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Abstract: The determination of bacterial identity at the strain level is still a 
complex and time-consuming endeavor.  In this study, visible wavelength 
spontaneous Raman spectroscopy has been used for the discrimination of 
four closely related Escherichia coli strains: pathogenic enterohemorrhagic 
E. coli O157:H7 and non-pathogenic E. coli C, E. coli Hfr K-12, and E. coli 
HF4714.  Raman spectra from 600 to 2000 cm-1 were analyzed with two 
multivariate chemometric techniques, principal component-discriminant 
function analysis and partial least squares-discriminant analysis, to 
determine optimal parameters for the discrimination of pathogenic E. coli 
from the non-pathogenic strains.  Spectral preprocessing techniques such as 
smoothing with windows of various sizes and differentiation were 
investigated.  The sensitivity and specificity of both techniques was in 
excess of 95%, determined by external testing of the chemometric models.  
This study suggests that spontaneous Raman spectroscopy with visible 
wavelength excitation is potentially useful for the rapid identification and 
classification of clinically-relevant bacteria at the strain level.  
©2013 Optical Society of America  
OCIS codes: (300.6450) Spectroscopy, Raman; (170.0170) Medical optics and biotechnology; 
(170.1420) Biology; (170.1580) Chemometrics; (170.5660) Raman spectroscopy; (170.1530) 
Cell analysis.  
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1. Introduction  

Spontaneous Raman spectroscopy (RS) utilizing ultraviolet, visible, or near-infrared laser 
excitation has recently gained popularity as an attractive technique for the biochemical 
characterization, rapid identification, and accurate classification of a wide range of bacterial 
species, including Escherichia coli [1-10].  Specifically, RS provides a reproducible spectrum 
which contains rich information about the molecular content of bacterial cells.  This is useful 
for generating a molecular “whole-organism fingerprint” for rapid identification [11].  Due to 
the diversity, pathogenesis, and evolution of strains that belong to the same species, the 
detection and identification of bacteria at the strain level is crucial and of great importance for 
clinical diagnoses, food safety, and water contamination measurements.  Sensitive and 
specific discrimination between very closely related strains of a single species – performed 
rapidly or at the point of contact – is challenging for classical methods.  Even the genetic 
technique of 16S rDNA sequence analysis does not always exhibit significant variations for 
closely related bacterial strains [12,13].  However, previous works have demonstrated that RS 
can be used for a rapid discrimination between different bacterial strains.  For example, Rosch 
et al. found that the recognition rate of bacteria at the strain level by RS was 89.2% for one 
study [14] and 94.9% for another [15].  
 The aim of this work was to evaluate the effectiveness of RS combined with suitable 
chemometric data analysis methods as a sensitive and specific discrimination tool of 
Escherichia coli at the strain level.  Specifically, it was desired to discriminate a single 
pathogenic strain of E. coli from multiple non-pathogenic strains.  E. coli represents a good 
model of bacteria that has a wide range of pathogenic and non-pathogenic strains where some 
strains are genetically very closely related and have the capability of generating new 
pathogens that may cause new disease syndromes [16].  Four closely-related well-
characterized strains of E. coli were selected for this study.  These strains included an 
avirulent laboratory derivative of the pathogenic strain E. coli O157:H7 (also called 
enterohemorrhagic E. coli, or EHEC) that can cause major public health concerns including 
the hemolytic-uremic syndrome which can be fatal in young children [17,18].  Three non-
pathogenic laboratory strains (E coli C, E. coli Hfr K-12, and E. coli HF4714, a hybrid of 
strains K-12 and C), were also studied.  A previous study of the chromosome sequence of Hfr 
K-12 and O157:H7 revealed that O157:H7 has evolved from Hfr K-12 after the attack of a 
lysogenic bacteriophage [19,20].  We have previously utilized RS to study the uptake of the 5-
carbon polyol xylitol by several of these E. coli strains [21] as well as to measure the 
molecular differences of conditional mutants of Mycobacterium smegmatis expressing three 
different alleles relating to the phosphorylation of Wag31, a key cell-division protein [22]. 
 Many Raman spectra were obtained from multiple colonies of each strain to investigate 
the reproducibility of the spectra and to provide a large data base for this study.  Due to the 
high dimensionality of the data (each Raman spectrum consisted of 2071 channels) 
classification was performed by using the multivariate analysis methods of principal 
component analysis (PCA) [4,6,23] which reduced the dimensionality of the data, followed by 
a discriminant function analysis (DFA) [24] which classified all the PCA-reduced spectra into 
independent categories depending on similarities and differences in the molecular composition 
of the bacterial strains.  When done sequentially, this is referred to as a PC-DFA [2,3].  This 
PC-DFA technique was compared to a partial least squares discriminant analysis (PLS-DA) 
which reduced the dimensionality of the data to 20 latent variables which maximized the 
variance between the data, followed by a classification of the bacterial spectra as pathogenic 
or non-pathogenic [25-27].  Such chemometric techniques are now routinely used for rapid 
and autonomous classification or grouping of bacteria on the basis of their spectral 
fingerprints [11].  This study was able to demonstrate sensitive and specific E. coli strain 
differentiation using only spontaneous Raman scattering without the need for surface-
enhanced (SERS) or coherent (CARS) techniques.  



