to 

handle group decision making (GDM) problems with incomplete additive reciprocal 
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comparison matrices based on additive transitivity. Liu, Pan, Xu, and Yu (2012) put forward a 

completion method by establishing a least squares model. Based on multiplicative consistency, 

Alonso et al. (2010) furnished a procedure to estimate missing values and developed a 

web-based consensus support system for GDM with incomplete additive reciprocal 

comparison matrices.  

Genç et al. (2010) employed the feasible-region-based multiplicative transitivity (Xu & 

Chen, 2008) to develop two estimation approaches for incomplete IARCMs. Xia and Xu 

(2011) extended the functional equation proposed by Chiclana et al. (2009b) to define perfect 

multiplicative consistent IARCMs and calculate missing values for incomplete IARCMs. 

From a multiplicative perspective, an interval additive reciprocal judgment can be 

transformed to an equivalent interval multiplicative reciprocal judgment (Liu, Zhang, & 

Zhang, 2013). After the conversion, the uncertainty level of the interval additive reciprocal 

judgment can be measured by the quotient of the upper and lower bounds of the 

corresponding interval multiplicative reciprocal judgment. Under this notion, a quotient of 1 

indicates a crisp judgment without any uncertainty and the larger the ratio, the more uncertain 

the interval judgment. For the foresaid estimation methods in (Genç et al., 2010; Xia & Xu, 

2011), no mechanism is designed to consider the acceptability of the uncertainty levels of the 

estimated interval additive reciprocal judgments. As such, they sometimes yield highly 

uncertain estimated values. To obtain rational and reliable decision results, it is crucial to 

adapt the acceptable uncertainty levels of the estimated values as highly uncertain data 

contains less beneficial decision information. 

In a GDM process, once all individual incomplete comparison matrices are completed and 

a group comparison matrix is obtained from the completed individual comparison matrices, a 

pivotal remaining issue is to derive a priority vector from the group comparison matrix. 

According to additive or multiplicative transitivity, different prioritization methods have been 

developed for obtaining an interval-valued priority vector from a complete interval reciprocal 

comparison matrices such as linear programs (Arbel, 1989; Gou & Wang, 2012; Hu, Ren, Lan, 

Wang, & Zheng, 2014; Kress, 1991; Wang, Lan, Ren, & Luo, 2012; Xu & Chen, 2008), 

nonlinear programs (Xia & Xu, 2014), and goal programs (Wang & Elhag, 2007; Wang & Li, 

2012; Wang, Yang, & Xu, 2005).  

Current research reveals that consistency properties are fundamental bases for estimating 

missing values and generating priority weights of pairwise comparison matrices. When 
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decision-makers’ pairwise comparisons are represented as incomplete IARCMs in a GDM 

problem, it is important to evaluate missing values first before a group priority vector is 

derived. Based on the multiplicative consistency concept proposed by Wang and Li (2012), 

new properties of consistent IARCMs are presented and employed to define multiplicative 

consistent incomplete IARCMs. A two-step framework consisting of two goal programs is 

developed to estimate missing values for incomplete IARCMs. The first step aims to estimate 

missing values such that the resulting complete IARCM possesses either multiplicative 

consistency or minimal inconsistency, and uncertainty ratios of the estimated values are 

controlled to be within an acceptable threshold specified by the decision-maker. This is 

accomplished by minimizing the absolute difference between the two sides of the logarithmic 

expression of the multiplicative transitivity equation and imposing acceptable uncertainty 

ratio constraints. The second step is established to find the most appropriate estimated missing 

values among the optimal solutions obtained from the first model. The modeling idea is that 

the missing values in an incomplete IARCM reflect the decision-maker’s uncertainty about 

the pairwise comparison. Therefore, by incorporating the optimal solutions in the first model 

into its constraints, the second model maximizes the uncertainty ratio for the estimated 

interval additive reciprocal judgments to retain the decision-maker’s inherent uncertainty in 

the original missing values. Subsequently, a weighted geometric mean approach is put 

forward to aggregate individual preferences into a group IARCM by directly employing the 

lower bounds of the interval additive reciprocal judgments (upper bounds are indirectly 

utilized due to reciprocity). It is shown that the group IARCM has multiplicative consistency 

if all individual IFPRs have multiplicative consistency. Next, a two-step procedure 

comprising two goal programs is established to derive interval weights from the aggregated 

group IARCM. By employing a parameterized transformation relation between multiplicative 

consistent IARCMs and interval weights, the first model minimizes the absolute difference 

between the logarithm of the group preference and that of the transformed consistent 

judgment such that the constructed multiplicative consistent IARCMs are the closest to the 

group IARCM. The second model determines the most appropriate interval-valued priority 

vector by maximizing the uncertainty ratio of the constructed consistent IARCM and 

employing the optimal objective value of the first model as a constraint. The optimal 

interval-valued priority vector derived from the second model is able to be transformed to an 

IARCM with multiplicative consistency that is closest to that obtained by interval arithmetic 
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and the group IARCM. Finally, by putting the foresaid models together, an algorithm is 

proposed for solving GDM problems with incomplete IARCMs. 

The remainder of the paper is organized as follows. Section 2 reviews some basic concepts 

related to additive reciprocal comparison matrices and IARCMs. New properties of 

multiplicative consistent IARCMs and the multiplicative consistency definition of incomplete 

IARCMs are introduced in Section 3. Section 4 develops two goal programs for estimating 

missing values in an incomplete IARCM. A goal programming approach is presented for 

generating an interval-valued priority vector of the group IARCM and a procedure is further 

put forward to solve GDM problems with incomplete IARCMs in Section 5. Section 6 

provides concluding remarks. 

2. Preliminaries 

Let 1 2{ , ,..., }nX x x x be a set of n alternatives, if a pairwise comparison matrix 

( )ij n nR r   on X
 
satisfies  

[0,1], 1, 0.5,   , 1,2,...,ij ij ji iir r r r i j n      ,                    (2.1) 

then ( )ij n nR r 
 
is called an additive reciprocal comparison matrix (or referred to as an 

additive reciprocal preference relation (De Baets & De Meyer, 2005; De Baets, De Meyer, & 

De Loof, 2010)).   

Element 
ijr  in R denotes the [0, 1]-valued preference or importance degree of ix

 
over 

jx . The larger the value of ijr , the smaller the value of 1ji ijr r   and the stronger the 

preference ratio 
ij

ji

r

r
 of ix over jx . 0.5ijr 

 
indicates that 1

ij

ji

r

r


 
and ix

 
is superior to 

jx with the preference ratio 
ij

ji

r

r
. 0.5ijr 

 
shows that 1

ij

ji

r

r
  and 

ix
 
is non-preferred to jx  

with the preference ratio 
ij

ji

r

r
. Especially, if 0.5ijr  , then 1

ij

ji

r

r
 , implying that ix

 
and jx  

are equally preferred. 

Definition 2.1 (Tanino, 1984) Let ( )ij n nR r  be an additive reciprocal comparison matrix 

with 0 1, , 1,2,...,ijr i j n    . If R  satisfies the following transitivity condition: 
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, , , 1,2,..., .
ij jkik

ki ji kj

r rr
i j k n

r r r
                              (2.2) 

then R is said to have multiplicative consistency. 

  By the additive reciprocal property of 1ij jir r  , (2.2) can be equivalently expressed as 

the following functional equation (Chiclana et al., 2009b):   

, , , 1,2,..., .
(1 )(1 )

ij jk

ik

ij jk ij jk

r r
r i j k n

r r r r
  

  
                    (2.3) 

  After examining the property of (2.3), Chiclana et al. (2009b) pointed out that the 

multiplicative consistency by Tanino (1984) is the most appropriate vehicle to model 

transitivity of additive reciprocal comparison matrices. 