2. Materials and method 

2.1 Bacterial culture conditions and sample preparation 

All E. coli samples were prepared in a similar manner.  Bacterial cells were cultured overnight 
in a nutrient broth medium at 37 °C, then 1 µL of the suspension was streaked on a trypticase 
soy agar TSA plate using a sterilized inoculating loop.  The plates were incubated at 37 °C for 
24 hours.  Single colonies of cells were harvested from the plates using an inoculating loop 
and suspended in 1.5 ml of deionized water.  These aliquots were centrifuged for 3 minutes at 
5000 rev/min at room temperature to create a watery pellet.  The supernatant and traces of the 
media were discarded.  In all cases, a final bacterial titer of approximately 108 cells was 
utilized, as determined by a measurement of optical density.   
 Prior to Raman measurements, 10 µL of each of the centrifuged suspensions was 
transferred to a low-fluorescence quartz microscope slide which was allowed to air-dry at 
room temperature.  After each use the slides were cleaned with deionized water, acetone, and 
methanol to remove any organic contamination or residue from the tested bacteria.  

2.2 Raman spectroscopy measurements 

Raman measurements were performed with a Jobin-Yvon Horiba Triax 550 spectrometer, a 
Modu-Laser (Stellar-Pro-L) argon-ion laser, and a modified Olympus model BX41 
microscope.  A 100X objective was used to focus about 8 mW of the 514.5 nm laser light onto 
the sample.  The Raman scattered light was collected through the same microscope objective, 
dispersed with a 1200 lines/mm grating, then focused onto a liquid-nitrogen cooled charge-
coupled device (CCD) detector.   
 A computer running LabSpec software (Jobin-Yvon Horiba) was used to record the 
spectra and control the experimental parameters.  Each spectrum was constructed from the 
average of three ten-second exposures on the same spot for a total exposure time of 30 s.  
About 25 spectra could be obtained from each dried 10 µL bacterial pad by translation of the 
microscope sample stage.  Raman spectra were collected between 600 and 2000 cm-1 and 
measured in 2071 channels.  All Raman spectra were calibrated using the well-known Raman 
peak of a crystalline Si wafer.    