Due to increasing complexity of many decision problems, it is often hard for 

decision-makers to provide exact preferences over decision alternatives. To better 

characterize decision-makers’ vague and uncertain preferences, Xu and Chen (2008) 

introduced the concept of IARCMs.  

Definition 2.2 (Xu & Chen, 2008) An IARCM R  on X  is denoted by an interval-valued 

pairwise comparison matrix ( )ij n nR r   with the condition: 

[ , ],0 1, 1, 1, 0.5, , 1,2,..., .ij ij ij ij ij ij ji ij ji ii iir r r r r r r r r r r i j n                    
   

 (2.4) 

where ijr
 
gives an interval preference or importance degree of ix

 
over 

jx . 

The multiplicative consistency definition of IARCMs is given by Wang and Li (2012) as 

follows. 

Definition 2.3 (Wang & Li, 2012) Let  ( ) [ , ]ij n n ij ij n n
R r r r 

 
 

 
be an IARCM with 

0 1, , 1,2,...,ij ijr r i j n      . If R
 
satisfies multiplicative transitivity: 

, , , 1,2,..., ,
ij jk kj jiki ik

ji kj ik ki jk ij

r r r rr r
i j k n

r r r r r r
                      (2.5) 

where “ ” and “ ” indicate the interval multiplication and division operations, respectively, 

then R  is said to have multiplicative consistency. 

3. Multiplicative consistency 

In this section, we first introduce new properties for multiplicative consistent IARCMs 

and, then employ these properties to define multiplicative consistency for incomplete 
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IARCMs.   

Based on Definition 2.3, we have the following theorem. 

Theorem 3.1. Let  ( ) [ , ]ij n n ij ij n n
R r r r 

 
 

 
be a complete IARCM with 

0 1, , 1,2,...,ij ijr r i j n      . R
 
has multiplicative consistency if and only if  

, , , 1,2,..., .ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r i j k n                                   (3.1) 

Proof. First, we prove the sufficiency. As per (3.1), one gets 
ij jk kj jiki ik

ji kj ik ki jk ij

r r r rr r

r r r r r r

    

     
  and 

ij jk kj jiki ik

ji kj ik ki jk ij

r r r rr r

r r r r r r

    

     
 . According to interval arithmetic, we have 

, ,
ij jk ij jk ij jk kj ji kj ji kj jiki ki ki ik ik ik

ji kj ik ji kj ik ji kj ik ki jk ij ki jk ij ki jk ij

r r r r r r r r r r r rr r r r r r

r r r r r r r r r r r r r r r r r r

          

           

   
         

      

. By Definition 2.3, 

R
 
is an IARCM with multiplicative consistency. 

Next, we prove the necessary part. As per (2.5) and interval arithmetic, one has 

ij jk kj jiki ik

ji kj ik ki jk ij

r r r rr r

r r r r r r

    

     
 , , 1,2,...,i j k n  . Thus, (3.1) holds true.                     ■ 

As (3.1) is equivalent to , , , 1,2,...,ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r i j k n              , the 

multiplicative consistency can be also called geometric consistency from the viewpoint of the 

geometric mean of interval endpoints. 

As per the additive reciprocal property of 1ji ijr r    and 1ji ijr r   , (3.1) can be 

equivalently rewritten as any of the following equations: 

(1 )(1 )(1 ) (1 )(1 )(1 ), , , 1,2,..., .ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k n                         (3.2) 

(1 )(1 )(1 ) (1 )(1 )(1 ), , , 1,2,..., .ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k n                         (3.3) 

Theorem 3.2. Let  ( ) [ , ]ij n n ij ij n n
R r r r 

 
 

 
be a complete IARCM with 

0 1, , 1,2,...,ij ijr r i j n      , then the following statements are equivalent: 

(i) , , , 1,2,..., .ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r i j k n               

  (ii) , , , 1,2,..., , .ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r i j k n i j k                                    (3.4) 

Proof. Obviously, if (i) holds, (ii) follows. 
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  (ii)   (i). As per (2.4), we have 0.5ii iir r    for all 1,2,...,i n . Thus, (i) always holds 

if all or any two of the indices , ,i j k
 
are equal. 

  For i j k  , there exist six possible cases: 

(1) i j k  . In this case, (i) is reduced to (ii). Thus, (i) holds. 

(2) i k j  . As per (3.4), we have ik ik kj kj ji ji ij ij jk jk ki kir r r r r r r r r r r r            . Then, 

ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r            . 

(3) j i k  . By (3.4), we obtain ji ji ik ik kj kj jk jk ki ki ij ijr r r r r r r r r r r r            . Thus, 

ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r            . 

Similarly, by shuffling the order of the indices , ,i j k , (i) holds for the remaining three 

cases: (4) j k i  , (5) k i j  and (6) k j i  . The proof is thus completed.         ■ 

As per the reciprocal property of 1ji ijr r    and 1ji ijr r   , (3.4) can be equivalently 

expressed as any of the following equations: 

(1 )(1 )(1 ) (1 )(1 )(1 ), .ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k                             (3.5) 

(1 )(1 )(1 ) (1 )(1 )(1 ), .ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k                             (3.6) 

Based on the foresaid theorems and analysis, the following corollary can be directly 

obtained. 

Corollary 3.1 Let  ( ) [ , ]ij n n ij ij n n
R r r r 

 
 

 
be a complete IARCM with 

0 1, , 1,2,...,ij ijr r i j n      , then the following statements are equivalent: 

(a) R
 
is multiplicative consistent; 

(b) , , , 1,2,...,ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r i j k n              ; 

(c) (1 )(1 )(1 ) (1 )(1 )(1 ), , , 1,2,...,ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k n                    ; 

(d) (1 )(1 )(1 ) (1 )(1 )(1 ), , , 1,2,...,ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k n                    ; 

(e) ,ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r i j k               ; 

(f) (1 )(1 )(1 ) (1 )(1 )(1 ),ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k                     ; 

(g) (1 )(1 )(1 ) (1 )(1 )(1 ),ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k                     . 

If ij jk ki ik kj jir r r r r r     
 
and ij jk ki ik kj jir r r r r r      , then ij ij jk jk ki ki ik ik kj kj ji jir r r r r r r r r r r r            . As per (a) 
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and (e) in Corollary 3.1, the following corollary can be derived. 

Corollary 3.2 Let  ( ) [ , ]ij n n ij ij n n
R r r r 

 
 

 
be a complete IARCM with 

0 1, , 1,2,...,ij ijr r i j n      , if ij jk ki ik kj jir r r r r r     
 
and ij jk ki ik kj jir r r r r r     

 
for all i j k  , 

then R
 
has multiplicative consistency. 

It is worth noting that we cannot remove the constraint i j k 
 
in Corollary 3.2. If 

ij jk ki ik kj jir r r r r r     
 
and ij jk ki ik kj jir r r r r r     

 
for all , , 1,2,...,i j k n , then let k i , we have 

0.5 0.5ij ji ii ii ij ji ij ji ij ji ij ji ij jir r r r r r r r r r r r r r                  . As per the reciprocal property of 

1ji ijr r    and 1ji ijr r   , one can obtain ij ijr r   for all , 1,2,...,i j n . In this case, R  is 

only an additive reciprocal comparison matrix. The implication of the restriction i j k   is 

that the order of alternative indices matters for this consistency condition.  

From the viewpoint of pairwise comparison, consistency conditions should be 

independent of alternative labels. Therefore, it is inappropriate to use 

,   ij jk ki ik kj ji ij jk ki ik kj jir r r r r r r r r r r r i j k                 to define consistent IARCM as the inverse of 

Corollary 3.2 does not hold. 