2.3 Data processing and multivariate data analysis  

Data processing of the Raman spectra included baseline correction and normalization.  
Background fluorescence was subtracted from each Raman spectrum with a custom Matlab 
program utilizing an “adaptive minmax” method which used two different polynomials of 
different order (one constrained and one unconstrained) to fit the fluorescence background 
spectrum followed by a “minmax” algorithm to prevent overfitting and underfitting of the data 
[28].  This program also normalized each spectrum to its maximum intensity channel.  The 
processed Raman spectra were then analyzed via a PC-DFA (IBM SPSS Statistics v19, SPSS, 
Inc.).  In subsequent trials, spectra were smoothed utilizing a Matlab Savitzky-Golay filter 
using a variety of window sizes and smoothing functions (quadratic and cubic) and also by 
differentiating the data prior to smoothing. 
 The PCA reduced the dimensionality of each spectrum from 2071 variables to 22 principal 
component scores (PCs) that accounted for greater than 98% of the variance in the data.  DFA 
was performed on the 22 PCs which served as input independent variables for this analysis.  
In the PC-DFA data were classified as one of the four E. coli strains.  
 A PLS-DA was performed with the PLS_Toolbox v6.7.1 running under Matlab v7.6 
(Eigenvector Research, Inc.).  All Raman spectra were mean-centered prior to analysis.  The 
PLS-DA reduced the dimensionality of each spectrum from 2071 independent variables to 20 
latent variables.  In the alternate data preprocessing, spectra were smoothed with a Savitzky-
Golay filter and derivatives were taken with the PLS_Toolbox.  In the PLS-DA spectra were 
classified as belonging to one of two groups: pathogenic or non-pathogenic E. coli. 



2.4 External validation 

Classification tests were performed on 478 Raman spectra from the four strains of E. coli 
acquired in 12 separate experiments.  Each experiment generated a data set of spectra and 
each data set was acquired from bacteria cultured on separate media and harvested and tested 
on different days spanning several months.  The data sets are shown in Table 1.  

Table 1. Bacterial data sets tested in this study 

Data Set 
Number 

Bacterial ID  
(E. coli strain) 

# of Spectra 
in Set  Data Set 

Number 
Bacterial ID  

(E. coli strain) 
# of Spectra 

in Set 
1 C 50  7 HF4714 50 
2 C 50  8 HF4714 25 
3 C 13  9 HfrK-12 48 
4 C 30  10 HfrK-12 52 
5 O157:H7 35  11 HfrK-12 25 
6 O157:H7 65  12 HfrK-12 35 

 
 Classification efficacy was determined via external validation of the chemometric models.  
In an external validation each spectrum was tested against a model containing no other spectra 
from its data set.  This was done by sequentially eliminating each data set listed in Table 1 
from the model and testing each spectrum in it individually against a model built with the 
other 11 data sets.  In comparison, a “cross-validated” test (commonly called a “leave-one-
out” or LOO analysis) only removes one spectrum at a time from the model.  In this way, each 
spectrum is tested against a model containing the other 477 spectra – including spectra taken 
at the same time and from the same specimen as the unknown spectrum.  Because of this 
testing methodology, a LOO analysis will most likely always return overly-optimistic results 
and a sensitivity measured using a cross-validation test should be understood to be an upper 
limit on the ultimate sensitivity of the test.  Results reported here were all obtained with the 
more realistic “external validation” methodology.   

3. Results 

Figure 1(a) shows the average of all the processed Raman spectra acquired for each of the four 
strains under investigation. 
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Fig. 1. (a) Normalized averaged Raman spectra of four strains of E. coli (top to bottom): C, 
O157:H7, Hfr K-12, and HF4714.  Spectra have been offset vertically for clarity and the 
wavenumbers of important spectral features are indicated by a vertical line.  The standard 
deviation of all the averaged spectra is indicated by dashed lines above and below the averaged 
spectrum. (b) A PC-DFA plot showing the first two discriminant function scores of the 478 
Raman spectra.  No smoothing was performed in this analysis. 