Xia and Xu (2011) extended the functional equation (2.3) to define perfect multiplicative 

consistent IARCMs. It is easy to prove that the functional equation therein (See Eq. (11) on 

page 1048 in (Xia & Xu, 2011)) is equivalent to ,   ij jk ki ik kj ji ij jk ki ik kj jir r r r r r r r r r r r i j k                . 

Therefore, the perfect multiplicative consistency is dependent on alternative labels. One can 

verify that the perfect multiplicative consistency definition may yield contradictory results for 

the same pairwise comparisons when alternatives are relabeled in a different order. 

For a complete IARCM
 

R , a decision-maker need provide ( 1) / 2n n  upper (or lower) 

triangular interval additive reciprocal judgments. If the decision-maker is unable or unwilling 

to furnish his/her judgments over some pairs of alternatives for some reason, an incomplete 

IARCM is resulted and missing or unknown values may be the lower, upper or both bounds of 

additive reciprocal judgments. 

Definition 3.1 An IARCM R  is called incomplete if some lower, upper or both bounds of 

its interval additive reciprocal judgments are not provided by the decision-maker. 

Note that Definition 3.1 slightly differs from the concept of incomplete IARCMs in Genç et 

al. (2010), where both the lower and upper bounds of a missing element in R  are required to 
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be unknown. 

Due to reciprocity, an IARCM R  can be determined by ( 1)n n  lower or upper bounds 

of additive reciprocal judgments. Therefore, based on Corollary 3.1, the multiplicative 

consistency of incomplete IARCMs can be defined as follows by using lower bounds only. 

Definition 3.2 Let  ( ) [ , ]ij n n ij ij n n
R r r r 

 
 

 
be an incomplete IARCM with 

0 1,0 1, ( , ) L

ij ij R
r r i j K       . R

 
is multiplicative consistent if there exists 

îjr   for all 

, 1, 2,...,i j n
 
such that 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1 )(1 )(1 ) (1 )(1 )(1 ),  , , 1,2,...,ij jk ki ik kj ji ik kj ji ij jk kir r r r r r r r r r r r i j k n                          (3.7) 

ˆ ˆ ˆ ˆ0 1,  ,  , 1,2,...,L U

ij ij ij ijr r r r i j n                           (3.8) 

( , ) ( , )ˆ ˆ 1,   , 1,2,..., , , ,L L

ij ji R R
i j j ir r i j n i j K K 

                 (3.9) 

where ˆ L

ijr

 
and ˆ U

ijr  are obtained by the following formulae: 

( , )
( , )

( , ) ( , )
( , )

( , ) ( , )

                   
 

0.5                            
ˆ ˆ0.5         ,

1 ,
0  

1    ,

L

ijL R
ij R

L U

ij ij L L

jiL R R

R L L

R R

i j
i j

i j j i
i j

i j j i

r K
r K

i j
r i j r

r K K
K

K K





 






 


 


 

 
   

 
 



            (3.10) 

4. Goal programming models for estimating missing values 

This section develops goal programming models to estimate missing values for incomplete 

IARCMs. 

Eq. (3.2) can be equivalently rewritten as the following logarithmic expression: 

ln ln ln ln(1 ) ln(1 ) ln(1 )

          ln ln ln ln(1 ) ln(1 ) ln(1 ),     , , 1, 2,..., .

ij jk ki ik kj ji

ik kj ji ij jk ki

r r r r r r

r r r r r r i j k n

     

     

        

         
     (4.1) 

  Eq. (3.2) or (4.1) holds for multiplicative consistent IARCMs. However, if 

 ( ) [ , ]ij n n ij ij n n
R r r r 

 
 

 
is inconsistent, then the elements in R  do not satisfy (3.2) or (4.1). 

To estimate missing values in an inconsistent incomplete IARCM R , some deviations are 

allowed by relaxing the relation in (3.2) or (4.1) for all ( , )
L

R
i j MV

 
and 

1,2,..., , ,k n k i k j   , where 

{( , ) | , 1, 2,..., , }
L L

R R
MV i j i j n i j K                     (4.2) 
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For an interval additive reciprocal judgment [ , ] [ ,1 ]ij ij ij ij jir r r r r     
 
with 0 1ij ijr r    , 

its equivalent interval multiplicative reciprocal judgment is computed as 

1
, ,

1

ij ij ij ji

ji ji ij ji

r r r r

r r r r

   

   

   
   

      

 whose uncertainty ratio is the quotient of its upper and lower 

bounds. The larger the uncertainty ratio 
(1 ) (1 )ji ij

ji ij

r r

r r

 

 

 
, the more uncertain the interval 

judgment 
ijr . It is widely accepted that extremely uncertain judgment information has little or 

no use in reaching final decision results (Dubois & Prade, 2012; Entani & Sugihara, 2012; 

Guo & Tanaka, 2012). Therefore, it is sensible to consider acceptable uncertainty levels (as 

reflected by uncertainty ratios) of the estimated interval additive reciprocal judgments. 

Presumably, this uncertainty threshold should be solicited from the decision-maker. Based on 

this modelling idea, the following multiple objective programming models are established to 

estimate missing values for an incomplete IARCM  ( ) [ , ]ij n n ij ij n n
R r r r 

 
  . 

 1,2,...,
, .

( , )

( , )

ln ln ln ln(1 ) ln(1 ) ln(1 )

ln ln ln ln(1 ) ln(1 ) ln(1 )

0 1,                   

. 1,  

min

.

n
ij jk ki ik kj ji L

ij R
k n ik kj ji ij jk ki
k i k j

L

ij R

ij ji

i j MV

i j MV

r r r r r r

r r r r r r

r

r r

J

s t

     

     

 



 





        

       

  

 

 

( , )

( , )

                

(1 )(1 )
.    

L

R

ij ji L

R

ij ji

i j MV

i j MV
r r

t
r r

 

 













 
  



     (4.3) 

where t ( 1t  ) is an acceptable uncertainty ratio threshold for the estimated interval additive 

reciprocal judgments, the first line of inequalities ensures that the estimated values are (0, 

1)-valued, the next line of constraints requires that the completed value ijr 
 together with 

1 jir  constitute an interval additive reciprocal judgment [ ,1 ]ij jir r  , i.e., 1ij jir r   , the 

last group of inequalities guarantees that the estimated interval judgments [ ,1 ]ij jir r   and 

[ ,1 ]ji ijr r 
 
possess acceptable uncertainty ratios, and ijr 

 ( ( , )
L

R
i j MV )  are decision 

variables, specifying the lower bounds of the missing interval additive reciprocal judgments 

that are to be estimated. 

  Let 
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 

ln ln ln ln(1 ) ln(1 ) ln(1 )

       ln ln ln ln(1 ) ln(1 ) ln(1 )

k

ij ij jk ki ik kj ji

ik kj ji ij jk ki

r r r r r r

r r r r r r

      

     

         

       
             (4.4) 

,
2

k k

ij ijk

ij

 
 


       

2

k k

ij ijk

ij

 
 


                       (4.5) 

for all ( , )
L

R
i j MV  and 1,2,..., , ,k n k i k j   . 

  As per (4.4) and (4.5), we have 
k k k

ij ij ij     , 
k k k

ij ij ij      and 0k k

ij ij     for all 

( , )
L

R
i j MV  and 1,2,..., , ,k n k i k j   . Consequently, (4.3) is equivalently transformed to 

the following goal programming model: 

 

    1,( , )
, .

( , )

( )

ln ln ln ln(1 ) ln(1 ) ln(1 )
,

ln ln ln ln(1 ) ln(1 ) ln(1 ) 1,2,.... ,

0,
.

min

.

L
R

n
k k

ij ij ij

ki j MV
k i k j

ij jk ki ik kj ji L

R

ik kj ji ij jk ki

k k

ij ij

i j
r r r r r r

MV
r r r r r r k n

J

s t

  

 

 


 

     

     

 





        


        

  

  

( , )

( , )

,

0 1,                                                                        

1,  (1 )(1 ) ,                                

0, 0.   

L

ij R

L

ij ji ij ji ij ji R

k k

ij ij

i j

i j

k i k j

r MV

r r r r tr r MV

 



     

 





 

  

     

 
( , ) ,

                                                            
1,2,.... , ,

L

R
i j MV

k n k i k j













  

     (4.6) 

where ij  is the weight of the objective function ijJ  ( ( , )
L

R
i j MV ) in (4.3). 

  If all of the foresaid objective functions are uniformly weighted, one can set 1ij   

( , )
L

R
i j MV , and (4.6) is rewritten as 

 

    1,( , )
, .

( , )

( )

ln ln ln ln(1 ) ln(1 ) ln(1 )
,

ln ln ln ln(1 ) ln(1 ) ln(1 ) 1,2,.... ,

0,
.

min

.

L
R

n
k k

ij ij

ki j MV
k i k j

ij jk ki ik kj ji L

R

ik kj ji ij jk ki

k k

ij ij

i j
r r r r r r

MV
r r r r r r k n

k i

J

s t

 

 

 


 

     

     

 





        


        


  

  

( , )

( , )

,

0 1,                                                                        

1,  (1 )(1 ) ,                                 

0, 0.     

L

ij R

L

ij ji ij ji ij ji R

k k

ij ij

i j

i j

k j

r MV

r r r r tr r MV

 



     

 







  

     

 
( , ) ,

                                                          
1,2,.... , ,

L

R
i j MV

k n k i k j













  

     (4.7) 

Alternative optimal solutions may exist for model (4.7) under a particular threshold t. As 

the missing values are inherently uncertain, it is logical to expect that the corresponding 
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estimated interval additive reciprocal judgments properly reflect this uncertainty. In the 

context of multiplicative consistency, this uncertainty is captured by the uncertainty ratio, 

which is effectively contained by the threshold t in (4.7). To eventually estimate missing 

values, the following nonlinear program is established, which takes the optimal solution to 

(4.7) as its constraints and maximizes the uncertainty ratios. The aim is to retain the 

uncertainty inherent in the original missing values without sacrificing the consistency level 

and acceptable uncertain threshold achieved in (4.7).  

 

'

    1,( , )
, .

( , )

(1 )(1 )

ln ln ln ln(1 ) ln(1 ) ln(1 )
,

ln ln ln ln(1 ) ln(1 ) ln(1 ) 1

0,

.

max

.

L
R

n
ij ji

ki j MV ij ji
k i k j

ij jk ki ik kj ji L

R

ik kj ji ij jk ki

k k

ij ij

i j

r r

r r

r r r r r r
MV

r r r r r r k

J

s t

 

 

 


 

     

     

 



 

        


        

  

  

*

    1,( , )
, .

0 ( , )

, 2,.... ,
,

 ( )=                                            

0 1, 1,  (1 )(1 ) ,                

0, 0.  

L
R

n
k k

ij ij

ki j MV
k i k j

L

ij ij ji ij ji ij ji R

k k

ij ij

i j

n
k i k j

r r r r r t r r MV

J 

 

 


 

      

 



 



       

 

 

( , ) ,
                                                             

1,2,.... , ,

L

R
i j MV

k n k i k j















  

     (4.8) 

where  
*J  is the optimal objective value for model (4.7), 0t  is the acceptable uncertainty 

ratio threshold therein, and ijr 
 ( ( , )

L

R
i j MV ) are decision variables.  

  By setting a threshold value t and solving (4.7), we obtain an optimal objective value 
*J . 

Solving (4.8) yields its optimal solutions 
*

ijr
 ( ( , )

L

R
i j MV ) for the incomplete IARCM 

 ( ) [ , ]ij n n ij ij n n
R r r r 

 
  , and a complete IARCM is determined as 

 ( ) [ , ]c c c c

ij n n ij ij n n
R r r r 

 
  , where 

*

( , )

0.5          

( , )

L

ij R

c

ij

L

ij R

Kr i j

r i j

r i j MV







 


 
 

,       
*

    ( , )

0.5            

1 ( , )

L

ij R

c

ij

L

ji R

K

K

r j i

r i j

r j i







 


 
  

           (4.9) 

It is noted that if the objective value of (4.7) 
* 0J 

 
and the incomplete IARCM R  

has multiplicative consistency, then the completed IARCM cR
 
satisfies (3.2), implying that 

cR
 
has multiplicative consistency. 

Example 1. Consider an MCDM problem with a set of four alternatives 1 2 3 4, , ,x x x x . A 
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decision-maker employs the pairwise comparison method to elicit his/her judgment 

information and furnishes the following incomplete IARCM. 

 4 4 4 4

[0.5,0.5] [2 / 3,3/ 4] [3/ 4,6 / 7] [1/ 2,3/ 4]

[1/ 4,1/ 3] [0.5,0.5] [3/ 5,2 / 3]
( ) [ , ]

[1/ 7,1/ 4] [1/ 3,2 / 5] [0.5,0.5] [1/ 4,1/ 3]

[1/ 4,1/ 2] [2 / 3,3/ 4] [0.5,0.5]

ij ij ijR r r r 

 

 
 


   
 
 

 

 

where a “-” denotes a missing value. 

  By Definition 3.2, one can easily verify that the incomplete IARCM R
 
has multiplicative 

consistency. 

Plugging the incomplete IARCM 4 4( )ijR r 

 

into (4.7) and solving this model under 

different threshold t values by the optimization modelling software Lingo 11, we obtain their 

corresponding objective value *J
 
as shown in the last column of Table 1. Subsequently, this 

information is fed into model (4.8) to estimate the missing interval additive reciprocal 

judgments 
24 24[ , ]c cr r   and 

42 42[ , ]c cr r   as shown in Table 1. 

Table 1. Estimated interval additive reciprocal judgments based on R
 

t 24 24[ , ]c cr r   
42 42[ , ]c cr r   

Objective value *J  of  

(4.7) 

1 [0.4142,0.4142] [0.5858,0.5858] 90.4 10  

1.5 [0.3660,0.4641] [0.5359,0.6340] 90.4 10  

2 [0.3333,0.5000] [0.5000,0.6667] 90.4 10  

2.5 [0.3090,0.5279] [0.4721,0.6910] 80.4173409 10  

3 [0.2899,0.5505] [0.4495,0.7101] 80.4173409 10  

3.5 [0.2743,0.5695] [0.4305,0.7257] 80.4173409 10  

4.0 [0.2612,0.5858] [0.4142,0.7388] 80.4173409 10
 

4.5 [0.2500,0.6000] [0.4000,0.75000] 80.4173409 10
 

5 [0.2403,0.6162] [0.3874,0.7597] 80.4173409 10
 

5.5 [0.2317,0.6238] [0.3762,0.7683] 80.4173409 10
 

6 [0.2240,0.6340] [0.3660,0.7760] 80.4173409 10
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  Next, the estimation methods proposed by Genç et al. (2010) and Xia and Xu (2011) will 

be used to determine the completed interval additive reciprocal judgments based on the same 

input R . 

  For a missing element ijr  ( ( , ) ( , ),L L

R R
i j MV j i MV  ), the estimation method by Genç et al. 