 Bacterial Raman spectra as shown in Fig. 1(a) consisted of bands representing the cell 
contents, primarily proteins, lipids, carbohydrates, and nucleic acids.  For example, the strong 
Raman peaks located at 1005 and 1662 cm-1 were assigned previously to proteins [15,29], the 
peak at 1585 cm-1 assigned to lipids [30], and the peak at 1451 cm-1 assigned to carbohydrates 
or lipids [15,29].  The smaller Raman peaks located at 1035 and 1128 cm-1 have been 
previously attributed to carbohydrates [31], while the peak at 784 cm-1 was assigned to nucleic 
acids [29].  The Raman spectroscopic bands observed in the E. coli strains were found to be 
consistent with those published previously [31,32].  Spectral variance was low amongst 
spectra acquired from a single aliquot mounted on a single microscope slide.  The variance 
increased between spectra acquired on different days from different aliquots and cultures, as 
anticipated.  The standard deviation of the averaged spectra for any one strain is indicated in 
Fig. 1(a) by the dashed lines around the average.  
 Figure 1(b) shows the PC-DFA plot for the four E. coli strains.  Each colored point 
represents a spectrum which is plotted against its DF1 and DF2 scores.  The four main groups 
were recovered with high reproducibility and the avirulent pathogenic strain (E. coli 
O157:H7) was recovered in a cluster much separated from the other strains, demonstrating a 
greater variation than the other three strains.  The excellent discrimination of the DFA data in 
Fig. 1(b) is the result of the “internal validation” that the DFA routine performs during the 
construction of the discriminant functions.  Since the identity of every spectrum is known, the 
classification is excellent, as expected.  This classification should not be interpreted as the 
accuracy of the test when the identities of the spectra are unknown.  In that case accuracy 
drops.  The classification accuracy of this PC-DFA as determined by the “leave one out” 
analysis was still excellent: 100% of E. coli O157:H7, 99.3% of E. coli C, 99.4% of E. coli 
Hfr K-12, and 98.7% of E. coli HF4714 spectra were correctly identified.  As shown below, 
this dropped to more realistic values when entire data sets were withheld in the external 
validation test.   
 To investigate the reason for the large difference between the E. coli O157:H7 spectra and 
the spectra from the non-pathogenic strains, the spectral regions most important for 
discrimination were identified by comparing the plot of the first PC loading with the spectral 
differences between the average spectra.  This difference was obtained by simply subtracting 
the spectra from each other.  Figure 2 reveals the similarity between the PC1 loading plot and 
the difference between the average spectra of E. coli O157:H7 and E coli C.  
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Fig. 2.  The first principal component loading of the PCA (red) plotted with the difference of 
the average Raman spectrum of E. coli O157:H7 and E coli C (black).  A strong correlation 
between these two shows that the difference between pathogenic E. coli O157:H7 and E coli C 
particularly in the important Raman bands at 1658, 1454, and 1338 cm-1 accounts for a 
significant amount of the overall variance in the data.  No smoothing was performed in this 
analysis. 

 The differences in the intensities of the strong Raman bands located at 1338, 1454, and 
1658 cm-1 represent the spectral features that possessed the most between-group variance in 



the data and were thus utilized as the primary basis for discrimination.  Those peaks were 
observed in all spectra and have been previously assigned for protein or DNA, carbohydrates, 
and protein respectively [33,34].  Although the difference of the EHEC and E. coli C Raman 
band around 1100 cm-1 was fairly large, its fairly small principal component loading showed 
that it was not responsible for reliable discrimination amongst all four strains which were used 
in the principal component analysis.  This is further evidence that simple “subtraction” or 
“overlaying” of spectra is not an adequate indicator of reliable discrimination or classification 
in a multiple-group analysis.   
 Lastly, an EHEC-identification assay was simulated by performing an external validation 
test on both the PLS-DA and PC-DFA models.  Each of the twelve data sets listed in Table 1 
was sequentially withheld from the model to serve as a test group and then one by one spectra 
from that withheld test group were tested to see if they were classified as EHEC or not.  The 
results of the external validation PLS-DA and PC-DFA tests are shown in Table 2, where the 
percentage of spectra in each data set identified as EHEC (O157:H7) is given.  The overall 
sensitivity (percentage of true positives) and the specificity (one-hundred minus the 
percentage of false positives) for each analysis are given. 

Table 2. Classification accuracy of PLS-DA and PC-DFA E. coli O157:H7 tests with no spectral preprocessing 

Bacterial ID 
(# in group) 

PLS-DA 
% ID’d as EHEC 

PC-DFA 
% ID’d as EHEC

Bacterial ID 
(# in group) 

PLS-DA 
% ID’d as EHEC

PC-DFA 
% ID’d as EHEC 

C(50) 0.00% 0.00% HF4714(50) 0.00% 0.00% 

C(50) 0.00% 0.00% HF4714(25) 36.00% 76.00% 

C(13) 15.38% 30.77% HfrK-12(48) 0.00% 0.00% 

C(30) 36.67% 40.00% HfrK-12(52) 0.00% 0.00% 

O157:H7(35) 100.00% 100.00% HfrK-12(25) 0.00% 0.00% 

O157:H7(65) 100.00% 100.00% HfrK-12(35) 0.00% 0.00% 

PLS-DA  PC-DFA  

Sensitivity 100.00% ± 0.00%  Sensitivity 100.00% ± 0.00%  

Specificity 94.18% ± 13.61%  Specificity 90.74% ± 22.50%  

 
 Figure 3 graphically shows PLS-DA results for two of the twelve tests.  In these tests, 
PLS-DA built a spectral model that maximized the variance between EHEC data and non-
EHEC data.  It then assigned each spectrum a single “Y predictor variable” that was used to 
classify the spectrum as EHEC or not.  In these tests spectra from non-EHEC E. coli 
possessed a Y predictor variable of approximately 0.2 (arbitrary units) and spectra from 
EHEC possessed a Y predictor variable of approximately -0.8 (arbitrary units).  The 
difference in the means was 1.0.  Unknown spectra were tested by calculating their Y 
predictor values and determining if the value fell above or below a PLS-DA calculated 
discrimination line.  This line (which can be user-determined if desired) is calculated to 
minimize the number of false positives and negatives in the model.   
 In Fig. 3(a) an E. coli C data set was withheld from the model and was used to test the 
two-class classification.  100% of the 50 spectra were correctly classified (above the 
PLS_Toolbox-selected predictor line) as belonging in the non-pathogenic group.  All eleven 
other data sets were used to create the model.  In Fig. 3(b) an EHEC data set was withheld 
from the model and was used to test the two-class classification.  100% of the 35 spectra were 
correctly classified (below the PLS_Toolbox selected predictor line) as belonging in the 
pathogenic group.  Because the models were created with different spectral data sets, the 
predictor values and discrimination lines were not the same in the two tests. 



4. Discussion 

All of the results presented up to this point, including in Table 2, were obtained with no 
spectral preprocessing other than the background subtraction and normalization already 
described.  To determine if the specificity could be improved reproducibly above 95%, spectra 
were smoothed to eliminate spurious noise spikes using a Savitzky-Golay filter with various 
window sizes from one channel (no smoothing) to 45 channels, using a cubic and quadratic 
analytic function in the window, and also taking a second derivative prior to smoothing.   
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Fig. 3.  PLS-DA results of an EHEC test on (a) non-pathogenic E. coli strain C and (b) 
pathogenic O157:H7.  In (a) 100% of the non-pathogenic strain C spectra in the test group were 
correctly identified as being nonpathogenic E. coli, possessing Y predictor values above the 
determined discrimination line.  In (b) 100% of the pathogenic strain O157:H7 spectra in the 
test group were correctly identified as being pathogenic, possessing Y predictor values below 
the determined discrimination line.  No smoothing was performed in this analysis. 
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Fig. 4. (a) The unprocessed (raw), smoothed (with a window size of 27), and smoothed 2nd 
derivative spectrum of E. coli O157:H7.  (b) The same spectra zoomed in on the region from 
800 – 1050 cm-1.    