(2010) firstly identifies possible values of the missing element by a formula (See Eq. (28) in 

Genç et al. (2010)). The formula can be rewritten as per the notation in this article as: 

( ) ( ) ( ), ,
(1 )(1 ) (1 )(1 )

ik kj ik kjk k k

ij ij ij

ik kj ik kj ik kj ik kj

r r r r
r r r

r r r r r r r r

   

 

       

 
             

          (4.10) 

where k satisfies ( , ) ( , ) ( , ) ( , ), , ,L L L L

R R R R
i k MV k i MV j k MV k j MV    . These possible values 

are then aggregated by a weighted geometric operator (See Eq. (30) in Genç et al. (2010)) to 

determine the missing element as 

   
1/# 1/#

( ) ( ),
K K

k k

ij ij ijr r r  
                           (4.11) 

where # K  is the number of possible values. 

  By (4.10) and (4.11), one estimates missing interval additive judgments as 

24

1 3
, [0.2887,0.5477]

12 10
r

 
  
 

 and 
42 [0.4523,0.7113]r  . 

Xia and Xu (2011) proposed another formula (See Eq. (45) in Xia and Xu (2011)) to 

estimate missing elements for incomplete IARCMs, which can be expressed by using the 

notation in this article as:  

( , ) ( , )min{ , },max{ , } ,  ,L L

ij ij ij ij ij R R
i j MV j i MVr                      (4.12) 

where  

 
 

   

1/#

1/# 1/#

(1 )(1 )

K

ik kj

ij K K

ik kj ik kj

r r

r r r r


 

   


  



 
,

 

   

1/#

1/# 1/#

(1 )(1 )

K

ik kj

ij K K

ik kj ik kj

r r

r r r r


 

   


  



 
.    (4.13) 

As per (4.12), the completed missing values are determined as 24 [1/ 3,0.5]r   and 

42 [0.5,2 / 3]r  . 

  Computation results indicate that the completed values obtained from the three different 

approaches are overall consistent. For this particular incomplete IARCM R , the completed 

interval additive judgments obtained based on the method in Xia and Xu (2011) are identical 

to the results derived from the method here by setting t=2 and Genç et al. (2010)’s approach 
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yields the completed information that is very close to the result at t=3 in Table 1. Generally 

speaking, it appears that the proposed approach here is able to generate the results obtained by 

the methods given by Genç et al. (2010) and Xia and Xu (2011) by properly setting the value 

of t. On the other hand, the models in Genç et al. (2010) and Xia and Xu (2011) do not 

possess a mechanism to address the acceptable uncertainty ratio issue for the estimated 

missing values. In addition, a decision-maker may sometimes provide the lower or upper 

bound of an interval judgment based on a pessimistic or optimistic scenario. In this case, a 

missing value in R
 
is not entirely unknown but only its lower or upper bound is unknown, 

such as the incomplete IARCMs in Example 2 in Section 5. It is worth noting that the two 

estimation models in (Genç et al., 2010; Xia & Xu, 2011) cannot handle such missing values, 

but our approach is convenient in tackling these cases.  

5. Group decision making with incomplete IARCMs 

Group decisions often occur when multiple stakeholders are involved in a decision situation 

and the final choice has to account for all stakeholders’ input. Consider a GDM problem with 

a decision alternative set 1 2{ , ,..., }nX x x x . Assume that 
1 2{ , ,..., }mD d d d  is a set of 

decision-makers, and the importance weights of m decision-makers are 
1 2( , ,..., )T

m    with 

1

1
m

l

l




  and 0l   for 1,2,...,l m . Each DM 
ld  ( 1,2,...,l m ) provides his/her 

judgment over each pair of alternatives as an incomplete IARCM 

 ( ) ( ) ( ) ( )( ) [ , ]l l l l

ij n n ij ij n n
R r r r 

 
  .  

By (4.7) and (4.8), missing values in 
( )lR  can be estimated to yield a corresponding 

complete IARCM  ( ) ( ) ( ) ( )( ) [ , ]l c l c l c l c

ij n n ij ij n n
R r r r 

 
 

 
( 1,2,...,l m ). Next, a key issue is to 

aggregate the completed IARCMs 
( )l cR

 
( 1,2,...,l m ) into a group IARCM. The following 

discussion takes the same multiplicative consistency line of thinking.  

Let 

 

   

( )

1

( ) ( )

1 1

,   , 1,2,...,

1

l

l l

m
l c

ij
G l

ij m m
l c l c

ij ij

l l

r

r i j n

r r



 



 

 

 

  

 



 
               (5.1) 

where 
1

1
m

l

l




  and 0l   for all 1,2,...,l m . Eq. (5.1) is an aggregation method based 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 17 

on the weighted geometric mean. 

  Theorem 5.1. Let  ( ) ( ) ( ) ( )( ) [ , ]l c l c l c l c

ij n n ij ij n n
R r r r 

 
 

 
( 1,2,...,l m ) be complete 

IARCMs with ( ) ( )0 1, , 1,2,...,l c l c

ij ijr r i j n      , and 
G

ijr

 
be defined by (5.1), then 

 ( ) [ ,1 ]G G G G

ij n n ij ji n n
R r r r 

 
    is an IARCM. 

  Proof. Obviously, 1 0.5,0 1,0 1 1,G G G G

ii ii ij jir r r r            for all , 1,2,...,i j n . 

On the other hand, 

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )
1

( )

( )

1 1
1  1,2,...,  1, 2,...,

1

11 1
1 1  1,2,..., 1

1

1

l l l

l

l c l c l c

ij ij ji l c l c

ij ji

l cm
ij

l c l c l c
lij ji ij

l c

ji

l c

ji

r r r l m l m
r r

r
l m

r r r

r

r

  



  

 



  






         


     
                      

 
   



( ) ( )
1

( ) ( )
1 1

1 1
1

1
1 1

1

l l

m

l c l cm ml
ij ji

l c l c
l lij ji

r r

r r

 
 



 
 

   
   

          



 

 

 

   

 

   

( ) ( )

1 1

( ) ( ) ( ) ( )

1 1 1 1

1

1

1 1

l l

l l l l

m m
l c l c

ij ji
G Gl l

ij jim m m m
l c l c l c l c

ij ij ji ji

l l l l

r r

r r

r r r r

 

   

 

  

   

   



   

   

 

   
 

As per Definition 2.2, 
GR  is an IARCM.                                      ■ 

Theorem 5.2. Let  ( ) ( ) ( ) ( )( ) [ , ]l c l c l c l c

ij n n ij ij n n
R r r r 

 
 

 
( 1,2,...,l m ) be complete 

IARCMs with 
( ) ( )0 1l c l c

ij ijr r    , and 
G

ijr

 
be defined by (5.1). If all 

( )l cR
 
( 1,2,...,l m ) 

have multiplicative consistency, then  ( ) [ ,1 ]G G G G

ij n n ij ji n n
R r r r 

 
    has multiplicative 

consistency. 

Proof. As per (5.1), we have 

 

 

 

 

 

 

( ) ( ) ( )

1 1 1

( ) ( ) ( )

1 1 1

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 1 1

(1 )(1 )(1 )

l l l

l l l

m m m
l c l c l c

G G G ij jk ki
ij jk ki l l l

m m mG G G
l c l c l cij jk ki

ij jk ki

l l l

l c l c l c

ij jk ki

l c l c l c

ij jk ki

r r r
r r r

r r r
r r r

r r r

r r r

  

  

  
  

  

  
  

  

  

  


  

  

 
     

  

  

1

l
m

l







 

and 
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 

 

 

 

 

 

( ) ( ) ( )

1 1 1

( ) ( ) ( )

1 1 1

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 1 1

(1 )(1 )(1 )

l l l

l l l

m m m
l c l c l c

G GG ik kj ji
kj jiik l l l

m m mG G G
l c l c l cik kj ji

ik kj ji

l l l

l c l c l c

ik kj ji

l c l c l c

ik kj ji

r r r
r rr

r r r
r r r

r r r

r r r

  

  

  
 

  

  
  

  

  

  


  

  

 
     

  

  

1

l
m

l







. 

As ( )l cR
 
( 1,2,...,l m ) are all multiplicative consistent, by (3.2), one can obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

(1 )(1 )(1 ) (1 )(1 )(1 )

, , 1,2,..., , 1,2,..., .

l c l c l c l c l c l c

ij jk ki ik kj ji

l c l c l c l c l c l c

ij jk ki ik kj ji

r r r r r r

r r r r r r

i j k n l m

     

     


     

  

   

Thus, , , , 1,2,...,
1 1 1 1 1 1

G G G GG G
ij jk kj jiki ik

G G G G G G

ij jk ki ik kj ji

r r r rr r
i j k n

r r r r r r

    

     
  

     
. By Corollary 3.1, 

GR  

has multiplicative consistency.                                               ■ 

Theorem 5.1 indicates that a group complete IARCM 
GR

 
is obtained by aggregating 

individual IFPRs as per (5.1). Theorem 5.2 further reveals that 
GR

 
has multiplicative 

consistency if all individual complete IARCMs possess such a property. 

Once the group complete IARCM 
GR  is determined, the next issue for GDM is to 

derive a priority vector from 
GR .  

Let 
1 2 1 1 2 2( , , , ) ([ , ],[ , ],...,[ , ])T T

n n n                 be an interval-valued weight 

vector satisfying the following normalization condition (Sugihara, Ishii, & Tanaka, 2004): 

1 1

0 1, 1, 1
n n

i i j i i j
j j
j i j i

          

 
 

           1,2,...,i n               (5.2) 

then we define the interval multiplicative reciprocal preference or importance intensity of ix  

over jx  ( i j ), ,ij ij ija a a     as ,
ij ii

ij j j

 

  



 

 
 
  

, where ij
 
is a parameter such that 

1
i j

ij

i j

 


 

 

 
 

 
and ji ij   for all , 1,2,..., ,i j n i j  .  

  Let , [1,1]ii ii iia a a     , one can verify that 1ij jia a   , i.e., 
1

ij

ji

a
a


 
for all 

, 1,2,...,i j n . Therefore,  ij n n
A a




 
is an interval multiplicative comparison matrix 
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introduced by Saaty and Vargas (1987). 

It should be noted that interval arithmetic is quite different from crisp arithmetic. Normally, 

[1,1]i

i




  and [1,1]

ji

j i



 
  . For instance, 

[0.1,0.15] 2 3
, [1,1]

[0.1,0.15] 3 2

 
  
   

and 

[0.1,0.15] [0.2,0.3] 4 9
, [1,1]

[0.2,0.3] [0.1,0.15] 9 4

 
   

 
. This indicates that a difference exists in the 

uncertainty ratio obtained from the parameterized pairwise comparison interval ija  and that 

derived by interval arithmetic ,i i i

j j j

  

  

 

 

 
  
  

.  

Obviously, for any parameter value ij , the geometric means of the endpoints of all 

parameterized intervals ,
ij ii

ij

ij j j

a
 

  



 

 
  
  

 are identical to that of i

j



  
as 

1
i j

ij

i j

 


 

 

 
  , but the uncertainty ratio differs between ,

ij ii

ij j j

 

  



 

 
 
  

 
and i

j




. If 

i j

ij

i j

 


 

 

 
 , one has i i

ij ij

j j

a a
 

 

 
 

 
  , indicating that the pairwise comparison between 

ix  and jx  is reduced to a crisp judgment without any uncertainty. In this case, the maximal 

difference is achieved in the uncertainty ratio of ija
 
and i

j




. If 1ij  , then 

,i i i
ij

j j j

a
  

  

 

 

 
  
  

, implying that the pairwise comparison ija  between ix  and jx  is 

strictly based on interval arithmetic and, hence, there is no difference in uncertainty ratio of 

ija  and i

j




. If 1

i j

ij

i j

 


 

 

 
  , then 

ij ii
ij ij

ij j j

a a
 

  


 

 
    and 

 
2

1
ij i j

i j

  

 

 

 


 

i j

i j

 

 

 

 
 , indicating that the pairwise comparison between ix  and jx , ija , is not strictly 

based on interval arithmetic, and a difference exists in the uncertainty ratio of ija
 
and i

j




. 

The larger the ij , the smaller the difference in the uncertainty ratio. Therefore, ij
 
is a 
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parameter that characterizes the difference in the uncertainty ratio of the pairwise comparison 

ija  and the result determined by interval arithmetic i

j




. 

On the other hand, for any interval multiplicative reciprocal judgment [ , ]ij ija a 
, its 

corresponding interval additive judgment can be determined as ,
1 1

ij ij

ij ij

a a

a a

 

 

 
 
   

. As per the 

multiplicative reciprocal property of 1, , 1,2,...,ij jia a i j n    , one can obtain 

0 1
1 1

ij ij

ij ij

a a

a a

 

 
  

 
 and 

1
1

1 1 1 1

ij ji ij

ij ji ij ij

a a a

a a a a

  

   
   

   
 for all , 1,2,...,i j n . 

Therefore, for a given interval-valued priority weight vector  , the interval additive 

reciprocal preference or importance intensity of ix  over jx , ,ij ij ijt t t     , can be denoted by 

the following parameterized transformation function: 

[0.5,0.5]                                    

[ , ]
,              

ij iij ij ij i

i ij j j ij i

i j

t t t
i j

 

     

  

   



   

     

              (5.3)  

where ij
 
is a parameter such that 1

i j

ij

i j

 


 

 

 
 

 
and ji ij 

 
for all 

, 1,2,..., ,i j n i j  . 

Theorem 5.3 Let  ( , 1,2,..., )ijt i j n  be defined by (5.3). If 10 i i    for all 

1,2,...,i n , then ( )ij n nT t   is an IARCM with multiplicative consistency. 

  Proof. Obviously, 0 1ijt  , 0 1ijt  , 0.5ii iit t  
 
and 1ii iit t    for 

, 1,2,...,i j n . Since ji ij  , we have 1
ji ji

ij ji

i ij j i ji j

t t
 

     


 

   
   

 
 and 

1
ij i j

ij ji

j ij i j ji i

t t
  

     

 

 

   
   

 
 for , 1,2,..., ,i j n i j  . Thus, by Definition 2.2, 

( )ij n nT t 
 
is an IARCM. 

  As ji ij   for all , 1,2,..., ,i j n i j  ,  by (5.3), one gets 
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ij jk j j kj jiki i k i k ik

ji kj ik ji j kj k ik i ki k jk j ij i ki jk ij

t t t tt t

t t t t t t

    

           

          

           
   . 

By Corollary 3.1, GR  has multiplicative consistency.                            ■ 

  Theorem 5.3 reveals that ijt  ( i j ) reflects the interval additive reciprocal preference 

intensity of ix  over jx . By setting ij
 
at different values, numerous multiplicative 

consistent IARCMs are obtained for a given normality interval-valued weight vector.  

  As per Theorem 5.3, if GR T , then there exists a normality interval-valued weight vector 

1 2( , , , )T

n     and ij  ( , 1,2,..., ,i j n i j  ), ji ij   such that 
G

ij ijr t   and 

1 G

ji ijr t    for all , 1,2,...,i j n . Apparently, such an 
GR  is an IARCM with multiplicative 

consistency and 
1 2( , , , )T

n     is a normality interval-valued priority vector of 
GR . 