 The PLS-DA showed a small increase in specificity for a smoothing window of 27 
channels, with a slight improvement when the PLS_Toolbox was allowed to take the 
derivatives prior to smoothing.  These were chosen to be the optimal conditions for PLS-DA 
by virtue of yielding the best sensitivity and specificity.  The PC-DFA demonstrated little 
dependence upon smoothing window size or the use of quadratic or cubic functions, except 
for when a 15 channel quadratic smoothing was performed.  In this case, the specificity 
increased to greater than 98%, reducing the numbers of false positives from 40% to 6.67% in 
data set four and from 76% to 4% in data set eight.  This was chosen to be the optimal 
condition for PC-DFA, although it is likely that with a larger number of data sets the 
anomalous behavior of the 15 channel window smoothing would be removed.  Therefore 
although the specificity of the PC-DFA is reported to be in excess of 98%, it is likely from the 
other tests conducted that 91% is a more realistic specificity.  Differentiation performed 



outside of the PLS_Toolbox prior to smoothing did not yield efficient classification with PC-
DFA and this preprocessing was not investigated further.  This will be an ongoing area of 
investigation.  In Fig. 4 the effect of smoothing and second differentiation on a representative 
Raman spectrum of E. coli C is presented.  The final performance of the two multivariate 
techniques using the optimized preprocessing routines is shown in Table 3. 

Table 3. Classification accuracy of PLS-DA and PC-DFA E. coli O157:H7 tests using optimal preprocessing 

Bacterial ID 
(# in group) 

PLS-DA 
% ID’d as EHEC 

PC-DFA 
% ID’d as EHEC

Bacterial ID 
(# in group) 

PLS-DA 
% ID’d as EHEC

PC-DFA 
% ID’d as EHEC 

C(50) 0.00% 2.00% HF4714(50) 0.00% 0.00% 

C(50) 0.00% 0.00% HF4714(25) 4.17% 4.00% 

C(13) 23.08% 23.08% HfrK-12(48) 0.00% 0.00% 

C(30) 0.00% 6.67% HfrK-12(52) 3.85% 0.00% 

O157:H7(35) 100.00% 100.00% HfrK-12(25) 0.00% 0.00% 

O157:H7(65) 100.00% 100.00% HfrK-12(35) 0.00% 0.00% 

PLS-DA  PC-DFA  

Sensitivity 100.00% ± 0.00%  Sensitivity 100.00% ± 0.00%  

Specificity 98.41% ± 4.59%  Specificity 98.15% ± 4.71%  

5. Conclusions and Future Work 

Spontaneous Raman scattering can effectively discriminate pathogenic E. coli O157:H7 from 
nonpathogenic strains of E. coli given the use of an appropriate multivariate chemometric 
technique to classify unknown spectra.  E. coli O157:H7 is a pathogen of significant public-
health interest but the nonpathogenic strains are quite common, suggesting the need for a 
rapid non-genetic test to differentiate the pathogenic from nonpathogenic strains.   
 Partial least squares discriminant analysis and principal component discriminant function 
analysis both showed sensitive (high rates of true positives) and specific (low rates of false 
positives) classification of a strain of pathogenic E. coli from three strains of nonpathogenic E. 
coli.  Although these results are compelling, additional strains of E. coli need to be added to 
this model including additional pathogens such as enterotoxigenic (ETEC) E. coli, 
enteropathogenic (EPEC) E. coli, and enteroaggregative (EAggEC) E. coli, and additional 
nonpathogenic strains, including the very common coliform types commonly used as 
indicators of water quality.  In addition, strains cultured on a wide variety of nutrient media 
should be included in the model to provide even greater possibilities for molecular diversity in 
the recorded spectra.  
 Lastly, it remains to be seen what number of colony-forming units (CFU’s) is necessary to 
provide such sensitive and specific discrimination.  An unrealistically high bacterial titer for in 
situ identification was used in this study, but the possibility of using Raman spectroscopy in a 
microbiology laboratory for strain-identification after culturing remains.  In such an 
application RS could be performed as well as other more traditional methods, to perhaps 
improve on the post-culture speed of species and strain identification.    
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