However, in many group decision situations, 
GR  has no multiplicative consistency. In this 

case, we turn around to find a normality interval-valued priority vector 
1 2( , , , )T

n     

and ij  ( , 1,2,..., ,i j n i j  ), ji ij 
 
such that GR T . The closer 

GR
 
and T  is, the 

better the interval-valued priority vector 
1 2( , , , )T

n     is. As per the additive 

reciprocal property of IARCMs, if G i
ij

i ij j

r


  




 



 for , 1,2,..., ,i j n i j  , then by 

ji ij   ( , 1,2,..., ,i j n i j  ), one has 1
ij iG G

ij ji

j ij i

r r
 

  



 

 
  


 for all 

, 1,2,..., ,i j n i j  . Thus, it is equivalent to find an interval-valued priority vector   and 

ij  ( , 1,2,..., ,i j n i j  ) such that 

,     G i
ij

i ij j

r i j


  




 
 


                         (5.4) 

  From (5.4), we have 

,     
1

G

ij i

G

ij ij j

r
i j

r



 

 

 
 


                          (5.5) 

Eq. (5.5) can be equivalently expressed as 

ln ln(1 ) ln ln ln ,         G G

ij ij i j ijr r i j                           (5.6)  

Therefore, the following logarithmic goal programming model is established to find a group 
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interval-valued priority vector for GR . 

,

1 1

1 1

ln ln(1 ) ln ln ln

ln ln ln ln 2ln 0, ln =l

0 1, 1, 1

n , , 1,2,..., ,

.
     1, 2,...,      .       

min

.
n n

i i j i i j

j j
j i j

n n
G G

ij ij ij j i

i j j i

i j i j ij

i

ji ij

J r r

i j n i j

i n
s t

  

      

          

   

  






 






    

       

       



 

 






         (5.7) 

where the first group of inequalities are the logarithmic expressions of 1
i j

ij

i j

 


 

 

 
 

 
and 

ij ji  , the remaining constraints are the normalized conditions corresponding to (5.2), and 

,  ( 1,2,..., )i i i n     and  ( , 1,2,..., , )ij i j n i j    are decision variables.  

Let 

ln ln(1 ) ln ln lnG G

ij ij ij ij j ir r                              (5.8) 

,
2

ij ij

ij

 
 


       

2

i j i j

ij

 
 


                         (5.9) 

for , 1,2,..., ,i j n i j  . 

Thus, we have ij ij ij     , ij ij ij      and 0ij ij     for , 1,2,..., ,i j n i j  . 

Therefore, model (5.7) is equivalently transformed to the following model: 

1 1,

( )

ln ln(1 ) ln ln ln 0, 1,2,...,

1,2,...,     ln ln(1 ) ln ln ln 0,

ln ln ln ln 2ln 0,   
.

min

.

n n

ij ij

i j j i

G G

ij ij ij j i ij ij

G G

ij ij ji j i ij ij

i j i j ij

J

r r i j n

i j nr r

s t

 

    

    

    

 

  

     

     

   



         

        

    

 

1 1

                  1,2,...,     

         1,2,...,            

0, 0.                                                  

0 1, 1, 1,

              , 1,2,ij

n n

i i j i i j

j j
j i j i

ij

i j n

i n

i j

     

  

     

 
 

    

 



  

  

..., ,n i j










 

       (5.10) 

where ,  ( 1,2,..., )i i i n    ,  ( 1,2,..., )ij j i n  
 
and ,  ( , 1,2,..., , )ij ij i j n i j      are 

decision variables. 

  Multiple solutions may exist for model (5.10). In order to obtain a reasonable decision 

result, it is natural to expect that the group opinions in 
GR  be sufficiently reflected by the 
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final interval-valued priority vector as per interval arithmetic. As 1
i j

ij

i j

 


 

 

 
  , and the 

larger the ij , the closer T  is to the result of interval arithmetic operations, it is sensible to 

select a solution of (5.10) that maximizes  ( 1,2,..., )ij j i n  
 
without sacrificing the 

consistency level. Based on this idea, we establish the following goal programming model, 

which takes the optimal objective value *J
 
of (5.10) as a constraint.  

1
'

1 1

ln ln(1 ) ln ln ln 0, 1,2,...,

1,2,...,      ln ln(1 ) ln ln ln 0,

ln ln ln ln 2ln 0,         

.

max

.

n n

ij

i j i

G G

ij ij ij j i ij ij

G G

ij ij ji j i ij ij

i j i j ij
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r r j i n
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        

    



1

*

1 1,

1

            
1,2,...,      

( )=                             

         1,2,...,         0    

0, 0.       

1

          

, 1, 1

    

,
n n

i i j

n n

ij ij

i j j i

ij ij

i i j

j j
j i j i

j i n

J

i n

 
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
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 











   


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


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












  

       (5.11) 

By solving (5.11), we obtain an optimal group interval-valued priority vector denoted by 

* * * *

1 2( , , , )T

n      * * * * * *

1 1 2 2([ , ],[ , ], ,[ , ])T

n n          

 for GR . 

Based on the foresaid analyses, the following algorithm for GDM with incomplete 

IARCMs is now developed and graphically illustrated in Figure 1. 

Algorithm 1 

Step 1. Consider a GDM problem with a set of decision alternatives 1 2{ , ,..., }nX x x x  and 

a group of decision-makers 1 2{ , ,..., }mD d d d . The decision-makers’ importance weight 

vector is 
1 2( , ,..., )T

m     with 
1

1
m

l

l




  and 0l   ( 1,2,...,l m ). The 

decision-makers furnish their pairwise comparisons on X  by means of incomplete IARCMs 

 ( ) ( ) ( ) ( )( ) [ , ]l l l l

ij n n ij ij n n
R r r r 

 
   ( 1,2,...,l m ). 

Step 2. Solicit an acceptable uncertainty ratio threshold t from the decision-makers and 

estimate missing values for each 
( )lR  ( 1,2,...,l m ) by solving the models (4.7) and (4.8), 

thereby deriving the individual complete IARCMs  ( ) ( ) ( ) ( )( ) [ , ]l c l c l c l c

ij n n ij ij n n
R r r r 

 
 
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( 1,2,...,l m ) as per (4.9). 

Step 3. Aggregate individual complete IARCMs ( )l cR ( 1,2,...,l m ) together with the 

decision-maker weights l  
( 1,2,...,l m ) into a group opinion 

 ( ) [ ,1 ]G G G G

ij n n ij ji n n
R r r r 

 
   as per (5.1). 

Step 4. Determine the optimal objective value *J
 
by solving (5.10). 

Step 5. Solve model (5.11) and, then obtain an optimal group interval-valued priority vector 

* * * *

1 2( , , , )T

n      * * * * * *

1 1 2 2([ , ],[ , ], ,[ , ])T

n n          

 for GR . 

Step 6. Establish the possibility matrix  * *( ) ( )iij n n n njP p P   
   as per the following 

possibility formula (Wang, Yang, & Xu, 2005; Xu & Chen, 2008). 

max{0, } max{0, }
( )

a b a b
P a b

a a b b

   

   

  
 

  
                   (5.12) 

where [ , ]a a a 
 
and [ , ]b b b 

 
are two positive interval numbers. 

Step 7. Add up all values in each row of P, we get 
1

n

i ij

j

p


  ( 1,2,...,i n ).   

Step 8. As per the decreasing order of the values i  
( 1,2,...,i n ), a ranking order of all 

decision alternatives is obtained, and “ ix  being preferred to
jx ” is expressed as 

* *( )G G
i jP

i jx x
 

. 

 

 

 

 

 

 

 

 

 

 

 

 

Incomplete IARCMs provided by a group of decision-makers 

Estimation 

1. Solve the models (4.7) and (4.8). 

2. Obtain individual complete IARCMs by (4.9). 

Aggregation 

Determine the collective IARCM by the weighted geometric 

mean operator (5.1) 

Prioritization 

1. Derive the optimal group interval-valued priority vector by 

solving the models (5.10) and (5.11). 

2. Establish the possibility matrix by (5.12). 

3. Find the best alternative(s). 
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Figure 1. Resolution process of GDM with incomplete IARCMs 

Next, we apply a GDM problem concerning selecting a supplier for a mobile phone 

manufacturing firm (adapted from Wan and Li (2013)) to illustrate the proposed decision 

models. 

Example 2. With the growing trend of economic globalization, efficient supply chain 

management becomes critical for a firm to improve its competitive advantage in a global 

market. This example examines a supplier selection problem, where four suppliers 

1 2 3 4{ , , , }X x x x x  are determined as potential candidates and a selection committee is called 

to evaluate the four suppliers. Assume that the committee comprises three decision-makers 

ld  (l=1, 2, 3), with varying importance weights 
1 2 3( , , ) (0.35,0.4,0.25)T T     . Each 

decision-maker ld  (l=1, 2, 3) conducts pairwise comparison on the four suppliers and 

furnishes his/her judgments by means of an incomplete IARCM 

 ( ) ( ) ( ) ( )

4 4 4 4
( ) [ , ]l l l l

ij ij ijR r r r 

 
  . 

(1)

[0.5,0.5] [0.6,0.8] [ ,0.75] [0.4,0.7]

[0.2,0.4] [0.5,0.5] [0.35,0.55]

[0.25, ] [0.5,0.5] [0.3, ]

[0.3,0.6] [0.45,0.65] [ ,0.7] [0.5,0.5]

R

 
 


 
   
 

 

 

(2)

[0.5,0.5] [ ,0.7] [0.5,0.75]

[0.3, ] [0.5,0.5] [0.3, ] [0.55,0.8]

[0.25,0.5] [ ,0.7] [0.5,0.5] [0.7,0.8]

[0.2,0.45] [0.2,0.3] [0.5,0.5]

R

  
 

 
 
 
 

 

 

(3)

[0.5,0.5] [0.1,0.3] [0.3, ]

[0.7,0.9] [0.5,0.5] [0.2,0.4]

[0.6,0.8] [0.5,0.5] [0.7,0.8]

[ ,0.7] [0.2,0.3] [0.5,0.5]

R

  
 


 
 
 
  

 

For the missing values in 
( )lR

 
( 1,2,3l  ), if the acceptable uncertainty ratios of estimated 

interval additive reciprocal judgments are expected to be less than or equal to 4, then we can 

set t =4 for model (4.7). In this case, by solving (4.7), their corresponding optimal objective 

values are obtained as: 

(1)* (2)* (3)*1.863116, 0.1519312, 3.632376.J J J    

Plugging 
* ( )*lJ J

 
and 0 4t   into (4.8), we obtain the following optimal solutions. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 26 

(1)* (1)* (1)* (1)*

13 23 32 430.6418, 0.3212, 0.3457, 0.3684.r r r r        

(2)* (2)* (2)* (2)*

12 14 32 410.7000, 0.7206, 0.4375, 0.0884.r r r r        

(3)* (3)* (3)* (3)* (3)*

13 24 31 41 420.0655, 0.4955, 0.7809, 0.7000, 0.2029.r r r r r          

As per (4.9), the completed IARCMs  ( ) ( ) ( ) ( )

4 4 4 4
( ) [ , ]l c l c l c l c

ij ij ijR r r r 

 
 

 
( 1,2,3l  ) are 

determined as follows. 

(1)

[0.5,0.5] [0.6,0.8] [0.6418,0.75] [0.4,0.7]

[0.2,0.4] [0.5,0.5] [0.3212,0.6543] [0.35,0.55]

[0.25,0.3582] [0.3457,0.6788] [0.5,0.5] [0.3,0.6316]

[0.3,0.6] [0.45,0.65] [0.3684,0.7] [0.5,0.5]

cR

 
 
 
 
 
 

 

(2)

[0.5,0.5] [0.7,0.7] [0.5,0.75] [0.7206,0.9116]

[0.3,0.3] [0.5,0.5] [0.3,0.5625] [0.55,0.8]

[0.25,0.5] [0.4375,0.7] [0.5,0.5] [0.7,0.8]

[0.0884,0.2794] [0.2,0.45] [0.2,0.3] [0.5,0.5]

cR

 
 
 
 
 
 

 

 
(3)

[0.5,0.5] [0.1,0.3] [0.0655,0.2129] [0.3,0.3]

[0.7,0.9] [0.5,0.5] [0.2,0.4] [0.4955,0.7971]

[0.7809,0.9345] [0.6,0.8] [0.5,0.5] [0.7,0.8]

[0.7,0.7] [0.2029,0.5045] [0.2,0.3] [0.5,0.5]

cR

 
 
 
 
 
 

 

  By (5.1), the group IARCM is obtained as 

 4 4 4 4
( ) [ ,1 ]

[0.5,0.5] [0.4829,0.6485] [0.3869,0.6239] [0.5063,0.7346]

[0.3515,0.5171] [0.5,0.5] [0.2794,0.5554] [0.4648,0.7245]

[0.3761,0.6131] [0.4446,0.7206] [0.5,0.5] [0.5632,0.7483]

[0.265

G G G G

ij ij jiR r r r 

 
   

4,0.4937] [0.2755,0.5352] [0.2517,0.4368] [0.5,0.5]

 
 
 
 
 
 

 

Plugging GR  into (5.10) and, then solving this model yields its optimal objective value 

* 0.5532709J  . 

By solving (5.11), we obtain the optimal group interval-valued priority vector 

* * * * *

1 2 3 4( , , , ) ([0.2021,0.3647],[0.1519,0.2817],[0.2255,0.3917],[0.1318,0.1749])T T      . 

As per the possibility formula (5.12), the possibility matrix is determined as   
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0.5 0.7278 0.4234 1

0.2722 0.5 0.1899 0.8670

0.5766 0.8101 0.5 1

0 0.1330 0 0.5

P

 
 
 
 
 
 

 

  Adding up all values in each row, we obtain 1 22.6512, 1.8291,    3 2.8867   and 

4 0.6330  .  

  As 3 1 2 4      , the four suppliers are ranked as 
57.66% 72.

3 1 2

78% 6.70%

4

8

x x x x .  

6. Conclusions 

A goal programming framework is developed to solve GDM problems with incomplete 

IARCMs. A key characteristic of this research is to take an integrative approach to addressing 

uncertainty and inconsistency of decision-makers’ pairwise judgments. Based on the 

multiplicative consistency concept (Wang & Li, 2012), new properties of consistent IARCMs 

are first investigated and employed to define multiplicative consistent incomplete IARCMs.  

A two-step goal programming method is then established to estimate missing values for an 

individual incomplete IARCM. By employing the lower bounds of the interval additive 

reciprocal judgments, a weighted geometric mean approach is subsequently proposed to 

aggregate individual IARCMs into a group IARCM. By analyzing the inherent link among 

normality interval-valued weights, multiplicative consistent IARCMs and their uncertainty 

levels, a two-step procedure comprising two goal programming models is eventually 

developed to derive an interval-valued priority vector from the group IARCM. Two numerical 

examples are furnished to illustrate the proposed models. 

Further research is needed to address some significant issues. For instance, it is unclear 

how to judge and deal with extremely uncertain or/and inconsistent information in the original 

incomplete IARCMs provided by decision-makers. It is contemplated that the notion of 

acceptable consistency and uncertainty ratios has to be further explored and an interactive 

decision mechanism may have to be introduced to gauge the acceptance of the input data 

given by decision-makers. After these issues are properly addressed, it would be worthwhile 

to investigate how the current framework can be adapted to handle these cases.  
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